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Chapter 1

Introduction

Electrophysiology is the scientific area of observation and study of the electrical

properties of the biological cells and tissues. This dissertation could be split into

two parts according to this definition. Both main research projects which will be

presented herein are based on electrophysiology. The aim of the first one is the simul-

taneous utilization of an electrophysiological measurement method and an optical

imaging process for neuroscientific research, where the principal targets of observa-

tion are neurons. The second presented research topic is related to human dental

structures. During this research an electrical property of a biological tissue, namely

the electrical impedance of the human dentin has been measured, and a formula

has been determined to evaluate its dependency on geometric thickness and signal

frequency.

During my scientific activities I have studied and observed the central nervous system

and I have taken part in neural electrode system development and validation projects

from the conceptualization to the performance of in vitro and in vivo experiments.

These research topics led me to the results of my first thesis group, thus in the first

part of the introduction chapter the electrophysiological methods will be reviewed

which are used in the field of neuroscience.

One of my aims was to observe the peripheral nervous system in the pulp of the hu-

man teeth, by using a measurement method on dentin. In order to reach this goal, it

was essential to perform numerous electrophysiological experiments on human teeth

to observe their electrical properties. Since my second thesis point is based on the

results of this observation, therefore in the second part of the introduction chapter I

give an overview of the experimental and clinical utilization of electrophysiological

methods in the field of dentistry.

The scientific work related to the simultaneous electrophysiology and two-photon
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imaging was performed at the Comparative Psychophysiology research group under

the leadership of Prof. Dr. István Ulbert at the Institute of Cognitive Neuroscience

and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Net-

work. The scientific activity in the field of dentistry was executed at the Department

of Oral Diagnostics, Faculty of Dentistry, Semmelweis University with the contribu-

tion and guidance of Prof. Dr. Csaba Dobó Nagy.

The specific aims of the dissertation will be defined after the first chapter, which

is followed by the description of the various factors which led me to reach these

scientific aims.

1.1 Electrophysiology - a short overview

By electrophysiology we mean the observation of electrical functions of the nervous

system. The measurement principles of electrophysiology rely on the forms of infor-

mation transfer among neurons, which form the basis of our nervous system. During

this transfer transmembrane currents rise and fall [1]. Neurons can process signals

and communicate with each other partly via these transmembrane currents. Since

the electrical conductance of the extracellular space is finite [2], the membrane cur-

rents create electric potential differences inside the neural tissue [3], which propagate

outside the neural tissue as well, e.g. onto the scalp [4]. The measurement of these

electric potential differences makes the observation of the functions of specific brain

regions as well as the connection between brain regions possible [5,6]. Electrophysi-

ological measurements helped neuroscientists diagnose and to observe the causes of

some neurological disease such as autism or epilepsy [7,8], and led to the development

of treatments which make neural diseases like Parkinson’s disease asymptomatic [9].

Electrophysiological measurement methods which yield signals of neural activities

with high information content, such as electroencephalography (EEG), electrocor-

ticography (ECoG) and intracortically implanted high density microelectrode arrays

(MEAs), have vastly contributed to the progress of neuroscience and brain-computer

interfacing (BCI) [10–13]. In the next subsections these measurement methods will

be reviewed.

1.1.1 Electroencephalography

Electroencephalography is a noninvasive electrophysiological measurement method

suitable for recording electrical activity of neuron populations within the cerebrum.

EEG electrodes are placed on the scalp to measure potential differences resulting
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from membrane current of the neurons [14]. It became a widespread neuroimaging

method since it is relatively cheap, noninvasive, and it can record the potential

changes of the neural tissue with a temporal resolution in the range of milliseconds

[15]. Since the measurable electrical activity of the neurons on the scalp is usually a

summed and synchronized signal, the main disadvantage of the utilization of EEG

is its low spatial resolution [14] and the fact that EEG source localization is an

inverse problem, as potential differences on the surface of a spheroidal object can be

generated in infinite number of variations of internal source patterns. This prevents

perfect spatial localization of the neural activities from the signals recorded on the

scalp [16]. Furthermore, the signal-to-noise ratio of EEG is poor due to the insulating

effect of the skull. In spite of these disadvantages, EEG is a ubiquitous measurement

method in neuroscientific experiments [17],and in the clinic for diagnostic [8, 18]

and therapeutic [19] purposes. EEG has a huge impact on brain-computer interface

development as well [20,21].

1.1.2 Electrocorticography

Electrocorticography is similar to EEG but the electrodes are placed on the surface

of the brain so as to record the electrical activity of the neural tissue [22]. This

measurement method has benefits comparing to EEG since the electrodes on the

surface of the brain eliminate the insulating effect of the skull, thus it has better

signal-to-noise ratio and spatial resolution [23]. The main disadvantage of ECoG is its

invasiveness so it is used only under particular consideration in human cases. In terms

of animal experiments, ECoG was an important method for creating brain function

mapping and observing the connectivity of specific areas of the brain [24]. One of the

most widespread clinical utilization of ECoG is the localization of the epileptic foci in

order to minimize the volume and the functional effect of the necessary lesion during

surgery [25]. Similarly to EEG, ECoG is a promising method in the development of

BCIs for controlling limb prostheses [13,26] and expanding communication abilities

[27].

1.1.3 Implanted microelectrode arrays

The application of implanted microelectrode arrays is a highly invasive measure-

ment method, on the other hand these devices are not only capable of recording

the summed bioelectrical activities of neuron populations (i.e. local field potentials,

LFPs), but they can also detect individual activities of neurons (i.e. single unit ac-

tivities, SUAs) [28, 29]. These methods had an instrumental role in the functional
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mapping of the brain [30] and they are still the ultimate solution when high spatial

and temporal resolution are required [13, 31, 32]. In the last few years significant

improvement was reached in the field of thought controlled communication due to

the utilization of intra-cortical MEAs. Such communication is essential for people

with locked-in syndrome, which is the inability to move and to speak despite being

fully awake, due to for example a brainstem injury. Monitoring the signals of specific

brain region can allow the control of a cursor on a computer screen or typing on a

virtual keyboard [33–36]. These kind of BCIs are the key for movement restoration

too. If neural interface controlled assistive devices could be driven accurately and

with low latency that would be helpful to people with paralysis or limb loss too.

Previous studies on monkeys show that BCIs are able to restore broken neural con-

nections between the brain and a limb (or a prosthetic limb) via the utilization of

inctracortical electrodes [37–40]. Recent researches present promising results in the

application of these kind of BCIs in human patients with paralysis [11,41–43]. Most

BCIs which were created to help people with limb paralysis or brainstem injury are

based on a specific intracortical MEA, the UTAH array (Blackrock Microsystems,

Salt Lake City, USA), which is a silicon based MEA with 96 electrodes on shanks

in a matrix arrangement designed to record the electrical potentials in a volume of

a specific region of the cerebral cortex, as it is shown in Figure 1.1.

Figure 1.1: An implanted UTAH array can form the basis of BCI devices for subjects whose
normal neural information pathways are not functioning due to physical damage or
disease [44]

However, the spatial range of the SUA detection capability of the implanted sensors

is limited to the immediate surroundings of the electrode sites, i.e. hundred micron
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wide volumes [45]. Furthermore, the long term use of implanted MEAs is corrupted

by the degradation of their performance over weeks or months, let alone years [46–

48]. The underlying causes range from material failures [49, 50] to the deteriorative

effects of the immune response to the implants [51–53].

1.2 Combining electrophysiology with optical imaging

In the last few decades, various optical imaging methods became widely used in neu-

roscience, which can render wide brain regions observable with high spatial resolu-

tion [54–58]. Furthermore, the application of two-photon microscopy with fluorescent

calcium indicators makes the monitoring of neural activity (e.g. action potentials of

individual cells) possible [59–62].

The two-photon laser scanning microscopy is a long-established procedure in the

field of neuroscience [63], which is based on the physical effect of the two-photon

excitation. During the two-photon imaging the fluorophore molecule is activated

with two lower energy photons then it decays back to its fundamental state while

it has a photon emission with lower energy than the sum of the two exciting pho-

tons. The application of two exciting photons allows us to define the volume of the

neural tissue where we would like to observe the fluorescence activity but high pho-

ton concentration within the observed volume is required which can be reach by

the utilization of high power femtosecond pulse synchronized laser [64]. The focal

length of fluorescence microscope objectives can exceed 12 mm [65], which allows

the implantation of depth MEAs into the optical cranial window (CW) [66]. How-

ever, the high density MEAs can cover the observation area under the array of the

electrode field. To resolve this problem, MEAs based on transparent substrates and

transparent conductive layers have been developed as it is representatively shown in

Figure 1.2.

The most commonly used transparent substrates are the polyimide and the SU-8.

Polyimide is used as an insulator and passivation layer in the manufacturing pro-

cess of integrated circuits and micro-electromechanical systems (MEMS) chips for

protecting the electronic components from moisture and mechanical effects, while

in neuroscience it is often used as a flexible insulator substrate for MEAs [68, 69].

