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Abstract

The performance of feedback control systems depends on two important algorithms. On one

hand, measurements are collected of system dynamics based on sensor data and a state observer

algorithm is executed to obtain an estimate of such system states that cannot be determined

based on direct observations. This state estimator algorithm is the basis in many control en-

gineering applications, since its output (system state estimate) is necessary to solve the control

system design problem, i.e., the stabilization of the system around a desired state. As a result,

the state estimator is required to provide both reliable and smooth results and thereby its per-

formance directly influences the overall closed-loop dynamics. On the other hand, the control

algorithm itself determines the performance of the feedback system. This algorithm should

be able to satisfy all the essential control objectives based on both the observed and estimated

system states. Moreover, the quality of regulation plays an important role, in which robustness

against both parameter uncertainties and measurement noises is examined, as well as, smooth

control action is addressed. The resultant control action can contribute to high-quality refer-

ence tracking, energy-efficient drive characteristics and/or protective (e.g., jerk-free) regulation,

which are important aspects in the control of nowadays electro-mechanical systems (robots).

In my research work, I analyzed the performance of the preceding algorithms and developed

novel soft computing-based techniques to enhance the performance of both state estimation and

control. The system to be discussed and controlled is a real wheeled mobile pendulum system,

which is a simple two-wheeled mechatronic construction characterized by challenging control

problems, such as underactuated, unstable and nonlinear dynamics.

The first group of theses addresses the control system design problem and investigates soft

computing-based techniques to enhance the performance of control strategies. First, the realis-

tic mathematical model of the plant is determined and verified based on measurement results of

the real system behavior. This realistic model enables the consistent elaboration of stabilizing

control strategies, testing of closed-loop dynamics, and the optimization of control parameters.

As a result, a novel 8-dimensional mathematical model of wheeled mobile pendulum systems is

obtained, which includes both the mechanical nonlinearities and motor dynamics. Then, lin-

ear and fuzzy logic-based control strategies are established for the stabilization of the unstable

system and the initial performance of these controllers is determined based on both simulation

and implementation results. In this stage of development process, the control strategies are

designed and tuned heuristically based on the observations related to system dynamics. The

development of performance maximizing approaches and the evaluation of the achievable con-

trol performances form the next step of the investigation. The quality of the realized control

solutions is defined based on transient responses and different error integral formulas. Then,

the numerical optimization of control parameters is outlined, where the enhancement of control

solutions is realized via the minimization of the quality index (fitness or cost function). This op-

timization problem is elaborated in four main steps. First, an easily parameterized fuzzy logic

control structure is realized in MATLAB/Simulink environment. Second, a complex fitness

function is formulated for system dynamics qualification, which evaluates the reference tracking



performance for planar motion, the oscillation of the inner body of the robot, and the energy

efficiency of the implemented controllers. Third, the application of particle swarm optimiza-

tion algorithm is elaborated with the aim to obtain the optimal possible controller parameters.

Fourth, the achieved control performances are evaluated and a comparison of optimized lin-

ear and fuzzy control strategies is given. This investigation results in a novel protective-type

fuzzy logic controller, which provides nonlinear control action based on the sampled current

consumption. The structure of the this controller enables to both achieve fast reference track-

ing dynamics and suppress (limit) the current peaks and jerks in the electro-mechanical parts

(motor drive system) of the robot.

The second group of theses deals with the enhancement of state (attitude) estimation per-

formance and derives novel soft computing-based adaptive methods to provide reliable attitude

estimates even in dynamic situations. First, the Kalman filter as state estimator algorithm is

established for the system and the parameters of the algorithm are tuned heuristically based

on real-time measurement results. The performance of this estimator algorithm is mostly influ-

enced by the process and measurement noise covariance matrices, however the noise statistics

is difficult to measure in real practical problems, especially in case of micro-electro-mechanical

systems-based attitude estimation problem, where the assumed noises are dynamics-dependent.

Therefore, the heuristically selected filter parameters yield only a compromise solution between

filter accuracy and convergence. To overcome this issue, a filter testing environment is created

and numerical optimization is performed to find the performance maximizing filter parameters,

where both the raw sensor data and true states are obtained in a novel test environment. Then,

new measurement methods are developed to obtain the instantaneous vibration and external ac-

celeration magnitudes (thereby to characterize the system dynamics) and a novel adaptive filter

structure is established. This filter structure consistently modifies the noise covariances based

on the instantaneous system dynamics via a heuristically defined fuzzy inference machine. The

measurement results highlight that the adaptive filter structure provides superior convergence

even in extreme dynamic situations based on the comparative assessment of existing popular

attitude estimator algorithms. Finally, the generalization of the adaptive filter is derived for

quaternion representation of orientation. This filter structure incorporates an extended Kalman

filter, three measurement methods for real-time determination of vibration, external accelera-

tion and magnetic perturbation magnitudes, and a sophisticated fuzzy inference machine to

vary the filter parameters based on the instantaneous dynamics. A novel test environment is

developed for filter performance evaluation, where a six degrees of freedom test bench both en-

ables the execution of various system condition and simultaneously measure the real states and

raw sensor data. The experimental results show that the derived filter significantly improves

the robustness of state estimation, both in static and extremely vibrating and accelerating en-

vironments. The developed dynamic-dependent feature makes the filter structure a suitable

candidate for attitude estimation in mechatronic systems operating in variable conditions.

Keywords: Kalman-filter, Fuzzy Logic Control, Optimization, Adaptive-filter, Attitude Es-

timation, Inertial Measurement Unit, Self-balancing Robot



Új lágy számı́tási módszerek alkalmazása a szenzorfúzióban és iránýıtásban:

valós alkalmazások egy mechatronikai rendszeren

Odry Ákos

Kivonat

Mechatronikai rendszerek dinamikus viselkedésének minőségét alapvetően két fontos algoritmus

befolyásolja zárt körben. Egyrészt, az állapotbecslő algoritmus szolgáltat hasznos eredményeket

a nem mérhető vagy zajos állapotokról. A becslések a rendszer dinamika és a megfigyelhető

rendszer kimenetek szenzorfelületen keresztüli méréseit felhasználva kerülnek előálĺıtása. Az

algoritmus illesztése a problémához és paramétereinek hangolása egy kritikus mérnöki feladat,

hiszen az iránýıtás (szabályozó tervezés), mely a szakaszt a ḱıvánt állapotok környezetében sta-

bilizálja, az előálĺıtott becsléseket felhasználva kerül kidolgozásra. Az állapotbecslő az aszimp-

totikus becslés mellett különböző tervezési követelményeket kell, hogy kieléǵıtsen valós mérnöki

problémákban, ilyenek a minimális hiba dinamika és gyors konvergencia. Ennek következménye-

ként megállaṕıtható, hogy algoritmus performanciája szignifikánsan befolyásolja az elérhető

dinamikát zárt körben. Másrészt, az alkalmazott iránýıtási algoritmus (szabályozó) perfor-

manciája határozza meg a zárt kör karakterisztikáját. Ez az algoritmus az iránýıtási követelmé-

nyek teljesülését biztośıtja a megfigyelt és becsült állapotok visszacsatolásán keresztül. Ezen

túl pedig, az iránýıtás minősége tölt be fontos szerepet a szabályozó tervezése során, hiszen a

szabályozók struktúrája robusztusan (a paraméterbizonytalanság, rendszer zaj és külső zavarás

mellett) kell, hogy biztośıtson stabilizáló bemenő jeleket az iránýıtandó rendszer számára.

A realizált iránýıtás minősége több szempontból vizsgálható, a minőségi alapjel követésen

keresztül, az energia hatékony iránýıtási karakterisztikán át, az elektromechanikai rendszerek

feléṕıtését ḱımélő megoldás hatékonyságáig. A disszertációban a fenti két algoritmus karakte-

risztikáit vizsgálom és új lágy számı́tási módszereken alapuló megoldásokat fejlesztek és alkal-

mazok, melyek a zárt kör eredő dinamikáját tökéleteśıtik az állapotbecslési és iránýıtási per-

formanciák finomı́tásán keresztül. A kutatás során olyan eszközre volt szükség, amely lehetővé

teszi a kifejlesztett technikák beágyazását, tesztelését és verifikálását. Az erre alkalmas mechat-

ronikai rendszer a kutatásokban és az iparban is elterjedt kétkerekű önegyensúlyozó robot,

hiszen az egyszerű feléṕıtésének ellenére kih́ıvások tömkelegét tárja elénk, a komplex dinamikus

viselkedéstől, a nemlineáris hatásokon át, az instabil munkapontig.

Az első téziscsoport olyan fuzzy szabályozók kifejlesztésével foglalkozik, amelyek robusz-

tusabb dinamikus viselkedést és hatékonyabb energiafogyasztást biztośıtanak robotikai alkal-

mazásokban, mint a közkedvelt megoldások. A feladat a zárt kör megtervezését, a mechat-

ronikai rendszer stabilizálását és az elérhető iránýıtási performancia maximalizálását foglalja

magába. A kidolgozás a választott mechatronikai rendszer (robot) valósághű modelljének

meghatározásával indul, mely lehetővé teszi az iránýıtások következetes tervezését, tesztelését,

realizálását és későbbi optimalizációját. A kutatás eredményeként megadom az önegyensúlyozó

robotok 8-dimenziós nemlineáris dinamikus modelljét, mely a nemlineáris mechanikai hatások



mellett a meghajtó motorok dinamikáját is magában foglalja. A következő kutatási lépésként a

lineáris és fuzzy logikán alapuló iránýıtások - fuzzy logikai szabályozók – tervezésével foglalko-

zom. A sikeres tervezést pedig a realizáció követi, mely az implementációt és tesztelést foglalja

magába a valós mechatronikai rendszeren. Ebben a fázisban az iránýıtások heurisztikus módon

vannak megtervezve a szakasz dinamikus viselkedésének megfigyelésén keresztül. A realizált

iránýıtásokkal elérhető iránýıtási performanciák kiértékelése képezi a kutatás következő fázisát.

Az iránýıtások minőségét a tranziens viselkedések és különböző hiba integrálok kiértékelésével

jellemzem. A numerikus optimalizáció esetében az iránýıtási minőség jav́ıtása költségfüggvény

(fitness függvény) minimalizációs feladat. Az alkalmazott optimalizációs stratégiát négy fontos

részre bontom. Első lépésként létrehozok egy paraméterezhető fuzzy következtető gépet és a

hozzá tartozó MATLAB/Simulink teszt környezetet. Ezután, a dinamikus viselkedést egy komp-

lex költségfüggvénnyel minőśıtem, mely figyelembe veszi a transzlációs mozgás dinamikáját, a

közbenső test oszcillációját, valamint az implementált iránýıtás energia hatékonyságát. Har-

madik lépésben alkalmazom a részecskeraj algoritmust az optimális szabályozó paraméterek

megtalálása céljából. Végül pedig kiértékelem és összehasonĺıtom az optimalizált (vagy maxi-

malizált) lineáris és fuzzy iránýıtási performanciákat. A fenti vizsgálatok eredményeként egy

speciális fuzzy logikai szabályozó kerül definiálásra, mely áram tranziens limitáló mechanizmus-

sal van felvértezve. A speciális struktúrának köszönhetően az áram tranziensek és oszcillációk

sokkal kisebb mértékben jelentkeznek a robot elektromechanikai rendszerében a realizált fuzzy

iránýıtás esetében, mint a lineáris iránýıtásoknál.

A második téziscsoport az állapotbecslés minőségének tökéleteśıtését tárgyalja és olyan

újszerű, lágy számı́tási módszereken alapuló technikákat vizsgál, melyek a megb́ızható becslési

eredmények biztośıtása mellett finomı́tott performanciát mutatnak extrém dinamikus szcenáriók-

ban is. A választott rendszer esetében a közbenső test orientációja képezi a nem mérhető és zajos

rendszer állapotot. Az orientáció becslésére elterjedt megoldás a Kalman-szűrő (állapotbecslő)

alkalmazása. Az algoritmus performanciáját az állapotegyenletben definiált zajok kovariancia

mátrixai határozzák meg. Azonban, a legtöbb valós alkalmazásban a kovariancia mátrixok

értékei nem mérhetők, ezért azok beálĺıtása nem egyértelmű feladat. Továbbá, sok esetben a

mérnöki intúıció és/vagy trial-and-error alapú hangolások csak kompromisszumos megoldásokat

eredményeznek, mely kritikus kimenetelt eredményezhet instabil rendszerek szabályozása esetén.

A téziscsoportban két új megoldást mutatok be az állapotbecslő performanciájának tökéleteśıté-

sére. Először kialaḱıtok egy speciális teszt környezetet, melyben a szakasz valós (nem mérhető)

állapota mérhetővé válik a realizált állapotértékek mellett. A mérési eredményeket felhasználva

a szűrő paraméterek optimalizációját dolgozom ki a kialaḱıtott szimulációs környezetben. Ezt

követően egy adapt́ıv-fuzzy állapotbecslő struktúrát definiálok, mely a pillanatnyi vibrációk

és külső gyorsulások (azaz a rendszer dinamikus viselkedésének) figyelembevételével online

módośıtja a szűrőparamétereket, ezáltal tovább jav́ıtva a becslési konvergencia minőségén.

A kifejlesztett adapt́ıv szűrő performanciáját két populáris állapotbecslő algoritmussal ha-

sonĺıtom össze. A kutatás következő lépésében, ezt az adapt́ıv szűrő struktúrát kiterjesztem és

általánośıtom kvaternió alapú orientáció becslésre. Az általános szűrő struktúrában kiterjesztett

Kalman-szűrőt alkalmazok; a pillanatnyi külső zavarásokat mérőszámokkal jellemzem három új

mérési módszer (vibrációk, külső gyorsulások és mágneses zavarások) seǵıtségével, valamint egy



kifinomult fuzzy következtetési gép seǵıtségével HA-AKKOR szabálybázist implementálok a

szűrőparaméterek következetes, online módośıtására. Az adapt́ıv szűrő orientáció becslésének

konvergenciáját a háromdimenziós térben egy új teszt környezetben értékelem ki, ahol egy

hat szabadságfokú mechatronikai rendszer lehetővé teszi különböző dinamikus viselkedések szi-

mulálását és mind a valós rendszerállapotok mind pedig az érzékelő adatok szimultán mérését. A

különböző szcenáriókban (kevert statikus és extrém dinamikus viselkedések mellett) elvégezett

mérési eredmények a kifejlesztett adapt́ıv szűrő robusztus karakterisztikáját bizonýıtják. A

kiváló eredmények a szűrő dinamika-alapú tulajdonságainak köszönhető, hiszen a szűrő paramé-

terek konzisztens változtatása az érzékelőkel realizált szögpoźıciók előnyös fuzionálását teszi

lehetővé.
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1 Introduction

The overall performance of a closed-loop system depends on two important algorithms. Namely,

the state estimator algorithm contributes to provide useful measurements of the system and

the implemented control algorithm produces the control action to stabilize the plant around

the desired state (see Fig. 1.1). On one hand, reliable estimation is both an essential and

crucial task of the state estimation design problem, since the stabilizing system inputs are

calculated based on the estimation results. If the state estimation contains significant errors,

then these control signals will drive the system out of equilibrium to unwanted states, which

may eventually damage the system and its environment. On the other hand, control system

design problem involves the development of such control strategy that tolerates both model

uncertainties and noisy input signals, and thereby provides suitable control action that satisfies

the control requirements (even if the system dynamics is unknown) Barton (1996); Odry et al.

(2018, 2020b).

Sensors

Unstable system:

ሶ𝑥 = ℎ 𝑥, 𝑢
𝑦 = 𝑔(𝑥, 𝑢)

𝑢 𝑦∑ Output

Measurements/
Observations

Feedback

-

+

Setpoint
CONTROLLER

𝑖

CONTROLLER
𝑗

CONTROLLER
𝑘

Error ∑

Control strategy

Control
action

State estimation quality:
1. subproblem

Control performance:
2. subproblem

State estimator

Figure 1.1: General block diagram of closed-loop systems.

Since, the implemented estimator and controller algorithms are linked in a closed loop,

therefore, it is a challenging issue to tune these algorithms and thereby maximize the closed

loop performance, especially if the system to be controlled is naturally unstable. Moreover,

it is also difficult to determine whether a badly designed controller or state estimator results

in modest of unsatisfactory system behavior. This discussion illustrates that the procedure

for achieving maximized closed loop performance, i.e., providing both maximized estimation

convergence and effective (enhanced) control action (such as in sense of response dynamics,

current consumption and/or mechanical protection), remains an important issue. Therefore,

my work addresses the preceding issues and proposes two distinct approaches to enhance the

overall closed-loop performance. Namely, the overall control performance maximization problem

has been divided into two sub problems. First, the work separately discusses the enhancement
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of control strategies with the aid of soft computing techniques, then the improvement of state

estimation performance is addressed with novel adaptive approaches.

This work focuses on the advantageous applicability of both fuzzy logic controllers (FLCs)

and fuzzy logic-based inference systems for robotic applications. As a result, the first part of

my work addresses the development of such fuzzy control strategies that provide more effective

closed-loop performance than the fundamental techniques. Moreover, in the second part of the

work, fuzzy-based adaptive solutions are developed for robust state estimation.

Since the research work both involves and fuses separate research fields and applications,

therefore the research background (section 1.1) has been divided into four parts. The discussion

of each research field is summarized as follows.

1. Subsections 1.1.1 and 1.1.2 discuss the fuzzy logic-based control approaches and common

fundamental techniques and then emphasize the advantages of fuzzy based approaches in

order to motivate the fuzzy logic-based initiative over the classical methods.

2. Both for the elaboration and analysis of control system design problems, a test environ-

ment was required to be selected. The importance of the selected unstable mechatronic

system (robot), moreover, the recent developments regarding its control approaches are

discussed in subsection 1.1.3.

3. The state estimation problem, characteristics of fundamental approaches and the recent

advances are analyzed in detail in 1.1.4.

Each of the aforementioned subsections addresses some issues and confirms some important

aspects of both state estimation and control. Moreover, these observations motivated my work

throughout the research and development procedure presented in this document. The findings

and observations are documented in section 1.2, while the main contributions are summarized

in section 1.4. Finally, section 1.3 briefly introduces the robot which was a benchmark

mechatronic system on which the closed-loop performance was analyzed in this work.

1.1 Research Background

Nowadays, technological developments face dynamical systems that are getting more and more

complex and complicated by the day. These complex systems are characterized by high order

dynamics, uncertain parameters, and most often, their nonlinear mathematical model is only

approximately known (such as the analyzed system in our work). Over the last few decades, it

has been shown that conventional and modern linear control techniques have been extensively

applied in control development and industrial automation, however, their performance is always

an issue to be carefully analyzed, when systems with uncertainty and unmodeled dynamics are

controlled. In general, the linear controllers do not work well for nonlinear vague systems Tang

et al. (2001).

1.1.1 Fuzzy Logic-based Control Solutions

Zadeh’s fuzzy logic and approximate reasoning introduced a new linguistic information based

design perspective, where imprecision and uncertainty form the basis of the inference mechanism

Zadeh (1965). The application of heuristic IF-THEN rules allows the expert to easily establish
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input-output relationships of the system to be designed based on deductions related to system

dynamics Wang (1997). Moreover, this approximate reasoning approach gives the appropriate

tools to both perform smooth control action and cover model imprecision and uncertainties in the

system, and additionally, the inference mechanism formed by these fuzzy rules allows the system

designer to neglect the derivation of complex mathematical formulas and even to consider the

plant as a black-box model Fukuda and Kubota (1999); Das and Kar (2006); Hou et al. (2009);

Kecskés and Odry (2014). Due to these advantages, fuzzy logic control plays an important role

in systems with unknown structure and has been widely used in automotive control applications

López-Guauque and Gil-Lafuente (2020); Tamir et al. (2015); Dubois and Prade (2015). Thanks

to its rapid progress, fuzzy reasoning is a fruitful research area for the Robotics and Control

Community, where the achievable control performance, competitive cont-rol techniques and

fuzzy-based engineering solutions are continuously investigated and widely utilized in nowadays

technological developments both in industry and scientific research including signal processing,

robotics and control Verbruggen and Bruijn (1997); Huang et al. (2011); Anisimov et al. (2018);

Csaba and Vamossy (2012); Kumar et al. (2017); Nourmohammadi and Keighobadi (2018).

Some potential results in real practical environments are summarized as follows.

The provided flexibility, linguistic information-based design and heuristic knowledge oriented

development capability enabled fuzzy control to be a popular technology in the development of

unmanned air vehicles (UAVs) McLean and Matsuda (1998); Kumon et al. (2006); Santos et al.

(2010), where the developed fuzzy control strategies provided acceptable station-keeping perfor-

mance, successful stabilization, wind disturbance rejection and tracking control even in severe

turbulences. In references Das and Kar (2006); Hou et al. (2009) adaptive FLCs were proposed

for the robust control of nonholonomic mobile robots that were characterized with uncertain

parameters, and the results proved the robustness of the derived tracking control schemes. Ref-

erence Lee and Gonzalez (2008) examined the achieved control performance of both conventional

proportional–integral–derivative (PID) and fuzzy techniques for position control of a muscle-

like actuated arm. Adaptive fuzzy logic-based stabilization of two-wheeled inverted pendulum

systems has also been investigated and effectively used both in simulation environments and on

real plants Huang et al. (2011); Anisimov et al. (2018). Moreover, fuzzy control was successfully

applied in the development of walking robots. Reference Kecskés and Odry (2014) optimized

the fuzzy controllers of a hexapod robot called Szabad(ka)-II in such a way to simultaneously

minimize the current consumption and maximize the walking speed.

Over the past decade, it has been widely investigated weather fuzzy logic-based control

solutions can replace the linear approaches. Many applications have been proposed where fuzzy

control showed superior performance (e.g., in references McLean and Matsuda (1998); Kecskés

and Odry (2014); Ahmed et al. (2016); Kecskés et al. (2017a)) over using linear techniques,

however, the opposite outcome was often claimed as well (such as in works Lee and Gonzalez

(2008); Das and Kar (2006)). Similarly, my investigation in Odry et al. (2016b) compared

fuzzy control and linear–quadratic–regulator (LQR) approaches for the stabilization of a mobile

robot. In this work, the measurement results have shown that the former solution provided

better overall control performance, while the latter approach showed faster system dynamics

for transient events. Since, the controllers were designed heuristically (trial-and-error methods),
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therefore a general conclusion could not be stated.

Observation: These results prove that fuzzy logic provides a fruitful research area, however,

the effective and beneficial applicability of fuzzy control still remains an important issue to be

further addressed.

1.1.2 Fundamental Approaches as Benchmark Control Solutions

The linear control strategy, consisting of one or more PID-type feedback loops, forms the fun-

damental solution to stabilize the system around a reference state (i.e., desired set point). The

parameters of these controller(s) can be derived via numerous techniques, from simple model-

based root locus, over black box-based tuning algorithms, to both cost function minimization

with LQR or numerical optimization-based tuning Ho et al. (1995); Visioli (2001); dos San-

tos Coelho (2009); Prasad et al. (2014).

Among the solutions, the LQR technique is a beloved method in the control of dynamical

systems since it provides the optimal state feedback gain based on the well-developed mathemat-

ical algorithm Franklin et al. (1994). Numerous researches have been dealt with its application

and control performance in real embedded environments Divelbiss and Wen (1997); Araar and

Aouf (2014); Ji and Sul (1995); Bouabdallah et al. (2004); Jeong and Takahashi (2007); Shao

and Liu (2010); Li et al. (2011); Nagaya et al. (2013). Reference Divelbiss and Wen (1997)

presented the experimental results of tracking control of a car-trailer system. Similarly, refer-

ence Ji and Sul (1995) proposed a linear–quadratic–Gaussian (LQG) speed control method for

torsional vibration suppression in a 2-mass motor drive system which gave satisfying perfor-

mance and robust behavior against parameter variations. The control performances of PID and

LQR techniques applied to an UAV were compared in Bouabdallah et al. (2004), and it was

emphasized that the control performance of the latter technique was significantly influenced by

model imperfections. Recent efforts broaden further the set of experimental research results,

including the control of inverted pendulum type assistant robot Jeong and Takahashi (2007),

self-balancing unicycle robot Shao and Liu (2010), UAVs in uncertain environments Li et al.

(2011); Araar and Aouf (2014), and wheeled inverted pendulum systems Nagaya et al. (2013).

Observation: The aforementioned papers highlight that the LQR technique provides competitive

performance in the control of dynamical systems, therefore its control performance is regularly

taken into account as a benchmark in comparative analyses Prasad et al. (2014); Nasir et al.

(2010); Al-Younes et al. (2010); Márton et al. (2008); Xu et al. (2014); Guo et al. (2014); Dai

et al. (2015); Sun and Li (2015); Xu et al. (2013a).

1.1.3 Wheeled Mobile Pendulum Robots

Wheeled mobile pendulum robots (WMPs), also known as two-wheeled inverted pendulum

(TWIP) and self-balancing robots (SBRs), have both gained a great deal of attention and

become popular mechatronic systems to be both developed and controlled over the last few

decades in research works, commercial utilization and education Nagarajan (2012); Shomin

(2016); Lilienkamp (2003); Zhaoqin (2012). WMPs are the descendant of the pendulum-cart

systems and provide a big variety of applications due the the advantageous electro-mechanical

properties. These properties include the compactness in both construction and footprint, mo-

bility characterized by zero turning radius, as well as, low cost and low energy consumption Li
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et al. (2012); Sciavicco and Siciliano (2012). As a result, WMPs are considered both as mobile

robot platforms to be effectively controlled and important benchmark systems to verify the

theoretically proven control approaches. Moreover, the most successful commercial product is

the Segway PT, a two-wheeled, self-balancing electric device used for personal transportation

in everyday life Segway (2020).

Since the mechanical structure of the WMP consists of two actuated wheels and an inner

body (IB) that forms a pendulum, the fundamental control objective is to simultaneously ensure

the planar (longitudinal and rotational) motion of the wheels and stabilize the pendulum around

the equilibrium point. Even though numerous control approaches have been proposed for WMP

systems both for simple and harsh terrain environments, the Robotics and Control community

still investigates both the realization of efficient control performances and the dynamical or

stability analysis of the system up to now Chan et al. (2013); Lee and Jung (2012); Kim

et al. (2006); Jeong and Takahashi (2008); Grasser et al. (2002); Raffo et al. (2015); Yue et al.

(2014); Xu et al. (2014); Guo et al. (2014); Dai et al. (2015); Ghaffari et al. (2016); Zhou

and Wang (2016b); Sun and Li (2015); Ruck et al. (2016); Maruki et al. (2014); Cui et al.

(2015); Huang et al. (2011); Xu et al. (2013a); Yang et al. (2014); Pathak et al. (2005); Zhou

and Wang (2016a); Yue et al. (2016); Xu et al. (2015); Yoshida et al. (2016); Vasudevan et al.

(2015). The interest comes from the challenges the electro-mechanical characteristics of the

WMP inherently yields, which are related to the nonlinear underactuated configuration, the

presence of nonholonomic constraint and the unstable open-loop behavior Chan et al. (2013).

The underactuated configuration stems from that the system has three degrees of freedom

including the planar motion and the oscillation angle of the pendulum, while the wheels are

driven through two control inputs only. This property lowers the realization costs, the power

consumption (only two actuators) and the system order, however it also increases the complexity

of control system design. The presence of nonholonomic constraint is due the assumption that

the wheels move by satisfying the pure rolling constraint, i.e., slipping does not occur. This

constraint is a nonintegrable kinematic constraint that restricts the achievable velocities of the

system, thus the control laws elaborated for holonomic systems are not utilizable. Furthermore,

the system has an open-loop unstable equilibrium point that requires such control approaches

which ensure limited oscillation range of the IB, otherwise the pendulum falls and system cannot

recover itself. The aforementioned features motivate the development of control approaches that

provide both robust stability and satisfying control performance even if uncertain circumstances

or external disturbances occur. This motivation is further strengthened by the opportunities

nowadays embedded technologies provide, such as the high computational performance, low

cost and low power consumption.

