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Chapter 1

Introduction

The theory of controlling non–linear systems extensively was developed and used
in the mid of the 20th century and got more popularity with the passage of time.
A revolutionary change was seen after the invention of computer, that made this
field easier especially when Rudolf Kálmán placed into the center of attention the
state–space model formulated in the time domain instead of the frequency picture
that was prevailing before the early sixties of the 20th century [1, 2].

In the most of the application areas within the frames of “Model Predictive
Control” (MPC) [3, 4] the controlled system’s dynamics (as a rigorous condition)
mathematically is expressed as a “constraint” that has to be met while a “cost
function” often representing contradictory requirements can be minimized with
compromises. Among these compromises the limitation of the control force
(caused by either the saturation of the drives or other reasons) can be taken into
account. A possibility for tackling this problem is the method of “Dynamic
Programming” (DP) that is based on the variation calculus and the resulting
Hamilton–Jacobi–Bellman equation [5, 6].

To evade the huge computational needs of the dynamic programming ap-
proach, in tackling the problems in the field of control the so–called non–linear
programming approach can be applied. The heuristic “Receding Horizon
Controllers” (RHC) that were introduced for industrial use in the seventies of the
past century [7] approximate the (MPC) over a finite time–horizon by the use of
an available approximate dynamic model only, and for the compensation of the
consequences of the modeling imprecisions and unknown external disturbances,
the controlled system’s state is directly observed or estimated by the use of
observable data in the last point of the horizon that can be used as a starting
point of the next one. Normally, the finite horizon is approximated by a discrete
time–grid, and nonlinear programming is used for the calculation of the solution
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in which the solution is computed by the use of Lagrange’s “Generalized Reduced
Gradient” (GRG) method published in 1811 [8].

Usually, replacing a non–linear system by a simple linear one is considered
as a simple and effortless way to find the approximate solutions whenever it
is satisfactory to consider the system’s operation in the vicinity of a “working
point”. In this narrow vicinity the system can be approximated as a “Linear
Time–Invariant” (LTI) one. Sometimes this approximation well captures the
system’s dynamics e.g. in modeling the behavior of the air path of Diesel engines
[9]. In the close vicinity of a “working point”, the traditional control design
approaches that were based on the properties of the “Linear Time–Invariant”
(LTI) systems by using the frequency domain, linear integral transformations as
the Fourier, Z, or Laplace transforms [10], can lead to satisfactory results.

However, in many cases linearization (called “affine approximation”) cannot
be a relevant and satisfactory way in approximating the controlled system’s
dynamical model. Often a “system switching” has to be tackled between the
neighboring cells of the state space that contain the local LTI models [11]. This
approach has been extended in the tracking control for switched linear systems
with time–varying delays [12, 13].

In other approaches the so called “Tensor Product Control Models” (TP)
can be used based on polytopic dynamic models, “Higher Order Singular Value
Decomposition” (HOSVD), and “Linear Matrix Inequalities” (LMI) as e.g. in
[14, 15, 16]. This branch of research typically is based on the possession of a
reliable complex system model that in the first phase is transformed into a TP
form “offline” by the use of a computer. In the second step the “unnecessary
complexity” of this transformed model is reduced by the application of HOSVD.
Finally, according to the program announced by Boyd et al. in 1994 in [17], the
so obtained model’s control can be systematically tackled by existing software
algorithms based on the use of LMIs.

It has to be emphasized that though the “heuristic RHC” provides a quite wide
framework for control approaches, it suffers from some limitations that seem to
be crucially significant in engineering applications. In the case of using general
forms for the cost functions and allowing the use of arbitrary nonlinear models
no rigorous statements can be done on the nature of the obtained solutions. Due
to the fact that the number of the Lagrange multipliers equals with that of the
state variables in the constraint terms, these state variables and their associated
Lagrange multipliers behave like the canonical variable pairs of Classical Me-
chanics [18]. Consequently an “artificial Hamiltonian” can be associated with the
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realized “optimal motion”, and this Hamiltonian is kept constant. Furthermore, in
the tangent space of these “canonical state variables” the rules of the Symplectic
Geometry are valid that means that the “volume” of the phase cells remains
constant (Liouville’s Theorem in Classical Mechanics), i.e. the motion is similar
to the flow of some incompressible fluid (that also satisfies complementary
conditions regarding the partial derivatives according to the control forces). In
general, “incompressibility” does not promise very nice numerical behavior for
the solutions. If in certain direction the cells are shrunk, in other directions they
have to be extended to save their volume. This concerns stability issues: it cannot
be expected that the solution can be settled in an attractive point of the state
space. On this reason in the practice the otherwise quite wide frames of the RHC
controllers are applied under strictly “narrow” conditions as follows:

a) Normally the cost functions are quadratic terms constructed of constant
symmetric positive definite matrices and the state tracking errors. Con-
sequently, their derivatives in the reduced gradient method will be well
behaving linear functions of the tracking errors.

b) Generally similar quadratic terms are in use for the limitation of the control
forces that provides similar advantages.

c) In the case of LTI system models the Lagrange multipliers can be con-
structed as the product of some symmetric matrices and the state variables.
The equations of motion for these matrices can be decoupled from that of
the state variables, that is a great advantage.

d) The equations of motion obtained for these matrices satisfy some Riccati
equation with some “terminal condition”. In the 18th century Riccati real-
ized that special first order quadratic differential equations can be solved by
obtaining the solution for linear, second order differential equations [19].
Therefore, under these special conditions certain “general view” of the so-
lution became available. The matrix versions of the Riccati equations ob-
tained wide scale use in control technology (e.g. [20, 21]).

e) Regarding certain constraints, Schur’s matrix complement [22] can be ap-
plied to transform quadratic constraints into linear ones that can be effi-
ciently tackled by the LMI techniques as it was recommended by Boyd et
al. in [17].

One of my main aims was to “liberate” the researchers from the above re-
strictions in the RHC control by the application of non–quadratic cost functions
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that for instance can “better tolerate” smaller errors and “more drastically punish”
greater ones than a simple quadratic structure.

It was considered an open question since a few years ago that the combina-
tion of the MPC within the frame of “Optimal Controllers” with some adaptive
techniques can be possible in the area of control theory.

In the field of control theory to design non–linear adaptive controllers,
generally Lyapunov’s well known 2nd or “Direct Method” [23, 24] is used. It is
widely applicable in recent days, too. But its typically complex design process
is considered as burden and difficult, therefore alternative simple methods were
adopted. It has the great advantage that it provides a basis to design traditional
and classical non–linear controllers. The purpose is to concentrate on the problem
of the stability of the motion of the controlled non–linear system. Though, this
has great advantages in the related field but despite those excellent advantages,
the Lyapunov function–based approach suffers from certain disadvantages,
too. Beside the fact that this method needs tricky and complex mathematical
designer’s skills, it typically prescribes rather “satisfactory” than “necessary and
satisfactory” conditions in the proofs. Consequently it allows the application of
a huge set of possible control parameters that maintain the stability and in the
same time crucially influence the transients of the controlled motion without any
optimization.

To get rid of the very complicated Lyapunov function–based adaptive solu-
tions in 2009 an alternative approach “Fixed Point Transformation” (FPT) was
proposed [25] where, the problem at first was transformed into the fixed point
task and then the idea of iteratively finding the fixed–point of a contractive map
was used. This idea is based on Banach’s well known Fixed Point Theorem [26].
In my research the said idea was further extended regarding new aspects where
the approach was combined with other methods and also was applied to get rid
of the complicated burden of the precise calculation of the Jacobian in the in-
verse kinematics of robots. The purpose, also, is to give some contributions and
achievements in this new line of problem tackling in adaptive control. I am es-
pecially interested in the possible combination of the traditional and the novel
approaches.

1.1 Research Aims in the Mirror of the State of the
Art

This is the era of modern sciences and technologies. Things and technologies
continuously keep changing due to new ideas and up–to–date technological
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instruments. Such ideas and the advanced technological revolution bring severe
changes in several natural systems in the Universe. Abundant of systems are
there in the Universe, based on non–linear functional dependencies. Their non–
linearity was always considered a great challenging subject for the researchers
in view of their stability and efficient control. The control of such systems, by
numerous techniques, fall in the area of study named “Control Theory”.

To deal with such systems only a few methods were used before the last
decade of the 19th century but later in 1892 Alexander Lyapunov elaborated his
way of solution in his doctoral dissertation to deal with the stability of the systems
giving his theory with the approach named as “Lyapunov’s Direct or Second
Method” to determine the stability of a non–linear system without solving its
equations of motion.

It is evident that, a control designer tries to bring about better and efficient
methods to maintain the stability of the controlled systems. In the beginning,
getting the solutions of the problems, based on non–linearity, were very hard
due to the fact that only “manual working system” (consisting of crank driven
mechanical calculators, slide–slip, metric paper and the tabulated form of certain
special functions) was available, but later the invention of the computers provided
an easy way to proceed in this area of study to extend it and widen its view from
different aspects.

To understand the working process and criteria of the systems, consideration
of their modeling and controlling process, measuring or estimating the states of
the systems efficiently have become the prime need of the time. For the purpose
of controlling the systems and to understand their stability, different varieties
of methods and terminologies have been used in different times to enrich the
stabilities.

Adaptive control is one of the methods where a system uses the techniques
and approaches to change itself according to the behavior in new or varying
circumstances. The motivation to consider this area of study was gotten in early
fifties of the previous century when an autopilot high performance based aircraft
for high altitudes and wide range of speed was designed. After this approach
the study area got more attention in all aspects of life. Examples for a quite
rich variety of problems in practical life can be mentioned in this context: the
glucose–insulin metabolism [27, 28, 29, 30, 31, 32], the pharmaco–kinetics of
various drugs in anaesthesia [33, 34, 35, 36], modeling the operation of the
neurons and the nervous system [37, 38, 39, 40, 41] in life sciences, dynamic
models of robots [42, 43], chemical processes like crystallization [44], efficient
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control of freeway traffic [45, 46, 47] including the limitation of the emission of
polluting materials [48, 49], etc. can emphasize its importance and applicability.

The study of adaptive techniques for non–linear systems has considerable
mathematical difficulties. Analyzing them theoretically is, in fact, a very complex
and hard task. Therefore, the modern techniques and approaches in view of
approximations in control design and signal processing include a various class of
mathematical tools.

In the last decade of the 20th century the idea of MPC was vastly investigated
(e.g. [50, 51]), and its novel developments (e.g. [4]) were successfully used in
different fields of the life as e.g. in chemistry [52, 53, 54, 55], life sciences–related
problems [56], economy [57], etc. Another use of advanced control solutions is,
to get attention in today’s medical practice regarding the control of physiological
processes [58]. Many control solutions are under development which can be
used for various kinds of control problems. It has been observed that there
are many advanced control methods that have been successfully applied for
physiological regulation problems, for example control of anaesthesia [59, 60],
antiangiogenic inhibition of cancer [61, 62], immune response in presence of
human immunodeficiency virus[63] and regulation of blood glucose (BG) level
[64, 65, 66, 67] as well.

In the applications the non–linear nature of the advanced control techniques
have high importance. Beside the non–linearities in the control problems the
researchers on the field are facing with many challenges such as model and
parameter uncertainties and even time–delay effects, too.

It is well known that in designing the adaptive controllers, based on the
non–linear systems mostly Lyapunov’s “direct” or “second method” is applied
as a traditional approach [23, 24]. Essentially the same approach is extended to
tackling time–delay problems by the use of the Lyapunov-Krasowskii functional
[68]. The complexity of this method diverted the attention of researchers to
propose the alternative simple approaches (e.g. [69, 70, 71, 72]). According to
the basic facts the work of Lyapunov’s method can be summarized as follows [73]:

a) it can be used to create the satisfactory conditions to guarantee the stability,

b) it does not focus on the tracking error relaxation in the initial phase of the
controlled motion, but provides the opportunity to prove the global stability
that is very necessary in common cases,
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c) in the case of certain adaptive approaches for the identification of the param-
eters of the model of the controlled system, it provides significant methods,

d) it works with a large number of arbitrary adaptive control parameters be-
cause it contains certain components of the particular Lyapunov function in
use, and may require further parameter optimization (e.g. [74]).

It is realized that the mathematical framework of the traditional MPC can
hardly be combined with the Lyapunov function–based adaptive control. Certain
approaches combining MPC and Lyapunov’s stability theorem can be found in
the literature (e.g. [75, 76]).

Concentrating on the primary design intent the “Robust Fixed Point Trans-
formation” (RFPT)–based technique was suggested in which the non–linearly
optimized trajectory can be adaptively tracked iteratively by the adaptive con-
troller that converges to the appropriate point, based on Banach’s Fixed Point
Theorem [26]. Furthermore, the suggested “adaptive, iterative inverse kinematic
approach” [77] – based on [78, 79] – can be convergent and useful even if
the Jacobian of the robot arm is only approximately known. The application
of an “abstract” rotational transformation in the state space can improve the
convergence properties of the iteration without the need for obtaining complete
information on the actual (i.e. the “exact”) Jacobian. It is just enough to utilize
the simple motion steps generated by the iteration that produces a smooth motion.

Similarly, a possible recent improvement of the RHC approach was reported
in [80] that corresponds to the adaptive tracking of the optimized trajectory
instead of exerting the forces calculated by the optimization algorithm on the
basis of an available, approximate dynamic model.

All the above discussed results are introduced in our papers published recently
(e.g. [80, 81, 82, 83], [84], [85], and [86], [87]). The main directions for this
research will be outlined in the next section.

1.2 The Structure of the Thesis

The possible application and possible improvement of the Classical “Receding
Horizon Controller” (RHC) and its application has been discussed in Chapter 2 in
details.
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In the initial stage the possibilities and useful applications of the design of
the Classical RHC by using Non–linear Programming (NP) was investigated.
After that, using the Generalized Reduced Gradient method, to overcome the
complexities of non–linear optimization task the study was further extended
to deal with the Type 1 Diabetes Mellitus, one of the dangerous disease for
humanity, that needs treatment in the form of control. To check the performance
of the solution “soft” disturbance and “unfavorable” disturbance signals were
applied and studied.

To improve and overcome the disadvantages and difficulties in the field of
non–linear control, a novel “Fixed Point Transformation” (FPT) recently invented
by A. Dineva in [88, 89] was applied by combining it with the classical RHC.
The alternative FPT approach was so introduced in adaptive control that, instead
of Lyapunov’s “2nd Method”, it was based on Stefan Banach’s “Fixed Point
Theorem”. This method was applied in various aspects to achieve precise and
meaningful results. The combination of this method with the RHC is based on the
idea that in the classical optimal control both the state variables and the control
signals are estimated for the horizon based on the approximate dynamic system
model. However, instead of exerting the so obtained control signals, the system
adaptively tries to track this “optimized trajectory”. For making simulation
examples a simple 1st order LTI system was investigated in the adaptive control.