Preparation of a polyimide substrate is relatively easy as it can be patterned with

dry etching or with photolithography by ultra violet light (UV) [?] after heat treat-

ment. Polyimide has an optical transmittance of more than 85% in the visible light

region [70] which makes it suitable for a substrate material of implanted MEAs.

SU-8 is an epoxy-based negative-tone photoresist which can patterned with near
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UV lithography. It is commonly used for fabricating MEMS and microfluidic sys-

tems since it is suitable for high aspect ratio applications [71]. Its dense crosslinked

structure offers mechanical stability, yet it has high transparency over 360 nm. Over

the wavelength of 500 nm the transmittance of SU-8 exceeds 95% [72].

The fabrication of transparent MEAs requires the conductive layer to be prepared

from transparent materials too. In this regard, graphene is a promising material.

Polymer based graphene MEAs are flexible, biocompatible and transparent on a

wide wavelength ranging from UV to infrared (IR) so they are suitable for elec-

trophysiological measurements and optical observations too [67]. Graphene layers

can be produced with chemical vapor deposition. Another suitable transparent con-

ductive layer material for electrophysiological measurements is the indium tin oxide

(ITO) [73]. The preparation of ITO is easier than the preparation of graphene, al-

though ITO has the optical transmittance of only 80% in the relevant wavelengths

which is less than the 90% transmittance of graphene. ITO layer production can be

performed with chemical vapor deposition as well.

There are conductive polymers which could form the electrodes of the MEA as

well. Conducting polymers have attracted much interest as suitable matrices of

biomolecules and have been used to enhance the stability, speed and sensitivity of

various biomedical devices. They are easy to synthesize and versatile because their

properties can be readily modulated by surface functionalization techniques [74,75].

On the surface of the electrode sites of neural implants conductive polymers are

Transparent 
ECoG MEA

Opaque
ECoG MEA

Transparent 
implanted MEA

A B

C

100 μm300 μm

100 μm300 μm

Figure 1.2: Advantages of transparent MEAs (A). Comparison of transparent substrate based
MEAs with transparent graphene electrodes (B) and opaque platinum electrode (C)
on optical coherence tomography images [67]
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used for increasing long term cell stability and higher signal to noise ratio by

decreasing the electrode impedances [76]. The commonly used conductive poly-

mers on neural interfaces are the polypyrrole/peptide [77], PEDOT (i.e. Poly(3,4-

ethylenedioxythiophene)) [78,79], polythiophene [80]. With the utilization of conduc-

tive polymers neuroscientists can achieve better electrode-neural tissue connection

and decreased immune response near the electrodes [78]. Conductive polymers could

be used as electrodes similarly to graphene or ITO, but it seems to be too difficult to

synthesize a conductive and transparent polymer layer, moreover the preparation of

polymer structure with wide range of optical transmittance is quasi impossible [81].

Although the proper transparent layer from conductive polymers has yet to be de-

veloped, they can be applied for another purpose when we aim for combining the

implanted MEAs with the optical imaging. This application is based on quantum

dot (QD) preparation from them. MEA electrodes covered by fluorescent QDs can

indicate the location of the conductive site during two-photon imaging, thus it helps

to perform optical imaging and electrophysiological recording from the same tissue

region. Fluorescent QDs can be prepared from PEDOT by deposition of molecules

on the surface of a conductive polymer (ITO) [82,83]. The deposited PEDOT layer

can be removed by ultrasound and it goes through several filtering steps, before it

is deposited on the surface of a neural electrode [83]. Thus prepared molecules are

already fluorescent so they can be used in fluorescence optical imaging as markers

as shown in Figure 1.3.

20 μm

Figure 1.3: Two-photon imaging of patch-clamp pipette filled with a solution containing fluores-
cent QDs, inserted into the neural tissue. The tissue had been injected with fluores-
cent markers [82]

1.2.1 Simultaneous electrophysiological and optical mea-

surement method in the field of neuroscience

Simultaneous application of depth MEAs for extracellular electrophysiology and

two-photon imaging could allow neuroscientists to observe activities of individual
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neurons with good spatial and temporal resolution at the same time, thus the more

precise and complex pieces of information could be obtained from neural activity [84].

The extension of high density intracortical recordings with simultaneous two-photon

microscopy would enable three dimensional optical monitoring of the structural fea-

tures of the cells located close to the electrode. Nonetheless, the co-localized and

simultaneous application of two-photon imaging and electrophysiological measure-

ment by MEAs remains challenging, partly because of the photoelectric artefacts on

the electrophysiological recordings caused by the imaging laser [85]. The artefacts

generally appear as huge sawtooth-like waves. The main frequency of such waves

correspond to the imaging frame rate of the applied two-photon laser. The frame

rate of the imaging is indeterminate, moreover, the sharp shape of the waves and

other effects introduce various harmonics other than the main frequency, thus elim-

ination of the photoelectric artefacts requires more subtle methods than applying

e.g. a notch filter. Comb filters have already been successfully used for decreasing

stimulus artefacts [86] and 50 Hz low frequency noise [87] from electrophysiological

signals, while adaptive filters are utilized e.g. in brain-computer interface develop-

ment [88,89], in simultaneous measurements of real-time magnetic resonance imaging

and electrocardiogram recordings [90], in fetal electrocardiogram analysis [91], etc.

1.3 Electrophysiology in the field of dentistry

Hard tissues, like the human bone or dentin, can be characterized with electri-

cal properties such as intrinsic resistivity, electrical conductivity, dielectric constant

or capacitance. I have performed observations on human dentin thus before the

overview of the experimental and clinical utilization of electrophysiological meth-

ods in the field of dentistry a short introduction will be given about the underlying

principles of these methods.

Dentin is one of the major hard tissue components of teeth. It can be found under

the enamel and it surrounds the entire pulp. This tissue contains micro channels

projecting radially from the pulp to the enamel called dentin tubules. The density

of dentin tubules near the pulp on the inner dentin is 55000− 75000/mm2, near the

enamel on the outer dentin it is 15000−20000/mm2. The diameter of the tubules is

different as well, near the pulp they are approximately 3−4 µm wide, on the border

of the dentin-enamel their width is approximately 1 µm [92–96]. A representative

scanning electron microscope (SEM) (Carl Zeiss AG,Oberkochen, Germany) image

of the dentin tubules is shown in Figure 1.4. The surface of the dentin near the

pulp is covered with odontoblast cells which have the biological function of the
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dentinogenesis, the formation of dentin [97]. Axons of odontoblasts, collagen fibers

and the axons of dental nerves can be located in the dental tubules which makes

the inner dentin more sensitive during dental treatment. The dentin tubules are

filled with ionized dentinal fluid thus if the dentin becomes exposed the bioelectrical

activity of the nerves placed in the pulp becomes measurable on the surface of the

dentin. This method is called dentin recording.

50 μm

Figure 1.4: Scanning electron microscope (SEM) image of dentin tubules of an examined dentin
disk

1.3.1 The dentin recording

Dentin tubules are able to convey both the harmful and medical substances. Bacteria

produced toxins may reach the pulp through the tubules which can irritate the

nerves in the pulp thus they evoke dental pain [98]. The dental pain, which can

be felt during a dental treatment because of mechanical, thermal or hydrostatic

stimuli, is conveyed through the dental tubules too. Dentin recording is based on

the observation method of the dental fluid flow and the ion current through the

dentin tubules.

Dentin recording can allow us to observe the process of dental pain and pulp in-

flammation which may led us to localise the source of the stimulus which caused

the sensation [99]. These techniques also let the fluid flow through the tubules

to be inspected and facilitate the examination of the neural control of the fluid

flow [100–103]. In order to record one dental nerve activity separated from the oth-

ers it is necessary to develop electrodes with small size [104]. The changes of the

hydrostatic pressure of the dental fluid in the dental tubules have also been mea-

sured to calculate the electrical field of the pulp [105]. Beyond these observations
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several experiments aimed to track the effect of some kind of stimulus via measur-

ing the bioelectrical activity of tooth nerves [106]. Thus performed pulp sensibility

testing has been and still remains a very helpful aid in endodontic diagnosis [107].

The application of these measurements to determine the underlying cause of dental

pain have also been a subject of research [108–110]. If the pain is generated by an

artificial stimulus like hydrostatic pressure on the surface of the dentin, the sensi-

tivity of a specific dentin region can be investigated via dentin recording [111]. The

response can be recorded with an in vivo dentin recording method at different levels

of hydrostatic pressure stimuli as it is shown in Figure 1.5.

