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Doctoral School of Applied Informatics and Applied Mathematics

Budapest, 2017



Szigorlati bizottśag:
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ABSTRACT
In the past 20 years, research activities related to roboticsurgery have

gained much attention due to the rapid development of interventional sys-
tems. Advanced surgical devices present a fine example of Human–Machine
Interfaces as well. While many surgical maneuvers have already been im-
plemented with a degree of autonomy, most of these surgical robotic devices
are still used as teleoperation systems. This means that a human surgeon is
always required to be present in the control loop, as an operator. Parallel
to the evolution of telesurgery, different model-based control methods have
been developed, and experimentally tested. These enhance transparency and
increase latency-tolerance, both in terms of long distance(space robotics, in-
tercontinental operations) and short distance (local on-Earth scenarios) teleop-
eration. The effectiveness of traditional real-time control methods decreases
significantly with the increase of time-delay, while time-varying latency intro-
duces further challenges. A suitable controller can ensurehigh quality control
signals and improved human sensory feedback. This can only be achieved
by adequate models for all components of the telesurgical systems, including
models of the human operator, the robot and the tool–tissue interaction. Us-
ing haptic controllers and accounting for the tissue dynamics, one can also
address issues arising from communication latency. Stability and accuracy
deterioration caused by latency and other external disturbances, such as con-
tacting hard tissues or elastic tool deformation, can also be accounted for by
using realistic soft tissue models. The integration of these models into model-
based force control algorithms largely increase the robustness and reliability
of robot-assisted interventions.

In telesurgery, cutting, indentation and grasping are justa few types of
tissue manipulations that require high precision tools andtechniques. The
majority of modern telesurgical systems use only visual feedback, while the
applicability of force or haptic feedback has been a lastingresearch topic in
the field. An efficient implementation of force control incorporating haptic
feedback can enhance the surgeon’s sensory capabilities during the operation.
In order to achieve better performance for surgical robotics applications—
in terms of stable control for teleoperation—it is crucial to understand the
behavior of soft tissues through modeling their mechanicalproperties.

Creating an accurate tool–tissue interaction model would largely aid the
design of model-based control methods. This way, force response of the ma-
nipulation is estimated using the model, and the required input force (control
signal) can be derived. This allows the control of the tissuemanipulator (in
most cases, a surgical tool held by the robotic arm), in orderto carry out the
surgical manipulation tasks in an efficient, stable and accurate way.

The problem of distinguishing between soft tissues by testing their me-
chanical properties is often referred to as the cognitive role of haptic devices
in simulation environments. It is a common view that today’ssurgical simula-
tors that are using haptic interfaces should rely on simple mechanical models
of soft tissues, instead of complex, parameterized finite element models, thus
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enhancing real-time operation and focusing on the most representative me-
chanical effects, such as creep (the phenomenon of permanent deformation
due to mechanical stress), stress relaxation or residual stress.

This work presents a novel method for enhancing force feedback in tele-
operation systems using a model-based approach. The aim is to address the
design challenges of master–slave type telesurgical systems, which mostly
arise from the system complexity, the communication delay and the integra-
tion of haptic feedback between the master and slave devices. This way, the
most relevant qualitative and quantitative indicators of robotic systems can be
improved, such as precision, performance and reliability.In order to achieve
the control goals, modeling of the tool–tissue interactionduring the proce-
dures is crucial, which requires the formulation and verification of a general-
ized mechanical soft tissue model. This can be used for reliable reaction force
estimation during a pre-defined surgical intervention.

Given an appropriate soft tissue model, its integration is possible into a
user-defined model-based control method, which allows its direct implemen-
tation into modern surgical robotics systems. This work also gives a theoreti-
cal background on the methodology and verification of a proposed nonlinear
soft tissue model. The verification is supported by a practical methodology on
the integration into the da Vinci Surgical System, and the corresponding de-
velopment environment, the da Vinci Research Kit. A polytopic model-based
interaction controller is proposed, and control performance is investigated in
order to address robustness against model uncertainties and time-delay.

Along with force control, the problem of haptic feedback in telesurgical
systems is also addressed in this work. The da Vinci SurgicalSystem currently
lacks haptic feedback capabilities, limiting its usability in everyday surgical
practice. This thesis proposes a validation method for tissue models and their
polytopic representation by creating an experimental framework using the da
Vinci Research Kit. Once allowing haptic feedback from the manipulated real
tissue, this feature can be extended to surgical simulationusing virtual tissue
models, based on the proposed soft tissue modeling method.

The field of application of the proposed methods can be divided into
three large groups. First, robotic surgical systems with haptic feedback ca-
pabilities can be improved by reflecting an estimated reaction force to the
operator, based on the tissue mechanical properties and deformation data.
Second, surgical simulators for training and education canbe enhanced by
implementing the tissue model, creating a realistic virtual environment for
practical training and trials on specific interventions, such as prostatectomy,
cholecystectomy or appendectomy. Third, the proposed model-based force
control method can improve the performance of automated tissue manipula-
tion tasks for fully or semi-automated surgical systems, including suturing,
coagulation, cutting and grasping.

The integration of the proposed methods and models into clinical use
is a question of availability of hardware and software components, too. The
commercially available telesurgical systems were dominantly not designed to
reflect force feedback to the operator, therefore a new stable slave compo-
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nent is needed for reliable operation. Such systems are under development,
but these are still awaiting commercialization and approval from national and
global regulatory bodies. In the meanwhile, there is a wide range of compo-
nents available for research and development uses, both in terms of hardware
and software. Open-source repositories and global communities are actively
working on the enhancement of prototypes and commercially available sur-
gical systems, where methods and models, such as the ones presented in this
work can be further developed, tested and validated.
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KIVONAT
Az elmúlt 20 évben a robotsebészethez kapcsolódó kutatások jelentős

eredményeket hoztak, különösen az ember–gép kölcs¨onhatások területén. Ma
már számos, a műtőben gyakran alkalmazott mozdulatsorhajtható végre bizo-
nyos fokú önállóság mellett a modern sebészeti berendezésekben, ugyanakkor
ezek az eszközök továbbra is elsősorban mester–szolgaalapú teleoperációs
(távsebészeti) rendszerekként működnek. Ennek megfelelően a sebész tovább-
ra is

”
integrális része” a szabályozási körnek, a döntéshozatal és a mozgáspa-

rancsok kiadása a sebész feladatkörébe tartoznak. A telerobotika fejlődésével
párhuzamosan számos olyan modell-alapú szabályozási módszer látott nap-
világot, mely lehetővé teszi az erővisszacsatolást akezelő számára, és robusz-
tusan kezeli az időkésleltetésből adódó nem kı́vánt jelenségeket, mind na-
gyobb távolságok esetében (űrrobotika, kontinenseken átı́velő teleoperáció),
mind lokális környezetben. A hagyományos szabályozási módszerek haté-
konyságát nagymértékben befolyásolja az időkésés mértéke, a késleltetés vál-
takozó értéke pedig újabb kihı́vásokat jelent már a tervezési, rendszermérete-
zési szakaszban. Megfelelő tervezési eljárással javı́tható az szabályozás minő-
sége, és stabilabb visszacsatolás valósı́tható meg asebész felé. Ehhez minde-
nekelőtt szükség van a távsebészeti rendszerek komponenseinek modelljére,
ı́gy például a humán operátor, a szolga oldali robotkarés az ún. eszköz–szövet
kölcsönhatás dinamikájának leı́rására. Az idők´esésből és egyéb külső zavaró
tényezőktől (pl. a sebészeszközök rugalmas deform´aciója, kemény szövet-
tel való ütközés) származó stabilitásvesztés éspontatlanság kezelhető meg-
felelő lágyszövetmodellek alkalmazásával, melyheznagyban hozzájárulhat a
lágyszövet dinamikájának vizsgálata és haptikus eszközök használata. Egy
modellel támogatott erőszabályozási módszer jelentősen növelheti a robotok-
kal támogatott sebészeti beavatkozások robusztusságát és megbı́zhatóságát.

A vágás, tapintás és a szövetek megragadása néhánypélda azokra a
távsebészeti manipulációkra, melyek nagy pontosságú eszközöket és tech-
nikákat igényelnek. A modern távsebészeti rendszerektúlnyomórészt csak
képi visszacsatolást tesznek lehetővé, bár az erő- ´es haptikus visszacsatolás al-
kalmazhatósága régóta foglalkoztatja a kutatókat. Egy olyan erőszabályozási
módszer hatékony megvalósı́tása, mely tartalmazza a haptikus visszacsatolás
fő elemeit, jelentősen növeli a sebész által érzékelhető információ mértékét a
beavatkozás során. A modern sebészrobotikai rendszerek esetében a beavat-
kozások minőségének és megbı́zhatóságának növeléséhez kritikus tényező a
lágyszövetek mechanikai tulajdonságainak ismerete, illetve a megfelelő esz-
köz–szövet kölcsönhatás modelljének felállı́tása. Ezáltal a manipuláció során
jelentkező erőválasz becsülhető a modell segı́tségével, és a kı́vánt bemeneti
szabályzójelek számı́thatóak a robotkar irányı́tásához.

Az egyes lágyszövetek megkülönböztetésének feladatát gyakran a hapti-
kus eszközök kognitı́v szerepeként emlegetjük, melynek szimulációs környe-
zetekben kiemelt jelentősége van.Általánosan elfogadott nézet, hogy a mai
haptikus eszközökkel felszerelt sebészeti szimulátorok esetében egyszerűbb
mechanikai modellekre van szükségünk a nehezen skálázható, végeselem-
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módszer alapján felállı́tott modellekkel szemben. Ez lehetőséget nyújt ar-
ra, hogy a valós idejű működés mellett a szöveteknek asebészek számára
ténylegesen fontos mechanikai viselkedését tudjuk le´ırni, szemben a gyakran
elhanyagolható részleteket tárgyaló mikromechanikai megközelı́téssel.

A kutatásom egyik közbenső célja egy olyan modell-alapú szabályozási
módszer kifejlesztése volt, amely a napjainkban használt teleoperációs sebész-
robotikai rendszerek struktúrájából és a haptikus visszacsatolásból eredő ter-
vezési nehézségeket oldja fel, ezáltal javı́tva a robotikában fontos mutatókat,
ı́gy például a pontosságot, teljesı́tményt és a megb´ızhatóságot. A kitűzött
célok megvalósı́tásához szükség van egy olyan mechanikai szövetmodell meg-
alkotására és hitelesı́tésére, mely egy meghatározott sebészrobotikai beavat-
kozás esetén alkalmas arra, hogy az eszköz–szövet interakció során ébredő
reakcióerőket megfelelő pontossággal becsülje. A kutatási célok között szere-
pelt a javasolt modell kiterjesztése a szövet felületének tetszőleges alakválto-
zásának esetére is. Sikeres verifikáció után a modellalkalmazható egy modell-
alapú irányı́tási folyamatban, mely felépı́téséb˝ol eredően beépı́thető azÓbudai
Egyetemen található da Vinci sebészrobot fejlesztők¨ornyezetbe. Az erőszabá-
lyozás mellett szerepet kap a haptikus visszacsatolás, mellyel a da Vinci se-
bészrobotikai rendszer egy jelentős hiányossága pótolható, illetve a robusz-
tusság vizsgálata az időkésleltetésből és a becsült modellparaméterek eltéré-
séből adódó hibák esetére. A javasolt nemlineáris szövetmodell, annak kvázi-
lineáris alakra hozása, transzformációja, a szabályozási struktúra megalkotása,
végül pedig a módszer kı́sérleti igazolása képezték a munka gerincét.

A javasolt módszer alkalmazhatósági körét három főterület foglalja ösz-
sze. Elsőként azok a sebészrobotikai rendszerek, melyek rendelkeznek a hap-
tikus visszacsatolás lehetőségével, a reakcióerő becsült értékének visszacsa-
tolásával segı́thetik a sebészek munkáját a bemutatott szövetmodell segı́tségé-
vel. Másodsorban a sebészeti szimulátorok és oktatóberendezések fejlesztésé-
hez járulhat hozzá egy olyan általános szövetmodell,mely például a prosztata-
és epehólyag-eltávolı́tás vagy vakbélműtétek oktatására valósághű virtuális
környezetet épı́t fel. Harmadrészt, a javasolt modell-alapú erőszabályozási
módszer az egyes automatizált szövetmanipulációs feladatok elvégzését na-
gyobb biztonsággal és pontossággal tudja majd kivitelezni.

A bemutatott modellek és módszerek integrálhatóságamind az elérhető
szoftveres, mind pedig a hardveres eszközktől is függ. Anapjainkban kereske-
delmi forgalomban kapható teleoperációs rendszerek csak nagyon kis hányada
alkalmas erővisszacsatolásra, ezért a megbı́zható m˝uködéshez jól megterve-
zett szolga-oldali komponensekre van szükség. Ilyen rendszerek jelenleg is
fejlesztés alatt állnak, azonban ezek egyelőre még nemalkalmazhatóak a kli-
nikai gyakorlatban a szükséges engedélyek nélkül. Ugyanakkor számos kom-
ponens áll a kutatók és fejlesztők rendelkezésére, elsősorban nyı́lt forráskódú
szoftveres könyvtárak és nemzetközi közösségek által, ı́gy a prototı́pusok és
a már kereskedelmi forgalomban kapható sebészeti berendezések fejlesztése
aktı́van folytatódik majd az elkövetkező években. Ez lehetőséget nyújt az új
módszerek és modellek – hasonlóan az ebben a doktori értekezésben bemuta-
tottakhoz – tesztelésére, fejlesztésére és hiteles´ıtésére.
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Structure of the Thesis

The thesis is divided into seven chapters. Chapter 1 gives anoverview on the components
of teleoperation systems, emphasizing the role of modelingin modern surgical applica-
tions. A section of this chapter is dedicated for the discussion of the challenges arising
due to communication latency, from the controller design point of view. Two important
theoretical overviews are also presented: a brief summary is given on the most widely
used rheological soft tissue models and their validity, andthe most relevant definitions of
Tensor Product Model Transformation are listed. Furthermore, this chapter introduces the
frequently used keywords and concepts of the thesis.

Chapter 2 collects the challenges in the main topics of the thesis, highlighting why
these problems require a solution utilizing novel approaches. The problems stated in this
chapter are related, but not restricted to the model-based investigation of telesurgical ap-
plications. The aim of my work is to propose a solution to these challenges.

Chapter 3 explains the methods by which the research data andreference literature was
collected, and which specific techniques or protocols were used to propose a solution for
the research problems.

Chapters 4, 5 and 6 are covering the topics of the three major thesis groups, introducing
the core research of my Ph.D. work. The chapters independently address the problems
stated in chapter 2, guiding the reader through the major steps of solution development,
methodology, theoretical background and experimental validation. The results and the
evaluation of the findings are discussed at the end of each chapter.

Finally, chapter 7 gives a structured summary of the key results of my research, pro-
viding an outlook on the current and future efforts that can utilize the findings of this
work.

Numbering of equations, tables and figures is following the structure of the chapters.
The independent references are numbered as [1],[2],..., thesis-related own publications are
denoted as [TA-1],[TA-2],..., while the own publications that are not related to this thesis
are numbered as [TA-I],[TA-II],... The language of the thesis is English, following the
U.S. English grammar and spelling rules.



Notations and Symbols

TABLE 1

COMMON ABBREVIATIONS AND NOTATIONS

ABC-iRob Antal Bejczy Center for Intelligent Robotics
ACMIT Austrian Center for Medical Innovation and Technology

CIS Computer-Integrated Surgery
CISST Computer Integrated Surgical Systems and Technology

CPS Cyber-Physical Systems
DoF Degree(s) of Freedom

DARPA Defense Advanced Research Projects Agency
DVRK da Vinci Research Kit
FE(A) Finite Element (Analysis)
FEM Finite Element Modeling

FPGA Field-Programmable Gate Array
GUI Graphical User Interface
HMI Human–Machine Interface
HRI Human–Robot Interaction

IEEE Institute of Electrical and Electronics Engineers
JHU Johns Hopkins University
LMI Linear Matrix Inequality
LQ Linear Quadratic

MIS Minimally Invasive Surgery
MPC Model Predictive Control

MTM(L/R) Master Tool Manipulator (Left/Right)
MVS Minimal Volume Simplex

NASA National Aeronautics and Space Administration
NEEMO NASA Extreme Environment Mission Operations

NN Neural Network(s)
OR Operating Room

PDC Parallel Distributed Compensator
PSM Patient Side Manipulator

(q)LPV (quasi) Linear Parameter Varying
RMS(E) Root Mean Square (Error)

ROS Robot Operating System
SAGES Society of American Gastrointestinal and EndoscopicSurgeons

SAW Surgical Assistant Workstation
SLS Standard Linear Solid
TP Tensor Product



TABLE 2

COMMON VARIABLES AND SYMBOLS

A,A0 Tissue surface area
bi Linear damper stiffness
ci Local stiffness parameters
δ Linear validity range

∆X Deviation of X from the desired value
ǫ Root mean square error

fsys, Fsys Force response of systemsys
Fd Desired force

H(s) Transfer function (human behavior)
ki,Ki Linear spring stiffness

κi Nonlinear spring stiffness
p, p(t) Vector of parameters

ρ Radius of affected surface
S Core tensor
s Complex frequency
τx General time constant

S(p(t)) System matrix
Ts Sampling time
ueq Equilibrium state input

u(t), u(t), U(s) General input function
v Compression rate

wi,w(n) Weighting function, vector of weighting functions
w(t) Disturbance input
Wsys Transfer function (representing systemsys)

x Vector of state variables
xd Desired state, indentation depth
ẋ First derivative of the state variables w.r.t. time
y System output function

z(t) Performance output
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Chapter 1

INTRODUCTION

1.1 A Brief History of Robotic Surgery

In recent years, a large number of surgical robotic systems and robotic surgery related re-
search have been initiated and conducted. As a result, useful software and hardware tools
appeared on the market, which accelerated the pursuit for new research results in mod-
ern robotic surgery and telesurgery. Computer-IntegratedSurgery (CIS) and telemedicine
are becoming popular in the world’s developed countries, improving the quality of med-
ical treatment and patient care. The development of these systems requires a strict and
effective cooperation of surgeons, Information Technology (IT) experts, engineers and
scientists from the various fields of natural and human sciences, creating the possibility
of remote or even transcontinental surgery. The concept of these systems often originate
from specific extreme applications, thus their testing alsorequires extreme environments,
such as weightlessness or extremely high pressure.

There is no consensus about the title of “the first surgical robot”, since it is hard to
define, what criteria should be used to claim such a robot’s role fundamental. The first sys-
tems, which appeared in the 1970s were used for different purposes, primarily as assisting
devices and supporting manipulators. The concept of telerobotics for surgery appeared in
the early 1970s, initiated by the National Aeronautics and Space Administration (NASA).
The goal of the original project was to provide medical assistance for the astronauts during
their remote mission. For this purpose, remotely controlled robots would have been used,
operated from the Earth. At that time, the proposal was not funded, and only limited doc-
umentation remained accessible. The idea was concluded in ashort period of time, and
another 15 years passed until the first prototypes appeared,mostly backed by US military
grants. During the development phase, it became apparent that controlling telesurgical
robots is very challenging, due to the effects of time-delaycaused by the large distances.
The attention from telesurgery in space shifted to shorter distance telesurgery solutions,
leading to the introduction of the first surgical robots to the market by the 1990s.

The most successful robotic system for surgery, the da VinciSurgical System (Intu-
itive Surgical, Sunnyvale, CA) grew out of the early results, successfully combining the
advantages of various prototypes. In the past 20 years, technology continued to improve,
and instead of the military applications, the private sector has become the driving force
of the surgical robotics industry, which is now an estimatedmarket of $5 billion per year.
Along with the constant improvement, other robotic devicesappeared for enhancing sur-
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gical capabilities, namely, in the fields of telesurgery, image-guided surgery and coopera-
tively controlled surgical robotics. In all of these fields,an important trend is that pre- and
intra-operative information—in the form of imaging, physiological data collection, etc.—
are playing an increasingly significant role during the procedure, and are enabling robotic
systems to gain more autonomy. The field is rapidly changing thanks to the hundreds of
research teams focusing on relevant projects. The computing capabilities of modern ICT
devices allow the usage of more sophisticated systems, however, overarching regulations
and standards in the field are still missing. Surgical robot specific standards (currently
under development) will make it possible for the industrialplayers to better design their
systems, to be able to prove their safety and accuracy to the authorities. As for today, most
applications keep the human operator active in the control loop, enabling the robot only
to enhance the surgeons’ capabilities. Autonomous task execution on Earth and in space
remains a research topic for the future.

