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1 Background of the Research

Mobile robots have a wide range of applications like space missions, household and office
work, receiving-delivering orders of clients in restaurants, transportation of logistics in
inventories, inspection and maintenance, agriculture, security and defence, operations in
radioactive areas etc. Mobile robots are very useful in the area where either the task
is boring due to the repetitiveness of the same operations or the working environment
is hazardous for the human being. For mobile robots, the navigation from one location
to the other is one of the most desirable operations [1–4]. On the basis of the available
prior information, the navigation environments can be classified into two major types:
known environment and unknown environment. Further, the navigation environments
may or may not change during the navigation task. Generally, for the navigation point of
view, the navigation environments get changes due to the moving obstacles. Therefore, a
navigation environment is considered as static if the obstacles in the path are static. On
contrast, a navigation environment is dynamic if the obstacles are dynamic. Consequently,
the applicable navigation strategies depend on the type of the navigation environment
[5–7].

The navigation process can be subdivided into two parts: global navigation and local
navigation. The global navigation method is used to find globally optimal path on the
basis of prior information like map of the environment. However, in the absence of
sufficient prior information the global navigation strategy is not applicable. Instead of
the prior information, the local navigation is based on the on-line sensory data received
from the sensors mounted on the robot. Therefore, the local navigation methods can
also be applied when the navigation environment is unknown or partially known. Global
path planner and local path planner are the two main parts of the navigation system
of autonomous robot. These two path planners, in cooperation, make the robot motion
optimal and collision free. The global planner generates a feasible route from the robot’s
current location and orientation to the goal location and orientation. The local path
planner moves the robot as per the global plan and dynamically adapts to dynamic
environment state [8–11].

In known environments, path planning is the process of finding the best feasible path
from start to goal location [12–15]. In addition, self localization and mapping are among
the challenging tasks [NK-16]. Simultaneous Localization and Mapping (SLAM) yields
a map of the environment and keeps track of the robot in the navigation environment
with various objects [17–19]. SLAM and path planning are necessary for the autonomous
navigation process [20]. A path planning algorithm to calculate convenient motions of
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the robot by taking the different optimization criteria like time, energy and distance into
account to overcome unknown and challenging obstacles is proposed in [21]. In known
and static environment, the robot navigation process can have four major steps: making
the map of surrounding world, store the map in computer readable form, find a feasible
path from start to goal in the stored map, and then drive the robot on the observed path.
The process of map building includes the following three steps:

(i) Select the appropriate two-dimensional coordinate points in the environment world
covering the whole working area.

(ii) Drive the robot following these selected coordinates, and receive the sensor readings.

(iii) Mark the free and occupied spaces in the world by setting the probabilities of
occupied spaces as one and the probabilities of free spaces as zero in the occupancy
grid framework.

The occupancy grid can be saved and used directly in robot path planning in a convenient
way [22]. Representation of navigation environment as a grid-based space is a necessary
task for robust and accurate motion planning of robot. A two-dimensional occupancy
grid can be constructed using the data of LASER sensor before the execution of the
motion planning function [23]. Many researchers used the occupancy grid representation
of the environment world map in the robot navigation related work as in [24–27]. The
occupancy grid map is computer readable and this map can be supplied to the computer
program to find an obstacle free path. Recently, these concepts are used in [28, 29]. A
minimum cost path can be acquired by applying a classical approach [30].

Graph-based search algorithms may take larger computation time to find the globally
optimal path because these algorithms exhaustively explore the search space. In this
case, a heuristic function increases the speed of exploration process by providing the
estimate of the cost of reaching the goal node [31]. Useful heuristic functions for A*
algorithm can be obtained using the various distances given in [32]. In a hierarchical
path planning approach, the A* algorithm finds a geometric path speedily and various
path points can be chosen as sub-goals for the second level. The global map should only
consider the obstacles which are persistent and larger than a definite area. Inclusion
of many small obstacles in the global map may lead to the larger complexity of the
topological space. Homotopic A* algorithm, as path planner, is presented and compared
with other path planners in [33]. However, the different heuristic functions are not taken
into consideration in the implementation of A* algorithm as global path planner for the
autonomous navigation of mobile robots.
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Probabilistic roadmaps technique can be used to find a path from start to the goal
point in occupancy grid map [34]. In PRM technique, the given number of nodes are
created in the free space of occupancy grid and then these nodes are connected to each
other within some threshold connection distance. Further, one path from the available
connected paths from start to goal is selected. The process of sampling and node addition
in probabilistic roadmaps is given in [35]. A collision free path can be obtained through
the path planning using PRM and can be applied to related research as used in [36–39].
Various path planning strategies can be found in recent research work [40, 41]. To drive
the robot on the given path, a path following algorithm is required. An implementation
of pure pursuit path tracking algorithm with some limitations is presented in [42].