Regarding the control system design of WMPs two approaches are prevalent. Linear con-

trollers, such as the classical PID Lee and Jung (2012) or state feedback Kim et al. (2006); Jeong

and Takahashi (2008); Grasser et al. (2002), are designed considering the linearized mathemat-

ical model of the plant, and the control parameters are selected based on some observations of

the system behavior and tuned often by trial and error. However, the stability of the closed

loop system is always an issue when the system leaves the neighborhood of the equilibrium,

or uncertainty, unmodeled dynamics and disturbances present in the system. Usually in these
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cases, the linear approach does not provide satisfying close loop behavior, therefore to overcome

these issues, advanced techniques are proposed. Among the advanced techniques, H∞ control

Raffo et al. (2015), which allows the explicit consideration of uncertainties and noises, or the

non-linear sliding mode control (SMC) Yue et al. (2014); Xu et al. (2014); Guo et al. (2014);

Dai et al. (2015); Ghaffari et al. (2016); Zhou and Wang (2016b) that provides parametric

robustness are quite common. Moreover, adaptive Sun and Li (2015); Ruck et al. (2016) and

adaptive backstepping control Maruki et al. (2014); Cui et al. (2015), soft-computing techniques

Huang et al. (2011); Xu et al. (2013a); Yang et al. (2014), and also partial feedback linearization

Pathak et al. (2005); Zhou and Wang (2016a); Yue et al. (2016) based methods are proposed in

the literature. Among the investigations, such studies are predominant where theoretical results

and simulation figures of the proposed control method are provided. In most cases, a simplified

mathematical model is derived and the difficulties that arise in real prototypes are neglected.

Due to the complexity of implementation, less control approaches have been implemented and

tested on real time platforms. In the following paragraph, a brief description is given of the

advances of last decade investigations in the field of practical control of WMP systems.

Reference Jeong and Takahashi (2008) dealt with the work capability of WMP systems as

human-assistant robots. A prototype system was proposed and various motions were realized

using LQR-based state feedback control. In reference Lee and Jung (2012) practical oriented

solutions were proposed for the stabilization of a WMP platform. The control design was based

on the mathematical model derived in Pathak et al. (2005), and the closed loop was formed

by PID controllers. The paper also proposed a tilt angle estimation solution that combines

complementary and Kalman filters (KFs). Fuzzy control of a WMP prototype was investigated

in Huang et al. (2011). The elaborated control approach employed three fuzzy controllers,

which were one by one responsible for the position and orientation of the robot and the balance

of the pendulum. For the control design, the Takagi-Sugeno (T-S) fuzzy model of the plant

was utilized, and the balance standing was solved with a parallel distributed compensation

(PDC) controller, moreover, Mamdani type FLCs were defined for the planar motion of the

robot. The control structure was constructed such a way, that the position error did not

influence directly the control input, instead, the position control was ensured by manipulating

the desired pendulum angle. A different fuzzy control approach for WMP systems was proposed

in Xu et al. (2013a). The set point control task, where the reference was given with a step signal,

was converted to trajectory tracking problem in order to limit the initial control values. For the

control system design, a T-S type FLC with full-state feedback (four inputs) was adopted. The

membership functions were defined based on heuristic knowledge, while the FLC output was

determined considering the output of a linear LQR controller. In this way the manual tuning was

eased. Through different real-time experiments (including flat and inclined surfaces) the authors

showed the effectiveness of the proposed control method against the approach Huang et al.

(2011). Reference Sun and Li (2015) proposed a neural control method for WMPs which was

based on extreme learning machines. In reference Raffo et al. (2015) a nonlinear H∞ controller

was designed and realized for a real WMP vehicle. The elaborated controller took into account

the whole dynamics of the system and ensured closed-loop stability. The theoretical results have

been verified in practical environment, where the proposed approach provided short response
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time and robustness against parametric uncertainties during the stabilization of the system.

Reference Dai et al. (2015) presented different practical solutions for the development of WMPs,

namely, both identification methods for friction and inertia parameters and a pendulum angle

estimation technique which takes into account the position of the sensor installation have been

proposed, moreover, SMC was designed to stabilize the plant. In the proposed identification

procedure, the parameters were identified based on both the measurement results and the

equilibrium torque equation of the DC motors. It was shown that that by considering the

location of the applied accelerometer, the pendulum angle estimation is enhanced. Finally, the

achieved control performance was compared with the classical PID control approach. Similarly,

in references Xu et al. (2014); Guo et al. (2014) SMCs were designed and realized for real

WMPs. The proposed techniques were able to stabilize the real-time platform, moreover, the

uncertainties that arisen due to the mismatch between the ideal mathematical model and the real

plant were handled robustly. The control performance was compared with the LQR controller, in

which the feedback gains were re-tuned after the implementation since high vibrations occurred.

Observation: In many instances, the complex mathematical relations make the implementation

difficult and too complicated due to both time variant and unknown parameters. On the other

hand, there are many cases where the control action computation takes into account the physical

parameters of the plant which are usually not validated. Therefore, a fuzzy control scheme that

can be commonly used in practice, less complex and provides both easy implementation and

effective control performance for WMPs still remains an important issue to be further addressed.

Moreover, both linear and modern control approaches has been elaborated and analyzed for this

type of systems (as it was highlighted in the literature overview), however, the design of the

controllers was based on trial and error procedures in most cases and the achievable control

performance has not been investigated, which also motivated my work.

1.1.4 Attitude Estimation

Since the control objective of WMPs is to simultaneously guarantee the planar motion of the

wheels and stabilize the pendulum, therefore providing accurate attitude values as input to

the applied control structure is essential for stabilizing the unstable system. However, the

relative orientation of a WMP body cannot be measured with encoders, instead, its attitude is

estimated with filter (estimation) algorithms based on the measurement results of micro-electro-

mechanical systems (MEMS). The process to tune the estimation algorithm is a cumbersome

task. Usually trial and error methods are applied to set up the estimator algorithm Dai et al.

(2015); Lee and Jung (2012); Huang et al. (2011), however, this tuning procedure is a challenging

issue for WMPs because they are naturally unstable, moreover, the implemented estimator and

controller algorithms are linked in a closed loop. Therefore, as it was emphasized earlier,

it is difficult to determine whether a badly tuned controller or attitude estimator results in

unsatisfactory system behavior. Additionally, there are two main types of disturbances that

cause the WMP system attitude estimation to become unreliable: external acceleration and

external vibrations. External acceleration can occur as a result of either a predefined planar

motion (i.e., following a desired trajectory) or external influences (i.e., the robot is pushed or

collides with obstacles). Vibrations also arise during closed-loop behavior, because real systems
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encounter driving mechanism backlash that produces unwanted system behavior, especially

when larger control signals are applied Xu et al. (2013b). Therefore, closed-loop performance

usually depends on both ad-hoc estimator tuning (with a virtually unknown convergence quality)

and a controller that roughly tolerates estimation that is inaccurate, noisy, or delayed.

The aforementioned discussion highlights that the MEMS-based relative localization prob-

lem (where the positions and orientation information of moving objects should be determined)

is an important topic, which is widely investigated in many areas including robotics and control

Wen et al. (2019); Roh and Kang (2018); Battiston et al. (2019); Liu et al. (2019); Ahmad

et al. (2019); Wilson et al. (2019); Dai et al. (2015), health care and rehabilitation Baldi et al.

(2019); Duraffourg et al. (2019); Zhang and Xiao (2018), consumer electronics mobile devices

Zhao et al. (2019); Michel et al. (2018); Gośliński et al. (2015), and automated driving and nav-

igation Jouybari et al. (2019); Nourmohammadi and Keighobadi (2018); Xiong et al. (2019);

Khankalantary et al. (2019), both in industry and in scientific research. Independent from the

application, accurate and robust attitude estimation is a crucial task to be solved, especially

if the results are to be incorporated into unstable closed-loop systems, such as the control

algorithms of mobile robots and unmanned aerial vehicles (UAVs) Odry et al. (2018).

The MEMS inertial measurement unit (IMU), composed of tri-axis MEMS accelerometer,

gyroscope, and magnetometer sensors, also known as the measurement system of magnetic,

angular rate, and gravity (MARG) sensor arrays, is the most commonly utilized device to track

the real-time orientation of mobile platforms at present. The low-cost, low power consumption,

and small size characteristics meet technological requirements, and therefore these devices have

been widely utilized in embedded systems, where the filtering algorithm is executed by a mi-

croprocessor. As a result, an attitude and heading reference system (AHRS) has been formed,

which provides the complete orientation measurement relative to the Earth’s gravitational and

magnetic fields (global reference system), where the attitude denotes the roll and pitch angles,

whereas heading refers to the yaw Euler angle Lee et al. (2012). The role of the aforementioned

filtering algorithm is to combine the individual features of each sensor and provide both prop-

erly smoothed and robust attitude results with regard to the global reference system, in either

Euler angles or quaternions. The most common method applied in sensor fusion techniques syn-

thesizes the short-term accuracy of gyroscope-based attitude realizations and the accelerometer

and magnetometer provide rough, low-frequency attitude corrections. This technique cancels

the accumulated error (drift), smooths the signals, and produces long-term stable outputs if the

IMU is in stationary states. Significant decrease in estimation performance arises when external

disturbances are present, such as external accelerations, vibrations, and magnetic distortions,

which prevent the utilization of the pure gravity and local magnetic field vectors in the cal-

culation of the direction cosine matrix (DCM). The following paragraphs discuss the solutions

provided in the literature.

Among recent developments, the KF—by different variants, such as stochastic approaches—

and complementary filter (by frequency domain methods), both augmented with the intelligent

use of deterministic techniques, have become the most popular methods for robust attitude de-

termination Wu and Shan (2019). Deterministic techniques have been shown to solve Wahba’s

problem Wahba (1965) and provide attitude estimation based on gravity and magnetic field ob-
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servations. The fundamental solutions are three-axis attitude determination (TRIAD), which

produces suboptimal attitude matrix estimation by the construction of two triads of orthonor-

mal unit vectors, and the QUaternion ESTimator (QUEST), in which the quaternion is found

by minimizing a quadratic gain function based on a set of reference and observation vectors.

Improved approaches have utilized the fast optimal matrix algorithm (FOAM) Markley and

Crassidis (2014), the factored quaternion algorithm (FQA) Yun et al. (2008), the Gauss–Newton

algorithm Liu et al. (2014), Levenberg Marquardt algorithm Fourati et al. (2010), the gradient

descent algorithm Madgwick et al. (2011), and the super fast least-squares optimization-based

algorithm Wu et al. (2018). Each approach estimates the attitude based on accelerometer

and magnetometer measurements and is characterized by reduced computational complexity or

more robust performance. As the estimation performance significantly decreases with distur-

bances (magnetic perturbation and/or external acceleration), the incorporation of gyroscope

measurements has thus become a de facto standard for the state propagation.

Complementary filters (CF) use frequency domain information to synthesize signals that

have complementary spectral components. This concept enables us to combine the slowly vary-

ing signals of the accelerometer and magnetometer with the fast signals of the gyroscope through

low- and high-pass filters, respectively. The CF has been widely implemented in the robotics

and control community, due to its simple structure and ease of implementation Euston et al.

(2008); Tsagarakis et al. (2017). In Euston et al. (2008), a nonlinear CF was developed for

UAVs, which also employed first-order vehicle dynamics to cancel the effect of external ac-

celeration. A quaternion-based nonlinear CF (qNCF) for attitude estimation was developed

in Mahony et al. (2008) (hereafter referred to as the Mahony filter), which corrects the gyro-

scope measurements with a proportional and integral (PI) controller and provides attitude and

gyroscope bias estimates. The popular Madgwick filter Madgwick et al. (2011) is a computa-

tionally efficient constant gain filter, which was developed originally for human motion tracking

applications. The filter has been improved recently in Wilson et al. (2019), employing the

accelerometer and magnetometer measurements in a gradient descent algorithm to correct the

quaternion obtained through the integration of rate measurements. Mahony and Madgwick

filters are widely utilized algorithms and their performances have regularly been considered in

comparative analyses Cavallo et al. (2014); Valenti et al. (2015); Mourcou et al. (2015); Michel

et al. (2018); Jouybari et al. (2019); Baldi et al. (2019). In Tian et al. (2012), an adaptive-gain

CF was proposed to provide good estimates, even in dynamic or high-frequency situations. The

filter gain was modified based on both the convergence and divergence rates of observation-based

orientation realization and gyroscope-based orientation propagation, respectively. An improved

qCF was designed in Valenti et al. (2015), in which two correction sequences were employed

based on separating the quaternion into accelerometer- and magnetometer-based realizations.

Moreover, the algorithm was augmented with an adaptive gain characterized by two thresholds

to reduce the estimation error when dynamic motion is present. The filter performance was

validated with experiments containing short external disturbances. This algorithm was adapted

in Duraffourg et al. (2019), where its real-time performance was evaluated on a microprocessor-

controlled lower limb prosthesis. An iteration-free variant of CF has been proposed for efficient

attitude estimation calculation in Wu et al. (2016), where a linear system was employed for the
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accelerometer-based attitude realization. The filter performance was evaluated under different

conditions and the effects of vibration and magnetic distortion were examined as well. However,

the developed CF was not as accurate as the benchmark KF, especially under highly dynamic

conditions. In Fan et al. (2018), a two-step qCF was implemented for human motion tracking

applications. The algorithm was characterized by two separate tuning parameters; moreover,

it contained a finite state machine-based adaptive strategy to cope with external disturbances.

The two-step configuration made the attitude output more resistant to magnetometer measure-

ments, as the attitude was obtained based on accelerometer and gyroscope data first, following

which the heading angle was updated using both the estimate and magnetometer data.

The KF and its extension for nonlinear cases, the extended KF (EKF), are the most preva-

lent Bayesian state estimation algorithms utilized for attitude determination. These recursive

algorithms deal with statistical descriptions and predict the state of the Gaussian stochastic

model of MARG with minimum variance. The main performance, which includes both the filter

dynamics and convergence, is determined with the proper covariance matrices that describe the

stochastic system. In Sabatini (2006), a qEKF was developed for human movement tracking, in

which the state of a rotation quaternion was augmented with the random walk processes of ac-

celerometer and magnetometer bias vectors. Moreover, an adaptive strategy modified the noise

covariance matrix if an external disturbance was identified. The filter was improved by modeling

the magnetic variations with a Gauss–Markov vector random process, which aimed to reduce the

effect of fluctuating magnetic environments Sabatini (2011). Adaptive threshold-based switching

strategies have been used to modify the covariance matrices based on the measured stationary-,

low-, and high-acceleration modes in Li and Wang (2013); Mazza et al. (2012). In Lee et al.

(2012), an acceleration model was incorporated in the stochastic model, and thus the KF both

estimated and compensated for the external acceleration in an attitude determination process.

The proposed method was evaluated under dynamic conditions and compared with a threshold-

based KF; however, significant improvement in the estimation accuracy was not highlighted.

In Gośliński et al. (2015); Nowicki et al. (2015), smartphone-based human body orientation

estimation was addressed with the application of a qAEKF. The proposed adaptive strategy

modified the noise covariance matrix based on the variance of input signal. Moreover, the upper

and lower bounds of covariance values were selected by numerical optimization. Comparison

with both the Android OS algorithm and a simple CF highlighted the benefits of the proposed

method. A similar qEKF structure without adaptation laws was proposed for the attitude es-

timation of UAVs in Zhang and Liao (2017). The filter was set up with experimentally tuned

noise covariance matrices; however, its performance was evaluated without external dynamic

effects on a multi-function turntable device. A reduced state vector-based qEKF approach was

applied in Roh and Kang (2018), in which the measurement noise covariance was tuned in

real-time, based on the angle between the predicted and measured gravitational accelerations.

A two-step geometrically-intuitive quaternion correction was proposed for a linear KF, which

enabled isolation of the pitch and roll estimation performance from magnetic distortion effects

by decoupling the accelerometer and magnetometer data Feng et al. (2017). In Ligorio and

Sabatini (2015), a linear KF was implemented for human motion tracking applications in dy-

namic environments. In their real-world experiments, the effects of long external accelerations
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were addressed and good overall performance was achieved by the filter; however, significant

error peaks were present in the estimation as well. A smart detector augmented AEKF was

proposed in Makni et al. (2015) with similar filter efficiency. The adaptive strategy identified

both static and dynamic body motions. Moreover, the effect of external acceleration was sup-

pressed through filter gain tuning. The attitude estimation problem during sports activities

was addressed in Yuan et al. (2019), where the proposed EKF considered the model uncer-

tainty of active acceleration. Experiments highlighted the robustness of the approach, especially

when large accelerations were present during the tests. In Stateczny (2001), the maneuvering

target tracking problem was addressed and the application of both General Regression Neural

Networks (GRNN) and an additional maneuver detector algorithm was proposed for the state

estimation of manoeuvring objects. Moreover, a comparison of the GRNN-based neural filter

and KF for target movement vector estimation was presented in Stateczny and Kazimierski

(2008); Kazimierski and  Lubczonek (2012), where the GRNN-based approach was character-

ized by superior estimation performance only during steady motions. In Assad et al. (2019),

a fuzzy inference system was proposed to tune the noise covariance matrix of the EKF based

on the filter innovation sequence through a covariance-matching technique. The experimental

results showed that the fuzzy rule-based adaptive strategy effectively improved the estimation

accuracy with respect to the standard EKF algorithm. In Al Mansour et al. (2019), an adap-

tive analytical algorithm was presented for the determination of UAV orientation angles. The

algorithm employed both MARG and GPS-based correction channels; moreover, an UAV ma-

neuver intensity classification method was implemented to increase the orientation estimation

performance. Recent studies have proposed the use of unscented KF (UKF) over EKF Chiella

et al. (2019); Kang et al. (2019), and stated that UKF-based approaches better deal with the

high-order nonlinear terms of large attitude errors. Attitude estimation has been solved with

computationally efficient geometric UKF Kang et al. (2019), where a new formulation of the

UKF algorithm was proposed in Chiella et al. (2019) to maintain fast and slow variations in the

measurement uncertainty. The latter algorithm was augmented with both an adaptive strategy

to tune the covariance matrices on-the-fly and an outlier detector to reject the effects of external

disturbances. An industrial manipulator robot was used to conduct the experiments, where the

algorithm provided superior performance over the standard UKF and Madgwick filters. Recent

developments have considered the MARG as a non-Gaussian stochastic system and developed

maximum correntropy KF (MCKF) for attitude estimation Xi et al. (2017); Habbachi et al.

(2018). These algorithms employed the MC criterion, instead of the minimum mean square er-

ror, to estimate the state of the system corrupted by non-Gaussian impulsive noises. However,

the comprehensive case study provided in Kulikov and Kulikova (2018) has not highlighted

the superior state estimation performance of the MCC-based techniques in non-Gaussian noise

environments. These recent developments in the realm of Kalman-type filters are among the

important techniques to be utilized in state estimation of non-Gaussian stochastic dynamic

systems. Comprehensive overviews of (nonlinear) attitude estimation solutions are provided in

Crassidis et al. (2007); Markley and Crassidis (2014).

Based on the methods discussed above, it can be concluded that the ultimate attitude

estimation quality is determined by three main factors:
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1. The first impact is related to the flexibility of the implemented algorithm (i.e., the obser-

vation models, equations defining the filter dynamics, and noise models jointly define the

algorithm).

2. The filter performance heavily depends on properly selected filter gains (i.e., noise covari-

ance matrices). In general, the statistics of system noise cannot be determined; moreover,

external disturbances cause radical measurement noise during attitude realization, which

make the assumed noise models inappropriate. This is even more critical problem for

MEMS-IMU based orientation calculations of moving objects, since neither the exter-

nal accelerations nor vibrations are deterministic, resulting in radical measurement noise

that cannot be modeled appropriately. As a result, the filter parameters are usually

selected based on both experimental and engineering intuition, which result in a com-

promise between the accuracy and filter dynamics, in which the ultimately determined

noise covariance values both roughly describe the measurement noise and cover the model

approximations. To enhance the filter performance, numerical optimization-based filter

tuning has been proposed in Mazza et al. (2012); Gośliński et al. (2015); Kownacki (2011).

To optimize, a test environment is created (with the assistance of other sensors or filters)

in which the true state can be measured along with the IMU data. By evaluating the per-

formance index, the KF noise covariance values are tuned with an optimization algorithm,

such as the downhill simplex algorithm Powell (2002), neural-network based approach to

tuning the noise statistics Korniyenko et al. (2005), simplex search method Kownacki

(2011), differential evolution Salvatore et al. (2010) and genetic algorithms (GAs) Shi

et al. (2002), PatternSearch algorithm Mazza et al. (2012), and particle swarm optimiza-

tion (PSO) Gośliński et al. (2015).

3. The papers above show that the common methods used to deal with external disturbances

(dynamic motions and magnetic perturbations) either work by the application of intel-

ligent adaptive strategies that on-the-fly modify the vector observation methods, filter

gains, and covariance matrices; or the compensation is maintained with additional dy-

namic models that well-mimic the effects of the external forces and magnetic fluctuations.

Observation: The discussion in the previous paragraphs illustrates that the procedure for se-

lecting adequate filter parameters, thus providing maximized filter convergence, remains an

important issue. Moreover, the investigation of whether considering the magnitudes of inher-

ent external acceleration, vibrations and magnetic perturbations as disturbance magnitudes in

the estimation algorithm can improve filter robustness and accuracy remains also an important

issue. Therefore, to develop new algorithms that provide both reliable and robust attitude

estimates, especially for extreme dynamic situations motivated the work during my research.

1.2 Research Objectives

Taking into account the continuously emerging potential of fuzzy logic and control, my main

research goals has been summarized into two parts.

On one hand, my goal was to both investigate and measure the achievable fuzzy control

performance, and moreover, through the optimization and validation steps design novel fuzzy
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control structures that provide more robust control performance than conventional techniques.

This procedure enabled to investigate whether the flexibility and expert oriented inference

nature of fuzzy logic can provide significant benefits over linear control techniques during the

stabilization of a real mechatronic system. Additionally, the objective was to derive such fuzzy

control strategies that is characterized by simple structure and easy implementation, where

such expert oriented design approach is employed which uses those simple heuristic knowledge

oriented tools that fuzzy logic meant to offer.

On the other hand, my goal was to address the attitude estimation problem of mobile robots

and propose novel soft computing-based approaches that improve the estimation performance.

Therefore, such techniques were analyzed that enable to overcome the compromise solution

related to ad hoc state estimator tuning by finding such estimator parameters that provide

maximized state estimation performance. Additionally, this analysis also includes the devel-

opment of advanced state estimator structures, where the estimator parameters are modified

(via adaptive techniques) based on external system dynamics measures and thereby a superior

estimator performance is achieved.

For the aforementioned research objectives, a mechatronic system was required that enables

to implement, test, and validate the developed procedures. The WMP robot satisfies these

requirements and well fosters the development of novel control and estimation techniques.

The research objectives and the relevant tasks are summarized as follows.

� Deriving a reliable mathematical model of the plant and creating its simulation environ-

ment. Then, developing both fundamental linear controller-based stabilization approaches

and modern FLC-based solutions for the plant. Additionally, defining the control quality

with performance indexes, and giving a detailed comparative assessment of the devel-

oped and realized control structures. At this stage the controller parameters are defined

heuristically based on observations of the dynamics.

� Defining complex drive quality metrics, i.e., a complex cost (or fitness) function for the

evaluation of the overall control quality; and applying numerical optimization to maximize

the control performances, as well as, analyzing the advantages of fuzzy logic over linear

techniques based on the results. Then, developing advanced FLCs based on heuristic

knowledge that both provide efficient trajectory tracking and prevent high current peaks

and jerks in motor drive system of robots.

� Developing a state estimator for the noisy states of the plant; and designing a test en-

vironment that enables simulations of various (accelerating and non-accelerating) system

behaviors as well as measurement and qualification of the filter convergence. Then, ana-

lyzing both the state estimation performance based on quality metrics and the anomalies

of fundamental estimation approaches. Applying numerical optimization to estimator

parameters and achieving an optimized filter performance.

� Deriving a novel adaptive state estimator structure that fuses the magnitudes of the dis-

turbances together and utilizes fuzzy-logic based heuristic IF-THEN rules that modify

the parameters based on the dynamic behavior. Then, comparing the achieved estima-
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tion performances to popular algorithms and proving that the developed solutions are

competitive and even outperform the common methods.

� Extending the aforementioned results and formulating the extended, quaternion-based

state estimator structure that incorporates the magnitudes of vibration, external accel-

eration, and magnetic perturbation by a sophisticated heuristic knowledge-based fuzzy

inference machine to provide robust attitude estimation in both static and dynamic en-

vironments. Moreover, designing a test platform which enables both the execution of

various dynamic (vibrating and accelerating) behaviors in the three-dimensional space

and the measurement of true attitude angles along with the raw MARG data. This test

environment contributes to both the successful evaluation of state estimation quality and

validation of the methods.

1.3 The wheeled mobile pendulum system

The selected WMP system has two contact points with the supporting surface, moreover, the

diameter of its IB is smaller than the diameter of the encompassing wheels resulting in two

equilibrium points of the system (see Fig. 1.2).

Figure 1.2: Photographs of the WMP system: around the (a) stable and (b) unstable equilibrium
points.

Around the stable equilibrium point (when the center of mass is located below the wheel axis)

the IB of the robot tends to oscillate when the wheels are actuated, while around the unstable

equilibrium point (when the center of mass is located above the wheel axis) the robot self-

balances its IB while performing translation motion. The wheels are actuated through DC

motors attached to the IB. Due to this mechanical structure, the IB acts as a pendulum between

the stator and rotor of the applied DC motors during the translation motion of the robot. Similar

constructions are published in Salerno and Angeles (2007, 2003); Cazzolato et al. (2011). The
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advantage of this mechanical construction is that even if the inverted pendulum falls and the

center of mass of the inner body moves under the wheel axis (e.g. the inverted pendulum

becomes a physical pendulum) the WMP system can be recovered by applying a swing-up

control mechanism. It should be emphasized, that regardless of the chosen equilibrium point,

the translation motion of the robot exclusively in closed loop, with the application of control

algorithms can be resolved.

The dimensions (length, height and width) of the steel IB are 132, 32 and 34 mm, which is

encompassed by 62 mm diameter wheels. The embedded electronic parts are placed around-,

while the DC motors that drive the wheels are attached to the IB. In Fig. 1.3 the Solidworks

CAD model is depicted which was used in the calculation of the inertia related parameters (the

side and top printed circuit boards has been set to invisible in order to indicate the inner parts

of the robot).

1

2

3

4

5

6

Figure 1.3: Solidworks CAD model of the robot. Inner parts: (1) side PCB, (2) DC motor, (3) battery,
(4) chassis (IB), (5) bearings, and (6) bottom PCB.

The hardware construction is built around two 16-bit ultra-low-power Texas Instruments

MSP430 F2618 microcontrollers (these MCUs are characterized with 16-bit, 16-MHz, 116-kB

Flash, and 8-kB RAM; hereinafter MCU1 and MCU2). The applied sensors are summarized

in Table 1.1. Low cost MEMS accelerometer (model No. LIS331DL) and gyroscope (model

No. L3G4200D) sensors from STMicroelectronics are employed to measure the dynamics of

the IB of the robot, and additionally, current sensors (model No. INA198) and two-channel

incremental encoders (model No. PA2-100) are attached to both DC motors. The actuators are

3 V geared DC micromotors (model No. 1024N003S) manufactured by Faulhaber. The motors

are driven with PWM signals through Texas Instruments DRV592 drivers. The electronic system

is supplied from stabilized 3.3 V, the power source is a 1 cell Li-Po battery.

Table 1.1: The applied sensors in the embedded electronics of the robot.

Sensor Manufacturer Type Resolution

Accelerometer STMicroelectronics LIS331DL 8-bit
Gyroscope STMicroelectronics L3G4200D 16-bit
Current sensors Texas Instruments INA198 0.0008V
Incremental encoders Faulhaber PA2-100 0.0141deg
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Fig. 1.4 shows the embedded electronic configuration. MCU2 works as an IMU: it 1) collects

the measurements from the accelerometer and gyroscope sensors through SPI peripheral, 2)

performs the state estimation of the IB orientation and 3) sends the results to MCU1 via its

UART interface. MCU1 performs basically the control task. On one hand, it collects the

measurements (from incremental encoders, current sensors, and from MCU2 the orientation

and angular velocity results). On the other hand, it drives the motors based on the applied

control algorithm. MCU1 also sends the measurements to the PC through a Bluetooth module.

