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1

Introduction

Nowadays, system control is essential in everyday life. It has a long history, e.g. it was

applied already by the Romans to handle irrigation systems. In our days, the machines,

like mechanical and electronic systems (from the excavators to the CD players) are

unimaginable without control.

In the present, as a part of control, one of the most prevalent topics is the control

of systems with uncertainties. The growing expectations of avoiding human assistance

in situations that need increased attention because of the system’s vagueness or dan-

gerousness makes the role of the automated controllers (that can handle vagueness)

increased. Just to mention some examples, the automated control of power plants [1],

trains [2], or the now-tested “artificial drivers” for cars [3] are like this.

The uncertainties of systems can be divided into three main groups: 1. when

the system contains unknown parameters 2. when the system has unknown dynamics

3. when the the system’s state cannot be measured [4]. There are many possible

ways how to control such systems, e.g. using as much a priori knowledge as possible,

using the linear parametrization method, and/or applying learning mechanisms to gain

more information about the uncertainty. After that many controllers can be designed

for the system, for example sliding mode controllers [5, 6, 7], fuzzy logic controllers

[8, 9], anytime controllers [10, 11], neural network controllers [12, 13, 14], fault tolerant

controllers [15, 16], and robust controllers [17, 18]. When the system is not linear in

its parameters different adaptive controllers can be designed, like [19].

When the controlled system is just partly known robust controllers bring the most

benefit. They have been designed and investigated since the 1950s [20]. Since the first

1



1. INTRODUCTION

applications the area has started a fast progress because the first methods have been

sometimes found to lack robustness. The other problem was that in some cases when

Sliding Mode Controller, one of first robust controllers [6], was used the actuators

have had to cope with high frequency chatter-like control actions that damaged the

system. The third reason of the progress was that scientists have realized that robust

controllers were very effective when model approximations and disturbances had to be

handled in the control process. So the field began to develop. Because of today’s higher

expectations the topic is still growing.

One of the recent robust control strategies is the method called Robust Fixed Point

Transformations (RFPT). It was first designed to overcome the complexity of Lyapunov

function-based techniques for smooth systems [21] but after its robustness was improved

[22, 23] it became a powerful technique to reduce the disadvantages of the model approx-

imations and disturbances. The method applies the concept of the so-called expected

– realized system response and can be used in the environment of traditional feedback

and Model Reference Adaptive control systems [24]. In the first applications it was ap-

plied only for single input – single output systems but later it was extended to multiple

input – multiple output systems, too [25]. Its aim is to make controllers robust in that

case when an approximate model is used to estimate the behavior of the system in the

control process. Its great advantage is that it can significantly reduce the errors caused

by the model approximation and that the disturbances barely affect its performance.

This thesis focuses on improving RFPT, because though it gives the opportunity

to avoid the complexity of Lyapunov’s method, and it can reduce the disadvantages of

the model approximation, there are several questions left open and also disadvantages

to get rid of because they make uncertain or even limit the usage. The first drawback

among them is that RFPT uses the local attraction of a fixed point. The local attraction

means that it gains only local stability according to Lyapunov’s stability theorem. This

raises the issue if it was possible to achieve its stability.

The other property of RFPT is that theoretically it can improve any existing con-

troller’s results if the control task and the controller meet several conditions. Although,

up to this point this statement was proved only for classical controllers. So the question

if it could ameliorate other types of controllers is open-ended.

The third aspect which is not to be sneezed at is the applicational possibility in

real life. On the one hand, there are fields of application that significantly contribute

2



to the improvement of control science. The question is if RFPT could be utilized in

these areas. On the other hand, assume that there exists a system or phenomenon

which is too complex or some lacking resources (time, knowledge, etc.) do not let it

to be modeled accurately. In this case, only a rough approximation of the system can

be captured by a model. The main question here is if there is any connection between

the analysis of the approximate model and that of the actual system. Is it possible to

construct a controller which according to the approximate model’s results can properly

control the real system? Will the system reach the desired state accurately enough?

And finally, since Robust Fixed Point Transformations is specialized in approximate

models it is possible that it can improve the accuracy of the above mentioned controller

so that the model generates truthful output?

The thesis deals with the above questions and gives positive answers to some of

them.

The contributions of this thesis can be summarized as follows:

First of all, a new possible application field for Robust Fixed Point Transformations

is investigated. Different chaotic attractors are examined and approximate models are

built for them. Then RFPT-based controllers are designed for synchronizing two same

type attractors based on the built approximate models. The results show that RFPT

is appropriate for chaos synchronization because of its robustness: the performance of

the original controllers is significantly increased with RFPT, and a well set controller

cannot exceed a poorly adjusted controller with RFPT extension.

Then the mathematical background of Robust Fixed Point Transformations is an-

alyzed. A new structure for RFPT is proposed in which two controllers are integrated

to the system. Then it is shown by illustrative examples that the new structure gains

an additional tracking error reduction compared to that of the original methods.

After that, the stability of Robust Fixed Point Transformations is considered. An

innovative fuzzy-like parameter tuning method is introduced. It is shown that more

stable results of RFPT can be gained if the parameter tuning is applied in the control

process.

In the sequel the stability of Robust Fixed Point Transformations is reconsidered.

A new VS-type stabilization algorithm for RFPT is introduced. The results show that

when the RFPT-based controller falls out from the local convergence interval it becomes

unstable and generates the so-called chattering effect. In the next step it is shown that

3



1. INTRODUCTION

the proposed algorithm can reduce the order of chattering and stops it in very short

time. As a consequence the stability of the RFPT-based controllers is gained.

Next the combinability of Robust Fixed Point Transformations is studied. Two

types of soft computing (SC) based controllers (Fuzzy Logic Controller and Neural

Network Controller) are combined with RFPT then compared to their original form.

The results verify that the robustness of the controllers can be increased with the

application of RFPT and by this the error produced by the original soft-computing-

based controllers can be reduced significantly.

Afterwards, the applicability of Robust Fixed Point Transformations is investigated.

A hydrodynamic model of freeway traffic is studied from the viewpoint of stability. The

stationary solutions of the model are determined and their stability is analyzed. Then

an RFPT-based controller is designed to control the emission rate of exhaust fumes

for the stationary solutions. Finally, the effectiveness of the controller is examined by

comparing its results to the same controller without RFPT.

Finally, preliminary investigations are made for a possible anti-lock braking system.

A simple approximate model and a controller is designed for an anti-lock braking sys-

tem. Then the results show that though the system of a vehicle can be approximated

roughly with the proposed model, good results can be obtained with the suggested

controller.

The analysis testifies that RFPT can be applied in several areas successfully. The

investigations also prove that the contributions suggested by the author improve the

performance of the RFPT-based controllers and avoid several of their disadvantages.

First it is shown in Chapter 5 that RFPT can be successfully applied in the field of chaos

synchronization. Secondly the new structure proposed in Chapter 6 reduces the tracking

errors achieved by the original versions of RFPT. Thirdly the two innovative methods

introduced in Chapters 7 and 8 make the RFPT-based controllers stable. Fourthly in

Chapters 9 and 10 two types of soft-computing-based controllers are combined with

RFPT. Finally, in Chapters 11 and 12 a real and a possible aspect of real application

of RFPT are shown: first, a hydrodynamic model of freeway traffic is analyzed in the

viewpoint of stability and controlled with RFPT-based controller, then a simple model

for an anti-lock braking system is designed and controlled without RFPT, but with

the possibility of the extension. The constructed models make sure that there is a

4



huge difference between the systems and their approximate representatives and that

controlling them with RFPT-based controllers can bring results that reflect to reality.