In unknown environments, the robot navigation becomes more challenging because no
satisfactory information on the environment is available before starting the navigation
process. Therefore, a global navigation path may not be generated. In this case, a local
path from the current position to the goal position may provide a solution. Further,
in the case of robot navigation in known environment, there may be situations where
the obstacles are dynamic. So, the actual positions of the dynamic obstacles may not
be measured accurately in global path planning. Furthermore, the partially known
environment consists of known and unknown obstacles. In the case of unknown and
dynamic environment, the robot needs to avoid the obstacles by using its inbuilt sensors.
A robot can not only avoid the obstacles but also find a globally optimal path by
dynamically altering the locally optimal paths [43, 44]. In these cases, the local path
planning is a suitable option for the navigation purpose [45]. In case of unknown
environment, navigation task needs an approach that can work in uncertain situation [46].
The information about velocities of the dynamic obstacles is not necessarily required for
the obstacle avoidance in the navigation path [47].

Modern control theory and robotics are advancing greatly due the development of new
technologies [48]. Commonly, there are two steps in the design of the controllers for mobile
robots. Firstly, the data from sensors are computed into high level and meaningful values
of variables. Secondly, some machine learning method is used to produce a controller.
Taking these high level variables as input, the controller outputs the control commands
for the robot [49].

Humans perform the navigation task without any exact computation and mathematical
modelling. The ability of humans to deal with uncertainties can be followed in robot
navigation using the neural network and fuzzy logic. Fuzzy logic gives an abstract
behaviour of the system in an intuitive form even in the absence of precise mathematical
and logical model. In practice, the sensor information is noisy and unreliable. The
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sensor inputs to the robot can be mapped into the control actions using fuzzy rules.
Therefore, fuzzy logic is a suitable tool to achieve robust robot behaviour [50]. The
obstacles can be treated as integrated part of the environment. Human-like approaches
to avoid the obstacles can be used in robot navigation [51]. In the environments with
moving and deforming obstacles, a purely reactive algorithm to navigate a mobile robot
mathematically guarantees collisions avoidance [52]. A fuzzy logic based navigation
approach which uses grid based map and a behaviour based navigation method is given
in [53]. However, this approach requires the environmental information in grid map in
advance. In different conditions and uncertainty, an optimal and robust fuzzy controller
for path tracking is presented in [54]. A Mamdani-type fuzzy controller [55] for wheeled
robot can be optimal for trajectory tracking to deal with parametric and non-parametric
uncertainties [56].

Neural networks have the ability to work with imprecise information and are excellent
tools applicable in obstacle avoidance by mobile robots. Reliable and fault-tolerant control
can be obtained with neural control systems [57]. In robot navigation, neural network
can be employed to map the relationships between inputs and outputs for interpreting
the sensory data, obstacle avoidance and path planning. Although, the neural network
method is slow and the learning algorithm used may not lead to an optimal solution. Thus,
the integrated approaches like neuro-fuzzy technique are much more suitable for the robot
navigation task [15]. In complex and unknown environments, simulation experiments
indicate better navigation performance using neuro-fuzzy approach. Using neuro-fuzzy
approach, the parameters of the controller can be optimized and the structure of the
controller can be self-adaptive. To improve automatic learning and adaptation, Adaptive
Neuro-Fuzzy Inference System (ANFIS) combines fuzzy logic and neural network. ANFIS
can be used to predict and model several engineering systems. ANFIS is a fuzzy based
model which is trained using some data set. Consequently, ANFIS computes the best
suitable parameters of membership functions involved in Fuzzy Inference System (FIS)
[58, 59].
LASER scanner is one of the most common sensors used to execute SLAM [60–62].