1.2 Modeling Teleoperation Systems

Healthcare services that are performed, or supported by robots from long distances have
opened new frontiers in diagnostics and surgery. The initial need of teleoperation first ap-
peared in the early 1950s, while the idea telesurgery was born along the concept of space
exploration, initiated by NASA in the 1970s. Although the concept of telesurgery in space
has never been implemented in real clinical applications, several simulations and research
projects have led to a breakthrough in 2001, when the first intercontinental telesurgical
procedure, theLindhberg operationwas carried out between the USA and France, based
on ISDN communication [1]. The successful procedure provedthat theoretically, in spe-
cial cases, medical doctors, nurses and surgeons could contact and reach out for patients
thousands of kilometers away. It is most likely that in the near-future, the research and
development of telesurgical systems will focus on applications in remote, rural and dan-
gerous areas, such as war zones or contaminated sectors. It is evident that the difference
between surgical procedures on Earth and in space environments is huge. During the past
decade, several remote surgery experiments were conductedby NASA on Earth, under
extreme conditions. The trials took place in the world’s only permanent undersea labora-
tory, NEEMO (NASA Extreme Environment Mission Operations), concluding their latest
project on July 21, 2016.

Emerging issues in telesurgery include the modeling and control challenges of both the
master and slave sides, while the communication with the surgical crew on Earth creates
further issues to address, such as transmission data loss, signal latency (delayed infor-
mation transmission) and lagging (delayed response). Withthe increase of the distance
between the master and slave sides, these effects are magnified. Many disturbing effects
can be reduced in a general teleoperation surgical robotic system by a well-chosen system
architecture and proper control methods. A detailed reviewabout the current capabilities
in surgical robotics, primarily focusing on teleoperated systems was published by Hoeck-
elmannet al. [2], while available options and a proposed control and modeling framework
for telesurgical applications was proposed by Jordán et al. [TA-16]. One of the major
issues of currently available telesurgical systems is the lack of reliable haptic feedback,
leaving surgeons to only rely on their visual sensing duringprocedures. This chapter gives
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an overview of the concept of telesurgery, approaching the problem from the modeling
point of view, addressing the effect of force control and therole of modeling.

Today, the da Vinci Surgical System is the best-known and most popular surgical
robotic system, functioning as a teleoperated manipulator. As of September 30, 2016,
there was an installed base of 3,803 units worldwide: 2,501 in the United States, 644 in
Europe, 476 in Asia, and 182 in the rest of the world1. In the case of the da Vinci, the
system is not used routinely for long-distance procedures and interventions. Primarily,
this is due to the limitations of the communication protocol, which is a custom-developed
component of the system, and due to the missing complete legal framework underlying
long-distance surgical robotic procedures [3]. However, there is a potential for using the
da Vinci robot at a greater distance, which has been proved bysome limited experiments.
One of these includes the collaborative telerobotic surgery initiative by DARPA in 2005,
when several modified da Vinci consoles were able to overtakethe control from one an-
other through the Internet [4]. In 2008, Canadian Surgical Technologies and Advances
Robotics (CSTAR, London, ON) used the core network of Bell Canada for testing a mod-
ified, telesurgery-enabled version of the da Vinci. Altogether, six successful pyeloplasty
procedures were performed on porcine kidneys using telesurgery, with the slave manipu-
lator located in Halifax, Nova Scotia, 1,700 kilometers away from the controllers [5]. The
Plugfest was one of the most notable experiments in the past years, allowing eight mas-
ter devices of various surgical robots to connect with six slave machines [6]. Simulated
interventions, such as peg transfer tasks (SAGES Fundamentals of Laparoscopic Surgery)
were successfully supported globally for more than 24 hours, using the Interoperable Tele-
operation Protocol (ITP) [7]. The recent advances in the reliability of the Internet network
allows these high-level experiments to be executed safely,however, the Internet backbone
infrastructure is becoming overloaded, with an immediate effect on the lag times. In order
to protect the patients in the future, some of the security issues need to be addressed, in
accordance with the IEC 80001-1:2010 (Application of risk management for IT-networks
incorporating medical devices) [8]. When we discuss control over a delayed communica-
tion channel, numerous safety and performance issues arise. Furthermore, there is a need
for surgical training in the use of latency-affected masterconsole, helping the operators
learn how to tolerate latencies and other disturbing effects [9].

1.2.1 Components of Teleoperation Systems

Just like every teleoperation system, master–slave surgical robotic systems in general con-
sist of three major components from the control and modelingpoint of view: the slave
device, the master device and the communication system. In the field of telesurgery, the
slave-side modeling is extended with the phenomena of tool–tissue interaction, the contact
problem addressing the behavior of the tool and the soft/hard tissue under manipulation.
The modeling of the components is essential for building a valid simulator for the sys-
tem as a whole, creating the possibility of observation and analysis of control attributes,
properties and behaviors. The models are subject to validation, both individually and as a
part of the assembly. The schematic illustration of the functional components of a general
telesurgical system is shown in Fig. 1.1.

1http://www.intuitivesurgical.com/company/faqs.html
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Fig. 1.1. Block diagram of a general telesurgical system from the control point of view.

Communication System

The communication system is the component responsible for data transfer, coding and
decoding control signals and other tasks that make the communication between the master
and slave devices possible. In general, the communication system includes a transmitter,
a receiver and the communication medium. Signal quality andlatency are both dependent
from the subcomponents, individually. Besides quality issues, data loss is one of the most
critical problems to be solved in telesurgical systems, which is, in general, the best handled
by particular custom-designed protocols or the User Datagram Protocol (UDP).

Humans have limited adaptability to time-delay, it generally varies between 300–500
milliseconds. In 2001, during the first trans-Atlantic telesurgical intervention, the Zeus
robot was in use, created by Computer Motion (Mountain View,CA). A mean signal delay
of 155 ms was recorded [10]. According to the measurements, 85 ms of lag appeared in
signal transmission, while it took 70 ms to encode and decodethe video streaming from
the slave side. It is important to note that currently all surgical robots employed routinely
in clinical applications are only providing visual and audio feedback. Haptic feedback is
yet to be perfected due to stability issues, and data encoding would also increase the lag in
long-distance communication.

In order to achieve low dynamic distortion to the user, haptic devices have low intrinsic
friction, however, the transparency of the system is largely affected by the computer inter-
face. Digital control loops introduce non-idealities intoto system through force/position
data quantization, time-delay and time discretization [11]. All these effects introduce ex-
cess energy into the system (energy leaks), which may lead toan unstable control loop, if
this energy is not dissipated through control or the mechanical friction of the devices [12].

Effects of time-delay can be reduced with various control methods designed for latency-
tolerance, therefore, there is an opportunity to bridge larger distances with these technolo-
gies. In order to achieve this, the system components must bemodeled in a robust way,
including all three main components of the teleoperation system. From the communica-
tion system approach, the master includes a controller and/or a human operator (usually
subject to latencies), which is interconnected with the slave model through a high-delay
communication medium. Using appropriate predictive controllers, the time-delay can be
partially alleviated in the deriving cascade setup, if the controller is well-tuned for both
the master and slave systems [13].
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Master Model

The master side is the component, where the human operator ora control device is located.
In the past decades, several human models have been created to address the human behav-
ior in the control loop. One of the most significant classicalmodels is the crossover model,
which was developed in the 1960s in order to model the behavior of fighter pilots during
flight [14]. The crossover model is based on the time-dependent non-linear response of
the human body, using a quasi-linear approximation. The complexity of the model highly
depends on the precision of the task to be executed. However,there is a commonly used,
reasonably good approximation:

H(s) = Kp

τLs + 1

τIs+ 1

e−τs

τNs+ 1
, (1.1)

where the term in the brackets stands for the human physiological limitations, including
the delay of the human reaction time. The time constantτN refers to the neuromuscular
system, where the delay occurs.Kp represents a static gain, whileτI and τL express
the time-delay section and the control time constant, respectively. The trade-off for the
simplicity of this model is that it does not represent other,detailed human attributes, such
as motivation, expertise and fatigue. Another popular model of human operators was
created by Ornstein [15]. A significant development compared to the crossover model is
that the Ornstein model can also be applied in tracking type tasks:

H(s) =
a1s+ a0

b2s2 + b1s+ b0
e−τs. (1.2)

Thea andb coefficient values are determined by taking some physical attributes into ac-
count, such as velocity or static gain, and are usually obtained from user trials, where the
participants carry out a carefully designed task. Due to therelatively high number of pa-
rameters, this model can become rather sophisticated, allowing one to describe neuromus-
cular effects or other dynamic response characteristics [16]. Furthermore, a large variety
of sensory input noise can be modeled using a general signal disturbance, creating the pos-
sibility to include vision modeling [17]. In practice, the most commonly used non-linear
human operator model is the GM/UMTRI car driver representation, developed at Gen-
eral Motors. The basis of this model is a general, quasi-linear UMTRI driver model [18].
These models have been widely used for the representation ofmaster–slave type telesur-
gical tasks, as numerous components of the driver model—including path observation and
planning activities, speed control and sensory limitations—can be associated with compo-
nents of a telesurgical system during tissue manipulation [19].

Slave Side Models

In telesurgical applications, functionality and safety requirements are higher than in other
robotic applications. At the design stage, autonomous capabilities and proper mechanical
modeling are important in satisfying these. In general, thekinematic model of a slave
robot is described at a high level of precision, enabling itsintegration in dynamic and
kinematic models [20, 21]. These models, along with the appropriate image guidance and
modeling, can largely increase the accuracy and safety of surgical interventions [22]. In
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robotic surgery, one of the most critical issues is the correct description of the model of the
robot arm, the model of the manipulated tissue and the behavior of these elements during
manipulation tasks on contact. This thesis primarily focuses on soft tissue manipulation
problems, while the issues involving hard tissues are in thefocus of machining technology
studies, since drilling, milling and turning are affected by great vibration, and thus require
stability issues. Most of the types of human soft tissues areinhomogeneous, viscoelastic,
anisotropic and highly non-linear materials, therefore modeling is of high importance not
only in robot control, but also in the use of surgical simulators.

Tool–Tissue Interaction Models

A comprehensive study about the existing soft tissue modelsused in most MIS applications
and virtual surgical simulators was presented by Famaey andSloten [23], introducing three
major categories of deformation models: heuristic models,continuum-mechanics models
and hybrid models. The complexity of each model mentioned above varies on a wide
scale, although it is commonly accepted that approaches based on continuum-mechanics
provide a more realistic response, but require significantly higher computational capac-
ity. Analytical solution to the used mathematical models generally do not exist. On the
contrary, heuristic models that consist of lumped, linear mass–spring–damper elements,
which can be used for describing simple surgical tasks, likeneedle insertion. The derived
equations can usually be solved analytically.

While the modeling of soft tissue behavior—the force and/ordeformation response of
the tissue due to its interaction with the surgical tools—has been in the focus of research
for long, the challenging field of gaining information aboutthe interactions of the robot
arm and the tissue has only reached popularity recently. Among the arising issues, it is
important to mention the problem of force feedback, the modeling of tools and the interac-
tion with organs itself. A comprehensive review on current tool–tissue interaction models
was carried out in [TA-14], providing a survey on research focusing on interactions de-
scribed by models, following the principles of continuum mechanics and finite element
methods. The focus of interest can also be extended to modelsof telesurgical applications,
without strict boundaries of categories, giving an overview of model properties. In [24], a
simple 1 Degree of Freedom (DoF) model of a rigid master and flexible slave connection
was introduced. Here, the problem of tool flexibility is addressed as one of the greatest
issues in the case of tool tissue interactions, since force sensing can only be applied at the
fixed end of the tool, and its deflection can only be estimated.Besides tool flexibility, the
compliant parameters of the models of the robotic arm and tissues are also important, and
take significant parts of the tool tissue interaction system. Other extensions of the model
exist for rigid slave, flexible joint and flexible master descriptions, the complexity of the
model of the whole system can be extremely high. Great advantage of this approach is that
not only the tool flexibility, but the whole transparency of the system is addressed. It is
important to mention though that no detailed tissue modeling is provided, the use of rigid
specimen model indicates that this approach is rather focusing on teleoperation. Basdo-
ganet al.addressed the importance of tool–tissue interaction modeling in medical training
through simulation in virtual reality, focusing on issues in haptics in MIS [25]. When
working with soft tissues, the elastic behavior of the tool can usually be omitted, using
rigid models of surgical accessories. In their work, they introduced two new approaches
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to tissue modeling: the mesh-based Finite Element (FE) model, using modal analysis and
the real-time meshless method of finite spheres. In the virtual environment, collision de-
tection and perception of multiple tissue layers was created, accompanied with force and
torque feedback to user’s hand. This feature is supported byforce and position sensors
mounted on the tool, which is held by the user instead of a robotic arm. The complexity of
the above mentioned methods is in connection with the required computational effort. In
simple problems, the use of the method of finite spheres is suggested. Another approach
to meshless methods was introduced by Baoet al., where several layers were used as the
model of the soft tissue, their interaction modeled with a heuristic Kelvin model [26].
Modeling of two important viscoelastic properties, the creep and relaxation is possible
with this new three-parameter viscoelastic model, improving the performance of conven-
tional mass–spring–damper approaches. Yamamoto suggested a method for the detection
of lumps in organ tissues, such as kidney, liver and heart [27]. The importance of this work
was a comprehensive comparison of seven different tissue models used in point-to-point
palpation. The aim of the tests and model validations was to create a graphical overlay
system that stores data on palpation results, creating a color scale overlay on the actual
tissue, processing the acquired data using several tissue models, with a single 1 DoF force
sensor at the fixed end of the tool. Yamamotoet al.also created an interpolable interface
with haptic feedback and augmented visual feedback and performed palpation and surface
detection tasks using vision-based forbidden-region virtual fixtures (control boundaries for
safety that should not be crossed during an intervention) [28]. The tests were carried out on
manufactured artificial tissues based on existing commercially available artificial prostate,
using a complex, but—based on previous measurements—accurate Hunt–Crossley model.
Position, velocity and force sensors were mounted on the slave manipulator and the visual
feedback to the human user was generated with a stereo-vision system.

When dealing with viscoelastic materials interacting withtools, coupled problems
arise, where additional mechanical models are required to describe the system response.
A fine example to this issue is the task of needle insertion, where friction and the stick-
slip phenomenon cause difficulties in assessing real tissuebehavior in practice [29]. It is
important to mention that even when the best-suited mathematical models are employed,
material properties (Young-modulus, Poisson-ratio, etc.) can only be estimated. Valida-
tion of their values requires circumstantial physical experiments. When using heuristic,
mechanical tissue models, the acquisition of explicit, butgeneral material properties are
omitted. Instead of using tables and possible ranges of these properties, spring and damp-
ing coefficients must be obtained from measurements, even when nothing else but the tool
shape is changed. In their work, Leonget al. introduced and validated a mechanical model
of liver tissue and its interaction with scalpel blade, creating a distributed model of me-
chanical viscoelastic elements [30]. With the serial connection of a Maxwell and Kelvin
element, they introduced the Maxwell–Kelvin viscoelasticelement. The primary aim of
their work was to account for the tissue surface deformationdue to the extensive shape of
the tool, validating with the cutting experiment, where a 1 DoF force sensor was placed
at the scalpel blade holder integrated with position measurement, as shown in Fig. 1.2.
Besides many constitutive ideas, a great number of deficiencies can be found in the model
that still needs to be improved, including mathematical errors in modeling, contradictions
in the measurement result evaluation, inappropriate use ofLaplace transformation and the
overall pertinence of experimental results. Finding and correcting these deficiencies is a
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Fig. 1.2. The proposed Maxwell–Kelvin viscoelastic element (left) and the distributed tool–tissue interac-
tion model (right), as it was published by Leonget al. [30].

part of this work, the proposed corrections to the methodology and mathematical formu-
lations were published in [TA-6].

Liu et al. introduced a method for force control for robotic-assistedsurgery on beat-
ing heart, thus applying motion compensation for the periodic motion of the organ [31].
By installing a force sensor at the end of the instrument, andtracking the 3D motion of
the beating heart, they compared four different models fromthe viewpoint of tracking
performance of the desired force. Besides the conventionalviscoelastic models, a fourth,
fractional derivative model of viscosity was examined. Oneof the relevant results of this
experiment was to underline the importance of the right choice of tissue model.

In the past years, much focus has been drawn on needle insertion modeling. Due to the
simplicity of the tool geometry, needle insertion problemswere much discussed using Fi-
nite Element Modeling (FEM). Finite Element Analysis (FEA)is a widely used approach
for tool tissue interaction modeling, where commercially available FEA software packages
are used to aid and simulate the operation area. The great many built-in mechanical mod-
els can provide incredibly accurate and realistic solutionfor simulation. One of the largest
drawbacks of this method is the sensitivity of computational time length with respect to the
parameters used in FE simulations. These parameters are determined solely by the user,
including spatial and time resolutions, thus many simulations need to be carried out on
the same model to achieve the desired level of reliability. Gokselet al. introduced a novel
technique to use real-time remeshing in the case of FEA modeling [32]. A mesh-based
linear elastic model of both the needle and tissue was used, applying remeshing in order
to compensate organ shift due to the invasiveness. The importance of the model is that
both the tool and the tissue deformations were accounted for, although the motion models
were the simplest possible in 3D. Continuum mechanics also provides numerous models
that can be used for modeling organ and tissue deformations and kinetics.

Approaches using linear and nonlinear models of elasticityare widely used in practice.
Linear models have limited usability despite the many advantages they carry (simplicity,
easy-calculation and small requirements on computationalcapacity) due to inhomoge-
neous, anisotropic, non-linear characteristics of tissues and large relative deformations,
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strains. However, nonlinear models in continuum mechanicslead to moderately complex
models, even in simple surgical tasks. Misraet al.introduced a detailed complex mechani-
cal model of continuum mechanics for the analytical modeling and experimental validation
of needle bending at insertion into soft tissues [33]. A hyperelastic Neo–Hookean rupture
model was used to describe the material properties and behavior of the soft tissue stimu-
lant (gel), assuming linear elasticity in case of the needle. Experiments were carried out
using different bevel-tipped needles and the needle bending curvature was validated using
an unfiltered camera data. The importance of the work lays in the area of needle insertion
path planning.

In the area of tool–tissue interaction research, one might be interested in rupture mod-
eling. While most of the existing mechanical models assume reversible tissue deformation,
even in the case of MIS, tissue rupture cannot be avoided. Mahvash and Dupon developed
an analytical model of tissue rapture during needle insertion, focusing on the calculation
of required insertion force [34]. The great advantage of this model is that despite the
complex mechanical structure, the insertion events are divided into four different models,
decomposing the process into moderately complex parts. Tissue modeling was aided with
a modified Kelvin model, making the parameters of the linear components dependent of
the deformation rate. The analytical model validated the experiments, showing that the
required insertion force is inversely proportional to the insertion speed.

It is also important to mention models that are not directly describing insertion and
cutting problems, but are rather used for investigating interaction of cable-driven manip-
ulators controlled by human operators, acting on soft tissues. Kosariet al. introduced
an adaptive parameter estimation and Model Predictive Control (MPC) method on cable-
driven surgical manipulators, developing a 1 DoF mechanical model, concentrating on the
problem of trajectory tracking [35]. Therefore, instead ofthe estimation of tissue reaction
forces, focus was drawn to the response of the cable-driven manipulator in order to create
a realistic force feedback to human user. The moderately complex model accounts for
numerous mechanical properties and solves an optimal control problem for automating
tissue compression.

Arguably, FEA-based solutions are still popular for modeling and predicting soft tis-
sue behavior for specific use-cases. However, this approachis yet heavily supported by
patient-specific information and requires an extensive pre-operative phase due to the com-
plex boundary conditions. Due to the high computational performance required, real-time
utilization in teleoperation systems is not achievable at afavorable resolution. Thus, as
of today, this approach is not scaling well to various interventions, and therefore cannot
be easily generalized. On the other hand, FEA dominantly relies on complex continuum-
mechanics based models of the soft tissues, emphasizing their micromechanical behavior
during the interventions, which is a useful property for modeling coupled problems (ther-
momechanics, fluid dynamics etc.). On the macro scale, wheremost of today’s telesurgical
systems are operated, these effects are usually negligible, and thus the tissue behavior can
be addressed with simplified models, concentrating on relevant mechanical properties.

The proper modeling of tool–tissue interactions is a relevant topic in standardization
methods. With the help of initial calculations and simulations, efficient control methods
can be chosen to avoid undesired pain and injury levels. Painand injury onset levels for
static contact force and peak pressure values has been deeply researched and standardized
in the literature [36].
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1.2.2 Addressing Latency in Teleoperation Systems

The general concept of teleoperation has long been used in various fields of robotics,
including manufacturing, logistics and various service robotics scenarios [10]. Today,
long-distance teleoperation is an actively discussed topic in space exploration [37] and
intervention in hazardous environments [38]. Where traditional control algorithms might
fail, latency-induced challenges can be addressed by novelideas, including soft computing
methods, neural control [39], supervisory control throughInternet communication [40],
passivity-based control [41] and various types of MPC for transparent teleoperation [42]
and hybrid MPC solutions to Neural Network (NN) based control methods [43].