Dentin
2 mm

Steel tube

Ringer solution

Silver wire

Epoxy resin

Polyimide tube
Fissure sealant

Enamel

Figure 1.5: Measurement arrangement of an in vivo dentin recording experiment. Hydrostatic
pressure was applied in vivo on the surface on the dentin and the nervous response
was recorded [111]

A series of experiments have been performed utilizing different stimuli to specify

the required threshold voltage and current for electrical stimulation [112]. In spite

of the in vivo methods, these values can be defined more precisely with in vitro

experiments. In vitro experiments of dentin recording are useful e.g. for the valida-

tion of resin-dentin bonding surfaces. For this purpose electrochemical impedance

spectroscopy was applied as a potentially nondestructive quantitative method for

measuring the stability of resin films and resin-bonded dentin over time [113]. The

measurement arrangement which was used for these experiments is shown in Fig-

ure 1.6. The idea of this split chamber has formed the base of my in vitro measure-

ment arrangements for my dental experiments. The only fluidic connection between

the half cells of the U shaped chamber was through the dentin disk, hence the

electrical circuit of the ion current was guided through the disk.

The required mechanical properties of the dentin are already well defined [114] but

the electrical properties have yet to be thoroughly characterized. For this purpose,
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Spacer Resin film

Electrolyte

Potentiostat

’O’ ring

Reference

Counter electrodeWorking electrode

Working sense
electrode

Half cellHalf cell

Figure 1.6: Measuring arrangement of an in vitro dentin recording experiment. Split chamber
was arranged in order to perform electrochemical impedance spectroscopy on dentin-
resin bonding surfaces [113]

in vitro dentin recording experiments are required. The precise determination of

the electrical impedance of the dentin makes the definition of an accurate threshold

voltage and current for electrical stimulation possible, but there are some difficul-

ties [115]. The temperature of the tooth not only influences the functional properties

of the tooth pulp neurons [116] but also affects the impedance of the dentin [117].

This electrical parameter also depends on the concentration of the used electrolyte

(saline solution of sodium chloride) [118,119] and on the age of the tooth as well [120].

The applied measuring signal has to be AC because in case of a DC signal, polar-

ization artefacts arise on the electrode-tooth contact area [121–123]. The exact de-

termination of dentin impedance can reveal other parameters and can be a basis of

various diagnostic methods [124]. For example, dental caries are caused by the dem-

ineralization of the dentin. This process changes both the tubules diameters and the

dentin impedance [125]. Most experimental caries diagnostics methods are based on

impedance measurement [125–127]. These methods have proven to be more success-

ful than former techniques [128–131]. Measuring the impedance between an inserted

electrode in a root canal of a human tooth and an outer electrode placed on the oral

mucosa makes the calculation of the root canal length possible [132, 133]. Further-

more, impedance measurements can be used for defining the dentin permeability or

forming the basis of the investigation of an alternative bioimpedance spectroscopy
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method for the assessment of tooth structures [134]. In the last few years new meth-

ods have been developed and applied in oral sciences such as two-photon and multi-

photon microscopy which were used successfully in caries diagnostics [135,136], and

γ-radiation, which can change the mechanical and electrical properties of the dentin

and the enamel [137]. Impedance measurement has a prominent relevance in the

definition of the electrical properties of the dentin and it can be the basis of further

oral diagnostic methods that might be used in clinical practice.
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Chapter 2

Specific aims

2.1 Simultaneous electrophysiological recording and two-

photon imaging in vitro

Simultaneous utilization of implanted MEAs for extracellular electrophysiology and

two-photon microscopy for optical imaging could allow the observation of activities of

individual neurons with good spatial and temporal resolution, but the imaging laser

generates artefacts in the electrophysiological recordings. Special noise filtering al-

gorithm development is required to analyse the data which were recorded in the field

of view of the two-photon microscope. Our aim was to perform in vitro experiments

on mouse neocortical slices expressing the GCaMP6 genetically encoded calcium

indicator for monitoring the neural activity with two-photon microscopy around the

implanted MEAs. An objective of mine was to develop a complex custom-set comb

filter based algorithm which could be used for noise filtering to eliminate the artefacts

caused by the imaging laser. Besides the two-photon observation of the morphology

near the implanted MEA, the scope of our research was to prove that this special

filtering algorithm allows the detection and the sorting of SUAs from a simultaneous

two-photon imaging and extracellular electrophysiological measurement.

2.2 Simultaneous electrophysiological recording and two-

photon imaging in vivo

Having realized the special filtering algorithm for SUA detection from simultane-

ous two-photon imaging and extracellular electrophysiological recordings in vitro,

our aim was to extend our investigation onto in vivo experiments. To reach this

goal, the scope of ours was to apply a MEMS technology based MEA which would
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be designed and developed in order to perform simultaneous electrophysiological

recording and two-photon imaging from the same tissue region of mice brains ex-

pressing GCaMP6 genetically encoded calcium indicator. Our aim was to implant

the MEA within the field of view of the two-photon imaging and perform simul-

taneous recordings. The previously developed algorithm was planned to improved

and utilized on the recorded extracellular data to detect SUAs. The objective was

to prove that combining the self-developed MEMS technology based MEA with

my filtering and analyzing algorithm was capable of performing electrophysiological

recording and two-photon imaging from the same tissue region at the same time.

2.3 Determination of the thickness dependent electrical

impedance spectrum of the human dentin

Utilization of impedance measurement methods in dental researches makes the de-

termination of electrical properties of human tooth possible. Although impedance

measurement forms the basis of numerous oral diagnostic methods, only a limited

number of studies are available focusing on the impedance of human dentin. The

main goal of our experiments was to determine the thickness dependency of the

impedance of the human dentin. Our model allowed the determination of a co-

efficient which describes the correlation between the thickness and the electrical

impedance of the human dentin.
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Chapter 3

Materials and Methods

3.1 Materials and methods related to the simultaneous elec-

trophysiological recording and two-photon imaging

3.1.1 Preparation of physiological experiments

In vitro and in vivo experiments were performed on neural tissue of mice express-

ing the GCaMP6 genetically encoded calcium indicator for the monitoring of neu-

ral activity around the MEA [138, 139]. A total of five GCaMP6 mice had been

anesthetized with a ketamine-xylazine solution and prepared for operation. Initial

anesthesia was performed via intraperitoneal injection of a mixture of 37.5 mg/ml

ketamine and 5 mg/ml xylazine at 0.1 ml/100 g body weight injection volume, body

temperature was maintained at 37 °C throughout the experiments. If it was neces-

sary, 0.05 ml of the same mixture was dosed repeatedly during the experiments.

Animals for acute tests were kept and handled in accordance with the European

Council Directive of 24 November 1986 (86/609/EEC), the Hungarian Animal Act,

1998 and the Animal Care Regulations of the Research Centre for Natural Sciences

of the Hungarian Academy of Sciences (RCNS-HAS). The study was approved by

the Institutional Animal Care and Use Committee of the Research Centre for Natu-

ral Sciences of the Hungarian Academy of Sciences (members: Dr. István Ulbert, Dr.

József Topál and Péter Kottra) and the National Food Chain Safety Office of Hun-

gary (PEI/001/695-9/2015). Animals had unlimited access to food and water, when

they were awake. Each mouse was kept in a 39 cm long, 22 cm wide, 18 cm high

cage. They were under deep anesthesia during surgery (and during the recording

sessions in case of in vivo measurements) as well as at the time of sacrifice. During

anesthesia, paraffin oil was administered to their eyes to prevent them from drying.

Efforts were made to minimize animal suffering and to reduce the number of animals
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used. They were sacrificed by the injection of a lethal dose of ketamine/xylazine into

the heart.

In vitro experiments

Cortical and hippocampal slices were prepared from three of the mice brains. The

brains were immediately removed and dipped into cold (2 − 3 °C), oxygenated

(95% O2, 5% CO2) cutting solution. The cutting solution contained the following

composition (in mM): 250 Sucrose, 26 NaHCO3, 10 D-Glucose, 1 KCl, 1 CaCl2 and

10 MgCl2. 500 µm thick horizontal slices were cut by a vibratome (VT1200s; Leica,

Nussloch, Germany) from both hemispheres. Slices were kept in a standard artificial

cerebrospinal fluid (aCSF) solution at room temperature (20 − 22 °C) for at least

one hour before use. The recordings were performed at 32− 34 °C with a standard

recording aCSF containing (in mM): 124 NaCl, 26 NaHCO3, 10 D-Glucose, 4 KCl,

2 CaCl2 and 2 MgCl2. In the recording chamber, a dual-perfusion system was used

by perfusing both the top and the bottom surfaces of the slices with relatively high

perfusion speed (> 10 ml/min) to provide better oxygenation, similar to in vivo

conditions [140].

In vivo experiments

The anesthetized mice were stabilized in a stereotaxic frame (David Kopf Instru-

ments, Los Angeles, USA) so as to make their skull fixed during the experiments.