In Chapter 3 the adaptive RHC is explained for some special problem classes
that are directly treatable by the use of the “Auxiliary Function” (AF).

In Chapter 4 the “Inverse Kinematic Task of Robots” is adaptively solved
using the FPT method. It has been observed that in a wide class of robots of
open kinematic chain the inverse kinematic task cannot be solved by the use of
closed–form analytical formulae. On this reason the traditional approaches apply
differential approximation in which the Jacobian of the “normally redundant”
robot arm is “inverted” by the use of some “generalized inverse”. These pseudo–
inverses behave well whenever the robot arm is far from a singular configuration.
However, in the singularities and nearby the singular configurations they suffer
from a singular or ill–conditioned pseudo–inverse. For tackling the problem of
singularities normally complementary “tricks” have to be used that so “deform”
the original problem that the deformed version leads to the inversion of a
well–conditioned matrix. Similarly, in the inverse kinematic tasks in robots the
burden of the typical computations of Jacobian were removed by using the FPT
via JULIA and MATLAB simulations.

Chapter 5 is the “conclusion chapter” where all the related novelties of this
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thesis will be discussed briefly. Finally, in Chapter 6 the study is discussed in
future prospects that what results and novelties are being expected? Also, how
we will be able to achieve reliable results according to the topic of the thesis?

1.3 Research Methodology
It is obvious that the computational mathematical problems and engineering
topics need simulation–based studies to understand and further extend the existing
solutions. The wide range of practical problems results in differential equations
that cannot be solved analytically, can be studied via numerical methods using
simulations and programming. Such problems can be applied and understood
after the validation of the simulation investigations. For this purpose a lot of
mathematical packages can help to find the clear results.

In the period of my study, I used the JULIA Programming Language for the
programming purposes to find the required results of my research. It provides
an easy, simply coded and fast running programming possibility. Similarly,
the simple VISUAL BASIC of MS–EXCEL 2010 was also used that helped to
easily compile the results by simple programming. In some cases I used Matlab
2018, too, to find the results easily. Matlab is a heavy but precise programming
language which helped in rare cases to easily go through from my work.

The JULIA Package developed under the MIT and GPLv2 license works by
providing a modeling and computational interface for solving the dynamical prob-
lems. Julia is a high–level, high–performance dynamic programming language de-
veloped specifically for scientific computing [90]. This dynamic language ensures
a very fast evaluation for technical computing. The applied scientific methods en-
sure the precision and thoroughness of the simulation results. It has an ability for
distributed parallel task execution. It also has numerous developer communities
who made some “extra” packages with the use of the build–in package manager.
At its official website [90], the main features of the language are mentioned as

• Multiple dispatch: providing ability to define function behavior across many
combinations of argument types

• Dynamic type system: types for documentation, optimization, and dispatch

• Good performance, approaching that of statically–typed languages like C

• A built–in package manager
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• Lisp–like macros and other meta–programming facilities

• Call Python functions: use the PyCall package

• Call C functions directly: no wrappers or special APIs

• Powerful shell–like abilities to manage other processes

• Designed for parallel and distributed computing

• Coroutines: lightweight green threading

• User–defined types are as fast and compact as built–ins

• Automatic generation of efficient, specialized code for different argument
types

• Elegant and extensible conversions and promotions for numeric and other
types

• Efficient support for Unicode, including but not limited to UTF–8

For the research concerning optimization programs, a developed simple program
in “Visual Basic for Applications” (VBA) in the background of the MS EXCEL
serves as an excellent solution provided that the size of the problem is not too big.
The MS EXCEL’s “Solver” module is provided by an external firm (Front–line
Systems, Inc.). There are various solutions implemented into the Solver module,
including the “Generalized Reduced Gradient” (GRG) method which can be used
in the given case as well. The GRG is based on [91, 92] and its usability has been
proved in various fields of research as e.g. in [83]. The problem conveniently
can be formulated by functional relationships between the contents of the various
cells of the worksheets. For this purpose User Defined Functions can be created
in VBA. Then for the Solver a “model” can be specified by giving the cell that
contains the cost to be minimized, the location of the independent variables and
the constraints in the worksheets, and the parameter settings of this optimization
package. The so defined “model” can be saved somewhere in one of the work-
sheets. Following that a small program can be written in VBA that declares the
model parameters as global variables, reads their actual values from the work-
sheets, loads the “model” for the Solver, and for the horizons under consideration
cyclically:

a) fills in the cells with the data of the nominal trajectory to be tracked, the
initial values of the variables to be optimized, and the control forces,
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b) calls the Solver with the options that it must stop optimization if the pre-
scribed limits in the time or step numbers have been achieved, keeps the so
obtained results, and

c) writes the optimized results in certain cells of a worksheet that are used for
making various graphical representations of the results.

Regarding the “reliability” of the computed data, because we investigated
“convergent iterations” in the simulation programs, the key factor was the time
resolution of discretization. After obtaining certain numerical results with a
given fixed time–step ∆ t, the same computations were repeated with .×∆ t.
If no observable differences in the results were observed, the computation was
regarded as “reliable result”. Roughly speaking, this practice corresponds to
stopping an iteration when the subsequent variations in a convergent Cauchy
sequence become small enough. In the practice such solutions are prevailing.

In the Julia realizations I applied the simple Euler integration in sequential
programs. This structure was treatable in this manner. In the case of optimization
programs, the role of ∆ t corresponded to the discrete time resolution in the case
of Non–linear Programming. These problems were also treatable in this manner. I
have to note that the problems in the convergence were influenced by other param-
eters in the Solver’s setting as e.g. the maximum number of numerical steps or the
maximal time allowed for finding the optimum. The effects of these parameters
were separately considered in the programs realized by the EXCEL–VBA–Solver
combination.
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Chapter 2

Improvement of the Classical
Receding Horizon Controller and Its
Applications

In industries, for more advanced controlling purposes, the vastly applicable
heuristic Receding Horizon Controller (RHC) invented in 1978 [7] can be used.
By using the best possibilities of the RHC we are able to predict the possible
future behavior of our system, moreover, we are able to intervene in its operation
as well. I have investigated the possibilities of the design of a Receding Horizon
Controller by using Non–linear Programming to simulate a possible treating
for patients suffering from Type 1 Diabetes Mellitus [A. 1]. The non–linear
optimization task was solved by the Generalized Reduced Gradient (GRG)
method.

Diabetes Mellitus (DM) is the collective name of several chronic diseases
connected to the metabolic system of the human body. There are many types of
DM. The most dangerous is the Type 1 DM (T1DM) where the metabolic system
is not able to function normally due to the lack of insulin. Type 2 DM (T2DM)
which is the most widespread kind of DM and it occurs mostly because of the
lifestyle. In this case the usual is that the blood glucose and insulin levels are
continuously increasing over a long period of time. Due to the extreme glucose
and insulin load, the cells are becoming resistant to the insulin over time. In order
to compensate this condition the body produces more and more insulin – which
leads to the “burnout” of the pancreatic β–cells which produce the hormone. At
this point the T2DM turns into T1DM. Other frequently occurring type is the
Gestational DM (GDM ) from which women may suffering during pregnancy.
Usually, this condition is temporary, however, sometimes it turns into T2DM and
becomes permanent [93, 94, 95].

21



The investigations were done on the basis of a particular system model, the
“Modified Minimal Model” [96] which originates from the model of Bergman
[97]. Two practically important scenarios were investigated. In the first one, I
applied “soft” disturbance – namely, smaller amount of external carbohydrate – in
order to be sure that the proposed method operates well through the optimization
process. In the second scenario, “unfavorable” disturbance signals were applied
– a highly oscillating, peak kind external excitation with cyclic nature.

I have found that the performance of the realized controller was satisfactory
and it was able to keep the blood glucose level in the desired healthy range – by
considering the restrictions against the applicable control action.

In the 2nd step, as a preliminary investigation, I studied the possibility for
the adaptive extension of the RHC method in combination with the Fixed Point
Transformation–based approach [A. 2]. In this case the simplest 1st order 1 DoF
LTI system model was used. The combination of this method with the Receding
Horizon Control is based on the idea that in the classical optimal control both
the state variables and the control signals are estimated for the horizon based
on the approximate model using Lagrange’s “Reduced Gradient Method” (RGM).

It provides the “estimated optimal control signals” and the “estimated optimal
state variables” over this horizon. The controller exerts the estimated control
signals but the state variables develop according to the exact dynamics of the
system.

I have used the suggested alternative approach in which, instead of exerting
the estimated control signals, the estimated optimized trajectory is adaptively
tracked within the given horizon. Simulation investigations are presented for a
simple LTI model with strongly non–linear cost and terminal cost functions. In
this investigation I found that the transients of the adaptive controller that appear
at the boundaries of the finite–length horizons reduce the available improvement
in the tracking precision. In contrast to the traditional RHC, in which decreasing
horizon length improves the tracking precision, in my case some increase in
the horizon length improves the precision by giving the controller more time to
compensate the effects of these transients.
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2.1 Scientific Antecedents

Regardless of the type of DM a few common control goal can be defined: keep the
glycemia (the BG level) in the healthy range; total avoidance of hypoglycaemic
periods; and avoid the high BG variability as far as possible [98, 99, 100].

In case of T1DM many solutions are available, however, all of them have their
own limitations, simplifications and restrictions – thus, none of them are general
[67]. In these days from control point of view the most beneficial approach is the
Artificial Pancreas (AP) concept. This idea aims to imitate the regular working
of the pancreas from the insulin production point of view, namely, administering
insulin demands on the needs determined by the BG level [101]. Thus, we have
to face with contradictory requirements: the generalization and personalization as
well.

One of the mostly used algorithms is the modified proportional–integral–
derivative (PID) based solutions due to their simplicity and flexibility. Moreover,
several clinical trials have been done by using these methodologies and investi-
gated their effectivity [102, 103, 104]. Linear Parameter Varying (LPV) based
solutions have high importance, since, the uncertainties can be handled with high
efficiency by them [66, 64, 105]. The Tensor Product (TP) based techniques also
represent interesting directions, since, they can be combined by Linear Matrix
Inequality (LMI) based control and LPV methodology as well [106, 107, 65].
The most frequently used method is the Model Predictive Control (MPC) with
regard to the control of DM [108, 101, 109].

By its applicability and persistency MPC approach is widely used in various
research fields as well [44, 110, 57]. In general the goal of the MPC applications
is the tracking and stabilization [111].

The RHC framework can be hardly combined with the Lyapunov function
based control. However, certain approaches can be found in the literature
where the Lyapunov stability and RHC was successfully combined for specific
cases [75, 112]. Alternative solutions also exist which can be used instead of
Lyapunov’s stability theorem. The “Robust Fixed Point Transformation” (RFPT)
based control [25, 113] uses Banach’s fixed point theorem [26] to transform the
control task into a fixed point problem which can be solved iteratively. This
method allows to design a robust iterative adaptive controller which can avoid the
main limitations of RHC if these are combined.
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2.2 Investigation of the Applicability of RHC in
Treating the Illness Type 1 Diabetes Mellitus

During my research I have applied a modified Minimal Model [96] which
originates from the model of Bergman [97]. This model has several beneficial
properties, such as simplicity, good transformability, flexibility and it is based on
simpler biological considerations. The main goal of the model is to describe the
glucose–insulin dynamics, namely, to define the connection between the blood
glucose and insulin levels. Although, in order to characterize the daily life of
a T1DM patient by the model, it is needed to extend it with additional sub–models.

These sub–models are the absorption of the external glucose and insulin
intake. During the daily routine these substances are not directly injected to the
blood stream – however, this can occur in case of persistent hospitalization –
instead the carbohydrate is consumed via food intake and the insulin is entered
through the extracellular tissue matrix under the skin [93]. Thus, the characteristic
of their appearance in blood has rather peak kind than elongated dynamics. The
glucose and insulin absorption is described by (2.1) – (2.4), respectively. These
sub–models are coming from the Cambridge model [114], but I applied them in
appropriate dimensions to insert it to the core model. The core model is described
by (2.5) – (2.7).

Ḋ(t) = −


τD
D(t)+

Ag

MwGVG
C ·d(t), (2.1)

Ḋ(t) = −


τD
D(t)+



τD
D(t), (2.2)

Ṡ(t) = −


τS
S(t)+



VI
u(t), (2.3)

Ṡ(t) = −


τS
S(t)+



τS
S(t), (2.4)

Ġ(t) = −(p+X(t))G(t)+ pGB +


τD
D(t), (2.5)

Ẋ(t) = −pX(t)+ p(I(t)− IB), (2.6)

İ(t) = −n(I(t)− IB)+


τS
S(t), (2.7)
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The meaning and purpose of the state variables in (2.1) - (2.7) are as follows:
D(t) mg/dL and D(t) mg/dL are the primary and secondary compartments
belonging to glucose, where τD time constant determines how long it takes the
meal is absorbed after consumption in time. S(t) mU/L and S(t) mU/L are
the primary and secondary compartments belonging to insulin, where τS time
constant determines how long it takes the insulin absorbed after injection (to
the extracellular space) in time. The G(t) mg/dL is the blood glucose (BG)
concentration – the so–called glycemia –, I(t) mU/L is the blood insulin concen-
tration and X(t) 1/min is the insulin-excitable tissue glucose uptake activity –
which describes the connection between the blood’s glucose and insulin levels,
respectively.

From system engineering point of view the external glucose, namely, the food
intake can be handled as disturbance. In this case d(t) g/min is the disturbance
input. It can be inserted to the D(t) via the

(
(Ag)/(MwGVG)

)
C complex

which describes the bio-availability of the glucose from complex carbohydrates.
The u(t) mU/min control signal – the injected insulin – is directly connected to
S(t). More detailed description of the used model parameters can be found in
Table 2.1 and in [96, 114].

Table 2.1: The applied parameters of the models in this study [96, 114, 115].
Notation Value Unit Description
GB  mg/dL Basal glucose level
IB . mU/L Basal insulin level
p . /min Transfer rate
p . /min Transfer rate
p . L/(mU min) Transfer rate

n . /min
Time constant for
insulin disappearance

BW  kg Body weight
VI .BW L Distribution volume of insulin
VG .BW L Distribution volume of glucose
MwG . g/mol Molecular weight of glucose
Ag . − Glucose utilization

C . mmol/L
Conversion rate between
mmol/L and mg/dL

τD  min
Carbohydrate (CHO) to glucose
absorption constant

τS  min Insulin absorption constant
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2.2.1 Simulation Results for Treating T1DM with RHC
During the development of the appropriate cost function – which fits to the
given problem – the specificities of the model (2.1) – (2.7) should be taken into
account. The main limitation coming from the model is the amount of injectable
insulin and the fact that I do have only one control signal. Due to the applied
control signal instances from the given horizon are independent variables in the
optimization problem applying a specific form of limitation on them – a “bias”
– is reasonable. Thus, the control signal in this construction should be limited
in accordance with the phenomenon to be controlled. Further, not the control
signal itself, but another variable should be selected as independent variable to
avoid the initial value problems causing the rough numerical approximation at
the beginning of the optimization. This is caused by the high non-linearity in the
model.