A 16 MHz quartz oscillator is used as the system clock. A video demonstration of the system

dynamics is available in the supplementary online material Odry (2019c).
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Figure 1.4: The hardware architecture of the robot.

1.4 Document Overview

The dissertation is structured as follows.

� Chapter 1.3: Introduces the selected mechatronic systems (i.e., the WMP robot) and

describes both its basic electro-mechanical structure and control objectives. This content

has been published in Odry et al. (2015a).

� Chapter 2: Describes the complete control system design problem, from mathematical

modeling, over the development of both classical and modern control solutions, to both

control system optimization and analysis of control performances. These results have been

published in Odry et al. (2015a,b, 2016a,b, 2017a,b); Odry and Fullér (2018); Odry et al.

(2020a).

� Chapter 3: Addresses the state estimation problem, analyzes both the fundamental meth-

ods and estimation performance enhancement techniques, moreover, the chapter describes

the derivation of both a novel fuzzy-adaptive KF structure and its generalization for

quaternion representation of orientation. These results have been published in Odry et al.

(2018, 2020b).

� Chapter 4: Provides the overall conclusions of the previous chapters.
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2 Control System Design

This chapter studies the control performances of modern and soft-computing based control so-

lutions. The stabilization of a naturally unstable WMP is elaborated using LQG and cascade-

connected fuzzy control schemes. The achieved control performances are analyzed both in

simulation environment and with implementation results. A performance assessment of the

elaborated control solutions is given based on both transient response and error integral mea-

surements. Based on the comparative assessment, the achieved control performances of both

control techniques are analyzed, moreover, the initial results of the resultant control perfor-

mances are derived. Then, the performance enhancement of the control strategies is addressed,

where a novel protective FLC is designed first which ensures both fast reference tracking and

reduced jerks in the electro-mechanical parts of the system. Additionally, the achieved initial

results of the comparative analysis are employed in control design optimization, where the pa-

rameters of each control technique is tuned with the aid of numerical optimization. Finally, the

improved control performances are discussed and the advantages of the developed fuzzy control

strategy is highlighted.

2.1 Mathematical Modeling

The original source is Odry et al. (2015a).

To be able to efficiently design the control algorithms of the system, its mathematical model

has to be obtained first. Most of the electrical and mechanical parameters that characterize

the robot (e.g., wheel radius, inertia matrix, and resistance of the motors) are quite accurately

known from direct measurements, data-sheets or from calculations performed by Solidworks.

The rest of the (mainly friction related) parameters were experimentally tuned based on the

measurements results. The derived model forms the basis of the research analysis. Moreover,

since the mechatronic system is equipped with different sensors that measure its dynamics,

therefore both the implementation and validation of the theoretically proven control perfor-

mances can be performed.

Many researchers use the Newtonian approach based formulation given in Grasser et al.

(2002), or the formulation based on Euler-Lagrange equations defined in Pathak et al. (2005).

It is also common to analyze the system dynamics with simplified mathematical models Guo

et al. (2014); Zhou and Wang (2016b); Xu et al. (2013a). In the aforementioned formulations

the dynamics of the applied actuators is not taken into account, and the driving torques are

considered as inputs of the plant. However, the real input signals of the plant are the applied

voltages (or PWM duty cycles) in most cases. In this section, a nonlinear 8-dimensional math-

ematical model of WMP systems is derived that takes into account the motor dynamics, and

its inputs are the terminal voltages of the applied motors.

Based on Fig. 2.1 the geometric variables of the robot are introduced. I indicate with θ1 and

θ2 the angular displacements of the wheels, while with θ3 the oscillation angle of the IB. The

parameters that characterize the robot are summarized in Table 2.1. The following notations
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are used: ψ̇ as the rate change of yaw angle of the robot, and ṡ as the linear speed of the robot,

i.e., ψ̇ = r
(
θ̇2 − θ̇1

)
/d, and ṡ = r

(
θ̇1 + θ̇2

)
/2, where r is the radius of the wheels, and d

denotes the distance between them.
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Figure 2.1: Plane and side view of the robot and its spatial coordinates.

Table 2.1: Notation of robot parameters

Symbol Unit Value Parameter name

θ1, θ2 rad - angular position of the wheels
θ3 rad - angular position of the IB
I A - vector of motor currents I1, I2

u V - vector of motor voltages u1, u2

τa Nm - vector of torques transmitted to the wheels
τf Nm - vector of friction torques
l mm 8.36 distance between the center of mass and wheel axis
r mm 31.5 radius of the wheels
mw g 31.5 mass of the wheels
d mm 177 distance between the wheels
mb g 360.4 mass of the inner body
JA gmm2 81367 moment of inertia of the inner body about A axis
JB gmm2 574620 moment of inertia of the inner body about B axis
R Ω 2.3 rotor resistance
L µH 26 rotor inductance
kE mVs 2.05 back-EMF constant
kM mNm/A 2.05 torque constant
Jr gmm2 12 rotor inertia
fm mNms 0.021 viscous friction coefficient at the motors
fw mNms 0.18 viscous friction coefficient at the wheels
k - 64 gear ratio of the gearbox
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By the help of Fig. 2.1, the spatial coordinates of both the wheels and the IB are determined.

Namely, the coordinates of the intersection of axes A and B are:

xm =

∫
ṡ cosψ dt,

ym =

∫
ṡ sinψ dt,

zm = r.

(2.1)

Using the results of equation (2.1) and applying the trigonometric identities based on Fig. 2.1,

the spatial coordinates of the wheels are derived:

x1 = xm −
d sinψ

2
, y1 = ym +

d cosψ

2
, z1 = zm,

x2 = xm +
d sinψ

2
, y2 = ym −

d cosψ

2
, z2 = zm.

(2.2)

Similarly, the spatial coordinates of the IB are given by equation (2.3), where l denotes the

distance of the center of mass from the wheel axis (see Table 2.1):

xb = xm + l sin θ3 cosψ,

yb = ym + l sin θ3 sinψ,

zb = zm − l cos θ3.

(2.3)

The motion of the system is determined with the help of the Lagrange equations Bloch

(2003); Sciavicco and Siciliano (2012):

d

dt

∂L
∂q̇
− ∂L
∂q

= τ, (2.4)

where q = (θ1, θ2, θ3)T denotes the vector of generalized coordinates. Moreover, L defines the

Lagrange function, which is defined as the difference of the kinetic and potential energies, i.e.,

L = K − P . The total kinetic energy K consists of the sum of the kinetic energies that can be

written for the wheels (Kw) and the kinetic energy characterized by the motion of the IB (Kb),

i.e., K = Kw +Kb. The total kinetic energy of the wheels given by equation (2.5) is composed

of the translational and rotational energies of the wheels. In equation (2.5) Jw and Jr denote

the moment of inertia of the wheels and the motor, respectively, while k indicates the gear ratio

and mw is the mass of the wheels:

Kw =

2∑
i=1

1

2
mw

(
ẋ2
i + ẏ2

i + ż2
i

)
+

2∑
i=1

1

2
Jwθ̇

2
i +

2∑
i=1

1

2
k2Jr

(
θ̇i − θ̇3

)2
. (2.5)

The total kinetic energy of the IB consists of the energies resulting from the translational motion

of the robot, the oscillation of the IB about axis A, and the rotation about the B axis as well:

Kb =
1

2
mb

(
ẋ2
b + ẏ2

b + ż2
b

)
+

1

2
JAθ̇

2
3 +

1

2
JBψ̇

2, (2.6)
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where mb denotes the mass of the body, while JA and JB are the moments of inertias of the

body about the axis A and B, respectively. The P potential energy stored in the system is:

P = 2mwgr +mbg (r − l cos θ3) , (2.7)

where g denotes the gravitational acceleration. Based on equations (2.5), (2.6), and (2.7) the

Lagrange function of the system L is derived (see section .1 in the appendix).

The vector of generalized external forces in equation (2.4) is defined as τ = (τ1, τ2, τ3)T .

The generalized external forces consist of the external torques τa (that are produced by the

motors) and the effect of friction τf modeled in the system, i.e., τ = τa − τf . The external

torques are described by equations (2.8) and (2.9), where the input voltage and current of

the motors are denoted with u = (u1, u2)T and I = (I1, I2)T , respectively. The relationship

between the currents and input voltages is described by the fundamental differential equation.

Namely, the input voltage equals to the sum of voltage drops generated on the inductance L and

resistance R and the back-EMF voltage characterized by the constant kE , based on Kirchhoff’s

circuit law:

İ =
1

L

(
u− kEk

[
1 0 −1

0 1 −1

]
q̇ −RI

)
. (2.8)

Furthermore, the external torques are proportional with the rotor currents by the factor kMk,

where kM is the torque constant:

τa = kMk

 1 0

0 1

−1 −1

 I. (2.9)

The friction model given by equation (2.10) consists of only viscous frictions, where viscous

friction effects were modeled both at the bearings and between the wheels and the supporting

surface:

τf =

fm,1 + fw,1 0 −fm,1
0 fm,2 + fw,2 −fm,2

−fm,1 −fm,2 fm,1 + fm,2

 q̇. (2.10)

By evaluating the Lagrange equation (2.4), the equations of motion of the mechanical

system can be rewritten in the form:

M(q)q̈ + V (q, q̇) = τa − τf , (2.11)

where M(q) denotes the 3-by 3 symmetric and positive definite inertia matrix, V (q, q̇) denotes

the 3 dimensional vector term including the Coriolis and centrifugal force terms and also the

potential (gravity) force term. The exact elements of the matrices are described in the appendix.

Based on equation (2.11), the nonlinear state-space representation ẋ(t) = h(x, u) of the plant
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is obtained. With the state vector x8×1 = (q, q̇, I)T the state-space equation is given as:

ẋ(t) =


q̇

M(q)−1 (τa − τf − V (q, q̇))

1
L

(
u− kEk

[
1 0 −1

0 1 −1

]
q̇ −RI

)
 ,

y(t) = Cx(t).

(2.12)

The output matrix C in equation (2.12) is chosen to produce the y5×1 = (ν, θ3, ω3, ξ, IA) output

vector, where the following symbols are introduced for easier notation: ν = ṡ as the linear speed

of the robot, ω3 = θ̇3 as the oscillation rate of the IB, while ξ = ψ̇ and IA = (I1 + I2) /2 denote

the yaw rate and average current consumption, respectively.

The numerical simulation of the mathematical model is performed in MATLAB Simulink

environment. The state space representation defined by equation (2.12) is implemented with

the help of the S-Function Simulink block. Since the robot is equipped with multiple sensors,

measurements of the open-loop behavior have been recorded in order to both compare the simu-

lation and measurement results and validate the derived mathematical model. The comparison

of numerical simulation and real robot dynamics is depicted in Figs. 2.2 and 2.3. In the exper-

iment, unit-step excitation of u1 = u2 = 1.3V was applied to both DC motors, and the average

angular velocity of the rotors θ̇rot, the angle θ3 and angular velocity ω3 of the IB, moreover, the

average motor current IA were recorded during the translational motion of the robot. Based on

the comparison results, it can be concluded that the theoretically derived mathematical model

with the nominal robot parameters (see Table 2.1) fairly describes the real behavior of the

system.

Figure 2.2: The resulting average current and average angular speed of the motors.
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Figure 2.3: The resulting oscillation angle and angular velocity of the IB.

2.2 Development of Linear and Fuzzy Control Approaches

For the successful stabilization of the plant such control strategy is required which simulta-

neously suppresses the IB oscillations (around the equilibrium point) and ensures the desired

planar motion of the robot. Let νd and ξd denote the desired values of the linear speed and

yaw rate of the robot, respectively, then the control goals are summarized as follows. For the

translational (linear) and rotational (yaw) motions limt→∞ ṡ (t) = νd and limt→∞ ψ̇ (t) = ξd re-

quirements should be satisfied, where the former requirement provides the linear displacement,

while the latter requirement ensures the desired orientation of the robot. Moreover, the third

requirement formulated as limt→∞ θ̇3 (t) = 0 ensures the suppression of the IB oscillations.

2.2.1 Linear Quadratic Gaussian Control

The original source is Odry et al. (2015b).

2.2.1.1 Algorithm

The LQR technique addresses the issue of achieving a balance between good system response

and control effort Franklin et al. (1994); Lantos (2001). It is based on a developed mathematical

algorithm which results the optimal state-feedback gain K. The feedback gain K minimizes the

following quadratic cost function:

J (x, u) =
1

2

N−1∑
k=0

(
xTkQxk + uTkRuk

)
+

1

2
xTNQxN , (2.13)
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where x ∈ Rn and u ∈ Rm are the state and input vectors of the system described in the

state-space equation:

ẋ = Ax+Bu. (2.14)

In equation (2.13) Q = QT ∈ Rn×n, Q ≥ 0 and R ∈ Rm×m, R > 0 are weighting matrixes. Based

on the LQR method, the state feedback matrix is given by K =
(
R+BTPB

)−1
BTPA, where

P = P T , P > 0 is the unique solution of the Control Algebraic Riccati Equation (CARE). The

optimal state-feedback uk = −Kxk ensures the asymptotic stability of the closed loop system.

The feedback matrix K can be calculated by the built-in Matlab function lqrd(A,B,Q,R,Ts).

Since the LQR control defined by the objective function (2.13) drives the system from

the initial state x0 to the state xd = 0, the control structure shall be extended with reference

tracking matrices: [
Nx

Nu

]
=

[
A− I B

C 0

]−1 [
0n×m

Im

]
, (2.15)

where 0 and I are the zero and identity matrices, respectively (and their sizes are given in

the subscript). In the development of the optimal LQR control strategy it is assumed the

state variables are measurable and the system is not disturbed by either internal or external

noises. However in practice the opposite situation is quite common, namely, that a part of

the measured state vector is too noisy to be used directly in the feedback. The LQG strategy

provides optimal control gain to stochastic, noisy systems by minimizing the expected value of

the quadratic objective function (2.13).

Based on the separation principle, the LQG control strategy is given by the state-feedback

uk = −Kx̂k, where K is the optimal control gain determined by the LQR algorithm, while x̂k

state vector consists of the original states (i.e., the states of xk that are not disturbed by noise)

and the KF-based estimation of the noisy states. Let us denote the noisy state vector with ξ,

then the corresponding noisy linear system can be given by:

ξk+1 = Φξk + Γρk + νk,

γk = Hξk + zk,
(2.16)

where the process and measurement noises are indicated with νk and zk, respectively, and

according to the stochastic hypothesis these noises are uncorrelated and their mean value is

zero. In this case the KF algorithm provides the optimal estimation ξ̂ of the state ξ, i.e.,

E
[
ξk − ξ̂k

]
= 0 and E

[(
ξk − ξ̂k

)(
ξk − ξ̂k

)T]
→ inf. The estimation algorithm can be found in

Welch and Bishop (2001) and both its performance evaluation and analysis are discussed in detail

in chapter 3. As a result, the design steps of the LQG strategy are summarized as follows: 1)

linearization of the mathematical model around the equilibrium point, 2) controllability analysis,

3) specification of the weighting matrices Q and R, 4) calculation of the optimal control gain K,

5) identification of the noisy state vector ξ, 6) specification of the noise covariance parameters

of the filter, 7) state estimation with KF algorithm and 8) application of the state feedback

strategy uk = −Kx̂k.
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2.2.1.2 Elaboration of the Control Strategy

The goal of the elaboration procedure is to calculate the optimal state feedback K and reference

tracking matrices Nx and Nu that drive the motors such a way that both the desired planar

motion of the robot and the suppression of the IB oscillations are ensured. The linear state

space equation of system dynamics is obtained via the linearization of equation (2.12) around

the equilibrium point (xe, ue) = (0, 0):

ẋ =

(
∂h

∂x

)
(xe,ue)︸ ︷︷ ︸
A

x (t) +

(
∂h

∂u

)
(xe,ue)︸ ︷︷ ︸
B

u (t) . (2.17)

In order to reduce the complexity of implementation the x̃ = Tx =
(
s, θ3, ṡ, θ̇3, ψ, ψ̇

)T
coordi-

nate transformation is applied. The resulting state-space representation is given by:

˙̃x = Ãx̃+ B̃u

y = C̃x̃.
(2.18)

The controllability matrix is given by Mc =
(
B,AB, ..., A5B

)
Franklin et al. (1994); and the

evaluation of its rank results in rankMc = 4. Therefore, according to the Kalman rank condition

for controllability (KRCC), the aforementioned system is not controllable since the dimension of

the state vector is dim x̃ = 6. The non-controllable states of x̃ are the position s and orientation

ψ. Thus, a new coordinate transformation z = TCC̄ x̃ is defined, such that TCC̄ = (TC , TC̄)

is a basis for R6, furthermore the columns of TC form the basis for the controllable subspace,

dimTC = 6 × 4 and dimTC̄ = 6 × 2. As a consequence of the definition, the state vector z =

(zC , zC̄) is clearly divided into two parts, namely zC =
(
θ3, ṡ, θ̇3, ψ̇

)T
denotes the controllable

state vector, while zC̄ = (s, ψ)T contains uncontrollable states. The state-space representation

becomes:

ż =

[
AC ACC̄
0 AC̄

]
z (t) +

[
BC

0

]
u (t) ,

y =
[
CC CC̄

]
z (t) .

(2.19)

The LQR strategy is elaborated by using the controllable subsystem (AC , BC). The weighting

matrices Q = diagQii and R = diagRjj were defined heuristically as Q11 = 14.5, Q22 = 156.2,

Q33 = 1.3, Q44 = 1.3 and R11 = R22 = 0.1. Solving the CARE the optimal control gain is

obtained, while the reference tracking matrices are determined based on equation (2.15).

The KF is used to estimate the attitude θ3 of the IB (second element of x̃). Since the

accelerometer measures the projection of gravity vector onto its axes, the attitude is given by

θ3,acc = atan (ay/ax) AN3182 (2010). Unfortunately, θ3,acc is both very noisy and cannot be

considered as an accurate derived quantity since the accelerometer measures both static and

dynamic accelerations. Thus, it is common practice to consider the gyroscope and accelerom-

eter as a noisy linear system and use the KF algorithm to estimate the state vector. The

24



corresponding state-space equation is given by:

ξk+1 =

[
1 −Ts
0 1

]
ξk +

[
Ts

0

]
ρk + νk,

γk =
[
1 0

]
ξk + zk,

(2.20)

where the state vector ξ = (θ3, ũ)T consists of the IB angle θ3 and the bias of the gyroscope ũ.

Furthermore, the input of the linear system is the angular velocity ρ = θ̇3,gyro (measured with

the gyroscope), while the output of the system is the derived angle γ = θ3,acc obtained from raw

accelerometer measurements. Both the covariance matrices that characterize the measurement

and state noises were derived based on offline measurements.

According to the separation principle, the LQG control strategies is elaborated as follows.

The state feedback uk = −K
(
θ̂3, ṡ, θ̇3, ψ̇

)
ensures the asymptotic stability of the closed loop

system around the equilibrium point, where θ̂3 denotes the KF-based estimation of the IB angle.

Moreover, the optimal control gain K is obtained with CARE. The detailed control structure

is depicted in Fig. 2.4.
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Figure 2.4: Detailed LQG control structure.
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2.2.2 Fuzzy Control

The original source is Odry et al. (2016a).

2.2.2.1 Fuzzy Logic Controllers

Lofti A. Zadeh introduced the fuzzy sets Zadeh (1965) by extending the classical two-valued

logic {0, 1} with the whole continuous interval [0, 1]. This allows to introduce linguistic variables

(such as small and large for reasoning about the current consumption) and associate them with

membership functions. Fuzzy control is based on the application of these fuzzy sets, which

result in that the inference mechanism of a FLC can be defined by simple IF-THEN linguistic

rules. Hence, there is no need to define complex and precise models, instead the empirical rules

and the approximate reasoning contribute to a heuristically defined control strategy. The FLC

structure is depicted in Fig. 2.5 and its fundamental algorithm is composed of the following

parts Wang (1997); Kóczy et al. (2000); Fullér (2000).

1. Fuzzification of the n-dimensional observation vector χ = (x1, x2, ..., xn) and calculation

of the firing values of the ith rule (i = 1, ..., r) defined as:

Ri : IF x1 = Xi
1 and ... and xn = Xi

n THEN y = Bi. (2.21)

Let χj denote the jth dimension of the observation vector, then the firing value γij rep-

resents the fitting degree of the observation χj to the antecedent fuzzy set Xi
j in the jth

dimension of the ith rule as

γij = max
χj
{min{X∗j (χj) , X

i
j (χj)}}, (2.22)

where X∗j (χj) is the fuzzified observation.

2. Calculation of the applicability measure of the ith rule, denoted by γi, as the minimum of

the aforementioned firing values. This weight determines the significance of the consequent

fuzzy set defined in the ith rule.

γi =
n

min
j=1

γij (2.23)

3. Calculation of the consequent fuzzy set Bi,∗ in the ith rule (i.e., assigning the so-called

firing level to the output fuzzy set defined in each rule) as the minimum of the applicability

measure γi and the fuzzy set Bi defined in Ri:

Bi,∗ (y) = min
(
γi, Bi (y)

)
. (2.24)

4. The summarized conclusion (total fuzzy output) is obtained as the union of all Bi,∗ con-

sequent fuzzy sets as:

B∗ (y) =
r

max
i=1

Bi,∗ (y) . (2.25)
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5. In case of Mamdani architectures, the defuzzification process maps back the output fuzzy

set to crisp domain. One of the common defuzzification techniques is the center of area

(COA) method, which determines the COA of the summarized conclusion fuzzy set B∗ (y).

The crisp output is calculated as:

yCOA =

∫
y∈B∗ B

∗ (y) ydy∫
y∈B∗ B∗ (y) dy

. (2.26)

In case of zero-order Sugeno systems, constant singleton output membership functions

define the conclusion in each rule, i.e., constant (not fuzzy) function y = κi constitutes

the consequent in the ith rule in equation (2.21) instead of the fuzzy set Bi. This in-

creases computational efficiency and enables the computation of the crisp output y0 as

the weighted average over all rule outputs obtained in step 2:

y0 =

∑r
i=1 κ

i · γi∑r
i=1 γ

i
, (2.27)

where κi denotes the consequent (constant) singleton defined in the ith rule.
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IF … AND … THEN …

.

.
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Input n

.

.

Crisp
Output

Fuzzification Linguistic control strategy Defuzzification

Fuzzy Logic Controller (FLC)

Fuzzy
input
sets

Fuzzy
output
sets

Figure 2.5: Structure of the fuzzy logic controller National (2018).

2.2.2.2 Elaboration of the Control Strategy

The goal is to design a heuristic fuzzy control scheme that drives both wheels through the

actuators (DC motors) such a way that the robot can perform the prescribed control task.

The developed fuzzy approach differs from the solutions given by Huang et al. (2011) and Xu

et al. (2013a) in both the design and elaboration procedures. Namely, an expert oriented design

approach is employed here, which uses those simple heuristic knowledge oriented tools (such as

the definition of input-output relations with the help of linguistic variables and simple IF-THEN

rules-based observations) that fuzzy logic meant to offer Wang (1997).

The elaboration of the fuzzy control strategy consists of defining the FLCs and a control

scheme that satisfies the control requirements. This heuristic procedure starts by aggregating

the deductions related to the behavior of the dynamical system using both observations and

human common sense. In order to ensure the anti-sway control of the robot the following main

deductions shall be implemented with the control scheme.
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1. If the speed error (eν) is positive, then the control voltage (uν) shall be positive (and

similarly the opposite scenario).

2. Moreover, the control voltage (uν) shall be modified (decreased or limited) in such a way

to minimize the IB oscillations.

Based on both the aforementioned deductions and the results of LQG control, a control

scheme that consists of three cascade-connected FLCs (hereinafter FLC1, FLC2, and FLC3) is

proposed. This control scheme is depicted in Fig. 2.6, where the inputs and outputs of each

FLC can be identified. Based on the aggregated initial deductions, both the corresponding

input-output ranges and linguistic values are defined.
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Figure 2.6: Block diagram of the applied control structure.

The design and tuning of each FLC is performed on an intuitive, heuristic manner. The mem-

bership functions related to the control variables are chosen with triangular and trapezoidal

shapes, because those are commonly used in fuzzy control design. For the inputs of each FLC,

three membership functions are chosen (by iterative tuning), uniformly distributed across their

universes of discourse (see Fig. 2.7).

The control scheme is constructed using different PD-type and PI-type FLCs which are

interconnected in cascade way. Table 2.2 summarizes the inference mechanism of the employed

FLCs. Using the fuzzy sets N (negative), P (positive) and Z (zero) the fuzzy rules for the

PD-type and PI-type FLCs are shown in Table 2.3. The exact antecedents and the consequent

related to the tables are defined in the next paragraphs. The proposed architectures execute

weighted average defuzzification. Since, the Ts = 0.01 s sampling time in taken into account

(which equals to the sampling time of the applied sensors on the real robot), therefore, as an

example θ3,k denotes the discrete time domain equivalent of the sampled signal θ3 (t): θ3,k =

θ3 (kTs).
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Figure 2.7: Membership functions of the employed FLCs.

Table 2.2: Properties of the employed controllers.

AND
method

OR
method

Implication Aggregation Defuzzification

MIN MAX MIN MAX
Weighted
average

Table 2.3: Rule base of PD and PI-type FLCs.

PD-type
PI-type

Consequent
Antec. 2
N Z P Antec.

Antec. 1
N N N Z N Z P
Z N Z P Consequent N Z P
P Z P P

FLC1 is responsible for the linear speed control of robot. The input (antecedent of each

rule) of the controller is the speed error eν,k = νd,k− νk, while the output (or consequent) is the

variation of the command voltage ∆uν,k. As a result of iterative tuning ±0.35 ms−1 and ±3 V

are established for the universes of discourse of eν and ∆uν , respectively. Since the acceleration

of the robot causes the oscillation of the IB (and we keep in mind that the differential term

increases the sensitivity), a PI-type FLC is employed, whose fuzzy rules are defined in Table

2.3. Moreover, weighted average defuzzification is applied, therefore, the crisp control voltage

uν,k for the speed control of the robot in the kth epoch is defined as:

uν,k = uν,k−1 +

∑3
i=1 γ

i (eν,k) · κi∑3
i=1 γ

i (eν,k)
, (2.28)
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where γi (eν,k) returns the membership degree of the antecedent eν,k in the ith-rule and κi is

the singleton consequent.

The aforementioned controller (FLC1) only partly ensures the linear displacement of the

robot. Since the oscillation of the IB is not compensated, therefore the linear speed might

fluctuate. The task of FLC2 is to suppress the IB oscillations. Since oscillation occurs when-

ever the robot accelerates, FLC2 is designed such a way to decrease the control voltage uν

whenever oscillation is sampled. In this way the acceleration is restricted which results in the

suppression of the oscillation. The inputs of the controller are the oscillation error eθ3,k and

its time derivative eω3,k, while the output of the controller is the control voltage uθ3,k. The

applied triangular and trapezoidal membership functions are shown in Fig. 2.7. The universes

of discourse of the input variables are defined based heuristic knowledge; for the oscillation error

and its time derivative ±15 deg and ±220 degs−1 ranges are defined, respectively, while for the

output control voltage ±0.6 V is established. The employed fuzzy rules define a PD-type FLC

(see Table 2.3). Similarly to FLC1, the crisp output of the controller is calculated using the

weighted average method as:

uθ3,k =

∑9
i=1 min

(
γi (eθ3,k) , γ

i (eω3,k)
)
· κi∑9

i=1 min (γi (eθ3,k) , γ
i (eω3,k))

, (2.29)

where γi(eθ3,k) and γi(eω3,k) are the ith-rule fired membership function values and κi denotes

the singleton value of the consequent weighting factor of the ith rule (see Fig. 2.7).