Current, commercially available telesurgical systems utilize the concept of unilateral
teleoperation, where the position and/or force data from the master console is transmitted
to the slave system, whereas the operator only receives visual feedback from the environ-
ment through the mounted camera system. However, in bilateral teleoperation, there is a
communication of force and position data in both directionsof the teleoperation system.
This structure allows haptic feedback to the operator, therefore an extended virtual pres-
ence can be established in the physical surgical environment, increasing transparency [44].
There is a vast literature of control architectures addressing challenges and proposing solu-
tions to bilateral teleoperation systems, emphasizing theeffect of time-delay caused by the
communication latency between the master and slave sides. Alarge percentage of these
approaches are variations of position–position teleoperation [45], position–force [46] or
force–force teleoperation [47]. Other approaches includea special group of linear con-
trollers, robustHinf control, system dynamics assessment and adaptive nonlinear con-
trollers [48, 49, 50]. Obstacle avoidance, motion guidanceand inertia scaling also play an
important role in describing the dynamics of the specific teleoperation task, where passive
decomposition [51] and time-domain passivity controllers[52] can enhance the perfor-
mance of actions.

Depending on the nature of the applications, the latency in communication can range
between milliseconds (Internet-based teleoperation in terrestrial conditions) to several
minutes (space exploration). The magnitude of time-delay is determined by the distance
between the master and slave devices and the medium of communication. It is a common
view that in robotic systems, time-delay enforces a trade-off between the teleoperation
stability and the control performance of the system. Local force feedback at the master
side largely affects the performance and transparency of time-delayed teleoperation sys-
tems, which varies for different bilateral teleoperation architectures and the magnitude of
the latency [53]. A common approach to increase robustness of delayed teleoperation is to
apply additional damping on both the master and slave side ofthe system, however, this
often leads to a slow response of the system [54], degrading its control performance. As
the transparency of the system decreases, some methods can compensate the performance
decay in bilateral teleoperation, by using scattering theory [55], wave-variable control [56]
or passivity control [57]. Other approaches include the telemonitoring of force feedback
under low latencies [58].

In the past decades, it has become a common view that large delays require accurate
models of the operation environment based on prediction, creating a quasi real-time sim-
ulated response to the operator [59]. One of the most successful approaches to predictive
control methods are utilizing the Smith predictor [60], while several approaches combine



CHAPTER 1. INTRODUCTION 26

the Smith predictor with Kalman filtering for achieving better performance results [61,
62]. The linear approximation of the effect of time-delay isalso a common modeling ap-
proach in teleoperation control, utilizing the state-space representation of the system based
on the first-order Taylor-expansion of the system [63, 64].

In order to summarize the challenges and current possibilities in teleoperation with
time-delay in the range of a few seconds, a detailed report has been published by NASA
in 2002 [65]. The report lists some of the most important tools and guidelines in tele-
operation, highlighting the importance of predictive displays, where a realistic model of
the environment is shown to the operator, which responses tothe master console input
real-time. This approach has proven to be very efficient if the latency is under 1 sec-
ond, however, it requires a reliable model of the task environment, including the slave and
slave–environment interaction models [66]. Another frequently discussed issue is related
to the compliance of the slave side, as it can reduce the execution time and the overall
forces acting on the environment during the manipulation [67]. From the haptics point of
view, force reflection in bilateral teleoperation is critical in terms of stability. In real-life
applications, direct force feedback can only be applied reliably with latencies under 2 sec-
onds, however, in this range, high performance in completing teleoperation tasks can only
be achieved with force feedback [68]. While this feedback can be achieved by numerous
ways directly or indirectly, such as using visual feed on theforce magnitude, or reflection
of the force the hand of the operator that does not take part inthe teleoperation, the best
solution is considered to be when the interaction force is simulated and fed back to the op-
erator based on the system model. Aiding this approach from the theoretical background,
this thesis gives a proposal for modeling methodology of theinteraction environment dur-
ing teleoperation, more precisely, the modeling of tool–tissue interaction in the case of
telesurgical manipulations on soft tissue.

1.3 Theoretical Tools Used in the Thesis

1.3.1 Heuristic Models in Soft Tissue Modeling

As it was discussed by Famaey and Sloten, the mass–spring–damper modeling approach
is the simplest possible way of modeling the behavior of softtissues [23]. Due to the
unique material properties of soft tissues (anisotropy, viscoelasticity, inhomogeneity etc.),
describing their behavior under manipulation tasks is verydifferent from other materials
that are used in industrial or other service robotic applications. The main idea of this
approach is that linear or nonlinear spring and damper elements are combined together
in a serial or parallel way, creating an assembly, which, when subjected to deformation,
would present similar mechanical properties as the represented soft tissue. A detailed
explanation of the structure of mass–spring–damper modelswas published by Wang and
Hirai [69], investigating the behavior if serial and parallel models. They also discussed
experimental results related to the rheological behavior of commercially available clay
and Japanese sweets materials, using model parameter estimation.

In order to efficiently apply this model, theu(t) deformation paths of the end points of
the combined mechanical elements need to be known in time. Provided that this informa-
tion is given, the force response can be described with a simple mathematical expression.
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a) b) c)

Fig. 1.3. Commonly used models for representing the mechanical behavior of viscoelastic materials:
a) Kelvin–Voigt model, b) Maxwell model, c) Kelvin model.

The reaction force arising in the mechanical elements can bedetermined from basic me-
chanical properties. In the case of a spring element, this force (fs) is calculated from the
spring stiffness value (k), and the deformation of the spring in the longitudinal direction:

fs = k(x1 − x2), (1.3)

wherex1 andx2 represent the end coordinates of the spring and damper elements. The re-
action force (fd) arising in the damper elements is calculated using the damping coefficient
value(b) and the rate of deformation of the damper element:

fd = b(ẋ1 − ẋ2), (1.4)

whereẋ1 and ẋ2 refer to the speed that the end coordinates are moving the longitudinal
direction. In heuristic soft tissue modeling, there are three basic models that are com-
monly used for describing tissue behavior in terms of viscoelasticity: the Kelvin–Voigt,
the Maxwell and the Kelvin models, as shown in Fig. 1.3 [70]. In this section, only the
behavior of linear models is discussed, but the general description applies to the nonlinear
models, as well.

The Kelvin–Voigt model is the most commonly used heuristic model in analytical
mechanics, capable of representing stress relaxation and reversible deformation. There
exists an analytical solution to the force response in the form of an ordinary differential
equation. This model is very popular in many fields of study due to its simplicity and
easy interpretation. However, step-input response functions cannot be modeled using the
Kelvin–Voigt model, as the reaction force arising as a result of a step-like deformation
would be infinitely large due to the parallel connection of the damper element. In time
domain, the force response function for the Kelvin–Voigt model is described by:

fKV (t) = bu̇(t) + ku(t), (1.5)

whereu(t) is the deformation function. Similarly, the force responsefunction in the fre-
quency domain is as follows:

FKV (s) = (bs + k)U(s). (1.6)
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a) b)

Fig. 1.4. Two basic combinations of the mass–spring–damperviscoelastic models: a) the Maxwell–Kelvin
model and b) the Wiechert model.

The Maxwell model is the simplest approach to modelcreep. In this model, a damper
and a spring element are connected serially, making the model usable for modeling stress
relaxation. A major drawback of the Maxwell model is that theforce response value (fM )
will asymptotically converge to 0 in the case of a constant deformation input. Therefore,
this model is not capable of modeling residual stress. The actual deformation of the system
cannot be expressed as the function of the acting forces, which is the result of the internal
dynamics of this model, since the position of the virtual mass point connecting the spring
and damper elements cannot be measured. On the other hand, inthe frequency domain,
the transfer function can be easily determined:

FM(s) =
kbs

bs + k
U(s). (1.7)

The Kelvin element is created by the parallel connection of aMaxwell-element and a
single linear spring element. This combination is often referred to as the Standard Linear
Solid model in viscoelasticity. In heuristic soft tissue behavior modeling, this is the most
commonly used mass–spring–damper model, providing the simplest possible approach of
representing residual stress, stress relaxation and elastic behavior in the case of step-inputs.
In time domain, there exists a closed-form formulation, written as follows:

fK(t) +
b

k1
ḟK(t) = k0

(

u(t) +
b

k0

(

1 +
k0

k1
u̇(t)

))

. (1.8)

In the frequency domain, the transfer function of the Kelvinelement is:

FK(s) =
b(k0 + k1)s+ k0k1

bs+ k1
U(s). (1.9)

Due to the rapid development in the fields of robot control andsurgical robotics, the
creation of more sophisticated models has become essentialin soft tissue behavior mod-
eling. The accuracy requirements of advanced robotic surgical applications were not met
anymore by the previously described simple models. In orderto achieve better perfor-
mance in these applications, new combinations of damper andspring elements were pro-
posed. A new dynamic model is, where a Kelvin and a Maxwell element are connected
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serially, creating a mass–spring–damper model consistingof five mechanical elements
(Fig. 1.4). The major advantages of this model are that both the elastic behavior and stress
relaxation of the tissue can be described in a significantly more effective and sophisticated
manner, compared to the general Kelvin model. In the frequency domain, the transfer
function is written as:

FMK(s) =
A2MK

s2 + A1MK
s

B2MK
s2 +B1MK

s+B0MK

U(s), (1.10)

whereA2MK
, A1MK

, B2MK
, B1MK

, B0MK
are linear combinations of parametersk0, k1, k2,

b1 andb2. It is important to note that increasing the complexity of a heuristic model does
not necessary lead to better accuracy in terms of system behavior modeling. In the case of
the Maxwell–Kelvin model, used in [30], the reaction force will converge to 0, similarly
to the Maxwell model, therefore this model is clearly not thebest choice for modeling
long-term stress relaxation. It can easily be seen that if there is a damper element that is
placed in the “cross-section” of the model (there is no spring element “bypassing” the flow
of the force), the resulting reaction force would be 0 in the steady-state.

If a Kelvin element and several Maxwell elements are connected in a parallel way, the
generalized Maxwell model is created. If there is only one Maxwell element integrated
in the model, its simplest form, the Wiechert model is derived. With this approach, the
modeling of the reaction force becomes smooth and significantly more accurate due to the
possibility of finer “tuning” of mechanical parameters. A detailed comparison between the
Standard Linear Solid and the Wiechert models have been provided by Wanget al. [71],
highlighting the advantages of using the latter in liver andspleen organ force response
modeling. Parameter estimation of the Wiechert model has also been done by Machiraju
et al. [72], although the results were only based on tissue relaxation data, proposing its
integration into finite element modeling softwares.

The transfer function of the Wiechert model is as follows:

FW (s) =
A2W s2 + A1W s+ A2W

B2W s2 +B1W s+B0W

U(s) = WW (s)U(s), (1.11)

where

A2W = b1b2(k0 + k1 + k2),
A1W = (b1k2(k0 + k1) + b2k1(k0 + k2),
A0W = k0k1k2b2,
B2W = b1b2,
B1W = b1k2 + b2k1 and
B0W = k1k2.

This transfer function plays a fundamental role in the investigation of the force response
curves of the linear Wiechert model, a methodology discussed in details in chapter 4.

1.3.2 Tensor Product Model Transformation

Tensor Product Model Transformation (TP transformation for short) is a novel concept in
quasi-Linear Parameter Varying (qLPV) model-based control, playing a central role pro-
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viding valuable mean for connecting identification methodsand polytopic systems theo-
ries. The basic idea behind TP Model Transformation is the transformation of an arbitrary
function into polytopic TP form which is also capable of describing nonlinear dynami-
cal systems for the purpose of controller design via linear matrix inequalities. The concept
was introduced by Baranyi [73], and a practical guide for itsapplicability for qLPV control
theory was published in [74].

In this section, some of the fundamental definitions of the TPModel Transformation
are recalled.

Definition (LPV/qLPV model):
Consider the following LPV model:





ẋ(t)
y(t)
z(t)



 = S(p(t))





x(t)
u(t)
w(t)



 , (1.12)

with state vectorx(t), measured outputy(t), performance outputz(t), input u(t), and
disturbance inputw(t). TheS(p(t)) ∈ S system matrix can be partitioned toA(p(t)),
B(p(t)), C(p(t)) etc. system matrices, and it is defined over a hyper-rectangular parame-
ter domain:

p(t) ∈ Ω = [a1, b1]× [a2, b2]× ..× [aN , bN ] ⊂ R
N . (1.13)

If the parameters inp(t) are not independent from thex(t) state variables, it is called
quasi-LPV (qLPV) model.

Definition (Finite element polytopic model):
The (1.12) LPV/qLPV model, where the system matrix is given as convex combina-

tions of vertex system matrices:

S(p) =

R
∑

r=1

wr(p)Sr ∀p ∈ Ω, (1.14)

where for thep parameter-dependent weighting functionswr:

R
∑

r=1

wr(p) = 1, wr(p) ≥ 0 ∀r,p ∈ Ω. (1.15)

The term finite indicates thatR is bounded.

Definition (Finite element polytopic TP model):
The (1.12) LPV/qLPV model, where the system matrix is given as convex combina-

tions of vertex system matrices, and the weighting functions are decomposed to product
of univariate functions:

S(p(t)) =

J1
∑

j1=1

J2
∑

j2=1

...

JN
∑

jN=1

N
∏

n=1

w
(n)
jn

(pn(t))Sj1,j2,..,jN . (1.16)

Applying the compact notation based on tensor algebra (Lathauwer’s work [75]) one has:

S(p(t)) = S
N

⊠
n=1

w(n)(pn(t)), (1.17)



CHAPTER 1. INTRODUCTION 31

where the core tensorS ∈ S
J1×J2×···×JN is constructed from the vertex system matri-

cesSj1,j2,...,jN ∈ S, and the row vectorw(n)(pn(t)) contains scalar weighting functions
w

(n)
jn

(pn(t)), (jn = 1 . . . JN) that represent convex combinations as (1.15) for alln.
The polytopic TP model (1.17) is a special class of polytopicmodels, where the

weighting functions are decomposed to the tensor product ofunivariate functions.

Definition (TP Model Transformation):
TP Model Transformation is a numerical method that transforms the LPV/qLPV mod-

els to polytopic TP model, so that the Linear Matrix Inequality (LMI) methods developed
for polytopic model-based control can be applied to the resulting model [73].

The polytopic TP representation of an LPV/qLPV system can beobtained in various
ways, of which the Minimal Volume Simplex (MVS) type polytopic model is used in this
work, defined below:

Definition (MVS Polytopic TP model):
The (1.17) polytopic TP model, where theS ∈ S

J1×···×JN core tensor is constructed
from theSj1,...,jN matrices, in such a way that the(S)jn=j n-mode subtensors construct the
minimal volume enclosing simplex for the

S ×n w
(n)
jn

(pn) (1.18)

trajectory for alln = 1...N ., where

(S ×n w)j1,j2...jn−1,in,jn+1...jN =
∑

jn

Sj1,j2...jn−1,in,jn+1...jNwinjn . (1.19)

In the proposed structure, a TP-type polytopic controller is utilized, where the control
signal is computed as:

u = −

(

F
N

⊠
n=1

w(n)(pn(t))

)

x. (1.20)

Feedback gainsFi1,i2,...,iN are stored in tensorF .
It is important to note that the discussed model representations are also valid in dis-

crete time domain, with no fundamental restrictions. Further reading about the TP Model
Transformation, the MVS-type polytopic TP model generation and manipulation methods
can be found in [76, 77, 78, 79].



Chapter 2

RESEARCH PROBLEM STATEMENT

Robots are gradually entering the operating room, aiding, or completely taking over dif-
ferent surgical maneuvers. The state-of-the-art is that these robotic systems are used as
human-operated, telesurgical systems, where the human operator is an integral part of the
control loop, while the robot is mimicking the gestures of the surgeon. The primary aim of
telesurgical devices is to enhance the performance of the surgeon, applying hand tremor
filtering, virtual guiding and motion scaling. From the engineering point of view, these
teleoperation systems should provide a transparent, reliable and robust operation, which
requires advanced approaches in terms of controller designand system modeling. In order
to avoid stability loss and accuracy deterioration, the problems of signal latency due to
the remote operation, elastic tool deformation and undesired hard tissue contact can be
addressed by reliable soft tissue models. This way, variousscenarios of the tool–tissue
interaction can be approached from the modeling point of view.

Robot-assisted tissue manipulation requires high precision tools and techniques. To-
day’s telesurgical systems dominantly rely on visual feedback, the commercially available
systems do not provide haptic feedback to the surgeon. As theplacement of force sensors
into the surgical tools used in Minimally Invasive Surgery is very challenging, an alter-
native approach is needed for indirect reaction force estimation, in order to provide force
sensation to the operator. Furthermore, automated surgical interventions also require an
estimation of the behavior of the manipulated environment.The unique behavior of soft
tissues as viscoelastic materials can only be described by sophisticated mathematical mod-
els, as the currently used models are only representing the predicted behavior locally. As
the soft tissue is an integral part of the manipulation, the integration of its model at various
level of engineering design is crucial.

• Problem 1: There is a need for a general soft tissue model that can represent soft
tissue behavior during surgical interventions. The model should give a relation be-
tween tissue deformation and the reaction force, and shouldgive a quantitative rep-
resentation of the material, with adequate spatial and temporal resolution.

Teleoperation systems in general require sophisticated control approaches in order to
assure transparency of the system and increase reliability. Modern telesurgical systems
dominantly use traditional control approaches in order to increase robustness, which often
means a trade-off for the accuracy requirements. An appropriate tool–tissue interaction
model opens up the possibility for applying model-based control methods, allowing a
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direct implementation to complete surgical robotics systems. Modern model-based con-
troller design methods are limited by the mathematical representation of the system, there-
fore bringing the interaction models to a design-compatible form is essential.

• Problem 2: Control methods in telesurgical applications need to relyon sophisti-
cated models of the tool–tissue interaction, requiring themodels to be represented
in predefined forms. In the meantime, the controller performance should be robust
against time-delay and modeling uncertainties.

Haptic feedback in robot-assisted surgical systems offersthe possibility to reflect the
estimated or directly measured reaction force to the operator. Furthermore, surgical sim-
ulators with haptic feedback can introduce an important function for surgical training in
education, where accurate soft tissue models can be used forcreating virtual surgical sce-
narios. As different haptic devices provide different sensation and scaling of the reflected
force, there is a need for a performance evaluation of the Human–Machine Interface for
specific setups, addressing the validity of the utilized soft tissue models.

• Problem 3: A general methodology is needed for addressing the usability and va-
lidity range of tool–tissue interaction models in telesurgical scenarios, where haptic
feedback is available. The methodology should be extended to both living and ar-
tificial tissues, and an appropriate framework is required for data acquisition, pro-
cessing and evaluation.

Modeling of telesurgical systems is a complex task, where tool–tissue interaction and
soft tissue modeling play an essential part. However, the appropriate models of the slave
side (robotic arm), operator behavior and the communication system all have to improved
simultaneously in order to achieve a superior performance in telesurgery. The problems
stated in this chapter are focusing on an important part of model-based design and usabil-
ity approaches, their discussion in this work proposes solutions that can aid the further
research of the scientific community in the field.



Chapter 3

METHODS

During my doctoral research, I relied on specific methods in terms of experimental data
collection, research protocols and techniques. Each of theresearch problems and state-
ments of the hypotheses were relying on these methods. This chapter provides a detailed
description of the research plan, step-by-step, focusing on its elaboration in the thesis
groups.

The primary question in my research proposal was related to the state-of-the-art of the
existing tool–tissue interaction models. It was my goal to investigate, to what extent this
models could be used for improving the performance of telesurgical interventions, with
special attention to the model description, its integrability into control methods in general,
and finally, the validity of the specific interaction models in the wide range of telesurgical
applications.

As of today, there is no general consensus on which tool–tissue interaction to chose
for specific applications. An ambitious plan was formed to propose a general model that
can be utilized in a wide range of intervention modeling, which required the investigation
of the current tool–tissue interaction models, analyze them and find the best-fitting high
level approach for my goals. I have created a structured listfor my literature research,
where I collected the properties of the investigated tool–tissue interaction models, avail-
able from the most extensive scientific paper libraries in the topic. I have collected the
modeling approaches used in these works, focusing on soft tissue models, tool models,
clinical use case, feedback type to the operator, applied sensors and model complexity.
The literature research was covering the material of over 50scientific papers in the topic
of tool–tissue interaction, distinguished by their numberof citation, publication date and
relevance. Novel, well-cited papers with explicit focus ontool–tissue interaction received
a higher preference, while older, less-cited ones were usedas a reference in the comparison
and assessment of modeling approaches.

After concluding the first phase of the literature research,I have collected 3 tool–
tissue interaction models, which provided promising approaches for the improvement of
telesurgical performance, tackling 3 independent challenges in modern surgical robotics
design: the flexibility of cable-driven surgical tools; theproblem of motion compensation
in the case of moving organs; and the mechanical modeling of soft tissue behavior during
the tool–tissue interaction. While there is a rich literature discussing methods for dealing
with these challenges, I have decided to conduct a deeper investigation in the field of soft
tissue modeling, proposing that a sufficiently accurate soft tissue model can be generalized
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for a wide range of modeling surgical interventions. Such model could be directly utilized
by various tool–tissue interaction approaches, e.g., modeling cable-driven interaction.

The behavior of soft tissues and viscoelastic materials have been the subject of research
for long, not restricted for surgical robotics applications. However, a general soft tissue
model has not been proposed yet, most of the approaches can besorted into tree large
groups:

• rheological models,

• continuum-mechanics based models,

• hybrid models.