Another property of the model that only the G(t) blood glucose level can be
measured. Thus, only this state variable can be embedded into the cost function
to be developed. I do not have internal information about other state variables of
the process to be controlled during action – which is the internal operations of a
human being –, namely, this limitation has to be taken into account. Due to such
reasons I have applied a more specific cost function defined in (2.8):

min
{x, ...,xF }
{u ...,uF−}

F−∑
i=

J(xi,ui)+Φ(xF)

subject to
xi+−xi

∆ t
− f (xi,ui) = 0,

(2.8)

and {λ, . . . , λF−} are the Lagrangian multipliers – which are used in accordance
with the optimization task to be solved by the reduced gradients method.

min
{G, ...,GF }
{v ...,vF−}

F−∑
i=

J(Gi,ui)+Φ(GF)

subject to
xi+−xi

∆ t
− f (xi,ui) = 0

, (2.9)

where ui = ubias + tanh(vi). We have developed a strongly non-linear cost func-
tion in which all requirements can be embedded against the control action to be
reached during control.

J(G,u)
de f
=

∣∣∣∣GN −G
A

∣∣∣∣α

+B
∣∣∣∣ u
A

∣∣∣∣α

, (2.10)
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Φ(GF)
de f
=

∣∣∣∣∣G
N
f inal −G f inal

A

∣∣∣∣∣
α

. (2.11)

The tracking error in (2.10)–(2.11), namely, the deviation of the realized
blood glucose level G(t) from the nominal blood glucose level GN(t) can be
calculated as GN

i −Gi at the grid points. The absolute value of this difference can
be determined by A and A parameters which contribute the belonging level of
“penalty” prevails in the cost function. In that case if α >  and α >  beside
|GN −G|< A and |GN

f inal −G f inal |< A, then the contribution to the cost function
is low. However, if |GN −G|> A and |GN

f inal −G f inal |> A then due to the power
terms the contribution to the cost of these terms are drastically increasing. The
α and α constants can be used for different purposes. α = α =  provides
proportional contribution, namely, the pure deviation will be better prohibited.
Although, if α ,α < , then the smaller deviations will be prohibited better
than the bigger ones. The role of the A and α parameters are similar, namely,
the applied control input can be prohibited by applying them. The B parameter
allows to modify the enforcement of the effect of the control signal in the cost
function.

In order to test the realized control framework I investigated two scenarios. In
the first scenario 25 g CHO was considered – 5 g over 5 minutes in each 240th

time instance from the 60th time instance. In the second scenario we considered
50 g CHO intake – 10 g over 5 minutes in each 240th time instance from the
60th time instance. In both cases 200 time horizons have been considered within
10 grid points, thus the total simulated time domain was 2000 minutes. The
resolution ∆ t was 1 minute in accordance to the properties of the model.

The applied cost function parameters (which represent the control parameters
in this regard) can be found in Table 2.2. It should be noted that I have used
permanent reference trajectories in both cases denoted by GN = 90 mg/dL in
(2.9)–(2.11).

Therefore, in accordance with the aforementioned details, the goal of the con-
trol becomes to keep the GN = 90 beside respecting the predefined ubias. In this
manner – via the cost function – the deviations from these predefined values have
been “punished”, namely, the value of the cost function became higher.
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Table 2.2: The parameters of the applied cost function (2.10).
Scenario 1 Scenario 2

A  mg/dL  mg/dL
α  
A  mU/min  mU/min
α  
A  mg/dL  mg/dL
α  
ubias  mU/min  mU/min
GN  mg/dL  mg/dL

2.2.1.1 Results of Scenario 1

In the followings the results of Scenario 1 are presented. First, the disturbance
signal is shown by Left Hand Side (LHS) of Fig. 2.1. The applied – calculated
– control signal can be seen on Right Hand Side (RHS) of Fig. 2.1. It is clear
that the controller is able to administer the insulin in accordance to (2.9)–(2.11)
where the ui = ubias + tanh(vi) is prevailed in the control action.

Figures 2.2 show the absorption of glucose and its appearance in the blood
with the dynamics determined by the model. Figures 2.3 show the absorption of
insulin from the interstitium and its appearance in blood.
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Figure 2.1: Applied disturbance (CHO intake) – 5 g over 5 minutes at each 240th

time instance (LHS) and the calculated control signals (RHS). The upper figure
represents the whole time horizon. The lower figure shows a piece of the whole
time horizon between 0 and 40 minutes.
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Figure 2.2: Variation of the first (LHS) and second (RHS) states of the glucose
absorption subsystem.
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Figure 2.3: Variation of the first (LHS) and second (RHS) states of the insulin
absorption subsystem.

The main point can be seen on Fig. 2.4. The controller is able to satisfy the
determined conditions and the BG level (G(t)) is inside the predefined range –
no hypo- and hyper-glycemia occurred. The BG level approaches the selected
reference trajectory (GN) as it is expected.

On Figs. 2.5 the the variation of blood insulin level and intermediate state
variable can be seen. X(t) determines how the blood insulin level affects the
blood glucose level, namely, the connection between them.
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Figure 2.4: Variation of the blood glucose level over time
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Figure 2.5: Variation of insulin levels and variation of the insulin-excitable tissue
glucose uptake activity over time

2.2.1.2 Results of Scenario 2

The applied disturbance input in accordance with the detailed protocol can be
seen on LHS of Figure 2.6. In this case, we have applied higher inputs in order to
be sure that the developed control framework is able to deal with unfavourable
external excitation.

Figure 2.6. (RHS) is the calculated and administered control signal. As it is
visible, the dynamics of it is significantly different than the previous case due to
the different settings in the applied cost function.

Figures 2.7. represent the absorption of the glucose and its appearance in
the blood with the dynamics determined by the model. Figures 2.8. show the
absorption of insulin from the interstitium to the blood.
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Figure 2.6: Applied disturbance (CHO intake) – 10 g over 5 minutes at each 240th

time instance (LHS) and the calculated control signals (RHS). The upper figure
represents the whole time horizon. The lower figure shows a piece of the whole
time horizon between 0 and 40 minutes.
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Figure 2.7: Variation of the first (LHS) and second (RHS) states of the glucose
absorption subsystem.
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Figure 2.8: Variation of the first (LHS) and second (RHS) state of the insulin
absorption subsystem.
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The main result can be seen on Fig. 2.9. Though I drastically increased
the disturbance input signal the controller was able to deal with the situation
and realized appropriate control action – without domain violation from the
determined ubias point of view. The blood glucose level was inside the selected
healthy range without any hypo- or hyper-glycemia. Moreover, the BG level
oscillated around the reference trajectory – GN – as it was expected.

Figs. 2.10 represent the variation of the blood insulin level and the interme-
diate state X(t). Due to the higher frequency of the control signal these are os-
cillating with a higher frequency as well – which is directly reflected in the blood
glucose level as well, since the X(t) mediates the insulin’s effect on G(t).
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Figure 2.9: Variation of the blood glucose level over time
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Figure 2.10: Variation of blood insulin and variation of the insulin-excitable tissue
glucose uptake activity over time
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2.2.2 Brief Conclusions
In this research my main goal was to design a RHC which is able to control the
given patient model. For this purpose special non-quadratic cost functions have
been suggested, and by the use of a specific model NP-based simulations were
executed for two special scenarios by the use of the services of the MS EXCEL –
VBA – Solver combination.

It is clearly visible in Figures 2.4. and 2.9. that the main requirement has been
satisfied, since, the BG level was kept by the controller in the healthy range.

2.3 Novel Adaptive Extension of the RHC by Fixed
Point Transformation–based Approach

“Model Predictive Control” (MPC) is a widely used approach in technical (e.g.
[44]) and economic (e.g. [57]) application areas. The traditional MPC is formu-
lated within the framework of a cost function–based optimal control in which
the dynamics of the controlled system (i.e. the set of its equations of motion)
mathematically is taken into account as a “constraint”. The minimized cost
function normally contains terms that depend on the tracking error, the control
signal itself, and optionally, a separate term that gives “extra contribution” to the
tracking error at the terminal point of the horizon. In the NP–based approximation
the system’s state variables and the control signals are considered over a discrete
time–grid in each point of which Lagrangian multipliers determine the “reduced
gradient” that is driven to zero numerically in order to find the solution. This
solution consists of the estimated control signals and the estimated state variables.
Whenever the available dynamic model is imprecise, this optimal design can
be applied only for consecutive finite horizons, because the actual state of the
controlled system propagates according to its exact dynamics. To reduce the
effects of modeling imprecisions, for the next horizon–length design, the actually
measured state variable at the last point of the previous horizon is used as starting
point for the next one (e.g.[7]). In some special cases, this numerical calculation
can be simplified. For instance, when the system’s dynamics corresponds to
an LTI model, and the cost functions have quadratic structure, the classical
“Linear Quadratic Regulator” (LQR) is obtained [1], in which Riccati differential
equation [19] is obtained for a symmetric matrix with a terminal condition. This
matrix appears in a “driving term” in the separately obtained differential equation
for the state variable with the given initial condition. In many applications
state–dependent Riccati equations are in use (e.g. a survey paper in [116]). The
mathematical framework of this traditional MPC can hardly be combined with
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the Lyapunov function–based adaptive control. Certain approaches combining
MPC and Lyapunov’s stability theorem can be found in the literature (e.g. [76],
[112]). In 2009 in [25] an alternative approach was introduced in adaptive control
that, instead of Lyapunov’s “2nd Method”, was based on Stefan Banach’s “Fixed
Point Theorem” [26].

The idea of transforming our task into a fixed point problem and solving it via
iterations, has very early roots in the 17th century as the Newton-Raphson Algo-
rithm, that has many applications even in our days (e.g. [117]). In 1922 Banach
extended this way of thinking to quite wide problem classes [26]. According to his
theorem, in a linear, normed, complete metric space (i.e. the “Banach Space”) the
sequence created by the contractive map ψ : IRm 7→ IRm, m ∈ IN as xs+ = ψ(xs)
is a Cauchy Sequence that converges to the unique fixed point of ψ defined as
ψ(x?) = x?. (A map is contractive if ∃ ≤ H <  so that ∀x,y elements of the
space ‖ψ(x) −ψ(y)‖ ≤ H‖x− y‖.) In [118] the following transformation was
used for this purpose: a real differentiable function ϕ(ξ ) : IR 7→ IR was taken with
an attractive fixed point ϕ(ξ?) = ξ?. It was used for the generation of a sequence
of iterative signals as

q(i+) =
[
ϕ(A‖x(q(i))− xDes‖+ξ?)−ξ?

] x(q(i))− xDes

‖x(q(i))− xDes‖
+q(i) , (2.12)

in which the Frobenius norm was used. In (2.12) A ∈ IR is an adaptive parameter.
For q(k) = q? that provides x(q?) = xDes, (2.12) yields that q(k+ ) = q(k), that
means that q?, i.e. the solution of our task, is the fixed point of this function. The
convergence of this sequence was investigated in [119] by making the first order
Taylor series approximation of ϕ(ξ ) in the vicinity of ξ? and that of x(q) around
q?. It was found that if the real part of each eigenvalue of the Jacobian ∂x

∂q is
simultaneously positive or negative, an appropriate parameter A can be so chosen
that it guarantees the convergence. This result for the redundant robot arms
of non–quadratic Jacobians in [78] was so applied that instead of the original
problem xDes = x(q) the modified one JT (q)xDes = JT (q)x(q) was solved. By
the Taylor series approximation of x(q) around q? it can be shown that the
convergence will be determined by the positive semi–definite matrix JT (q)J(q)
that has non–negative eigenvalues. (The zeros eigenvalues cause “stagnation”
instead of infinite velocities in the singularities.) For adaptively tracking the
“optimized trajectory” a similar transformation into a fixed point problem was
applied.

In my research I have combined this newly proposed method with the RHC
on the basis of the following simple idea. As in the classical optimal control, on
the basis of the approximate model, both the state variables and the control signals
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are estimated for the horizon. However, instead of exerting the so obtained control
signals, the system adaptively tries to track this “optimized trajectory”. Though,
this approach cannot guarantee the global asymptotic stability because it works
with a bounded basin of convergence, its applicability was studied in case of hard
non–linear control tasks as in anaesthesia control (e.g. [120], [121]), control of
dynamically singular under-actuated mechanical systems (e.g. [122]), treatment
for “Type 1 Diabetes Mellitus” (e.g. [123]), control of non–linear neuron models
(e.g. [124], [125]), solution of the inverse kinematic task of robots [78], etc.
On this reason the main novelty of my research consists in the combination of
the “Fixed Point Transformation–based Adaptive Control” (FPTBAC) with the
traditional RHC controllers. Because the restrictions in the allowed structure of
the cost functions in the classic LQR evidently means a serious limitation.

2.3.1 Simulation Examples for Adaptive RHC

For the sake of simplicity an LTI–type 1st order model

ẋ = f (x,u)
de f
= −cx+du , c, d >  (2.13)

given in (2.13) was considered. Its homogeneous version physically corresponds
to the motion of a small mass–point connected to a linear spring in a viscous
fluid. In this approach the acceleration’s phase is neglected since the mass–point
quickly achieves the velocity at which the viscous drag force compensates the
spring’s force that is proportional to its dilatation or contraction ±x. On this
reason, in this example the measurement unit of x is assumed to be m, and the
control signal u is assumed to be measured in N units, while the dimension of ẋ is
ms−.

The exact model parameters were cE = s− and dE = m · s− ·N−. In the
first set the approximate model values were cA = s− and dA = m · s− ·N−

that corresponds to underestimated values.

In the second set the approximate model values were cA = s− and
dA = m · s− ·N− that corresponds to overestimated values.

