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Preface

Sobolev-type inequalities or more generally functional inequalities are often manifestations of
natural physical phenomena as they often express very general laws of nature formulated in
physics, biology, economics and engineering problems. They also form the basis of fundamental
mathematical structures such as the calculus of variations. In order to study some elliptic prob-
lems one needs to exploit various Sobolev-type embeddings, to prove the lower semi-continuity of
the energy functional or to prove that the energy functional satisfies the Palais-Smale condition.
This is one of the reasons why calculus of variations is one of the most powerful and far-reaching
tools available for advancing our understanding of mathematics and its applications.
The main objective of calculus of variations is the minimization of functionals, which has always

been present in the real world in one form or another. I have carried out my research activity
over the last years in the calculus of variations. More precisely we combined with my coauthors,
elements from calculus of variations with PDE and with geometrical analysis to study some
elliptic problems on curved spaces, with various nonlinearities (sub-linear, oscillatory etc.), see
[23, 24, 25, 26, 27, 28, 37]. Such problems deserve as models for nonlinear phenomena coming
from mathematical physics (solitary waves in Schrödinger or Schrödinger-Maxwell equations,
etc.).
The main purpose of the present thesis is to present the recent achievements obtained in the

theory of functional inequalities, more precisely to present some new Sobolev-type inequalities
on Riemannian manifolds. More precisely, in the first part of the present thesis we focus on
the theoretical part of the functional inequalities, while in the second part we present some
applications of the theoretical achievements. Such developments are highly motivated from
practical point of view supported by various examples coming from physics.
The thesis is based on the following papers:

• F. Faraci and C. Farkas. New conditions for the existence of infinitely many solutions for
a quasi-linear problem. Proc. Edinb. Math. Soc. (2), 59(3):655–669, 2016.

• F. Faraci and C. Farkas. A characterization related to Schrödinger equations on Riemannian
manifolds. ArXiv e-prints, April 2017.

• F. Faraci, C. Farkas, and A. Kristály. Multipolar Hardy inequalities on Riemannian man-
ifolds. ESAIM Control Optim. Calc. Var., accepted, 2017, DOI: 10.1051/cocv/2017057.

• C. Farkas, Schrödinger-Maxwell systems on compact Riemannian manifolds. preprint, 2017.

• C. Farkas, J. Fodor, and A. Kristály. Anisotropic elliptic problems involving sublinear
terms. In 2015 IEEE 10th Jubilee International Symposium on Applied Computational
Intelligence and Informatics, pages 141–146, May 2015.

• C. Farkas and A. Kristály. Schrödinger-Maxwell systems on non-compact Riemannian
manifolds. Nonlinear Anal. Real World Appl., 31:473–491, 2016.

• C. Farkas, A. Kristály, and A. Szakál. Sobolev interpolation inequalities on Hadamard
manifolds. In Applied Computational Intelligence and Informatics (SACI), 2016 IEEE
11th International Symposium on, pages 161–165, May 2016.
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Most of the results of the present thesis is stated for Cartan-Hadamard manifolds, despite
the fact that they are valid for other geometrical structures as well. Although, any Cartan-
Hadamard manifold (M, g) is diffeomorphic to Rn, n = dimM (cf. Cartan’s theorem), this is
a wide class of non-compact Riemannian manifolds including important geometric objects (as
Euclidean spaces, hyperbolic spaces, the space of symmetric positive definite matrices endowed
with a suitable Killing metric), see Bridson and Haefliger [10].
We note that the structure of the present extended abstract is not the same as the structure

of the PhD thesis. Therefore, for the sake of clarity, we sketch the structure of the PhD thesis.
In the first part of the thesis we present some theoretical achievements. We present here some

surprising phenomena. In Chapter 1 we introduce the most important Sobolev inequalities both
on the Euclidean and on Riemannian settings.
In Chapter 2 we prove Sobolev-type interpolation inequalities on Cartan-Hadamard manifolds

and their optimality whenever the Cartan-Hadamard conjecture holds (e.g., in dimensions 2, 3
and 4). The existence of extremals leads to unexpected rigidity phenomena. This chapter is
based on the paper [29].
In Chapter 3 we prove some multipolar Hardy inequalities on complete Riemannian manifolds,

providing various curved counterparts of some Euclidean multipolar inequalities due to Cazacu
and Zuazua [13]. We notice that our inequalities deeply depend on the curvature, providing
(quantitative) information about the deflection from the flat case. This chapter is based on the
recent paper [24].
In the second part of the thesis we present some applications, namely we study some PDE’s

on Riemannian manifolds. In Chapter 5 we study nonlinear Schrödinger-Maxwell systems on
3-dimensional compact Riemannian manifolds proving a new kind of multiplicity result with
sublinear and superlinear nonlinearities. This chapter is based on [25].
In Chapter 6, we consider a Schrödinger-Maxwell system on n-dimensional Cartan-Hadamard