Artificial Neural network (ANN) can compensate erroneous sensor data. Moreover, the
ANN can be trained during the SLAM [63]. Regardless of the uncertainties in the
sensors observations, robot may navigate safely from start to goal [46]. Using range
finder sensors (e.g. LASER scan sensors), the robot can navigate from start to goal
with obstacle avoidance in unknown and dynamic environments environment [64]. The
obstacle size and velocity vector of the unmanned surface vehicles can be used to achieve
the obstacle avoidance. Moreover, fusion of more than one navigation algorithms can
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result more accurate outcomes [65]. The issue of obstacle avoidance is treated as an
optimization problem in [66]. Previous experiences during the robot navigation are
helpful to predict the path with obstacle avoidance of static and dynamic obstacles [67].
Various requirements of obstacle avoidance can be satisfied for the changing distance
between robot and the obstacles [68–70].
The combination of several sensor systems is used in mobile robots. For making

navigation decision, sensor fusion is the task of combining the information into a usable
form [71]. The complex task of programming generally prevents the use of industrial
robots to a large extent [72]. In addition, there may be situations in the autonomous
navigation in an unknown environment [73] that certain sensors of the robot do not work
properly or they are removed to minimize programming and system complexity.

2 Directions and Goals of the Research

For n number obstacles, the environment can be classified in the following categories:

(i) Known and static environment:
Locations of the obstacles are prior known and the velocity of ith obstacle can be
given as follows:

|vi| = 0 for i = 1 to n,
n is known and will not change during the navigation task.

(ii) Known and dynamic environment:
Locations of the obstacles are prior known and the velocity of ith obstacle can be
given as follows:

|v̇i| = 0 for i = 1 to n,
n is known and any change in n is prior specified.

(iii) Unknown and static environment:
Locations of the obstacles are not prior known and the velocity of ith obstacle can
be given as follows:

|vi| = 0 for i = 1 to n,
n is unknown but does not change during navigation.

(iv) Unknown and dynamic environment:
Locations of the obstacles are not prior known and the velocity of ith obstacle can
be given as follows:
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|vi| ≥ 0 for i = 1 to n,
n is unknown and may vary during the navigation. Moreover, the velocities are
unknown.

• The robot navigation in unknown environments is more challenging in comparison
to the static environments.

• Present study begins with the navigation in known and static environment, and
then, advances to the navigation task in unknown environments.

2.1 Research gaps in the existing solutions

Considering the background of the research (Section 1), the research gaps for the
dissertation can be given by the following points

(
(i)− (iii)

)
:

(i) It is evident from the existing research work that the robot navigation task in case
of known-static environment is less-complex than in the case of unknown-dynamic
environment. Therefore, to begin with, classical path planning strategies such as
A* algorithm and PRM can be studied in known-static environment. As yet, no
significant comparison of application of various heuristic functions in A* algorithm
has been done for path planning.

(ii) The existing research has established that the fuzzy logic based techniques are
best suitable for uncertain data. So, in case of unknown-dynamic environment,
fuzzy logic based robot navigation model becomes an exciting research point to be
considered. Thus far, Robot navigation model using Mamdani-type FIS, Sugeno-
types FIS, and ANFIS has not been presented to obtain obstacle avoidance in
simulated as well as real world unknown-dynamic environment.

(iii) A search robot may need to navigate through all around the working area. Hence, to
avoid the repetitive paths in unknown environment, a search robot should recognise
the obstacles visited earlier. Till present, for obstacle recognition and avoidance,
“standard deviation” and the “t-test” have not been applied for a search robot in
unknown environment.
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3 Materials and Methods of Investigation

3.1 Robot navigation with obstacle avoidance in known and static
environment

3.1.1 A* algorithm and the heuristic functions

The A* algorithm [31] provides the solution by searching among all possible paths. In
A*, the cost

(
f(x1, y1)

)
of reaching the goal, via a node (x1, y1), is defined in (1).

f(x1, y1) = g(x1, y1) + h(x1, y1), (1)

where, g(x1, y1) is the cost of the path from the start node to (x1, y1), and h(x1, y1) is a
heuristic that estimates the cost of the cheapest path from (x1, y1) to the goal.

Let |x| represents the absolute value of x and C represents the minimum cost of moving
from one space to adjacent space. Various distance metrics and distances including the
following are given in [32].
The Manhattan distance heuristic function can be given as follows:

h(x1, y1) = C(|x1 − x2|+|y1 − y2|), (2)

The diagonal distance heuristic can be given as follows:

h(x1, y1) = C(|x1 − x2|+|y1 − y2|) + (D − 2C) Min(|x1 − x2| ,|y1 − y2|), (3)

In (3), Min(|x1 − x2| ,|y1 − y2|) gives the minimum value between the two arguments
and D represents the cost of moving diagonally. The diagonal distance is called octile
distance when C = 1 and D =

√
2.