In the investigation  step horizon length was applied for the time-resolution
∆ t = − s. In the adaptive case, in the role of the trajectory to be tracked the
trajectory optimized by the use of the approximate dynamic model was placed.
The control parameters are given in Table 2.3.
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Table 2.3: The control parameters
Parameter Numerical value
Λ .s−

Kc m · s−

Ac .×− s ·m−

Bc −
A .m
α 
A .×−N
α 
A .×−m
α 

In the case of the underestimated parameter values, Fig. 2.11 reveals that the
restricted control force caused corrupted tracking of the “Reference Trajectory”
“xRef”, but the “Optimized Trajectory” “xOpt” and the “Realized Trajectory”
“xReal” in both cases were very close to each other. Subtle details in the track-
ing errors are revealed in Fig. 2.12. It can be clearly seen that due to the modeling
errors the classic RHC works with increasing tracking error within a bounded
horizon, while the adaptive version, after producing little transients, well tracks
the optimized trajectory. The control forces are given in Fig. 2.13 according to
which it can be stated that the adaptive deformation caused considerable modifi-
cations in the control forces “uOpt” and “uAd”. The operation of the adaptive
controller is illustrated by Fig. 2.13 (bottom RHS), revealing that the “realized”
values well track the “desired” ones and they considerably differ from the “de-
formed” values. It can be seen that at the starting point of the horizon the adaptive
controller generates some transients that in the first step a little bit corrupt the
tracking error but this effect later is compensated by the adaptivity.
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Figure 2.11: Trajectory tracking of the classic RHC (top LHS), its novel adap-
tive variant (top RHS) and their zoomed in excerpts (bottom LHS & RHS) for
simulation series 1

Figure 2.12: Trajectory tracking errors of the classic RHC (top LHS), its novel
adaptive variant (top RHS) and its zoomed excerpts (bottom LHS & RHS) for
simulation series 1
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Figure 2.13: The control forces exerted by the classic RHC (top LHS) and by its
novel adaptive variant (top RHS and bottom LHS) and zoomed in excerpts of the
time-derivatives of the optimized, desired, deformed and the realized values of the
novel adaptive RHC (bottom RHS) for simulation series 1

In the second set the approximate model values were cA = s− and dA =
m · s− ·N− that corresponds to overestimated values. The results are displayed
in Figs. 2.14 and 2.15 that substantiate the same observations that were done in
connection with that of series 1.
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Figure 2.14: Trajectory tracking of the classic RHC (top LHS), its novel adap-
tive variant (top RHS) and their zoomed in excerpts (bottom LHS & RHS) for
simulation series 2

Figure 2.15: Trajectory tracking errors of the classic RHC (top LHS), its novel
adaptive variant (top RHS) and its zoomed excerpts (bottom LHS & RHS) for
simulation series 2

For the following alternative adaptive parameter settings values quite similar
results were obtained Ac = .× − s ·m−, Kc = m · s−, and Ac = .×
− s ·m−, Kc = m · s− (with Bc = − in each case) that explains the name
“Robust Fixed Point Transformation”: for achieving good convergence not very
precise estimation is needed for the control parameters.

39



2.4 Thesis Statement I.
I have proposed significant improvement of the traditional Nonlinear
Programming–based Receding Horizon Controllers from two points of view:
a) instead of the usual quadratic cost functions I suggested nonquadratic ones
applying various, qualitatively interpreted format parameters; b) I invented the
idea of the adaptive RHC controller by combining its original concept with the
Fixed Point Transformation–based adaptive controllers: the trajectory com-
puted by the traditional optimization was adaptively tracked instead using the
traditionally estimated control forces. Based on the concept a) a solution was
elaborated and simulated to treat patients suffering from Illness Type 1 Dia-
betes Mellitus (T1DM) to maintain the Blood Glucose (BG) level in the pro-
posed range. The applicability of concept b) was illustrated by simulations for
a simple first order paradigm. In both cases the MS EXCEL’s embedded Solver
solution was used to achieve the targeted results.

2.4.1 Substatement I.1
In order to control Type 1 Diabetes Mellitus a special dynamic system model
was taken from the literature (the “Minimal Model”) and subsequently it was
modified. The essence of the modification was an extension with a sub-model
to describe the absorption of the external glucose and insulin intake because
during the daily routine these substances are not directly injected to the blood
stream, therefore the characteristic of their appearance in blood has elongated
dynamics that is better treatable than a “peak kind” ingress. Two different sce-
narios have been investigated to test my approach. In the first scenario, I applied
“soft” disturbance and smaller penalties via the developed cost function in order
to make sure that the controller design is possible at all and appropriate control
action can be achieved by using the continuous optimization. In the second test
scenario I used unfavourable, cyclic disturbance signal with high amplitude to
test the “robustness” of the proposed controller. The developed RHC controller
was able to handle the load and provided satisfactory control action. Further-
more, in both cases the BG level was kept in the predefined healthy range. In its
structure the suggested approach can be further improved by the combination
with a Fixed Point Transformation–based adaptive solution.

2.4.2 Substatement I.2
In case of the combination of the RHC and Fixed Point Transformation
(FPT) a novel adaptive RHC controller was suggested in which the available
approximate dynamical model of the controlled system is used as a constraint
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for the calculation of the estimated optimized trajectory and the control signals
over a finite time–grid in a Nonlinear Programming (NP) approach. In
contrast to the traditional RHC that exerts the so estimated control signals
and consecutively redesigns the tracking horizon, in my approach the so
estimated optimized trajectory is adaptively tracked by a Robust Fixed Point
Transformation–based Adaptive controller. The applicability of this approach
is demonstrated by a comparative analysis of the operation of the traditional
and the novel adaptive RHC controllers for a simple LTI system and strongly
non–linear cost functions that exclude the use of the usual LQR approach.
These investigations serve as the first step towards developing the adaptive RHC
based on NP and FPT–based design.

Related own publications: [A. 1], [A. 2]
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Chapter 3

Adaptive RHC for Special Problem
Classes Treatable by the Auxiliary
Function Approach

Non–linear Programming provides a practical, reduced–complexity solution for
the realization of Model Predictive Controllers in which a cost function repre-
senting contradictory limitations is minimized under the constraints that express
the dynamical properties of the system under control. For non–linear system
models and non–quadratic cost functions the solution over a finite time–grid
can be obtained by the use of Lagrange’s Reduced Gradient Method that needs
complicated numerical calculations. In this research it is shown that under not
too limiting conditions this procedure can be replaced by a simple fixed point
seeking iteration based on Banach’s Fixed Point Theorem. The simplicity of the
proposed algorithm widens the possibility for the practical applications of the
Receding Horizon Control method. The same algorithm is used for adaptively
and precisely tracking the “optimized trajectory” that can be constructed by
the use of a dynamic model of “overestimated” parameters in order to evade
dynamical overloads in the control process. To illustrate the efficiency of the
method the Receding Horizon Control of a strongly non–linear, oscillating
system, the van der Pol oscillator [126, 127] is presented. In the simulations three
different parameter settings are considered: one of them produces the trajectory
to be tracked, the second one is used for the optimization, and the third one serves
as the model of the controlled system.
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3.1 Scientific Antecedents
The realization and simple applicability of the well known “Model Predictive
Controllers” (MPC) is famous for the use in different fields of life in case of
controlling the systems, as discussed with details in Chapter 2.3. It was pointed
out that in a “general case”, in which the cost functions do not have quadratic
structure and the daynamic model under consideration is not of LTI–type, the
Newton–Raphson method [128] can be used for finding some starting point on the
hyper–surface that represents the constraints, then Lagrange’s Reduced Gradient
Method [8] can be applied for finding the local optimum. It was mentioned, too,
that for not very big problem the MS EXCEL’s Solver Package (provided by an
external firm Front–line Systems, Inc.) in combination with a little programming
efforts in Visual Basic for Applications (VBA) in the background serves as an
excellent tool for finding the solution.

It is a reasonable expectation that this complicated procedure can be evaded in
the control of a system class in which a) the cost functions contain separate dif-
ferentiable contributions for penalizing the tracking error and the too big control
effort, and b) the mathematical form of the system’s model under control is ab ovo
known. In this case the appropriate gradients can be analytically calculated, and
the EXCEL – VBA programming background does not offer further convenience,
especially if the GRG algorithm can be replaced by a simpler one. This program
is briefed in the next section.

3.2 Introduction of the “Auxiliary Function”
The NP approach of MPC uses a discrete time–grid over which the cost function
in (3.1) has to be minimized

N−∑
i=

J(xi,ui)+F(xN) , (3.1)

where F(xN) gives an “extra weight” to the last point of the horizon under con-
sideration. The optimization must be done under various constraints. The main
constraint expresses the physical properties (i.e. dynamic model) of the controlled
system ẋ = f (x,u) by approximating it over the time–grid as xi+−xi

∆ t ≈ f (xi,ui),
in which x denotes the state variable, and u is the control signal. By the use
of Lagrange’s RGM method he originally invented for use in the formulation of
Classical Mechanics in [8] the “Auxiliary Function” (AF) can be introduced as
Φ = Φ({x}, {u}, {λ })
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Φ =

N−∑
i=

[
J(xi,ui)+λ

T
i

(
xi+− xi

∆ t
− f (xi,ui)

)]
+F(xN) (3.2)

that has neither maximum nor minimum in the space of its variables, however,
in the local optimum its partial derivative according to its each independent
variable must be . The ∂Φ

∂λ
=  conditions, i.e. the  derivatives according to the

Lagrange multipliers express the requirement that the solution must be located
on the hyper–surface that is determined by the constraint equations in which
the constraint terms are set to . The ∂Φ

∂x =  equations mean that the reduced
gradient must be  in the local optimum, while the partial derivatives according
to the control signal components have to satisfy the extra conditions ∂Φ

∂u = .

In general, when no idea on the solution we have, all the complex numerical
procedure described in Chapter 2.3 must be executed.

In simpler cases the above numerical procedure can be evaded: e.g. the opti-
mization problem in the case of the calculation of the Moore–Penrose pseudoin-
verse can be solved “manually” simply by inverting a quadratic matrix if it is not
singular. In the case of quadratic cost functions and LTI dynamic models certain
“analytical manipulations” of the equations can be done “by hand” and we arrive
at the solution of the Riccati equation. (Traditionally this step is important be-
cause Riccati elaborated a trick by the use of which the solution of this non–linear
differential equation can be obtained by solving linear equation.) In [81] it was
realized, that even if the cost functions are not quadratic, the problem has similar
qualitative features than in the case of the quadratic cost functions, though in this
case no manipulation by hand is possible to arrive to the Riccati equation. Instead
of that an FPI–based numerical procedure was suggested for solving the problem
even for not LTI dynamic models.

3.3 Analogy of the RHC with The Solution of The
Inverse Kinematic Task of Robots

The task is to find appropriate joint coordinates q for a given xDes “desired posi-
tion” expressed in Cartesian frame fixed to the workshop. In the case of redundant
robots, in which kinematic redundancies make the arm structure quite dexterous,
this task has normally ambiguous solution. Furthermore, closed form solution of
the inverse kinematic task exists only for special arm constructions, e.g. in the
case of a PUMA–type robot [129]. As a general possibility, the differential solu-
tion based on the use of the Jacobian ∂x

∂q in a function of a scalar variable ξ ∈ IR
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as x(ξ ) = x(q(ξ )) is considered in the equation;

dx j

dξ
=
∑

i

∂x j

∂qi

dqi

dξ
≡
∑

i

J ji
dqi

dξ
, (3.3)

where the initial conditions as x(ξini) = xini and q(ξini) are known. The tradi-
tional solutions contain some generalized inverse as e.g. the Moore–Penrose
Pseudoinverse [130, 131] in which a quadratic matrix to be inverted is singular
in, and ill–conditioned in the vicinity of the kinematic singularities of the robot
arm. The general problem is that such a solution generates huge joint coordinate
time–derivatives therefore it is expedient to “tame” the original task to evade the
numerical inconveniences, as e.g. in the method of Damped Least Squares [132].

As an alternative of the traditional approach in [78] the original task was trans-
formed into a fixed point problem that subsequently was solved by simple itera-
tion, discussed in detail in section 2.3 and equation (2.12). Its special advantage is
that it automatically shows stable solution in and in the vicinity of the kinematic
singularities without the use of any “complementary trick”, and automatically se-
lects one of the ambiguous solutions. On this reason the use of this algorithm for
driving the gradient of the auxiliary function to zero in the novel RHC controller
was suggested.

3.4 Simulation Investigations for the van der Pol
Oscillator

The investigated strongly non–linear 2nd order physical system was the van der
Pol oscillator invented in 1927 [126]. Its equation of motion is given in (3.4)

ẍ =
−kx−b(x−d)ẋ− cx+ eu

m
≡ f (x, ẋ,u) , (3.4)

in which u is the control force, x and ẋ are the state variables. Parameters k > and
c >  describe a spring that “strengthens” with increasing extension x, parameter
b >  describes viscous damping if x > d, and excitation for x < d. Due to it the
state x≡  is an unstable equilibrium point: the smallest disturbance brings about
excitation and drives the system into non–linear oscillation that is bounded by the
dissipative nature of the term −b(x− d)ẋ for x > d. Parameter e describes the
system’s sensitivity for the control force u. The appropriate model parameters are
given in Table 3.1. For the dynamic control Λ = .s− was used, parameter A
in equation (2.12) was Adc = −.. For the purpose of the optimization various
values were studied for Aopt . The time resolution of the grid was ∆ t = − s, the
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Table 3.1: The applied model parameters
Param. Exact Approx. Traj. generator

m . . .
k . . .
b . . .
d . . .
c . . .
e . . .

horizons consisted of G =  grid points, that, in the case of a 2nd order system
corresponds to 8 independent state variables (the initial conditions correspond to
two independent grid points at the beginning of the horizon), and on the same
reason we have 8 independent Lagrange multipliers and 8 independent control
signals that determine the system’s motion over the grid. No special terminal cost
was applied, and the “auxiliary function” had the structure as follows:

Ψ =

G∑
j=

∣∣∣∣∣xN
j − x j

Ax

∣∣∣∣∣
αx

+Bu

G−∑
j=

∣∣∣∣ u j

Au

∣∣∣∣αu

+

G−∑
j=

λ j
[
x j+−x j++ x j

]
+

+

G−∑
j=

λ j
[
−∆ t f (x j, ẋ j,u j)

]
,

(3.5)

in which for αx >  and αu >  the tracking error and the control force are
well tolerated if |xN − x| < Ax and |u| < Au, respectively, but they are strongly
penalized over these limits. In (3.5) the term f (x j, ẋ j,u j) can be approximated as
f (x j,

x j+−x j
∆ t ,u j), and the terms in ∇Ψ and the Jacobian of the problem can be

calculated in closed form for optimization. (For sparing room these derivatives
are not detailed here.)

To highlight the role of the “auxiliary function”, it has to be noted that the
original numerical procedure based on the calculation of Lagrange’s reduced
gradient stops at the local optimum at which ∂Ψ

∂λ
=  guarantees that the solution

is located on the hyper–surface determined by the constraints, while the ∂Ψ

∂x = 
equation means that the “reduced gradient” is zero, therefore no better point in
the vicinity of the found solution exists. In very special cases, e.g. in the case
of the Moore–Penrose pseudoinverse [130, 131], the whole numerical procedure
can be evaded since the ∇Ψ =  equations can be so utilized that the solution
can be immediately obtained by a conventional matrix inversion. In other cases,
as e.g. in the case of the Jacobi iteration [133], certain equations that appear in

46



the set ∇Ψ =  can be utilized for expressing some independent variables of the
problem as the function of other ones, and in this manner at least the dimensions
of the numerical procedure can be reduced. In our case ∇Ψ was directly driven
to  with the fixed point iteration–based procedure.