manifolds, where 3 ≤ n ≤ 5. The main difficulty resides in the lack of compactness of such
manifolds which is recovered by exploring suitable isometric actions. By combining variational
arguments, some existence, uniqueness and multiplicity of isometry-invariant weak solutions are
established for such systems depending on the behavior of the nonlinear term. We also present
a new set of assumptions ensuring the existence of infinitely many solutions for a quasilinear
equation, which can be adapted easily to Schrödinger-Maxwell systems. This Chapter is based
on the papers [22, 26].
In Chapter 7, by using inequalities presented in Chapter 2, together with variational methods,

we also establish non-existence, existence and multiplicity results for certain Schrödinger-type
problems involving the Laplace-Beltrami operator and bipolar potentials on Cartan-Hadamard
manifolds. We also mention a multiplicity result for an anisotropic sub-linear elliptic problem
with Dirichlet boundary condition, depending on a positive parameter λ. We prove that for
enough large values of λ, our anisotropic problem has at least two non-zero distinct solutions.
In particular, we show that at least one of the solutions provides a Wulff-type symmetry. This
Chapter is based on the papers [24, 27].
In Chapter 8, we consider a Schrödinger type equation on non-compact Riemannian manifolds,

depending on a positive parameter λ. By using variational methods we prove a characterization
result for existence of solutions for this problem. This chapter is based on the paper [23].

iv



1
Sobolev interpolation inequalities on
Cartan-Hadamard manifolds

The mathematician does not study
pure mathematics because it is
useful; he studies it because he
delights in it and he delights in it
because it is beautiful.

(Henri Poincaré)

1.1 Statement of main results

Let n ≥ 2, p ∈ (1, n), 1 < α ≤ n
n−p and θ = p?(α−1)

αp(p?−αp+α−1) . Then the optimal Gagliardo-
Nirenberg interpolation inequality states that

‖u‖Lαp ≤ Gα,p,n‖∇u‖θLp‖u‖1−θLα(p−1)+1 , ∀u ∈ C∞0 (Rn),

where the optimal constant Gα,p,n is given by

Gα,p,n =

(
α− 1

p′

)θ (p′
n

) θ
p

+ θ
n
(
α(p−1)+1
α−1 − n

p′

) 1
αp
(
α(p−1)+1
α−1

) θ
p
− 1
αp

(
ωnB

(
α(p−1)+1
α−1 − n

p′ ,
n
p′

)) θ
n

,

B is the Euler beta-function and ωn is the volume of the n−dimensional Euclidean unit ball. The
previous inequality reduces to the optimal Sobolev inequality when α = n

n−p , see Talenti [45]
and Aubin [2]. We also note that the families of extremal functions are uniquely determined up
to translation, constant multiplication and scaling, see Cordero-Erausquin, Nazaret and Villani
[15], Del Pino and Dolbeault [20].
Recently, Kristály [38] studied Gagliardo-Nirenberg inequalities on a generic metric measure

space which satisfies the Lott-Sturm-Villani curvature-dimension condition CD(K,n) for some
K ≥ 0 and n ≥ 2, by establishing some global non-collapsing n−dimensional volume growth
properties.
The purpose of the present chapter is study the counterpart of the aforementioned paper;

namely, we shall consider spaces which are non-positively curved.
To be more precise, let (M, g) be an n(≥ 2)−dimensional Cartand-Hadamard manifold (i.e., a

complete, simply connected Riemannian manifold with non-positive sectional curvature) endowed
with its canonical volume form dvg. We say that the Cartan-Hadamard conjecture holds on (M, g)
if

Areag(∂D) ≥ nω
1
n
n Volg(D)

n−1
n (1.1.1)

for any bounded domain D ⊂ M with smooth boundary ∂D and equality holds in (1.1.1) if
and only if D is isometric to the n−dimensional Euclidean ball with volume Volg(D), see Aubin

[2]. Note that nω
1
n
n is precisely the isoperimetric ratio in the Euclidean setting. Hereafter,

Areag(∂D) stands for the area of ∂D with respect to the metric induced on ∂D by g, and
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Volg(D) is the volume of D with respect to g. We note that the Cartan-Hadamard conjecture
is true in dimension 2 (cf. Beckenbach and Radó [7] in dimension 3 (cf. Kleiner [33]); and in
dimension 4 (cf. Croke [16]), but it is open for higher dimensions.
For n ≥ 3, Croke [16] proved a general isoperimetric inequality on Hadamard manifolds:

Areag(∂D) ≥ C(n)Volg(D)
n−1
n (1.1.2)

for any bounded domain D ⊂M with smooth boundary ∂D, where

C(n) = (nωn)1− 1
n

(
(n− 1)ωn−1

∫ π
2

0
cos

n
n−2 (t) sinn−2(t)dt

) 2
n
−1

. (1.1.3)

Note that C(n) ≤ nω
1
n
n for every n ≥ 3 while equality holds if and only if n = 4. Let C(2) = 2

√
π.