Craniotomy was performed from −1.0 mm to −5.0 mm anteroposterior (AP), from

1.0 mm to 4.0 mm mediolateral (ML) in reference to the Bregma of two GCaMP6

mice. In case of perpendicular implantation the silicon based MEA is proved to

be rigid enough to penetrate into the dura mater, but during our experiments the

shanks of the self developed MEA included an angle of 20 degree relative to the

surface of the brain, thus in order to achieve a smooth implantation by avoiding

possible buckling of the probe, the dura mater was incised above the target loca-

tion. The target area was located typically in the middle of the CW, depending on

the topology of the veins on the surface of the exposed brain. With the applied MEA

and the angle we were able to reach the somatosensory cortex of the brain, which

was suitable for the two-photon imaging too.
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3.1.2 Two-photon imaging

The three dimensional observation of morphology was performed with two-

photon microscope (Femtonics Ltd., Budapest, Hungary) with the application of

an XLUMPLFLN20XW fluid immersed objective (Olympus Corporation, Tokyo,

Japan). The working distance of the objective was 2 mm with the magnification

capacity of 20. The two-photon imaging not only let us monitor the neural ac-

tivity near the applied MEA because of the genetically encoded calcium indicator

expressing GCaMP6 cells, but it also made the observation of imaging laser gen-

erated artefacts possible. The applied laser was a Chameleon-Ultra II (Coherent

Inc., California, USA) high-intensity modelocked Ti:Sapphire laser with the avail-

able wavelength tuning range of 680 to 1080 nm. During the experiments the best

wavelength for the neural imaging was found to be 920 nm. The setup was not

only able to function in two-photon resonant mode but it also did work in camera

mode which allowed us to follow the track of the inserted MEA before and during

the insertion because of the built-in charge-coupled device (CCD) camera. With

the adequate brain region in the field of view of the two-photon imaging, the bio-

electrical activity was monitored in two-photon mode and the electrophysiological

measurement setup was assembled.

In vitro experiments

For the optical imaging the prepared slices were placed into an in vitro measurement

chamber. The chamber ensured the aCSF supplement and circulation for keeping

the neural tissue alive until the end of the measurement and it stabilized the slice

mechanically with a holder mesh. The top part of the chamber is concave-shaped

to hold the aCSF for the liquid immersion objective of the two-photon microscope

which was used during the experiments. The schematic of the in vitro assembled

experiments is shown in Figure 3.1.

In vivo experiments

During the in vivo experiments, the mice were held in the stereotaxic frame to keep

the examined neural tissue motionless, which is required for the optical imaging.

The stereotaxic frame was placed into an in vivo measurement chamber. The mice

had been anesthetized for the time of the two-photon imaging and the electrophysi-

ological recording. The available space for the MEA implantation was more limited

under the field of view of the two-photon microscope than in the the in vitro case
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as it is shown in Figure 3.2 thus a special designed MEA was required to use for the

electrophysiological recordings.

3.1.3 Electrophysiological measurement

The electrophysiological observation of the bioelectrical activity of the examined

brain slices and the somatosensory cortex of the living mice were carried out using an

Intan RHD 2000 amplifier system (Intan Technologies, Los Angeles, USA) connected

to a computer via USB 2.0 with a sampling frequency of 20 kHz. The reference

electrode was an Ag/AgCl needle, which was located beneath the tested neural

tissue in case of the in vitro experiments. During the in vivo recordings the reference

electrode was inserted under the scalp of the mouse.

In vitro experiments

In case of the in vitro electrophysiological recordings a silicon based MEA with

16 shanks (A16x1-2mm-50-177-A16, NeuroNexus, Ann Arbor, MI. USA) was applied

as the working electrode. Every shank contained one electrode site at the tip of the

printed circuit board500 μm thick horizontal brain slice 

circulated artificial cerebrospinal fluid (aCSF) 

implanted MEAobjective of the two-photon microscope

Figure 3.1: Schematic of the assembled in vitro measurement system. In the middle of the in
vitro two-photon measurement chamber the brain slice is placed on a holder mesh.
The chamber provides the aCSF circulation near the neural tissue to keep it bioelec-
trically active. Under the fluid immersed two-photon objective the applied MEA was
inserted into the tissue
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2

3

Figure 3.2: The 3D designed model of the available implantation space during the in vivo mea-
surements. A real size mouse skull model (1) was used to observe the required and
suitable concave-shaped part (2) for the immersion fluid above the CW and under
the objective (3) of the two-photon microscope

shank for the extracellular recording after the implantation into the brain slice. The

geometrical design of the MEA such as the thickness and the length of the shanks or

the electrical connectors of the MEA allowed us the insertion into the tissue under

the objective of the two-photon microscope [141].

In vivo experiments

Because of the limited implantation space, a special MEA was developed for the

in vivo simultaneous two-photon imaging and extracellular recording. The MEA

is a four-shank (8 channels/shank) silicon based probe assembled with Omnetics

electrical connector (Omnetics Connector Corporation, Minneapolis, USA) which

small enough to be suitable for further chronic in vivo applications too. Between the

connector and the silicon part there is a flexible polymer cable which allowed us to

implant the probe with a self-designed 3D printed electrode holder. The flexible cable

allow the connector to be stabilized somewhere next to the cranial window to the

skull without obstructing the two-photon imaging. This is a necessary requirements

for further chronic experiments. The stereomicroscopic image of the applied MEA

with the flexible polymer cable and the Omnetics connector is shown in Figure 3.3,

the schematic of the electrode holder with the flexible cable conducted MEA during

implantation is shown in Figure 3.4.

In both cases the MEAs were inserted with the automated electrode holder of the

two-photon setup in such a manner that the longitudinal axes of the shanks included
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A B

2 mm5 mm

Figure 3.3: Stereomicroscopic image of the MEA designed for in vivo recordings during the two-
photon imaging. The Omnetics connector (A) and the four-shank silicon probe (B)
are connected with a flexible cable

1 2 3

Figure 3.4: Schematic of the assembled in vivo measurement system. The 3D printed electrode
holder (1) stabilized the Omnetics connector (2) and the MEA at the end of the
flexible cable (3)

an angle of 20 degree relative to the surface of the brain slice. In case of the in

vitro MEA, the printed circuit board of the probe was stabilized to the automated

electrode holder while during the in vivo recordings between the automated electrode

holder and the MEA there was a need to apply a 3D printed electrode holder. That

holder was designed to be curved to fit in the limited implantation space, and it

was glued to the MEA at the connection part of the flexible cable and the silicon

probe. The implantation was performed under CCD camera control. After the MEA

had reached its final place in the tissue, the two-photon setup was switched from

camera mode to two-photon mode and the electrode sites were located. Following

this, the focal plane was stabilized and the imaging laser was switched off. The
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electrophysiological measurement was started without the laser imaging in order to

provide reference recordings. After 8 minutes of such laser-free recordings, the two-

photon imaging was initiated and the imaging laser introduced artefacts. Another

8 minutes of laser-noised recordings were hence obtained. The third part of each

measurement was performed without the two-photon imaging again, in order to

obtain further control data sessions, this time after the laser effect. During the

second part of the measurements, the two-photon imaging laser generated artefacts

appeared which exceeded the amplitude of SUAs by at least an order of magnitude

as shown in Fig 3.5.
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Figure 3.5: Representative sample of the imaging laser impact on the electrophysiological record-
ings. Between the first and the last parts of the measurement, which were recorded
without two-photon imaging, photoelectric artefacts of the two-photon imaging laser
are observable (A). The recorded data at the moment when the imaging laser was
switched on (B, C)

3.1.4 Data analysis

MATLAB 2017a (MathWorks Inc., Natick, MA, USA) was used for off-line signal

visualization, filtering and analysis. Figure 3.6 summarizes the steps that had been

performed in order to accomplish the identification of spike clusters in the data

containing two-photon laser noise.
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Apply comb filter
(on both recordings,

so spike shapes 
are distorted equally)

Spike detection 
and sorting

features of spike clusters

check spike consistency

Laser noise free
300-3000 Hz data

Laser noise free
comb filtered data

Laser noise free 
raw data

Laser noisy
comb filtered data

Laser noisy
300-3000 Hz data

Laser noisy raw data

300-3000 Hz
band pass filter

Comb filter parameters

Figure 3.6: Filtering and analyzing steps. The performed filtering and analyzing steps in order
to identify the spike clusters and check the spike consistency between the two-photon
imaging laser noise free and the laser noisy data. The green arrow indicate the place
of the parameter setting algorithm which is presented in Figure 3.7

All of the applied band-stop infinite impulse response (IIR) filters were created

with passband ripples of 0.4. Since the IIR filters delay some frequency components

more the others, they distort the input signals with frequency dependent phase

shift. Thus they were applied with the ‘filtfilt’ Matlab function that compensated

the delays introduced by such filters, and thus corrected for filter distortion. The

recorded signals were initially filtered with a second order band-pass filter between

300 Hz and 3000 Hz, which is a commonly used method for highlighting and de-

tecting SUAs [142], but not adequate for eliminating the photoelectric artefacts.

Following this, Fast Fourier transform (FFT) was applied on the electrophysiologi-

cal recordings. Comparing the frequency spectra of the first (laser off) part of each

measurement to their second part (laser on), it was evident that the imaging laser

gave rise to a population of high peaks in the frequency domain. These peaks were

located periodically, with a distance of 15.5 Hz between the neighboring ones. This

frequency value corresponds to the imaging frame rate of the applied two-photon

laser (Figure 3.9). Considering this nature of the artefacts, it is a straightforward

idea to utilize of a comb filter algorithm to eliminate the noise of the imaging laser.
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The construction process of the laser noise reduction filters is shown in Figure 3.7.