In equation (2.12) the function ϕ(x) = x
+. was in use. In the investigations

the trajectory generator was excited with a constant force Fγ = .N that makes
it settling down at the damped region. The control parameters were set as follows:
Ax = .m, αx = ., Au = .N, αu = ., Bu = . The RHC algorithm con-
tained 100 internal iterations. The Aopt = −× − setting represents too slow
iteration. Figure 3.1 reveals that the “optimized” trajectory is very far from the
“nominal” one, and that the internal iteration did not result in good improvement
of ∇Ψ . The counterpart of Fig. 3.1 for Aopt =−×− is displayed in Fig. 3.2.
It reveals that the tracking error is practically kept under .m that is compatible
with the setting Ax = .m, αx = .. It is also clear that the ‖∇Ψ‖ went down
from the value  to ≈ ., i.e. the inner iteration was really responsible for
driving ∇Ψ towards zero.

Figure 3.1: Trajectory tracking for too small adaptive parameter in the optimiza-
tion (Aopt =−×−)
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Figure 3.2: Trajectory tracking for appropriate adaptive parameter in the opti-
mization (Aopt =−×−)

Regarding the adaptive tracking of the optimized trajectory it can be seen
that in both cases the adaptivity that was switched on in the beginning of the 2nd

horizon, produced good results. Figure 3.3 explains its reason: the “desired”
2nd time–derivatives are well approximated by the realized ones while they
considerably differ from the “adaptively deformed” values. The significance of
the dynamic adaptivity in trajectory tracking is also substantiated by Fig. 3.4, that
describes the case in which this dynamic adaptivity was switched off: the realized
trajectory even does not approach the optimized one.

In the LHS of figure 3.5 explains the reason for the remnant part of ∇Ψ : the
minimal eigenvalue is , therefore the theoretically expected occurrence of “stag-
nation” was substantiated by the computations. The RHS of figure 3.5 reveals
great fluctuations in the Lagrange multipliers and the control forces. It worths
noting that in [80] similar fluctuations were observed in connection with a similar
problem solved by the use of the EXCEL–Solver–Visual Basic apparatus.

48



Figure 3.3: The second time-derivatives in the adaptive dynamic tracking of
the optimized trajectory for appropriate adaptive parameter in the optimization
(Aopt =−×−)

Figure 3.4: Trajectory tracking without dynamic adaptivity for appropriate adap-
tive parameter in the optimization (Aopt =−×−)
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Figure 3.5: The maximal and minimal eigenvalues of JT J in the internal itera-
tions and the Lagrange multipliers and the control signals for appropriate adaptive
parameter in the optimization (Aopt =−×−)

3.5 Simulations for the Duffing Oscillator
In this example the introduced simple iterative solution is investigated for the
Adaptive Model Predictive Control (AMPC) for another strongly nonlinear
dynamic paradigm, the Duffing oscillator. The main idea is again the replace-
ment of the numerically much more complex Reduced Gradient method in the
optimization task under constraints when the cost function has relatively simple
structure.

The considered extension of the general equation of motion of the Duffing
oscillator is explained in (3.6).

mq̈ =−kq− lq−bq̇+u , (3.6a)

q̈ =−
k
m

q−
l
m

q−
b
m

q̇+


m
F , (3.6b)

q̇i ≈
qi+−qi

∆ t
, (3.6c)

q̈i ≈
q̇i+− q̇i

∆ t
=

qi+−q+−qi++qi

∆ t
≈ qi+−qi++qi

∆ t
(3.6d)

At the “auxiliary function” can be formulated as follows:

Φ =

N−∑
i=

∥∥∥∥qN
i −qh

i
Aq

∥∥∥∥αq

+

∥∥∥∥qN
N −qO

N
AF

∥∥∥∥αT

+

N−∑
j=

∥∥∥∥ Fj

AF

∥∥∥∥αF

+

N−∑
i=

λi

[
−

k
m

q̇i−

−
l
m

q̇i −
b
m

(
q̇i+− q̇i

∆ t

)
+

Fi

m
−

q̇i+−q̇i++ q̇i

∆ t

]
.

(3.7)
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The appropriate partial derivatives are so complicated that they are not detailed in
the Thesis. The details were published in [A. 3].

Since in the calculations a horizon consists of  grid points, the first two ones
correspond to the “initial state” of the system, i.e. the “initial coordinate” and
the “initial velocity”, therefore the free variables of the optimum problem are
the coordinate values x in grid points ,, and . In similar manner the control
force values u in the grid points ,, and  are the independent variables of
the problem. Since the system response is the second time–derivative of x that
numerically can be estimated from minimum  grid points we have  Lagrange
multipliers.

3.5.1 Simulation Results

The appropriate model parameters of the Duffing oscillator considered are given
in Table 3.2.

Table 3.2: The control parameters
Parameter Exact Approximate Traj. Generators
m[kg] . . .
k[Nm−]   
l[Nm−] . . .
b[Nms−] . . .

In the cost function the “original form” of the tracking error contribution

was hq(xN − x) =
(
|xN−x|

Ax

)αx

, and for the prohibition of the too big control ef-

fort hu(u) =
(
|h|
Au

)αu
were used. For very big αx the penalty has very fast in-

crease in the region
∣∣xN − x

∣∣ > Ax and it is very small for
∣∣xN − x

∣∣ < Ax. Since
for great αx this may result in numerical difficulties, these power functions were
“tamed” in the following manner: at first the cost functions were modified as

h = ln
(
+M

[sgn(x)x
A

]α)
, and in its 1st and 2nd time–derivative the function

sgn(x) was considered as a classical function that cannot be differentiated in a
single point x = . In the next steps, in the derivatives, this function was “soft-
ened” as sgn(x)≈ tanh

( x
w

)
. The 1st and 2nd order derivatives of the cost function

had the structure:
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x ′ =
α

Ax
M



+
(

tanh( x
w )x

Ax

)α

M

(
tanh( x

w)x
Ax

)
tanh

( x
w

)α−
, (3.8a)

x ′′ =
α

A
x

M

−Mα

(
tanh( x

w )x
Ax

)(α−)

+M
(

tanh( x
w )x

Ax

)α


+

(
tanh( x

w)x
Ax

)α

M
+(α −)

(
tanh

( x
w

)
x

Ax

)α−

. (3.8b)

The other control parameters we used are: Au = .,αu = .,Bu = × ,
where Au used for basis, and αu is an exponent for punishing the control force. Bu
is the weighting coefficient or the control force restriction in the cost function,and
for the starting value for tuning u variable was used is uini = . was taken. The
control input used for dynamic tracking is Λ = .s−,w = .× − as used
for softening of the cost function for large costs.

In the sequel the following essential parameters were varied: αx =  contribu-
tion was corresponds to “soft tracking”, αx =  corresponds to “sharp tracking”.
Parameter Ax = × − means “strict tracking”, while Ax = × − was used
for “loose tracking”. The parameter in the scheme in Fig. 3.6, A = −× −

corresponds to “slow dynamic tracking”, and A =−× means “fast dynamic
tracking”. In the figures depicted below, results for the “nominal”, “optimized”,
and “realized” trajectories have been clarified where the correlations between
them can be observed. For the varied parameters, similarly, the difference be-
tween the nominal and optimized trajectories, and the real part of the eigenvalues
also show dissimilar situations.

In Fig. 3.6 the adjustment of “fast, loose, and sharp” parameters,for the Nom-
inal, Optimized, Realized Trajectory & Difference,The Norm of the Gradient:
Iterations=100 and The Real Part of the JT J Eigenvalues, in Fig. 3.7 parameters
for “fast, loose, and soft”, Fig. 3.8 “fast, strict, and sharp” adjusted parameters,
in Fig. 3.9 “fast, strict, and soft”, in Fig 3.10, “slow, loose, and sharp”, whereas
in Fig. 3.11 “slow, loose, and soft” parameters adjusted for tracking were cho-
sen. In Fig. 3.12 “slow, strict, and sharp” whereas in 3.13 “slow, strict, and
soft” parameters were explained. The conditions of trajectories illustrate an as-
sorted scenario where the “optimized” and “realized” trajectories gradually track
and meet the “nominal” one after exhibiting an initial jump, and the difference
between “optimized” and “nominal” state variables is declining with an irregu-
lar shape. Similarly, identical shapes with minor error occurred while subtracting
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“optimized” state from “nominal” state. The gradient trajectories are decreasing
with a consistent form, whereas in some cases such gradients decrease with an
irregular and not consistent form. The figures are depicted below:

Figure 3.6: The Nominal, Optimized, Realized Trajectory & Difference,The
Norm of the Gradient: Iterations=100 and The Real Part of the JT J Eigenvalues
for fast, loose, and sharp tracking

Figure 3.7: The Nominal, Optimized, Realized Trajectory & Difference, the Norm
of the Gradient: Iterations=100 and The Real Part of the JT J Eigenvalues for fast,
loose, and soft tracking
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Figure 3.8: The Nominal, Optimized, Realized Trajectory & Difference, the Norm
of the Gradient: Iterations=100, the Real Part of the JT J Eigenvalues for fast,
strict, and sharp tracking

Figure 3.9: The Nominal, Optimized, Realized Trajectory & Difference, the Norm
of the Gradient: Iterations=100, the Real Part of the JT J Eigenvalues for fast,
strict, and soft tracking
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Figure 3.10: The Nominal, Optimized, Realized Trajectory & Difference, the
Norm of the Gradient: Iterations=100, the Real Part of the JT J Eigenvalues for
slow, loose, and sharp tracking

Figure 3.11: The Nominal, Optimized, Realized Trajectory & Difference, the
Norm of the Gradient: Iterations=100, the Real Part of the JT J Eigenvalues for
slow, loose, and soft tracking
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Figure 3.12: The Nominal, Optimized, Realized Trajectory & Difference, the
Norm of the Gradient: Iterations=100, the Real Part of the JT J Eigenvalues for
slow, strict, and sharp tracking

Figure 3.13: The Nominal, Optimized, Realized Trajectory & Difference, the
Norm of the Gradient: Iterations=100, the Real Part of the JT J Eigenvalues for
slow, strict, and soft tracking
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3.6 Investigations Aiming at Further Possible Sim-
plifications in the Application of the Fixed Point
Iteration

It was found that in control problems just the calculation of the Jacobian means
considerable programming and computational burden. To release it a recent
solution was proposed for solving the inverse kinematic task by evading not only
the inversion, but even the calculation of the Jacobian [134]. In this section it
is shown by the use of a non-linear single degree of freedom paradigm that this
simplification may be a viable route in solving “Adaptive Receding Horizon
Control” (ARHC) problems. The idea was further extended in [A. 6] for Multiple
Degree of Freedom, Higher Order Dynamical Systems (two coupled van der Pol
oscillators) and found to be less successful. This fact can be explained by the
very rich spectrum of the matrix that determines the possible convergence and
divergence: in this case for a satisfactorily long horizon very big matrices are
obtained the spectrum of which “cannot be kept under control”. The convergence
issues can be understood on the basis of the argumentation given in the sequel.

To achieve convergence in the case of the fixed point transformation suggested
by Dineva in (2.12) the behavior of the sequence was investigated in the vicinity
of this fixed point in [119] by the use of the 1st order Taylor series approximation
of the function F(ξ ) around ξ? and f (q) around q?. She arrived at the conclusion
that the expression in (3.10) well approximates the computations in the vicinity of
the fixed point.

qi+ = [F(A‖ f (qi)−x‖+ξ?)−ξ?]
f (qi)−x

‖ f (qi)−x‖
+qi , (3.9)

qi+−q? ≈

[
I +

dF
dξ

∣∣∣∣
ξ?

A
∂ f
∂q

∣∣∣∣
q?

]
(qi −q?) = [I +AM](qi −q?) , (3.10)

in which M ∈ IRn×n, and A ∈ IR. This means the the error of the approximation
of the solution varies according to the powers of the matrix [I +AM]. By the use
of the Jordan canonical form (e.g. [135]) of this matrix she had shown that for
satisfying the requirement qi → q? as i→∞, it is satisfactory if the real parts
of all eigenvalues of this matrix are simultaneously positive or simultaneously
negative. In this case a small parameter A with appropriate sign can make the
iteration convergent for each Jordan block. Of course, the speed of convergence
depends on |A|: too big value may make the sequence divergent, and the smaller
the value of |A|, the slower the convergence.
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The use of this simple iteration for solving inverse kinematic tasks for non–
redundant robots was investigated in [78]. For a simple, planar, 2 degree of free-

dom robot arm it was shown that the appropriate Jacobian J(q)
de f
= ∂ f

∂q does not
satisfy this restriction. However, this problem was simply eliminated by consid-

ering the modified problem x̃
de f
= JT (q)x = JT (q) f (q) since in the Taylor series

expansion of f (q) around q makes the quadratic matrix JT (q)J(q) appear that
normally is positive semidefinite:

JT (q) f (q)≈ JT (q) f (q?)+ JT (q)J(q?)(q−q?) so

JT (q)[ f (q)− f (q?)]≈ JT (q)J(q)(q−q?) ,
(3.11)

in which in the vicinity of q? the J(q?) ≈ J(q) approximation was also used.
This task modification automatically solved the problem for the redundant robots
in which the number of the components of q is greater than that of x. The 
“eigenvalues” of JT (q)J(q) correspond to kinematic singularities, and it was
shown that the fixed point iteration–based solution behaved definitely nicely in
the singularities and their vicinity and provided useful solutions to the inverse
kinematic task without “complementary tricks” that always have to be applied in
the approaches that somehow wish to use certain generalized inverse of J(q).

In [A. 8], on the basis of simple geometric considerations it was shown that
the condition for convergence introduced by Dineva requires too much: the ma-
trix that satisfies it has to produce “contraction” in any direction. However, in the
fixed point iteration not arbitrary directions occur, so it was reasonable to make
an attempt to release this restriction. If we remain in the set of differentiable
IRn 7→ IRn functions that have quadratic Jacobians, a “qualitative” property of the
function can be introduced that corresponds to the generalization of the single
variable “decreasing” and “increasing” functions in the case of multiple variable
ones. If ∆ f = f (x+∆x)− f (x), then it can be stated that if ∆xT ∆ f >  then the
function f varies approximately in the same direction as the independent variable
x does. If ∆xT ∆ f <, then f varies approximately in the opposite direction. Such
qualitative properties of certain physical systems make it easy to realize their “it-
erative” or even fuzzy rules-based control (e.g. the use of the steering wheel, the
brake, and the accelerator pedals of cars, etc.). Various cars can be driven by vari-
ous chauffeurs on the basis of the qualitative knowledge that a small modification
of the actual position of the steering wheel, the brake, and the accelerator will
result in definite modification of the turning angle, deceleration, and acceleration.
Accordingly, since F ′(ξ?) is a fixed value, in (3.10) the sign of the parameter A
determines if for a given (qi −q?) the matrix A ∂ f

∂q

∣∣∣
q?

will produce a modification

“approximately in the same”, or “approximately in the opposite direction”. Since
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each matrix can be decomposed as the sum of its symmetric and skew symmetric
parts as M = 



(
M+MT)+ 



(
M−MT), and in the product ∆qT M∆q the skew

symmetric part gives  contribution, only the symmetric part of the matrix is of

interest for us. The positive semi–definite matrix
(

∂ f
∂q

)T
∂ f
∂q can work with an

adaptive parameter of fixed sign. The basic idea in [A. 8] was the introduction of
scalar parameter σ ∈ {+,−} and using the iteration for the modified problem
σx = σ f (q) in which in each control step the parameter σ was set according to
the rule: σ = , and for i > 

σi+ =

{
 if ∆xT

i ∆ fi ≥  ,
− otherwise .