The Euclidean distance heuristic is given as follows:

h(x1, y1) = C
√

(x1 − x2)2 + (y1 − y2)2, (4)

The above three different heuristic functions
(
defined through (2)− (4)

)
are used in

the implementation of A* algorithm as a global path planner for the Turtlebot robot.
It is observed that the coordinates of the cells on the path generated by each of the
heuristic function do not differ significantly. Nevertheless, the time taken by global path
planner, with different heuristic function used, differ significantly. Among the three, the
Euclidean distance heuristic produces the most non-uniform global path planner time
for the transition of the robot between the cells during navigation. On the other hand,
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octile distance heuristic depicts the most uniform behaviour for the global path planner
time throughout the navigation path [NK-74].

3.1.2 Probabilistic roadmaps (PRM)

The PRM path planning method has two phases, namely, learning phase and query phase.
In the learning phase, for a given scene, a roadmap (a data structure) is generated in
probabilistic manner. The generated probabilistic roadmap is saved as an undirected
graph. The nodes of the graph represent collision-free configurations of the robot and
the edges of the graph represent feasible paths. Local planner of the navigation system
computes these paths. The learning phase of the PRM is summarized using Algorithm 1.
Initially, the graph G = {NG, EG} is empty.

Algorithm 1 Learning phase of PRM.
1: NG, EG ← {}
2: while true do
3: r ← a randomly selected free configuration
4: Nr ← {r

′ ∈ NG | D(r, r′) ≤ dm}
5: NG ← NG ∪ {r}
6: for all x← Nr, in ascending order of D(r, x) do
7: if P (r, x) & ¬C(r, x) then
8: EG ← EG ∪ (r, x)
9: Update connected components of G.

10: end if
11: end for
12: end while

where,
dm = Maximum threshold distance between r and r′ .
P (r, x) returns whether a path, between r and x, is found by local planner.
C(r, x) returns whether r and x belongs to the same connected component.
D(r, x) is defined in (5).

D(r, x) = max
p∈robot

‖p(x)− p(r)‖, (5)

In (5),
p represents a point on in the robot.
p(r) = workspace position of p when the robot is at r.
‖p(x)− p(r)‖ = Euclidean distance between p(r) and p(x).

During the query phase, a query is generated to find a path between two collision free
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configurations. Initially, the method generates a path from start and goal to other
two nodes in the roadmap. Consequently, the graph is searched to find the connecting
edges to these two nodes. Eventually, a feasible path from start to goal is received by
concatenating the path segments. It is experienced that this method provides good
results when larger time span is given in learning phase. Various components of the
method can be tailored to increase the efficiency of this method [34]. The method is
applicable to the static environments where the obstacles do not get change.

A PRM of the map of a simulated world using Turtlebot-Gazebo simulator is tuned up
for the number of nodes taken in PRM and the connection distance between the nodes
in it. The navigation algorithm is applied in robot navigation task.

Investigations on the implemented algorithm resulted in the observation that the chosen
environment was found to be well treatable by the A* algorithm, but it was found to be
“difficult” for the “probabilistic roadmap” approach because a large number of randomly
selected nodes was necessary for finding a path between the initial and the final points of
the task [NK-75].

3.2 Robot navigation with obstacle avoidance in unknown and dynamic
environment

3.2.1 Robot obstacle avoidance using bumper event

The implementation of the proposed Algorithm 2 shows that the obstacle avoidance task
can be handled by using the bumper events of the Turtlebot. The Turtlebot successfully
recovers from the collisions and follows the new velocity commands. In the case of
autonomous navigation in unknown environment, this algorithm is very useful when other
sensors for obstacle avoidance are got damaged or removed to minimize the complexity.
The main disadvantage of the proposed algorithm is that it does not lead to a collision-free
navigation. Therefore, the other sensors of robot like LASER and camera may get priority
over bump sensor for collision-free navigation [NK-76].
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Algorithm 2 The x, y and z components of linear and angular velocities
1: if default velocity then
2: linear.x = 0.1, linear.y = 0, linear.z = 0;
3: angular.z = 0, angular.x = 0, angular.y = 0;
4: else
5: if bumper 0 hit then
6: linear.x = 0, linear.y = 0, linear.z = 0;
7: angular.z = −0.35, angular.x = 0, angular.y = 0;
8: else if bumper 1 hit then
9: linear.x = −0.25, linear.y = 0, linear.z = 0;

10: angular.z = −1.25, angular.x = 0, angular.y = 0;
11: else if bumper 2 hit then
12: linear.x = 0, linear.y = 0, linear.z = 0;
13: angular.z = 0.35, angular.x = 0, angular.y = 0;
14: end if
15: end if

3.2.2 Robot navigation in unknown and restricted dynamic environment using
fuzzy control solutions

The pure pursuit algorithm [42] calculates the required curvature that can lead the robot
from its current position to the goal position. The geometry of the pure pursuit algorithm
is given in Fig. 1.