FLC3 controls the yaw rate of the robot. The input of the controller is the error eξ,k =

ξd,k − ξk, while the output is the variation of the control voltage ∆uξ,k. The universes of

discourse of the input and output variables are chosen heuristically as ±30 degs−1 and ±1.5 V,

respectively. The linguistic variables and membership functions are depicted in Fig. 2.7. By

combining the output with an integrator, as depicted in Fig. 2.6, a PI-type FLC is employed,

whose rule base is given in Table 2.3. The crisp control voltage of FLC3 is given as:

uξ,k = uξ,k−1 +

∑3
i=1 γ

i (eξ,k) · κi∑3
i=1 γ

i (eξ,k)
. (2.30)

The control voltages of the motors can be identified based on Fig. 2.6:

u1 = uν + uθ3 − uξ,
u2 = uν + uθ3 + uξ.

(2.31)

2.2.3 Initial Control Performances

The original source is Odry et al. (2016b).

The control performances are studied both in simulation environment and on the real plant. A

comparison is given by evaluating both the dynamic response of the closed loop system and the

overall control performance.

30



2.2.3.1 Implementation of Algorithms

The simulation environment uses the mathematical model of the plant and the control structure

to form the closed loop. Therefore, the closed loop consists of three main parts, namely, the plant

(i.e., mathematical model (2.12)), the Kalman state estimator and the linear or fuzzy-based

control algorithm. The numerical simulation of the proposed control strategies is performed

in MATLAB Simulink environment. The FLCs are designed with the help of the Fuzzy Logic

Toolbox of MATLAB, while LQG strategy is realized with simple gain blocks that implement

the optimal control matrices. The simulation results of the closed loop behavior is depicted in

Fig. 2.8.
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Figure 2.8: Closed loop behavior of the plant using the elaborated controllers (Simulation results).
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From the top, the first subfigure is the linear speed ṡ of the robot, the second shows the

yaw rate ψ̇, the third highlights the resulting IB oscillations θ3 (IB angle), while the last one

shows the applied voltages to the motors. The following reference signals were applied: νd =

{0.4, 0,−0.2, 0} ms−1 for the linear displacement and ξd = {0.5, 0,−1.2, 0} s−1 for the desired

orientation. The simulation results show that both the linear control strategy and the cascade-

connected fuzzy control scheme stabilize the dynamical system successfully. It can be seen that

the elaborated controllers simultaneously ensure the translational motion (reference tracking

performance is given in the first two subplots from the top of the figure) and the suppression

of the IB oscillations (third subplot). In the simulation environment, the control strategies

implement discrete-time controllers; the dynamics of the plant is sampled at fixed fs = 100 Hz,

which equals to the sampling frequency of the applied sensors.
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Figure 2.9: Flowchart of the embedded software.

Regarding the implementation on the real robot, the embedded software along with the

control algorithms are coded in C language. MCU2 is programmed to work as an IMU, therefore

it reads the data of sensors, executes the KF algorithm, and sends a package consisting of

θ3,acc, ω3, and θ̂3 to MCU1 in every Ts = 10 ms, where θ3,acc indicates the raw IB angle

determined using the pure accelerations, ω3 denotes the angular velocity of the IB measured by

the gyroscope, while θ̂3 indicates the KF-based estimation of the IB attitude. MCU1 executes

the chosen control algorithm based on the collected measurements. Namely, it receives the

package (θ3,acc, ω3, θ̂3) from MCU2 and extends it with the instantaneous position and velocity

of the robot (s, ṡ) using the measurements of the incremental encoders (i.e., the state vector

in equation (2.12) is determined). Once the measurements are obtained, the selected control

algorithm both determines the instantaneous control signals and updates the duty cycle of the

PWM generator. Both the measurements and control signals are calculated with floating point
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operations, then the final results are converted to PWM duty cycles. These PWM signals

are transmitted to H-bridges that drive the DC motors. Furthermore, the measurements and

control outputs are sent to the PC user through a wireless (Bluetooth) module with fs = 100 Hz

frequency. A graphical user interface (GUI) written in MATLAB records the instantaneous

measurements. The flowchart of the embedded software is depicted in Fig. 2.9.

The implementation of the LQG approach is rather straightforward; the optimal gains and

reference tracking matrices are directly applied to weight the state vector for the calculation

of the control outputs once the measurements are updated. The implementation of the fuzzy

control strategy was based on the fuzzy surfaces (as an example Fig. 2.10 shows the fuzzy surface

of FLC2).
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Figure 2.10: The implemented fuzzy surface of FLC2.

Since fuzzy surfaces define the output of the controller as a function of the instantaneous inputs,

FLCs can be approximated with look-up tables (LUT). As a result, the crisp output of a FLC

is obtained by searching in the table for the control output that is related to the measurements,

i.e., each element of a LUT corresponds to certain input pairs. In this application the resolution

of the implemented LUTs is 40× 40, therefore the input ranges of each FLC are equidistantly

divided into 40 input values. Three look-up table (hereinafter LUT1-3 as approximations of

FLC1-3) are stored in the flash memory of MCU1, and the control voltages are obtained in each

sampling time by searching in these tables based on the instantaneous measurements. LUT1-3

are generated by evaluating the possible input combinations and registering the corresponding

control signal in a LUT for each FLC. Since, the motors are driven with 10-bit resolution PWM

signals stored in 16-bit integer variables, therefore the size of a LUT is MLUT ≈ 3.2 kByte.

This LUT based implementation method is suitable for small embedded processors and requires

less calculation (significantly smaller computational time compared to the direct method, where

fuzzification, implication, and defuzzification calculations are performed), because only the table

indexes are needed to be calculated. The crisp output is selected based on the table indexes.

However, the precision of the control output both depends on the LUT size and resolution of
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the PWM signal. The proposed schemes in Figs. 2.4 and 2.6 are executed in each sampling

epoch k based on the instantaneous measurements νk, ξk, θ̂3,k and ω3,k. The initial control

performances are depicted in Fig. 2.11.
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Figure 2.11: Control performances of the implemented LQG and fuzzy controllers (Measurements).

As an example, the row (ind1) and column (ind2) indexes and the crisp output (uθ3) of FLC2

are calculated as:

ind1 = round
(
eθ3 − emin

θ3

)
/res1,

ind2 = round
(
eω3 − emin

ω3

)
/res2,

uθ3 = LUT2 (ind1, ind2) ,

(2.32)
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where res1 and res2 denote the resolutions of the input ranges, while emin
θ3

and emin
ω3

indicate

the least possible values of the inputs. In the implemented fuzzy control structure, the control

signals of the motors are calculated as:

u1,k = LUT1

∣∣∣
eν,k

+ LUT2

∣∣∣
(eθ3,k,eω3,k)

+ LUT3

∣∣∣
eξ,k

,

u2,k = LUT1

∣∣∣
eν,k

+ LUT2

∣∣∣
(eθ3,k,eω3,k)

− LUT3

∣∣∣
eξ,k

,
(2.33)

where the output signals uν,k, uθ3,k and uξ,k are selected in LUT1-3 based on both equation (2.32)

and the corresponding error signals (eν,k, eθ3,k and eω3,k or eξ,k).

Similarly to the simulation results, the first subplot in Fig. 2.11 shows the achieved linear

speed of the robot ṡ, the second subplot highlights the yaw rate ψ̇, the third is the instantaneous

angle θ3 of the IB, while the last subplot indicates the applied voltages. It can be seen that

both implemented control strategies successfully suppress the IB oscillations and ensure the

translational motion of the robot. In the experiment, the desired speed and yaw rate have been

set to 0.4 ms−1 and 3 s−1, respectively (dotted lines in Fig. 2.11).

2.2.3.2 Evaluation and Comparison

Based on Figs. 2.8 and 2.11, it is concluded that the elaborated control schemes ensure as-

ymptotic system behavior, however the control quality needs to be determined. This section

quantifies the control performances by evaluating different error integral formulas, moreover, a

comparative assessment is given based on the achieved simulation and measurement results.

For the comparison of the elaborated control strategies both the transient responses and

overall control performances are analyzed. This comparison is based on the closed loop behavior

in time domain. For the quality measurement of reference tracking and suppression of IB

oscillations four different error integrals are evaluated, namely these measures are the sum of

absolute errors (SAE), sum of square errors (SSE), sum of discrete time-weighted absolute errors

(STAE), and the sum of discrete time-weighted square errors (STSE) defined by equations (2.34)

and (2.35), respectively Barton (1996):

SAE (e) =

N∑
k=1

|ek| , SSE (e) =

N∑
k=1

e2
k, (2.34)

STAE (e) =

N∑
k=1

kTs |ek| , STSE (e) =

N∑
k=1

kTse
2
k, (2.35)

where N denotes the length of the measurement, and e defines the error vector (dim e = N),

which is the difference of the desired and realized values; in case of reference tracking e = eν or

e = eξ, while in case of the suppression of the IB oscillations e = eω3 = −ω3 (since the desired

rate of oscillation is zero). By evaluating the aforementioned quality-measurement formulas the

initial control quality results are obtained. These initial results can be used in the formulation

of a complex fitness function to both evaluate the overall control performance and optimize the

controllers, thereby achieving enhanced control quality.
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Based on the simulation and implementation results the qualitative characteristics of the

elaborated controllers is summarized in Table 2.4, where Trise indicates the rise time, T5% denotes

the settling time and ovs. is used for the abbreviation of overshoot. According to the simulation

results, the linear control strategy provides faster closed loop behavior with smaller reference

tracking overshoots. From Table 2.4, it can also be read that the elaborated fuzzy scheme

satisfies the control requirements with much bigger overshoot (0.036 ms−1 at 0.4 ms−1 reference

speed), and due to the PI-type controllers it provides less aggressive closed loop behavior than

the linear controller. Regarding the suppression of the IB oscillations, both controllers perform

the task similarly; the overshoot (i.e., maximum oscillation angle) is between 25 − 30 degrees.

These simulation results well predict the outcome of the comparison related to the implemented

controllers. The measurement results also prove that the linear control strategy ensures faster

system response and smaller overshoots. Regarding the fuzzy control, the big overshoot is quite

conspicuous (measurement results in Fig. 2.11), and also, slower settling time characterizes the

weaker performance of the fuzzy control scheme. Both realized controllers successfully suppress

the IB oscillations with similar quality (e.g., the maximum overshoot is around 55 degrees).

Table 2.4: Characteristics of the controllers.

Planar motion of the robot
Simulation Implementation

Linear FUZZY Linear FUZZY

Trise(s) 0.73 0.9 0.38 0.27

T5%(s) 0.82 1.78 0.38 0.83

ovs.(ms−1) 0.0083 0.036 0.018 0.14

Suppression of the IB oscillations
Simulation Implementation

Linear FUZZY Linear FUZZY

ovs.(◦) 29.9 25.6 52.7 56.3

T5◦(s) 0.85 1.19 0.71 0.91

According to the figures, it can be concluded that more satisfying control performance

is achieved by the linear control technique. The reason of the modest performance of the

elaborated fuzzy control scheme could have different sources. It is important to mention that

the realized controllers are the results of intuitive control design steps, which means that the

linear controller has been defined by selecting the Q and R weighting matrices (and taking into

account the plant dynamics), while the inference mechanism of fuzzy control strategy has been

defined by the selected membership functions and rules. Moreover, it shall be kept in mind

that the derived mathematical model (see equation (2.12)) has not been validated, since the

nominal (or calculated) values of both inertia related (i.e., inertia matrix and center of mass)

and electrical parameters (such as the resistance or inductance of the motor) of the robot were

used in the development procedure. The result of the not validated mathematical model can also

be seen in Table 2.4, since significant differences between the simulation and implementation

results are highlighted. In fact, it was expected that the performance of the realized controllers

will differ from the simulation results since the design procedure of the linear control takes into

account the mathematical model as a constraint equation (which is only approximately known),

ultimately this difference led the system to a better closed loop behavior.
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The evaluation of the quality measurement formulas (2.34) and (2.35) are summarized in

Table 2.5. The outcome of the evaluation results concludes controversy, since according to the

calculated error integrals, the better overall control performance is provided by the fuzzy control

scheme. The last column of Table 2.5 indicates that according to the SAE, STAE, and STSE

quality measurement formulas the realized fuzzy control scheme results smaller aggregated error

values. The rows of Table 2.5 define the chosen error integral formula, while the first three

columns define the aggregated error values related to the errors eν , eξ and eω3 . The overall

aggregated error value (total error) is defined by multiplying the sub-aggregated error values,

for example, in case of SAE:

SAEoverall = log10

∏
e∈{eν ,eξ,eω3}

SAE (e) . (2.36)

The ultimate outcome of the comparison is that the linear control strategy provides bet-

ter transient system responses, however, the better overall control performance is achieved by

the cascade-connected fuzzy control scheme. Through this analysis, it has been shown that

approximate reasoning and heuristic knowledge oriented development give satisfying control

performances. This suboptimal control solution is further investigated and improved in the

next section by using the quality measurement formulas (2.34) and (2.35) in an optimiza-

tion procedure. In this optimization procedure, the linear control gains as well as both the

shape of the membership functions and their ranges are optimized for a better overall control

performance.

Table 2.5: Quality measurement numbers.

Fuzzy control
eν eξ eω3 log10 Π

SAE 30.4780 128.7299 4.2689 · 103 7.2240

SSE 6.5300 218.3223 1.1638 · 105 8.2199

STAE 85.6093 512.2402 9.4892 · 103 8.6192

STSE 20.3829 955.1933 1.6724 · 105 9.5127

Linear control
eν eξ eω3 log10 Π

SAE 30.8451 150.3294 3.7218 · 103 7.2370

SSE 6.9708 265.7726 8.0833 · 104 8.1754

STAE 101.2168 581.9903 9.1477 · 103 8.7315

STSE 23.8399 1169.0301 1.2966 · 105 9.5579

2.3 Enhancement of Control Performances

Although, the heuristically defined controllers (developed with empirical rules, weighting gains,

input-output ranges and heuristically tuned membership functions) in section 2.2 roughly meet

the design requirements, only suboptimal control performances are obtained (since the para-

meters were selected experimentally, which do not results in maximized control performance,

rather a compromise solution). The suboptimal control performance can be further improved

by trial and error tuning. However, the engineering intuition-based iterative tuning becomes
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rather difficult if complex nonlinear systems with high order dynamics are controlled. Moreover,

this way the best (or maximized) control performance is not guaranteed. This tuning problem

can be realized with numerical optimization, which replaces the designer’s tedious, iterative

task and tunes (optimizes) the control parameters by locating the minimum of the formulated

fitness function the characterizes the control quality.

This section addresses the preceding problem and describes both design improvement and

optimization approaches for the control structures developed in the previous section. First,

the observations of system dynamics is employed and both new linguistic variables and IF-

THEN rules are introduced for the enhancement of the fuzzy control scheme. The results

of the investigation is a special PI-type FLC, which simultaneously ensures the translational

motion and prevents high current peaks and jerks in the motor drive system of the robot.

Then, a complex fitness function is formulated for the quantification of the overall control

performance to investigate and measure the achievable control performances. In this fitness

function, the quality of reference tracking, the efficiency of the suppression of IB oscillations

and the magnitude of current peaks in the driving mechanism are considered. Using the defined

fitness function, the optimization of the parameters of both linear and fuzzy control schemes is

realized with the aid of particle swarm optimization (PSO), yielding the enhanced (maximized)

control performances.

2.3.1 Protective Fuzzy Control

The original source is Odry et al. (2017b).

To enhance the initial performance of fuzzy control a special nonlinear PI-type FLC is developed

and applied in the control scheme, which results in both fast reference tracking and significantly

reduced jerks and current peaks in the motor drive system. This PI-type FLC allows to pro-

tect the electro-mechanical parts of the plant, moreover, it ensures fast closed loop behavior.

The resultant protective FLC can be employed universally for plants that highly require the

vibrations and jerks to be reduced in their electro-mechanical parts Carbone (2011); Kecskés

and Odry (2018). The modified control structure that contains the nonlinear PI-type FLC is

depicted in Fig. 2.12.
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Figure 2.12: Block diagram of the modified fuzzy control structure.
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FLC2 and FLC3 are the same structures as introduced earlier, their parameters, membership

functions and rule bases are described in Figs. 2.5 and 2.7 and with Tables 2.2 and 2.3. The

protective PI-type FLC is denoted with FLC1 (red block in Fig. 2.12) and its complete structure

is shown in Fig. 2.13. The task of this controller is to both ensure the MWP’s translational

motion and reduce the current peaks in the motor drive system. Therefore, the linear speed

error eν and the average motor current IA form the inputs of the controller. The control signal

is denoted with uν and is a combination of the crisp proportional and integral tags (first and

second outputs of the FLC, see Fig. 2.13). The rule base shall be defined based on the following

facts:

1. IF the speed error (eν) is positive (negative), THEN positive (negative) control action

(uν) is applied, however

2. IF in the same time the motor current IA is large, THEN the aforementioned control

action (uν) is decreased with positive (negative) protective voltage to reduce the current

peak.
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Figure 2.13: Structure of the protective FLC (FLC1).

The aforementioned deductions are expanded into six rules given in Table 2.6. Three mem-

bership functions are chosen to describe the speed error with the fuzzy sets N (negative), P

(positive) and Z (zero). The motor current is characterized by S (small) and L (large) fuzzy

sets. Only the proportional tag (first output) is influenced by the protective mechanism, since

the integral tag has slower control action dynamics. The protective mechanism is characterized

by Nx and Px fuzzy sets describing the negative and positive protective voltages, respectively.

The protective nature of FLC1 is well demonstrated by its fuzzy surface depicted in Fig. 2.14. It

can be observed that FLC1 works as a nonlinear P controller, whose control action is decreased

as the motor current increases. This non-linearity both produces smoothness in control and

allows to reduce the current peaks and jerks in the electro-mechanical parts of the MWP. As

a result, FLC1 has a protective PI-type structure, which takes into account the average motor

current IA beside the speed error signal eν = νd−ν, where the fuzzy rules have been established

such a way to both ensure the desired linear speed and reduce the current peaks and jerks in

the motor drive system.
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Table 2.6: Rule base of the protective FLC (FLC1).

Speed error: eν Motor current: IA Proportional tag: UP Integral tag: UI
1 Z - Z Z
2 P - P P
3 N - N N
4 Z S Z -
5 P L Px -
6 N L Nx -

0
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Figure 2.14: The generated fuzzy surface related to the rule base of FLC1.

2.3.2 Equivalent PID Controllers

Since the elaborated LQR technique comprises of simple gains that weight the state vector,

moreover, the state vector contains the generalized coordinates q and their time derivatives q̇ of

the system, therefore the developed LQR approach can be replaced with simple PD controllers.

Additionally, the fuzzy scheme also employs nonlinear PD-type and PI-type FLCs for the stabi-

lization of the plant. As a result, a general linear control structure is derived as the equivalent

linear scheme of the fuzzy approach, where three PID controllers are employed instead of FLCs.

These PID controllers will be tuned in the optimization problem with numerical optimization.

PID controllers provide control signals that are proportional to the error between the desired

and actual output, to the integral of the error, and to the derivative of the error Tang et al.

(2001). The output (or control) signal and the corresponding transfer function in continuous-

time are formulated as:

u (t) = KP e (t) +KI

∫ t

0
e (τ) dτ +KD

de (t)

dt
,

C (s) = KP +KI
1

s
+KDs,

(2.37)

where e (t) denotes the error signal, s is the Laplace operator, and KP , KI and KD are the

parameters of the controller to be tuned. Since, the controller is employed in digital domain its
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discretization is realized by converting the integral and derivative terms to their discrete-time

counterpart. Applying the Tustin approximation, the transfer function of a discrete-time PID

controller is represented by

C (z) = KP +
KITs

2

z + 1

z − 1
+

2KD

Ts

z − 1

z + 1
. (2.38)

The equivalent linear control structure is formed by replacing the FLCs with discrete-time

transfer functions (2.38). Similarly to the fuzzy scheme, PID1 is responsible for the linear speed

control of the plant, where the error and control signals are eν and uν , respectively. PID2

ensures the suppression of the IB oscillations with its input-output signals eθ3 (oscillation error)

and uθ3 (control action). However, the yaw rate controller (FLC3) is not replaced nor optimized,

since its dynamics does not influence the overall control quality (i.e., translational motion, IB

oscillation and current peaks) significantly. The initial parameters are selected experimentally

as KP,1 = 12, KI,1 = 25 for PID1, and KP,2 = 0.03, KD,2 = 3 · 10−5 for PID2.

2.3.3 Optimization of Control Approaches

The original sources are Odry et al. (2017a) and Odry and Fullér (2018).

In order to both measure the achievable control performance and obtain maximized the control

quality, the optimization of both linear and fuzzy control approaches is realized with the aid of

PSO. This parameter tuning procedure consist of three parts, namely, the definition of a complex

cost function for the evaluation of the overall control quality, selection of the parameters sets

to be tuned, and the application of the optimization algorithm to tune the parameters by

minimizing the defined cost function. The optimization algorithm outputs the optimal possible

PID and FLC parameters (i.e., the most appropriate linear gains, fuzzy membership functions

and input-output ranges). To conduct a fair comparison, both control approaches are optimized

in the same environment using the same data set, requirements and optimization procedure.

Moreover, the fitness function shall be selected such a way to make the optimized PID and

fuzzy control structures provide both fast system dynamics and reduced IB oscillations, jerks,

and current peaks in the motor drive system.

2.3.3.1 Parameters of the Controllers

The main parameters that determine the fuzzy approach are related to the shapes and ranges of

the applied membership functions. Varying the shape, position and input-output range of these

functions different control performance is achieved. The triangular membership functions and

the singleton consequents are characterized by three parameters (i.e., pi1,pi2 and pi3 describe

the points of the triangle fuzzy set) and an output gain (ui of the ith controller), respectively.

These parameters are selected to be tuned by means of numerical optimization in case of FLCs.

On the other hand, the performance of the PID controller is influenced by the proportional

(KP ), integral (KI) and derivative (KD) coefficients, therefore these coefficients represent the

parameter set to be tuned in case of the linear control approach. The initial values of the

controller parameters are given in the fourth column of Table 2.7.
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Table 2.7: Notation of the FLC parameters: initial and optimized values.

FLC1

Fuzzy set Meaning Parameters Initial values Optimized values

N (in) negative Γ (−∞,−p11,−p12) p11 = 0.35 and p12 = 0 p11 = 0.289 and p12 = 0
Z (in) zero Γ (− (p11 − p13) , 0, (p11 − p13)) p13 = 0 p13 = 0.0019
P (in) positive Γ (p12, p11,∞) − −
S (in) small Γ (−∞, 0, d11) d11 = 0.5 d11 = 0.783
L (in) large Γ (d12, d13,∞) d12 = 0 and d13 = 0.5 d12 = 0.17 and d13 = 0.953
N, P

(UP out)
neg. and pos.

(out gains)
u11 |u11| = 3 |u11| = 1.002

Nx, Px
(UP out)

neg. and pos.
(out gains)

u12 |u12| = 1 |u12| = 0.22

N, P
(UI out)

neg. and pos.
(out gains)

u13 |u13| = 1.5 |u13| = 5.26

FLC2

Fuzzy set Meaning Parameters Initial values Optimized values

N (in1) negative Γ (−∞,−p21,−p22) p21 = 15 and p22 = 0 p21 = 27.04 and p22 = 0
Z (in1) zero Γ (− (p21 − p23) , 0, (p21 − p23)) p23 = 0 p23 = 1.122
P (in1) positive Γ (p22, p21,∞) − −
N (in2) negative Γ (−∞,−d21,−d22) d21 = 220 and d22 = 0 d21 = 657.93 and d22 = 0
Z (in2) zero Γ (− (d21 − d23) , 0, (d21 − d23)) d23 = 0 d23 = 13.301
P (in2) positive Γ (d22, d21,∞) − −

N, P (out) consequent gain u2 |u2| = 0.6 |u2| = 1.068

FLC3

Fuzzy set Meaning Parameters Initial values Optimized values

N (in) negative Γ (−∞,−p31,−p32) p31 = 30 and p32 = 0 p31 = 16.629 and p32 = 0
Z (in) zero Γ (− (p31 − p33) , 0, (p31 − p33)) p33 = 0 p33 = 3.970
P (in) positive Γ (p32, p31,∞) − −

N, P (out) consequent gain u3 |u3| = 1.5 |u3| = 2.398

PID1

Coefficient Meaning Range Initial values Optimized values

KP proportional [1, 24] KP,1 = 12 KP,1 = 8.80
KI integral [5, 35] KI,1 = 25 KI,1 = 19.07
KD derivative [−,−] KD,1 = 0 KD,1 = 0

PID2

Coefficient Meaning Range Initial values Optimized values

KP proportional [0.002, 0.1] KP,2 = 0.03 KP,2 = 0.054
KI integral [−,−] KI,2 = 0 KI,2 = 0
KD derivative

[
7 · 10−8, 5 · 10−5

]
KD,2 = 3 · 10−5 KD,2 = 5.12 · 10−7

2.3.3.2 Complex Fitness Function

The control performance is measured with the fitness (or cost) function. In the previous sub-

section different error integral formulas have been recommended for the quality measurement of

both the reference tracking and suppression of IB oscillations. Based on these error integrals, a

combination of four mean absolute errors (MAE) is chosen for the cost function to qualify the

overall control performance. This cost function evaluates the quality of reference tracking (eν

and eξ), the efficiency of IB oscillations suppression (eω3) and the average current consumption

(IA). This formula makes optimization to tune the controller parameters such a way that both

fast system dynamics and reduced IB oscillations and jerks in the mechanics are ensured. The

selected complex fitness function is given as follows.
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F =
4

√√√√√(∑N
j=1 |eν,j |
L

)α1
(∑N

j=1 |eξ,j |
L

)α2
(∑N

j=1 |eω3,j |
L

)β∑N
j=1

∣∣∣I2
A,j

∣∣∣
L

γ

(2.39)

In equation (2.39) N denotes the length of the measurement, j = 1...N , while α1 = 1.4,

α2 = 0.85, β = 1.6 and γ = 0.4 weights represent the preferences between the control objectives.

Among these weights, α1 and β are the largest, since the most important control quality goal is

to achieve the desired planar motion as fast as possible and with least amount of IB oscillations.

The evaluated yaw rate control quality (performance of FLC3) has less impact (α2 = 0.85) in

equation (2.39), since it does not influence the relationship between the MWP’s translational

motion and resultant IB oscillations. Moreover, the squared average motor current is considered

in the cost function to emphasize the effect of current peaks. The aim of the optimization

problem is to find the control parameters (pi, di and ui for FLCs and KP,i, KI,i and KD,i for

PID controllers, see Table 2.7) that correspond to the minimum fitness function value.

2.3.3.3 Particle Swarm Optimization

The simulation environment was considered as a black box object; its inputs and outputs are

the desired planar motion (νd and ξd) and reference tracking errors (eν , eω3) plus average motor

current IA, respectively. Moreover, the simulation model is characterized by the controller

parameters that determine the overall control performance. Fig. 2.15 depicts both the overall

block diagram of the applied fuzzy and PID-based closed loop structures and their optimization

procedure. The PSO is applied for the tuning of the control parameters, since it is a robust

and efficient heuristic method that has already proven its fast convergence property Kecskés

and Odry (2014); Ye et al. (2017). The fuzzy structure is characterized by 15 parameters,

therefore ngen = 150 and npop = 150 are chosen for the number of generations and populations,

respectively. In case of the PID structure, the optimization is executed with ngen = 40 and

npop = 40, since only much less parameters characterize the controllers.

PSO utilizes individual particles that form a swarm, imitating the swarm behavior of flocking

birds, to search for the global minimum or maximum within a search space. During the particles’

flights, they adjust their positions based on both their own experiences and the experiences

gained by the swarm as a whole. Specifically, each particle broadcasts its current optimum local

points to its neighboring particles. Therefore, each particle knows not only its own optimal

position but also the optimal positions of its neighbors as well as the optimal position achieved

by the swarm as a whole (the current global optimum). These identified optimal positions are

then used by the swarm as reference points for the search process in the iteration’s next step

Kennedy et al. (2001). Let Xi and Vi denote the position and velocity vector of the ith particle

in the swarm, while Pi and G indicate the personal best position (which gives the best fitness

value so far) of the ith particle and the global best position achieved (i.e., the position of the

best individual), respectively. The velocity and position vectors are modified in every generation
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based on the following equations:

V k+1
i = $V k

i + c1r1

(
P ki −Xk

i

)
+ c2r2

(
Gk −Xk

i

)
,

Xk+1
i = Xk

i + V k+1
i ,

(2.40)

where c1 and c2 are positive constants, r1, r2 ∈ [0, 1] are random values, and $ is the inertia

weight. These parameters have been selected as $ = 0.9, c1 = 0.5 and c2 = 1.5 based on

previous studies Kecskés and Odry (2014). In the present study, we used the Particle Swarm

toolbox for MATLAB Code (2013) to implement the algorithm.
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Figure 2.15: Block diagram of the closed loop and its optimization procedure.