(3.12)

It was expected that in this manner the approximate direction keeping feature
of the matrix used in the iterations was possibly maintained and by the use of a
fixed adaptive parameter A the convergence could be guaranteed. This property
was well illustrated by simulation results in inverse kinematics in which only
relatively small matrices occur. However, in the RHC control long horizons
produce large matrices with “rich” spectrum in which the “converging” and
“diverging” contributions may have commensurate effects that may lead to less
successful application.

In the present investigations the same idea is utilized in driving the gradient
of the AF ∇Φ(x,u,λ ) ∈ IRm towards zero. It is worth noting that the gradient of
the gradient of the AF, i.e. ∇∇Φ(x,u,λ ) ∈ IRm×m by definition is a symmetric
matrix. As is well known, the real symmetric matrices (M ∈ IRn×n for which
M = MT ) are special Hermitian matrices (H ∈ Cn×n) that by definition satisfy the
restriction HT∗=H that a) have real eigenvalues as {µ, . . . ,µn ∈ IR} and b) can be
diagonalized by orthogonal transformations (OT O = I) as OHOT = 〈µ, . . . ,µn〉.
Therefore in this case the efficiency of the suggested algorithm can be expected.
This expectation was only partly confirmed by the simulation results presented in
Section 3.7.

3.7 New Simulations for the van der Pol Oscillator
In these investigations the same van der Pol oscillator was considered as in
Section 3.4, with the same parameters determining the nominal trajectory, the
exact, and the approximate models as in Table 3.1, and the auxiliary function of
the problem was the same as in (3.5).

The adaptive tracking of the optimized trajectory had to be realized
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by the same FPI–based method that was detailed in [81], i.e. by a Pro-
portional, Derivative Tracking with the “Desired nd Time-derivative”
ẍDes = ẍOpt +Λ(ẋOpt − ẋ)+Λ (xOpt − x) with Λ = s−.

In the program Ax = ., αx = , Au = , αu = , Bu = . To achieve better
numerical stability the cost function was “bounded” by considering |x|= xsign(x)

in ĥ(x,Ax,αx)
de f
= log

(
+M [xsign(x)A−

x ]
αx
)

and its derivative

dĥ
dx

=
M αx [xsign(x)A−

x ]
αx−A−

x sign(x)
+M

[
xsign(x)A−

x
]αx

(3.13)

in which the function sign(x) was replaced by its “softened variant” tanh
( x

W

)
:

h(x,Ax,αx)
de f
= log

(
+M

[
x tanh

( x
W

)
A−

x

]αx
)

, (3.14)

and its derivative was approximated as

ξ
de f
= x tanh

( x
W

)
A−

x ,
dh
dx
≈ tanh

( x
W

)M αxξ αx−A−
x

+M ξ α
(3.15)

In (3.15) the choice  < W � Ax makes the function numerically treatable near
x = , and for  < M it remains numerically treatable for large x values.

In the simulations the initial value of the control signal was uini = . In
(2.12) the adaptive function was F(ξ ) = ξ

 + .. The adaptive parameter was
A =−.×− in the optimization, and A =−×− in the adaptive tracking
of the optimized trajectory. For driving ∇Φ to  the number of the iterative
steps was NI = . The parameters M = . and W = . were experimentally
chosen. The horizon length was G =  step (its minimal possible length is 6).
The ∇∇Φ matrix and its eigenvalues were computed only for demonstrating
the direction–sensitivity of the FPI-based solution in which a fixed adaptive
parameter A could drive the iteration into divergence, too. For the algorithm it
was enough to compute the components of ∇Φ .

In Fig. 3.14 the results for the “linear cost terms” are given. It can be seen that
for higher amplitudes this term cannot exert enough force to well approximate
the nominal trajectory by the optimized one. The “optimized” trajectory is
precisely tracked by the adaptive tracking control. In the region of “optimization
failure” the no significant reduction in |∇Φ | was achieved. The eigenvalues of
∇∇Φ reveal the strong “direction–dependence” of the problem. To improve the
optimized tracking αx was increased to .. Figure 3.15 shows considerable
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improvement in the optimal trajectory under considerable direction-sensitivity. In
the results displayed in figure 3.16 the “traditional quadratic cost function” was
applied. This parameter still alows considerable tracking error max. ±. that
is greater than Ax = .. Figure 3.17 testifies that for αx = . the controller is
quite tolerant for the small tracking error in the range ±. that –according to the
expectations– it does not allow the occurrence of higher tracking errors. In spite

of the direction sensitivity of J
de f
= ∇∇Φ no direction change was needed in the

reduction of |∇Φ | that worked efficiently.

Finally, for the case of αx = . the grid length has been doubled to G = .
According to Fig. 3.18 it can be stated that the controller worked well, and the
higher grid–length resulted in more considerable reduction in |∇Φ |. It is easy to
understand that the doubled horizon length results about doubled number of the
components of approximately the same values in ∇Φ . For comparison with the
operation of the original algorithm solving the equation JT (q)x = JT (q) f (q) for
αx = . the counterpart of Fig. 3.16 was provided in Fig. 3.19 for the same grid
length. The original algorithm provided more precise results that is easy to under-
stand: in Fig. 3.16 the squares of the eigenvalues of J = ∇∇Φ were in the range
 ∼ , while in Fig. 3.19 the maximal eigenvalue of JT J was about , therefore
the original algorithm had the possibility to work with faster convergence in the
case of the same parameter settings than the novel one.

Figure 3.14: The results for αx = .: tracking of the optimized trajectory, re-
duction of |∇Φ | (on top), the minimal and maximal eigenvalue of ∇∇Φ , and the
number of changes in σ (on bottom)
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Figure 3.15: The results for αx = .: tracking of the optimized trajectory, re-
duction of |∇Φ | (on top), the minimal and maximal eigenvalue of ∇∇Φ , and the
number of changes in σ (on bottom)

Figure 3.16: The results for αx = .: tracking of the optimized trajectory, re-
duction of |∇Φ | (on top), the minimal and maximal eigenvalue of ∇∇Φ , and the
number of changes in σ (on bottom)
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Figure 3.17: The results for αx = .: tracking of the optimized trajectory, re-
duction of |∇Φ | (on top), the minimal and maximal eigenvalue of ∇∇Φ , and the
number of changes in σ (on bottom)

Figure 3.18: The results in the case of doubled grid length (G = ) for αx = .:
tracking of the optimized trajectory, reduction of |∇Φ | (on top), the minimal and
maximal eigenvalue of ∇∇Φ , and the number of changes in σ (on bottom)
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Figure 3.19: The results of the original algorithm solving the equation JT (q)x =
JT (q) f (q) for αx = .: tracking of the optimized trajectory, reduction of |∇Φ | (on
top), the minimal and maximal eigenvalue of ∇∇Φ , and excerpt of the variation
of the 2nd time-derivatives (on bottom)

It worths noting that in the case of the really good results (i.e. that depicted
in Figs. 3.17 and 3.18) the value of the parameter σ was constant in the internal
iteration though the Jacobian of the problem had positive maximal and negative
minimal eigenvalues that were comparable in their absolute values. Normally,
increasing “sharpness” of the appropriate term in the cost function leads to the
domination of one of the directions and good convergence can be achieved.

3.8 Thesis Statement II.
I have realized that there is a strict analogy between driving the gradient of
the Auxiliary Function to zero in the Receding Horizon Controllers, and the
novel, Fixed Point Transformation–based solution of the inverse kinematic task
of robots. On this basis I suggested the replacement of the original Reduced
Gradient Algorithm with the application of the Fixed Point Transformation–
based approach to drive this gradient to zero. In this novel adaptive RHC the
FPT–based solution is applied in two different levels: in finding the optimum,
and in adaptively tracking the optimized trajectory calculated by the use of the
available approximate dynamic model of the controlled system. The method
has the “difficulty” that the constraint equations must be analytically expressed
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before using the approximation over a discrete time–grid, and the Jacobian of
the problem has to be computed, too.

3.8.1 Substatement II.1.
In this part I have introduced a new way based on the idea of driving Lagrange’s
Reduced Gradient (LRG) to zero where the numerically much more complex
GRG method was replaced by a simple fixed–point transformation–based adap-
tive solution. It was also justified that it can easily be implemented in an arbi-
trary software environment for a wide class of problems in which the gradient
of the “auxiliary function” as well as the gradient of this gradient can be deter-
mined in closed form formulation. The same type of fixed–point transformation
was applied for driving the gradient of the auxiliary function and adaptively
tracking of the optimized trajectory by the actual system. The applicability of
the method was illustrated by presenting an example of a van der Pol oscillator
and nonlinear dynamic paradigm, the Duffing oscillator. The method has the
“difficulty” that the constraint equations must be analytically expressed before
using the approximation over a discrete time–grid, and the Jacobian of the prob-
lem has to be computed, too. The simulations were made by a simple sequential
code written in Julia language. It definitely can be stated that the theoretical
expectations were verified by the simulations.

3.8.2 Substatement II.2
In the research concerned in this part I have further developed the main idea
of the replacement of the original Reduced Gradient Algorithm with FPI
procedure that directly drives the gradient of the Auxiliary Function of the
optimization problem to zero. To investigate and validate the method a recent
solution of the inverse kinematic task evading the calculation of the Jacobian
was used. To make this procedure convergent, in the proposed solution for the
calculation of the Jacobian only a rough numerical estimation was applied.
Furthermore, it was realized that the convergence properties of the new
algorithm can be improved by varying its presently established parameters that
were experimentally set for the simulations. The method was presented and
studied using numerical simulations for a strongly nonlinear, one degree of
freedom, 2nd order dynamical system, the van der Pol Oscillator, and 2 DoF 2nd

order nonlinear system that consists of two, nonlinearly coupled van der Pol
oscillators. To guarantee lucid calculations simple functions were introduced
that map the active parts of the horizon under consideration to the elements
of the gradient of the auxiliary function that are calculated analytically. In
general it can be concluded that the calculation or at least some good estimation
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of the Jacobian can be spared only in very special cases.

Related own publications: [A. 3] [A. 4] [A. 5] [A. 6]
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Chapter 4

FPT–based Adaptive Solution of the
Inverse Kinematic Task of Robots

In a wide class of robots of open kinematic chain the inverse kinematic task
cannot be solved by the use of closed–form analytical formulae. On this reason
the traditional approaches apply differential approximation in which the Jacobian
of the – normally redundant – robot arm is “inverted” by the use of some
“generalized inverse”. These pseudo-inverses behave well whenever the robot
arm is far from a singular configuration, however, in the singularities and nearby
the singular configurations they need the traditional inversion of singular or
ill–conditioned quadratic matrices. For tackling the problem of singularities
normally complementary “tricks” have to be used that so “deform” the original
problem that the deformed version leads to the inversion of a well–conditioned
matrix. Though the so obtained solution does not exactly solve the original
problem, it is accepted as practical “substitute” of the not existing solution in the
singularities, and an acceptable approximation of the exact solution outside the
singular points.

Recently, in [78], an alternative, quasi–differential approach was suggested
that was absolutely free of any matrix inversion. It was shown that it converged
to one of the – normally ambiguous – exact solutions at the nonsingular configu-
rations, and showed stable convergence in the singular points when a “substitute”
of the not existing solution was created. This convenient convergence was
guaranteed by the use of the “exact Jacobian” of the robot arm. The interesting
question, i.e. what happens if only an “approximate Jacobian” is available, and
the motion of the robot arm is precisely measurable with respect to a Cartesian
“workshop”–based system of reference, was left open.

The scientific contents and novelty of the present investigations is based on
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the research I made in this interesting subject area.

4.1 Scientific Antecedents
The strict antecedents of the problem were considered in one of my papers [A.
7]. In general the inverse kinematic task of robots of open kinematic chain
has only “differential solution” that is based on the use of some “general-
ized inverse” or “pseudoinverse” of the Jacobian of the arm. Let q ∈ IRn,
n ∈ IN denote the joint coordinates of an n DoF open kinematic chain, and
let x ∈ IRm, m ∈ IN be the array made of the Cartesian coordinates of certain
points extended with the information on the pose of certain components with
respect to the “workshop frame”. For the prescription of the motion of the
arm the function x(s), s ∈ [si, s f ] ⊂ IR can be used in which s is a scalar
parameter. In this manner a “line” is prescribed in IRm with the initial and final
points at si and s f , respectively. If m > n no exact solution can be expected, but
when m < n the existence of ambiguous solutions is expected for a redundant arm.

The differential solution is provided by the Jacobian Ji j(q)
de f
= ∂xi

∂q j
in equation

(3.3) and the initial condition x(si) = xini that normally is known. In the redundant
case, when m < n, some “additional idea” is needed to choose one of the possible
solutions. In the case of the “Moore-Penrose Pseudoinverse” [130, 131, 136]
a “cost function”

∑
k

(
dqk
ds

)
is minimized under the constraint determined by

equation (3.3) leading to equation (4.1) provided that JJT is invertible

dq
ds

= JT (JJT)− dx(q)
ds

. (4.1)

Other generalized inverses based on the Singular Value Decomposition (SVD)
[137] are not related to cost function minimization. The application of the
“Gram-Schmidt Algorithm” (e.g. [138, 139]), originally invented by Laplace
[140] in [141] also evaded the minimization of any cost function.

If JJT is not invertible, i.e. when JT has non-empty null space, the problem
is singular. In this case with the introduction of a small parameter µ >  the
substitute / approximate solution can be obtained as

dq
ds

= JT (JJT +µI
)− dx

ds
, (4.2)

since the appropriate matrix in it always has an inverse (I denotes the identity
matrix) (e.g. [132]). If µ is much smaller than the smallest non–zero eigenvalue
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of JJT this means only little deformation far from the singularities, and provides
finite dq

ds values in the singularities (the so–called “Damped Least Squares”
invented by Levenberg in 1944 [142]).

As alternative tackling of the problem of the singularities, Pohl suggested a
set of 2nd order equations instead of the linear ones near the singularities [143].
Pohl and Lipkin in 1993 suggested complex extension of the generalized coordi-
nates [144] for task deformation. Both methods have some drawbacks related to
mathematical difficulties, and the latter has the additional problem of the physical
interpretation of the complex joint coordinate values.