Our main results can be stated as follows:

Theorem 1.1.1 (Farkas, Kristály and Szakál [29]). Let (M, g) be an n(≥ 2)−dimensional
Cartan-Hadamard manifold, p ∈ (1, n) and α ∈ (1, n

n−p ]. Then we have:

(i) The Gagliardo-Nirenberg inequality

‖u‖Lαp(M) ≤ C‖∇gu‖θLp(M)‖u‖
1−θ
Lα(p−1)+1(M)

, ∀u ∈ C∞0 (M) (GN1)α,pC

holds for C =

(
nω

1
n
n

C(n)

)θ
Gα,p,n;

(ii) If the Cartan-Hadamard conjecture holds on (M, g), then the optimal Gagliardo-Nirenberg
inequality (GN1)α,pGα,p,n holds on (M, g), i.e.,

G−1
α,p,n = inf

u∈C∞0 (M)\{0}

‖∇gu‖θLp(M)‖u‖
1−θ
Lα(p−1)+1(M)

‖u‖Lαp(M)
. (1.1.4)

In almost similar way, we can prove the following result:

Theorem 1.1.2 (Farkas, Kristály and Szakál [29]). Let (M, g) be an n(≥ 2)−dimensional
Cartan-Hadamard manifold, p ∈ (1, n) and α ∈ (0, 1). Then we have:

(i) The Gagliardo-Nirenberg inequality

‖u‖Lα(p−1)+1(M) ≤ C‖∇gu‖
γ
Lp(M)‖u‖

1−γ
Lαp(M), ∀u ∈ Lip0(M) (GN2)α,pC

holds for C =

(
nω

1
n
n

C(n)

)γ
Nα,p,n;

(ii) If the Cartan-Hadamard conjecture holds on (M, g), then the optimal Gagliardo-Nirenberg
inequality (GN2)α,pNα,p,n holds on (M, g), i.e.,

N−1
α,p,n = inf

u∈C∞0 (M)\{0}

‖∇gu‖γLp(M)‖u‖
1−γ
Lαp(M)

‖u‖Lα(p−1)+1(M)

.

Before to state the last result of this section, we need one more notion (see Kristály [36]): a
function u : M → [0,∞) is concentrated around x0 ∈ M if for every 0 < t < ‖u‖L∞ the level
set {x ∈ M : u(x) > t} is a geodesic ball Bx0(rt) for some rt > 0. Note that in Rn (see [15])
the extremal function is concentrated around the origin. Now we are in the position to state the
following characterization concerning the extremals:
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Theorem 1.1.3 (Farkas, Kristály and Szakál [29]). Let (M, g) be an n(≥ 2)−dimensional
Cartan-Hadamard manifold which satisfies the Cartan-Hadamard conjecture, p ∈ (1, n) and
x0 ∈M . The following statements are equivalent:

(i) For a fixed α ∈
(

1,
n

n− p

]
, there exists a bounded positive extremal function in (GN1)α,pGα,p,n

concentrated around x0;

(ii) For a fixed α ∈
(

1

p
, 1

)
, to every λ > 0 there exists a non-negative extremal function

uλ ∈ C∞0 (M) in (GN2)α,pNα,p,n concentrated around x0 and Volg(supp(uλ)) = λ;

(iii) (M, g) is isometric to the Euclidean space Rn.
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2
Multipolar Hardy inequalities on Riemannian
manifolds

True pleasure lies not in the
discovery of truth, but in the search
for it.

(Tolstoy)

2.1 Introduction and statement of main results

The classical unipolar Hardy inequality (or, uncertainty principle) states that if n ≥ 3, then∫
Rn
|∇u|2dx ≥ (n− 2)2

4

∫
Rn

u2

|x|2
dx, ∀u ∈ C∞0 (Rn);

here, the constant (n−2)2

4 is sharp and not achieved. Many efforts have been made over the
last two decades to improve/extend Hardy inequalities in various directions. One of the most
challenging research topics in this direction is the so-called multipolar Hardy inequality. Such
kind of extension is motivated by molecular physics and quantum chemistry/cosmology. Indeed,
by describing the behavior of electrons and atomic nuclei in a molecule within the theory of
Born-Oppenheimer approximation or Thomas-Fermi theory, particles can be modeled as certain
singularities/poles x1, ..., xm ∈ Rn, producing their effect within the form x 7→ |x − xi|−1, i ∈
{1, ...,m}.
Recently, Cazacu and Zuazua [13] proved an optimal multipolar counterpart of the above