2.3.4 Results

The original source is Odry and Fullér (2018).

The optimized closed loop behaviors are depicted in Figs. 2.16 and 2.17, while the tuned PID and

FLC parameters are summarized in the fifth column of Table 2.7. The achievable maximum

linear speed of the robot is approximately 0.5 ms−1. In order to test the response time of

the closed loop dynamics both fast and slow behaviors are analyzed. Therefore, the following

reference (desired) signals are considered in the analysis: νd = {0.4, 0,−0.2, 0} ms−1 for the

translational motion and ξd = {30, 0,−70, 0} degs−1 for the desired yaw rate.

Regarding the optimized fuzzy control structure, the corresponding fitness function value

(evaluating equation (2.39)) has significantly improved after the optimization procedure, namely,

from Finit = 0.1049 (related to the initial controller parameters in the fourth column of Table 2.7)

to Fopt = 0.0558, thereby providing 46.8% better overall control performance (the smaller the

value the better control performance is achieved). Based on Fig. 2.16, it can be observed,

that the optimized FLC parameters ensure fast closed loop behavior (the reference values are

achieved in less than 0.7 sec), moreover the oscillation of the IB is limited and quickly suppressed

(similarly, in less than 0.7 sec). Therefore, the optimization enabled to obtain a more efficient
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control structure that has remarkably enhanced the system behavior (fast and effective reference

tracking). Moreover, the electro-mechanical parts of the MWP are protected, since high peaks

and jerks related to IB oscillations are limited. The flexibility of the FLCs allowed to significantly

reduce the motor current peaks. The initial closed loop dynamics was characterized by 0.5−0.6 A

motor current transients. These transients are limited to 0.2−0.3 A current peaks by employing

the optimized FLCs, therefore with smaller current consumption and limited jerks and current

peaks, the electro-mechanical parts of the MWP are more protected. Based on the partial fitness

function results, it can be remarked that the reference tracking performance has been enhanced

by 13% and 59% for the linear speed and yaw rate control, respectively, while the performance

of the suppression of the IB oscillation has been enhanced by 36% with the optimized fuzzy

control structure.
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Figure 2.16: Closed loop dynamics of the fuzzy approach before (blue) and after (red) the optimization.
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Figure 2.17: Closed loop dynamics of the linear approach before (blue) and after (red) the optimization.

The optimized control performances are highlighted and compared in Fig. 2.18, while the

initial and optimized PID and fuzzy action surfaces are shown in Fig. 2.19 and Fig. 2.20,

respectively. Based on the first row of Fig. 2.18 it can be observed that both the optimized

fuzzy and optimized PID control schemes provide the same closed loop dynamics for the planar

motion of the MWP (the desired linear speed is achieved in 0.68 sec). However, the flexibility

of fuzzy logic allowed to perform the suppression of both the IB oscillations and current peaks

much more effectively (significantly smaller IB oscillation and current peak compared to the

optimized PID control results). Namely, the resultant IB oscillation is suppressed in 0.68 sec

in both cases, however significant difference in the magnitudes can be observed (i.e., 56.8 deg
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and 46.8 deg in case of PID and fuzzy control schemes, respectively). Moreover, the current

consumption of the PID control is characterized with a 0.54 A average current peak, while

the optimized fuzzy scheme accomplished the same task with a significantly smaller 0.32 A

current peak. These results prove that the flexible nature of fuzzy logic could result in a more

efficient overall control performance, where the IB oscillation is limited and quickly suppressed,

moreover, the electro-mechanical parts of the MWP are more protected against jerks and high

current peaks.
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Figure 2.18: Control performances of optimized PID and fuzzy approaches.

The differences between the control performances can be explained based on the action

surfaces depicted in Fig. 2.19 and Fig. 2.20. On one hand, the FLC1 establishes a nonlinear

relationship between the speed error and the crisp output. Moreover, this relationship is ex-

tended with the impact of motor current, where the control action is nonlinearly decreased as

the motor current increases. This nonlinear action surface results in that the planar motion of

the MWP is characterized by slower system response in the first 0.5 sec in Fig. 2.18. However,

as the average current magnitude has reduced the control action is increased, thereby the FLC

could approach the initially faster PID controller around 0.6 sec.
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Figure 2.19: Action surfaces of FLC1 and PID1 before (left) and after (right) the optimization.
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Figure 2.20: Action surfaces of FLC2 and PID2 before (left) and after (right) the optimization.
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The action surfaces of the applied PID controllers show a linear connection between the

input and output values. In the applied PID controller-based based scheme, it is not feasible

to influence the control action such a way to limit the jerks and current peaks. This criteria

could have been satisfied either with adaptive techniques or with an additional PID controller

that is placed in the inner current loop. Both solutions would complicate the control structure.

In contrast, the proposed (and later optimized) protective FLC has shown a well-applicable

solution to both take into account additional inputs (such as the motor current) easily and

provide efficient and robust control performance through the definition of simple heuristic IF-

THEN rules.

The achieved control performances have shown that the flexibility of fuzzy logic provides

an easy and effective way to improve the overall performance of the system. Moreover, the

application of the PSO algorithm enables to tune heuristically defined control parameters, and

thereby obtain maximized control quality. These results can be further improved with more

sophisticated FLCs that are characterized by bigger rule bases and more linguistic values (e.g.,

the inputs and outputs of the FLCs could be decomposed into five membership functions in

order to define finer and more advanced fuzzy inference machines). The investigation of more

advanced FLCs is left open for future works.
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2.4 Theses

This thesis group deals with the development and analysis of such fuzzy control approaches,

which provide both robust dynamical behavior and energy efficient control actions in mecha-

tronics (robotics) applications compared to conventional methods. The main result of the

investigation is a special PI-type FLC structure, which limits the jerks and current transients

in motor drive systems, thereby protecting efficiently the electro-mechanical parts of robots.

2.4.1 Thesis 1.1

A nonlinear 8-dimensional mathematical model of WMP systems has been derived that takes

into account the motor dynamics, and its inputs are the terminal voltages of the applied motors.

Based on the comparison of measurement and simulation results of open-loop robot dynamics,

it was shown that the proposed model well describes the real behavior of the dynamical system,

thus it provides the basis to effectively design control algorithms for these kind of underactuated

naturally unstable mechatronic systems.

Publications pertaining to the thesis: Odry et al. (2015a,b).

2.4.2 Thesis 1.2

A cascade-connected, heuristic IF-THEN rules-based fuzzy control scheme has been developed

for the unstable mechatronic system, which provides asymptotic stability in closed loop.

Publications pertaining to the thesis: Odry et al. (2016a, 2020a).

2.4.3 Thesis 1.3

A special PI-type FLC has been derived, which evaluates the instantaneous motor currents

beside the error signals, thereby providing both smooth control action and improved control

performance. A protective-type fuzzy control structure has been established with the derived

FLC.

Publications pertaining to thesis: Odry et al. (2017b).

2.4.4 Thesis 1.4

An optimized fuzzy control structure has been obtained with the aid of the PSO algorithm.

The outlined comparative analysis highlighted that the protective-type FLC structure provides

significantly improved control performance than the linear approach in terms of the resulting

oscillations and current peaks in the electro-mechanical structure of mechatronic systems.

Publications pertaining to thesis: Odry et al. (2016b, 2017a); Odry and Fullér (2018).

Remark: The byproduct of these theses is a novel educational project for both robotics and con-

trol system design laboratories. I both developed a laboratory setup (WMP kit) for education

of (fuzzy-based) control problems and described a complete laboratory project from analysis of

the solutions in the literature, over the description and elaboration of dedicated student tasks,

to the assessment recommendations. This laboratory project is described in Odry et al. (2020a):
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Odry, Á., Fullér, R., Rudas, I. J., and Odry, P. Fuzzy control of self-balancing robots: A control

laboratory project. Computer Applications in Engineering Education, 2020, 1− 24.

Moreover, all the information, including the computer aided design (CAD) models, MAT-

LAB/Simulink files, MCU software, and LUT-based implementation of FLCs have been made

publicly available in the supplementary online material Odry (2019b) to help other lab teams

in designing similar experiments. This enables both the WMP lab kit and addressed control

system design problems to be replicated in the laboratory of any institution. The complete

project along with the software tools have been developed solely by the author of this PhD

dissertation.
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3 State Estimation

This chapter discusses two novel approaches to estimate accurately mobile robot attitudes based

on the fusion of low-cost accelerometers and gyroscopes. The first part of the paper demon-

strates the use of a special test bench that both enables simulations of various dynamic behaviors

of wheeled robots and measures their real attitude angles along with the raw sensor data. These

measurements are applied in a simulation environment and the optimization of KF parameters

is outlined. Then, a novel adaptive KF structure is developed that modifies the noise covari-

ance values according to the system dynamics. The instantaneous dynamics are characterized

regarding the magnitudes of both the instantaneous vibration and the external acceleration.

The developed adaptive solution measures these magnitudes and utilizes fuzzy-logic to mod-

ify the filter parameters in real time. The proposed filter performances are also benchmarked

against other common methods to analyze both the flexibility and robustness of the approaches.

Then, as the generalization of the developed adaptive KF, a novel fuzzy-adaptive extended KF

(hereinafter FAEKF) for the real-time attitude estimation of agile mobile platforms equipped

with magnetic, angular rate, and gravity (MARG) sensor arrays is designed. This filter struc-

ture employs both a quaternion-based EKF and an adaptive extension, in which measurement

methods are used to calculate the magnitudes of system vibrations, external accelerations, and

magnetic distortions. These magnitudes, as external disturbances, are incorporated into a so-

phisticated fuzzy inference machine, which executes fuzzy IF-THEN rules-based adaption laws

to consistently modify the noise covariance matrices of the filter, thereby providing accurate

and robust attitude results. Moreover, a six-degrees of freedom (6 DOF) test bench is designed

for filter performance evaluation, which also executes various dynamic behaviors in the three-

dimensional space and enables measurement of the true attitude angles (ground truth) along

with the raw MARG sensor data. The tuning of filter parameters is performed with numerical

optimization based on the collected measurements from the test environment. A comprehensive

analysis highlights that the developed techniques significantly improve the attitude estimation

quality. Moreover, the filter structures successfully reject the effects of both slow and fast

external perturbations.

The developed test benches can also be utilized to tune and optimize other attitude fil-

ters. Moreover, the proposed optimized and adaptive solutions are universally applicable to

any robotic application in which attitude estimation is required and dynamic effects (such as

vibration, acceleration and magnetic disturbance) influence the filter performance significantly.

3.1 IMU-based Attitude Estimation

The original source is Odry et al. (2018): Odry, Á., Fullér, R., Rudas, I. J., and Odry, P.

Kalman filter for mobile-robot attitude estimation: Novel optimized and adaptive solutions.

Mechanical systems and signal processing, 110, 569− 589.

This section focuses primarily on one-dimensional attitude (tilt angle) estimation of WMP

systems. As mentioned in the introduction (see subsection 1.1.4), neither the accelerometer
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nor the gyroscope is capable of providing accurate and stable attitude values. Therefore, the

purposes of attitude estimation are to integrate and process raw measurements and to provide

attitude estimates that are smoothed properly. A KF is a recursive, state-space model-based

algorithm that both enables the integration of the aforementioned sensors and provides the

optimal state estimation based on the properly defined noise covariance matrices.

3.1.1 Algorithm

3.1.1.1 Gyroscope model

The raw gyroscope measurement ΩB
k consists of three main components: the true angular

velocity ωBk , the non-static bias term ω0,k, and the additive measurement noise µk. It is given

by

ΩB
k = ωBk + ω0,k + µk, (3.1)

where the superscript B denotes vectors expressed in the body frame and k is a discrete-time

variable. In equation (3.1), the additive rate noise is assumed a zero-mean, white, Gaussian

variable with the following characteristics:

E [µk] = 0, E
[
µkµ

T
l

]
= σ2

µδkl,
[
σ2
µ

]
=

(
deg

s

)2 1

Hz
, (3.2)

where σ2
µ denotes the noise variance and δkl is the Kronecker delta. Moreover, the term ω0,k

in equation (3.1) is considered a slowly varying bias (as a result of temperature sensitivity)

modeled by the random walk process

ω0,k = ω0,k−1 + ηk, (3.3)

where ηk denotes driving Gaussian noise with a σ2
η noise variance, i.e.,

E [ηk] = 0, E
[
ηkη

T
l

]
= σ2

ηδkl,
[
σ2
η

]
=

(
deg

s

)2

Hz. (3.4)

After being reformulated from the gyroscope measurement (equation (3.1)), the true angular

velocity, can be integrated numerically to compute the orientation using θk+1 = θk + ωkTs,

where Ts is the sampling time. However, due to the bias term ω0,k and the presence of the

measurement noise µk, the gyro-based realization of θk produces an unbounded accumulation

error. Therefore, gyroscope measurements yield only short-term accuracy (i.e., high-frequency

attitude realization can be achieved with rate gyro measurements).

3.1.1.2 Accelerometer model

The raw accelerometer output ABk consists of four main components: the external accelera-

tion αBk , the contribution of gravitational acceleration gBk , the bias term a0, and the additive

measurement noise νk, and it is given by
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ABk =
(
αBk − gBk

)
+ a0 + νk. (3.5)

The bias term is usually compensated for during the calibration procedure Höflinger et al.

(2013), although the process for achieving this exceeds the scope of this article. If a robot

(or another mobile mechatronic system) is in stationary state (i.e., no dynamic acceleration

is occurring and αBk ≈ 0), then the gravity vector can be used to calculate the raw attitude

realization θA,k with Li and Wang (2013)

θA,k = arctan2 (Ay,k, Az,k) = θk + vk, (3.6)

where Ay,k and Az,k are the instantaneous measurements of the accelerometer. This realization,

which is described by equation (3.6), can also be considered the sum of the real attitude θk and

additive noise vk that represents the effects of νk from equation (3.5) after the trigonometric

function has been evaluated. In a manner similar to the gyroscope model, vk is assumed to be

Gaussian white noise with the following characteristics:

E [vk] = 0, E
[
vkv

T
l

]
= σ2

vδkl,
[
σ2
v

]
= deg2 1

Hz
. (3.7)

Based on equations (3.5) and (3.6), we can deduce that if there is an external acceleration

(αBk 6= 0), then the attitude realization given by equation (3.6) provides unreliable results

and a drastically reduced accuracy because the ratio of Ay,k to Az,k does not provide relevant

attitude information (i.e., the pure gravity vector cannot be applied). In this implementation,

the external acceleration is not modeled explicitly. Instead, its effects are absorbed by vk (i.e.,

a significantly larger σ2
v noise variance is expected when αBk 6= 0). Therefore, the accelerometer

measurements yield adequate attitude realizations (so-called low-frequency attitude realizations)

only when the system is in a non-accelerating mode.

3.1.1.3 Sensor fusion with Kalman filter

The previously described approaches can be synthesized to utilize the advantages of both types

of sensors and to obtain attitude results with higher reliabilities and accuracies. In such a

synthesis, the gyro-based attitude realization is extended by the attitude realization derived

from the accelerometer data. Therefore, the unbounded integration error is compensated for

and long-term stability is achieved. To fuse these sensors, a linear KF is implemented.

This KF is a recursive algorithm that provides an optimal estimation x̂ of the noisy state

vector x (whose dynamics are described by a state-space equation) such that:

E [xk − x̂k] = 0,

E
[
(xk − x̂k) (xk − x̂k)T

]
→ inf .

(3.8)

When MEMS IMU data are considered, the state dynamics are constructed from both the

discrete-time integrated true angular velocity (ωk reformulated from equation (3.1)) and the

random walk process of the bias term (equation (3.3)). This means that the state propagation
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is described by the state vector xk = (θk, ω0,k)
T , the input variable uk = Ωk, and the process

noise vector wk = (µk, ηk)
T as

xk+1 = Φxk + Γuk + wk,[
θ

ω0

]
k+1

=

[
1 −Ts
0 1

][
θ

ω0

]
k

+

[
Ts

0

]
Ωk +

[
µ

η

]
k

,
(3.9)

where Φ is the state transition matrix, Γ denotes the input matrix, and Ts = 1/fs is the sampling

time. Based on equation (3.6), the measurement equation is formed (as an updated absolute

orientation) with an output of zk = θA,k, measurement noise of vk, and an output matrix of H

as

zk = Hxk + vk,

θA,k =
[
1 0

] [ θ
ω0

]
k

+ vk.
(3.10)

According to the stochastic hypothesis, if the process and measurement noise vectors wk and

vk are uncorrelated (E
[
wkv

T
l

]
= 0) and modeled with zero-mean, white, Gaussian random

variables (as was assumed in both the gyroscope and accelerometer models represented by

equations (3.2), (3.4), and (3.7)), then the Kalman filter provides an optimal estimation with

a minimum state-vector variance. The recursive algorithm uses the state-space equations (3.9)

and (3.10) along with the covariance matrices of wk and vk given by Q = E
[
wkwk

T
]

and

R = E
[
vkvk

T
]
, respectively, to propagate the states, process the measurements, and update

the covariance estimates in the time and measurement update equations Welch and Bishop

(2001). Namely, the time update equations determine the a priori state estimate (x̂−k ) and

estimate error covariance (P−k ) as:

x̂−k = Φx̂k−1 + Γuk−1,

P−k = ΦPk−1ΦT +Q,
(3.11)

where x̂k−1 and Pk−1 denote the a posteriori (updated) state estimate and estimate error

covariance at step k− 1. The measurement update equations are responsible for correcting the

a priori estimates employing both the measurement zk and its noise covariance R. First, the

Kalman gain is calculated:

Gk = P−k H
T
(
HP−k H

T +R
)−1

, (3.12)

then, both the state estimate and the estimate error covariance are updated (i.e., the a posteriori

state vector and error covariance matrix are determined):

55



x̂k = x̂−k +Gk
(
zk −Hx̂−k

)
,

Pk = (I −GkH)P−k ,
(3.13)

where I denotes the 2× 2 identity matrix.

Because the matrices Φ, Γ, and H in equations (3.9) and (3.10) contain constants, the es-

timation (or filter) performance is directly influenced, and thus determined, by the respective

choices of the process and measurement noise covariances Q and R as well as the initial value of

the estimation error covariance P0 = E
[
(x (0)− x0) (x (0)− x0)T

]
. The following subsections

propose first a solution based on numerical optimization for automatic tuning of these para-

meters. Then, I develop an adaptive KF approach that varies the aforementioned covariance

values based on the dynamical behavior of the system.

3.1.2 Test environment

To evaluate the state estimation error, measure the filter performance, and realize the opti-

mization of the KF parameters, the true state (i.e., the true attitude of the WMP body θk)

must be known. A test bench is designed, which provides a set of special circumstances to the

WMP that allow the real attitude angle to be measured and the accelerometer and gyroscope

measurements to be collected.

3.1.2.1 Electro-mechanical structure of the test bench

Due to the mechanical structures of WMP systems, the pendulum (the IB of the robot) is

typically realized between the stators and the rotors of their applied motors. The relationships

between the angular positions of the wheels (θw,k) and the pendulum (θk) are given by

θr,k = θw,k − θk, (3.14)

where θr,k is the relative motor angle measured by the incremental encoders attached to the

motor shafts. If the wheels are prevented from rotating (i.e., θw,k = 0), then, based on equa-

tion (3.14), the rotary encoders can be used to measure the true angular position of the WMP

body θk.

The test bench depicted in Fig. 3.1 takes advantage of this condition by using two (shaft-

clamping) jaws to pin down the wheel shafts and prevent their rotation. The test bench jaws

are attached to a movable plate that slides back and forth on two parallel 400-mm long rails via

linear bearings. The position of the plate is measured by the attached encoder. This electro-

mechanical structure enables external acceleration to occur simultaneously with the inner body’s

oscillation, allowing a variety of dynamic (vibrating and accelerating) system behavior to be

simulated and measured. Fig. 3.1 shows both a photograph and the CAD model of the test

environment. The shafts of the robot are fixed between the jaws. In the CAD model, the side-

and top-printed WMP circuit boards are set to invisible to reveal the inner workings of the

robot.
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Figure 3.1: Photograph and CAD model of test bench.

The embedded WMP system has been described in section 1.3. Since the DC motors are

equipped with both planetary gearheads of 64 reduction ratio and two-channel incremental

encoders of 100 lines per revolution resolution. Therefore, the accuracy of true attitude (ground

truth) measurements employing X4 encoding is:

∆θ =
360◦

4× 100× 64
≈ 0.0141◦. (3.15)

During the measurement, the DC motors are driven using different sinusoidal signals (varying

both amplitude and frequency), resulting in a wide variety of WMP body oscillations. Simul-

taneously, the movable plate is slid back and forth, simulating various horizontal acceleration

values. The encoder measurements attached to the motor (the true attitude) and the sliding

plate (the true horizontal acceleration), along with the instantaneous accelerometer and gyro-

scope data, are collected and sent to the PC for further evaluation. A three-channel incremental

encoder (model no. HEDS-5540 A11) of 500 lines per revolution resolution is fixed to a wheel

of r = 19-mm radius (see Fig. 3.1). Therefore, the accuracy of horizontal position measurement

employing X4 encoding is:

∆y =
2πr

4× 500
≈ 0.0597 mm. (3.16)
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3.1.2.2 Measurement results

Dynamic behaviors, including stationary states, various angular velocities, mild and intense

vibrations, and mild and intense acceleration have been measured and recorded. The measure-

ment lasted for about 350 sec, and the simulated dynamic behavior has been characterized using

the following ranges: 0−6.5 Hz for body oscillation frequency, ±800 degs−1 for angular velocity,

and ±1.5 g for external horizontal acceleration. Fig. 3.2 depicts two parts of the whole mea-

surement in which the angle realization quality can be observed under both static and diverse

dynamic conditions. The entire measurement data set can be accessed in the supplementary

online material Odry (2019c).
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Figure 3.2: Two time slots from the 350 sec long measurement.

The first and second rows of Fig. 3.2 compare the real attitude (measured by the motor

encoder) with the attitude realizations provided by the accelerometer and gyroscope data, while

the third row shows the external acceleration (measured by the plate encoder) applied during

the measurement process. On the one hand, due to the integration of the bias and noise

components, the gyro-based angle realization is characterized by unbounded drift (e.g., the
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accumulated error are about 15◦ after 100 sec and approximately 40◦ after 300 sec). On the

other hand, for low-frequency oscillations with no external acceleration, the accelerometer-

based realizations describe the instantaneous oscillations accurately (e.g., at around 80 sec).

However, when either external acceleration or high angular velocity is present, the quality of

the accelerometer-based realization decreases drastically (e.g., at around 75 sec and 85 sec). In

fact, the instantaneous realizations are essentially useless in these cases (as shown on the entire

right side of Fig. 3.2).

3.1.3 Optimization of filter parameters

Because the embedded WMP system is characterized by a low processing speed and the recorded

measurements have been made available in MATLAB, the KF coefficient optimization is per-

formed offline in a MATLAB/Simulink simulation environment. The block diagram of the

measurement process and the applied optimization procedure is depicted in Fig. 3.3. The in-

puts of the simulation environment are the real angular position (i.e., the encoder measurement

of θk) and the realized angular position and velocity values (i.e., θA,k and Ωk calculated from the

IMU measurements), while its output is the estimation error ek = θk− θ̂k, where θ̂k denotes the

output of the implemented KF algorithm. The KF parameter tuning is performed by defining

a fitness function quantifying the estimation quality and applying a method for optimizing the

noise covariance values by minimizing the fitness function value.
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Figure 3.3: Block diagram of measurement and optimization procedures.

3.1.3.1 Initialization of filter parameters

The initial KF parameter values need to be defined in the simulation environment. Such ini-

tialization is necessary for the respective process and measurement noise covariance matrices

Q and R, the state vector of the state equations (3.9) and (3.10) x̂0, and the estimation error

covariance matrix P0.
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The process noise values µk and ηk in equation (3.9) are considered to be statistically in-

dependent (i.e., uncorrelated), as it is usually assumed Kownacki (2011); Lee et al. (2012);

Gośliński et al. (2015); Crassidis et al. (2007). Therefore, a diagonal process noise covariance

matrix (Q), along with the measurement noise variance value (R), is investigated in the opti-

mization procedure, specified as:

Q =

[
q00 0

0 q11

]
, R = ρ, (3.17)

where q00, q11, and ρ are introduced to provide simpler notation for the optimization. The

noise variance initialization is typically determined via Allan variance analysis for a stationary

system state Höflinger et al. (2013); El-Sheimy et al. (2008); Benini et al. (2015). However,

if the system is operating in dynamic mode, then the Allan variance initialization method

loses validity, especially with respect to ρ, which absorbs and represents the effects of external

acceleration (equation (3.6)) as well as the sensor noise.

One advantage of the optimization process is that the noise analyses can be omitted, since

rational initial guesses for q00, q11, and ρ will cause these parameters to converge to the optimal

possible noise variances in the parameter space. Therefore, the following values have been chosen

for the initialization of noise variances: q00 = 5 · 10−7, q11 = 5 · 10−9, and ρ = 105 · q00 = 0.05,

where the multiplication factor 105 indicates that the realizations of the accelerometer-based

attitudes (θA,k) are expected to be significantly more unreliable than gyro-based angular velocity

realizations (Ωk) due to the system’s dynamic behavior.

When the measurements begins, the WMP body angle is 0◦. Therefore, the initial state

vector has been chosen as x̂0 = (0, 0)T , while the initial value of state covariance matrix has been

set to P0 = 02×2. The estimation error covariance is updated continuously in KF algorithms,

thus the initial P0 guess affects the overall KF performance only slightly. Considering this, the

elements of P0 are not optimized.

3.1.3.2 Fitness function

The KF performance is measured by a fitness function that quantifies the differences between

the real and estimated state values.

In most practice-oriented complex problems, the mean absolute error (MAE) or the mean

squared error (MSE) are chosen as the fitness function in the model parameter optimization

procedure. On one hand, because these formulas can be easily implemented and evaluated

(even in embedded systems) and are well-suited to measurement uncertainties, many research

results in the literature prove that successful parameter optimization is achieved based on the

minimization of the MAE Modares et al. (2010b); Oh et al. (2011) or MSE Chatterjee et al.

(2005); Alıcı et al. (2006); Kwok et al. (2006); Modares et al. (2010a); Quaranta et al. (2010);

Alireza (2011); Alfi and Fateh (2011) fitness function. On the other hand, the model parameter

optimization (or identification) in practical applications can be considered as a curve fitting

problem as well. In this case, comparison of measurements and simulation results of a derived

mathematical model and minimization of the MSE allow the unknown model parameters to be

successfully identified.
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Based on the foregoing facts, the mean square error was selected to be the fitness function:

F =
1

N

N∑
k=1

e2
k =

1

N

N∑
k=1

(
θk − θ̂k

)2
, (3.18)

where N is the measurement length. The objective of the optimization problem is to determine

the optimal possible ρ, q00, and q11 noise variances corresponding to the lowest possible fitness

function value.

Since the measurement errors in equations (3.9) and (3.10) are assumed to be independent,

normally distributed random variables, therefore the optimization of the noise variances by

minimizing F in equation (3.18) will correspond to the so-called maximum likelihood estimate

Hendrix and Boglárka (2010).

3.1.3.3 Particle swarm optimization

During optimization, the simulation environment is considered a black box with inputs (mea-

surements from both the encoder and the IMU), an output (the estimation error ek = θk − θ̂k),
and a set of parameters (in this case ρ, q00, and q11) that determine the filter performance.