Such a comb filter had to be constructed individually for every recording channel

because of the different laser noise characteristics on the channels. Each custom-set

comb filter was built from filter modules, a representative filter module is shown

in Figure 3.8. The modules contain band-stop filters fitted to a certain amount of

peaks in the frequency domain.

Laser noise amplitude 
too high?

(time domain analysis)

Generate new 
comb filter module

(with freq. domain analysis)

Extend temporary 
comb filter parameters 
with the new module

Apply comb filter 
with temporary 

parameters

Laser noisy
300-3000 Hz data

Finalize 
comb filter parameters

START

Temporary 
laser noisy

comb filtered 
data

Temporary 
comb filter
parameters

Data
Processes

NO

YES

Figure 3.7: The parameter setting algorithm of the applied custom-set comb filter. The applied
parameters are the number of filter modules (NM ), the center frequencies of filter
modules (fpeak), the number of filters within each module (NF ) and the distance
between filters within each module (DF )
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Figure 3.8: The result of the parameter setting of a representative filter module if NM = 1
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Figure 3.9: The absolute value of the frequency spectrum of the electrophysiological recordings.
The fast Fourier transform analysis of the imaging laser generated noise in the
electrophysiological recorded data (A). Harmonics below 1200 Hz (C) and at higher
frequencies (B) of the laser generated periodical artefacts appeared with high mag-
nitudes. The overlap of the harmonics is observable (B). A part of the rejected
frequencies by the custom-set comb filter is shown in yellow (D)

The parameter setting algorithm of the comb filter is shown in Figure 3.7. These

parameters were the number of filter modules (NM), a vector containing the center

frequencies of the filter modules (fpeak), the numbers of the applied band-stop filters

within each module (NF ) and the distances between the center frequencies of the

applied band-stop filters within each module (DF ). The parameter setting algorithm

utilized the 300− 3000 Hz filtered laser noisy data in a cyclic manner, during each

cycle, a new filter module is added to the comb filter. The first step in the cycle

was the generation of a temporary laser noise filtered data by the application of

the temporary comb filter, i.e. the comb filter generated in the previous cycle on

the 300 − 3000 Hz filtered laser noisy data (in the first cycle the number of filter

modules is 0, so this step left the data unchanged). The second step was deciding

whether the temporary filter was sufficient. This was performed by time domain

analysis on the temporary laser noisy filtered data. If the amplitude of the periodic

laser noise had been reduced below 40 µV , then the temporary filter parameters

became the finalized comb filter parameters. Otherwise, the last step in the cycle

followed, which was the generation of a new filter module. This was performed based
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on the frequency domain analysis of the temporary laser noisy comb filtered data

(which is equivalent to the 300− 3000 Hz filtered laser noisy data in the first step).

After applying the FFT on this data, the algorithm found the highest peak in the

frequency domain. This frequency became the center frequency (fpeak) of the new

filter module. The neighboring peaks were located at the frequencies of fpeakk±nDF

(DF was found to be 15.5 Hz). The values at the neighboring peaks were compared

to the highest detected peak to define the number of the applied filters (NF ) within

the new module. NF of the filter module was defined so that the band-stop filters

of the comb filter would cover all the neighboring peaks which exceeded in height

the 15% of the highest peak (i.e. the one at the center frequency). Every band-stop

filter element of the new comb filter module was defined with cutoff frequencies

at below 3 Hz and above 3 Hz from the frequency value of each peak. Thus the

central rejected frequencies of the comb filter were adjusted to the frequencies of

the laser noise peaks and each section of the comb filter had a 6 Hz wide rejected

band, as shown in Figure 3.8 and in Figure 3.9.D. The temporary comb filter was

extended with the thus obtained new module and the cycle restarted. This process

was repeated until the time domain analysis gave positive result, i.e. the amplitude

of the laser noise peaks in the time domain became lower than 40 µV , in which case

the summarized comb filter parameters were accepted. The thus constructed comb

filters were applied on both the laser noise free and the laser noisy 300 − 3000 Hz

filtered data in order to equally distort the SUA (i.e. spike) waveforms in both

cases. Later on, this allowed us to match the features of different spike clusters

in the laser free and laser noisy measurements. Since the imaging laser generated

artefacts were nonuniform along the electrodes, recordings from different electrodes

required filters with custom-set parameters. We investigated whether the comb filter

prevents us from SUA detection and sorting. Spike detection was performed by

simple thresholding. Three features of each potential spikes were defined for spike

sorting, which were the location of the minimum amplitude value of the spike, and

the values at 250 µs (i.e. five datapoints at 20 kHz sampling frequency) before and

after the peaks as shown in Figure 3.10.

The clusters were manually accepted or discarded based on spike waveforms and

autocorrelograms. This feature extraction method was preferred rather than the

most commonly used method for spike sorting, the principal component analysis

(PCA) [143], because the thus defined features could provide more robust informa-

tion about spike waveform consistency (spike stability). In terms of the laser noise

free part of the experiments, I performed a comparison of the feature-based and

the PCA methods on the band-pass filtered data to verify the results of the feature

extraction based method which was used for testing the spike stability too. Having
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Figure 3.10: The applied principal component selection. Each potential spike was defined with
their three principal component before spike sorting: the location of the minimum
amplitude value of the spike, and the fifth datapoints before and after the peak

applied the commonly used 300 − 3000 Hz band-pass filter on the laser noise free

data, spike sorting was performed based on PCA then the results of the PCA based

and the feature extraction based sorting process were compared. I have performed

a comparison on the sorted spike waveforms and on the interspike intervals too.

Interspike interval validation is a commonly used method for checking the quality

of MEA performance over a longer period of time [143].

The spike stability was verified as follows. First, the averages and the standard errors

of the means of each feature were calculated in every minute of the recordings. These

values were compared to each other during the whole measurement to verify the

impact of the imaging laser and the applied filters to the shape of the thus sorted

spikes. Furthermore, the number of spikes were counted in every minute of the

recordings for each clusters. This method showed whether the artefacts caused by

the imaging laser gave rise to false positive SUA detections. Another examination of

the possible false positive SUA detection was the comparison of the detected spike

waveforms and an autocorrelogram belonging to a specific SUA during the laser

noisy and the laser noise free recording. With the inspection of the waveforms and

the autocorrelograms during the laser on and the laser off sections I could check

the effect of the imaging laser on the neural cells firing. To be convinced that the

periodic imaging laser did not generate false positive spikes when the period reach

the electrode of the MEA, I observed the average occurrence of the sorted spikes

within the laser noise contaminated period.
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3.2 Materials and methods related to the determination of

the thickness dependent electrical impedance spectrum

of human dentin

3.2.1 Specimen preparation

Dentin disks were prepared from human wisdom teeth for the in vitro character-

ization of the thickness dependent impedance of human dentin. Five teeth were

removed without damage in the Semmelweis University, Department in Community

Dentistry. The collection and application of the specimens happened anonymously

in accordance with the research ethical approval made by the Semmelweis Univer-

sity Regional Scientific and Research Ethics Committee with the permission note of

246/2017. The protocol of specimen preparation was the following. The roots were

stabilized in dental gypsum and with a suitable saw (Hofer, Aathal - Seegräben,

Switzerland) from 1 mm to 2.3 mm thick dentin disks were cut from the occlusal

surface of the crown between the pulp and the enamel. The thickness of a prepared

disk was depending on the extension of the intact volume of the examined tooth.

The surfaces of the prepared disks were cleaned with 35% phosphoric acid for 20 sec-

onds long to open the dentinal tubules from smear layer. The specimens were stored

in 0.154 mol/L sodium chloride solution. A representative sample of the prepared

dentin disks is shown in Figure 3.11 subfigure A.

A B

5 mm 30 mm

Figure 3.11: A representative sample of the prepared dentin disks with four test areas after the
drilling processes (A) and during the impedance measurement in the Petri dish
with the reference electrode next to the dentin disk holder (B)
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3.2.2 Thickness measurements

Prior to realizing thickness measurements, 3−4 separated test areas had been spec-

ified on the surface of each dentin disk. The number of the specified areas depended

on the size of the intact area of the examined dentin disks. A layer thickness measure-

ment apparatus was applied on the middle of the defined test areas. The accuracy

of the thickness measurement method is critical for proper calculation of the thick-

ness dependency of the impedance, thus a stereotaxic frame with 10 µm resolution

(David Kopf Instruments, Los Angeles, USA) was used for this purpose. A needle

was fastened to the electrode holder of the stereotaxic frame. Using a microscope, the

reference thickness value was defined where the needle point reached the surface of

the frame. The examined dentin disk was placed under the lifted needle to measure

the thickness of each test area. Following this, the thickness values of the test areas

were calculated by subtracting the reference values from the thickness values which

were measured on the top of the test areas. The thickness measurement method was

utilized before every impedance measurement to specify the correlation between the

thickness and the impedance of the dentin.