(unipolar) Hardy inequality, i.e.,∫
Rn
|∇u|2dx ≥ (n− 2)2

m2

∑
1≤i<j≤m

∫
Rn

|xi − xj |2

|x− xi|2|x− xj |2
u2dx, ∀u ∈ C∞0 (Rn), (2.1.1)

where n ≥ 3, and x1, ..., xm ∈ Rn are different poles; moreover, the constant (n−2)2

m2 is optimal.
By using the paralelogrammoid law, (2.1.1) turns to be equivalent to∫

Rn
|∇u|2dx ≥ (n− 2)2

m2

∑
1≤i<j≤m

∫
Rn

∣∣∣∣ x− xi|x− xi|2
− x− xj
|x− xj |2

∣∣∣∣2 u2dx, ∀u ∈ C∞0 (Rn). (2.1.2)

In the sequel we shall present our results; for further use, let ∆g be the Laplace-Beltrami
operator on (M, g). Let m ≥ 2, S = {x1, ..., xm} ⊂ M be the set of poles with xi 6= xj if i 6= j,
and for simplicity of notation, let di = dg(·, xi) for every i ∈ {1, ...,m}. Our main result reads as
follows.
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Theorem 2.1.1 (Faraci, Farkas and Kristály [24]). Let (M, g) be an n-dimensional complete
Riemannian manifold and S = {x1, ..., xm} ⊂ M be the set of distinct poles, where n ≥ 3 and
m ≥ 2. Then∫

M
|∇gu|2dvg ≥

(n− 2)2

m2

∑
1≤i<j≤m

∫
M

∣∣∣∣∇gdidi
− ∇gdj

dj

∣∣∣∣2 u2dvg

+
n− 2

m

m∑
i=1

∫
M

di∆gdi − (n− 1)

d2
i

u2dvg, ∀u ∈ C∞0 (M). (2.1.3)

Moreover, in the bipolar case (i.e., m = 2), the constant (n−2)2

m2 = (n−2)2

4 is optimal in (2.1.3).

For further use, we notice that K ≥ c (resp. K ≤ c) means that the sectional curvature on
(M, g) is bounded from below (resp. above) by c ∈ R at any point and direction.

2.2 A bipolar Schrödinger-type equation on Cartan-Hadamard
manifolds

Using inequality (2.1.3), we obtain the following non-positively curved versions of Cazacu and
Zuazua’s inequalities (2.1.2) and (2.1.1) for multiple poles, respectively:

Corollary 2.2.1 (Faraci, Farkas and Kristály [24]). Let (M, g) be an n-dimensional Cartan-
Hadamard manifold and let S = {x1, ..., xm} ⊂ M be the set of distinct poles, with n ≥ 3 and
m ≥ 2. Then we have the following inequality:∫

M
|∇gu|2dvg ≥

(n− 2)2

m2

∑
1≤i<j≤m

∫
M

∣∣∣∣∇gdidi
− ∇gdj

dj

∣∣∣∣2 u2dvg, ∀u ∈ H1
g (M). (2.2.1)

Moreover, if K ≥ k0 for some k0 ∈ R, then

∫
M
|∇gu|2dvg ≥

4(n− 2)2

m2

∑
1≤i<j≤m

∫
M

s2
k0

(
dij
2

)
didjsk0(di)sk0(dj)

u2dvg, ∀u ∈ H1
g (M). (2.2.2)

2.3 Singular Schrödinger type equations on Cartan-Hadamard
manifolds

In this section we present an application of the inequalities presented above.
In the sequel, let (M, g) be an n-dimensional Cartan-Hadamard manifold (n ≥ 3) with K ≥ k0

for some k0 ≤ 0, and S = {x1, x2} ⊂ M be the set of poles. In this section we deal with the
Schrödinger-type equation

−∆gu+ V (x)u = λ
s2
k0

(
d12
2

)
d1d2sk0(d1)sk0(d2)

u+ µW (x)f(u) in M, (Pµ
M )

where λ ∈
[
0, (n− 2)2

)
is fixed, µ ≥ 0 is a parameter, and the continuous function f : [0,∞)→ R

verifies

(f1) f(s) = o(s) as s→ 0+ and s→∞;

(f2) F (s0) > 0 for some s0 > 0, where F (s) =

∫ s

0
f(t)dt.

According to (f1) and (f2), the number cf = maxs>0
f(s)
s is well defined and positive.

On the potential V : M → R we require that
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(V1) V0 = inf
x∈M

V (x) > 0;

(V2) lim
dg(x0,x)→∞

V (x) = +∞ for some x0 ∈M ,

and W : M → R is assumed to be positive.
Before to state our result, let us consider the functional space

H1
V (M) =

{
u ∈ H1

g (M) :

∫
M

(
|∇gu|2 + V (x)u2

)
dvg < +∞

}
endowed with the norm

‖u‖V =

(∫
M
|∇gu|2 dvg +

∫
M
V (x)u2 dvg

)1/2

.