Therefore, similarly to the control system optimization problem (discussed in chapter 2), a

heuristic optimization method has been chosen that is effective (with a fast convergence), easy

to implement, robust, and able to operate without gradient information.

Among the heuristic optimization algorithms, the PSO is selected as the most suitable for

this problem, because it has demonstrated greater effectiveness than genetic algorithms and

other heuristic methods Kecskés et al. (2017b); Kwok et al. (2006); Kecskés and Odry (2014);

Ye et al. (2017). In addition, PSO is a population-based search algorithm that uses the fitness

function to guide the search in the search space; therefore, unlike gradient-based optimization

methods, the PSO does not have difficulties with nonlinear, noisy, or discontinuous functions

and is less susceptible to becoming trapped in local minima. These advantages are discussed in

detail in Oh et al. (2011), while both the algorithm and its parameters have been described in

subsection 2.3.3.3.

3.1.3.4 Results

Once the noise variance ranges are defined and the corresponding fitness function is formulated

(equation (3.18)), the optimization algorithm can begin running. I have chosen ngen = 30 and

npop = 30 for the numbers of generations and populations, respectively, because the optimization

problem itself is characterized by only three parameters (i.e., ρ, q00, and q11). The ranges of

the parameters are defined heuristically. The algorithm has been run twice in succession, and

its ranges and initial values have been redefined based on the subresults of the first iteration.

The third column of Table 3.1 summarizes the results of the parameter optimization process,

which are discussed in the rest of this subsection.

The optimization process uses the initial values defined in the previous subsection. An

intense external acceleration has been applied during the measurement of the dynamic behavior,

and its effect have been absorbed in the measurement noise vk (equation (3.6)). Therefore,

the noise variance ρ is expected to converge to a higher value. Indeed, the optimization has
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converged to a noticeably higher variance value (up from 0.05 to 0.35) that more thoroughly

represents the noise characteristics of the accelerometer-based realizations. At the same time,

the process noise variances have converged to notably smaller values (from 5 ·10−7 to 6.38 ·10−8

for q00 and from 5 · 10−9 to 3.08 · 10−12 for q11), meaning that the optimization has converged

such that the noisy state propagation equation (3.9) has become much more reliable but the

measurement update equation more uncertain. Owing to the lower process noise covariance Q,

the filter gain has decreased. Therefore, the optimization has resulted in a KF characterized

by dynamics slower than those of the algorithm using the initial values. Because the dynamic

behavior I have simulated and measured on the test bench has covered both static and extreme

(vibrating and accelerating) WMP conditions, the faster KF dynamics is not expected to be

necessary. Considering the above, the optimization has provided satisfactory results. If the filter

dynamics are too slow for certain applications, then the subresults of an earlier optimization

run can be applied.

Table 3.1: Initial and optimized values with optimization bounds.

First run: Finit = 8.6921→ Fopt = 2.3447

Symbol Initial Optimized min max

ρ 0.05 0.27905 0.008 0.3
q00 5 · 10−7 1.08 · 10−7 1 · 10−7 2 · 10−6

q11 5 · 10−9 1.17 · 10−10 1 · 10−10 2 · 10−8

Second run: Finit = 2.3252→ Fopt = 1.9077

Symbol Initial Optimized min max

ρ 0.27 0.35459 0.25 0.45
q00 1 · 10−7 6.38 · 10−8 7 · 10−9 7 · 10−7

q11 1 · 10−10 3.08 · 10−12 1 · 10−12 4 · 10−10

Fig. 3.4 depicts the results of the parameter optimization process. In the first rows, the

estimation performances are shown both before (by the red curves) and after (by the yellow

curves) the optimization, and the estimated values are compared to the true attitudes. In the

second rows, the estimation errors of the initial (blue curves) and optimized (red curves) KF are

highlighted. A noticeable performance improvement can be observed in the plots. The curves

for the optimized parameters fit both frequencies and amplitudes of the true body attitudes to

a satisfactory degree. The fitness function value is significantly improved by the parameter op-

timization. Specifically, it decreased from the initial Finit = 8.6921 (filter performance achieved

with the initial filter parameters) to Fopt = 1.9077, indicating that a 78% filter performance

improvement has been achieved with the proposed optimization procedure.

The effects of the external acceleration and vibration still decreases the estimation quality

drastically (e.g., around 75 sec on the left side and the whole right side of Fig. 3.4) resulting

in an unsatisfactory initial KF performance (red curves, before optimization). However, a

combination of optimized filter parameters has been found that enables the KF to effectively

suppress the effects of these external disturbances, and to provide both satisfactory estimation

accuracy and fast filter convergence for the intended application.
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Figure 3.4: Initial and optimized Kalman filter performances compared to true body attitudes.

3.1.4 Adaptive Kalman filter approach

The previous subsection demonstrated that, with the assistance of optimization, a combination

of noise covariance values Q and R can be found such that the resulting state estimation

performance is satisfactory. However, the optimized Q and R matrices do not characterize

accurately the real noise existing in the system but rather represent broad variance values that

cover the whole noise and the model approximations in the measurement whether the system

is stationary or subject to intense external disturbances. In the present study, this outcome is

expected because the state-space equation does not model the external acceleration. Instead,

the effects of the external disturbances are absorbed in the assumed white noise component of

equation (3.10).

Because the KF performance is primarily influenced by the noise covariance values Q and

R, I investigate in this subsection whether an adaptive approach that varies these matrices

according to the instantaneous dynamical behavior can provide a performance superior to that of

the filter convergence in the previous subsection or not. The instantaneous dynamical behavior

is characterized by two factors: the magnitudes of the vibration and the external acceleration.

If these factors are described by relevant measures in real time, then online manipulation of the

noise covariance values can be realized and the estimation performance can be enhanced.

In the following subsections, I develop an adaptive KF approach that both measures the

aforementioned external disturbances and modifies the noise variance assumed in the measure-

ment model via a fuzzy inference machine. The results will demonstrate that the developed

approach further improves the state estimation quality.
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3.1.4.1 Measuring vibration magnitude

The magnitudes of instantaneous system vibrations can be described by the oscillation frequency

of the WMP body. Among the two MEMS sensors, the gyroscope provides reliable measure-

ments of the angular velocity for both low and high oscillations. Therefore, the gyroscope data

can be utilized to estimate the instantaneous oscillation frequency.

Using this approach, the WMP body oscillation frequency is estimated with a fast Fourier

transform (FFT)-based evaluation of short gyro measurement packets. The high sampling

frequency of the sensor enables to gather measurement packets of length L. Through the FFT

algorithm’s evaluation of these short measurements, an estimation of the oscillation frequency

(f̂) is made. The main steps of the estimation algorithm is summarized as follows.

1. Collect a data packet x of length L from the gyroscope measurements. The value of

L depends on the application requirements, since it is a trade-off between the amount

of information used in the FFT calculation and the estimation delay. Larger L values

provide finer oscillation spectra but longer estimation delays (d = L/fs). In this study,

the sampling frequency is 800 Hz and the window size is set to L = 400 (d = 0.5 sec

delay).

2. Compute a discrete Fourier transform of the data packet x to obtain frequency domain

information about the instantaneous oscillation. The output of the FFT algorithm is

represented by the ordered pair (fi, |Ω|i), with fi and |Ω|i representing the frequency

components and their corresponding amplitudes, respectively. Namely,

Wl =

LFFT−1∑
k=0

xke
−j

(
2πlk
LFFT

)
, l = 0, ..., LFFT − 1 (3.19)

and

(fi, |Ω|i) =

(
fsi

LFFT
,

2

L
|Wi|

)
, i = 0, ...,

LFFT

2
, (3.20)

where LFFT denotes the length of the transform. I set LFFT = 29, yielding an estimation

resolution of fs
LFFT

= 1.5625 Hz.

3. Estimate the oscillation frequency (expected to be below fthr = 8 Hz in the case of WMP)

by finding the highest-intensity frequency component that is smaller than fthr with

fmax : (fmax, |Ω|max) ∧ |Ω|max = max
∀i,fi≤fthr

|Ω|i ,

f̂ =

0, if |Ω|max < |Ω|thr

fmax, otherwise

(3.21)

where, along with the conditions f ≤ fthr and |Ω|max < |Ω|thr, the frequency components

related to the measurement noise are isolated (the high frequency components with small

magnitudes). In the implementation of the algorithm, I set |Ω|thr = 10 degs−1.

4. Repeat the steps starting from 1.

64



Fig. 3.5 demonstrates the results of using the aforementioned algorithm on four different data

packets. In the first rows, the collected oscillations are shown in the time domain, while the

second rows depict the corresponding FFT algorithm results. Evaluation of the algorithm’s third

step (equation (3.21)) results in the oscillation frequency estimate (f̂) depicted near the peak

of the curves. The embedded necessary condition in equation (3.21) is explained for the fourth

case (on the right side) of Fig. 3.5 in which no oscillation occurs and the FFT result contains

only the corresponding noise spectrum. When fthr is not introduced, the 106-Hz frequency

component would correspond to the maximum intensity and result in an incorrect estimate,

while the introduction of |Ω|thr prevents the incorrect selection of the 3-Hz component as the

estimated frequency as well. Fig. 3.6 highlights the real-time algorithm evaluation over a section

of the 350 sec measurement. The blue curve represents gyro-based angular rate measurements

and the red curve shows the estimation of the oscillation frequency based on data packets of

length L = 400. The figure illustrates that the aforementioned FFT-based algorithm provides

information related to the instantaneous vibrations of a dynamical system.
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3.1.4.2 Measuring external acceleration magnitude

The magnitude of the external acceleration can be derived from the accelerometer measure-

ments. If the magnitude of the accelerometer measurement is approximately equal to the

gravitational acceleration (i.e.,
√
A2
x +A2

y +A2
z ≈ 1g), then the system is in a non-accelerating

mode. Therefore, it is common practice to measure the external acceleration using a switch-

ing model in which different threshold levels are assigned to the dynamic acceleration α =∣∣∣√A2
x +A2

y +A2
z − 1g

∣∣∣. However, it is rather difficult to select and distinguish the appropriate

threshold levels. Consequently, the defined threshold levels can easily result in a false external

acceleration. Moreover, the scalar dynamic acceleration α provides brief and instantaneous

results that do not provide an overall picture of the dynamics of the system.

The proposed approach takes advantage of the high sampling frequency of the employed

accelerometer and formulates an accumulated measure to describe the magnitude of the ex-

ternal acceleration. The accumulated measure given by equation (3.22) utilizes a window of

length L and integrates the instantaneous scalar dynamic acceleration. Therefore, the average

acceleration provides a broad description of the dynamic behavior of the system. The window

size can be varied based on the application design requirements, and, for shorter delays, smaller

L values can be chosen. For simplicity, L = 400 has been chosen to synchronize the measures.

The average acceleration can be calculated as:

α̂ =
1

L

L∑
k=1

αk, αk =
∣∣∣√A2

x,k +A2
y,k +A2

z,k − 1g
∣∣∣ , (3.22)

where Ax,k, Ay,k, and Az,k are the measurements of the three-axis accelerometer. Therefore,

similarly to the vibration measurement, the magnitude of the external acceleration α̂ is deter-

mined by collecting data packets of length L from the accelerometer and calculating the mean

value of the scalar dynamic acceleration.

Fig. 3.7 depicts the determination of the external acceleration magnitude over a section of

the 350 sec measurement. The blue curve shows the real external acceleration (α) applied to

the test bench and measured by the plate encoder, while the red curve highlights the average

dynamic acceleration (α̂) determined by equation (3.22). The average dynamic acceleration

describes the dynamical behavior of the system accurately.
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3.1.4.3 Fuzzy inference machine

Using the measures f̂ and α̂, deductions relevant to the dynamical behavior of the system can

be made. Hence, the measurement noise variance R = ρ can be manipulated according to

these parameters. The gyro-related noise is not sensitive to either the external acceleration or

the vibrations (i.e., constant process noise covariance Q = diag(q00, q11) can be considered).

Consequently, an adaptive filtration is established to vary the noise variance ρ as a function of

the measures f̂ and α̂.

Fuzzy reasoning enables deductions to be made using simple IF-THEN linguistic rules.

Because fuzzy sets are applied, there is no need for complex mathematical relations. Instead,

mapping between f̂ , α̂ and the noise variance ρ can be performed using heuristic knowledge.

The algorithm is composed of three main steps: the fuzzification of crisp inputs, fuzzy output

calculations based on empirical IF-THEN rules, and the defuzzification of the fuzzy output

Wang (1997); these steps have been described in detail in subsection 2.2.2.1. The empirical

IF-THEN rules are usually aggregated based on both observations related to the system and

human common sense. In my case, the initial deductions consist of two points:

1. IF the system is in a stationary (non-accelerating) mode, THEN there exists a well-chosen

ratio between the noise covariance values Q and R yielding a satisfactory state estimation

performance, whereas

2. IF external disturbances are present during the dynamical behavior, THEN (it is expected

that the attitude realization θA,k is characterized by high uncertainty, and therefore) the

measurement noise variance ρ should be increased so that the KF relies more heavily on

the gyroscope data.

Fig. 3.8 depicts the structure of the proposed adaptive KF. A two-input one-output fuzzy

inference machine is implemented, which forms a zero-order Sugeno systems. The machine’s

inputs are the external disturbance magnitudes f̂ and α̂, while its output is a weighting factor

denoted by K that weights the noise variance (i.e., the adaptive measurement noise variance is

formulated as R = Kρ).
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Figure 3.8: Structure of the adaptive Kalman filter approach.
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The ranges of the input variables are defined based on the fact that the maximum values of f̂ and

α̂ are about 6.5 Hz and 0.35 g, respectively, while the output range has been chosen intuitively

via iterative tuning. The inputs are covered by three membership functions (one triangular

and two trapezoidal fuzzy sets) where Z (zero), S (small), and B (big) describe the magnitudes

of f̂ and α̂. In terms of the output, five singleton consequents (K1, ...,K5) representing the

scaling magnitude are defined. Fig. 3.9 shows the input and output membership functions and

the properties of the fuzzy inference machine, while Fig. 3.10 depicts the corresponding fuzzy

surface.
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Figure 3.10: Generated surface related to the fuzzy rule base.

The aforementioned initial deductions are expanded into nine rules. These rules describe the

scaling of the noise variance ρ according to the magnitudes of both the instantaneous vibration

and the external acceleration (see equation (3.23)). The rule base is summarized in Table 3.2.

For example, IF the vibration is close to zero and the external acceleration is big, THEN the

moderate scaling K3 is applied, while IF both the vibration and the external acceleration are

big, THEN the largest scaling K5 is chosen.
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Table 3.2: Rule base of the fuzzy inference machine.

Scaling factor
K

Ext. accel.
α̂

Z S B

Vibration

f̂

Z K1 K2 K3

S K2 K3 K4

B K3 K4 K5

Rule1 : IF f̂ is Z and α̂ is Z THEN K is K1

Rule2 : IF f̂ is Z and α̂ is S THEN K is K2

Rule3 : IF f̂ is Z and α̂ is B THEN K is K3

Rule4 : IF f̂ is S and α̂ is Z THEN K is K2

Rule5 : IF f̂ is S and α̂ is S THEN K is K3

Rule6 : IF f̂ is S and α̂ is B THEN K is K4

Rule7 : IF f̂ is B and α̂ is Z THEN K is K3

Rule8 : IF f̂ is B and α̂ is S THEN K is K4

Rule9 : IF f̂ is B and α̂ is B THEN K is K5

(3.23)

Since the fuzzy architecture executes weighted average defuzzification, therefore the resulting

crisp output (weighting factor K) and the adaptive measurement noise variance (R) are given

as:

K =

∑9
i=1 κ

i ·min
(
γi
(
f̂
)
, γi (α̂)

)
∑9

i=1 min
(
γi
(
f̂
)
, γi (α̂)

) ,

R = Kρ,

(3.24)

where γi(f̂) and γi(α̂) are the ith-rule fired membership function values and κi denotes the

singleton value of the consequent (K) of the ith rule (see Fig. 3.9).

3.1.4.4 Results

A flexible, adaptive filter structure has been established based on the implementation of the

aforementioned fuzzy inference machine. However, the noise covariance values Q and R have

to be reselected by taking into account the fact that the measurement noise covariance R scales

according to the dynamical behavior. Since both the optimization environment and the fitness

function had already been established, it is feasible to re-execute the optimization for Q and R

in the adaptive structure.

Table 3.3 illustrates the optimization results. All of the initial noise variance values have

been set based on the results of subsection 3.1.3.4, except for the variance ρ, which has been

initiated with a smaller value since it scales with the fuzzy output K according to the fuzzy

surface depicted in Fig. 3.10. The optimization algorithm has been executed twice in succession.
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The optimized variances are highlighted in the third column of Table 3.3. The ratio between

the noise variances have decreased (compared to the results in Table 3.1) due to the algorithm’s

adaptive characteristics. The algorithm’s inherent flexibility have allowed the process noise

variance q00 to converge to a value ten times larger than in the previous case, resulting in faster

estimation dynamics, whereas the process noise variance q11 has converged to a notable bigger

value as well. This outcome was expected, because the fuzzy scaling causes measurement noise

variance ρ to increase each time a disturbance occurs, and, via this mechanism, the reliability

of the accelerometer-based results is controlled in real-time.

Both the adaptive KF approach and the optimized noise variances further improve the state

estimation performance (i.e., the fitness function value has settled at Fadapt = 1.6990). Com-

pared to the optimized Fopt = 1.9077 fitness function value from section 3.1.3, the adaptive KF

approach has improved the overall filtration performance by 10.9%. These results demonstrate

that a superior filter convergence can be achieved by varying the noise variances according to

the magnitudes of external disturbances.

Table 3.3: Initial and optimized values and optimization bounds (for the adaptive case).

First run: Finit = 1.7596→ Fopt = 1.6995

Symbol Initial Optimized min max

ρ 0.05 0.14805 0.005 0.2
q00 7 · 10−8 2.71 · 10−7 1 · 10−8 3 · 10−7

q11 5 · 10−12 3.09 · 10−12 2 · 10−12 5 · 10−11

Second run: Finit = 1.7054→ Fopt = Fadapt = 1.6990

Symbol Initial Optimized min max

ρ 0.14 0.31969 0.05 0.43
q00 3 · 10−7 5.86 · 10−7 6 · 10−8 8 · 10−7

q11 4 · 10−12 6.43 · 10−12 1 · 10−12 1 · 10−11

3.1.5 Comparison

This subsection presents a comparison of the KF and adaptive KF approaches presented in

subsections 3.1.3 and 3.1.4, respectively, against the commonly used orientation estimation

methods Mahony et al. (2008) and Madgwick et al. (2011). These filters (hereinafter Mahony

and Madgwick filters) have gained extensive interest in the robotics and control community Eu-

ston et al. (2008); Tsagarakis et al. (2017) and their performance is regularly taken into account

as a benchmark in comparative analyses Cavallo et al. (2014); Valenti et al. (2015); Mourcou

et al. (2015). To consider the best performances in this analysis and conduct a fair comparison,

the parameters of both filters are optimized in the same environment using the same fitness

function, data set (sensor data and sampling time), and optimization procedure as discussed

in subsection 3.1.3. The implementation of the Mahony and Madgwick filters is based on the

sample codes Madgwick (2010).
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3.1.5.1 Optimized Mahony filter

Complementary filters use frequency domain information (instead of statistical descriptions) to

filter and combine signals provided by sensors that have complementary spectral characteristics.

This also allows fast response and accuracy in orientation estimation.

Reference Mahony et al. (2008) formulated the filtering problem as a deterministic obser-

vation problem posed directly on the special orthogonal group SO (3) driven by reconstructed

attitude and angular velocity measurements. As a result, an explicit complementary filter was

proposed that provides good orientation and gyro bias estimates based on accelerometer and

gyroscope data. This nonlinear quaternion-based complementary filter first calculates the ori-

entation error using the accelerometer data and the orientation determined in the previous step;

then, a proportional and integral (PI) controller is employed to correct the gyroscope measure-

ment. Through the integration of the quaternion propagation and normalization a new estimate

of orientation is obtained.

For my tests, the adjustable KP ,KI parameters of the PI controller have been initially set

to 0.5 and 0, respectively; then, the optimization of these parameters has been executed using

equation (3.22) and the PSO algorithm with ngen = 20 and npop = 20. The results in Table 3.4

demonstrate that the optimization noticeably improve the filter performance; i.e., the initial

fitness function value Finit = 2.0042 has been reduced to Fopt = 1.7849 with the tuned KP ,KI

parameters.

Table 3.4: Initial and optimized values and optimization bounds (for the Mahony filter).

First run: Finit = 2.0042→ Fopt = 1.8276

Symbol Initial Optimized min max

KP 0.5 0.3502 0.35 0.7
KI 0 0.993 · 10−4 0 0.005

Second run: Finit = 1.8274→ Fopt = 1.7849

Symbol Initial Optimized min max

KP 0.35 0.2613 0.125 0.4
KI 1 · 10−4 2.3158 · 10−4 0 4 · 10−4

3.1.5.2 Optimized Madgwick filter

The Madgwick filter also uses a quaternion representation of orientation. Its specificity lies

in the application of accelerometer data in an analytically derived and optimized gradient de-

scent algorithm to compute the direction of the gyroscope measurement error as a quaternion

derivative. The output of this algorithm yields a drift corrective step that maintains the gyro

data-based quaternion propagation.

The initial value of the filter’s adjustable parameter β has been set to 0.1; then, optimization

has been performed using equation (3.22) and the PSO algorithm with ngen = 10 and npop = 10.

Table 3.5 summarizes the outcome of the optimization, where the optimized β = 0.0387 is

actually quite close to the value recommended in reference Madgwick et al. (2011). The executed

optimization improve the fitness function value from the initial Finit = 2.8091 to Fopt = 2.1206.
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Table 3.5: Initial and optimized values and optimization bounds (for the Madgwick filter).

First run: Finit = 2.8091→ Fopt = 2.1228

Symbol Initial Optimized min max

β 0.1 0.0371 0.02 0.15

Second run: Finit = 2.1333→ Fopt = 2.1206

Symbol Initial Optimized min max

β 0.035 0.0387 0.01 0.06

3.1.5.3 Results

Based on the optimization results, the largest fitness function value (Fopt = 2.1206) corresponds

to the performance of the Madgwick filter (the smaller the value, the better the performance).

This drawback is related to the filter’s constant gain property, meaning that it is unable to

adapt to dynamic circumstances and modify its parameter based on the magnitudes of both the

instantaneous vibration and the external acceleration. The KF discussed in subsection 3.1.3

provided a slightly more robust estimation performance. The filter parameters are also constant

values, but the combination of the optimized noise variances (ρ, q00 and q11) results in a slightly

better fitness function value (Fopt = 1.9077). The advantage of the KF can be related to

its higher flexibility (three filter parameters) and its state-space model based property, which

is characterized by noise statistics. The Mahony filter display the second-most competitive

performance with a Fopt = 1.7849 fitness function value. This nonlinear complementary filter

has overcame the effect of dynamic motion and disturbances despite its constant gain property.

The well-tuned proportional and integral controller (KP and KI parameters) have allowed it

to achieve satisfactory filter performance. However, the most robust filter performance in the

high accelerating and vibrating test environment is attained by the adaptive KF discussed in

subsection 3.1.4 (Fopt = 1.699). The improved fit is achieved through the application of adaptive

gains that are modified according to the perceived external disturbances.

In order to show the generality and robustness of the obtained adaptive KF, the performances

of the analyzed filters have been evaluated on four independent measurements (Measurement

1-4 lasted for 120, 170, 155, 150 sec, respectively). The executed measurements are character-

ized by the presence of magnitudes of external accelerations, angular velocities and oscillation

frequencies. The dynamic circumstances in which the filter performance has been investigated

are depicted on normalized histograms in Fig.3.11. The first row shows the presence of different

external acceleration magnitudes. It can be observed, that in approximately 65% of every mea-

surement, external acceleration has been applied in the range (0, 3.85] g, where the most intense

circumstances appear in the fourth measurement (indicated by the purple curve in Fig. 3.11).

The second row illustrates that angular velocities varied in the range (0, 735] degs−1 in about

80% of each measurement. Finally, the third row shows the different IB oscillation frequencies,

that were present during these measurements. It can be seen that, in the range of [0, 9] Hz, the

analyzed oscillation frequencies are present roughly in the same ratio.

Table 3.6 summarizes the filters’ performances based on the mean squared error (MSE) and

standard deviation (STD) of the attitude estimation error results, proving that the adaptive KF

introduced in subsection 3.1.4 outperforms the other filtering methods in each measurement.
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Figure 3.11: Characterization of the executed measurements.

Table 3.6: MSE and STD results of the investigated filters.

Filter
Measurement 1 Measurement 2 Measurement 3 Measurement 4
MSE STD MSE STD MSE STD MSE STD

KF 1.5525 1.2452 1.7138 1.3089 2.2762 1.4860 2.6376 1.4754
Madgwick 2.1219 1.3316 4.1010 1.8919 2.4844 1.5762 2.6097 1.6017
Mahony 1.5772 1.1694 1.7591 1.2295 2.0404 1.4283 2.3340 1.5080

Adaptive KF 1.4310 1.1896 1.5485 1.2160 1.9109 1.3810 2.2614 1.4357

The results in Table 3.6 validate the performance of the proposed filtering approach. Never-

theless, it is worth mentioning that the generality and flexibility of this adaptive KF allows for

further improvements. Some potential improvements are as follows.
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1. Employing a more sophisticated fuzzy inference machine in which the fuzzy input-output

ranges are partitioned into additional fuzzy sets (resulting in an advanced rule base).

2. Optimizing the shapes and ranges of the membership functions and the weights of the

applied rules.

3. Extending the fuzzy inference machine with an additional output (two-input two-output

fuzzy machine) that also weights the noise variances of the gyro measurements.

4. Varying the window size in the calculation of external disturbance magnitudes in order

to obtain more precise estimates of the vibration frequency and the average external

acceleration.

5. Extending the filter structure with additional sensor information, e.g., with a tri-axis

magnetometer.

6. Employing an acceleration model in the state space equations (e.g., similar to reference Lee

et al. (2012)), where the driving noise varies based on the disturbance magnitudes.

These issues are left open for investigation in future studies. I have demonstrated that the

methods for measuring external disturbance magnitudes provide relevant system behavior in-

formation. These methods can be applied to any motorized robotic system (e.g., one involving

UAVs), where vibrations and external acceleration are the two primary sources of disturbance.

I have also demonstrated that fuzzy logic provided a simple, expert-oriented solution to estab-

lishing complex relations between the aforementioned disturbances and the filter parameters

by formulating a set of heuristic IF-THEN rules. In my case, the KF was based on a simple

two-dimensional state-space model of IMU data in which the measurement noise variance was

manipulated based on the system behavior. Both the proposed fuzzy inference machine and

the proposed disturbance measurement methods can be used to tune other filters in real time.

This means that novel adaptive (and nonlinear) complementary filters (e.g., similar to reference

Euston et al. (2008)) can be formed and their performances can be investigated for different

mechatronic applications. Additionally, the proposed disturbance measurement methods can

be employed in the elaboration of adaptive control (e.g., adaptive PID) solutions.

3.2 MARG-based Attitude Estimation

The original source is Odry et al. (2020b): Odry, Á., Kecskes, I., Sarcevic, P., Vizvari, Z., Toth,

A., and Odry, P. A Novel Fuzzy-Adaptive Extended Kalman Filter for Real-Time Attitude Es-

timation of Mobile Robots. Sensors, 20(3), 803.

The previous section validated the developed techniques for one-dimensional attitude estima-

tion using a linear KF. Since the investigation showed promising results, thereby it is motivat-

ing to extend the estimation problem to the complete orientation based on MARG systems.