In search for a general solution, which could quantitatively represent the macroscopic
mechanical properties of soft tissues, my literature research was focusing on rheological
models and their use for specific tissue modeling and characterization applications. Based
on the collection of research papers utilizing this approach, I created and overview of the
existing model variations, addressing their advantages and disadvantages, finding that the
Wiechert model provides the most general, yet simple description of tissue behavior.

As there is no generally accepted verification method for addressing the validity of
soft tissue models, my aim was to propose a methodology that can aid the quantitative
comparison of different viscoelastic materials using the Wiechert model. This part of
the work was done in two phases. First, existing measurementdata from the available
literature was used for verifying the model. Second, experimental data was collected in
a structured way, proposing a methodology to create a diverse set of measurement data.
In these sets of measurements, reaction force data from tissue compression was recorded
under known deformation profiles, and the soft tissue model verification was carried out
by fitting the simulated tissue behavior on the measurement data, finding the best fitting
set of mechanical parameters representing the Wiechert model. The curve fitting was
utilizing the widely-used Root Mean Square Error (RMSE) minimization of the distance
of measured and simulated data points. This method was laterused in the same sparsity of
data points for the performance evaluation of the model for different scenarios.

Taking the Wiechert model as a basic example, investigatingthe measurement data
from the compression tests, I used an analytical method for improving the performance
of the linear model. This included a proposal of introducingdifferent types of nonlinear-
ities into the structure, conducting further research on the limited literature available on
nonlinear rheological models. Based on practical consideration, I have introduced the non-
linearities through the spring elements of the Wiechert model, and obtained the parameters
of the investigated tissue models using curve fitting methods described. The model verifi-
cation for uniform and non-uniform surface deformation wasfollowing this methodology
as well.

The experimental data collection was carried out based on a carefully assembled mea-
surement plan, and was documented for better reproducibility. The measurements required
a palpation tool that was capable of maintaining a prescribed compression rate and record-
ing the reaction force by the compressed tissue either by an in-built or mounted force
transducer. The simultaneous recording of displacement and force allowed me to create a
structured set of data for evaluation. This data collectionmethod was used both forex vivo
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and artificial tissue samples, where the samples were cut or molded to a prescribed ge-
ometry and dimensions. This way, the method can be standardized, and the quantitative
comparison of the tissue parameters can be validated.

Having verified the tissue model, I have conducted an extensive research on model-
based control methods in robotic surgery, where soft tissuemodels were utilized to some
extent. By investigating these approaches, I found that very few of them were relying on
complex, nonlinear tissue models, requiring a controller design for linear or quasi-linear
model representations. In order to achieve robustness and to design a controller system that
is stable in the Lyapunov sense, LQ optimal control is a popular approach, where the con-
troller is in the form of a Parallel Distributed Compensator(PDC). The method required
a discretized representation of the nonlinear system and a control architecture. Polytopic
Tensor Product (TP) modeling in an emerging field in the representation of nonlinear sys-
tems for such control problems. Based on this consideration, I created the Minimal Volume
Simplex (MVS) polytopic TP form of the proposed nonlinear Wiechert model, and veri-
fied it by investigating its behavior on predefined deformation input functions, comparing
the output to the one of the qLPV representation of the system.

The verification of the TP model was followed by the proposal of different control ar-
chitectures, which were tested in the MATLAB Simulink (MathWorks, Inc, Natick, MA)
simulation environment. As the conventional control architectures failed to solve the con-
trol problem in practice, I proposed a new modeling methodology in order to comply to
the requirements of the controller design. The model was tested and verified on simulated
tracking tasks, and was tested against robustness in the simulation environment as well.

The polytopic representation of the model allows its easy integration into the da Vinci
surgical system, which was the first step towards proposing atissue characterization method-
ology. Such representation allows one to use a large varietyof control schemes for force
control applications, allowing the reformulation of the highly nonlinear system to the in-
terpolation of linear dynamic systems. The aim of this phasewas to address the usability
and validity range of the proposed soft tissue models, integrating it to a force-feedback pal-
pation scenario, tested by a representative group of participants. The planning of the tissue
characterization experiments were based on the findings of the literature research on trials
with haptic devices, investigating different approaches to palpation scenarios, the average
number and professional background of participants. The characterization trials were us-
ing the da Vinci Surgical System as the haptic interface, utilizing the da Vinci Research
Kit (DVRK) and the Robot Operating System (ROS) platform. The palpation scenario was
based on the guidelines from the automated tissue palpationexperiments, but the compres-
sion rate was controlled by the participants during the trials. The participants were asked
to carry out simultaneous palpation using both of the mastertool manipulator arms of the
da Vinci master console, controlling the palpation tool with their left hand, and palpating
a virtual, polytopic representation of different tissue models. Then, they compared the
real and virtual tissues, and looked for the match of theex vivosample from the different
virtual ones. Their comments and final guesses on the matching tissue were recorded and
evaluated both verbally and quantitatively. The collecteddata from the automatic tissue
palpation for parameter estimation, and the characterization trials provide structured, ag-
gregated data for further investigation of the proposed verification method, focusing on
this special case of Human–Robot Interaction (HRI). The findings of this research provide
valuable information to the research community, in order tobetter understand the oppor-
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tunities and limitations of using haptic devices in telesurgical systems in real-life surgical
scenarios.

Detailed description of the methods and evaluation can be found in chapters 4, 5 and 6,
while the validity range of the methods is also addressed in the summary of these chapters.



Chapter 4

A METHODOLOGY FOR SOFT
TISSUE MODELING

Cutting, indentation and grasping are the most common typesof tissue manipulation that
require high precision tools and techniques in robotic surgery. In order to achieve better
performance for surgical robotics applications in terms ofstable control for teleoperation,
it is crucial to understand the behavior of soft tissues through their mechanical proper-
ties [10]. Creating an accurate tool–tissue interaction model would largely aid the design
of model-based control methods. This way, force response ofthe manipulation is esti-
mated using the model, and the required input force (controlsignal) can be calculated
that would control the tissue holder (in most cases, the robotic arm) in order to carry out
the surgical manipulation tasks in an efficient, stable and accurate way. A comprehensive
study of the existing tool–tissue interaction models was presented by Famaey and Sloten
in [23], collecting these into 3 major categories:

• Continuum mechanics-basedmodels, which are mostly based on finite element anal-
ysis approaches;

• Heuristicmodels, which are built up from linear or nonlinear basic mechanical ele-
ments such as springs and dampers;

• Hybrid models, which usually represent a combination of the above mentioned ap-
proaches [80].

It is widely accepted that continuum mechanics-based models provide the most realistic
response functions. However, a significant disadvantage ofthis approach is the vast com-
putational requirement, limiting their usability in real-time simulations and applications.
The heuristic models, which are also often referred to as themass–spring–damper models
or rheological models, are very popular in modeling surgical manipulation tasks, mainly
indentation and grasping [70]. Using heuristic models, analytical solutions could be pro-
vided, making this a great advantage of using this approach in many modeling aspects of
tool–tissue interaction [TA-15]. Several works provide measurement data for soft tissue
indentation force response in both relaxation [81] and compression phases [26]. Heuristic
models were comprehensively discussed by Yamamoto, comparing several simple mod-
els in point-to-point palpation for detecting hidden lumpsin soft tissues [27]. Alkhouli
et al. investigated the mechanical properties of human adipose tissues, although the lin-
ear viscoelastic model they used was only applied in the relaxation phase [82]. Troyeret
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al. created a nonlinear viscoelastic model that was validated with relaxation tests, which
is implementable in finite element algorithms in order to decrease computational require-
ments [83]. These models, along with the appropriate image guidance and modeling, can
largely increase the accuracy and safety of surgical interventions [22]. Mechanical models
can also be integrated with visual cues in order to improve the performance of haptic feed-
back devices. Such virtual models were used in pseudo-haptic feedback-based methods by
Li et al., using a silicone phantom tissue with embedded hard incisions [84]. A complex
tissue model was presented by Leonget al., where some of the soft tissue parameters were
integrated, although, the correct acquisition of the parameters was not successful [85].
Some relevant measurement results were still published [30], despite the ill-formed math-
ematical description.

In their paper, the surface deformation shape was estimatedto be exponential, although
this assumption was not supported by any literature or experimental reference, and the rel-
evant geometrical parameters were not published, either. The resulting transfer function
was incorrectly derived for the proposed model, which resulted in an estimated force re-
sponse with no physical meaning. Consequently, the published parameters were not fit
to the experimental data, therefore the discussion of results was incomplete and incor-
rect. The paper was concluded by modifying the Dirac-delta function so that it would
fit a single measurement point in the experimental results. To correct these shortcomings
of the a priori research, this chapter follows the same basic idea as Leonget al., then
correctly deriving the mathematical formulae, and approximating tissue parameters and
surface deformation shape, based on reproducible experimental data, which will be used
for the verification of the proposed nonlinear soft tissue model.

4.1 Experimental Verification of the Wiechert Model

Chapter 1.3.1 introduced the most commonly used linear mass–spring–damper viscoelas-
tic soft tissue models. Among these models, the Wiechert model (sometimes called the
Maxwell–Wiechert model) is the simplest form of the generalized Maxwell model. In this
approach, the previously explained Kelvin model is extended with a number of Maxwell
elements, making this combination of elements capable of smooth modeling of the re-
action force of the soft tissue. The transfer function of theWiechert model is given in
Eq. (1.11).

4.1.1 Theoretical Verification of the Linear Wiechert Model

In order to address the validity of the currently used linearmass–spring–damper models,
ana priori verification of these approaches was carried out in the first phase of this work.
The verification was relying on a sufficiently documented experimental data by Leonget
al. [30]. In their work, 30 pieces of coagulated liver tissue samples were examined by
indentation. The cylinder-shaped specimens were 10 mm in height and their diameter was
also 10 mm. The tissue specimens were compressed at a compression rate of 10 mm/s
until the strain of 0.7 was reached, then the relaxation response was measured in terms
of the axial force, for a total of 20 minutes of experimental time. In order to acquire
the measurement data for the purpose of this work, the data points were determined by
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Fig. 4.1. Curve fitting using MATLABcftool toolbox. The red curve represents the fitted force response,
the black dots are the original experimental data points.A = 5.4 [N], B = 6.737 [N], C = 6.34 [N],
X = 0.003606 [1/s],Y = 0.2248 , [1/s].

using traditional image viewer software, recording pixel coordinate information from the
published force response curves. The curve fitting procedure was then applied on this set
of points.

In order to simplify the calculations, and to be able to create an analytical solution for
the force response, the deformation input function was modeled as a step-input, which is a
very good approximation of the original combination of the ramp and constant deformation
functions due to the long experimental time. Therefore, theforce response function is
given as the inverse Laplace transform of Eq. (1.11), where the transfer functionWW (s)
is multiplied by the Laplace transform of the step-input.

fW (t) = L−1
{

WW (s)
yd

s

}

, (4.1)

whereyd = 7 mm is the indentation depth at the maximum deformation. The inverse
Laplace transform can be obtained easily using partial fraction decomposition, then ap-
plying the transformation on each of the elements. Thus, using the Wiechert model for
describing the tissue behavior, the general form of the force response function is given by:

fW (t) = Ae−Xt +Be−Y t + C, (4.2)

where A, B, C, X and Y are unknown parameters that can be obtained from the curve
fitting procedure. The actual model parameters are calculated by solving the following set
of algebraic expressions:

A+B + C = k0 + k1 + k2, (4.3)

X(B + C) + Y (A+ C) =
k2

b2
(k0 + k1) +

k1

b1
(k0 + k2), (4.4)
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TABLE 4.1

PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION TESTS BASED ON THE EXPERIMENTAL

DATA BY LEONG et al., REPRESENTED BYEQ. (1.11).

Model type k0 [N/m] k1 [N/m] k2 [N/m] b1 [Ns/m] b2 [Ns/m] RMSE

Linear Wiechert 906 962 771 4281 21393 0.0329

CXY =
k0k1k2

b1b2
, (4.5)

X + Y =
k1

b1
+

k2

b2
, (4.6)

XY =
k1k2

b1b2
. (4.7)

The curve fitting procedure was carried out by using the MATLAB cftool toolbox. The
values of the unknown model parameters are listed in Table 4.1.

Note that these values correspond to the cylindrical tissuesample, with the previously
listed geometrical parameters. The model parameters, however, can be converted to rep-
resent quasi-specific stiffness and damping coefficient values, projected on a unit surface,
expressed in the dimensions of N/(m·m2) and N/(ms·m2).

The fitted curve to the given set of data points is shown in Fig.4.1. The mean square
error of the fitting isǫs = 0.0329 N, where the subscripts stands for the step-input. It is
clear that the Wiechert model describes the tissue behaviorin a significantly more accu-
rate manner than the widely used Kelvin model or other, lowerorder approaches. This
difference is more significant if the stress relaxation is investigated in a long time-span.

4.1.2 Model Verification for Non-Ideal Step-Input

As it was discussed in the previous section, the deformationinput function was modeled
as an ideal step-input on the transfer function Eq. (1.11). In order to verify the model,
the original deformation function by Leonget al. was applied on the transfer function,
where the maximum deformation of 7 mm was reached by a constant deformation rate of
1 mm/s. This yielded a different force response curve due to the relaxation phenomenon
already undergoing during the compression phase. The crucial point is the peak force
that is reached at the time of 7 seconds. As it can be observed in Fig. 4.2, in the case of
the original input function, the largest difference between the fitted curve and the model
response appears around this crucial point, correspondingthe mean square error value of
ǫr = 0.5022 N, wherer stands for the non-ideal step-input. This error is one orderof
magnitude higher than that of the ideal step-input response. In order to address the error
of this approximation in terms of physical parameters, a correction was carried out by
modifying the parameter values one of the branches of the Wiechert model, thus correcting
the parameters of the serially connected elementsk1 andb1. A new pair of these parameters
was found by post-optimization, where the mean square errorof the response curve was
considered as the cost function. The new model parameters are listed in Table 4.2, where
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TABLE 4.2

CORRECTED PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION TESTS BASED ON THE

EXPERIMENTAL DATA BY LEONG et al., REPRESENTED BYEQ. (1.11).

Model type
k0 k∗1 = c1k1 k2 b∗1 = c2b1 b2

RMSE
[N/m] [N/m] [N/m] [Ns/m] [Ns/m]

Linear Wiechert 906 962 771 4281 21393 0.0322
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Fig. 4.2. Validation of model parameters. Green: ideal step-input response curve with the uncompensated
model parameters; blue: the response of the model with the original input function with the uncompensated
model parameters; red: the response curve on the original input function with the compensated parameters
k∗1 andb∗1.

c1 = 2 andc2 = 1.9 are the constants and represent the magnitude of required correction
of the parameters due to the non-ideal step-input.

The simulated force response functions using the correctedparameter values are also
shown in Fig. 4.2. The mean square error of the response curveof the corrected system
is ǫc = 0.0322 N, which is 5.5% lower than in ideal the step-input case (the subscriptc
stands for the corrected model). In order to highlight the differences between the response
curves, the simulation data is only displayed until the timeof 250 seconds. The resulting
curves after 250 seconds were not significantly different.

4.1.3 Experimental Setup and Data Collection

Experimental Setup

While the results of Section 4.1.2 showed that the linear Wiechert-model gives a fairly
good estimation of the tissue behavior in the tissue relaxation phase induced by step-input,
this method does not allow one to address the tissue behaviorin the case of dynamic
deformation, such as constant compression rate indentation. There exists no relevant mea-
surement data for force response values in the case of soft tissue indentation at different
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Fig. 4.3. The proposed linear tool–tissue interaction model, where the Wiechert elements are distributed
along the tissue surface.

constant compression rate values. Therefore, a new set of experimental tissue compres-
sion tests were carried out and documented in order to have a better insight into the tissue
behavior by various manipulations.

Let us consider a tool–tissue interaction model, where mass–spring–damper elements
are distributed under the deformed tissue surface, represented by the Wiechert model
(Fig. 4.3). Similar to Section 4.1.2, the model parameters can be obtained by applying
a uniform deformation input on the surface during the following experiment. 6 pieces of
cubic-shaped fresh beef liver samples were investigated, with the edge length of 20±2 mm.
The size of each specimen was measured before and after the experiments. Each of the
specimens were compressed at three different compression rates: a slow rate of 20 mm/min,
a medium rate of 100 mm/min and a near-step input at 750 mm/min(maximum compres-
sion rate provided by the system). The indentation tests were carried out at the Austrian
Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, on a Thümler
GmbH TH 2730 tensile testing machine connected to an Intel Core i5-4570 CPU with
4GB RAM, using the ZPM 251 (v4.5) software. The force response data was collected
with an ATI Industrial Automation Nano 17 titanium six-axisForce/Torque transducer,
using the 9105-IFPS-1 DAQ Interface and power supply at 62.5Hz sampling time. An
Intel Core i7-2700 CPU with 8 GB RAM hardware and the ATICombinedDAQFT .NET
software interface was used for data visualization and storage. In the case of each spec-
imen (marked by letters A–F), at first, the low and medium speed indentation tests were
carried out, reaching 4 mm of indentation depth. The deformation input function was
also recorded for validation purposes. A custom made 3D-printed indenter head with a
flat surface larger than the specimen surface size was mounted on the force transducer,
in order to achieve a uniform surface deformation at all points of the tissue on the plane
perpendicular to the indentation axis. The movement of the head started 1 mm above the
specimen surface, and in the evaluation, only the first 3.6 mmof indentation data was used
in order to filter out any nonlinearity in the ramp-input function. In the first two cases,
data was recorded only during the head movement, while each specimen was subjected to
indentation 12 times. The force response curves showed no systematic deviation from the
first responses, which allows one to assume that no substantial tissue damage was caused
during the initial experiments. The final, near-step input was applied several times on each
specimen, although it was found that the force response magnitude in the relaxation phase
(1 minute) decreased significantly during the second and third experiments on the same
tissue, supposedly from the severe damage to the internal structure. Therefore, in the case
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Fig. 4.4. Experimental setup for beef liver indentation tests at the Austrian Center for Medical Innovation
and Technology.

of each specimen, only the very first set of measured data points was used for the parame-
ter estimation from the force response relaxation data. A photography of the experimental
setup is shown in Fig. 4.4, and the detailed flowchart of the steps of the experiment is
shown in Fig. 4.5.

4.2 Data Collection and Analysis

Relaxation Tests

In order to have an initial estimation on the soft tissue parameters, the force response data
from relaxation tests was evaluated. The indentation speedof 750 mm/min was approxi-
mated with a step-input. An analytical expression for the force response of the soft tissue
can be easily calculated by obtaining the inverse Laplace transform of Eq. (1.11), using
partial fraction decomposition, where the transfer function WW (s) is multiplied by the
Laplace transform of the step-input function.

fWr(t) = L−1
{

WW (s)
xd

s

}

= xd

(

k0 + k1

(

1− e
−

k1
b1

t
)

+ k2

(

1− e
−

k2
b2

t
))

, (4.8)

wherefWr(t) is the force magnitude during the relaxation tests andxd = 4 mm is the
depth of the compression at the maximum deformation. The relaxation data for all six
specimens is displayed in Fig. 4.6. For better visual representation, the average response
curves are also shown in Fig. 4.6, which was obtained by taking the average values of the
response data from each specimen, weighted with respect to its surface size and normal-
ized to 20×20 mm. It is important to note that an unexpected break in the curves was
observed in all cases, which is most likely the effect of the deceleration of the indenter, as
it reaches the prescribed depth. This break does not effect the force response results signif-
icantly, because the most relevant sections of the responsecurves are the initial relaxation
slopes (force relaxation) and the steady-state values (residual stress). As the closed-form
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Fig. 4.5. Flowchart of the steps of soft tissue palpation during data collection experiments.

solution to the step-input was given, curve fitting on the original measurement data was
applied. For this procedure, the MATLABcftool toolbox was used. The parameters were
independently obtained for each of the six specimens and were compensated by the tissue
surface magnitude, resulting in six sets of parameters of stiffness and damping values:

kc
i = ki

A0

A
, i = 1, 2, 3, (4.9)

bcj = bj
A0

A
, j = 1, 2, (4.10)

whereA is the surface area of each specimen andA0 = 400 mm2 is the reference sur-
face size. The results of the soft tissue parameter estimation from force relaxation tests
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TABLE 4.3

INITIAL PARAMETER ESTIMATION FROM RELAXATION TESTS, USING THE LINEAR WIECHERT-MODEL,

REPRESENTED BYEQ. (1.11).