The main result of this subsection is as follows.

Theorem 2.3.1 (Faraci, Farkas and Kristály [24]). Let (M, g) be an n-dimensional Cartan-
Hadamard manifold (n ≥ 3) with K ≥ k0 for some k0 ≤ 0 and let S = {x1, x2} ⊂ M be
the set of distinct poles. Let V,W : M → R be positive potentials verifying (V1), (V2) and
W ∈ L1(M) ∩ L∞(M) \ {0}, respectively. Let f : [0,∞)→ R be a continuous function verifying
(f1) and (f2), and λ ∈

[
0, (n− 2)2

)
be fixed. Then the following statements hold:

(i) Problem (Pµ
M ) has only the zero solution whenever 0 ≤ µ < V0‖W‖−1

L∞(M)c
−1
f ;

(ii) There exists µ0 > 0 such that problem (Pµ
M ) has at least two distinct non-zero, non-negative

weak solutions in H1
V (M) whenever µ > µ0.
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3
Schrödinger-Maxwell systems

Whatever you do may seem
insignificant to you, but it is most
important that you do it.

(Gandhi)

3.1 Introduction and motivation

The Schrödinger-Maxwell system{
− ~2

2m∆u+ ωu+ euφ = f(x, u) in R3,
−∆φ = 4πeu2 in R3,

(3.1.1)

describes the statical behavior of a charged non-relativistic quantum mechanical particle inter-
acting with the electromagnetic field. More precisely, the unknown terms u : R3 → R and
φ : R3 → R are the fields associated to the particle and the electric potential, respectively.
Here and in the sequel, the quantities m, e, ω and ~ are the mass, charge, phase, and Planck’s
constant, respectively, while f : R3 × R → R is a Carathéodory function verifying some growth
conditions.
In fact, system (3.1.1) comes from the evolutionary nonlinear Schrödinger equation by using

a Lyapunov-Schmidt reduction.
The Schrödinger-Maxwell system (or its variants) has been the object of various investigations

in the last two decades. Without sake of completeness, we recall in the sequel some important
contributions to the study of system (3.1.1). Benci and Fortunato [9] considered the case of
f(x, s) = |s|p−2s with p ∈ (4, 6) by proving the existence of infinitely many radial solutions for
(3.1.1); their main step relies on the reduction of system (3.1.1) to the investigation of critical
points of a "one-variable" energy functional associated with (3.1.1). Based on the idea of Benci
and Fortunato, under various growth assumptions on f further existence/multiplicity results can
be found in Ambrosetti and Ruiz [1], Azzolini [3], Azzollini, d’Avenia and Pomponio [4], d’Avenia
[19], d’Aprile and Mugnai [17], Cerami and Vaira [14], Kristály and Repovs [39], Ruiz [43] and
references therein. By means of a Pohozaev-type identity, d’Aprile and Mugnai [18] proved the
non-existence of non-trivial solutions to system (3.1.1) whenever f ≡ 0 or f(x, s) = |s|p−2s and
p ∈ (0, 2] ∪ [6,∞).
In the last five years Schrödinger-Maxwell systems has been studied on n−dimensional compact

Riemannian manifolds (2 ≤ n ≤ 5) by Druet and Hebey [21], Hebey and Wei [32], Ghimenti
and Micheletti [30, 31] and Thizy [46, 47]. More precisely, in the aforementioned papers various
forms of the system {

− ~2
2m∆u+ ωu+ euφ = f(u) in M,
−∆gφ+ φ = 4πeu2 in M,

(3.1.2)

has been considered, where (M, g) is a compact Riemannian manifold and ∆g is the Laplace-
Beltrami operator, by proving existence results with further qualitative property of the solu-
tion(s). As expected, the compactness of (M, g) played a crucial role in these investigations.
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3.2 Schrödinger-Maxwell systems: the compact case

In this section we are focusing to the following Schrödinger-Maxwell system:{
−∆gu+ β(x)u+ euφ = Ψ(λ, x)f(u) in M,
−∆gφ+ φ = qu2 in M,

(SMe
Ψ(λ,·))

where (M, g) is 3-dimensional compact Riemannian manifold without boundary, e, q > 0 are
positive numbers, f : R → R is a continuous function, β ∈ C∞(M) and Ψ ∈ C∞(R+ ×M) are
positive functions. The solutions (u, φ) of (SMe

Ψ(λ,·)) are sought in the Sobolev space H1
g (M)×

H1
g (M).
We first consider a continuous function f : [0,∞)→ R which verifies the following assumptions:

(f1) f(s)
s → 0 as s→ 0+;

(f2) f(s)
s → 0 as s→∞;

(f3) F (s0) > 0 for some s0 > 0, where F (s) =

∫ s

0
f(t)dt, s ≥ 0.