Therefore, this section addresses the reliable and robust attitude estimation problem in the

three-dimensional space and develops a novel qAEKF, in which new methods are employed to

measure the external disturbances and their effect is suppressed with adaptation laws described

with fuzzy logic-based IF-THEN rules.
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3.2.1 Quaternion-Based Attitude Formulation

Let E and S denote the earth and sensor frames, also called the global non-moving inertial and

local mobile frames, respectively. These frames can be defined with the conventional North-

East-Down (NED) configuration often applied for robotic applications Liu et al. (2019); Roh

and Kang (2018); Zhang and Liao (2017). Namely, the x-axis points north and y is directed

east, whereas z completes the right-handed coordinate system by pointing down in the inertial

reference frame (see Fig. 3.12). Additionally, the origin of the right-handed sensor frame is

attached to the center of mass of the moving body, where the x-axis points forward and the

y-axis is directed to the right of the body. The mapping between these frames E and S is

described by a rotation matrix as

Ex = E
SR
Sx, (3.25)

where Ex and Sx denote the 3 × 1 vector observations in the earth and sensor frames, respec-

tively. Moreover, ESR ∈ SO (3) indicates the 3× 3 special orthogonal matrix, where the inverse

transformation is defined as ESR
−1 = E

SR
T = S

ER.

S
Earth frame

x

y

Sensor frame

x

y

z

θ

R

�� ��

N

z

Figure 3.12: Relative orientation between the earth frame (E) and sensor frame (S).

The quaternion representation provides an effective way to both formulate the aforemen-

tioned rotation matrix and describe the attitude of the coordinate frames in three-dimensional

space Kuipers et al. (1999). The advantageous structure both provides fast computation (com-

pared to DCM) and completely avoids the well-known singularity problem of Euler angles (also

known as the gimbal lock problem) Diebel (2006). The unit quaternion formulated by the four-

dimensional vector ESq ∈ R4,
∥∥E
Sq
∥∥ = 1 describes the attitude of frame E relative to frame S

as a rotation by an angle µ about the unit vector e = (ex, ey, ez)
T , which represents the rota-

tion axis in S. This rotation quaternion is interpreted as ESq =
(

cos
µ

2
, eT · sin µ

2

)T
= (q0, %)T ,

where q0 and % = (q1, q2, q3)T denote the scalar and vector part terms, respectively. Co-ordinate

transformation is performed by the non-commutative quaternion product denoted by ⊗:

Ex = E
Sq ⊗ Sx⊗ ESq∗. (3.26)

In equation (3.26), ESq
∗ = (q0,−%)T denotes the conjugate quaternion that describes the

attitude of frame S relative to frame E (i.e., the inverse rotation is formulated as ESq
∗ = S

Eq).

Moreover, Ex and Sx indicate the quaternions associated with the vector observations by their
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augmentation with zero scalar parts (q0 = 0) as x =
(
0, xT

)T
. The rotation can be rearranged

into the initial equation (3.25) with the quaternion-parameterized rotation matrix

E
SR (q) =

(
q2

0 − %T%
)
I3 + 2%%T + 2q0[%×]

=

q
2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 , (3.27)

where I3 is the identity matrix of size 3 and [%×] denotes the antisymmetric matrix of %, defined

for the vector cross product %× x = [%×]x as

[%×] =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 . (3.28)

Let Sω = (0, ωx, ωy, ωz)
T denote the four-dimensional quaternion formed by the angular

velocities about the x, y, and z axes in the sensor frame. The time derivative of the quaternion
E
Sq represents the rate of change of attitude E relative to frame S, according to the vector

differential equation

E
S q̇ =

1

2
E
Sq ⊗ Sω =

1

2
Q (q) Sω, Q (q) =

[
q0 −%T
% q0I3 + [%×]

]
, (3.29)

where the matrix-vector product is indicated by the quaternion matrix Q (q). The attitude of

frame E relative to S is obtained by integrating the quaternion derivative ES q̇. Therefore forth,

the sub- and super-scripts are omitted, for the sake of simplicity.

I chose to use the Euler angles for the quality evaluation of attitude estimation, as their

interpretation is straightforward for the reader. Euler angles (including yaw, pitch, and roll)

describe the attitude as a sequence of three rotations, where ψ, θ, and φ denote the rotation

angles about the z, y, and x axes, respectively. The quaternion output provided by the analyzed

filters is converted to Euler representation as follows.

φ = arctan2
(
2q2q3 − 2q0q1, 2q

2
0 + 2q2

3 − 1
)
,

θ = − tan−1

 2q0q2 + 2q1q3√
1− (2q0q2 + 2q1q3)2

 ,

ψ = arctan2
(
2q1q2 − 2q0q3, 2q

2
0 + 2q2

1 − 1
)
.

(3.30)

3.2.2 Algorithm

Each sensor of a MEMS-based MARG unit provides useful information of the instantaneous at-

titude; however, none of the sensors are capable of providing reliable attitude results alone. As

it was discussed in subsection 3.1.1, gyroscopes measure angular velocities; therefore, gyroscope-

based attitude realization is obtained through numerical integration, but both the temperature-
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dependent bias and noise contained in the measurements cause cumulative errors. An ac-

celerometer measures the sum of gravitational and external accelerations. In stationary states,

long-term stable attitude realization can be obtained based on the decomposition of the sensed

gravity vector but, as external accelerations increase as a result of dynamic motion, the quality

of attitude realization drastically deteriorates, making accelerometer-based realization highly

unreliable. Magnetometers measure the geomagnetic field, which is used to determine heading

information. However, the magnetic fluctuation of the environment caused by the perturbation

of ferromagnetic objects highly disturbs the magnetometer output.

To provide reliable attitude estimation results, the individual features of each sensor are

carefully addressed in the following.

3.2.2.1 Gyroscope model

Let Ωk denote the raw measurement vector of a tri-axis MEMS gyroscope in the kth time

instance. This measurement vector is composed of a 3 × 1 vector ωk of true angular velocities

around the x, y, and z axes, a vector ω̄k containing the non-static bias terms, and a vector µk

of additive measurement noises. The imperfections of manufacturing results, in that the sensor

model is extended with axis misalignment and scale factor errors, are represented by the 3× 3

matrices MΩ and ∆SΩ, respectively. Moreover, the temperature sensitivity of the sensor makes

the slowly varying bias vector ω̄k propagate as a random walk process characterized by a driving

noise vector ηk, and therefore Aggarwal (2010)

Ωk = (I + ∆SΩ)MΩωk + ω̄k + µk,

ω̄k = ω̄k−1 + ηk.
(3.31)

In the above measurement model, the rate noise vectors contain zero-mean white Gaussian

variables for each axis (i.e., E [µk] = E [ηk] = 0) and the covariance matrices are defined as

E
[
µkµ

T
l

]
= Σµ,kδkl, Σµ,k ≥ 0, and E

[
ηkη

T
l

]
= Ση,kδkl, Ση,k ≥ 0, where δkl denotes the

Kronecker delta.

Gyroscope-based (gyro-based) attitude realization is obtained by numerical integration of

the true angular velocity vector ωk in equation (3.31). Common calibration procedures per-

formed in laboratories allow for the determination and compensation of the scale factor and

misalignment errors. This process exceeds the scope of this article; therefore, I assume that

the compensation has already been performed (MΩ = I and ∆SΩ = 0) Höflinger et al. (2013);

Markley and Crassidis (2014); Nowicki et al. (2015). Based on equation (3.29), the gyro-based

attitude realization is given in quaternion form as

qk+1 = qk +
Ts
2
Q (qk)

[
0

Ωk − ω̄k

]
, (3.32)

where Ts = 1/fs is the sampling time. However, this method yields only short-tem accuracy,

due to the presence of bias and measurement noise terms (ω̄k and µk) resulting in boundless

drift in the attitude propagation.
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3.2.2.2 Accelerometer and Magnetometer Models

The accelerometer and magnetometer sensors provide absolute reference observations, and there-

fore their measurements can be combined to determine the complete attitude of the sensor. The

raw output Ak of a tri-axis MEMS accelerometer consists of four main components: the grav-

itational and external acceleration vectors gk and αk measured in the sensor frame (S), the

vector a0 of bias terms, and the vector νk of additive measurement noises. Additionally, the

raw measurement vector Hk of the tri-axis MEMS magnetometer model is composed of the true

local magnetic field hk sensed in S, the sensor bias vector h0, and the measurement noise vector

εk:

Ak = (I + ∆SA)MA (αk + gk) + a0 + νk,

Hk = (I + ∆SH)MH (Bsihk + bhi) + h0 + εk.
(3.33)

Similarly to the gyroscope model, Gaussian noises are considered in the aforementioned models;

therefore, E [νk] = E [εk] = 0 and the covariance matrices are E
[
νkν

T
l

]
= Σν,kδkl, Σν,k ≥ 0 and

E
[
εkε

T
l

]
= Σε,kδkl, Σε,k ≥ 0. Beside the scaling and misalignment errors (∆SA, ∆SH , MA, and

MH), the magnetometer measurements are disturbed by magnetic soft iron and hard iron errors

caused by the local environment, represented by the 3× 3 matrix Bsi and the 3× 1 vector bh,

respectively. These model errors are determined via self-calibration procedures which address

the time-invariant nature of the vector fields and map the distribution of the measurements

on an ellipsoid Kok et al. (2012); Papafotis and Sotiriadis (2019); Sarcevic et al. (2019). We

assume that the compensation has already been performed (therefore, hk := B−1
si hk − bhi), the

bias and scale errors are zero, and the misalignment errors are identity matrices.

If a mobile mechatronic system stays in stationary states (i.e., no external acceleration is

performed; αk ≈ 0) and, moreover, if the local magnetic field is not perturbed by ferromagnetic

objects, then the locally constant reference vectors can express the observations, with the help

of the rotation matrix, as

SAk = S
ER (qk)

Eg,

SHk = S
ER (qk)

Eh.
(3.34)

In the aforementioned configuration, the gravity vector is given as Eg = (0, 0, 9.81)T , whereas

the magnetic field vector is Eh = (b cos (σ) , 0, b sin (σ))T in SI units, where b and σ denote the

magnitude of the Earth’s geomagnetic field and inclination angle, respectively.

Let the components of an inertial frame in both S and E be expressed by constructing two

triads of orthonormal unit vectors. The first triad is defined with the reference vectors in E as

ŝ1 =
Eg

‖Eg‖ , ŝ2 =
Eg × Eh∥∥Eg × Eh∥∥ , ŝ3 = ŝ1 × ŝ2. (3.35)
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The second triad is constructed with the observation vectors in frame S, where

r̂1 =
SAk∥∥SAk∥∥ , r̂2 =

SAk × SHk∥∥SAk × SHk

∥∥ , r̂3 = r̂1 × r̂2. (3.36)

Based on equations (3.34), (3.35), and (3.36), first the measurement (observation) and ref-

erence matrices are formed, then the rotation matrix is determined as:

Mmea = [r̂1 r̂2 r̂3] , Mref = [ŝ1 ŝ2 ŝ3] , S
ER (qk) = MmeaM

T
ref. (3.37)

The determined rotation matrix SER (qk) = (rij) enables the calculation of the quaternion

representing the attitude of the sensor frame:

q0 =
1

2

√
1 + r11 + r22 + r33, q1 =

r23 − r32

4q0
, q2 =

r31 − r13

4q0
, q3 =

r12 − r21

4q0
. (3.38)

The aforementioned algorithm is the well-known TRIAD Shuster and Oh (1981); Markley and

Crassidis (2014), which produces the raw attitude realization based on accelerometer and mag-

netometer measurements. The attitude realization, which is described by equation (3.38), is

denoted by qk,TRIAD = (q0, q1, q2, q3)T and can also be considered as the sum of the real attitude

characterized by the quaternion qk in the kth time instance and an additive Gaussian white

noise, vk, which represents the effects of νk and εk from equation (3.33) after the TRIAD output

is evaluated:

qk,TRIAD = qk + vk, E [vk] = 0, E
[
vkv

T
l

]
= Σv,kδkl,Σv,k > 0. (3.39)

This algorithm is characterized by a simple and straightforward implementation and, there-

fore, it is a popular choice for raw attitude determination Wen et al. (2019); Roh and Kang

(2018). However, it has a disadvantage in producing large errors when dynamic conditions are

present or external magnetism disturbs the sensor readings. As a result, if external accelera-

tion is performed (αk 6= 0 → SA 6= R Eg) or ferromagnetic materials distort the geomagnetic

field (SH 6= R Eh), then the attitude realization becomes unreliable with drastically reduced

accuracy. This implementation method does not include any explicit models of external dis-

turbances. Instead, the effects of external disturbances are absorbed by vk in equation (3.39);

that is, the additive noise is characterized by a significantly larger noise variance in disturbed

environments.

3.2.2.3 Sensor fusion with Extended Kalman Filter

The MARG sensor-based attitude realizations described by equations (3.32) and (3.39) are

utilized in a sensor fusion algorithm, which both synthesize the individual advantages and

features of each sensor and provides attitude results with higher reliability and accuracy. First,

this sensor fusion algorithm utilizes the gyroscope-based realization to propagate the attitude

results, then these results are updated with the most recent quaternion realization derived from
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accelerometer and magnetometer readings. This propagate-update mechanism provides both a

smooth output and stability in the attitude results by compensating for the drift error generated

in equation (3.32). The fusion of the sensor models is executed with an EKF.

The EKF effectively combines the noisy measurements and dynamic model-based predic-

tions; moreover, in a recursive filter structure, it provides an approximate maximum-likelihood

state estimate x̂ of the stochastic nonlinear state-space model Markley and Crassidis (2014). In

fact, the filter linearizes the nonlinear dynamic model around the last estimated state vector

using the Jacobian matrix and, for the linearized dynamics, the linear KF is utilized, which is

an optimal state estimator.

The mathematical models and statistical assumptions of MARG sensors, as introduced in

the previous subsections, fully match the process and measurement equations of a stochastic

nonlinear state-space model. Namely, the process model describes the quaternion propagation

with both the discrete-time integrated angular velocities (equation (3.32)) and the random walk

process of the bias term (equation (3.31)). Therefore, the dynamic model is defined with the

7 × 1 state vector xk = (qk, ω̄k)
T , the 3 × 1 input vector uk = Ωk, and the 7 × 1 process noise

vector wk =
(
µqk, ηk

)T
, where µqk represents the quaternion noise generated due to the gyroscope

measurement noise µk. For the sake of comprehensiveness and to foster a straightforward

implementation, I give the full description of state propagation in equation (3.40):

xk+1 = f (xk, uk, wk) , x (0)

q0

q1

q2

q3

ω̄x

ω̄y

ω̄z


k+1

=



q0,k + Ts
2 (q1,k (ω̄x,k − Ωx,k) + q2,k (ω̄y,k − Ωy,k) + q3,k (ω̄z,k − Ωz,k)) + µq0,k

q1,k − Ts
2 (q0,k (ω̄x,k − Ωx,k)− q3,k (ω̄y,k − Ωy,k) + q2,k (ω̄z,k − Ωz,k)) + µq1,k

q2,k − Ts
2 (q3,k (ω̄x,k − Ωx,k) + q0,k (ω̄y,k − Ωy,k)− q1,k (ω̄z,k − Ωz,k)) + µq2,k

q3,k + Ts
2 (q2,k (ω̄x,k − Ωx,k)− q1,k (ω̄y,k − Ωy,k)− q0,k (ω̄z,k − Ωz,k)) + µq3,k

ω̄x,k + ηx,k

ω̄y,k + ηy,k

ω̄z,k + ηz,k


(3.40)

According to equation (3.39), the measurement model is characterized by a linear quaternion

mapping. Therefore, it is formed with the 4 × 1 output vector zk = qk,TRIAD which provides

the quaternion update as the TRIAD output, the measurement noise vector vk, and the output

matrix H, as

zk = Hxk + vk,

qk,TRIAD =
[
I4 04×3

] [qk
ω̄k

]
+ vk.

(3.41)

If the x (0) Gaussian vector in equation (3.40) is known along with its mean and covariance

matrix; that is, if

x̂0 = E [x (0)] , P0 = E
[
(x (0)− x̂0) (x (0)− x̂0)T

]
, (3.42)
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then the MARG sensor models fully satisfy the stochastic hypothesis. Namely, the process and

measurement noise vectors are zero-mean white Gaussian variables, x (0) is uncorrelated to wk

and vk, and, moreover,

E
[
wkv

T
l

]
= 0, E

[
wkw

T
l

]
= Qδkl, E

[
vkv

T
l

]
= Rδkl, (3.43)

where Q ≥ 0 and R > 0 are the well-known process and measurement noise covariance matrices,

respectively. The EKF algorithm provides a suboptimal state estimation x̂k with minimized

estimation error covariance. The state propagation, processing of the observations, and the

covariance estimate update are performed through time and measurement update equations in

the recursive filter structure; namely, the time update equations utilize the input variable uk,

the state estimation and error covariance obtained in the previous step (x̂k−1 and Pk−1), and the

state dynamics f (x̂k−1, uk) to calculate the a priori state estimate (x̂−k ) and the corresponding

error covariance (P−k ):

x̂−k = f (x̂k−1, uk) ,

P−k = ΦPk−1ΦT +Q, Φ =
∂f

∂x

∣∣∣∣
x̂k−1

.
(3.44)

In equation (3.44), the Jacobian Φ is applied in the a priori covariance matrix update. To foster

straightforward implementation, I give its full form as follows,

Φ =



1 Ts
2 (ω̄x − Ωx) Ts

2 (ω̄y − Ωy)
Ts
2 (ω̄z − Ωz)

Ts
2 q1

Ts
2 q2

Ts
2 q3

Ts
2 (Ωx − ω̄x) 1 Ts

2 (Ωz − ω̄z) Ts
2 (ω̄y − Ωy) −Ts

2 q0
Ts
2 q3 −Ts

2 q2

Ts
2 (Ωy − ω̄y) Ts

2 (ω̄z − Ωz) 1 Ts
2 (Ωx − ω̄x) −Ts

2 q3 −Ts
2 q0

Ts
2 q1

Ts
2 (Ωz − ω̄z) Ts

2 (Ωy − ω̄y) Ts
2 (ω̄x − Ωx) 1 Ts

2 q2 −Ts
2 q1 −Ts

2 q0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


.

(3.45)

The measurement update equations utilize both the observation vector, zk (accelerometer

and magnetometer-based attitude realization), and the measurement noise covariance, R, to

correct the a priori state estimate. First, the Kalman gain matrix Gk is obtained, then the

state estimate x̂k and its error covariance Pk are corrected. The a posteriori estimation results

are obtained in the following steps.

Gk = P−k H
T
(
HP−k H

T +R
)−1

,

x̂k = x̂−k +Gk
(
zk −Hx̂−k

)
,

Pk = (I −GkH)P−k .

(3.46)

The estimation performance of EKF is mostly determined by the noise covariance matrices

Q and R. Unfortunately, in practice, these parameters (i.e., the statistical description of the

state and observation noises) are not fully measurable (or require time consuming, complex,
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and extensive verification and validation procedures); especially in the case of MARG sensors,

as the effects of both different noise sources and disturbances are represented with general

noise vectors vk and wk in equations (3.40) and (3.41). Generally, the parameters Q and R

are tuned based on engineering intuition through trial-and-error analysis; however as it was

shown in the previous section, that method yields only a compromise solution between the

estimation accuracy and filter dynamics. To overcome this compromise solution, I developed

numerical optimization-based approaches in the previous section. As it was shown, that method

both allows for evaluation of the best possible (achievable) estimation quality and provides the

optimized parameters which maximize the filter performance. I recall this approach to find the

optimized parameters of EKF in subsection 3.2.4.

3.2.3 Fuzzy-Adaptive Strategy

The adaptive approach varies the noise variances, according to both the instantaneous dy-

namical behavior and external disturbances, thus providing filter performance superior to that

provided by the standard EKF. The instantaneous dynamics are characterized by the magni-

tudes of vibration and external acceleration of the sensor frame. Moreover, the adaptive strategy

incorporates the magnitude of the distorted geomagnetic field as an external disturbance. The

following subsections present the structure of the adaptive strategy, in which the extended

measurement methods of external disturbances and the novel sophisticated fuzzy logic-based

inference machine are implemented for the real-time tuning of the noise covariances.

The measurement methods for vibration and external acceleration calculation have been de-

scribed in detail, with multiple examples and figures, in subsection 3.1.4 for the one-dimensional,

IMU-based attitude estimation case. Since the application of these methods for the MARG-

based case is straightforward, therefore only the essential information are repeated in the fol-

lowing subsections.

3.2.3.1 Measuring Vibration Magnitude

The system vibration magnitude is described by the oscillation frequency of the sensor frame.

For estimation of the instantaneous oscillation frequency, gyroscope readings are utilized, as the

sensors provides reliable angular rate measurements for both static and highly dynamic motions.

The oscillation frequency is obtained by fast Fourier transform-based (FFT-based) evaluation

of short angular rate measurement packets. Let L denote the length of these packets. Then,

an oscillation frequency estimation f̂ is calculated, in four steps; see the developed algorithm

in subsection 3.1.4.1.

3.2.3.2 Measuring External Acceleration and Magnetic Perturbation Magnitudes

The external acceleration magnitude is calculated based on the accelerometer measurements.

The system stays in stationary states (non-accelerating mode) if the magnitude of accelerometer

readings is approximately equal to the norm of the reference vector
∥∥Eg∥∥. Therefore, the

external acceleration magnitude ∆αk can be calculated as the difference between the norms of
SAk and Eg in each sampling epoch. As it was discussed in subsection 3.1.4.2, the instantaneous

difference does not provide an overall picture of the system dynamics, an accumulated measure

82



is thus utilized to describe the external acceleration magnitude. The accumulated measure

α̂ext is formulated as the integrated scalar external acceleration for a window of length L (see

equation (3.47)). This average external acceleration measure provides both useful and broad

information of the instantaneous system dynamics.

α̂ext =
1

L

L∑
k=1

|∆αk| , ∆αk =
∥∥SAk∥∥− ∥∥Eg∥∥ . (3.47)

The magnetic perturbation magnitude is characterized based on the evaluation of the dif-

ference between the norms of SHk (instantaneous magnetometer measurement at epoch k) and
Eh (reference magnetic field). If no magnetic disturbance is present, then the magnitude of

magnetometer measurement is approximately equal to the norm of the reference vector. Oth-

erwise, the magnitude of their difference gives an instantaneous measure of the perturbation

magnitude. As it is difficult to draw conclusions based on this brief and instantaneous result at

each epoch, similarity to the accelerometer readings, an accumulated measure, is thus applied

to quantify the magnetic perturbation magnitude ĥext:

ĥext =
1

L

L∑
k=1

|∆hk| , ∆hk =
∥∥SHk

∥∥− ∥∥Eh∥∥ . (3.48)

Similarly to accelerometer and gyroscope sensors, the magnetic perturbation magnitude is de-

termined by collecting data packets of length L from the magnetometer and computing the

average magnetic field difference using equation (3.48).

3.2.3.3 Fuzzy Inference Machine

The measures f̂ , α̂ext, and ĥext fully characterize both the instantaneous system dynamics and

disturbance magnitudes. These results can be utilized in an inference system in which the noise

covariance manipulation of the EKF is described according to the external effects. As a result,

an adaptive strategy is established that (online) tunes the noise covariances as a function of the

measures f̂ , α̂ext, and ĥext.

The relationships between the aforementioned measures and the EKF parameters are de-

fined with fuzzy reasoning. As it was shown in the previous section, fuzzy logic does not require

complex mathematical models from the system designer but, instead, it enables the implemen-

tation of deductions easily and effectively by using fuzzy sets and simple IF-THEN linguistic

rules. Therefore, heuristic knowledge and a collection of deductions make such an inference

system realizable. The main parts of the fuzzy inference machine has been discussed in subsec-

tion 2.2.2.1. Observations related to the system behavior and human common-sense contribute

to collecting the empirical IF-THEN rules (deductions) that define the fuzzy inference machine.

In the case of attitude estimation with MARG sensors, the two main deductions are as follows.

1. IF the sensor frame stays in stationary (non-accelerating and non-perturbed) mode, THEN

a well-chosen ratio between the noise covariances Q and R yields satisfactory state esti-

mation performance.
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2. As the external disturbance effects are absorbed by the measurement noise vk in equa-

tion (3.41), IF vibration, external acceleration, and magnetic perturbations disturb the

MARG-based attitude realization, THEN the measurement noise covariance R should be

increased according to the intensity of the measures f̂ , α̂ext, and ĥext (i.e., higher noise

variance characterizes the attitude realization qk,TRIAD with higher uncertainty).

The overall FAEKF structure is depicted in Fig. 3.13, where a three-input one-output fuzzy

inference machine executes the online tuning of noise variances. The inputs of the fuzzy system

are the measures f̂ , α̂ext, and ĥext, whereas weighting factors, denoted by KR, are output

weights for the R parameter (i.e., the adaptive strategy varies the measurement noise covariance

matrix in each epoch k as Rk = KR,kR). The ranges of the input variables f̂ (Hz), α̂ext (g),

and ĥext (normalized unit, nu), as well as the output variable KR, ha been selected based on

research results obtained in the one-dimensional case. Three Gaussian membership functions

cover each input range, where the magnitudes of f̂ , α̂ext and ĥext are characterized by Z (zero), S

(small), and B (big) fuzzy sets. The output ranges are covered with seven singleton consequents

(K1, · · · ,K7), which represent the scaling magnitudes. Both the applied membership functions

and fuzzy inference system properties are depicted in Fig. 3.14. The fuzzy surfaces expressing

the relationships between the crisp inputs and outputs are depicted in Fig. 3.15.
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Figure 3.13: Structure of the FAEKF.

A sophisticated inference system is implemented, where the initial deductions described

above are expanded into 27 rules. These simple IF-THEN linguistic rules completely describe the

scaling of noise variances, according to the magnitudes of the external acceleration, vibration,

and magnetic perturbation. The implemented rule base for KR is summarized in Table 3.7.

Two examples describe the interpretation of the implemented inference system, as follows:

1. IF the oscillation frequency f̂ is zero (Z) and the external acceleration α̂ext and magnetic

perturbation ĥext magnitudes are big (B), THEN a fairly large scaling factor (KR = K5)

is applied for the measurement noise covariance. This collocation of the system state

means that the observation is expected to have rather large uncertainty and, therefore,

the algorithm relies more heavily on the state propagation (left side, second row, second

column).
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2. IF f̂ is small (S) and the α̂ext and ĥext measures are close to zero (Z), THEN a smaller

weight of KR = K2 is applied for R. Therefore, the algorithm considers the observation

with higher reliability and maintains the correction of the state propagation by processing

the measurements with higher significance (middle, first row, first column).
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Figure 3.14: Properties of the applied fuzzy inference machine.

0

5
10

0

0.1

0.2
0

300

600

f̂ (Hz)α̂ext (g)

K
R
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The crisp scaling factor is computed by weighted average-based defuzzification of the fuzzy

output, in three steps (see the algorithm description in subsection 2.2.2.1). The proposed fuzzy

inference machine is a zero-order Sugeno system. Therefore, the complete inference for the

adaptive measurement noise covariances in each epoch k can be given in a compact form as

K
(
κ, f̂ , α̂ext, ĥext

)
=

∑27
i=1 κ

i ·min
(
γi
(
f̂
)
,min

(
γi (α̂ext) , γ

i
(
ĥext

)))
∑27

i=1 min
(
γi
(
f̂
)
,min

(
γi (α̂ext) , γi

(
ĥext

))) ,

Rk = KR,kR, KR,k = K
(
κR, f̂k, α̂ext,k, ĥext,k

)
, κR = (K1, ...,K7)T ,

(3.49)

where γi(f̂), γi(α̂ext), and γi(ĥext) are the ith-rule fired membership function values and κi

denotes the singleton value of the consequent weighting factor of the ith rule for scaling the

noise covariance R (see Figs. 3.13 and 3.14).

Table 3.7: Rule base of the fuzzy inference machine.

Vibration

f̂ = Z

Mag. pert.

ĥext
Vibration

f̂ = S

Mag. pert.

ĥext
Vibration

f̂ = B

Mag. pert.

ĥext
Z S B Z S B Z S B

Ext. acc.
α̂ext

Z K1 K2 K3 Ext. acc.
α̂ext

Z K2 K3 K4 Ext. acc.
α̂ext

Z K3 K4 K5

S K2 K3 K4 S K3 K4 K5 S K4 K5 K6

B K3 K4 K5 B K4 K5 K6 B K5 K6 K7

3.2.4 Experimental Validation

This subsection describes the test platform employed in the evaluation of filter performance,

the optimization approach utilized to tune the filter parameters, and the attitude determination

results during different dynamic motions and external perturbations.