The thesis is organized as follows. First, in Chapter 2 some classical controllers are

reviewed that use Lyapunov function for control or parameter tuning. In Chapter 3

some nonlinear systems are introduced that are applied to help the analysis of the

worked out methods by simulations. In Chapter 4 the basics of Robust Fixed Point

Transformations are shown. In Chapter 5 the effectiveness of RFPT in chaos synchro-

nization is investigated. Chapters 6-8 contain the improving extensions for RFPT: the

new structure, the fuzzy-like parameter tuning and the VS-type stabilization method,

respectively. Chapters 9-10 present two prevalent soft computing-based families of

controllers that are extended with RFPT. In Chapters 11 and 12 two realistic phe-

nomenons are modeled, controlled, and parsed: in the prior with-, in the latter without

RFPT (but with the possibility of the extension). The last chapter deals with the final

conclusions.
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2

State of the art

In Chapter 1 the development of nonlinear control theory and some open questions

of the field are summarized. In this chapter, the emphasis is put on those methods

that form the basis for the new ideas of this work. First, Lyapunov Stability Theory

is briefly explained, then some traditional controllers are introduced and finally, two

soft computing techniques are detailed that can advantageously be used for control

purposes.

2.1 Lyapunov Stability Theory

In the first part of the 19th century, stability of nonlinear systems was a problematic

subject for the scientists. Only a few results were at hand to answer the question

weather a system is stable or not. The first major aid came from Aleksandr Lyapunov

in 1892 [26, 27]. In his dissertation he introduced his stability theory and an approach

called Lyapunov’s second or “direct” method in which he showed a way how to deter-

mine a nonlinear system’s stability without solving its equations of motion. Since most

of the problems appearing in real life do not have analytical solutions in closed form

and the numerical solutions are valid only with time limitation, Lyapunov’s method

brought a breakthrough for the field of control. His development proved to be so sig-

nificant that the stability of most of the controllers is ensured by his “direct” method

even in our days.

Assume a dynamic system described by a set of ordinary differential equations

expressing by arrays as

7



2. STATE OF THE ART

ẋ = f (x, t) (2.1)

where x ∈ Rn, t ∈ [t0,∞), and x (t0) = x0. Let x denote some tracking error (in

this case the main goal is to keep x as close to 0 as it is possible). If it is known

that the system has one unique solution, according to Lyapunov Stability Theorem the

followings can be stated:

• Point x∗ ∈ R is an equilibrum point of the system if ∀t ∈ [t0,∞) f(x∗, t) = 0.

• Equilibrum x∗ is locally stable if every solution that starts close to x∗, remain

close to x∗ and asymptotically stable if in addition the solutions tend towards x∗.

• Equilibrum x∗ is stable in t = t0 if ∀ε > 0 ∃δ(ε, t0) > 0 such that ‖x(t0)− x∗‖ <
δ =⇒ ‖x(t)− x∗‖ < ε , ∀t > t0.

• Uniformly stable equilibrums can be defined if in the above definition δ depends

only on ε.

• Equilibrum x∗ is asimptotically stable at t = t0 if it is stable and ∃δ(t0) > 0 such

that ‖x(t0)− x∗‖ < δ =⇒ ‖x(t)− x∗‖ → 0 for t→∞.

• Equilibrum x∗ is globally stable if it is stable for every initial condition x0 ∈ Rn.

To be able to determine whether system (2.1) is stable or not, there are two choices.

The first option is integrating and solving (2.1) explicitly. This solution is applicable

only in some special cases. Thanks to Lyapunov’s direct method there is an other

option. Instead of solving the equation, a uniformly continuous and positive definite

function V can be constructed with a non-positive time-derivative on the domain t ∈
[0,∞) which can be used to prove the stability of the controller. This function can

be calculated based on the tracking errors and the modeling errors of the system’s

parameters. According to the Barbalat lemma (stating that if a function dV
dt is uniformly

continuous and its integral V (t) is bounded then the function itself converges to zero as

t→∞) [28] the derivative of V converges to zero. As a result, the tracking errors and

the modeling errors have to remain bounded or in a special case they have to converge

to zero.

8



2.2 Classical controllers

To show that function V is bounded, a function class K is introduced that can be

used as upper and lower bounds of function V . Function κ : [0, k) → [0,∞) where

k <∞ is a member of class K if κ(0) = 0 and κ(t) is strictly increasing. Let us assume

that α(‖x‖), β(‖x‖), and γ(‖x‖) belong to function class K. In this case according to

Lyapunov’s second method it can be stated that

• If V (0, t) = 0 and ∀x ∈ Bε(0) (where Bε(0) denoted the ε vicinity of 0) and ∀t ≥ 0:

V (x, t) ≥ α(‖x‖) > 0 and V̇ (x, t) ≤ 0 holds locally in x and for all t, then the

equilibrum point x = 0 is locally stable.

• If V (0, t) = 0 and V (x, t) ≥ α(‖x‖) > 0 and V̇ (x, t) ≤ 0 then the equilibrum

point x = 0 is stable.

• If V (0, t) = 0 and V (x, t) ≥ α(‖x‖) > 0 and V̇ (x, t) ≤ 0 and V (x, t) ≤ β(‖x‖) > 0

then the equilibrum point x = 0 is uniformly stable.

• If V (0, t) = 0 and V (x, t) ≥ α(‖x‖) > 0 and V̇ (x, t) ≤ 0 and V (x, t) ≤ β(‖x‖) > 0,

and V̇ (x, t) ≤ −γ(‖x‖) then the equilibrum point x = 0 is uniformly asymptoti-

cally stable.

2.2 Classical controllers

In this section, four classical controllers are discussed that are strongly related to the

focus of this work. First the PID controller is shown in details which has been devel-

oped parallel with Lyapunov’s method. Then the Computed Torque Control (CTC)

and its special case, the Adaptive Inverse Dynamics are summarized together with a

simple example. The example includes the proof of the controller’s (Lyapunov) stabil-

ity. Finally, the Model Reference Adaptive Controller, an illustrating example, and the

Lyapunov stability proof are shown.

2.2.1 Proportional-Integral-Derivative Controller

The Proportional-Integral-Derivative (PID) controller was introduced in 1911 [29]. It

was first used for automatic ship steering. It has become the most common feedback

controller in the industry. In the industry, most of the machines are supervised by PID

9
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Σ

P

I

D

Σ System 
t

i deK
0



 
dt
tdeKd

 teK p

e(t)

+
+
+

+
-

yref(t) y(t)u(t)

Figure 2.1: The block scheme of the traditional PID Controller.

controllers. This control strategy is popular because of its simplicity and easy handling.

It can be described by

u(t) = K

e(t) +
1

Ti

t∫
0

e(τ)dτ + Td
de(t)

dt

 (2.2)

where u denotes the control signal, e = yref − y marks the tracking error, y stands

for the output and yref for the desired output of the controlled system; t is the time.