Due to the assumptions (f1)− (f3), the numbers

cf = max
s>0

f(s)

s

and
cF = max

s>0

4F (s)

2s2 + eqs4

are well-defined and positive. Now, we are in the position to state the first result of the paper.

Theorem 3.2.1 (Farkas [25]). Let (M, g) be 3−dimensional compact Riemannian manifold with-
out boundary, and let β ≡ 1. Assume that Ψ(λ, x) = λα(x) and α ∈ L∞(M) is a positive
function. If the continuous function f : [0,∞)→ R satisfies assumptions (f1)− (f3), then

(a) if 0 ≤ λ < c−1
f ‖α‖

−1
L∞ , system (SMe

Ψ(λ,·)) has only the trivial solution;

(b) for every λ ≥ c−1
F ‖α‖

−1
L1 , system (SMe

Ψ(λ,·)) has at least two distinct non-zero, non-negative
weak solutions in H1

g (M)×H1
g (M).

In order to obtain new kind of multiplicity result for the system (SMe
Ψ(λ,·)) instead of the

assumption (f1) we require the following one:

(f4) There exists µ0 > 0 such that the set of all global minima of the function

t 7→ Φµ0(t) :=
1

2
t2 − µ0F (t)

has at least m ≥ 2 connected components.

In this case we can state the following result:

Theorem 3.2.2 (Farkas [25]). Let (M, g) be an 3−dimensional compact Riemannian manifold
without boundary. Let f : [0,∞) → R be a continuous function which satisfies (f2) and (f4),
β ∈ C∞(M) is a positive function. Assume that Ψ(λ, x) = λα(x) + µ0β(x), where α ∈ C∞(M)
is a positive function. Then for every τ > max{0, ‖α‖L1(M) maxt Φµ0(t)} there exists λτ > 0

such that for every λ ∈ (0, λτ ) the problem (SMλ
Ψ(λ,·)) has at least m+ 1 solutions.

As a counterpart of the Theorem 3.2.1 we consider the case when the continuous function
f : [0,+∞)→ R satisfies the following assumptions:
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(f̃1) |f(s)| ≤ C(s+ sp−1), for all s ∈ [0,+∞), where C > 0 and p ∈ (4, 6);

(f̃2) there exists η > 4 and τ0 > 0 such that

0 < ηF (s) ≤ sf(s), ∀s ≥ τ0.

Theorem 3.2.3 (Farkas [25]). Let f : R+ → R be a continuous function, which satisfies hy-
potheses (f̃1), (f̃2). Then there exists λ0 such that for every 0 < λ < λ0 the problem (SMe

Ψ(λ,·))
has at least two solutions.

3.3 Schrödinger-Maxwell systems: the non-compact case

We shall consider the Schrödinger-Maxwell system{
−∆gu+ u+ euφ = λα(x)f(u) in M,
−∆gφ+ φ = qu2 in M,

(SMλ)

where (M, g) is an n−dimensional Cartan-Hadamard manifold (3 ≤ n ≤ 5), e, q > 0 are positive
numbers, f : R→ R is a continuous function, α : M → R is a measurable function, and λ > 0 is
a parameter. The solutions (u, φ) of (SMλ) are sought in the Sobolev space H1

g (M)×H1
g (M).

In the sequel, we shall formulate rigourously our main results with some comments.
The pair (u, φ) ∈ H1

g (M)×H1
g (M) is a weak solution to the system (SMλ) if∫

M
(〈∇gu,∇gv〉+ uv + euφv)dvg = λ

∫
M
α(x)f(u)vdvg for all v ∈ H1

g (M), (3.3.1)

∫
M

(〈∇gφ,∇gψ〉+ φψ)dvg = q

∫
M
u2ψdvg for all ψ ∈ H1

g (M). (3.3.2)

For later use, we denote by Isomg(M) the group of isometries of (M, g) and let G be a sub-
group of Isomg(M). A function u : M → R is G−invariant if u(σ(x)) = u(x) for every x ∈ M
and σ ∈ G. Furthermore, u : M → R is radially symmetric w.r.t. x0 ∈ M if u depends on
dg(x0, ·), dg being the Riemannian distance function. The fixed point set of G on M is given by
FixM (G) = {x ∈ M : σ(x) = x for all σ ∈ G}. For a given x0 ∈ M , we introduce the following
hypothesis which will be crucial in our investigations:

(Hx0
G ) The group G is a compact connected subgroup of Isomg(M) such that FixM (G) = {x0}.

For x0 ∈M fixed, we also introduce the hypothesis

(αx0) The function α : M → R is non-zero, non-negative and radially symmetric w.r.t. x0.

Our results are divided into two classes:

A. Schrödinger-Maxwell systems of Poisson type. Dealing with a Poisson-type system,
we set λ = 1 and f ≡ 1 in (SMλ). For abbreviation, we simply denote (SM1) by (SM).