Specimen
kc0 kc1 kc2 bc1 bc2 Surface size

[N/m] [N/m] [N/m] [Ns/m] [Ns/m]

A 119.6 110.1 78.9 36.2 1210 20×20 mm2

B 80.2 90.6 74.8 30.2 860 20×20 mm2

C 57.9 167.8 101.4 90.1 1154 19×19 mm2

D 82.8 138.9 109.5 58.5 1249 21×21 mm2

E 67.9 95.8 53.9 118.1 1312 19×19 mm2

F 81.1 256.2 132.9 105.8 1661 22×22 mm2

Average 81.6 143.2 91.9 73.2 1241 407.83 mm2

are shown in Table 4.3. It can be observed that the individualparameter values are in
the same order of magnitude for all specimens, in some cases amoderate deviation can
be found from the average value. This can be considered as a result of the non-identical
deformation input from the tensile machine, the imperfect cubical shape of the specimens,
and the varying internal fiber structure of the liver. This deviation from the average can
be observed in the verification phase and at additional experiments onex vivotissues, pre-
sented in chapter 6, and are less significant in the case of artificial tissue samples. The
effect on the validity range of the model in tissue characterization is also discussed in
chapter 6, utilizing further experimental results and relying on the quantitative representa-
tion of different tissue samples, while the effect of incorrect parameter estimation on the
force control performance is addressed in chapter 5.
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Fig. 4.6. Force response curves for step-input relaxation tests.
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Constant Compression Rate Indentation Tests

As it was shown previously (Sections 4.1.2 and 4.2), the Wiechert model gives a very
good approximation of the soft tissue behavior in the force relaxation phase, verified on
the experimental data. Theoretically, using this model, force response curves in the case
of other known displacement functions can be estimated. To validate the results, two
more sets of indentation tests with constant compression rates were carried out on each
of the specimens. The average force response curves for eachspecimen for the cases of
20 mm/min and 100 mm/min are displayed in Fig. 4.7 and Fig. 4.8, respectively, along
with the global weighted average response curve. Note that for better visualization, the
curves are displayed in an indentation depth–force graph instead of the previously used
time–force diagram. The indentation depth was 4 mm. The figures only show the first
3.6 mm of deformation for previously discussed reasons. Utilizing the same method for
obtaining the analytical force response as it was used in thestep-input case, the following
analytical expression was obtained for the force response:

fWc(t) = L−1
{

WW (s)
v

s2

}

= v
(

k0t + b1

(

1− e
−

k1
b1

t
)

+ b2

(

1− e
−

k2
b2

t
))

, (4.11)

where v denotes the compression rate (20 mm/min or 100 mm/min) andfWc stands
for the force response magnitude. Ideally, by substitutingthe model parameters into
Eq. (4.11), the force response data should predict the measurement data. Considering that
the 750 mm/min indentation was approximated as a step-input, a minor compensation of
the previously obtained parameters would still be needed. However, the constant compres-
sion rate indentation results showed that the shape of the analytical response curve largely
differs from that of the measured response, clearly questioning the validity of the linear
Wiechert model in this indentation phase. From the haptics application point of view,
tissue behavior under constant compression rate is significantly more relevant than under
relaxation. The average measurement data and the predictedresponse curves at the com-
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Fig. 4.7. Force response curves for constant compression rate indentation tests at 20 mm/min.
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Fig. 4.8. Force response curves for constant compression rate indentation tests at 100 mm/min.

pression rate of 100 mm/min are shown in Fig. 4.9. The best fitting curve, assuming posi-
tive mechanical parameter values is also displayed in Fig. 4.9. The measurement data and
its major deviation from the estimated response implies that the reaction force magnitude
under constant compression rates represent progressive stiffness characteristics instead of
a linear one. This phenomenon may be caused by the complex mechanical structure of the
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Fig. 4.9. Verification of the results of the linear Wiechert model at the compression rate of 100 mm/min.
The blue curve shows the predicted force response from the parameter data acquired from relaxation tests,
while the measured force response is represented by the black curve. The green curve corresponds to the best
fit using reasonable mechanical parameters, clearly indicating that the model is not capable of predicting the
reaction force in the case of constant compression rates.
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liver tissue, which cannot be observed during step-response relaxation tests. According
to the Wiechert model, one would expect a superposition of reaction forces of a linearly
elastic element (k0) and two Maxwell elements that introduce damping (stress relaxation)
into the system, which is well-represented by the analytical solution. However, the shape
of the measured response curves does not show any nature of relaxation at a first glance,
indicating that tissue behavior might be more complex, as discussed in the next section.

4.3 Introduction of Novel Nonlinear Soft Tissue Models

4.3.1 The Two-phase and Nonlinear Wiechert model

In general, the damping parameters of a dynamic system are rather difficult to estimate.
In most cases, the behavior of a viscous damper element is approximated using trivial
methods, such as modal damping [86]. Therefore, it is more convenient to introduce
nonlinearity to a given model through the stiffness elements. In the proposed two-phase
Wiechert model, the mechanical behavior is anticipated as follows. Although liver is a
largely homogeneous and isotropic soft tissue, significantlevel of porosity can be found
in its structure. This two-phase structure delays the viscoelastic behavior during the com-
pression phase until a certain indentation depthδ is reached. The single spring elementk0
becomes nonlinear (with exponential characteristics), while the remaining two elements,
serially connected to the damping elements, will behave as delayed stiffness in the system:

k0(x) = K0e
κ0x, (4.12)

kj(x) =

{

0, if x < δ

Kj, if x ≥ δ
, (4.13)

for all x > 0 andj = 1, 2. If κ0 = 0, k0(x) is a linear stiffness, while also settingδ = 0
would yield the previously introduced linear Wiechert model.

While the previous variation introduces two new parametersκ0 andδ to the linear sys-
tem, in this third approach, the complexity of the model is increased by adding yet another
parameter, upon the assumption that there should be no discontinuities in the mathematical
description of the model, and the progressive stiffness characteristics should be coupled
with the phenomenon of relaxation as well. In this nonlinearcase, all of the three spring
elements have the same behavior, with the following stiffness values defined:

kj(x) = Kje
κjx (4.14)

for j = 1, 2, 3. This representation yields a total of 8 unknown parameters for the curve
fitting, creating a model that could be used both in compression and relaxation phases for
reaction force estimation.

4.3.2 Verification of the Nonlinear Wiechert Model

Table 4.4 shows the values of the individual mechanical parameters and combined RMSE
values obtained by the best-fit curves in all three cases discussed above. As the curve fitting
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TABLE 4.4

PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION AND CONSTANT COMPRESSION RATE

TESTS, REPRESENTED BYEQS. (1.11), (4.12), (4.13)AND (4.14).

Model K0 K1 K2 b1 b2 κ0 κ1 κ2 δ RMSE

type [N/m] [N/m] [N/m] [Ns/m] [Ns/m] [m−1] [m−1] [m−1] [mm] comb.

Linear 4.86 57.81 53.32 9987 10464 - - - - 1.1941

Two-phase 8.25 90.88 3.49 800.9 0.093 601.1 - - 1.8 0.2804

Nonlinear 2.03 0.438 0.102 5073 39.24 909.9 1522 81.18 - 0.1319

procedure was running simultaneously on both datasets, theRMSE value was computed
as the sum of the individual errors for both curves. The calculated force response curves
using the listed parameters are shown in Fig. 4.10 and Fig. 4.11. Clearly, the purely linear
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Fig. 4.10. Calculated force response curves using the parameter sets from Table 4.4, in the case of tissue
indentation at constant compression rate of 20 mm/s.

model (red curve) is not capable of modeling soft tissue behavior in both the cases of stress
relaxation and constant compression rate force response. The mechanical explanation of
this phenomenon is that a system with linear spring and damper elements attached to each
other as in the Wiechert model, cannot represent a progressive rise in the reaction force
under constant compression rates. Because of the presence of the damping elements, the
slope of the force response curve must decrease by the laws ofphysics. Therefore, the
linear Wiechert model will never fit the presented experimental data either qualitatively
or quantitatively. The two-phase model (green curve) introduces the progressive stiffness
characteristics using a single spring element, while the effect of damping is delayed byδ.
As shown in Fig. 4.10 and Fig. 4.11, the curve fitting is more effective than in the linear
case. However, the sudden change in the stiffness characteristics upon reachingδ impairs
the smoothness of the response function. This issue can be eliminated by using the non-
linear Wiechert model (blue curve) with three spring elements with progressive stiffness
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Fig. 4.11. Calculated force response curves using the parameter sets from Table 4.4, in the case of tissue
indentation with a step-input, recording the stress relaxation data.

characteristics. The figures show that the fitted curves are representing the model behavior
very well, with a largest relative error of 12%. Table 4.4 shows that the level of nonlin-
earity of the spring elements is higher than in the previous two models, asK0, K1 andK2

values are in average one order of magnitude lower than in thelinear or in the two-phase
case. This indicates that the general behavior of the systemis mainly determined by the
nonlinear characteristics of the spring elements.

Due to the nonlinear form of the model, no analytical expression for the force response
can be obtained. Instead of using the MATLABcftool, thefminsearchfunction was applied
to find the optimal set of parameters [TA-8]. The values of theindividual mechanical
parameters and combined root mean square error values are shown in Table 4.4. The curve
fitting was carried out simultaneously on both datasets of 20mm/min and 750 mm/min
responses, and the combined error values were obtained as the sum of the individual errors
for each curve, serving as the cost function forfminsearch. The estimated force responses,
utilizing the parameters from Table 4.4, are shown in Fig. 4.10 and Fig. 4.11.

In order to verify the parameters independently, a simulation was run on the nonlinear
model with the obtained parameters, with the constant compression indentation rate of
100 mm/s. The nonlinear system can be represented by the following system of differential
equations:

ẋ0 = v(t),

ẋ1 =
1

b1
K1(x0 − x1)e

κ1(x0−x1),

ẋ2 =
1

b2
K2(x0 − x2)e

κ2(x0−x2), (4.15)

wherev(t) is the surface deformation rate,x0 denotes the position of an arbitrary point at
the surface, whilex1 and x2 represent two virtual points, connectingk1–b1 and
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k2–b2 elements, respectively. The system output is the reaction force,F (t), calculated
by

F (t) = K0x0e
κ0x0 +K1(x0 − x1)e

κ1(x0−x1)

+K2(x0 − x2)e
κ2(x0−x2). (4.16)

The simulation results were mapped on the experimental data, shown in Fig. 4.12. The
average RMSE, calculated separately with respect to each specimen, yielded
ǫRMSE = 0.1748 N, with an average relative error of 30%, which indicates that the model
represents the investigated manipulation tasks very well.It was expected that the simulated
curve gave lower force values than those of the measured, as the parameters were obtained
partly by fitting the curve on the step-response. In the simulation, ideal step-input was as-
sumed, while, during the experiments, the maximum indentation speed was 750 mm/min.
This lower-than-desired indentation speed yielded lower stiffness values due to the rapid
relaxation during the compression phase. The effect can be observed in both Fig. 4.10 and
Fig. 4.12.

The exact deformation input function of the tensile machineis not known, therefore
an approximation was employed for the non-ideal step-inputfunction to verify the above
mentioned phenomenon. The simulated non-ideal deformation was chosen as 375 mm/min
constant ramp input, considering the nominal 750 mm/min deformation rate and the decel-
eration of the indenter head at the maximum indentation depth. The results of curve fitting
for the nonlinear Wiechert model, accounting for non-idealstep input, and the correspond-
ing parameter values are displayed in Fig. 4.13, Fig. 4.14 and Table 4.5, respectively.

Significant difference between the compensated and uncompensated parameter values
can only be observed in theκ values, which corresponds to the nonlinearity of the spring
elements. The RMSE value for the new curves is nearly one order of magnitude lower,
while the largest relative error is 25%, similarly to the case of ideal step-input simulation.
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Fig. 4.12. Force response curves for constant compression rate indentation tests at 100 mm/min, showing
the simulated response of the nonlinear model, using the parameters listed in Table 4.4.
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Fig. 4.13. Compensated force response curves, accounting for non-ideal step-input, using the parameter
sets from Table 4.5, in the case of tissue indentation at constant compression rate of 20 mm/s.
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Fig. 4.14. Compensated force response curves, accounting for non-ideal step-input, using the parameter
sets from Table 4.5, in the case of tissue indentation with a step-input, recording the stress relaxation data.

TABLE 4.5

PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION AND CONSTANT COMPRESSION RATE

TESTS, ACCOUNTING FOR THE NON-IDEAL STEP-INPUT, REPRESENTED BYEQ (4.14).

Model K0 K1 K2 b1 b2 κ0 κ1 κ2 RMSE

type [N/m] [N/m] [N/m] [Ns/m] [Ns/m] [m−1] [m−1] [m−1] comb.

Nonlinear 0.483 1.501 0.102 13448 12.91 1231 1.231 31.79 0.0295
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Fig. 4.15. Force response curves for constant compression rate indentation tests at 100 mm/min, showing
the simulated response of the nonlinear model, using the compensated parameters listed in Table 4.5.

Mapping the simulation results to the experiment at 100 mm/min constant deformation
rate, the average RMSE yieldedǫRMSE = 0.1898 N, with the average relative error of
25%, 5% lower than in the uncompensated case. This indicatesthat the non-ideal step-
input needs to be accounted for, as tissue relaxation takes place in a very short time, even
during rapid compression phase. The validation curves for the 100 mm/min indentation
tests with the compensated parameters is shown in Fig. 4.15.

4.3.3 Model Verification with Non-Uniform Surface Deformation

In order to verify the approach proposed in Fig. 5.5, extended to the case of non-uniform
surface deformation, additional palpation tests were carried out. Three specimens with
the dimensions of 25×25×200 mm from the same beef liver were palpated with a sharp
instrument, though not physically damaging the surface. Constant rate indentations were
carried out at four different indentation rates (5 mm/s, 10 mm/s, 20 mm/s and 40 mm/s)
at different points of the surface of each specimens, reaching 6 mm of indentation depth.
The indenter used for the experiments was a 3D-printed piecethat was mounted on the flat
instrument used in the experiments at uniform deformation.At the tip, the indenter had
the sharpness of 30◦, its length was 30 mm. It was assumed that the indenter created a
line-like deformation input on the surface of the specimens, perpendicular to their longest
dimension. The schematic figure of the non-uniform indentation is shown in Fig. 4.16, a
photo of the experiment is presented in Fig. 4.17 In order to estimate the reaction force, a
few assumptions have been made prior to the verification:

• only uniaxial deformation is considered, therefore all non-vertical forces are ne-
glected in the calculations,

• it is assumed that the indentation only affects the liver structure in a certainρ dis-
tance from the indentation point,
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Fig. 4.16. The schematic figure of the non-uniform indentation tests.

Fig. 4.17. Experimental setup for non-uniform surface deformation indentation tests.

• the surface deformation shape is approximated as a quadratic function and is uni-
form along the width of the specimen.

The reaction force is assumed to be the sum of the reactions ofinfinitely small elements
on the tissue surface:

F (t) =

∫∫

y,z

f(y, z, t) dy dz, (4.17)

wheref(y, z, t) is the force response of a single infinitely small element at the surface
point (y, z) at a given timet. f(y, z, t) can be calculated by solving Eq. (4.16) for each
surface element, using the unique deformation ratevx,y(t) of the element, and utilizing
specificstiffness and damping values shown in Table 4.6. These specific values were
obtained by normalizing the appropriate parameters to the surface size of 1 m2. In the
next step, the tissue surface was discretized using square-shaped elementsAi = Ayi,zi

with the edge length of 0.1 mm. The corresponding deformation rate profiles,vi(t), were
obtained as follows. The indentation tests were recorded bya video camera, fixed along
the z-axis. Movements of 7 surface points were tracked by analyzing 12 video files frame-
by-frame, at the time intervals of 1 sec. The resolution of the picture was 1980×1080
pixels, the recordings were taken at 25 frames per second. Anaverage deformation profile
was calculated by processing the data manually. It was found, that a reasonably good
approximation to the final deformation surface (after reaching thexd = 6 mm indentation
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Fig. 4.18. The final deformation surface at 6 mm indentation depth. The red bars indicate the deviation of
the measured position data of the examined surface points.ρ = 16 mm.

depth) was:

x(y) =
xd

ρ2
(|y| − ρ)2, (4.18)

which assumes that the deformation surface is symmetrical to the axis of indentation.
Furthermore, it is assumed that

dx

dy

∣

∣

∣

∣

y=ρ

= 0, (4.19)

neglecting the doming effects during the indentation (surface deformation in the negative
axis direction). These effects are more relevant at the regions far from the indentation
point, and due to the progressive spring characteristics inthe model, these regions con-
tribute very little to the overall force response. The final surface deformation shape is
shown in Fig. 4.18, along with the error bars, which show the deviation of the investigated
surface points from the proposed surface function.
Utilizing the assumptions above, the deformation rate profile vi(t) can be obtained at each

surface pointAi, provided by the following equation:

v(y, t) =
vin

ρ2
(|y| − ρ)2, (4.20)

indicating that in the case of constant indentation rate, each surface point is moving at
a constant speed. Eq. (4.17) was solved for each element and the force response was
obtained and summed according to Eq. (4.18). Simulation results and the estimated force
response for the 3rd specimen at 10 mm/min indentation rate are shown in Fig. 4.19. As
it is shown in Fig. 4.19, the measured force response curves initially follow the estimated
curve reasonably well, both qualitatively and quantitatively. It can be observed that at the

TABLE 4.6

SPECIFIC PARAMETER VALUES FOR THE USE OF NON-UNIFORM SURFACE DEFORMATION MODEL

VERIFICATION, REPRESENTED BYEQ. (4.15).

Ks
0 [N/m3] Ks

1 [N/m3] Ks
2 [N/m3] bs1 [Ns/m3]

5075 1095 255 127·106

bs2 [Ns/m3] κ0 [m−1] κ1 [m−1] κ2 [m−1]

1.1·106 909.9 1522 81.189
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Fig. 4.19. Measurement results and estimated force response for the case of 10 mm/min indentation for
non-uniform surface deformation.

TABLE 4.7

VERIFICATION CASES FOR NON-UNIFORM SURFACE DEFORMATION AND THE OBTAINED ROOT MEAN

SQUARE ERROR(RMSE) VALUES.

Sp. No. Indentation speed RMSE

1 5 mm/min 1.384

2 5 mm/min 2.015

3 10 mm/min 1.4682

3 20 mm/min 1.9002

3 40 mm/min 2.8214

indentation depth of 4 mm, the slope of the measured curves increases rapidly, which is
assumed to be due to the tension forces normal to the indentation axis. This is an expected
behavior, indicating that at higher deformation levels, the 1 DoF approach of the problem
should be handled with caution. The validity range of the proposed method is determined
in 20% relative deformation, measured onex vivoliver samples with the thickness of 2 cm.
The RMSE values for each verification case are shown in Table 4.7, the largest relative
error is 35% below 20% of relative deformation. The proposedsoft tissue model can also
be extended to more complex surface deformation functions.If that is the case, given that
the boundary conditions are well-defined, one would find finite element modeling methods
a useful tool for determining the surface deformation shapefunction [87].

4.4 Summary of the Thesis

Mass–spring–damper models play a significant role in soft tissue modeling, as the simplic-
ity of the approach reduces computational requirements compared to finite element-based
methods, offering a tool for real-time tissue behavior simulation and reaction force esti-
mation. This chapter presented a method for reaction force estimation in the case when
the surface deformation shape is known. A novel nonlinear model was created and veri-
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fied on liver tissue samples. It was shown that in the case of uniform surface deformation,
the estimated force response gave a very good match on the measurement data. It was
also shown that in the case of non-uniform surface deformation, the idea of distributed
mass–spring–damper models led to a reasonably good estimation of reaction forces.

The primary limitation of this approach appears when the describing function of the
surface deformation shape takes steep slopes and sudden changes, amplifying the effect of
lateral tension forces. These effects can be compensated bytaking the elongation of the
tissue surface into account, which is part of my future work.

Despite its limitations, the model could be a useful tool formodeling and reaction
force estimation when carrying out surgical manipulationswith blunt instruments, pro-
viding model data for model-based haptic feedback control methods and virtual surgical
simulators. Based on the results discussed in this chapter,my further future work includes
the extension of the model to more complex surface deformations, real-time prediction of
the reaction force based on on-line deformation shape measurement and the integration of
the model into virtual simulators for modeling specific surgical interventions.



Chapter 5

POLYTOPIC MODEL-BASED
INTERACTION CONTROL

Surgical robots, as Cyber-Phyisical Systems (CPS), are oneof the finest examples of ad-
vanced Human–Machine Interfaces (HMI). Many types of surgical manipulations have a
certain degree of autonomy, however, the human operator (surgeon) is still present as an
integral part of the control loop. Thus, cognitive skills are exploited during the interven-
tions, although the teleoperation systems dominantly use visual feedback over force/haptic
feedback [TA-16]. Haptic feedback-based force control is actively studied in master–slave
teleoperation structures, since the sensory capabilitiesof the human operators can be in-
creased with a successful and reliable implementation. Long distance telesurgery also
carries the difficulties originating from time-delay, which can induce instability in force-
controlled systems, especially in the case of contact with hard surfaces [TA-7]. To over-
come these issues, several approaches have been studied in recent years.

One of the most successful approaches is the model-based control method. Providing
a reliable mechanical model of the human body (especially for soft tissue, such as organs
or skin) can enhance the available force controllers [TA-14].