K, Ti, and Td denote the free variables of the controller. For simplicity the notations

Kp := K, Ki := K
Ti

, and Kd := KTd are also commonly used. The block diagram of

the traditional PID controller is shown in Fig. 2.1.

Special cases of PID controller are also widely used nowadays. If one or two of the

three parameters in (2.2) are set to zero, similar controllers can be gained like PD, PI,

I, etc. controllers.

There are many possibilities for tuning the parameters of the PID controller. One

of the most popular tuning strategies, called frequency response method has been de-

veloped by Ziegler and Nichols, see [30]. The essence of the tuning is the following:

set Ki and Kd zero and increase Kp until the controlled system starts to oscillate. Let

Su denote this (high) value of Kp and Pu denote the oscillation period of the system.

In this case, the proposed values for the parameters are Kp = 0.6Su, Ki = 2SuPu , and

Kd = SuPu
8 .

10



2.2 Classical controllers

There are other possibilities how to determine the parameters, though they are not

used any more in the industry. Instead of them PID tuning and loop optimization

softwares are applied to ensure stable and good results (see e.g. [31]).

In the following, a simple example is shown how to determine numerically the pa-

rameters of a PID controller which controls a damped string described by the following

equation:

ẍ = −kx− bẋ+ cu (2.3)

where x stands for the system state variable, k, b, and c are free parameters, and

u denotes the control force. If a certain behavior is prescribed for the system by a

reference model

ẍRef = −kxRef − bẋRef + cu (2.4)

where the meaning of the parameters are the same, then the proper control force for

the system can be calculated as

u =
1

c

(
ẍRef + kxRef + bẋRef

)
(2.5)

The PID correction can be added to (2.5) as

u = 1
c

(
ẍRef + kxRef + bẋRef

)
+

P
(
xRef − x

)
+D

(
ẋRef − ẋ

)
+ I

t∫
0

(
xRef − x

)
dτ

(2.6)

If (2.6) is substituted to (2.3) then after restructure the following equation is gained:

ẍRef − ẍ = −(k + cP )(xRef − x)− (b+ cD)(ẋRef − ẋ)− cI
t∫

0

(xRef − x)dτ (2.7)

If h = xRef − x denotes the error, then after a derivation (2.7) takes the form of

...
h = −(k + cP )ḣ− (b+ cD)ḧ− cIh (2.8)

Let h = eαt. In this case,

α3 = −(k + cP )α− (b+ cD)α2 − cI (2.9)

11
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from which

α3 + (k + cP )α+ (b+ cD)α2 + cI = 0 (2.10)

is gained. Let α1, α2, and α3 denote the roots of (2.10). It can be stated that

k + cP = α1α2 + α2α3 + α1α3

cI = −α1α2α3

b+ cD = −α1 − α2 − α3

(2.11)

In the knowledge of α1, α2, and α3, the parameters of the PID controller can be set so

that (2.8) converges to 0.

Despite the popularity of the PID controllers, they can be applied only if the con-

trolled system is transparent and the effects of the feedback of the PID controller can

be followed qualitatively. If not, then the controller cannot achieve optional system

behavior. For example, if the pendulum of a cart-pendulum system (see Chapter 3)

passes through the horizontal line, the behavior of the system changes and the control

law determined by the PID controller will not be valid for the system any more. As

an example for proper systems, the damped strings could be mentioned, because they

are qualitatively transparent and they can be used as approximate models for many

control problems, e.g. for stabilization tasks around an operating point.

2.2.2 Computed Torque Control (CTC) and the adaptive inverse dy-

namics control

The Computed Torque Control [32] is a control strategy usually applied on robots. The

most important property of relatively simple robots is that they can be described ana-

lytically, so a relationship can be established between the joint coordinate accelerations

and the torques or forces acting on the system (the forces and torques are made partly

by the robot’s own drives and/or by its environment with which the system may be

in dynamic coupling). The relationship is described by the so-called Euler-Lagrange

equations of motion:

H(q)
d2q

dt2
+ h

(
q,
dq

dt

)
= Q (2.12)

where H(q) denotes the inertia matrix of the system, a part of h(q, q̇) is quadratic in

q̇ and describes e.g. the Coriolis terms, while its other part depending only on q is

12
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responsible for the gravitational effects. Due to physical reasons H is always symmetric

and positive definite. The term Q stands for the generalized forces of the robot’s own

drives and the environment, e.g. forces for the prismatic generalized coordinates, and

torques for the rotational axes. In the possession of this model (on the basis of purely

kinematic considerations) some desired d2qdes

dt2
can be computed in each control cycle to

exert the necessary Qdes. This part of the controller is often referred to as “feedforward”

control. For more precise tracking the “feedforward part” generally has to be completed

by PID-type feedback terms based on the tracking error.

An important practical problem of CTC is that in many cases it is very difficult

(or even impossible) to identify the parameters of the analytical models of the systems

(see e.g. the model for the six degree of freedom PUMA robot [33], where the model

construction took five weeks for three persons). Another practical problem in the

application of this method is that normally there are no sensors available that could

exactly measure the external (e.g. environmental) parts that affect Q. Their effects

can be observed only subsequently and generally cannot efficiently be compensated by

simply prescribing some feedback correction in d2qdes

dt2
.

If the kinematic model of the system is precisely known, the Adaptive Inverse Dy-

namics Control can be a solution. Let p represent the dynamical parameters (unknown)

and Y
(
q, dqdt ,

d2q
dt2

)
the array built up based on the kinematic functions (known). The

dynamic model can be formulated as

H(q)q̈ + h (q, q̇) = Q = Y(q, q̇, q̈)p (2.13)

It is supposed that some approximation for H(q), h(q, q̇), and p are available as

Ĥ(q), ĥ(q, q̇), and p̂. The exerted forces may contain feedback-correction depending

on the tracking error and its derivatives e = qdes − q, ė = q̇des − q̇, and ë = q̈des − q̈,

with some symmetric positive definite gain matrices K0 and K1. In this case

Ĥ(q)(q̈des + K0e + K1ė) + ĥ (q, q̇) = Q = H(q)q̈ + h (q, q̇) (2.14)

It is assumed that Q originates from the drives and does not contain unknown

external components, so by subtracting (2.14) from (2.13) we can obtain

H(q)q̈ + h (q, q̇)− Ĥ(q)(q̈des + K0e + K1ė)− ĥ (q, q̇) = 0 (2.15)

13
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and then by subtracting with Ĥ (q) q̈ and reordering

Ĥ(q)(ë + K0e + K1ė) =(
H(q)− Ĥ(q)

)
q̈ +

(
h (q, q̇)− ĥ (q, q̇)

)
= Y(q, q̇, q̈) (p− p̂)

(2.16)

where the left hand side contains the model data, while the other side contains the mod-

eling errors: H̃ := H(q)− Ĥ(q), h̃ := h (q, q̇)− ĥ (q, q̇), and p̃ := p− p̂. Via multi-

plying both sides with the inverse of the known model, the following standard form is

obtained:

[
ė
ë

]
−
[

0 I
−K0 −K1

] [
e
ė

]
=

[
0

Φp̃

]
(2.17)

where Φ = Ĥ−1 (q) Y (q, q̇, q̈).