4.2 Adaptive Inverse Kinematics in the Possession
of an Approximate Jacobian

We recapitulate 3.11 that was applied for the exactly known Jacobian with its
counterpart using the available approximate Jacobian in 4.3 according to [77], in
which in each step n+ ∈ N the abstract rotation the rotational matrix N rotates
back the vector into the direction of vector n. This abstract rotation has the role as
follows: while Dineva’s proof for convergence to the case considered in 3.9 and
3.10 required contractivity for arbitrary direction, in our case the convergence is
needed only for the initial direction for which an appropriate adaptive parameter
A ∈ R can be chosen.

N (n+)J̌T (q)xN(s) = N (n+)J̌T (q) f (q(s)) , xN(sini) = f (qini) . (4.3)

It is easy to construct such an orthogonal transformation by the generalization
of the Rodrigues formula published in 1840 [146]. In [147], for the purposes of
adaptive dynamic control, a novel task transformation was suggested that used
abstract rotations constructed as in (4.13). Assume, that we wish to transform
the array b ∈ Rn into the array a ∈ Rn, (‖a‖ 6= ‖b‖). A possible solution is
augmenting the dimension n of the vectors to n +  by adding to them a new
orthogonal dimension a 7→ A ∈ Rn+, b 7→ B ∈ Rn+ so that ‖A‖= ‖B‖= Ra is a
common absolute value. Then, according to Fig. 4.1, the rotation that rotates the
array B into A can be constructed. As a consequence, the projection of the rotated
vector in the original space will behave accordingly, i.e. b will be moved into a
with simultaneous rotation and shrink or dilatation.

Consider the vectors a,b ∈Rm, m ∈N. At first remove the component parallel
to b from a with parameter λ in the form: aMod = a+λb so that aMod must be
orthogonal to b, that means for the scalar product that bT aMod = bT a+λbT b = .
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This leads to λ = −bT a
bT b . Then consider the pairwisely orthogonal unit vectors

ea =
aMod

‖aMod‖ , and eb =
b
‖b‖ . The skew symmetric matrix G

de f
= eaeT

b − ebeT
a gener-

ates rotations that mix the components of the vectors only in the two dimensional
hyperplane spanned by these unit vectors. With a parameter ξ ∈ R these rota-

tions have the form O = exp(ξ G)
de f
=
∑∞

s=
ξ sGs

s! . This matrix can be expressed in
closed analytical form in similar manner as the Rodrigues formula [146] can be
used for expressing 3D rotations around a given axis. Consider the various powers
of G by taking into account that eT

a eb = , eT
a ea = , and eT

b eb = :

G =
(
eaeT

b − ebeT
a
)(

eaeT
b − ebeT

a
)
=−eaeT

a − ebeT
b ,G =−

(
eaeT

a + ebeT
b

)(
eaeT

b − ebeT
a
)
=−

(
eaeT

b − ebeT
a
)
=−G,G =−G,G =−G = G ,etc.

(4.4)
By selecting the even and the odd powers of G it is obtained that

O = I + sinξ G+(− cosξ )G . (4.5)

The direction of the rotation can be found from the scalar product
(Oa)T b = aT OT b = ‖a‖ · ‖b‖cosξ . Due to the symmetry of the cosx
function it can be stated that ξ, = ±acos

(
aT OT b
‖a‖·‖b‖

)
. For finding the appropriate

solution the greater aT O(ξ,)
T b value must be selected for rotations of small |ξ |.

Figure 4.1: Schematic visualization of 2D rotations with a complementary buffer
dimension (cited from [147])

The use of this scheme for adaptive control is quite simple: in the iteration in
the previous step we observed that we need a rotation that transforms vector B into
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A, and this rotation has to be applied for a new vector C ∈ Rn+ where C is the
augmented version of vector c ∈ Rn. The angle of this new rotation can λa ∈ R
times of the original rotation. It is very easy to understand the operation of this
method.

4.2.1 Discussion of the Novelties and Simulation Results

In contrast to the solution used earlier, in the present investigation I applied the
abstract rotations–based adaptive transformation in combination with the rotations
N in (4.6).

JT (q)xN(s) = JT (q) f (q(s)) , xN(sini) = f (qini) , (4.6)

The kinematic construction of the 8 DoF redundant robot arm was modified, too,
as follows: The open kinematic chain under consideration was described by the
product of  homogeneous matrices as

[
r


]
= H()

[
ξ,e(),L()

]
· · ·H(n−)

[
ξn−,e(n−),L(n−)

]
H(n)

[
qn,e(n),L(n)

][ r̃


]

(
r


)
= H()(q)H()(q) · · ·H()(q)

[
r̃


]
= H(q, . . . ,q)

[
r̃


]
, (4.7)

in which r̃ ∈ R is vector of the last segment in the “home position” with respect
to the last local system of coordinates (its graphical representation can be seen in
figure 4.2), i.e. r̃ is constant, H(i)(qi) ∈ R× is the homogeneous matrix of the
ith segment, the upper left block of H(i) of size R×, O(e(i),qi) is a rotational
matrix that rotates around the unit vector e(i) with angle qi (it is expressed by the
use of the Rodrigues formula [146]), and its th column is a shift parameter in
the form (r(i)T ,)T ∈ R. Since the homogeneous matrices form a Lie group,
H(q, . . . ,q) is a homogeneous matrix, too. Its upper left block of size R× is a
rotational matrix that describes the “pose” of the last segment, and r ∈ R is the
location of the endpoint with respect to the workshop reference frame.

71



Figure 4.2: Cartesian System of Coordinates fixed at the Workshop

The unit vectors of the home position of the approximate (“canonical”) model
as well as the shift parameters can be placed in the columns of size × matrices
in which each column belongs to an arm segment (link) as follows:

Ě
de f
=

    √


√


 √


√


      √


−√


   −√


√


 √


√


 , (4.8)

while the shift parameters were

Ř
de f
=

  Ľ Ľ Ľ Ľ Ľ Ľ Ľ

     Ľ −Ľ Ľ

Ľ   Ľ Ľ  Ľ −Ľ

 (4.9)

with Ľ = . [m], Ľ = . [m], and Ľ = . [m]. The exact unit vectors are the
rotated versions of the available approximate ones in the columns of (4.8) in a
matrix Ě. The rotational angles of the units vectors around the workshop axles
(ϕ around X, ϕ around X, and ϕ around X) are given in Table 4.1.

The counterpart of the approximate matrix Ř in (4.10) is the exact one as

R
de f
=

  L L L L L L L

     L −L L

L   L L  L −L

 (4.10)

with L= . [m], L= . [m], and L= . [m]. The approximate value of the last
segment was the “canonical” ˇ̃r = [., ., .] [m] vector of equal components,
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Table 4.1: The rotations of the unit vectors of the rotational axles for the ex-
act model correspond to the rotated version of the approximate ones as [O =
O(ϕ)O(ϕ)O(ϕ)], e(i) = O(i)ě(i)

Rotational angle ϕ [rad] ϕ [rad] ϕ [rad]

For e(): ×. ×. ×.

For e(): ×. ×. ×.

For e(): ×. ×. ×.

For e(): ×. ×. ×.

For e(): ×. ×. ×.

For e(): ×. ×. ×.

For e(): ×. ×. ×.

For e(): ×. ×. ×.

while the exact one was r̃ = [., ., .] [m] that inevitably causes tracking error
in the initial position that later relaxes. For better relaxation in the first  discrete
time–point  steps of the numerical iteration was applied, and later only  steps.

Furthermore, regarding the problem solution, (4.3) was further modified in
(4.11) as

W N (n+)J̌T (q)F xN(s) = W N (n+)J̌T (q)F f (q(s)) , (4.11)

in which F and W are diagonal matrices of positive,  < Fii, Wii ≤  elements.
The role of F is weighting the relative significance of the rotational pose and the
location of the end–point in the solution. (We remind that f has  redundant com-
ponents for the pose, and only  ones for the location.) The role of W is weighting
the relative activities of the redundant joint coordinates in the disambiguation of
the generally ambiguous solution. The generator of the rotation operator rotating
around an axle the direction of which is described by the unit vector e expressed
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in a right handed system of coordinates is:

G = e
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−  
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The Rodrigues formula for a constant given unit vector of rotary axle e =
[e,e,e]T and a variable rotational angle ξ has the simple analytical form (4.13):
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(4.13)
The appropriate homogeneous matrix representation is:

exp
(

ξ

[
G 
T 

])
=

([
exp(ξ G) 

T exp()

])
=

[
O 
T 

]
The derivatives of the appropriate homogeneous matrix according to their ro-

tational angles and inverses in (4.7) can be constructed in block form built up
of the rotational matrices constructed according to (4.13) and the constant shift
components of the home position denoted by L as in (4.14):

H =

[
O(ξ ,e) L
T 

]
,
dH
dξ

=

[
dO(ξ ,e)

dξ


T 

]
,H− =

[
O−(ξ ,e) −O−(ξ ,e)L

T 

]
,

dH
dξ

H− =

[
dO(ξ ,e)

dξ
O−(ξ ,e) −dO(ξ ,e)

dξ
O−(ξ ,e)L

T 

]
=

[
Ω(ξ ,e) −Ω(ξ ,e)L

T 

]
,

(4.14)
in which Ω = dO(ξ ,e)

dξ
O−(ξ ,e) is a skew–symmetric matrix, i.e. a generator of

the rotational matrices (an element of the tangent space of the rotational group
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at the identity element). Finally the Jacobian of the inverse kinematic task can
be formulated by finding the coefficients in the linear combination of the actual
tangent vectors of the SE(3) Lie group at its identity element that must be identical
with the tangent vector determined by the desired motion:

Development of the differential formulae by using the chain rule, and the
inverse matrix:[

ṙ


]
=

(
ξ̇

dH()

dξ
H() · · ·H(n)+ ξ̇H()dH()

dξ
H() · · ·H(n)+ . . .+

+ ξ̇nH() · · ·H(n−)dH(n)

dξn

)[
r̃


]
,

(4.15)

[
ṙ(t)


]
=

(
ξ̇

dH()

dξ
H()−

+ ξ̇H()dH()

dξ
H()−

H()−
+ . . .

+ξ̇nH()H() · · ·H(n−)dH(n)

dξn
H(n)−

H(n−)−
· · ·H()−

H()−

)[
r(t)


]
,

(4.16)
in which the dH(i)

dξ
H(i)−

expressions are the tangents at the identity element,

H()
(

dH()

dξ
H()−

)
H()−

is the 2nd tangent vector transformed by the group ele-

ment H(), therefore it is also a tangent at the identity element of the group SE(3),
etc.

The physical interpretation of the tangent of the Lie group of the homogeneous
matrices at the identity element in the differential equations can be expressed as;

dH(i)

dξi
H(i)−

,

([
O L
T 

]−

=

[
O− −O−L
T 

])
.

For an arbitrary homogeneous matrix H

H

(
dH(i)

dξi
H(i)−

)
H−

is a tangent, too! Since the tangent space of a Lie group at the identity element
is a linear space we obtain a simple set of linear equations to be solved ∀r(t):
the element of a linear space G(t) has to be found as the linear combination of
certain elements G(i)(ξ (t)) of the same linear space:[

ṙ(t)


]
=

n∑
i=

ξ̇iG(i)(ξ (t))
[

r(t)


]
= G(t)

[
r(t)


]
.
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In the Julia program the above matrices can be calculated in closed form, and the
elements of the upper ×  block, and the (,), (,), (,) elements can be
arranged in the  rows of the Jacobian having  columns. From this point on
the traditional matrix operations (e.g. SVD or calculation of the Moore–Penrose
pseudoinverse) can be applied for solving the redundant set of linear equations.
In my case, the adaptive function detailed above can be called within an internal
cycle for each discrete point of the trajectory. in which the program variable W
stands for W , and F corresponds to F .

4.2.1.1 Initial Tests

In the first step initial tests were made to check the operation of the algorithm. In
these tests one had trivial expectations for the nominal trajectory and its tracking.
To check the operation of the algorithm in the first step the approximate, canon-
ical model was used for the generation of the nominal trajectory to be tracked.
According to the canonical model XN

 in the Cartesian coordinates must be con-
stant since the rotation happens around an axis parallel to the vertical one of the
workshop frame. Furthermore, the last link’s pose suffers rotation around an axis
parallel to X of the workshop’s frame of reference. In this case F and W were
the identity matrices, i.e. no any weighting was applied. The results are given
in Figs. 4.3 and 4.4 that correspond to the expectations. The inevitable initial
tracking error rapidly decreases and the orientation error is small, too. The solu-
tion in the joint coordinates of the robot are given in Fig. 4.5. The significance
of the stabilizing “counter–rotation” and that of the abstract rotations applied in
the FPI–based iteration are given in Fig. 4.6 for Ra =  “abstract radius” and
λa = × − extrapolation parameter. The resolution of the scalar parameter s
was −.

In the next run for i =  :  the Fii elements were reduced from  to ..
The fine details of the trajectory tracking in Fig. 4.7 can be compared with that in
Fig. 4.4. The orientation precision really was degraded, and this effect shows some
coupling with the tracking error of the position of the endpoint. Also, in Fig. 4.8
subtle differences appear in the joint coordinated of solution in comparison with
Fig. 4.5.

In the next run F = I was restored and the last two diagonal elements in
W were decreased to . to reduce the motion of the last two redundant joint
coordinates q and q. According to Fig. 4.9 the tracking precision remained
good, and in Fig. 4.10 it can be seen that q and q were really “blocked”.
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Figure 4.3: Tracking of a nominal trajectory generated by using only q in the
canonical approximate model

0 2 4 6 8 10
Time [s]

−1400

−1200

−1000

−800

−600

−400

−200

0

200

[m
m
]

Tracking Error in the Cartesian Frame

XN
1 −X1

XN
2 −X2

XN
3 −X3

0 2 4 6 8 10
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

[d
im

le
ss
]

1000 Times the Orientation Error

√Trace([ON−O]T[ON−O])

Figure 4.4: The tracking error of the end-point and the orientation for the nominal
trajectory generated by using only q in the canonical approximate model

4.3 Solution of Inverse Kinematic Problems without
the Calculation of Jacobian

In the application of technical problems sometimes very typical issues arise
regarding their solutions which can be “differentially” treated by the calculation
of Jacobian and subsequent inversion of Jacobi matrices. On the other side, in
many cases, the calculation of the inverse of the Jacobian gives a simple meaning
which is not necessarily a computation based solution. In such cases the solution
is interesting only for a provided and well elaborated input array. However, for an
arbitrary input, it can be obtained by the use of the (generalized) inverse. In this
case a recently defined quasi-differential solution of the inverse kinematic task
of robots provides a very nice and fully stable behavior in and in the vicinity of
the kinematic singularities where the classical matrix-inversion-based approaches
have many difficulties and need complementary tricks to remain stable. It can
be stated that in case of the redundant robots the said approach required the
tricky calculations of the Jacobian. To avoid such tricky tasks, in this part, I
have suggested and tried to give the solution that in the special case of quadratic
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Figure 4.5: The solution in the space of the joint coordinates for the nominal
trajectory generated by using only q in the canonical approximate model
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Figure 4.6: The angle of the “stabilizing rotation” N and the “abstract rotations”
of the FPI-based algorithm for the nominal trajectory generated by using only q
in the canonical approximate model

Jacobian its calculation can be omitted.