3.2.3 Impedance measurement system

An Intan RHD 2000 amplifier system (Intan Technologies, Los Angeles, USA) was

used for impedance measurements. The system contained an Intan RHD 2000 USB

interface board with a 16-channel amplifier board. The amplifier board was con-

nected to the interface board via an SPI interface cable, the interface board was con-

nected to a computer via USB 2.0. One of the sixteen channels was used to measure

the impedance between the reference electrode and the working electrode. During

the experiments the reference electrode was an Ag/AgCl electrode and the working

electrode was an 80% Pt− 20% Ir 40.46 µm thick micro wire (California FineWire

Company, California, USA). The experiments were performed in 0.154 mol/L NaCl

solution. The examined dentin disk was placed in a holder in a Petri dish filled with

the said NaCl solution. The holder allowed the solution to flow under the specimen

and through the dental tubules. The reference electrode was inserted in the solu-

tion near the specimen while the working electrode was built into a silicone tube.

The inner diameter of the applied tube was 1 mm so the measured dentin surface

was 0.785 mm2. The silicone tube was also filled with the NaCl solution and it was

gently pressed to the dentin to insulate the working electrode from the surrounding

solution. Because of the insulation, the ion current between the working and the ref-

erence electrode could only flow through the dental tubules during the impedance
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measurement. The thus assembled measurement system is shown in Figure 3.11

subfigure B and the schematic of the assembled system is presented in Figure 3.12.

V
I

0.154 mol/L Sodium Chloride solution Dentin

EnamelAg/AgCl reference electrode

Silicone rubber Working electrode

Figure 3.12: The schematic of the assembled impedance measurement system. The electric cir-
cuit between the working electrode and the reference electrode can only be closed
through the dentin tubules because of the insulator silicones

3.2.4 Impedance measurement

The insulation of the silicone tube was verified before the impedance measurements

of the test areas. The filled tube with the working electrode in it was gently pressed

to the bottom of the Petri dish. The reference electrode was next to the tube as we

described it earlier. The impedance measurement system has shown that there was

no electrical connection between the two electrodes so the insulation of the silicone

tube was suitable for the further recordings. Prior to measuring the impedance of the

dentin disks it was necessary to define the impedance of the working electrode and

the transfer fluid to calibrate the measurement system. The thus defined electrode

impedance was subtracted from the impedance values measured on test areas to

get the impedance of the examined dentin. After every thickness measurement the

impedance of each test area was measured at multiple frequencies between 50 Hz

and 5000 Hz and the coherent thickness-impedance values got recorded according

to the frequency. As the next step of the measurement process, test areas of dentin

disks were thinned with low speed dental drill. After thinning the same cleaning

method was performed with phosphoric acid which was utilized after cutting dentin

disks. The cleaning was followed by thickness measurement and the specimens were

immersed to the NaCl solution to refill the dental tubules with saline. As it was

done, the impedances of thicker test areas were measured and the new thickness-
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impedance values got recorded. The whole measurement process was repeated until

the dentin disks were reduced to a thickness of 0.3 mm.

3.2.5 Data analysis

The first step of the data analysis was to compare the corresponding thickness

and impedance values. Following that, focus groups were organized based on the

measured thickness to observe the impedance of thickness ranges. Group intervals

were defined with consideration of the importance of the remaining dentin thickness

in clinical practice. The thus defined focus groups and their quantity of samples are

shown in Table 3.1.

Group No. Max thickness Min thickness Quantity of samples
6 2.28 mm 1.25 mm 13
5 1.24 mm 0.95 mm 14
4 0.94 mm 0.75 mm 9
3 0.74 mm 0.60 mm 13
2 0.59 mm 0.45 mm 11
1 0.44 mm 0.30 mm 11

Table 3.1: Quantities and ranges of focus groups of the recorded thickness-impedance pairs for
data analysis

For statistical analyzing IBM SPSS Statistics 24 (IBM Corporation, New York,

USA) software was used. The focus groups were observed by Kruskal - Wallis test

on p = 0.002 significance level, and by using LSD as a post hoc test.
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Chapter 4

Results and Discussion

4.1 Results concerning the simultaneous electrophysiologi-

cal recording and two-photon imaging

As detailed in section 1.2.1, simultaneous two-photon imaging and electrophysiolog-

ical measurements with MEMS technology based microelectrode arrays at the same

location is compromised by the formation of photoelectric artefacts in the elec-

trophysiological signals. Regarding our experiments when electrodes were located

within the field of view of the two-photon microscope, the imaging laser was able to

create such artefacts with amplitudes of typically 50 times greater than the ampli-

tude of the largest SUAs. Moreover, the complicated spectrum of the photoelectric

noise prevents the filtering of the artefact with the application of simple filters. Our

following results suggest that the utilization of a comb filter based algorithm can

enable researchers to detect and sort SUAs even if the tissue surrounding the MEA

is observed with two-photon microscopy.

Since the filtering and analyzing steps of the custom-set comb filter based algorithms

were based on the same ideas in case of the in vitro and in the in vivo experiments,

the results of the self-developed filtering and analyzing algorithm for simultaneous

experiments of electrophysiology and two-photon imaging are going to be presented

just in case of the in vitro experiments in detail. Representative results of the filtering

and analyzing process from the in vivo recordings during two-photon imaging will

be presented afterwards then the discussion on the results will be reviewed at once

in case of the in vitro and the in vivo experiments.
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4.1.1 Results concerning the simultaneous in vitro experi-

ments

Figure 4.1 illustrates the observed area in case of the in vitro experiments and

suggests that the above described two-photon microscope setup and settings were

suitable for detecting activities of neuron somas and dendrites via calcium imaging.

The green charts above the highlighted squares show the calcium imaging intensity

during a session of two-photon imaging, where the peaks indicate the bioelectrical

activity of the GCaMP6 neural tissue.
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Figure 4.1: Two-photon calcium imaging. The imaging reveals activities of neuron somas (sub-
figures 1, 3, 4) and dendrites (subfigure 2) in the vicinity of the microelectrode array

The filters influenced frequency spectrum of the electrophysiological recordings is

shown in Figure 4.2, where subfigure A shows the absolute value of the frequency

spectrum of the unfiltered signal, subfigure B shows the absolute value of the fre-

quency spectrum of the band-pass filtered signal while subfigure C shows the ab-

solute value of the frequency spectrum of the band-pass and noise filtered signal.

Comparing the subfigures, it can be observed that after both of the filtering processes

the frequency component of the noise became two orders of magnitude lower.

Figure 4.3 shows neural signal samples obtained from an electrode illuminated with

direct laser light before (gray) and after (orange) the application of the complex

comb filter based filtering algorithm. It is evident that small amplitude spike-like

artefacts are still present on the filtered signal and these spike-like artefacts are

synchronized with the period of the laser noise. Fortunately, however, we can also

observe that major single unit activity amplitudes exceed the amplitude of these

artefacts. The filter was also applied on the signal sections which were recorded

when the imaging laser was off so those sections can serve as proper references for
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Figure 4.2: The filters influenced frequency spectrum of the electrophysiological recordings. Sub-
figure A shows the absolute value of the frequency spectrum of the unfiltered signal,
subfigure B shows the absolute value of the frequency spectrum of the band-pass fil-
tered signal and subfigure C shows the absolute value of the frequency spectrum of
the band-pass and noise filtered signal

single unit activity detection. Moreover, with further developments, the artefact

spikes can probably be eliminated with an algorithm which takes into account the

synchrony of the artefacts and the laser noise. A limitation of this proposed method

is that when a single unit activity coincides with a spike artefact, it is probably also

eliminated. However, comparing the width and the density of the laser generated

artefacts in time range, this limitation should only affect approximately 8.5% of the

signal.

Figure 4.4 shows one of the tissue region observed with two-photon microscopy, con-

taining the recording electrode sites. The Figure 4.4 shows the recording position

from where the representative detected and sorted SUA, which will be presented in

the following, was recorded. The result of the feature extraction for this represen-

tative case is shown in Figure 4.5, where the potential spikes are shown in black

if they were detected during the laser off condition, and red if they were detected

during the laser on condition.
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Figure 4.3: Representative sample of the results of the applied filtering algorithm. The subfigures
show the same data as Figure 3.5 does, prior to filtering (gray) and after applying
the filtering algorithm (orange)
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Figure 4.4: Two-photon image from the simultaneous electrophysiological recording and two-
photon imaging with the applied MEA inserted into the neural tissue in the field
of view of the two-photon microscope

The obtained spike waveforms and their average are presented in Figure 4.6 subfigure

A, the associated autocorrelogram is presented in Figure 4.6 subfigure B.