This chapter extends the usability of the proposed nonlinear Wiechert model for force
control applications. The approach fits to the concept of thequasi Linear Parameter Vary-
ing modeling, the polytopic model representations and the Linear Matrix Inequality based
control design methods. The main goal of this work is to integrate the nonlinear mathemat-
ical model of the process of tool–tissue interaction into the modern modeling approach of
qLPV/LMI-based control theory. The systematic derivationof the model and the illustra-
tive numerical example will guide the reader through the transformation of the nonlinear
system equations into a polytopic TP representation.

It is important to note that the presented soft tissue model was created based on phys-
ical considerations, as it was presented before [TA-8]. TP Model Transformation can be
considered as a gateway between the traditional model representations and the polytopic
modeling. It can be proven that mathematically correct stability analysis can be achieved
when LMI-based control design is taken into consideration.In the particular case of this
study, the derived model can be utilized on the slave side of the teleoperation system,
integrated in a cascade controller assembly [88]. This cascade structure supports the re-
alization of force control in extreme scenarios, such as inter-continental or inter-planetary
teleoperation [1].
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5.1 Models of Soft Tissues in Force Control

The challenge of reaction force estimation and force control in surgical robotics can be
approached from various directions. No general ideal solution exists due to the complexity
of the instruments, wide range of required control methods and limitations in the final
applications (such as sterilization or restrictions on sensor placement and mounting). One
of the first architectures of such control was developed for ROBODOC, the first robotic
system to perform complete hip replacement [89]. The control algorithm provided an
intuitive HMI allowing the surgeon to guide the robot in a collaborative manner, while
force feedback was used to modify the feed rate for cutting, achieving a force controlled
velocity input. Leeet al. presented a sensorless method for estimating reaction forces
acting on a typical surgical robotic instrument, using a state observer. In their approach,
they used a sliding mode control with sliding perturbation observer (SMCSPO) for the
instrument manipulation [90]. Yuenet al.showed that a force control method using feed-
forward motion terms can largely improve the force trackingperformance in the case of
contact with soft tissues, which is a crucial problem for manipulating loosely attached or
moving organs e.g., during beating heart surgery [91]. Another relevant work in the topic
of force tracking in beating heart surgery was published by Liu et al., utilizing the Kelvin–
Boltzmann viscoelastic model [31]. Moreiraet al. introduced a method for soft tissue
force control using active observers and a viscoelastic interaction model, confirming that
using a realistic tissue model can increase the performanceof the force control [92]. Force
control has also been an emerging field of interest in roboticcatheter cardiac ablation [93]
and in minimally invasive surgery [94]

In the following sections, the proposed nonlinear Wiechertsoft tissue model is trans-
formed to a polytopic qLPV model, representing the tissue dynamics that is—regarding
its mathematical formalism—suitable for direct use of LMI-based control design methods.
As a next step, a model-based force control scheme is presented, utilizing this off-the-shelf
tool–tissue interaction model. The discussed structure involves a model-based controller,
where the required states for the state-feedback controller are acquired using a reference
dynamic model of the system, derived using the nonlinear model. The discussed approach
utilizes the Tensor Product Model Transformation [95] as a systematic methodology capa-
ble of transforming analytical nonlinear qLPV state-spacerepresentations into polytopic
form, which can be directly used in LMI-based multi-objective controller synthesis.

5.2 Polytopic TP Model of the Nonlinear Wiechert Model

5.2.1 Model Construction

In order to create an appropriate qLPV model that can be used for LMI-based controller
design, first of all, a goal for the control effort has to be defined. Let us consider the case,
where the position of the instrument tip is controlled by tracking the desired valuexd(t),
which in mathematical sense could be written asx0(t) = xd(t), wherex0(t) denotes the
value of tissue surface deformation.

The corresponding control design methods address the regulation of the qLPV model’s
state to 0 by state feedback or output feedback. That is, the qLPV model should be formu-
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lated to represent the error dynamics. This way, the state vector of the qLPV model must
be chosen as error according to the actual desired states, and the output must also repre-
sent the error. For these reasons, the following state variables,∆x0(t) = x0(t) − xd(t),
∆x1(t) = x0(t)− x1(t) and∆x2(t) = x0(t)− x2(t) are used in the qLPV model, and its
output similarly, as∆y(t) = y(t)− yd(t), whereyd(t) stands for the desired force output

yd(t) = K0xd(t)e
κ0xd(t). (5.1)

Then, the following qLPV model can be constructed:

[

∆ẋ(t)
∆y(t)

]

=

[

A(p(t)) Bu Bw

C(p(t)) 0 0

]





∆x(t)
u(t)
w(t)



 , (5.2)

where

p(t) =
[

eκ1∆x1(t) eκ2∆x2(t) x0(t)eκ0x0(t)−xd(t)e
κ0xd(t)

x0(t)−xd(t)

]

,

A(p) =





0 0 0
0 −K1

b1
p1 0

0 0 −K2

b2
p2



 ,Bu =





1
1
1



 ,Bw =





1
0
0



 ,

C(p) =
[

K0p3 K1p1 K2p2
]

, w(t) = ẋd(t).

The fact that the desired state appears in the system matrix shows well the nonlinear prop-
erty of the system: its settling behavior changes with thexd(t) desired state. Because the
∆x0(t) error variable changes with the desired state, theẋd(t) signal appears in the qLPV
model and it is considered as disturbance.

Using the qLPV model Eq. (5.2) , the MVS polytopic TP model canbe obtained for
the parameter dependent system matrix:

S(p) =

[

A(p) Bu Bw

C(p) 0 0

]

, (5.3)

considering the nonlinear parameter values from Table 4.4 and qLPV parameter and do-
main values from Table 5.1, which were obtained by substituting the boundary values of
the variables∆x0, ∆x1 and∆x2 intop.

The transformation yields to an exact polytopic TP model form, where

S(p) = S
3

⊠
n=1

w(n)(pn(t)) =

= S ×1 w
(1)(p1(t))×2 w

(2)(p2(t))×3 w
(3)(p3(t)) =

=

2
∑

j1=1

2
∑

j2=1

2
∑

j3=1

w
(1)
j1
(p1)w

(2)
j2
(p2)w

(3)
j3
(p3)Sj1,j2,j3, (5.4)

TABLE 5.1

QLPV PARAMETER DOMAIN VALUES FOR CREATING THEMVS POLYTOPICTP MODEL.

p1 p2 p3 c0

[−] [−] [−] [N/m]

0.9–213482 0.9–2.10592 0.9–1594.8 1.9792–11000
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Fig. 5.1. Weighting functionsw(1), w(2) andw(3) of the MVS polytopic TP model for the members of the
parameter vectorp(t).

the core tensorS contains the2× 2× 2 vertex systems, and the corresponding weighting
functions are shown in Fig. 5.1.

5.2.2 Model Verification

In order to verify the polytopic TP model, numerical simulations were carried out to com-
pare the force response functions to the original nonlineardifferential equations. Simula-
tions results in both the tissue relaxation and constant compression rate phases are shown
in Fig. 5.2 and Fig. 5.3, respectively. As expected, the simulations indicate identical dy-
namic behavior for both cases, as the polytopic TP model is capable of representing the
analytic qLPV model.

The presented polytopic qLPV modeling methodology opens upnew possibilities for
addressing the dynamic and stability-related behavior of complex, nonlinear and parameter-
dependent systems, such as the physical interaction of robots with biological tissues.
Through LMI-based optimization, control synthesis can be performed according to pre-
defined closed loop performance requirements. The polytopic TP model representation
that is derived in this study, allows for addressing force control problems in robotic sur-
gical devices. The control goal formulated in Section 5.2 can be handled using static and
dynamic output feedback or state feedback control schemes as well. The criteria for op-
timal and/or robust control in LMI-based design can be addressed over a given parameter
domain that is relevant to the application.

Using TP Model Transformation, the presented nonlinear soft tissue model can be
transformed into a representation that directly fits to LMI-based controller design. As
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Fig. 5.2. Comparison of the original nonlinear model and theTP model in the tissue relaxation phase.
u(t) = 0,x(t = 0) = [0.004 0 0] T.
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Fig. 5.3. Comparison of the original nonlinear model and theTP model in the constant compression rate
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it was shown, the model can represent the behavior of soft tissues in the case of com-
pression tests, which is an important step towards its implementation into model-based
position/force control problems. The qLPV model defined in Eq. (5.2) is written in an
appropriate form for such controller design, where the way of defining the desired state
is part of the modeling. For simplification reasons,xd(t) = 0 mm was assumed in the
open-loop simulation.

In Section 5.3, the reformulation of the above presented system model is discussed
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in order to determine a representation that will serve as a basis for the design of closed
loop control. The structure of the derived qLPV model and thecorresponding polytopic
form allows for applying well known control schemes and specifying meaningful objective
functions for the purpose of LMI-based optimization. Investigation of the viable closed
loop structures and the actual control design is also addressed in the next section.

5.3 Polytopic TP Model for Force Control Applications

Regarding the Polytopic TP Model of the nonlinear system described in Eq. (4.15) and
Eq. (4.16), the detailed derivation of the model was given inSection 5.2, rearranged in a
way that considers the so-called error dynamics. The proposed qLPV model assumes that
the control goal is the force control of the surgical instrument at the tissue surface contact.

In most engineering applications, it is more plausible to use discrete time domain in-
stead of continuous representations, due to the sampled nature of modern control systems.
By introducing the discrete notation, at any time stept, one can rewrite Eq. (5.2) as:

[

xt+1

yt

]

= S(p)

[

xt

ut

]

, (5.5)

where the discretized system matrix, according to the zero order hold (ZOH) princi-
ple [96], can be written as:

S(p) =

[

TS ·A(p) + I TS ·B
C(p) 0

]

, (5.6)

and

p(t) =
[

eκ1x1(t) eκ2x2(t) eκ0x0(t)
]

,

A(p) =





0 0 0
K1

b1
p1 −K1

b1
p1 0

K2

b2
p2 0 −K2

b2
p2



 ,B =





1
0
0



 ,

C(p) =
[

K0p3 +K1p1 +K2p2 −K1p1 −K2p2
]

.

It is important to note that this is only an approximation of the original, continuous-time
system, however, from the controller design point of view, more relevant for its better
representation of digitally controlled robotic systems.TS = 1 ms denotes the discrete
time-step. This value was selected based on practical considerations, being a suitable
processing time for current surgical systems [97]. The domains were obtained by creating
a rough estimate for the lower and upper limits ofxi, i = 1, 2, 3 during manipulations.
The minimal volume simplex (MVS) polytopic TP model form is written as:

S(p) = S
3

⊠
n=1

w(n)(pn,t) =

= S ×1 w
(1)(p1,t)×2 w

(2)(p2,t)×3 w
(3)(p3,t) =

=
2

∑

j1=1

2
∑

j2=1

2
∑

j3=1

w
(1)
j1
(p1)w

(2)
j2
(p2)w

(3)
j3
(p3)Sj1,j2,j3, (5.7)
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Fig. 5.4. Weighting functionsw(1),w(2) andw(3) of the MVS polytopic TP model represented by Eq. (5.5)
for the members of the parameter vectorp(t).

where the core tensorS contains the2 × 2 × 2 vertexes and the corresponding univariate
linear weighting functions, as shown in Fig. 5.4.

5.3.1 Controller Design

While Eq. (5.5) is mathematically suitable for stable state-feedback controller design, its
practical realization is challenging due to the fact that the statesx1 and x2 cannot be
controlled directly, therefore their convergence to the desiredxi = 0 state is very slow. On
the other hand,x0 can be affected directly through speed control—assuming anideal input
controller, this holds for the position ofx0 as well—, not taking the system dynamics into
consideration, which subordinates the behavior to the dynamics of the relaxation poles.
Therefore, achievingx0 = 0 too soon would mean that the output of the system will
only depend on the slowly converging states, which would notallow one to realize the
desired force control performance in surgical robotics, interms of speed and precision. To
overcome these limitations, this chapter proposes an alternative approach to the control
problem, avoiding the setting ofx0 to a stationary state before the desired time. Let us
consider the force output described in Eq. (4.16) the state of the system to be controlled.
The derivative of expression Eq. (4.16) takes the form:

Ḟ = ẋ0c0(x0, x1, x2) + ẋ1c1(x0, x1, x2) + ẋ2c2(x0, x1, x2), (5.8)
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where

c0 = K0e
κ0x0(1 + κ0x0) +K1e

κ1(x0−x1)(1 + κ1(x0 − x1))+ (5.9)

+K2e
κ2(x0−x2)(1 + κ2(x0 − x2)), (5.10)

c1 = −K1e
κ1(x0−x1)(1 + κ1K1(x0 − x1)), (5.11)

c2 = −K2e
κ2(x0−x2)(1 + κ2K2(x0 − x2)). (5.12)

Let us consider
∆F = F − Fd, (5.13)

the new single state variable of the qLPV system, whereFd is the desired reaction force to
be achieved. The input of the system isu = ẋ0, and the derivative of∆F can be written
as

d

dt
∆F = ẋ0c0 + ẋ1c1 + ẋ2c2 − Ḟd. (5.14)

In the equilibrium state,d
dt
∆F = 0, therefore:

ueqc0 + ẋ1c1 + ẋ2c2 − Ḟd = 0, (5.15)

whereueq stands for the input at the equilibrium state. Following theidea on the error
dynamics presented in Section 5.2, the input of the second qLPV model can be introduced
as:

∆u = u− ueq, (5.16)

where

ueq =
1

c0
(ẋ1c1 + ẋ2c2 − Ḟd).

This approach allows us to collect all system variables and parameters in a single qLPV
model parameterc0, resulting in a very simple form. The schematic block diagram of the
controlled system is shown in Fig. 5.5. Introducing the time-discretization as discussed
above, we can write:

∆Ft+1 = ∆Ft + Ts · c0∆ut. (5.17)

Fig. 5.5. Schematic block diagram of the controlled system.
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Fig. 5.6. Weighting functionw′ of the MVS polytopic TP model represented by Eq. (5.17).

The system matrix can be written in the form of:

S′(c0) =

[

1 Ts · c0
1 0

]

. (5.18)

The core tensorS ′ contains 2 vertexes:

S ′

(1) =

[

1 0.009
1 0

]

, S ′

(2) =

[

1 11
1 0

]

, (5.19)

the corresponding weighting functions arew′, as shown in Fig. 5.6. The parameter domain
for c0 was determined numerically, and was refined due to experimental considerations.
The numerical values are listed in Table 5.1.

The controller of the system is determined in the following form:

u = −F(p)x, (5.20)

where in this particular case:

F(p) = F
1

⊠
n=1

w′ =
2

∑

i=1

Fiw
′

i(c0), (5.21)

requiring a stable system in the Lyapunov sense.
Systems that can be described by a model in the form of interpolation of linear dynamic

systems, such as the presented polytopic model, can be stabilized by a Parallel Distributed
Compensator (PDC), as follows [98].

Let be

Sr =

[

Ar Br

Cr Dr

]

= Si1,i2,...,iN ,

wherer = ordering(i1, i2, ..., iN)(r = 1...R =
∏

n In). The functionorderingyields a
linear index, equivalent of an N-dimensional array’s indexi1, i2, ..., iN , the array size is
I1 × I2 × ...× IN . The weighting functions can be reformulated as

wr(p(t)) =
∏

n

wn,in(pn(t)).

Theorem (Global and asymptotic stabilization of the convex TP model):
FindX > 0 andMi satisfying equation

−XAT
r −ArX+MT

r B
T
r +BrMr > 0 (5.22)
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for all r and

−XAT
r −ArX−XAT

s −AsX+MT
s B

T
r +BrMs +MT

r B
T
s +BsMr > 0, (5.23)

for r < s ≤ R, except for the pairs(r, s), such thatwr(p(t))ws(p(t)) = 0 for all p(t).
The above conditions can be considered as LMIs with respect to X andM

r
, positive

definite matricesX andM
r

can be found or show that no such matrices exist. Such repre-
sentations imply that the dynamic linear systems are in continuous or discrete time normal
state space form, or linear input-output difference equation form. If the system consists of
subsystems described by normal form state equations, the controller system’s consequents
are linear state feedback laws. Thus, the PDC results in nonlinear state regulation, which
is guaranteed if the feedback law satisfies the series of LMIs[99]. The feedback gains are
obtained by utilizing the solutions forX andM

r
, such as:

Fr = M
r
X−1, (5.24)

using the ordering function to determine the components of tensorF . An illustrative ex-
ample of an LMI-based PDC controller design for the TORA system can be found in [98].
Kuti et al. published an extensive literature on the generalization ofthe TP model transfor-
mation for control design, showing that the separated structure of parameter dependencies
within the polytopic TP model can be exploited during the controller design. Correspond-
ing application examples with numerical calculations on further mechanical systems were
published for a dual-excenter vibration actuator [77], an inverted pendulum [100], and
fluid volume control in blood purification therapies [101]. The reader is encouraged to
explore these examples for a deeper and general understanding of the modeling and con-
troller design techniques employed in this thesis.

The final PDC (Parallel Distributed Compensator) controller for the system described
by Eq. (5.18) was found solving the LQ optimal control problem using convex optimiza-
tion algorithm provided by the MATLABtptool toolbox and theYALMIP interface, a tool-
box for optimization and modeling for MATLAB [102, 103]. Theresulting core tensor
yields:

F =

[

0.36347
0.08747

]

. (5.25)

5.3.2 Simulation Results

The proposed closed-loop controller solution was tested and simulated on a typical gesture
of a surgical interventions, grasping. The process of grasping, holding and releasing of the
tissue was investigated by settingFd to a desired trajectory, followed by the derivation of
control performance and robustness. Three specific cases were investigated in the latter
case: first, the real tissue parameters were ill-estimated,i.e., the reference tissue model
parameters were 20% lower than the parameters used for controller design. Second, the
simulation of a badly calibrated observer was done by linearly reducing the reference
tissue model output by 20%. Third, a time-delay term ofτ = 2 ms was added to the
reference tissue state output, modeling a slow observer behavior. Simulation results and
the force tracking error for all cases are shown in Fig. 5.7, 5.8, 5.9 and 5.10.

Fig. 5.7 shows that the proposed control scheme is suitable for realizing force control
in a stable and precise manner, utilizing the selected soft tissue model. The tracking error
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Fig. 5.7. Force tracking simulation results for modeling the grasping, holding and release of tissue. The
simulation was carried out on the discrete time systems withthe time-step of 1 ms.
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Fig. 5.8. Tracking error results for modeling the grasping,holding and release of tissue.
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Fig. 5.9. Force tracking simulation results for modeling the grasping, holding and release of tissue, inves-
tigating the robustness of the proposed method. Case 1: incorrect estimation of the tissue parameters in the
reference tissue model. Case 2: incorrectly calibrated observation, state output reduced by 20%. Case 3:
slow observation, state feedback is delayed by 2 ms.

for the presented gesture did not exceed 5 mN, which is a favorably low value for surgi-
cal interventions. The needle-like peaks in the tracking error represent short transients,
which arise from the sudden change in the time derivative of the desired force. In prac-
tice, these transients may be extended due to the physical limitations of actuators and the
phenomenon of saturation. The results were achieved using the discrete sampling rate of
1 ms, which is a realizable processing time for modern surgical systems, in terms of arith-
metic performance. The proposed controller was tested for robustness in the case of three
different approaches, including ill-conditioned parameter estimation and observer design,
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Fig. 5.10. Tracking error results for modeling the grasping, holding and release of tissue, investigating the
robustness of the proposed method.
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Fig. 5.11. Tracking performance in close-up view in the mostcritical point of the simulation according to
the tracking error results.

and time-delay. The different behavior of these three casesis shown in Fig. 5.11, indicat-
ing that there is no significant decrease in the tracking performance under the mentioned
disturbances. Minor oscillation can be observed in the caseof delayed feedback, which,
when the delay time is increased, ultimately leads to stability loss. Further investigation of
the phenomena and implementation of delay-based control schemes are part of my future
work.

5.4 Summary of the Thesis

In this chapter, a control scheme and the corresponding control design methodology were
presented for regulating interaction force during autonomous manipulation of soft bio-
logical tissues. The proposed approach utilizes recent results of polytopic model-based
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control through the framework of Tensor Product Model Transformation. The goal of the
presented approach is the control of reaction force during the robotic interaction with soft
tissues e.g., grasp–hold–release cycles. Since biological tissues typically have highly non-
linear dynamic behavior (progressive stiffness characteristics, stress relaxation etc.), time
invariant linear controllers cannot provide ideal performance across the whole operation
domain.

Based on my previously published nonlinear tissue model, the parameter-dependent
error dynamics was derived and the resulted system was reformulated in order to avoid the
error rendered by the slow dynamics of one state variable. The reformulated system allows
for concentrating the three original parameter dependencies into a single parameter, and
construct a feed forward term for the equilibrial input. An additional state feedback con-
troller was utilized that handled the unmodeled dynamics and further disturbances. Since
the state variables cannot be measured in the real process, areference tissue model was
used. The state feedback controller was designed by LMI-based synthesis providing the
variable gains as parameter dependent polytopic TP functions. The overall system was
evaluated via numerical simulations, with very promising results. The implementation
of the proposed method into supervised telemanipulation/telesurgical equipments would
enhance the performance of these systems, allowing haptic sensing to the operator. Fu-
ture work includes the experimental validation of the system in both virtual andex vivo
environments, extending the model with a discrete-time PDCstate observer.