Let us introduce the following notations: x :=

[
e
ė

]
, ẋ :=

[
ė
ë

]
, B :=

[
0
I

]
, and

A =

[
0 I
−K0 −K1

]
. By this, the system can be described in a more simple form:

ẋ−Ax = BΦp̃ (2.18)

For the tracking error e, the first derivative of it ė, and the parameter estimation

error p̃ the following Lyapunov function V can be constructed:

V = xTPx + p̃TRp̃ (2.19)

where P and R are constant, symmetric positive definite matrices. In this case

V̇ = ẋTPx + xTPẋ + ˙̃pTRp̃ + p̃TR ˙̃p < 0 (2.20)

From (2.18) it follows that

V̇ = xT
(
ATP + PA

)
x + p̃TΦTBTPx + xTPBΦp̃ + ˙̃pTRp̃ + p̃TR ˙̃p < 0 (2.21)

Due to the symmetry of matrices P and R (2.21) can be simplified as

V̇ = xT
(
ATP + PA

)
x + 2p̃TΦTBTPx + 2p̃TR ˙̃p < 0 (2.22)

To guarantee dV/dt < 0 for any finite x, the following restrictions can be prescribed:

let U be a negative definite symmetric matrix, and let
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2.2 Classical controllers

ATP + PA = U (2.23)

further

p̃T
(
ΦTBTPx + R ˙̃p

)
= 0⇒ ˙̃p = −R−1ΦTBTPx (2.24)

where (2.23) is referred as Lyapunov equation. Normally an appropriate U is prescribed

and the task is to find a proper P for this U by solving the Lyapunov Equation. The

Lyapunov Equation sets linear functional connection between the elements of P and

U that may or may not have solution. (For the existence of a solution the real part

of each eigenvalue of A must be negative.) Since A=constant, the Lyapunov Equation

has to be solved only once in order to find a proper P for the prescribed U. To satisfy

the second constraint (2.24), its right hand side has to be expressed from its definition

through B and Φ. It is obtained that

˙̃p = ṗ− ˙̂p = −R−1YĤ−1 [0, I] Px (2.25)

in which the computational burden mainly consists of the need for inverting the model

inertia matrix that must have the exact, intricate form determined by the particular

kinematic model of the given system.

If the adaptation rule is applied, then the following cases can be separated:

• If ‖x‖ → 0 and ‖p̃‖ > F > 0 then exponential trajectory tracking is achieved

without exactly learning the system model.

• If ‖x‖ → 0 and ‖p̃‖ → 0 then exponential trajectory tracking is achieved with

exactly learnt system model.

‖x‖ > E > 0 for arbitrarily long time is not possible since an initially finite positive

value V (0) with at least constant speed of decrease has to achieve 0 during finite time.

2.2.3 Model Reference Adaptive Controller

The Model Reference Adaptive Controller (MRAC) belongs to the family of direct

adaptive controllers [34]. It was proposed in 1958 to control an aircraft driven by

a joystick [35]. It had stability problems during the first few years until Lyapunov
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functions have been started to be used for the design. The first successes were reached

in 1966 [36, 37].

MRAC is based on the idea of constructing a reference model that determines the

desired behavior of the system. Then the control signal is calculated by the difference

of the model’s and the system’s output (tracking error). Its structure is very simple,

having four main parts:

• The system: it has known structure but contains unknown parameters. For

nonlinear systems it can be said that the structure of the nonlinear equations are

known, but some of the parameters are not.

• The reference model: it specifies the desired output of the controlled system.

It has to be designed parallel with the controller. Further, it has to reflect the

performance specification (like rise and settling time, overshoot, etc.) and its

output has to be achievable for the system (e.g. its order and relative degree

have to match the system’s assumed order and degree).

• The feedback controller (or control law): it is parameterized by adjustable pa-

rameters. If the system parameters are all known, it has to force the system to

act exactly like the reference model (prefect tracking). If the system parameters

are not known, it has to achieve perfect tracking asimptotically.

• An adaptation law: it is used to adjust the parameters of the controller. The goal

is to set the parameters so that the system’s output equals the model’s output.

The main issue of the MRAC design is to ensure that the controller remains stable

and the tracking error converges to zero.

The block scheme of the traditional MRAC is shown in Fig. 2.2.

For designing a Model Reference Adaptive Controller, as an example, consider the

system assumed in [5]. In this very simple system a mass m is settled on a frictionless

surface and controlled by a motor: mẍ = u, where u denotes the force of the motor

and x is the position of the mass. The positioning commands r(t) come through

a joystick handled by a human. In [5] the following reference model is suggested:

ẍm+λ1ẋ
m+λ2x

m = λ2r(t), where xm is the output of the reference model. Parameters

λ1 and λ2 (λ1, λ2 > 0) are chosen to reflect the performance specifications of the

systems.
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Reference Model

SystemController

Adaptation Law

u y

ym

Figure 2.2: The block scheme of the traditional Model Reference Adaptive Controller

taken from [38].

If the mass m is known, perfect tracking is achieved by the control law u =

m
(
ẍm − λė− λ2e

)
, where e = x(t) − xm(t) and λ is strictly positive. So the expo-

nentially convergent tracking error dynamics are ë+ 2λė+ λ2e = 0.

If the mass is not known exactly, the applied control law is u = m̂
(
ẍm − λė− λ2e

)
,

where m̂ is adjustable. Let be s = ė + λe, v = ẍm − 2λė − λ2e, and em = m̂ −m. In

this case, the error dynamics are mṡ+ λms = emv. The parameter adjustment for the

mass is ˙̂m = −γvs, where γ is called the adaptation gain, and it is a positive constant.

The stability analysis of the above explained controller can be shown by Lyapunov’s

theory. Consider the following function V = 1
2

(
ms2 + 1

γ e
2
m

)
as a Lyapunov function

for the system, where V̇ = −λms2. With the help of the Barbalat lemma it can be

proven that s converges to zero which indicates the trajectory and velocity tracking.

2.3 Soft computing techniques

In this section, two important soft computing techniques are summarized that can

advantageously be used in the control area: the fuzzy theory and the field of neural

networks. Both are relevant and getting more popular as the control tasks include more

uncertainties and lack of knowledge.

2.3.1 Fuzzy Theory

Fuzzy control methodologies have emerged in recent years as promising tools to solve

nonlinear control problems. The fuzzy approach was first proposed by Lotfi A. Zadeh,
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in 1965 when he presented his seminal paper on fuzzy sets [39]. Zadeh showed that

fuzzy logic unlike classical logic can handle and interpret values between false (0) and

true (1). One of the most successful application areas of Fuzzy Logic proved to be

Fuzzy Logic Control (FLC), because FLC systems can replace humans for performing

certain tasks, for example control of a power plant [1], or aeroelastic wing section [11],

etc. [40, 41, 42].

An other significant reason for applying fuzzy techniques in control is their sim-

ple approach which provides to use heuristic knowledge for nonlinear control problem.

In very complicated situations, where the plant parameters are subject to perturba-

tions or when the dynamics of the systems are too complex to be described by exact

mathematical models, adaptive schemes have to be used to gather data and adjust

the control parameters automatically. Based on the universal approximation theorem

[43] and by incorporating fuzzy logic systems into adaptive control schemes, a stable

fuzzy adaptive controller is suggested in [44] which was the first controller being able

to control unknown nonlinear systems. Afterwards, a wide variety of adaptive fuzzy

control approaches have been developed for nonlinear systems, like [45, 46, 47]. In the

following the basics of Fuzzy theory are summarized.