3.2.4.1 Test Environment

A comprehensive framework has been designed, in which a 6 DOF test bench dynamically

alters the pose (position and orientation) of a MARG unit. This 6 DOF test bench is utilized

to both simulate various (accelerating, non-accelerating, and vibrating) dynamic behaviors and

measure the real attitude of the sensor frame, along with the raw MARG data. The framework

is based on the widely used Robot Operating System (ROS) and the Gazebo open source

dynamics simulator, which utilizes physics engines to consider the effects of gravity, friction,

and forces Koenig and Howard (2004). As a result, this framework enables the evaluation of

state estimation error, quantification of the filter performance, and tuning of filter parameters.

The designed test bench consists of three prismatic joints and three revolute joints. The

prismatic joints make the sensor frame slide back and forth, up and down in the three dimen-

sional (3D) space by three 3m long rails. The revolute joints set the instantaneous attitude

(Euler angles) of the sensor frame. The MARG unit is attached to a plate at the end of this

kinematic chain and, so, the 6 DOF system enables both the spatial coordinates and orienta-

tion of the sensor frame to be set and measured. Moreover, this 6 DOF mechanism enables the
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generation of external accelerations simultaneously with sensor frame oscillations. Therefore,

a variety of dynamic (vibrating and accelerating) system conditions can be simulated, where

both the raw sensor data and real joint states are recorded. Fig. 3.16 shows the model of the

test environment in Gazebo.
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Figure 3.16: Block diagram of the test environment and filter tuning procedure (video of the closed-loop
in Odry (2019a)).

Let xb, yb, and zb denote the spatial coordinates of the body plate (i.e., the origin of the

MARG unit). Then, the total kinetic energy T of the test platform is given as

T =
1

2
q̇TMmassq̇, Mmass = diag ((mj + I3×1mb, Jb)) , (3.50)

where mj = (mj,1,mj,2,mj,3)T , mj,i denotes the mass of each prismatic joint for i = {1, 2, 3},
whereasmb and Jb = (Jb,φ, Jb,θ, Jb,ψ)T indicate the mass and moment of inertia of the body plate,

respectively. Moreover, q = (xb, yb, zb, φ, θ, ψ)T denotes the vector of generalized coordinates.

The potential energy stored in the system is approximated as P =
(
mb +

∑3
i mj,i

)
gh0 +

(mb +mj,3) gzb −mj,3gh1, where the constants h0 and h1 denote the base height and distance

between the body plate and third prismatic joint, respectively. The Lagrange function of the

system is L = T − P , where the motion of the system can be determined with the help of the

Lagrange equations Bloch (2003). As a result, the equations of motion can be written in the

following well-known form,

M (q) q̈ + V (q, q̇) = τa − τf , (3.51)

where M (q) is the inertia matrix, V (q, q̇), including the Coriolis, centrifugal, and potential

force terms, whereas τa and τf indicate the generalized external torques and friction effects,

respectively.

The aforementioned dynamics are implemented in an Unified Robot Description Format

(URDF) file Furrer et al. (2016). This file enables the specification of the whole geometric de-

scription of the system, including the robot kinematics, motion ranges, location of frames, mass
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properties, and collisions. Each joint (DOF) is driven in a closed-loop with an independent

PID effort controller. Each effort controller is implemented, using the ros controllers meta-

package, as a single-input single-output (SISO) low-level controller, in which torque control

action is applied to the joint. The PID parameters have been set up heuristically by itera-

tive tuning in Gazebo. The true linear and angular positions of each joint are supplied by

the joint state controller, a sensor controller that publishes the joint state information (i.e.,

true positions, velocities, and efforts are represented in double-precision floating-point format

without measurement noise, discrepancy, or delay) Quigley et al. (2015); Koubâa (2017). In

this application, the joint state information is obtained with a fs = 1 kHz sampling frequency.

The sensor measurements are provided by independent Gazebo plugins, developed in reference

Meyer et al. (2012). These IMU and magnetic field sensor plugins are attached to the body

plate of the 6 DOF test bench by including them in the URDF file.

To execute different acceleration and vibration dynamic motions, on one hand, random de-

sired values are generated with random frequencies for the PID controllers of the three prismatic

joints in their configuration space. On the other hand, different sinusoidal signals are supplied

as reference values to the PID controllers of the three revolute joints, where both the ampli-

tude and frequency are varied randomly. Therefore, the closed-loop system causes the 6 DOF

mechanism to execute a wide variety of dynamic movements in the 3D space, with continuously

varying oscillations and accelerations. Simultaneously, the three prismatic joints make the sen-

sor frame slide back and forth, as well as up and down; simulating various external accelerations.

The true joint states, along with the instantaneous MARG sensor data, have been collected to

evaluate the attitude estimation performance.

Video demonstrations of the closed-loop dynamics have been shared online. Moreover, the

whole ROS package, which includes the test bench properties, URDF files, applied effort con-

trollers, and Gazebo configuration files, have been made publicly available in the supplementary

online material, to help other lab teams evaluate similar experiments Odry (2019a).

3.2.4.2 Magnetic perturbations

Magnetic perturbations are generated artificially, as the Gazebo simulation environment does

not contain such a feature. Therefore, based on the experimental results with magnetic distur-

bances conducted in Sarcevic and Pletl (2018); Borbás et al. (2018); Wu et al. (2019); Wu (2019),

a simple algorithm has been developed to generate magnetic perturbations. The algorithm is

composed of three main steps, which are described as follows.

1. Generate a perfect artificial signal m of length Lm as a mixture of square, saw-tooth, tri-

angle, and two sinusoidal signals. Both the sequence of these signals and their parameters

(i.e., the amplitude and frequency) are randomly selected.

2. Obtain the analytic signal ma from m, where the real part is the original signal, while the

imaginary part contains the Hilbert transform (i.e., the original signal with a π/2 phase

shift Marple (1999)). Then, generate the artificial perturbation mp as the sum of the

imaginary part and absolute value of the Hilbert transformed complex signal, where the
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sequence of absolute values is reversed in time:

ma,k = mr,k + jmi,k, k = 1, ..., Lm,

mp,k = mi,k + |ma,l| , k = 1, ..., Lm, l = Lm, ..., 1.
(3.52)

3. Remove the continuous linear trend of mp and low-pass filter the detrended signal with a

first order Butterworth infinite impulse response (IIR) filter.
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Figure 3.17: Demonstration of the proposed magnetic perturbation generator algorithm.
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Figure 3.18: Magnetic field measurements before and after the application of the magnetic perturbation
generator algorithm.
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Each step of the aforementioned algorithm is depicted in Fig. 3.17. Moreover, Fig. 3.18

highlights the effect of the artificial perturbation on both the norm and each component of

the raw magnetometer signal. The blue curves in Fig. 3.18 represent the raw (calibrated,

undisturbed, and normalized) magnetometer measurements and the red curves show random

sections, where the magnetometer is disturbed artificially with the proposed algorithm. These

figures illustrate that the algorithm enables both generation of realistic magnetic perturbation

effects and incorporation of effects of this type of disturbance into the analysis of attitude

estimation.

3.2.4.3 Tuning of Filter Parameters

I recall the results of the initial parameter optimization problem addressed in subsection 3.1.3.

Therefore, the tuning of filter parameters is executed in MATLAB on a training data set col-

lected in the aforementioned test environment. The heuristic PSO algorithm is utilized for the

filter tuning problem, as it does not require gradient information, guides the search well even in

nonlinear noisy systems, and has demonstrated greater effectiveness and robustness than other

optimization methods Kecskés and Odry (2014); Modares et al. (2010a); Kennedy et al. (2001).

Both the algorithm and applied PSO-based optimization procedure have been presented in detail

in subsection 3.1.3; therefore, only key information is described in the following paragraphs.

The inputs of the optimization problem are the real angular positions (i.e., the true Euler

angles φk, θk, and ψk provided by the 6 DOF test bench) and MARG sensor data (i.e., the

acceleration, angular velocity, and magnetic field measurements), whereas its outputs are the

estimation errors eφ,k = φk − φ̂k, eθ,k = θk − θ̂k, and eψ,k = ψk − ψ̂k, where φ̂k, θ̂k, and

φ̂k denote the estimated Euler angles (i.e., the outputs of the implemented filter algorithm).

The PSO is a population-based search algorithm that guides the search in the search space by

employing a fitness function. A complex fitness function is formulated for the problem to both

quantify the differences between the true and estimated Euler angles and measure the overall

filter performance. Three mean squared errors (MSE) are combined to evaluate the filtration

quality. The PSO-based minimization of the following fitness function has enabled the filter

parameters to be successfully tuned:

F = 3

√√√√ksce∏
j=1

(∑Nj
k=1 e

2
φ,k

Nj

)(∑Nj
k=1 e

2
θ,k

Nj

)(∑Nj
k=1 e

2
ψ,k

Nj

)
, (3.53)

where ksce denotes the number of scenarios taken into account in the optimization problem; Nj

is the measurement length in the ksceth scenario; and eφ,k, eθ,k, and eψ,k indicate the roll, pitch,

and yaw estimation errors, respectively. The optimization algorithm determines the optimal

possible filter parameters, corresponding to the lowest possible fitness function value. The

block diagram of the filter parameter optimization procedure is depicted in Fig. 3.16.

The optimization can begin running once the parameters are initialized. Both the PSO

and filter parameters (x̂0, P0, Q, and R) are initialized by employing the results presented in

subsection 3.1.3. As the sampling time in the ROS-based framework is relatively low (Ts = 1ms),

the adaptive strategy can be executed with bigger window size of L = 400; moreover, the
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length of the transform is LFFT = 29 and the threshold oscillation frequency and amplitude

are fthr = 10 Hz and |Ω|thr = 0.26 rads−1, respectively. The process noises µqk and νk in

equation (3.40) are considered to be statistically independent Lee et al. (2012); Nowicki et al.

(2015); therefore, diagonal matrices are applied for both the process and measurement noise

covariances with the following characteristics,

Q =

[
I4 ·Qq 03×4

04×3 I3 ·Qω̄

]
, R = I4 · ρ, (3.54)

where the Qq, Qω̄, and ρ constant noise variances are tuned with PSO. As a result, the optimiza-

tion has converged the quaternion measurement noise variance to a higher value of ρ = 3.53.

This outcome was expected, as intense accelerations and vibrations have been applied with the 6

DOF test bench and the effects of these external disturbances are absorbed in the measurement

noise vk in equation (3.41). This high-noise variance value indicates that the TRIAD-based

attitude realization is significantly more unreliable than the gyro-based state propagation, es-

pecially in highly dynamic states of the system. At the same time, the process noise variances

has converged to noticeably small values (i.e., Qq = 1.45 ·10−6 and Qω̄ = 9.71 ·10−10), resulting

in the state-space dynamics (equation (3.40)) becoming much more reliable than the measure-

ment correction equations. The successful optimization contributes to finding the tuned EKF

parameters which provide satisfactory attitude estimation quality with the help of the adaptive

strategy described in subsection 3.2.3 for both static and extreme (vibrating and accelerating)

dynamic conditions.

3.2.4.4 Results

The attitude estimation performance of the FAEKF is evaluated on three measurements per-

formed in the test environment (Measurements 1–3 lasted for approximately 160s, 210s, and

315s, respectively). The dynamic motions executed by the 6 DOF test bench during these

measurements included stationary states, slow and fast changes in angular positions, mild and

intense oscillations, and external accelerations. The dynamic circumstances in which the filter

performance is investigated are characterized by the following ranges; 0− 8 Hz for sensor frame

oscillation frequency, ±50 rads−1 for angular velocity, ±16 g for external spatial acceleration,

and 0− 5 nu for magnetic perturbation magnitude.

The robust filter performance in the highly disturbed (accelerating and vibrating) test envi-

ronment is highlighted in Figs. 3.19–3.22. The first three rows of each figure show the roll (φ),

pitch (θ), and yaw (ψ) angles, where the blue curve indicates the true Euler angles (obtained by

the joint states ROS topic), whereas the red and yellow curves highlight the attitude estimation

with and without the proposed fuzzy adaptive strategy, respectively. The fourth rows depict

both the instantaneous external acceleration (blue curves) executed by the 6 DOF test bench

and average dynamic acceleration (red curves) determined by equation (3.47). Similarly, the

blue curve of the fifth row of each figure shows the instantaneous magnetic perturbation gener-

ated by equation (3.52), whereas the red curve indicates the average magnetic field difference

calculated by equation (3.48). Finally, the sixth row depicts both the instantaneous angular rate

magnitude (blue curves) and the oscillation frequency of the sensor frame (red curves). The last
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three rows illustrate that the employed measurement methods in the adaptive strategy provide

useful information related to the external acceleration, vibration, and magnetic disturbance

magnitudes.
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Figure 3.19: First time slot from the measurements. (a-c) show the roll, pitch and yaw angles;
(d-e) show the external acceleration and magnetic perturbation magnitudes; (f) shows the oscillation
frequency of the sensor frame.

The noticeable performance improvement provided by the fuzzy-adaptive strategy is high-

lighted both by the figures and the results included in Table 3.8. The curves corresponding

to the FAEKF output fit to the true Euler angles to a satisfactory degree, both in frequencies

and amplitudes; even when extreme external perturbations are present. The effects of these

disturbances drastically decrease the performance of the standard EKF. For example, Fig. 3.19
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highlights that, at approximately 50 sec, an increased external acceleration and magnetic per-

turbation influence the attitude estimation over a 15 sec long period. During this period, the

effects of these disturbances are effectively suppressed by the FAEKF; the adaptation laws en-

able it to achieve satisfactory filter accuracy and convergence. It is also shown that, without

the fuzzy-adaptive strategy, an unsatisfactory EKF performance is provided (Euler angles indi-

cated with yellow curves). A similar outcome can be observed in Fig. 3.20; namely, the external

acceleration and magnetic perturbation effects in the high vibrating environment contribute to

a significant decrease in the EKF estimation quality (e.g., see the yellow curves at ˜140 sec).
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Figure 3.20: Second time slot from the measurements. (a-c) show the roll, pitch and yaw angles;
(d-e) show the external acceleration and magnetic perturbation magnitudes; (f) shows the oscillation
frequency of the sensor frame.
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However, it is also shown that the adaptation laws enable cancellation of these effects, even

under diverse dynamic conditions. Under static conditions, both EKF and FAEKF provide

approximately the same performance levels; these results are highlighted in Figs. 3.21 and 3.22.

As low-frequency oscillations along with no magnetic perturbation nor external acceleration

enable the accelerometer- and magnetometer-based attitude realization (TRIAD output) to be

characterized with high accuracy, the EKF can therefore provide satisfactory estimation quality

based on the implemented state-space model. In these static cases, the adaptive strategy does

not modify the noise variances, as the well-chosen ratio between the covariance parameters

yields a satisfactory estimation quality.
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Figure 3.21: Third time slot from the measurements. (a-c) show the roll, pitch and yaw angles;
(d-e) show the external acceleration and magnetic perturbation magnitudes; (f) shows the oscillation
frequency of the sensor frame.
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Figure 3.22: Fourth time slot from the measurements. (a-c) show the roll, pitch and yaw angles;
(d-e) show the external acceleration and magnetic perturbation magnitudes; (f) shows the oscillation
frequency of the sensor frame.

The filter performance is quantified with MSE and STD of the estimation error. These

results are calculated for each measurement (M1, M2, and M3) and are summarized in Ta-

ble 3.8. Based on the results, a significant improvement in the overall filter performance can be

observed. In each measurement case, the yaw angle estimation is characterized by the smallest

errors, while slightly less robust outputs are provided for the roll and pitch angle estimation.

This outcome was expected in our configuration and is related to the TRIAD algorithm’s charac-

teristics. Namely, the impact of magnetometer readings relative to the vertical axis is eliminated

in ŝ2 and r̂2 (see equations (3.35) and (3.36)), therefore the pitch and roll angles are determined
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based on only the accelerometer measurements Yun et al. (2008). As the accelerometer measure-

ments have been disturbed much more heavily (via both the measurement noise and frequent

external accelerations) than the magnetometer readings, therefore the disturbances influenced

slightly more the roll and pitch estimation performance of the filter. Based on both the figures

and Table 3.8, it can be concluded that a superior estimation convergence is achieved with

the introduced adaptive strategy, thereby validating the performance of the proposed FAEKF

approach.

Table 3.8: Mean squared error (MSE) and standard deviation (STD) results of the investigated filters.

Condition
roll (φ) pitch (θ) yaw (ψ)

MSE STD MSE STD MSE STD

M1
FAEKF 0.0010 0.0301 0.0026 0.0421 0.0004 0.0188

EKF 0.0037 0.0605 0.0127 0.0927 0.0099 0.0688

M2
FAEKF 0.0020 0.0433 0.0040 0.0536 0.0007 0.0261

EKF 0.0089 0.0937 0.0252 0.1261 0.0085 0.0916

M3
FAEKF 0.0050 0.0695 0.0056 0.0548 0.0016 0.0405

EKF 0.0046 0.0669 0.0102 0.0650 0.0089 0.0944

Nevertheless, some potential improvements are left open for investigation in future studies:

1. Employing a more robust deterministic approach to determine the quaternion from ac-

celerometer and magnetometer observations in the measurement update state of the EKF.

2. Partitioning the fuzzy inputs and outputs into additional fuzzy sets, thereby implementing

a more advanced fuzzy inference system.

3. Tuning the shapes of the applied fuzzy sets, the ranges of input and output variables, and

the weights of the IF-THEN rules with the aid of optimization.

4. Varying the window size in the determination of external disturbance magnitudes, thereby

providing more accurate measures for the adaptation laws.

5. Extending the state space model with external acceleration and magnetic perturbation

models, where the driving Gaussian variables vary according to the external disturbance

magnitudes.

6. Applying an additional output in the fuzzy inference system which weights the process

noise covariance matrix.

Throughout the results, it has been demonstrated that the developed methods in the adap-

tive strategy provide relevant information of the environment in which attitude estimation is

performed. The obtained external disturbance magnitudes has enabled to form an inference

mechanism that effectively manipulate the noise variances on-the-fly, thereby providing supe-

rior filter performance. As external accelerations, magnetic perturbations, and vibration are

common disturbance sources in motorized mechatronic systems, the developed method can be

advantageously applied in such mechatronic systems. This work also demonstrates the benefits
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of fuzzy logic, as it has provided an expert-oriented approach to implementing complex rela-

tions with the help of simple heuristic IF-THEN rules. The developed adaptation laws can be

universally applied for the online tuning of any filter structure. Moreover, both the measure-

ment methods and fuzzy inference mechanism can be intelligently employed in adaptive control

solutions for mechatronic systems performing motions in unknown and/or disturbed environ-

ments (e.g., wheeled/legged robots moving on uneven terrain or UAVs maneuvering in windy

environments).
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3.3 Theses

This thesis group deals with the development and analysis of such soft computing-based meth-

ods, which provide enhanced state estimation performance in terms of robustness and accuracy

for agile mechatronic systems executing both static and extreme dynamic motions.

3.3.1 Thesis 2.1

A fuzzy-adaptive KF has been established, which varies the filter parameters in real time based

on the instantaneous system dynamics characterized by the magnitudes of external accelerations

and vibrations. In this filter structure, the mapping between the instantaneous dynamics and

KF parameters is realized by fuzzy-logic based heuristic IF-THEN rules. The proposed adaptive

approach significantly improves the overall filter performance compared to the standard KF.

Publication pertaining to the thesis: Odry et al. (2018).

3.3.2 Thesis 2.2

A FAEKF structure has been derived, which incorporates both an EKF operating on quaternion-

based orientation propagation and a sophisticated fuzzy inference machine. In this structure,

the fuzzy inference system forms the relationship between the external disturbance (external

acceleration, magnetic perturbation and vibration) magnitudes and EKF parameters and con-

sistently modifies the noise variance values based on the instantaneous system dynamics. The

developed adaptive structure effectively suppresses the effects of external disturbances, thereby

enabling the FAEKF to provide reliable attitude estimation results, even in extreme dynamic

and/or perturbed situations.

Publication pertaining to the thesis: Odry et al. (2020b).

Remark: The byproduct of these theses is a free-to-use ROS package I developed during my

research work. This package enables both the generation of MARG-based measurements and

the testing of different filter performances. I made this ROS package (which includes the de-

veloped test bench properties, URDF files, applied effort controllers, Gazebo configuration files

and MATLAB scripts for the generation of artificial magnetic perturbation) publicly available

in the supplementary online material Odry (2019a), with the aim of helping other laboratory

teams with both performing and developing similar experiments. The complete project along

with the software tools have been developed by the author of this PhD dissertation.
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4 Conclusion

This research work addressed the enhancement of the closed loop performance of control systems

and presented novel soft computing-based solutions to 1) improve the performance of control

algorithms implemented for the stabilization of dynamical systems and 2) provide accurate and

robust state estimation results even if variable, dynamic-dependent operating system conditions

are present. The problems were both examined and validated on an unstable underactuated

mechatronic system, i.e., a real WMP robot prototype enabled to embed, test and validate the

developed techniques.

Chapter 2 described the elaboration and optimization procedures of linear and fuzzy control

techniques for the unstable WMP robot. The obtained results highlighted that the developed

fuzzy control structure enabled to achieve satisfying overall control quality with both fast closed

loop behavior and small current peaks and jerks in the driving mechanism of the plant. The

benchmark against the equivalent, linear counterpart control structure indicated that the flex-

ibility of the proposed protective fuzzy technique allowed it to compete and even outperform

the benchmark controller. As a result, the developed fuzzy-based technique represents a novel

heuristic-type technique to provide satisfying reference tracking to robots and simultaneously

protect the electro-mechanical parts against jerks and vibrations along with smaller energy

consumption transients. Section 2.1 derived the nonlinear mathematical model of the plant

and validated its applicability in control system design via implementation and measurement

results of the real closed-loop dynamics. Section 2.2 reviewed the LQG control approach first

and described the complete elaboration of the linear control strategy for the stabilization of

the plant (subsection 2.2.1). Then, the fuzzy control method was discussed in subsection 2.2.2

and a cascade-connected fuzzy control scheme was established. Finally, the control structures

were implemented and the initial, heuristically derived closed-loop performances were evaluated

using both time-domain analysis and different error integrals (subsection 2.2.3). Both control

structures stabilized the system, however the controllers were designed and tuned empirically

(in case of the linear approach the Q and R matrices were selected heuristically, while in case of

the fuzzy approach the membership function parameters and input-output ranges were defined

based on human common sense). Therefore, the control performances were further improved by

capitalizing on the linguistic-based flexibility of fuzzy logic, moreover, numerical optimization

was employed for performance maximization. Namely, section 2.3 analyzed the enhancement

of the achieved initial control performances. First, a protective fuzzy control strategy was de-

veloped in subsection 2.3.1 where the instantaneous motor currents were also considered in

control action calculation via heuristic IF-THEN rules. Then, both the linear and fuzzy control

structures were employed in an optimization environment, where a complex fitness function

was formulated for control quality analysis and PSO-based minimization resulted in the opti-

mal possible controller parameters (subsection 2.3.3). Based on the comparison, the achieved

(maximized) control performances were analyzed and the characteristics of control techniques

were discussed in subsection 2.3.4.
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Chapter 3 presented novel solutions for low-cost MEMS-IMU and MEMS-MARG based at-

titude estimation. First, a test bench was introduced that both allows simulations of various

system behaviors and measures the true system states along with the MEMS sensor data. Based

on the collected measurements, the optimization of KF parameters was elaborated. Moreover,

an adaptive fuzzy-logic based KF was developed in which the filter parameters were modified

in real time based on the system dynamics. Two measurement approaches were employed for

determining the magnitudes of the external acceleration and vibrations and a fuzzy inference

machine was designed to modify the filter parameters as a function of these measures. Ex-

periments demonstrated the efficacy of the proposed approaches for one-dimensional attitude

estimation. Then, the developed techniques were generalized for three-dimensional attitude es-

timation, and a result, a novel quaternion-based fuzzy-adaptive EKF (FAEKF) was established.

This filter structure both employed three new measurement techniques for the determination

of instantaneous acceleration, vibration and magnetic perturbation magnitudes and a heuristic

fuzzy inference machine to tune the noise covariances in real time. A special test environment

was created for filter performance evaluation, in which a 6 DOF test bench executed various

system (vibrating, accelerating) behaviors and simple algorithms generated magnetic pertur-

bations artificially. The experimental results showed that the developed FAEKF improved

the overall filter convergence significantly both in static and extremely vibrating and accel-

erating environments, thereby demonstrating its efficacy as an accurate and robust attitude

filter. Subsection 3.1.1 introduced mathematical models related to MEMS IMU measurements

and formulated a two-dimensional KF. Namely, subsection 3.1.2 described the designed test

environment in which measurements can be collected under various dynamic conditions. In

subsection 3.1.3, I discussed the procedure for optimizing the KF noise covariance values, while

subsection 3.1.4 described methods for measuring external disturbances and elaborated on the

adaptive KF approach. In subsection 3.1.5, the filter performances were compared against

other common orientation estimation methods. The generalization of the techniques started

with subsection 3.2.1, where an introduction to quaternion representation was given and the

important relationships were highlighted. In subsection 3.2.2, the stochastic models of MARG

sensor arrays were discussed and a suitable EKF formulation for attitude estimation was de-

scribed. Subsection 3.2.3 presented the fuzzy adaptive strategy for MARG systems in detail, in

which external disturbance magnitudes were measured with three novel methods; additionally,

a sophisticated fuzzy inference machine was employed to manipulate the noise variances con-

sistently. Subsection 3.2.4 introduced the 6 DOF test bench which was designed for estimation

quality evaluation, the optimization-aided tuning of filter parameters, and the experimental

results of the proposed approaches.

Future work may include multiple development directions. The derived nonlinear math-

ematical model of WMPs provides a compact, state space-based simulation environment and

forms the basis for the analyses of both robustness and stability issues of different control strate-

gies. The included nonlinear mechanical effects allow the developer to predict system behaviors

even outside of the equilibrium points. Although the model responses showed realistic system

behaviors, discrepancies could be observed between the measured system dynamics and sim-

ulation outputs. These discrepancies are related to the fact that nominal and derived model
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parameters (e.g., inertia, mass, impedance and friction) were utilized during the numerical sim-

ulations. Therefore, a model validation process for WMPs can be a potential improvement in

future studies in which both the robot parameters are identified and the derived model is qual-

ified for multiple closed-loop scenarios. The developed protective-type fuzzy control strategy

along with its LUT-based implementation represent a novel heuristic-type technique to provide

satisfying reference tracking with smaller energy consumption transients. The proposed ap-

proach can be universally applied in such mechatronic systems (robots), where it is required to

supply smooth control and thereby protecting the electro-mechanical parts effectively against

jerks and vibrations. The presented filter structures provide accurate state estimation both in

static and extreme dynamic conditions, therefore the algorithms can be beneficially applied in

the closed-loop architecture of agile dynamic systems. The inference machine of these adaptive

algorithms has been set up heuristically, therefore the optimization-based tuning of the fuzzy

system (e.g., input-output ranges and membership functions) can be a potential improvement

to achieve maximized filter performance. Additionally, the augmentation of the employed state

space model can bring further advantages in state estimation, where the instantaneous external

acceleration is both identified and incorporated in the state propagation. The presented test

bench highly fosters the effective development of MARG-based algorithms, however only its

ROS-based implementation is available in the supplementary online material. Since MATLAB

forms the backbone of algorithm development processes in engineering applications, therefore

it is also planned to elaborate the MATLAB-based realization of the proposed 6-DOF test

environment, with the aim to provide a universal platform for the effective development of

MARG-based techniques.
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Odry, Á. (2019b). Self-balancing robot supplementary material. Available from: http://appl-
dsp.com/self-balancing-robot-kit/.
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.1 Appendix: System dynamics equations

This section describes both the Lagrangian L of the system and the exact elements of matrices
M(q) and V (q, q̇). The Lagrangian is given as:

L(q) =
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The elements of the inertia matrix M(q) = (mij)3×3 are:
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Similarly, the elements of the vector V (q, q̇) = (v1, v2, v3)T are:
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