Chapter 6

USABILITY ASSESMENT OF THE
PROPOSED SOFT TISSUE MODEL

6.1 Haptic Feedback in Telesurgery

6.1.1 The Role of Haptic Feedback

The number of Minimally Invasive Surgical procedures is continuously increasing. MIS
allows shorter patient recovery time and the decrease of surgical trauma. However, due to
the long, rigid design of the MIS tools, the limited vision and confined operation space,
several ergonomic difficulties and limitations have arose that are yet to be solved. These
include the deprivation of dexterity, loss of depth perception due to the two-dimensional
video image feedback, distributed hand–eye coordination and special tool manipulation,
and most importantly, the loss of tactile feedback [104]. While most of these limita-
tions were addressed and partially solved with the introduction of robot-assisted MIS
and telesurgery, by using stereo visual feedback, tremor filtering and ergonomic Human–
Machine Interfaces, the lack of force feedback limits the ability of the surgeon during
organ palpation, tumor localization and the identificationof other anatomical structures
during surgery [105].

The role of haptic feedback in telesurgery is twofold. First, restoring tactile informa-
tion is essential for assessing the surface textural properties of the investigated organs.
This feature is generally useful for artery and lump detection, therefore the lack of tactile
feedback leads to a more difficult localization of palpable anomalies, such as kidney stones
or tumors. Second, haptics may provide a realistic force feedback to the robot operator
(the surgeon), providing information about the mechanicalcharacteristics of the tissue.
Haptic feedback improves the quality of basic surgical maneuvers (grasping, palpation,
cutting), and allows collision detection. Further safety functions can also be implemented,
such as the application of virtual fixtures both in the case ofintra-operative scenarios and
surgical simulators [106]. Tissue characterization requires complex perception of the op-
erating environment, where beside tissue stiffness (hardness), relaxation properties and
other viscoelastic phenomena can also be investigated and accounted for, when using hap-
tic feedback. It was also shown that for tissue characterization tasks, utilizing force feed-
back leads to better results than only visual feedback, while, with the combination of the
two, superior results can be achieved [107].
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While the lack of haptic feedback proves to be a limitation tomodern robot-assisted
MIS procedures, today’s telesurgical systems provide no, or limited solutions that are
commercially available. Increased cost, sterilization difficulties and the sizing limitations
of force sensors at the end effector are key issues in introducing haptic feedback to these
systems through direct force sensing at the tool tip. To address these, several approaches
were investigated for indirect force estimation, e.g. accounting for joint flexibility [24],
the dynamics of cable-driven manipulators [35] or force estimation through soft tissue
modeling [TA-6].

There is no general consensus among laparoscopic surgeons,if, and at what level
would haptic feedback improve the outcome of procedures. According to many surgeons,
having higher quality visual feedback alone provides adequate information about the tis-
sue palpation force for safe and reliable operation, however, the lack of haptic feedback
is often considered as a major limitation in robot-assistedMIS procedures [108]. Clearly,
an experienced surgeon finds the lack of haptic feedback lessdisturbing, than a novice.
However, in haptic guidance, learning spatiotemporal trajectories, contrary motion com-
pensation and strategy planning, the presence of haptic feedback and/or surgical simulators
can greatly enhance force skill learning for trainees [109].

Providing a complex and reliable perception for the operators, haptic devices can not
only enhance intra-operative performance, but also becomean essential tool in surgical
training and pre-operative planning. In recent years, the use of surgical simulators have
largely increased, offering different training scenarios, anatomical variations and condi-
tions in the operating environment [110]. Using haptic devices, a new dimension opened
up in performance evaluation during procedures. Moreover,due to the complex mechani-
cal behavior of soft tissues, augmented simulations require reference data from real surgi-
cal scenarios, and should be tested by human operators in order to validate the usability of
the virtual models [111].

The problem of distinguishing between soft tissues by testing their mechanical prop-
erties is often referred to as the cognitive role of haptic devices in simulation environ-
ments [112]. It is a common view that today’s surgical simulators that are using haptic
interfaces should rely on simple mechanical models of soft tissues, instead of complex,
parameterized finite element models, thus enhancing real-time operation, and focusing on
the most representative mechanical effects. By using bilateral haptic devices and account-
ing for the tissue dynamics, one can also solve issues arising from communication latency
and high computational requirements by investigating hand/master and slave/environment
interactions [113]. Stability and accuracy deteriorationcaused by latency and other ex-
ternal disturbances, such as contacting hard tissues or elastic tool deformation, can also
be addressed using realistic soft tissue models, their integration into model-based force
control algorithms largely increase the robustness and reliability of robot-assisted inter-
ventions [TA-13].

This chapter presents a novel methodology for testing the usability of soft tissue mod-
els in robot-assisted MIS setups, focusing on the modeled mechanical properties of soft
tissues and their integration into surgical simulators with haptic capabilities.
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6.1.2 Different approaches

The integration of soft tissue properties to robot-assisted and virtual reality based MIS
procedures is an actively researched topic within the field of surgical robotics. Methods
for acquiring useful measurement data use a combined experimental procedure of mea-
suring tissue relaxation force under step-like tissue compression and force measurement
during constant compression rate indentation input. Samuret al. proposed a method for
tissue parameter estimation using a custom indenter duringlaparoscopic surgery, employ-
ing inverse finite element solution to estimate optimum values of nonlinear hyperelastic
and elastic properties [114]. Beccaniet al. developed a tool for intra-operative wireless
tissue palpation, using a cylindrical palpation probe, estimating local volumetric stiffness
values, assuming linear elastic behavior of the tissue [115].

A deformable model-based on nonlinear elasticity and finiteelement method for haptic
surgical simulators was proposed in [116], validated on real-time simulations of laparo-
scopic surgical gestures on virtual liver models. Trejoset al.suggested an augmented hy-
brid impedance control scheme to perform force control, providing model-based control
background for tactile sensing instrument in intra-operative tissue palpation [117]. En-
doscopically guided, minimally invasive cannulation tasks were investigated by Wagner
et al., testing the hypothesis that force feedback can improve surgical performance, find-
ing that applied forces by the surgeons can be decreased for those with adequate training
background [118]. Tholeyet al.developed an automated laparoscopic grasper with force
feedback capability, in order to aid the surgeons in differentiating tissue stiffness through
the PHANToM (Sensable Technologies, Woburn, MA) haptic device [104]. Participants
were asked to differentiate between tissues, having provided visual and/or haptic feedback
to complete the task. Lubozet al. published an extensive patient-specific data for facial
tissue characterization, relying on linear elastic models[119], while a FEA-based charac-
terization method and soft tissue deformation model was proposed by Zouet al. in [120].

Alternative approaches are also popular in general force feedback for laparoscopic
training and procedures. Horemanet al.developed a training system that provided visual
haptic feedback of the interaction forces during procedure[121]. They found that provid-
ing haptic feedback through visual representation considerably improved the quality of the
solved tasks. A detailed feasibility study of lung tumor detection using kinesthetic feed-
back was published by McCreeryet al., creating anex vivoexperimental environment,
modeling various tissue stiffness values, injecting agar into healthy tissues, substituting
haptic feedback with recorded force data [122].

The viscoelastic tissue model used in this work is taken fromchapter 4, implemented
as a parameter-dependent, discretized virtual model-based on the Tensor Product model
transformation, as derived in chapter 5. The aim of this phase of the research is to provide
a general methodology for addressing the usability and validity range of the proposed
tool–tissue interaction model in telesurgical scenarios,where haptic feedback is available.

6.2 Research Hardware Environment

On closed systems, it is fairly difficult to conduct fundamental research, for obvious rea-
sons. Therefore, in order to achieve technological development, some of the manufacturers
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grant partial accessibility to their closed systems. In thecase of the da Vinci, there exists a
real-time stream of kinematic and user event data from the robot that can be read, provided
by the da Vinci API. It is important to mention that the total replacement of certain compo-
nents, such as the controller body, can transform the da Vinci system into and open-source
platform. Raven II is one of the most successful open-sourcerobotic platforms. Devel-
oped at the University of Washington and supported by DARPA1, the Raven II became
the greatest competitor of the da Vinci system. Furthermore, with the help of the National
Institutes of Health2 (NIH), 8 robots have been created and distributed to European and
North-American locations. Currently, the Raven II research platform can be purchased
from Applied Dexterity Inc.3 The platform operates based on the Robot Operating System
architecture.

6.2.1 The da Vinci Research Kit

The da Vinci Research Kit is one of the most capable research platforms in surgical
robotics. In fact, the kit is a collection of retired, first-generation da Vinci robot compo-
nents and tools, provided with additional open-source control electronics and software. As
the platform serves as the primary hardware in the experiments conducted in this chapter,
a short description of its components and capabilities is discussed in the next subsections.

6.2.2 Hardware Components

The DVRK contains the components listed below:

• Two da Vinci Master Tool Manipulators (MTMs),

• Two da Vinci Patient Side Manipulators (PSMs),

• A stereo viewer,

• A foot pedal tray,

• Manipulator Interface Boards (dMIBs),

• Basic accessory kit.

The research kit contains the original, unmodified mechanical components therefore it is
possible to transform a da Vinci Classic system into a research kit, although some of the
components are not available for researchers due to their commercial use. In the DVRK
hardware set, the Endoscopic Camera Manipulator (ECM) is not included along with sev-
eral other components from the original system, but the lackof these elements is not a
major issue from the development point of view. In general, for research purposes, the
control electronics and control software are the most essential parts of the system. Re-
cently, a novel, open controller platform was created by JHU, Worcester Polytechnic In-
stitute (WPI) and their partners [123]. The source files of the control electronics were also
published online. The research platform is equipped with anIEEE 1394a Firewire inter-
face, capable of maintaining a communication speed of 400 Mbit/sec. In order to achieve

1http://www.darpa.mil
2http://www.nih.gov/
3http://applieddexterity.com/
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a satisfactory degree of security and reliability, it is crucial to create real-time communi-
cation between the devices in the system. The control box includes two FPGA modules
and two Quad Linear Amplifiers (QLA), as shown in Fig. 6.1.

Fig. 6.1. Schematic representation of the DVRK hardware structure.

The assembly described above is capable of driving and controlling a single robotic
tool. Two da Vinci Master Tool Manipulators and two da Vinci Patient Side Manipulators
can be controlled using four sets of control electronics, requiring a total of 8 pieces of
FPGAs and QLAs. The integration of the DVRK to a retired, fully operational da Vinci
robot is shown in Fig. 6.2.

Fig. 6.2. The da Vinci Surgical System and the da Vinci Research Kit. System components: Patient Side
Manipulators (left), the DVRK controller (middle) and the Master Tool Manipulators (right).

The da Vinci Research Kit is based on the centralized computation and distributed I/O
architecture [124]. The main advantage of this structure isthat there is only one control
electronics that maintains contact with the peripheral inputs and outputs, allowing the
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central computer unit to perform the calculations, locatedat the control units. In general,
the central unit is a Linux-based computer with some real-time component expansion.

Low Level Software Architecture

The FPGA module firmware is available online4, and published under a BSD license,
therefore it can be freely modified. The RT-FireWire is one ofthe best approaches to solve
the real-time communication between the subsystems over Firewire, while the commu-
nication implementation is achieved through standard Linux C++ libraries [125]. The
PC-side operating system is preferably Linux-based, as there exists a real-time exten-
sion (RTLinux), a Linux OS that runs under the supervision ofa hard real-time micro-
kernel [126]. The software architecture, as a whole, can be divided into five functional lay-
ers (I-V) and three development layers (A-C) [123]. The functional layers, implemented
on the PC side, are stratified by the complexity of their function, while the development
layers are sorted by the programming language complexity they use. The open-source
property is extensively supported by the previously described SAW and CISST libraries,
allowing the system to be used as a completely open research platform.

6.3 A Methodology for Model Evaluation and Usability

Direct haptic sensation during open surgical procedures isan important guide for sur-
geons for the assessment of the types and health of differentanatomical structures. How-
ever, in the case of MIS and robot assisted surgical procedures, numerous tasks require a
new approach in the interpretation of haptic information, such as tissue characterization,
classification, lump detection and localization [127]. Thehuman sensing of soft tissue
characteristics through robot-assisted palpation is a complex process from mechanical and
neurophysiological points of view. Due to the tissue compliance and its highly nonlinear
behavior, and the indirect transfer of haptic information,efficient tool–tissue interaction
modeling requires an understanding the limits of human perception, when the palpation
is carried out using a teleoperation system [128]. This way,not only the quality of robot-
assisted haptic feedback can be assessed, but one can also address the validity of the soft
tissue models used for the enhancement of model-based control methods for telesurgi-
cal applications. The purpose of this work is to provide a general methodology for the
evaluation of such soft tissue models through understanding the human perception of re-
action force during the remote palpation ofex vivoand artificial soft tissues, and during
the palpation of virtual tissue models.

Tissue samples with different mechanical properties were investigated during the ex-
periments, which were completed in two phases: Phase I and Phase II. During Phase I,
the artificial tissue samples were selected from a wide rangeof stiffness, being compared
to two very differentex vivosoft tissue samples: chicken liver and chicken breast. After
the evaluation of Phase I, new artificial tissues samples were created, aiming to match the
mechanical properties of the selectedex vivotissue sample, based on their estimated be-
havior. In Phase I, 2ex vivosamples and 3 artificial tissue phantoms were prepared for this
task. In Phase II, a refined set of 14 artificial tissue phantoms were compared to a single

4https://github.com/jhu-cisst/mechatronics-firmware/wiki/FPGA-Program
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ex vivochicken breast sample, as explained in Section 6.3.1. Experiments were carried out
using the da Vinci Research Kit, integrated in the Computer Integrated Surgical Systems
and Technology (CISST) toolkit [TA-12]. Force sensing was achieved using an OptoForce
(OptoForce Ltd., Budapest, Hungary). The instruments wereintegrated using the Robot
Operating System Indigo version under a 64 bit Ubuntu 14.04 LTS operating system. The
ROS packages were based on the 08/2016 release of the Johns Hopkins University sawIn-
tuitiveResearchKit distribution5.

6.3.1 Experimental Methodology

In both phases of the experiments, the first step was to determine the mechanical prop-
erties of the samples, using curve fitting on the nonlinear mass–spring–damper Wiechert
model, following the experimental setup published in [TA-6]. After the acquisition of the
parameters, participants were asked to carry out remote 1 DoF, axial palpation on each
of the samples, using the da Vinci Master Tool Manipulator (MTM) as the master device.
The physical palpation of the tissues was done with the da Vinci Patient Side Manipulator
(PSM) equipped with an OptoForce 3 DoF sensor, as shown in Fig. 6.3. The applied force
was fed back to the operator through the MTM, serving as a haptic device, which was
allowed by a custom software implementation for the DVRK. The theoretical resolution
of the OptoForce sensor was 0.0025 N, while the resolution ofthe PSM force feedback
values was 0.1 N, which was taken into consideration in forceupscaling during the trials,
as explained later. The nominal load capacity of the OptoForce sensor was 40 N for 1 mm
single axis deformation at 2% nonlinearity. Having verifiedthe maximum reaction force
values measured, it was assumed that the relative deformation of the elastic sensor surface
was less than 5% with respect to the tissue deformation, which was negligible compared
to the uncertainties originated from the non-rigidness of the PSM arms. After the tele-
operated palpation, participants were asked to carry out similar maneuvers using the da
Vinci MTM, palpating the virtual models of the selected tissue samples. Participants were
allowed to compare the sense of touch during teleoperation and virtual palpation using the
da Vinci device at any time, and were asked to pair up the real tissues with the virtual ones.
The usability study was validated by evaluating the correctanswers both qualitatively and
quantitatively.

6.3.2 Data Collection and Analysis

Data collection was done by recording the reaction force of the palpated tissues during
their controlled deformation. The thickness of the investigated artificial tissue samples
was identically 20 mm, theex vivotissue samples had a deviation of±5 mm from that
dimension. Palpation test on theex vivotissues were carried out at different points of the
surface, indicating that this deviation does not have any significant effect on the measured
reaction force data. The indentation depth of all measurements was 4 mm, and regardless
of the non-uniform surface deformation, each of the sampleswere modeled as a single
nonlinear Wiechert element. These assumptions are valid within the investigated range of
deformation, and the tissue parameter values can be generalized to specific stiffness and

5https://github.com/jhu-dvrk/sawIntuitiveResearchKit/wiki
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Fig. 6.3. Indentation tests on a silicone artificial tissue sample, using the da Vinci PSM arm with an
OptoForce 3 DoF force sensor.

damping parameters using the method developed in-house [TA-6]. Each of the samples
were subjected to a step-like deformation, where the compression rate was 50 mm/s, and
the relaxation response was measured for 30 seconds. After the relaxation tests, the sam-
ples were compressed at a constant compression rate of 0.5 mm/s, and the force response
during the compression was recorded. As each sample was tested 5 times for both types
deformation tests, the results were averaged and processedfor tissue parameter acquisition
by fitting the force response data to the theoretical response [TA-8]. Data collection was
done at the sampling rate of 50 Hz, taking into considerationthat the da Vinci Research Kit
supports 60 Hz at maximum, while the OptoForce device can easily handle 200–300 Hz
sampling rate as well.

6.4 Results

The results section is divided into two parts: automatic data collection for tissue parameter
estimation; and tissue characterization/comparison trials. Tissue comparison was done
both in Phase I and Phase II with different groups of volunteers. Their task was to find
the matching virtual tissue model to the actually palpated one, the answers were recorded
and evaluated. Typical palpation movements and reaction forces were recorded as well, as
presented in Sections 6.4.1 and 6.4.2.
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6.4.1 Results for Phase I: User Matches

Data Collection

During Phase I, three silicone artificial tissue samples were molded using Silorub ds f-
TG silicone, and were softened using Rubosil methyl-silicone oil. Samples A, B and C
contained 0, 15% and 30% silicone oil, respectively. Theex vivochicken breast sample
was marked as specimen D, while theex vivochicken liver sample was marked as spec-
imen E. Theex vivosamples were covered with fresh-keeping film in order to keepthe
silicone surface of the OptoForce sensor intact. Typical force relaxation response curves
and the results of constant compression rate indentation are shown in Fig. 6.4 and Fig. 6.5,
respectively.
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Fig. 6.4. Typical relaxation force response curves for the specimens used during Phase I, assuming step-like
deformation and 4 mm indentation depth.

As it is shown in the figures, the stiffness characteristics of the artificial tissue samples
are close to linear and there the relaxation phenomenon is negligible. However, Fig. 6.4
shows that the breast and liver samples have a significant decrease in the reaction force

TABLE 6.1

PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION AND CONSTANT COMPRESSION RATE

TESTS DURINGPHASE I.

Specimen
K0 K1 K2 b1 b2 κ0 κ1 κ2

[N/m] [N/m] [N/m] [Ns/m] [Ns/m] [m−1] [m−1] [m−1]

A 1093.1 1.0616 251.09 9209.2 190 0.0056899 531.99 0.00093

B 1002.3 1.0861 190.38 104350 145.76 3.3147e-05 22.679 3.3201e-05

C 473.13 17.062 70.787 88365 66.985 58.497 234.68 7.2614e-05

D 1.0001 1.0091 28.361 28.287 8.2608 577.97 969.71 10.898

E 1.007 86.917 184.27 5375.5 4.4498 8830.2 291.66 40.536
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Fig. 6.5. Typical force response curves for the specimens used during Phase I, assuming constant compres-
sion rate deformation and 4 mm indentation depth.

due to tissue relaxation, as expected. Tissue parameters were acquired by curve fitting,
using the MATLAB fminsearchfunction, taking the sum of the RMSE values from both
experimental data sets as the cost function for each sample.The simulated response was
calculated by solving Eq. (4.15) and Eq. (4.16) for the iterated parameter values for the
nonlinear Wiechert model. The estimated parameters for each of the specimens, based on
the results of curve fitting, are shown in Table 6.1. It is important to note that these values
are only valid for this specific experimental setup, as this chapter focuses on the empirical
comparison methodology of the investigated samples instead of proposing global parame-
ters value sets for the chosen materials.

Tissue Characterization Trials

The virtual Tensor Product model of each of the specimens wascreated and implemented
into the experimental software. The da Vinci MTM served as a haptic device, requesting
force commands from either directly from the OptoForce sensor or from the virtual model
(simulation). The current position and velocity of the MTM were implemented as the input
of the system. A force upscaling factor of 10 was applied for helping the participants
distinguishing between the models. The measured maximum reaction force applied by
the da Vinci MTMs was below 50 N, which did not exceed the 63 N saturation limit.
The upscaling of the 4 mm indentation was determined by the participants, restricted by
the workspace of the da Vinci MTM. The scaling factor of the indentation depth upscaling
was set for each volunteer independently by their choice, and typically had a scaling factor
of 20–50.