2.3.1.1 Definitions

Definition 1 (Universe). A fuzzy universe is the domain of the observations. Values,

objects that need to be classified.

Definition 2 (Linguistic value). Linguistic values are words, symbols (sets) defined by

the rate of belonging of the elements of the universe.

Definition 3 (Linguistic variable). A linguistic variable is an overall notion with the

help of which the linguistic values in a specific topic can be referred.

Definition 4 (Membership function). Membership function is a mapping expressing

the rate of belonging of a universe element to a linguistic value.

Definition 5 (Fuzzy set). Fuzzy set is a set to the elements of which a number between

0 and 1 can be assigned. The assignment is the membership function. If A is a fuzzy set

over universe X, then µA(x) : X → [0, 1] is the membership function of set A. In case

of discrete sets A =
n∑
i=1

µA(xi)/(xi) denotes the fuzzy set A, where xis are elements

of X, with µA(xi) membership value (in set A). In continuous case the notation is

A =
∫
X µA(x)/x, where x ∈ X and µA(x) is its membership value in set A.
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Definition 6 (Height of a fuzzy set). The height of fuzzy set A on universe X is

hgt(A) = sup
x∈X

µA(x). The fuzzy sets with height=1 are called normalized fuzzy sets.

The fuzzy sets with height<1 are called subnormal fuzzy sets.

Definition 7 (Core). The core of fuzzy set A on universe X is crisp subset of A:

core(A) = {x ∈ X|µA(x) = 1}.

Definition 8 (Support). The support of fuzzy set A on universe X is crisp subset of

A: supp(A) = {x ∈ X|µA(x) > 0}.

Definition 9 (α-cut). The α-cut of fuzzy set A on universe X is crisp subset of A:

α − cut(A) = {x ∈ X|µA(x) ≥ α}. The core of A can also be defined as core(A) =

1− cut(A).

Definition 10 (Strong α-cut). The strong α-cut of fuzzy set A on universe X is crisp

subset of A: α − cut(A) = {x ∈ X|µA(x) > α}. The support of A can also be defined

as supp(A) = 0− cut(A).

Definition 11 (Convex fuzzy set). The fuzzy set A on universe X is convex if ∀x1, x2, x3 ∈
X, x1 ≤ x2 ≤ x3 → µA(x2) ≥ min(µA(x1), µA(x3)).

Definition 12 (The normalization of a fuzzy set). The normalization of fuzzy set A

on universe X results in an other (normalized) fuzzy set A′ for which µA′(x) = µA(x)
hgt(A)),

x ∈ X.

Definition 13 (Fuzzy subset). The fuzzy set B is subset of fuzzy set A on universe X

if ∀x ∈ X µA(x) ≤ µB(x)

Definition 14 (Fuzzy partition). Fuzzy partition means the partitioning of the universe

by linguistic variables. Let A1, A2, ..., AN denote fuzzy subsets of universe X so that

∀x ∈ X
NA∑
i=1

µAi(x) = 1, where Ai 6= ∅, and Ai 6= X. In this case the set consist of fuzzy

sets Ai is a fuzzy partition.

Definition 15 (Fuzzy number). The fuzzy set A on universe X (in most of the time

X = R) is a fuzzy number, if A is convex and normalized, µa(x) is semi-continuous

and the core of A contains only one element.

Definition 16 (Fuzzy interval). The fuzzy set A on universe X is a fuzzy interval, if

A is convex and normalized, and µa(x) is semi-continuous.
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2.3.1.2 Operations on fuzzy sets

The intersection and union operations defined by Zadeh in 1965 are the following. For

the intersection:

µA∩B = min (µA(x), µB(x))

For the union:

µA∪B = max (µA(x), µB(x))

Since then, various definitions have been developed, like the T-norms, T-conorms,

and the S-norms that all fulfill some given axioms.

Definition 17 (T-norm). T-norm T is a mapping T : [0, 1] × [0, 1] → [0, 1], with the

following constraints:

T-1 T (a, 1) = a

T-2 b ≤ c⇒ T (a, b) ≤ T (a, c)

T-3 T (a, b) = T (b, a)

T-4 T (T (a, b) , c) = T (a, T (b, c))

The T-norms also satisfy the following condition: TW (a, b) ≤ T (a, b) ≤ min(a, b), where

TW (a, b) =


a b = 1

b a = 1

0 otherwise

is called Weber T-norm [48].

Definition 18 (T-conorm). T-conorm S is a mapping S : [0, 1] × [0, 1] → [0, 1], with

the following constraints:

S-1 S(a, 0) = a

S-2 b ≤ c⇒ S(a, b) ≤ S(a, c)

S-3 S(a, b) = S(b, a)

S-4 S (S (a, b) , c) = S (a, S (b, c))
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The T-conorms also satisfy the following condition: max(a, b) ≤ S(a, b) ≤ SW , where

SW (a, b) =


a b = 0

b a = 0

1 otherwise

is called Weber S-norm (T-conorm) [48].

Definition 19 (Fuzzy complement). The complement defined by Zadeh is c(a) = 1−a.

The complement A of fuzzy set A can be defined by as follows

c-1 c(0) = 1

c-2 a > b⇒ c(a) < c(b)

c-3 c (c (a)) = a

Definition 20 (Fuzzy reasoning). Fuzzy logic can be deduced from fuzzy set theory

just as classical logic from classical set theory. The operations “and”, “or”, and “not”

correspond to “intersection”, “union”, and “complement”, respectively. Fuzzy logic

is built on sets enabling the predicates to be linguistic variables.

Statement - Fuzzy statements are simple statements with linguistic labels of fuzzy sets

combined by “and”, “or”, and “not”.

Implication - Fuzzy implications can be defined in many ways (just like in the classical

case), but result in different outputs depending on the chosen T- and S-norms.

2.3.1.3 Rule-based fuzzy reasoning

The block scheme of the rule-based fuzzy reasoning system can be seen in Fig. 2.3. The

input (observation), and the output (conclusion) are usually not fuzzy-type quantity.

The transformation between the crisp values and the fuzzy sets is made by the fuzzifi-

cation, and defuzzification blocks. The deduction is made by the reasoning block using

the a priori knowledge of the given rule base. The reasoning block determines how

much each rule is valid for the concrete input. In case of multiply inputs the validity

is determined by the “weakest” input. Then the conclusion is calculated.

Fuzzification - The fuzzifying block transforms a crisp input to a fuzzy set. The

most often used technique is the singleton fuzzification (the membership function

is 1 at the input, and 0 otherwise). Less simple, but closer to reality is if the

uncertainty and accuracy of the input is illustrated and the input is transformed
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to e.g. a fuzzy number. The uncertainty can principally be represented by an

α-cut.

Rule base - The rules give the basics of the rule-based fuzzy systems. The rule base

describes the a priori knowledge on the system. The rules are usually “IF...

THEN...” type rules. The ith rule can be expressed as

Ri : IF x1 is Xi,1 and x2 is Xi,2 and . . . and xn is Xi,n THEN
y1 is Yi,1 and . . . and ym is Yi,m.

where x1, ..., xn are inputs with Xi,1, ..., Xi,n linguistic values, y1, ..., ym are output

variables with Yi,1, ..., Yi,1m linguistic values.