Figure 1: Geometry of the pure pursuit algorithm.
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Pythagorean equation for the larger right triangle in Fig. 1, can be written as (6):

p2 = x2 + y2. (6)

The line segments at the X axis of Fig. 1 hold the relation given in (7).

q = r − x. (7)

For the smaller right triangle of Fig. 1, Pythagorean equation can be presented by (8).

r2 = q2 + y2. (8)

By solving (6) to (8), the curvature (ρ) of the path arc can be given by (9) as follows:

ρ = 1
r

= 2x
p2 . (9)

The curvature of the path arc, obtained in (9), determines the steering wheel angle of
the robot.
The robot navigation model is presented using MATLAB-Simulink software. Using

publisher-subscriber strategy, the proposed model and the robot communicate with each
other by passing specified messages on the relevant ROS topics. A publisher of the
message sends the message on ROS topic. On the other side, the subscriber receives
the message on the same topic from the ROS. In this model, the navigation task is
accomplished by the following two controllers:

(i) The pure pursuit controller,

(ii) The fuzzy based controller (as described in Section 3.2.2).

Fig. 2 describes the details of the presented robot navigation model. This model contains
four subsystems as follows:

(i) Subscribing topic: ‘/odom’,

(ii) Subscribing topic: ‘/scan’,

(iii) Goal Distance Checking,

(iv) Publishing topic: ‘mobile_base/commands/velocity’.

The robot publishes its position and orientation, in the environment, on the /odom topic
of the ROS. The Subscribing topic: ‘/odom’ subsystem, in the given model, subscribes
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the /odom topic of the ROS to obtain current pose of the robot. The robot publishes its
LASER sensor scan readings vector on /scan topic in ROS.

Figure 2: Robot navigation model in Simulink.

A typical message vector on /scan topic contains distance ranges of obstacles in the
scan area. In two dimensional state, the scan area is of ‘V’ shape. From right to left, a
single LASER scan may contain some hundred ranges. Using minimum angle of scan and
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angle increment, the corresponding angle to each range in a message can be find out. The
obstacle ranges and their corresponding angles of scan, together, give the locations of the
obstacles in the robot path. The Subscribing topic: ‘/scan’ subsystem is subscribing the
ROS topic /scan to get the vectors of ranges and their corresponding scan angle.
Before sending the new velocity commands to the robot, the Goal Distance Checking

subsystem checks the distance of goal from the current position of the robot. If the
distance between the goal and the robot is less than or equal to the given value (in our
case, it is 0.1 meter) then the new velocity commands will not be given to robot. As a
result, the robot navigation process gets completed and, therefore, terminated.
The goal distance (p) between the goal position (x, y) and current position (x′, y′) of

the robot can be expressed by (10) as given below:

p =
√

(x− x′)2 + (y − y′)2. (10)

The linear and angular velocities commands are given to the robot by publishing geome-
try_msgs/Twist message on the topic /mobile_base/commands/velocity of ROS. Robot is
subscribing the topic /mobile_base/commands/velocity of ROS which is being published
by the subsystem Publishing topic: ‘/mobile_base/commands/velocity’.

In addition to these subsystems, the remaining blocks of the model are as follows:

(i) two constant blocks named as Waypoints and Goal,

(ii) a Mux block,

(iii) a Pure Pursuit path following algorithm block,

(iv) two MATLAB functions,

(v) a fuzzy logic for obstacle avoidance block.