Theorem 3.3.1 (Farkas and Kristály [26]). Let (M, g) be an n−dimensional homogeneous
Cartan-Hadamard manifold (3 ≤ n ≤ 6), and α ∈ L2(M) be a non-negative function. Then
there exists a unique, non-negative weak solution (u0, φ0) ∈ H1

g (M)×H1
g (M) to problem (SM).

Moreover, if x0 ∈M is fixed and α satisfies (αx0), then (u0, φ0) is G−invariant w.r.t. any group
G ⊂ Isomg(M) which satisfies (Hx0

G ).
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For c ≤ 0 and 3 ≤ n ≤ 6 we consider the ordinary differential equations system

−h′′1(r)− (n− 1)ctc(s)h′1(r) + h1(r) + eh1(r)h2(r)− α0(r) = 0, r ≥ 0;
−h′′2(r)− (n− 1)ctc(r)h′2(r) + h2(r)− qh1(r)2 = 0, r ≥ 0;∫ ∞

0
(h′1(r)2 + h2

1(r))sc(r)
n−1dr <∞;∫ ∞

0
(h′2(r)2 + h2

2(r))sc(r)
n−1dr <∞,

(R)

where α0 : [0,∞)→ [0,∞) satisfies the integrability condition α0 ∈ L2([0,∞), sc(r)
n−1dr).

The system (R) has a unique, non-negative solution (hc1, h
c
2) ∈ C∞(0,∞)×C∞(0,∞). In fact,

the following rigidity result can be stated:

Theorem 3.3.2 (Farkas and Kristály [26]). Let (M, g) be an n−dimensional homogeneous
Cartan-Hadamard manifold (3 ≤ n ≤ 6) with sectional curvature K ≤ c ≤ 0. Let x0 ∈ M
be fixed, and G ⊂ Isomg(M) and α ∈ L2(M) be such that hypotheses (Hx0

G ) and (αx0) are sat-
isfied. If α−1(t) ⊂M has null Riemannian measure for every t ≥ 0, then the following statements
are equivalent:

(i) (hc1(dg(x0, ·)), hc2(dg(x0, ·))) is the unique pointwise solution of (SM);

(ii) (M, g) is isometric to the space form with constant sectional curvature K = c.

B. Schrödinger-Maxwell systems involving oscillatory terms. Let f : [0,∞) → R be a

continuous function with F (s) =

∫ s

0
f(t)dt. We assume:

(f1
0 ) −∞ < lim inf

s→0

F (s)

s2
≤ lim sup

s→0

F (s)

s2
= +∞;

(f2
0 ) there exists a sequence {sj}j ⊂ (0, 1) converging to 0 such that f(sj) < 0, j ∈ N.

Theorem 3.3.3 (Farkas and Kristály [26]). Let (M, g) be an n−dimensional homogeneous
Cartan-Hadamard manifold (3 ≤ n ≤ 5), x0 ∈M be fixed, and G ⊂ Isomg(M) and α ∈ L1(M)∩
L∞(M) be such that hypotheses (Hx0

G ) and (αx0) are satisfied. If f : [0,∞)→ R is a continuous
function satisfying (f1

0 ) and (f2
0 ), then there exists a sequence {(u0

j , φu0j
)}j ⊂ H1

g (M) ×H1
g (M)

of distinct, non-negative G−invariant weak solutions to (SM) such that

lim
j→∞

‖u0
j‖H1

g (M) = lim
j→∞

‖φu0j‖H1
g (M) = 0.
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4
A characterization related to Schrödinger
equations on Riemannian manifolds

I hear and I forget. I see and I
remember. I do and I understand.

(Confucius)

4.1 Introduction and statement of main results

The existence of standing waves solutions for the nonlinear Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∆ψ + V (x)ψ − f(x, |ψ|), in Rn × R+ \ {0},

has been intensively studied in the last decades. The Schrödinger equation plays a central role
in quantum mechanic as it predicts the future behavior of a dynamic system. Indeed, the wave
function ψ(x, t) represents the quantum mechanical probability amplitude for a given unit-mass
particle to have position x at time t. Such equation appears in several fields of physics, from
Bose–Einstein condensates and nonlinear optics, to plasma physics (see for instance Byeon and
Wang [11] and Cao, Noussair and Yan [12] and reference therein).
A Lyapunov-Schmidt type reduction, i.e. a separation of variables of the type ψ(x, t) =

u(x)e−i
E
~ t, leads to the following semilinear elliptic equation

−∆u+ V (x)u = f(x, u), in Rn.