Reasoning - According to the reasoning strategy two main rule-based systems can

be determined: the composition-based reasoning, which determines its output as

the composition X ◦R; and the individual rule-based reasoning, which determines

the output (Y ′) as the union of the composition of the inputs and the individ-

ual rules. The prior is the one based by fuzzy theory, but the latter provides

less computational time this is why the individual rule-based reasoning is more

prevalent.

Defuzzification - Defuzzification is responsible for the transformation of the fuzzy

outputs to crisp values. Various methods are known depending on the output

fuzzy set, but the most prevalent approaches are the center of area (CoA), the

center of gravity (CoG), the center of maxima (CoM), and the mean of maxima
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Figure 2.3: Fuzzy reasoning, taken from [49].
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(MoM) defuzzification methods. As an example, the CoG defuzzification can be

calculated as

y′ =

∫
Y ′
µY ′(y)ydy∫

Y ′
µY ′(y)dy

(2.26)

for continuous values, and

y′ =

Ni∑
i=1

µY ′(yi)yi

Ni∑
i=1

µY ′(yi)

(2.27)

for discrete values, where Ni denotes the number of the discrete values with the

help of which µY ′(y) membership function can be discretized.

2.3.2 Artificial neural networks

Human recognition and control abilities far exceed those of complex intelligent control

systems (e.g. robots). This has motivated scientist to analyze the human thinking to

model neurons and nervous systems and use artificial neural networks in many areas

(e.g. image precessing, signal processing, and control) [50]. The basic idea is according

to natural neural networks to construct artificial systems (nets) consist of similar in-

terconnected units (neurons). Though, the artificial neurons and neural networks are

sketches compared to the natural ones, they have some important similar abilities, e.g.

parallel processing, modularity, fault tolerance, and the ability to learn. The parallel

synthesis shortens the computational time and makes sure that several disabled units

do not influence the performance of the net considerably.

Neural networks are very helpful in classification, recognition problems, and opti-

mization problems. In the thesis only feedback neural networks are used with back-

propagation. The followings are valid mainly for this type of neural networks.

2.3.2.1 The structure of the neural networks

Neural networks are information processing tools characterized by parallel processing

and a learning algorithm. Their unit is an artificial neuron with multiple inputs, one

processing function, one output, and local memory. The easiest and most common type
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of neuron is a perceptron which calculates its output by a nonlinear transform of the

weighted sum of the inputs (see Fig. 2.4)

y = f

(
N∑
i=0

wixi

)
= f

(
wTx

)
(2.28)

where x = [x0, x1, ..., xN ]T , w = [w0, w1, ..., wN ], xi are input scalars with wi weights,

and the weighted sum is s. The value of x0, called bias, is usually a nonzero constant.

The nonlinear map is denoted by f , while y marks the output of the neuron. For

determining the nonlinear map, many strategies can be found in the literature, like the

binary transfer function

y(s) =

{
+1 s > 0

−1 s ≤ 0
(2.29)

the piecewise-linear transfer function

y(s) =


+1 s > 1

s −1 ≤ s ≤ 1

−1 s < −1

(2.30)

and the sigmoid transfer function

y(s) =
1− e−Ks

1 + e−Ks
;K > 0 (2.31)

The three example functions are shown in Fig. 2.5.
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Figure 2.4: The scheme of a neuron without memory, with equal inputs, taken from [49].
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2.3.2.2 Topology of the neural networks

The topology of a given neural network is how it is structured, e.g. where its in-

and outputs are. The NNs are usually presented by directed graphs, where the nodes

represent the neurons and the weighted edges denote the weighted connections. The

neurons can be divided in three groups: input neurons (input of the network), output

neurons (output of the network), and hidden neurons (inputs and outputs of other

neurons in the network). They can be organized in layers, where each layer contains

the same type of neurons. Thus, three different type of layers can be defined: input

layer, output layer and hidden layer. The output of the input layer and the hidden

layers are connected to other hidden layers or directly to the output layer. If the

graph representation of the neural network contains a loop, it is called feedback neural

network. Otherwise it is called feedforward neural network.

2.3.2.3 MultiLayer Perceptron

The most common multilayer feedforward neural network is the MultiLayer Perceptron

(MLP) [51], where the connections are only between neighboring layers. The weights

of the connections produce the free parameters of the NN. An example for an MLP is

shown in Fig. 2.6. The example has N+1 inputs (x1
0, x

1
1, ..., x

1
n), two hidden layers with

three and two neurons, and two outputs (y1, y2). The weight matrices are denoted by

W(1) and W(2) while the biases for the layers are marked by x1
0 and x2

0. The applied

transfer function is the sigmoid one.
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Figure 2.5: Typical nonlinearities in neurons: binary (left); piecewise-linear (middle);

sigmoid (right).
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Figure 2.6: An example for a multilayer perceptron, taken from [49].

2.3.2.4 Supervised training

The desired behavior of the neural network is gained by the tuning of the weights

which is called training. An appropriately complex neural network can be considered

as an universal approximator, however achieving z optimal weight is an NP-complete

problem to the training algorithms can give only near optimal results.

Figure 2.7 shows the general scheme of the training, where the expected coherent

input-output pairs are given. In case of supervised training the output of the network

can be compared to the desired output. From the comparison an error can be calculated

which is used to modify the training in the proper way (through a criteria function or

a parameter tuning algorithm).

2.3.2.5 Training one perceptron

The weight modification can be done by the least mean square (LMS) algorithm the

criteria of which is the square of the actual error (see Fig. 2.8):

s = wTx
y = sgm(s)
ε = d− y

(2.32)
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Figure 2.7: The block scheme of the training, where u the independent variables, n

stands for the noise signals, and C marks the criteria function (usually a least mean square

function), taken from [49].

where d is the output of the real system, y is the output of the network, and ε denotes

the actual error. Function sgm stands for the nonlinear transfer function. The actual

error can be expressed in more details:

+1
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Param ter  e modification
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-
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�

�
 

Figure 2.8: An illustrative example for modifying the weights of a neuron, taken from

[49].
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ε(k) = d(k)− y(k) = d(k)− sgm (s (k)) = d(k)− sgm
(
wT (k) x (k)

)
(2.33)

and the actual gradient can be determined as

∂ε2

∂w
= 2ε

(
−sgm′ (s)

)
x (2.34)

where w is the neuron’s weight matrix. According to the gradient method the weight

modification is the following:

w(k + 1) = w(k) + 2µ(k)ε(k)sgm′ (s (k)) x(k) = w(k) + 2µ(k)δ(k)x(k) (2.35)

where µ is the step size of the iteration.