The Waypoints constant block is to contain a ‘N × 2’ matrix of way points of navigation
path . In case of unknown environment, it is considered that only start and goal positions
of the robot are known, initially. The Goal constant block contains a two dimensional
coordinates of goal position. The Mux block is combining the two inputs (minimumRange
and CorrespondingAngle received from the MATLAB Function block) in a single output
link. So that, these two input values can be passed to the fuzzy controller block by a
single link. The Pure Pursuit block is used to compute the required linear and angular
velocities to drive the robot using inputs from way-points of the path and current pose
of the robot. Since the navigation environment is considered as unknown, the way-points
of the feasible path are unknown except the two points: start and goal. The function
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fcn in MATLAB Function block computes the minimum range and its corresponding
angle of scan from the vectors of ObstaclesRanges and ObstaclesAngles received from
Subscribing topic: ‘/scan’ subsystem block. The MATLAB function in the Training data
writing block is used to write the data in three separate columns for minimum range, its
corresponding angle and the output from the fuzzy controller. This training data can
be used to train a fuzzy inference system (FIS) using ANFIS model. The block named
Fuzzy Logic for Obstacle Avoidance is a fuzzy logic controller block.

The published linear velocity is same as linear velocity given by the pure pursuit
block. Since the pure pursuit block does not consider the obstacles in the path, the
angular velocity is needed to be adjusted before its publication on the ROS. This required
adjustment in the angular velocity is obtained by the Fuzzy Logic for Obstacle Avoidance
block. The published angular velocity (ω) can be stated by (11) as below:

ω = ω1 + ω2. (11)

where, ω1 is the angular velocity (i.e. AngVel) provided by path pursuit controller. ω2 is
the output (i.e. d(AngularVelocity)) of the fuzzy logic controller.

The fuzzy inference system (FIS) of the used fuzzy logic controller is considered as of
the following two types:

(i) Mamdani-type FIS

(ii) ANFIS based Sugeno-type FIS

The membership functions µ (x) taken in Mamdani-type FIS are defined using (12) and
(13).

µ (x) =



0, for x ≤ p
x−p
a−p , for p < x ≤ a

1, for a < x ≤ b
q−x
q−b , for b < x ≤ q

0 for q < x

(12)

where, the parameters p and q are the feet of the MF and a and b are the shoulders of
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the MF.

µ (x) =



0, for x ≤ p
x−p
a−p , for p < x ≤ a
q−x
q−a , for a < x ≤ q

0 for q < x

(13)

where, the parameters p and q are the feet of the MF and a is the peak of the MF.
The rule connecting operators, ‘and’ and ‘or ’, are taken as min (minimum) and max

(maximum), respectively. Implication and aggregation methods for the rules are taken as
min and max, respectively. The defuzzification method is defined by centroid method as
given in (14).

x∗ =
∑n

i=1 xiµỸ
(xi)∑n

i=1 µỸ
(xi)

(14)

where, Ỹ is a fuzzy set defined over U with its membership function µ
Ỹ

(x) , x ∈ U , and
x∗ denotes the defuzzification of x.
In case of ANFIS based Sugeno-type FIS, the generalized bell membership function

given in (15) has been considered.

µ (x) = 1

1 +
∣∣∣x−c

w

∣∣∣2s (15)

where,
w defines the width of the MF.
s defines the curve-shape on both sides of the plateau.
c = center of the MF.
The ‘and’ and ‘or ’, the rule connecting operators, are taken as product and probabilistic-

OR (algebraic sum), respectively. The defuzzification method is weighted average method
as defined in (16).

x∗ =
∑n

i=1 xiµỸi
(xi)∑n

i=1 µỸi
(xi)

(16)

where, xi is the middle value of the ith peak, Ỹi(x). The output (z) of the ANFIS is
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expressed as in (17).

z =
n∑

i=1
vifi,

fi = aix+ biy + ci,

vi = ui∑n
k=1 uk

ui = µXj (x)× µXk
(y)

(17)

where, {ai, bi, ci} is the set of parameters for ith rule; x, y are input variables and n is
the total number of rules in the ANFIS structure; The operator × is generalised AND;
Xj , Xk are fuzzy sets for i = 1 to n. Own publications concerned to the Section 3.2.2
are existing in [NK-77, NK-78, NK-79].

3.3 Obstacle recognition and avoidance during robot navigation in unknown
static environment

3.3.1 Obstacle recognition and avoidance using standard deviations of LASER-scan
distance-range-vectors

The LASER scanner produces a vector of ranges (R) of obstacles. If there are n number
of readings in a scan then R can be expressed by (18) as follows:

R = [dk], for k = 1 to n. (18)

where, dk is the kth distance range in R.
Standard deviation (σR) of R can be expressed by (19) as given below:

σR =

√∑n
k(dk − d)2

n
. (19)

where, d is the mean of R.
The standard deviation of the LASER scans of the similar objects will produce same

results. Therefore, the standard deviation values of LASER scans of objects can be used
to identify and differentiate the objects scanned.
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Algorithm 3 Obstacles avoidance algorithm
1: function fcn(M,X, Y, vc, vb, ωc, Dt)
2: Receive scan reading from robot;
3: R← scan ranges received from M ;
4: Dmin ← min(R)
5: if (Dmin < Dt) then
6: ω ← ωc;
7: v ← −|vb|;
8: else
9: ω ← 0;

10: v ← vc;
11: end if
12: Store X,Y ;
13: return ω, v;
14: end function

Using standard deviations, the Algorithm 5 gives the solution of the problem of
repetitive paths (occurs using Algorithm 3) and breaks the repetitive path loop in robot
navigation. At the statement 28 of the Algorithm 5, there is a call to the REVVEL(e)
procedure. The REVVEL(e) procedure is explained in Algorithm 4.

Algorithm 4 Procedure to reverse the angular velocity of the robot
1: procedure REVVEL(e)
2: if (e == 1) then
3: ωc ← −ωc;
4: T1 ← current time
5: end if
6: T2 ← current time
7: if (T2 − T1 > Td) then
8: e← 0;
9: end if

10: end procedure

Table 1 presents the variables’ descriptions which are taken through Algorithms 3−5.
According to the statement 26 of the Algorithm 5, if the standard deviations, robot
positions of the two scans are similar and the time difference between the two scans is
larger than a threshold value then this is the re-occurrence of an obstacle.
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Table 1: Variables’ descriptions for the Algorithms 3−5.
Variable Description

Tc Current time of the system

V
Y coordinates vector of positions

when closer obstacles

U
X coordinates vector of positions

when closer obstacles
v Linear velocity of robot
Y Y coordinates vector of all positions
X X coordinates vector of all positions
ω Angular velocity of robot
S Standard deviations vector of scan ranges
T Vector of scans times

Table 2: Initialization of variables for the Algorithms 3−5.
Variable Description Initialized Value

Tf Finishing time 190 (seconds)
Td Time difference of scans 10 (seconds)
Tt Time threshold 10 (seconds)
Ts Time of start 0

Dt
Distance threshold

of robot and obstacles
0.6 (meter)

Pt
Distance threshold
of two positions

0.2 (meter)

σt
Threshold fluctuation

of σ of scans
0.0005

ωc Angular velocity of robot −0.6 (radian/sec.)
vb Backward linear velocity −0.02 (meter/sec.)
vc Forward linear velocity 0.5 (meter/sec.)
e a counter variable 0
g a counter variable 0
c a counter variable 0

Rm
Maximum distance range

of LASER sensor
Default
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Algorithm 5 Obstacles recognition and avoidance algorithm
1: Create vectors: Y, S, U, T, V, X;
2: Initialize: Dt, Rm, c, e, g, Td, Tf , Tt, Ts, Pt, ωc, σt, vb, vc;

(Definition and initialization of variables can be found in Tables 1−2.)
3: while ((Tc − Ts) ≤ Tf ) do
4: Read LASER scan from robot;
5: R← Distance range vector received from robot;
6: for j ← 1 to length (R) do
7: if (R(j) is not defined) then
8: R(j)← Rm;
9: end if

10: end for
11: Dmin ← min(R);
12: Y(g)← Y coordinate of the robot position;
13: X(g)← X coordinate of the robot position;
14: g ← g + 1; ;
15: if (Dmin < Dt) then
16: V(c)← Y coordinate of the robot position;
17: U(c)← X coordinate of the robot position;
18: Compute σR using (19);
19: S(c)← σR;
20: T(c)← time at which scan is performed;
21: c← c+ 1;
22: for k ← 1 to (length (S)− 1) do
23: Td ←

∣∣T(k)−T(c)
∣∣;

24: σr ←
∣∣(S(c)− S(k))

∣∣;
25: Dc,k ←

√
(V(c)−V(k))2 + (U(c)−U(k))2 ;

26: if
(
Dc,k < Pt & σr < σt & Td > Tt

)
then

27: e← e+ 1;
28: Call Procedure REVVEL(e);
29: end if
30: end for
31: ω ← ωc;
32: v ← −|vb|;
33: else
34: ω ← 0;
35: v ← vc;
36: end if
37: Drive the robot using v, ω;
38: end while
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3.3.2 Obstacle recognition and avoidance using two-sample t-test

In Section 3.3.1, the Algorithm 5 has presented a solution for obstacle recognition and
avoidance using the difference of the standard deviations of LASER-scan distance-range-
vectors. In Algorithm 5, the statement 26 is stated as follows:

if (Dc,k < Pt & σr < σt & Td > Tt) then

here, the if condition composes logical “AND” of three conditions. The second condition
(σr < σt) of if compares the difference of standard deviations (σr) of two LASER-scan
distance-range-vectors with an arbitrary constant value (σt). However, setting the value
of (σt) is problem specific. Therefore, there is research scope to standardise the condition
(σr < σt).