10 subjects participated in the Phase I trials: 8 male and 2 female volunteers. 1 par-
ticipant had hands-on surgical experience, 4 came from medical engineering background,
while 1 participant had no experience in engineering practice. Participants were aged
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between 21–40 years, with an average age of 25. At the beginning of each trial, the par-
ticipants were asked to investigate the virtual models by compressing and releasing them,
assessing the tissue properties (stiffness, relaxation, elastic behavior) verbally. Then, after
getting familiar with the virtual models, the simulation was switched to the real-time pal-
pation of the tissues. The participants could switch back from the actual palpation to the
palpation of the virtual models at any time, and were asked todraw a conclusion, which
virtual model (A–E) corresponds to theex vivo tissue. For the palpation tests, gravity
compensation of the da Vinci MTM was switched off due to knownstability issues of the
DVRK in the current master release of the Software Development Kit (SDK) and the ori-
entation of the last 4 axes (tool tip orientation) was locked, allowing only z-axis motion
(direction along the PSM tool shaft.

Altogether, 20 trials (10 participants for 2 tissue models)were carried out. 95% of the
participants accurately paired theex vivotissue to its corresponding virtual model. One
participant mistook specimen D (the chicken breast sample)for the virtual model E (liver
sample), the rest of the answers were correct from all participants. Besides the correctness
of the answer, some general conclusions were recorded from the participants, listed below:

• Models A and B were significantly stiffer than the rest of thevirtual models and the
ex vivopalpated samples: 85%

• Theex vivosamples had progressive stiffness characteristics, whichdisclosed mod-
els A, B and C from the comparison: 65%

• The reaction force from specimen and model E was very difficult to feel, even in the
case of rapid compression: 70%

• Participants spent most of the palpation time differentiating between models C and
D before drawing the final conclusion, when palpating specimen D: 75%

6.4.2 Results for Phase II: User Matches

Based on the results of Phase I, Phase II was planned, taking into account the following:

• The liver tissue sample was removed from the investigationdue to its low stiffness
compared to the silicone samples.

• Specimens A and B were also removed due to their significantly larger stiffness
compared to the chicken breast sample.

• Specimen C was kept as a reference, and further silicone samples were created by
adding more silicone oil during the preparation, until reaching physical limits (satu-
ration of oil in the silicone).

Data Collection

During Phase II, 14 silicone artificial tissue samples were created, utilizing the same
method as in Phase I. The samples were molded from Silorub ds f-TG silicone, softening
was carried out with a combination of Rubosil methyl-silicone oil and Rubosil silicone
grease. Binding was enhanced by using Silorub ds K RTV-2 catalyst, adding 2 ml to every
20 ml of silicone used. Samples were numbered from 1–14, created with a uniform cubic
shape with the edge length of 20 mm. Baking soda was added to sample 13 to further
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soften the silicone by creating artificial inclusions, and vinegar was added to sample 14,
also for softening purposes. Samples were numbered from 1–14, created with a uniform
cubic shape with the edge length of 20 mm. The volume ratio of the silicone, oil and
grease for each of the samples is listed in Table 6.2. Theex vivochicken breast sample
was marked as specimen 15. All samples were covered with fresh-keeping film in order to
keep the silicone oil from damaging the silicone surface of the OptoForce sensor. Typical
force relaxation response curves and the results of constant compression rate indentation
are shown in Fig. 6.6 and Fig. 6.7, respectively. The averageforce response curves used
for model identification are also displayed in the Figures.
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Fig. 6.6. Measured and average (black) force response curves for the specimens used during Phase II,
assuming step-like deformation and 4 mm indentation depth.

TABLE 6.2

SILICONE–OIL–GREASE VOLUME RATIO USED FOR CREATING ARTIFICIAL TISSUE SAMPLES FOR

PHASE II. * BAKING SODA ADDED; ** V INEGAR ADDED.

Specimen 1 2 3 4 5 6 7 8 9

silicone : oil 1:0.30 1:0.50 1:0.75 1:1 1:1.25 1:1.50 1:1.85 1:2.25 1:2.70

Specimen 10 11 12 13 14

silicone : oil : grease 1:0.30:0.50 1:0.30:1 1:0.30:1.70 1:0.30:1.70:0.80* 1:0.30:1.70:0.80:0.80**
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Fig. 6.7. Measured and average (black) force response curves in Phase II, assuming constant compression
rate deformation and 4 mm indentation depth.

Tissue Characterization Trials

Before the tissue characterization trials, six silicone specimens were selected based on
the different behavior of the created tissue samples duringthe data collection phase. The
samples were selected from a wide range of stiffness and maximum reaction force values,
taking into account that some of these samples had very similar behavior during relaxation
and constant compression rate indentation tests. The virtual TP model of each of the
selected samples and theex vivochicken breast sample were created similar to that of
Phase I and was implemented into the software. The parameterestimation results for
the selected samples from the indentation tests for Phase IIare shown in Table 6.2. In
order to improve haptic sensation and enhance comparability between the virtual and real
specimens, the da Vinci MTML (left-side MTM) served as a haptic teleoperation device,
requesting force commands directly from the OptoForce sensor, while the da Vinci MTMR
(right-side MTM) reflected force values from the virtual model (simulation). The current
position and velocity of the MTML and MTML were implemented as the inputs of the real
and virtual systems, respectively. For Phase II, a force upscaling factor of 20 was applied
for helping the participants distinguishing between the models, and the upscaling of the
4 mm indentation at the MTMs was identically set as in Phase I.The participants were
requested to aim for identical ranges for both MTMs, in orderto make it easier to compare
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samples. This way, simultaneously and identically moving the two MTMs, the real and
virtual tools reached the tissue surface at the same z-coordinate of the MTMs.

In Phase II, 23 participants went through the trials, 19 maleand 3 female participants.
3 volunteers had hands-on surgical experience, 15 came fromengineering or medical en-
gineering background, 5 of them came from other fields. The participants were aged
between 21–60 years, with an average age of 30 years. At the beginning of each trials, the
participants were asked to practice individually on both MTM arms in order to achieve a
stable grip, doing so by resting their lower arm on the soft bar da Vinci master console.
Once a stable teleoperation was achieved, a randomly chosenvirtual model was fed to the
MTMR, while the force signal from the OptoForce sensor was constantly fed back to the
MTML from the indentation of theex vivochicken breast tissue. On request of the partic-
ipants, the virtual model was switched to another one of the 7possibilities (models of the
selected 6 artificial tissues and the model of the chicken breast tissue), until they found the
best match between the virtual and real tissues according their subjective haptic sensation.
Gravity compensation of the da Vinci MTMs was switched off and the orientation of the
last four axes were locked, as it was done in Phase I. Fig. 6.8 summarizes the answers
from the participants on which virtual tissue model resembled the most on the behavior of
theex vivochicken breast tissue during the palpation tests from the 23successive trials.

6.4.3 Discussion of the Results

Results of Phase I indicated that the participants were ableto distinguish between the
investigated silicone samples and theex vivotissue samples in 95%, which verifies the
usability of the tissue model if there is a significant difference between the mechanical
properties of the samples. During Phase II, 7 of 23 participants were able to correctly
match the virtual chicken breast model to theex vivotissue, while samples 8 and 10 were
chosen 5 and 9 times, respectively. Based on these results, two important conclusions can
be drawn:

• The soft tissue model used for representing the tissue behavior is sufficiently good
for use in haptic simulators, training and general reactionforce estimation. This is
based on the observation that a significant percentage (30%)of participants were
able to match the virtual soft tissue model to the real one.

TABLE 6.3

PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION AND CONSTANT COMPRESSION RATE

TESTS DURINGPHASE II.

Specimen
K0 K1 K2 b1 b2 κ0 κ1 κ2

[N/m] [N/m] [N/m] [Ns/m] [Ns/m] [m−1] [m−1] [m−1]

2 115.97 2.45 5.10e-7 238.59 13.58 90.32 747.11 19.98

3 99.572 0.11764 0.101 10.001 115.64 118.85 1.56e3 115.51

5 69.62 5.58 0.10 1.07 166.37 142.92 577.81 332.75

8 63.95 0.48 3.44e-5 0.61 9.07 9.94 990.62 59.83

10 25.54 1.00e-3 1.00e-3 0.63 141.44 222.95 2.31e3 1.55

12 18.79 5.65 0.17 0.29 0.07 226.61 355.52 431.72

15 (ex vivo) 18.89 0.54 13.89 329.43 17.09 217.35 1.38e3 16.70
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Fig. 6.8. Tissue characterization results from Phase II, summarizing the participants answers to the ques-
tion: ’Which virtual tissue model’s behavior resembles themost to theex vivochicken breast?’ The correct
answer is indicated by a different color, belonging to sample 15.

• Silicon samples 8 and 10 with the proposed composition are capable of modeling
soft tissues (in this particular case, chicken breast) in artificially built surgical sce-
narios or physical phantoms. The conclusion is based on the observation that a large
percentage (60%) of the participants were unable to distinguish between the physi-
cally palpated soft tissue sample and the virtual model of the silicon artificial tissue
samples of similar mechanical properties. This similarityis based on the observation
of tissue relaxation and constant compression rate tests.

6.5 Summary of the Thesis

Along with force control, the problem of haptic feedback in telesurgical systems remains
an open challenge in the related cognitive or ergonomic fields of research. Current surgical
teleoperation systems lack haptic feedback capabilities,limiting their usability in everyday
practice. This work proposed a validation method for tissuemodels and their polytopic
representation by creating an experimental framework using the da Vinci Research Kit.
Furthermore, allowing haptic feedback from the manipulated real tissue, functionality can
be extended to surgical simulation using virtual tissue models created by the proposed soft
tissue modeling method.

The experimental methodology provided results, which showed that the proposed non-
linear tissue model very well mimics the mechanical behavior of the ex vivotissue both
from qualitative and quantitative point of view. This allows one to integrate the model
into virtual tissue models used in surgical simulators, where it is critical to have a realistic
haptic sensation reflected to the human operator when manipulating the tissues. Results
also showed that using a haptic interface, it is challengingto distinguish between arti-
ficial silicone tissues and real tissues during teleoperation, indicating that by creating a
silicone sample by the methods presented in this work, surgical training can be enhanced
by artificial tissue phantoms, though providing realistic haptic sensation to the trainees.
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Henceforward, this chapter described a methodology for thequantitative evaluation of
haptic teleoperation devices for soft tissue characterization. Utilizing a structured method
for extracting mechanical properties ofex vivoor artificial soft tissues, the simultaneous
palpation of real and virtual samples is an efficient way of assessing the capabilities of both
the human operator and the teleoperation system with hapticfeedback. Furthermore, when
the palpation is carried out through a teleoperated instrument with force feedback, the
proposed tissue model gives a realistic reflection of the dynamic behavior of the palpated
samples, both quantitatively and qualitatively.

Future work focuses on the extension of the system database to differentex vivotissue
models, developing methods for creating artificial silicone samples based on the mechan-
ical properties of these models and on the implementation ofthis approach into more
complex virtual surgical scenarios.



Chapter 7

CONCLUSION

7.1 Summary of Contributions

My thesis gives an overview of the importance of tool–tissueinteraction modeling in the
control engineering design of modern telesurgical systems. The work relies on an exten-
sive literature review of the existing tool–tissue interaction models, soft tissue modeling
approaches and their validity range. A novel nonlinear softtissue model was proposed and
verified experimentally, motivated by the limitations of current rheological, widely used
soft tissue models. Literature research has also been carried out on the existing methods
for force control and haptic feedback on current surgical robotic applications, extending
the scope to open-source software and hardware tools, aiding the development of these
systems. In order to verify the proposed tissue model and itspolytopic representation for
model-based control approaches, an experimental usability testing method was proposed
and carried out with the aid of human participants, addressing the practical usability of the
integrated topics investigated in the thesis.

Addressing the challenges stated inProblem 1, explained in chapter 2, I developed
and verified a novel tool–tissue interaction approach, introducing a nonlinear soft tissue
model. In chapter 4, I carried out a detailed investigation of linear mass–spring–damper
soft tissue models, exploring their usability for modelingsoft tissue behavior during tissue
palpation, based on experimental data. I showed that while the linear Wiechert model
represents this behavior in tissue relaxation phase, the model fails in the prediction of
reaction forces in constant compression rate phase, both qualitatively and quantitatively.
Based on the measurements, I conducted on liver tissue samples at the Austrian Center
for Medical Innovation and Technology, I created an 8-parameter nonlinear mass–spring–
damper model, and obtained the representative tissue parameters by curve fitting to the
data. It was found that in the case of uniaxial deformation, the reaction force from tissue
palpation can be estimated very accurately. The model was also verified for non-uniform
surface deformation scenarios, where the deformation shape was estimated empirically,
showing that for deformations until 20%, the method gives a good estimation on these
forces. The method was later successfully applied for differentex vivoand artificial tissue
samples as well, in the context of parameter acquisition in chapter 6.

In the next phase of my work, I carried out an extensive literature research on the
current control methods used in telesurgical applicationsas described in chapter 5, ad-
dressingProblem 2. I found that communication delay in teleoperation systemsis a major



CHAPTER 7. CONCLUSION 89

contributor to stability and accuracy degradation during these interventions, which restricts
the possible use of these systems to unilateral teleoperation scenarios. However, besides
opening up possibilities to bilateral approaches, the reliable execution of (semi-)automated
surgical tasks requires the integration of the tissue modelin the controller design. Based
on the concept of Tensor Product modeling, I created the polytopic representation of the
tissue model and following the guidelines of Linear Matrix Inequality approach, I tested
the proposed controller against various force tracking tests. I found that due to the slow
poles of the system, the conventional modeling approach fails in tracking tasks, therefore
a I proposed and verified a novel methodology for the representation of these models, a
controller design for discretized systems, and addressed robustness in terms of parameter
uncertainty and latency.

In the context of investigating the practical usability of the proposed soft tissue model,
I suggested a novel methodology for its evaluation from the haptic bilateral teleoperation
point of view in chapter 6, addressingProblem 3. Based on the methods from chapter 4,
I carried out further measurements on twoex vivotissue samples and 17 silicone phan-
toms with different mechanical properties, mimicking the behavior of theex vivopieces.
I created a comparative list of the mechanical properties ofthese samples, based on the
proposed nonlinear Wiechert model, and integrated them as virtual tissue samples to the
da Vinci Surgical System. I proposed an experimental methodology, where participants
with different engineering and medical background were asked to address the difference
between the properties of the teleoperation-based tissue palpation and the palpation of the
virtual tissues, created using the model utilizing the polytopic representation discussed in
chapter 5. From the trials I concluded that the proposed nonlinear tissue model very well
mimics the mechanical behavior of the ex vivo tissue both qualitatively and quantitatively.
This allows its integration into virtual tissue models usedin surgical simulators, where it
is critical to have a realistic haptic sensation reflected tothe human operator when manip-
ulating the tissues. I also found that using the da Vinci MTMsas a haptic interface, it is
challenging to distinguish between artificial silicone tissues and real tissues during teleop-
eration, indicating that by creating a silicone sample according to the guidelines presented
in this work, surgical training can be accelerated and enhanced by artificial tissue phan-
toms, yet providing realistic haptic sensation to the trainees.
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7.2 New Scientific Results

Thesis 1

I developed and verified a novel, nonlinear, 8-parameter mass–spring–damper soft tissue
model. In contrast to the current models employed, the qualitative advantage of this model
is that it represents the soft tissue behavior in both pure relaxation and constant defor-
mation rate compression phases. I showed that in the case of uniaxial deformation, the
reaction force from tissue palpation can be estimated with arelative error of 12%. I ver-
ified the model for non-uniform surface deformations, showing that below 20% relative
deformation, the reaction forces can be estimated with a relative error of 35%.

Related publications: [TA-3, TA-6, TA-7, TA-8, TA-11, TA-13, TA-14, TA-15, TA-16].

Thesis 2

Based on the concept of Tensor Product modeling, I created the polytopic representation
of the nonlinear soft tissue model, and showed that this representation described the soft
tissue behavior with sufficient accuracy for controller design. Utilizing the Linear Matrix
Inequality method, I designed a controller for the force control task in teleoperation sys-
tems. I found that due to the slow poles of the system, the conventional design strategies
were not applicable, and I proposed a new approach for designing force feedback control
with polytopic representation of the tool–tissue interaction model. I verified the designed
controller for robustness in terms of parameter uncertainty and time-delay.

Related publications: [TA-4, TA-5].

Thesis 3

I designed the evaluation of tissue characterization trials, where based on the outcome of
independent test subjects, I experimentally proved that the proposed nonlinear soft tissue
model represents the behavior ofex vivotissues both qualitatively and quantitatively. In the
case of the force-feedback teleoperation system, 30% of thehuman operators were able to
distinguish betweenex vivoand artificial soft tissues, which verifies the realistic behavior
representation of the nonlinear soft tissue model. Furthermore, 60% of human operators
mistook the virtual models of artificial soft tissues forex vivomodels in force-feedback
teleoperation scenarios, when the quantitative mechanical parameters of the virtual models
were alike. This validates the use of artificial soft tissue samples in education and research.

Related publications: [TA-1, TA-2]

Other publications related to the Ph.D. thesis and the accompanying research work:
[TA-9, TA-10, TA-12].
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7.3 Future Work

The field of surgical robotics is rapidly changing and is under constant development. It is
expected that in the next years, numerous challenges will need to be solved, with a growing
need for model-based solutions. I am enthusiastic in extending the scope of my Ph.D.
research to these new areas, applying the results in the clinical environment as well. At the
Antal Bejczy Center for Intelligent Robotics, there are already numerous students from
different academic levels, who are involved in the researchtopics, achieving outstanding
results.

During my research, I had the opportunity to start building an international network
with researchers in various fields of surgical robotics. I amconvinced that these connec-
tions can lead to fruitful joint collaborations, international projects. Thanks to the unique,
extensive and diverse robot infrastructure of our Center, there is a positive outlook on fu-
ture cooperations with our regional partners. I would like to highlight the Austrian Center
for Medical Innovation and Technology (ACMIT) in Wiener Neustadt, and the Central
European Living Lab for Intelligent Robotics (CELLI), a partnership of regional higher
education and research institutions. AsÓbuda University is conducting an active research
on the da Vinci Research Kit, we are becoming an integral partof a unique community,
managed by the prestigious Johns Hopkins University, whichopens up new opportunities
towards international collaborations. On the other hand, the results in tissue characteri-
zation and the quantitative assessment ofex vivoand silicone tissue samples can initiate
discussion with experts in surgical simulator and trainingbox developers.

The results of chapter 4 showed that the proposed model can bea sophisticated tool
for estimating the force response of the tissue during surgical manipulations. This allows
its integration into model-based control approaches and surgical simulators for training
and education. While chapter 5 and 6 discussed these possibilities in details, alternative
approaches to these challenges can also rely on these results. However, there is still room
for the investigation of the case of complex surface deformation scenarios, the real-time
prediction of the reaction force based on on-line deformation shape measurement and the
modeling of more sophisticated surgical interventions. Asa long-term plan, the extension
of the model to multidimensional deformation and the consideration of lateral forces dur-
ing the manipulation also poses an interesting research topic, as well as its integration into
coupled problems including invasive, biochemical and thermo-mechanical interactions.

As a future work, the control architecture proposed in chapter 5 can be generalized
for various tissue manipulation tasks during robotic surgery. The implementation of this
method into supervised teleoperation systems can enhance performance both in terms of
precision and robustness, and the research can be extended for the investigation of bilateral
teleoperation scenarios with haptic feedback. Therefore,the experimental validation of
the control algorithm is a first step of the future work, utilizing it both in virtual and
ex vivosurgical scenarios. This requires the model of the discrete-time PDC observer in
the simulation environment, which is an ongoing research oftoday.

The methodology discussed in chapter 6 allows one to create ageneral database of
differentex vivotissue models and widely-used silicone materials for phantom generation
and assembly. It can also aid the field of tissue engineering to provide realistic tissue sam-
ples for modeling and planning surgical interventions. Future work also aims to create a
methodology for the development of artificial silicone samples, mimicking the mechan-
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ical behavior of various soft tissues, based on the parameters acquired for the proposed
nonlinear soft tissue model. The implementation of the approach to more complex vir-
tual surgical scenarios is also possible, while the validation of the method using different
haptic devices is also among future research topics.

The major topics discussed in this thesis work are partly utilizing the results in a hi-
erarchical way: the proposed and verified soft tissue model is used for the model-based
controller design, while the polytopic representation is utilized for the tissue characteri-
zation trials in the implementation phase. While strongly connected, these topics can be
further developed independently as well. This allows one toextend the scope of research
and use the results in other fields of studies outside medicaltechnologies.

While this work tends to give a solution to the problems stated in chapter 2, naturally,
new questions arose during the elaboration on the topics, along with challenges to be
addressed in the field of surgical robotics. This work provides and outlook on these issues
in-line, providing an extensive literature reference for those interested in them.
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[TA-IV] D. Á. Nagy, Á. Takács, Sz. Barcza, I. J. Rudas and T. Haidegger, “Designand
Control of a Low-cost Robotic Camera Holder for LaparoscopyAssistance,” pre-
sented at the Joint Workshop for New Technologies in Computer: Robot Assisted
Surgery (CRAS 2015), Brussels, Belgium, 2015.
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