2.3.2.6 The backpropagation training algorithm for the multilayer net-

works

The example for the backpropagation training algorithm is given for the network il-

lustrated in Fig. 2.6. The network is a multilayer feedback NN which has two hidden

layers with three and two neurons. The training algorithm is made with the coher-

ent input-output (x,y) pairs and the gradient method. In this case the error can be

determined as

ε2 = ε21 + ε22 = (y1 − d1)2 + (y2 − d2)2 (2.36)

The actual gradient can be calculated just like in (2.34)

∂ε2

∂w
(2)
ij

= −2ε1sgm
′
(
s

(2)
i

)
x

(2)
j = −2δ

(2)
i x

(2)
j (2.37)

∂ε2

∂w
(2)
i

= −2ε1sgm
′
(
s

(2)
i

)
x(2) = −2δ

(2)
i x(2) (2.38)

Thus, the weight modification is

w
(2)
i (k + 1) = w

(2)
i (k) + 2µεi(k)sgm′

(
s

(2)
i

)
x(2)(k) =

w
(2)
i (k) + 2µδ

(2)
i (k)x(2)(k)

(2.39)
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2.4 Summary

The error of the output of each neurons in the input layer are not known, but by

applying the chain rule the derivatives can be determined (the weights of the input

layer influence the neurons’ linear and nonlinear outputs s and y, respectively, and

through this the outputs of the other layers):

∂ε2

∂w
(1)
ij

= ∂ε2

∂s
(1)
i

∂s
(1)
i

∂w
(1)
ij

= ∂(ε1+ε2)2

∂s
(1)
i

∂s
(1)
i

∂w
(1)
ij

=

=
∂ε21

∂s
(1)
i

∂s
(1)
i

∂w
(1)
ij

+
∂ε22

∂s
(1)
i

∂s
(1)
i

∂w
(1)
ij

= 2ε1
∂ε1

∂s
(1)
i

∂s
(1)
i

∂w
(1)
ij

+ 2ε2
∂ε2

∂s
(1)
i

∂s
(1)
i

∂w
(1)
ij

(2.40)

The error component is calculated as

∂ε1

∂s
(1)
i

=
∂ε1

∂s
(2)
1

∂s
(2)
1

∂y
(1)
i

∂y
(1)
i

∂s
(1)
i

= −sgm′
(
s

(2)
1

)
w

(2)
1i sgm

′
(
s

(1)
i

)
(2.41)

∂ε2

∂s
(1)
i

=
∂ε1

∂s
(2)
2

∂s
(2)
2

∂y
(1)
i

∂y
(1)
i

∂s
(1)
i

= −sgm′
(
s

(2)
2

)
w

(2)
2i sgm

′
(
s

(1)
i

)
(2.42)

By substituting (2.41) and (2.42) into (2.40), the following equation is gained:

∂ε2

∂w
(1)
ij

= 2ε1sgm
′
(
s

(2)
1

)
w

(2)
1i sgm

′
(
s

(1)
i

)
∂s

(1)
i

∂w
(1)
ij

−

−2ε2sgm
′
(
s

(2)
2

)
w

(2)
2i sgm

′
(
s

(1)
i

)
∂s

(1)
i

∂w
(1)
ij

=

−2
(
δ

(2)
1 w

(2)
1i + δ

(2)
2 w

(2)
2i

)
sgm′

(
s

(1)
i

)
x

(1)
j = −2δ

(1)
i x

(1)
j

(2.43)

Thus, the weight modification is

w
(1)
i (k + 1) = w

(1)
i (k) + 2µδ

(1)
i (k)x(1)(k) (2.44)

2.4 Summary

In this chapter, those results are summarized that enable the arose of the direct an-

tecedent of the thesis. First, the Lyapunov Stability Theory is explained then some

traditional controllers are shown, like the PID controller, the Computed Torque Con-

troller, the Adaptive Inverse Dynamics controller, and the Model Reference Adaptive

Controller. Finally, the basics of two soft-computing techniques are presented: the

fuzzy theory and the artificial neural networks.
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3

Nonlinear systems

In the previous chapter, Lyapunov’s stability theory, some classical controllers and some

modern techniques are introduced that serve as basis for the research work presented in

this dissertation. In this chapter, some of the well known nonlinear systems are shown.

The new results introduced in the next chapters are analyzed with the help of these

systems. First the FitzHugh-Nagumo neurons, the Duffing system, the Matsumoto-

Chua circuit, and the Φ6-type Van der Pol oscillator are shown, which are all chaotic

systems. Then the cart-pendulum and the cart plus double pendulum systems are

described. Finally, two realistic models are presented: the hydrodynamic model of

freeway traffic and the Burckhardt tire model.

3.1 The FitzHugh-Nagumo neuron model

The FitzHugh-Nagumo (FHN) model comes from the four degree of freedom Hodgkin-

Huxley model which was published in 1952 [52]. The FHN model, which was developed

in 1961 [53], is a two degree of freedom reduction of the Hodgkin-Huxley model to be

able to analyze it with phase plane techniques. It is used in Biology to model and

control the electrical potential across cell membrane. The FHN model can be also

used in chaos synchronization, where its dimensionless approximation is used for the

investigations:

ẋ1 = x1(x1 − 1)(1− a1x1)− x2 − I + d1

ẋ2 = b1x1
(3.1)
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3. NONLINEAR SYSTEMS

in which x1 and x2 are state variables, a1 and b1 are free parameters, I denotes the

excitation of the system (responsible for the chaotic behavior) and d1 interprets the

disturbance force. If it is used for chaos synchronization, then a coupling element gc

(resistor) is included in the first equation and a second system is used:

ẋ1 = x1(x1 − 1)(1− a1x1)− x2 − gc(x1 − y1) + I + d1

ẋ2 = b1x1

ẏ1 = y1(y1 − 1)(1− a2y1)− y2 − gc(y1 − x1) + I + u+ d2

ẏ2 = b2y1

(3.2)

where the second system gets an additional term u as control force. The variable

0 ≤ gc ≤ 1 determines the strength of the coupling between the two systems.

If the parameters are set to a1 = 10, a2 = 5, b1 = 1, b2 = 0.5, I(t) = Aexctsin(2πfexctt)

where Aexct = 0.5, and fexct = 1.271Hz, and the coupling element gc = 0.02 is very

low then Fig. 3.1 shows the phase space of the master systems and Fig. 3.2 illustrates

the tracking error and system response tracking without control with x1 = 0.005,

x2 = 0.005, y1 = −0.005, and y2 = −0.005 initial values.

In Chapter 5, based on [54] a RFPT-based PD controller is designed to synchronize

the above systems with the given initial conditions. In [54] a fuzzy logic controller is

used, but the synchronization is not achieved if the coupling element is small (gc < 0.5).

0.06

0.06

0.04

0.02

0.00

0.040.020.00

-0.02

-0.02-0.04

x2 vs. x1

Figure 3.1: Phase space of the master FitzHugh-Nagumo system.
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3.1 The FitzHugh-Nagumo neuron model

[s] y1 y1

Figure 3.2: The tracking error (left) and system response tracking (right) of the FHN

neurons without control, with x1 = 0.005, x2 = 0.005, y1 = −0.005, and y2 = −0.005

initial values. In case of perfect tracking, the right figure would contain one straight line.
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Figure 3.3: The tracking error (left) and system response tracking (right) of the FHN

neurons without control, with x1 = 0, x2 = 0, y1 = 0.005, and Y2 = 0 initial values. In

case of perfect tracking, the right figure would contain one straight line.

In Chapter 5, the simulations are successful even if the coupling element is very small

(gc = 0.02).