Various statistical techniques are presented in literature (e.g. [80]). Two independent
samples can be compared for similarity on various aspects using t-test [81]. In this section,
the comparison of LASER-scan distance-range-vectors is standardised using t-test.
Considering two independent samples (x and y) given in (20) as follows:

x = {dx1 , dx2 , dx3 , ......, dxn1
}.

y = {dy1 , dy2 , dy3 , ......, dyn2
}.

(20)

Following [83], the statistics t can be defined as follows:

t = dx − dy

σS
√

1
n1

+ 1
n2

. (21)

where, n1 and n2 are the sizes of the x and y samples considered in (20), respectively.
dx and dy are the means of the two samples x and y, respectively. The value of σS is
given by (22).

σS =

√√√√√ 1
n1 + n2 − 2

 n1∑
i=1

(dxi − dx)2 +
n2∑

j=1
(dyj − dy)2

. (22)

here,
df = n1 + n2 − 2. (23)

Application of t-test in obstacle recognition and avoidance:
To apply t-test in obstacle recognition and avoidance, the statements 19, 24, and 26

of the Algorithm 5 can be replaced with the statements given in (24), (25), and (26),
respectively.
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Algorithm 6 Procedure to perform t-test on two independent range-vectors x and y.
1: procedure tTestNk(x, y)
2: n1 ← size of x
3: n2 ← size of y
4: df ← n1 + n2 − 2
5: tc ← tabulated value of t corresponding to df and level of significance.
6: dx ← 1

n1

∑n1
i=1 dxi

7: dy ← 1
n2

∑n2
j=1 dxj

8: Compute σS using equation (22).
9: Compute t using equation (21).

10: if
(
|t| > tc

)
then

11: Return 1
12: else
13: Return 0
14: end if
15: end procedure

S(c)← R (24)

h← tTestNk
(
S(c),S(k)

)
(25)

if ( Dc,k < Pt & h = 0 & Td > Tt) then (26)

where, “tTestNk” is name of the procedure (defined in Algorithm 6). The distance
range-vectors, S(c) and S(k), are the two input arguments for a call to the procedure.
The procedure returns “1” if the t-test rejects the null-hypothesis (H0). On contrary,
the procedure returns “0” if the t-test accepts the null-hypothesis.
The procedure in Algorithm 6 has two input parameters, x and y, pertaining to the

input arguments, S(c) and S(k), in it’s call at the modified Algorithm 5 using (24) −
(26).
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4 New Scientific Results

4.1 Theses Group: Robot navigation with obstacle recognition in unknown static
environment having rectangular obstacles

4.1.1 Thesis point-Robot navigation in unknown static environment with
obstacle recognition using LASER sensor

The standard deviations of LASER scan distance-range-vectors are
suitable for detecting similar obstacle configurations.

Own publication concerned to the thesis point 4.1.1: [NK-84, NK-85, NK-86].

4.1.2 Thesis point-Obstacle recognition and avoidance during robot
navigation in unknown static environment

In some situations, if similar standard deviations of two LASER
scans appears at similar locations and the time difference between
the two scans is larger than a threshold value then the path loops
can be broken by reversing the angular velocity of the robot.

Own publication concerned to the thesis point 4.1.2: [NK-87].

4.1.3 Thesis point-Application of t-test for obstacle recognition and
avoidance in robot navigation

Using t-test, similarity of two LASER-scan distance-range-vectors
can be checked without comparing the difference of the distance-
range-vectors with an arbitrary value. Consequently, the outcome
of the t-test can be used for obstacle detection and avoidance.

Own publication concerned to the thesis point 4.1.3: [NK-88].
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5 Discussion and Practical Applicability of the Results

In the present time, the robots are getting popular day by day in the scientific, household,
and industrial purposes. Importantly, for the mobile robots, the navigation is the key task.
The study presented here has been tested on simulated as well as real robot. Therefore,
the research findings of the study can be applied to mobile robots in various fields.
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