With the aid of variational methods, the existence and multiplicity of nontrivial solutions
for such problems have been extensively studied in the literature over the last decades. For
instance, the existence of positive solutions when the potential V is coercive and f satisfies
standard mountain pass assumptions, are well known after the seminal paper of Rabinowitz
[42]. Moreover, in the class of bounded from below potentials, several attempts have been made
to find general assumptions on V in order to obtain existence and multiplicity results (see for
instance Bartsch, Pankov and Wang [6], Bartsch and Wang [5], Benci and Fortunato [8] Willem
[48] and Strauss [44]). In such papers the nonlinearity f is required to satisfy the well-know
Ambrosetti-Rabinowitz condition, thus it is superlinear at infinity. For a sublinear growth of f
see also Kristály [34].
Most of the aforementioned papers provide sufficient conditions on the nonlinear term f in

order to prove existence/multiplicity type results. The novelty of the present chapter is to
establish a characterization result for stationary Schrödinger equations on unbounded domains;
even more, our arguments work on not necessarily linear structures. Indeed, our results fit
the research direction where the solutions of certain PDEs are influenced by the geometry of
the ambient structure (see for instance Farkas, Kirstály and Varga [28], Farkas and Kristály
[26], Kristály [35], Li and Yau [40], Ma [41] and reference therein). Accordingly, we deal with a
Riemannian setting, the results on Rn being a particular consequence of our general achievements.
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Let x0 ∈ M be a fixed point, α : M → R+ \ {0} a bounded function and f : R+ → R+ a
continuous function with f(0) = 0 such that there exist two constants C > 0 and q ∈ (1, 2?)
(being 2? the Sobolev critical exponent) such that

f(ξ) ≤ k
(
1 + ξq−1

)
for all ξ ≥ 0. (4.1.1)

Denote by F : R+ → R+ the function F (ξ) =

∫ ξ

0
f(t)dt.

We assume that V : M → R is a measurable function satisfying the following conditions:

(V1) V0 = essinfx∈MV (x) > 0;

(V2) lim
dg(x0,x)→∞

V (x) = +∞, for some x0 ∈M .

The problem we deal with is written as:
−∆gu+ V (x)u = λα(x)f(u), in M
u ≥ 0, in M
u→ 0, as dg(x0, x)→∞.

(Pλ)

Our result reads as follows:

Theorem 4.1.1 (Faraci and Farkas [23]). Let n ≥ 3 and (M, g) be a complete, non-compact
n−dimensional Riemannian manifold satisfying the curvature condition (C), and inf

x∈M
Volg(Bx(1)) > 0.

Let also α : M → R+ \ {0} be in L∞(M) ∩ L1(M), f : R+ → R+ a continuous function with
f(0) = 0 verifying (4.1.1) and V : M → R be a potential verifying (V1), (V2). Assume that for

some a > 0, the function ξ → F (ξ)

ξ2
is non-increasing in (0, a]. Then, the following conditions

are equivalent:

(i) for each b > 0, the function ξ → F (ξ)

ξ2
is not constant in (0, b];

(ii) for each r > 0, there exists an open interval Ir ⊆ (0,+∞) such that for every λ ∈ Ir,
problem (Pλ) has a nontrivial solution uλ ∈ H1

g (M) satisfying∫
M

(
|∇guλ(x)|2 + V (x)u2

λ

)
dvg < r.

We conclude the chapter with a corollary of the main result in the euclidean setting. We
propose a more general set of assumption on V which implies both the compactness of the
embedding of H1

V (Rn) into and the discreteness of the spectrum of the Schrödinger operator,
see Benci and Fortunato [8]. Namely, let n ≥ 3, α : Rn → R+ \ {0} be in L∞(Rn) ∩ L1(Rn),
f : R+ → R+ be a continuous function with f(0) = 0 such that there exist two constants k > 0
and q ∈ (1, 2?) such that

f(ξ) ≤ k(1 + ξq−1) for all ξ ≥ 0.

Let also V : Rn → R be in L∞loc(Rn), such that essinfRnV ≡ V0 > 0 and∫
B(x)

1

V (y)
dy → 0 as |x| → ∞,

where B(x) denotes the unit ball in Rn centered at x. In particular, if V is a strictly positive
(infRn V > 0), continuous and coercive function, the above conditions hold true.
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Corollary 4.1.1 (Faraci and Farkas [23]). Assume that for some a > 0 the function ξ → F (ξ)
ξ2

is non-increasing in (0, a]. Then, the following conditions are equivalent:

(i) for each b > 0, the function ξ → F (ξ)
ξ2

is not constant in (0, b];

(ii) for each r > 0, there exists an open interval I ⊆ (0,+∞) such that for every λ ∈ I, problem
−∆u+ V (x)u = λα(x)f(u), in Rn
u ≥ 0, in Rn
u→ 0, as |x| → ∞

has a nontrivial solution uλ ∈ H1(Rn) satisfying
∫
Rn

(
|∇uλ|2 + V (x)u2

λ

)
dx < r.
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