To verify the applied filtering algorithm, the consistency of the sorted spike wave-

forms (spike stability) was visualized. Results of the average of spike features within

each minute of the recordings suggest that the laser noise does not corrupt the thus
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Figure 4.6: The obtained spike waveforms (A) and their average (black line) and the autocor-
relogram of the thus sorted spike (B)

obtained spike waveforms. The averaged feature components within the measuring

minutes is shown in Figure 4.7 subfigure A. The slight decrease of the amplitude

feature (shown in orange) could be caused by the nature of the long term exper-

iments of brain slices. The number of the detected spikes within every minute of

the measurement is shown in Figure 4.7, subfigure B. The result of the subfigure

probably did not indicate false positive SUA detection, it rather suggested that the

imaging laser may had effect on the neural cells firing rates. To verify this state-

ment, I observed the differences between the laser on and the laser off conditions

from multiple angles.

The differences between the first laser off and the laser on conditions are observed in

terms of the spike waveforms and their averages in Figure 4.8, where the subfigure A

presents the first laser off condition, the subfigure B presents the laser on condition

and subfigure C presents the differences in the averages of the observed waveforms.

The slight decrease in the amplitude of the sorted SUA can be observed during

the laser on condition as it was shown in Figure 4.7 subfigure A, but the sorted
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Figure 4.7: Spike stability observation. The averaged feature components (A) and the number of
the detected spikes (B) within every measuring minutes
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Figure 4.8: The differences in spike waveforms and their averages between the first laser off (A,
average is black), the laser on (B, average is orange) conditions and the comparison
of the averages (C)

waveforms and their averages show similarity. To verify that the waveforms belonged

to one single unit, their autocorrelogram were compared during the first laser off and

the laser on conditions. The associated autocorrelograms are shown in Figure 4.9

where the subfigure A presents the first laser off condition and the subfigure B

presents the laser on condition. The nature of both autocorrelograms indicate that
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the observed spikes came from the same single neural cell, moreover the increased

number of spikes which was identified in Figure 4.7 subfigure B can be observed in

the autocorrelogram in the laser on condition too.
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Figure 4.9: The differences in the autocorrelograms between the first laser off and the laser on
conditions

This result may be caused by modulations of the cells firing rates due to the laser

light, as suggested by Kozai et al [144]. This statement is might be confirmed by

the histogram of the occurrence of the presented spike within the laser noisy period,

which is shown in Figure 4.10. The width of a noisy period, which is the distance be-

tween two neighboring laser generated artefact peaks, is equal to 15.5 Hz or 64.52 ms

as it can be observed in Figure 4.10. The average occurrence of the presented spike

within the laser noisy period seems to be increased.
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Figure 4.10: The histogram of the average occurrence of each spike within the laser noisy period

The results of the comparison of the above described special feature extraction and

the PCA based methods for spike sorting is shown in Figure 4.11, in Figure 4.12

and in Figure 4.13. The comparison was performed on the first laser off period of
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the experiments, on the same recordings which were presented above. Figure 4.11

presents the first, the second and the third principal components of the PCA of the

300−3000 Hz band-pass filtered laser noise free data. Having applied the feature ex-

traction method on the same 300− 3000 Hz band-pass filtered laser noise free data,

the results of the spike sorting and clustering method is presented in Figure 4.12,

where subfigure A presents the spike waveforms of a cluster and their average based

on PCA, and subfigure B shows the spike waveforms of the same cluster and their av-

erage based on the special feature extraction method. The clustering was performed

manually after the spike sorting process. The results of the interspike interval anal-

ysis is presented in Figure 4.13, where subfigure A shows the interspike intervals of

the SUAs based on PCA, and subfigure B presents the interspike intervals of the

SUAs based on the special feature extraction method. The two different spike sorting

methods provide similar results. As it is shown in Figure 4.12, the averages of the

clustered spike waveforms based on the PCA and the feature extraction methods

indicate that the spike sorting provided the opportunity to cluster the same SUA

from the 300 − 3000 Hz band-pass filtered laser noise free data. The nature of the

interspike intervals shown in Figure 4.13 presents similarity, the slight differences in

the number of the spikes might come from the manual clustering process.
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Figure 4.11: The first, the second and the third principal components of the PCA of the 300−
3000 Hz band-pass filtered laser noise free data for the comparison of the feature
extraction and the PCA based methods for spike sorting
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4.1.2 Results concerning the simultaneous in vivo experi-

ments

To prove that the developed MEA was suitable for electrophysiological in vivo

recording during two-photon imaging, we performed acute in vivo experiments on

mice. After the insertion of the MEA inside the CW of the mice skulls, we accom-

plished calcium imaging as it is illustrated in Figure 4.14. The flexible cable of the

MEA and the self-designed 3D printed electrode holder provided us enough space to

perform two-photon imaging after the insertion, near the shanks of the MEA. The

shadow of the MEA in the field of view of the two-photon objective is at the top

crosswise. Neurons are observable near the shank of the MEA.

The artefacts caused by the imaging laser could have different kind of natures be-

cause of the differences in the technological parameters of the applied MEAs such as

the thickness of the substrate silicon or the thickness and the material of the applied

conductive layer. Having applied the self-developed custom-set comb filter based fil-

tering and analyzing algorithm on the electrophysiological recordings it was proved

to be suitable for noise elimination and spike detection on this different kind of MEA

too. After eliminating the majority of the laser generated artefacts, the algorithm

detected and sorted SUAs from the simultaneous in vivo measurements. One of the

sorted SUA, its waveforms with their average and the correlated autocorrelogram is

presented in Figure 4.15.
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50 μm

Figure 4.14: Two-photon image from the simultaneous in vivo electrophysiological recording and
two-photon imaging. The shadow of the MEA in the field of view of the two-photon
objective is at the top crosswise. Neurons are observable near the shank of the MEA
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Figure 4.15: One of the sorted SUA from in vivo recordings, the spike waveforms (A) with their
average (black line) and the autocorrelogram of the thus sorted spike (B)
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4.2 Discussion concerning the simultaneous electrophysio-

logical recording and two-photon imaging

Neuroscientists claim that simultaneous application of two-photon imaging and im-

planted MEAs would be beneficial for obtaining more complex information about

the activity, connectivity and function of brain cells [67, 85, 145]. One of the major

challenges of the simultaneous utilization of these state of the art methods comes

from the photoelectric artifacts on the electrophysiological recordings caused by the

imaging laser. This challenge was partly overcome previously with various data fil-

tering algorithms [146]. The herein presented complex filtering method relieves this

obstacle further by offering means for researchers to detect and sort SUAs from

recordings affected by the laser noise of a two-photon microscope. However, the

methods have still limitations. A “clean”, laser noise free recording is suggested to

be recorded before and after the actual simultaneous recording in order to verify

the validity of the obtained spike features. Furthermore, the applied comb filter

based algorithm distorts spike waveforms more than the more commonly utilized

band-pass filters (with cutoff frequencies at e.g. 300 Hz and 3000 Hz). A promising

alternative possibility to monitor simultaneously the extracellular activities and the

morphology near the observed neurons is the utilization of the genetically encoded

voltage indicators (GEVIs) [147]. GEVIs can reveal non-spiking electrical activity

and resolve spike timing with sub-millisecond resolution, tasks that cannot be per-

formed by fluorescent genetically encoded calcium indicators, but the application of

the GEVIs is still challenging and it has pitfalls [148]. Since the response kinetics

of a voltage indicator must be able to resolve changes on the sub-millisecond time

scale, GEVIs can not be observed with traditional two-photon microscopy. Thus

the utilization of a new kind of scanning method with higher frame rate is also

required [149].

The presented method can be further developed by the application of an automated

algorithm which determines the range of the comb filter in the frequency band,

and by a more complex software which takes into account the periodicity of the

laser noise for spike detection. Some efforts were made for automating the process,

i.e. to solve the parameter setting step automatically, but for a sufficiently robust

algorithm more work needs to be done on this matter.
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4.3 Results concerning the determination of the thickness

dependent electrical impedance spectrum of human

dentin

The comparison of the combined absolute impedance of the working electrode and

the saline to the absolute impedance of a 1 mm thick dentin layer according to the

measuring frequency is shown in Figure 4.16. The working electrode in the chosen

geometry in the silicone rubber was suitable for measuring on small examined area

and it had lower impedance than the observed dentin layer, thus the applied working

electrode was suitable for the dental experiments. The comparison of the phase of

the combined impedance of the working electrode and the saline compared to the

phase of the impedance of a 1 mm thick dentin layer is shown in Figure 4.17. The

Bode curves indicate the capacitive nature of the observed dentin layer and the

measurement system too.
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Figure 4.16: The combined absolute impedance of the working electrode and the saline (orange)
compared to the absolute impedance of a 1 mm thick dentin layer (gray)
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Figure 4.17: The phase of the combined impedance of the working electrode and the saline (or-
ange) compared to the phase of the impedance of a 1 mm thick dentin layer (gray)

The average impedance and the standard error of the mean of each thickness group is

presented at different frequencies in Figure 4.18. In order to represent the connection

between the absolute impedance and the thickness of the examined dentin, the

thickness-impedance coefficient of human dentin was defined as:

|Z|
d
A = 8.356 Ωm

with the standard error of 0.605 Ωm at 1 kHz, where Z is the absolute impedance, d

is the thickness and A is the measured area of the dentin. The thickness-impedance

coefficient depends on measuring frequency. The thickness-impedance coefficient and

the standard error of the mean of each observed frequency is shown in Table 4.1.