This approach was extended by the motivation of section 3 where the replace-
ment of the Lagrange’s original Reduced Gradient Method was discussed by sug-
gesting with a simple Fixed Point Iteration for the gradient of the auxiliary func-
tion of the optimization under constraints. To elaborate and justify the suggested
method a simple example 2 degree of freedom arm is considered via simulations
to reveal the behaviour of this approach. This approach was applied for a simple
2 degree of freedom robot and enhanced the results in section 4.5. It has been
shown that by the use of a simple complementary norm reduction built in into the
solution this approach is promising.
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Figure 4.7: The tracking error of the end-point and the orientation for the nominal
trajectory generated by using only q in the canonical approximate model with
reduced precision of the orientation
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Figure 4.8: The solution in the space of the joint coordinates for the nominal
trajectory generated by using only q in the canonical approximate model with
reduced precision of the orientation

4.4 Critical Observations Concerning The Original
Fixed Point Transformation-based Approach

The above considerations can suffer from certain critics as follows:

1. The requirement that each <(λi) must have the same sign is “too rigor-
ous”, i.e. it is satisfactory but not necessary for the convergence. They
can guarantee that the norm of qi+ − q? for an arbitrary direction of
the previous qi − q? will be smaller than ‖qi − q?‖. However, this is
not necessary: it is just enough to guarantee the contractivity for those
directions that actually occur in the given task. So intuitively it can be
expected that less rigorous conditions can guarantee the convergence, too.

2. Though it is a great advantage that the generalized inverse of the given Ja-
cobian need not be computed, it would be more convenient to get rid of the
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Figure 4.9: The tracking error of the end-point and the orientation for the nominal
trajectory generated by using only q in the canonical approximate model with
reduced motion of q and q
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Figure 4.10: The solution in the space of the joint coordinates for the nominal
trajectory generated by using only q in the canonical approximate model with
reduced motion of q and q

computation of the Jacobian itself. This motivation is originated not only
from the side of the inverse kinematic problems in robotics. In [81, 82]
the same Fixed Point Iteration was used for replacing Lagrange’s original
Reduced Gradient Method in a non-linear programming-based solution of
Receding Horizon Controllers (e.g. [7]) in which neither quadratic cost
functions, nor Linear Time-invariant (LTI) system models are assumed as
in the case of the Linear Quadratic Regulator (e.g. [148]). The idea was
based on the observation that the “Auxiliary Function” of the optimization
problem

IR 3Φ(x,λ )
de f
= f (x)+

k∑
s=

λsg(s)(x) , (4.17)

in which f : IRn 7→ IR is the differentiable cost function to be minimized
under the constraints expressed by the functions g(s) : IRn 7→ IR and equa-
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tions g(s)(x) = . It is well known that the gradient of Φ is zero at the
solution of the optimization task. The idea was that the vector function
∇Φ(x,λ ) : IRn+k 7→ IRn+k was driven towards  by a simple Fixed Point
Iteration-based algorithm. In this case the computation of the Jacobian of
∇Φ was very laborious and it is an interesting question whether this step
can be eliminated.

In this research the suggested method is based on the simple idea which has
already been discussed under the section 3.6 and the basic equation we used was
also explained in equation 3.12. In the simulations presented in the next section
a simple 2 DoF robot arm model will be considered with a simple arm structure
that realizes a motion within a plain. Since the simulations revealed great jumps
in the joint coordinates when the solution was ambiguous, a parameter ∆qmax =
.×− rad was introduced in a “smoothed solution” to limit the allowed joint
speeds in the solutions in the form ∆qsmoothed = ∆qmax tanh(∆q/∆qmax).

4.5 Simulations
In the simulations equal link lengths of L = L = .m were set. The trajectory
to be tracked were limited in their amplitudes as π/ for q and π for q. The
nominal motion qN

 (t) was simple sinusoidal one, for qN
 (t) a third power of

the sinusoidal motion was applied. The parameter of the so obtained curve
was closed in the interval s ∈ [,] that was divided into  grid points. The
adaptive function in (2.12) was F(x) = atanh(tanh(x+D)/) with D = ., and
the adaptive parameter was A = −.. In the internal loop  steps of iteration
was done for making a step between two grid-points. Figure 4.11 reveals that in
each case the “generating joint coordinates” were not identical to the “computed”
ones that is a natural consequence of the fact that the solution is ambiguous. It
is also revealed that the single drastic jump in the joint coordinates was well
“distributed” or softened due to the smoothing. Figures 4.12 and 4.13 confirm
that in the Cartesian coordinates the nominal trajectory was well tracked by the
simplified method with the exception of the “critical point” in which a great
jump occurred in the joint coordinates. It is also shown that by “smoothing” this
tracking error is reduced and distributed over a wider range.

According to Fig. 4.14 (top) it can be stated that for achieving convergence
approximately at one half of the number of internal iterations the parameter σ

changed sign if no “smoothing“ was applied (maximum  times of the  steps).
Figure 4.14 (bottom) testifies that in the case of “smoothing” the limitation set
by the parameter ∆qmax made “serious limitations” only at a few points. While
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without smoothing the “region” in which many changes was necessary in the
sign of σ was left after max.  steps, the applied “smoothing” kept the solution
within the zone in which frequent changes (maximum ) were necessary.
In Figs. 4.15 (top) and 4.15 (bottom) “the smoothed” solutions are displayed
in which L = .m was fixed but the second link was longer as L = .m
and shorter as L = .m than in the former examples. The other control and
simulation parameters remained invariant. The figures show an operation similar
to the symmetric L = L = .m case.

Figure 4.16 reveals that drastic increase in the number of the internal steps of
iteration slightly can improve the solution.

Figure 4.11: The joint coordinates of the trajectory generation and that of the
numerical solutions (at the top LHS, the original solution that utilizes J,on the
RHS the present solution without “smoothing”, on the bottom with “smoothing”)
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Figure 4.12: The Cartesian coordinates of the trajectory generation and that of the
numerical solutions (at the top LHS the original solution that utilizes J, on the
RHS the present solution without “smoothing”, and on the bottom with “smooth-
ing”)

Figure 4.13: The tracking errors in the Cartesian coordinates of the numerical
solutions (at the top LHS the original solution that utilizes J, on the RHS the
present solution without “smoothing”, and on the bottom with “smoothing”)
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Figure 4.14: The jumps in the generalized coordinates and the number of changing
the sign of σ within the internal iteration in the solution without “smoothing”
(Top) and “smoothed” (Bottom)

Figure 4.15: The joint coordinates of the trajectory generation (top LHS), the
“smoothed” numerical solution (top RHS), the Cartesian coordinates of the trajec-
tory tracking (bottom LHS) for L = .m and the “smoothed” numerical solution
(bottom RHS) for L = .m
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Figure 4.16: The joint coordinates of the trajectory generation and that of the
“smoothed” numerical solution and trajectory tracking for L = .m for  in-
ternal steps of iteration

4.6 Thesis Statement III.
I developed a novel method for adaptively solving the differential inverse kine-
matic task of redundant robot arms in the possession of an approximately
known Jacobian. I is a generalization of the method by B. Csanádi that was
based on the assumption of exactly known Jacobian. The novelty is the intro-
duction of abstract rotations by the use of which the convergence can be guar-
anteed without knowing the exact Jacobian. The applicability of the method
was investigated via simulatons for an 8 DoF robot arm.
Furthermore, I made investigations – at least for special cases – aiming at evad-
ing the computation of the Jacobian.

4.7 Thesis Substatement III.1
On the basis of the quasi–differential approach (in which only the compu-
tation of the Jacobian is needed without the calculation of its “generalized
inverse”) a possible alternative adaptive iterative approach was introduced as
“Adaptive Inverse Kinematics” based on the application of the Fixed–Point
Transformation (FPT). In this approach no complete information is needed
on the Jacobian at a given point. The scientific novelty in this part consists
of the fact that the here suggested procedure can be convergent and useful
even if the Jacobian of the robot arm is only approximately known. The key
factor is a rotational transformation, the application of which can improve
the convergence properties of the iteration. It is content with the observable
system behavior only along with the realized motion, so it seems to be easily
implementable. Its operation is demonstrated for an irregularly extended 6
Degree of Freedom (DoF) PUMA–type robot arm, that has 8 rotary axles. From
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the simulation–based results it can clearly be stated that the “tendency for
divergence” is very small and only very tiny abstract rotations occurred in the
simulations. Another outlining possibility seems to be the modification of the
fixed–point transformation–based adaptive controllers in order to extend the
set of physical systems for which this method can be convergent and practically
useful.

4.8 Thesis Substatement III.2
In the inversion–free quasi–differential solution of the inverse kinematic of a
redundant robot the calculation of the Jacobian is required. The computation
of Jacobian generally was found to be very laborious, so conducting research
to avoid this computational burden was important. I have tried to answer the
question whether it is possible to avoid the calculation of the Jacobian in case
of non–redundant robot arms of quadratic Jacobian. As a simple example, a
2 DoF arm was considered via simulations. It was shown that by the use of a
simple complementary norm reduction built into the solution this approach was
promising. However, for higher degree of freedom systems more investigations
seem to be expedient.

Related own publication: [A. 7] [A. 8] [A. 9]
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Chapter 5

Conclusions

The control of nonlinear systems with mathematical and simulation based
techniques is an emerging area of studies in the field of engineering. Be-
side the inevitable presence of modeling imprecisions and errors, unknown
external disturbances, measurement noises, observability problems as well as
underactuation often arise in the engineering practice. These problems can be
tackled by either robust or adaptive approaches that –depending on their internal
mathematical construction– either need the development and use of complicated
state observers or apply some simpler technique that is satisfied with the use of
the directly observable signals without needing the estimation of the full internal
system’s state. The application of the technical realizations of the “universal
approximators” elaborated for modeling continuous multiple variable functions
under the name of “soft computing” is widely accepted, too. The subject area is
kept developing with close connection with the development of the hardware and
software applications. Theoretically well established “classical methods” that
in the past were not applicable due to the general shortage of computing power
nowadays become realizable options.

As an example, the realization of Lagrange’s reduced gradient method in
optimization problems nowadays is available if a discrete time–grid used as
the approximation of a finite horizon is applied under the name of “Nonlinear
Programming”. One of my research area was the improvement of the nonlinear
programing–based heuristic “Receding Horizon Controller” by releasing the
historically prevailing restrictions, namely the application of quadratic terms in
the cost function of the problem. I have shown via simulations that this approach
is a promising possibility in treating type 1 diabetes mellitus. Further, with an
additional RFPT framework the developed RHC controller can be extended in
order to empower it with adaptive property. The solutions can be investigated
from robustness, adaptivity, and other aspects’ points of view.
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In the 20th century the prevailing approach for designing adaptive controllers
for strongly non–linear problems was based on Lypunov’s “2nd” or “Direct”
method. Besides the mathematical difficulties that have to be coped with by
the control designer, this method has certain practical shortcomings that it
concentrates on the global (often asymptotic) stability of the controller while pays
little attention to the “transient phase” of the controlled motion, normally it needs
complete state estimation, and works on the basis of “satisfactory” instead of
“necessary and satisfactory” conditions. These difficulties made the researchers
elaborate mathematically simpler techniques that definitely concentrate on the
transient part of the controlled motion, and do not require complete state obser-
vation or estimation. Instead of that it needs the observation of the “response”
of the controlled system to the “actual control signal” applied. This approach
mathematically was based on Banach’s fixed point theorem proved in 1922.

In my research I have realized that while the Lyapunov function–based tech-
nique does not seem to be the one that easily can be combined with the idea of
optimal controllers, the optimal control easily can be integrated with the adaptive
control mathematically based on Banach’s theorem. On this basis I invented the
idea of the “Adaptive Receding Horizon Controller” and via simulation–based
investigations I have shown that this idea deserves further attention.

Furthermore, I have observed that there is a formal possibility for the
application of Banach’s fixed point iteration–based method in the replacement
of the computationally greedy Reduced Gradient method proposed by Lagrange
in 1811, in the receding horizon controllers. I tried to develop techniques for
further reduction of the computational needs of this approach and by the use
of simulations highlighted the limitations of these seemingly plausible formal
possibilities.

In the literature I have found a method that used Banach’s fixed point iteration–
based technique for the matrix inversion–free solution of the inverse kinematic
task of redundant open kinematic chains. This method assumed that the designer
has precise information on the Jacobian of the arm structure. Via investigating
the convergence properties of this approach in the case in which the designer has
only approximate information on this Jacobian, I elaborated an adaptive inverse
kinematic approach that does not need the use of some generalized inverse of
redundant robot arms. The idea is based on the application of abstract rotations by
the use of which the method’s convergence was made practically acceptable. The
applicability of this method was illustrated by extensive simulation investigations.
I also made attempt to evade the computation of the approximate Jacobian but it
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was found that in the case of a higher degree of freedom problems the expectations
of the successful results using this approach seem not possible. However, further
struggles to make it possible was taken into consideration.
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Chapter 6

Possible Targets of Future Research

In my research the application of Banach’s fixed point theorem in adaptive and
adaptive optimal control played a role of key importance. The most attractive
property of this approach is its mathematical simplicity and the fact that it
does not need complete state estimation for the control. Since the practical
lack of possibilities to realize complete state observation in the life sciences,
communications sciences is a hard fact, this method may have widespread
practical applications.

Though there are certain limitations regarding convergence properties, but
its applicability was studied in the case of hard nonlinear control tasks as in
anaesthesia control (e.g. [120, 121]), control of dynamically singular underactu-
ated mechanical systems (e.g. [149]), treatment for “Type 1 Diabetes Mellitus”
(e.g. [123]), control of nonlinear neuron models (e.g. [124, 125]), solution of
the inverse kinematic task of robots [78], etc. On this reason it can be enough
to say that the applicability of the method can be extended in many fields.
The application of the approach can be fit for tackling adaptive RHC control
realizations in biomedical applications.

However, the method has two practical limitations: its expected noise sensi-
tivity if the relative order of the control task is high, and that during one digital
control step only one step of Banach’s iteration can be executed. Therefore the
question generally arises: is the convergence of this method fast enough for keep-
ing pace with the dynamics of the not precisely modeled phenomena taking part in
the controlled system? Such a question cannot be generally answered, and abun-
dant simulation studies have to be executed in different possible application areas
to obtain satisfactory answer to it. Furthermore, the method offers formal possi-
bilities to take into account time–delay effects that open an interesting research
field to it, too.
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