The applied statistic method proved that there are significant differences on

p = 0.002 significance level at every observed frequency between the impedance val-

ues of each thickness group.

Frequency Thickness-impedance Standard error
[kHz] coefficient [Ωm] [Ωm]
0.1 11.931 0.763
0.2 9.816 0.614
0.5 8.624 0.583
1 8.356 0.605
2 7.913 0.582
5 7.997 0.596

Table 4.1: The thickness-impedance coefficient and the standard error of the mean of each ob-
served frequency
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Figure 4.18: Average impedances and their standard errors of each thickness group at different
frequencies. The group numbers indicate the following thickness intervals: Group
no.1: 0.30-0.44 mm, group no.2: 0.45-0.59 mm, group no.3: 0.60-0.74 mm, group
no.4: 0.75-0.94 mm, group no.5: 0.95-1.24 mm, group no.6: 1.25-2.28 mm

4.4 Discussion concerning the determination of the thick-

ness dependent electrical impedance spectrum of human

dentin

Previous studies reported the impedance of the human dentin at one specified thick-

ness (d) and usually from a larger measurement area (A). Using the analogy of

conductive materials, the measurement area can be taken into account as the cross-

section and the length of a conductive material, which is inversely proportional to the

impedance. Therefore, it is important to include measurement areas in the analysis if

we intend to compare the values obtained by previous and future studies. With this

taken into account, the thickness-impedance coefficient presented here has proven

to be in the same order of magnitude as earlier studies suggested [115, 124, 150].

However, the measurements of those studies were limited to one specific thickness

value. In case of measuring the impedance of the dentin perpendicularly to dental

tubules, the measured impedances would be in a higher range of magnitude [151].
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We used surgically removed impacted wisdom teeth in order to get similar sam-

ples where dentinal tubules were open on their entire length, also to reduce the

influence of age related factors. A former study presented the age related changes

in impedance spectroscopy of human dentin [120]. In terms of the age related oc-

clusion of dental tubules, wisdom teeth are slightly comparable with the youngest

focus group presented in that study. Comparing the results, if the tested thickness

and the measured area are considered, the thickness-impedance coefficient provides

corresponding impedance value as it was published earlier. A recent in vivo study

observed the effect of cavity depth on dentin sensitivity [111]. The authors deepened

the cavities and measured the electrical resistance of them to observe the distance

between the bottom of the cavities and the enamel-dentin junction. Since the re-

maining dentin thickness was not observed, the electrical resistance values presented

in that study are hardly comparable with our results.
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Chapter 5

Overview of the new scientific

results

5.1 First thesis group: Simultaneous utilization of electro-

physiological recording and two-photon imaging

5.1.1 I.a thesis

I developed a complex custom-set comb filter based filtering algorithm which was

used for data analysis to eliminate the imaging laser generated artefacts from si-

multaneous two-photon imaging and electrophysiological measurements. In vitro

experiments were performed on mouse neocortical slices expressing the GCaMP6

genetically encoded calcium indicator for monitoring the neural activity with two-

photon microscopy around an implanted MEA and electrophysiological recordings

were made from the tissue region of the optical imaging. I proved that the applied

filtering is capable of eliminating the majority of the periodic photoelectric artefacts

generated by the imaging laser and this method allows single unit activity detection

and sorting. Publication related to the thesis point: [R1]

5.1.2 I.b thesis

To verify the suitability of it, I have utilized the self-developed filtering algorithm on

extracellular recordings from a special, MEMS technology based MEA which was

developed so as to perform simultaneous electrophysiological recording and two-

photon imaging from the same tissue region of mice brains expressing GCaMP6

genetically encoded calcium indicator. I proved that the filtering algorithm was
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suitable for SUA detection and sorting from recordings of the self-developed MEA

loaded by imaging laser generated artefacts. Publication related to the thesis point:

[R1]

5.2 Second thesis: Thickness-impedance coefficient of the

human dentin

I observed the impedance spectrum of dentin disks prepared from human wisdom

teeth in the thickness range of 0.3 − 2.3 mm to reveal the correlation between the

thickness and the electrical impedance of human dentin. In accordance with the

results of the performed in vitro experiments I determined the thickness-impedance

coefficient of human dentin which is

|Z|
d
A = 8.356 Ωm

with the standard error of 0.605 Ωm at 1 kHz, where Z is the absolute impedance,

d is the thickness and A is the measured area of the human dentin. The thickness-

impedance coefficient depends on measuring frequency. The applied statistic method

proved that there are significant differences at every observed frequency between the

impedance values of each thickness group. Publication related to the thesis point:

[R2]
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Author’s publication list

6.1 Papers closely related to the PhD dissertation
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29(2â¿“3):169–195, 1999.

[18] Sheng-Fu Liang, Hsu-Chuan Wang, and Wan-Lin Chang. Combination of eeg

complexity and spectral analysis for epilepsy diagnosis and seizure detection.

EURASIP Journal on Advances in Signal Processing, 2010:62, 2010.

67



[19] M.B. Sterman. Basic concepts and clinical findings in the treatment of

seizure disorders with eeg operant conditioning. Clinical Electroencephalog-

raphy, 31(1):45–55, 2000. Using Smart Source Parsing Jan.

[20] Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarland, Gert

Pfurtscheller, and Theresa M. Vaughan. Brain-computer interfaces for com-

munication and control. Clinical Neurophysiology, 113(6):767 – 791, 2002.
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[140] Norbert Hájos, Tommas J. Ellender, Rita Zemankovics, Edward O. Mann,

Richard Exley, Stephanie J. Cragg, Tamás F. Freund, and Ole Paulsen. Main-

taining network activity in submerged hippocampal slices: importance of oxy-

gen supply. The European Journal of Neuroscience, 29(2):319–327, 2009.

[141] Neuronexus. Data sheet of the microelectrode array for in vitro electro-

physiology, page 93, last accessed: March 2021. https://neuronexus.com/wp-

content/uploads/2020/09/2020-Probe-Catalog.pdf.

[142] R. Quian Quiroga, Z. Nadasdy, and Y. Ben-Shaul. Unsupervised Spike De-

tection and Sorting with Wavelets and Superparamagnetic Clustering. Neural

Computation, 16(8):1661–1687, 2004.

[143] Michael S Lewicki. A review of methods for spike sorting: the detection and

classification of neural action potentials. Network: Computation in Neural

Systems, 9(4):R53–R78, 1998. PMID: 10221571.

[144] Kaylene C. Stocking, Alberto L. Vazquez, and Takashi D.Y. Kozai. Intra-

cortical neural stimulation with untethered, ultrasmall carbon fiber electrodes

mediated by the photoelectric effect. IEEE Transactions on Biomedical Engi-

neering, 2019.

[145] Yi Qiang, Pietro Artoni, Kyung Jin Seo, Stanislav Culaclii, Victoria Hogan,

Xuanyi Zhao, Yiding Zhong, Xun Han, Po-Min Wang, Yi-Kai Lo, Yueming

Li, Henil A. Patel, Yifu Huang, Abhijeet Sambangi, Jung Soo V. Chu, Wentai

Liu, Michela Fagiolini, and Hui Fang. Transparent arrays of bilayer-nanomesh

microelectrodes for simultaneous electrophysiology and two-photon imaging in

the brain. Science Advances, 4(9):eaat0626, 2018.

[146] Woodrow L. Shew, Timothy Bellay, and Dietmar Plenz. Simultaneous multi-

electrode array recording and two-photon calcium imaging of neural activity.

Journal of Neuroscience Methods, 192:75–82, 2010.

[147] Michael Z Lin; Mark J Schnitzer. Genetically encoded indicators of neuronal

activity. Nature Neuroscience, 19:1142–1153, 2016.

[148] Rishikesh U. Kulkarni; Evan W. Miller. Voltage imaging: Pitfalls and potential.

Biochemistry, 56(39):5171–5177, 2017.

80



[149] Vincent Villette; Mariya Chavarha; Ivan K. Dimov; Jonathan Bradley; Lagna-

jeet Pradhan; Benjamin Mathieu; Stephen W. Evans; Simon Chamberland;

Dongqing Shi; Renzhi Yang; Benjamin B. Kim; Annick Ayon; Abdelali Jalil;

Francois St-Pierre; Mark J. Schnitzer; Guoqiang Bi; Katalin Toth; Jun Ding;

Stephane Dieudonne; Michael Z. Lin. Ultrafast two-photon imaging of a high-

gain voltageindicator in awake behaving mice. Cell, 179(7):1590–1608, 2019.

[150] Aziza Eldarrat, Alec High, and Girish Kale. In vitro analysis of ‘smear layer’

on human dentine using ac-impedance spectroscopy. Journal of Dentistry,

32:547–554, 2004.
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