Figure 3.3 illustrates the tracking error of the first state variables and the response

tracking with different initial values: x1 = 0, x2 = 0, y1 = 0.005, and y2 = 0. In

Chapter 5, it is shown how the measurement noise and a simple filter can modify the

RFPT’s results during synchronizing two FHN systems with the above parameters and

the new initial conditions.
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3.2 The Matsumoto-Chua circuit

The Matsumoto-Chua circuit originates from the Chua circuit which was developed in

1983 [55] to demonstrate chaos as a robust physical phenomenon and to prove that the

Lorenz attractor is chaotic in a rigorous mathematical sense. The Matsumoto-Chua

circuit was developed based on the Chua circuit, one year later. It is a simple electronic

circuit made of two capacitors, one linear resistor, one inductor, and only one nonlinear

diode. The mathematical model used in this thesis is taken from [56]:

i̇L = −1
Lc
vC2

v̇C1 = G
Cmc1

(vC2 − vC1)− gmc(vC1)
Cmc1

v̇C2 = −G
Cmc2

(vC2 − vC1) + iL
Cmc2

(3.3)

in which Cmc1 and Cmc2 are two capacitors, Lc is the inductance of a coil, G represents the

reciprocal value of a common resistor while gmc (vC1) describes the nonlinear element

with the characteristics as follows

if vC1 <= −1 then gmc = −Sbig + Ssmall (vC1 + 1)
if vC1 > −1 and vC1 < 1 then gmc = SbigvC1

if vC1 >= 1 then gmc = Sbig + Ssmall (vC1 − 1) .
(3.4)

This system has three degree of freedom (variables iL: current of the inductance,

vC1: voltage of capacitor Cmc1 , and vC2: voltage on capacitor Cmc2 ).

For chaos synchronization a second system can be introduced which has the same

structure as the master system (but it has different parameters), with a little modifica-

tion (see Fig. 3.4): a control current iu is introduced by a current generator in parallel

position of capacitor Cmc2 resulting in the following equations of motion:

˙̃iL = −1
L̃c
ṽC2

˙̃vC1 = G̃
C̃mc1

(ṽC2 − ṽC1)− g̃mc(ṽC1)

C̃mc1

˙̃vC2 = −G̃
C̃mc2

(ṽC2 − ṽC1) + ĩL−iu
C̃mc2

(3.5)

where the symbol ∼ denotes the slave system variables and parameters with the same

meaning, respectively.

If the parameters are taken from [56] as follows: Cmc1 = 1/10F , Cmc2 = 2F , Lc =

1/7H, G = 0.7 1
Ω , Ssmall = −0.1 1

Ω , Sbig = −4 1
Ω , and the initial values are vC1 =

1.45305V , vC2 = −4.36956V , and iLc = −0.15034A, then the 3D view of the master

34



3.2 The Matsumoto-Chua circuit
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Figure 3.4: The Matsumoto-Chua circuit of [56] completed by a current generator of

signal iu for control purposes.

circuit’s trajectory can be seen in Fig. 3.5, where the voltage of capacitor 2 vC2 provides

the significant signal (the vC1 and iL values are not directly controlled. They are

regarded as characteristics of some coupled dynamical subsystems the states of which

are out of any primary interest). Without control the realized system response ( ˙̃vC2)

versus the desired response (v̇C2) can be compared in Fig. 3.6. Figure 3.7 shows the

tracking error of the slave system.

In Chapter 5, successful chaos synchronization is made with two Matsumoto-Chua

circuits based on an approximate model.
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Figure 3.5: A 3D view of the chaotic trajectory produced by the master Matsumoto-Chua

system.
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Figure 3.6: The realized system response ( ˙̃vC2 as v C2 dot) versus the desired response
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Figure 3.7: Tracking error vC2 − ṽC2 of the Matsumoto-Chua circuits without control.

The trajectories are strongly biased.
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3.3 The Duffing System

3.3 The Duffing System

The Duffing system originally comes from the nonlinear second order differential equa-

tion called Duffing equation [57] published by Georg Duffing in 1918 to model certain

driven and damped oscillators (for example a spring pendulum). The system used in

this dissertation follows his development:

ẋ1 = x2

ẋ2 = −δ1x2 + α1x1 − β1x
3
1 + a cosωdt+ d1

(3.6)

Here x1 denotes the displacement, its first derivative (x2) means the velocity, and

the second derivative (ẋ2) is responsible for the acceleration. The term I = a cosωdt

determines the external exciting force responsible for the chaotic motion of the system

where a denotes the amplitude and ωd is the frequency (they are free parameters). α

(restoring force), β (non-linearity in the restoring force), and δ (damping) are also free

parameters. The component d1 can be interpreted as “disturbance force”.

The Duffing system is very well suitable for building chaos systems and for illus-

trating chaos synchronization problems. The main idea of the most approaches is to

use the output of a master system to be followed by a slave system. The slave system

has to be controlled so that its output tracks the master’s one. In this case, the master

system is described in (3.6), and the slave system is defined similarly:

ẏ1 = y2

ẏ2 = −δ2y2 + α2y1 − β2y
3
1 + a cosωdt+ u+ d2

(3.7)

where the meaning of the free parameters are the same, respectively, y1 and y2 are the

state variables, and u denotes the control force.

The two systems have very similar structures, though depending on the parameters

their behavior can be very different. If e.g. the following values are given to the

parameters: ωd = 2Hz, a = 1.2Nm, α1 = 1N , α2 = 0.8N , β1 = 1 N
m2 , β2 = 1.5 N

m2 ,

δ1 = 0.2N , δ2 = 0.3N , and the initial values of the state variables are y1 = 3m,

y2 = 3ms , x1 = 2m, and x2 = 2ms then Fig. 3.8 shows the differing chaotic and non-

synchronous motions of the two systems, while Fig. 3.9 describes the tracking error of

the slave system. The figures illustrate how different two systems can behave having

similar structures.

Further characteristic simulation results with these Duffing systems can be found

in Chapter 6 where it is shown that if an extra controller is integrated into one of
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Figure 3.8: The chaotic motion of the master (upper) and slave (lower) Duffing systems.
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systems: e1 = x1 − y1, e2 = x2 − y2.
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3. NONLINEAR SYSTEMS

the types of Robust Fixed Point Transformations (introduced in Chapter 4), then the

improvement achieved by the method can be doubled.

3.4 The model of the Φ6-type Van der Pol oscillator

The equation of motion of the so-called Van der Pol oscillator was formulated in 1927

to model the behavior of an electrical circuit containing a triode valve [58]. Even today,

this model is a popular paradigm at various scientific fields where the study of nonlinear

oscillations and chaotic behavior has importance (see e.g. [59, 60, 61]).

The system can be described by the following equation, where x is the state variable:

mvdpẍ− µvdp
(
1− x2

)
ẋ+ ω2

0x+ αx3 + λvdpx
5 = Q (3.8)

in which mvdp corresponds to some inertia, the term −µ
(
1− x2

)
ẋ symbolizes some

nonlinear viscosity (i.e. dissipation for |x| > 1 and energy input for |x| < 1), ω2
0

corresponds to some spring constant, while the remaining terms may describe further

nonlinearities of this spring. The symbol Q here stands for some excitation force. The

adaptive control’s task is to exert proper force Q in order to keep the system’s motion

in the vicinity of a nominal trajectory.

In Chapter 8, it is shown that though the Robust Fixed Point Transformations

method is effective, it can sometimes become unstable and start behaving like a Sliding

Mode Controller, causing the so called “chattering effect”. To avoid this disadvantage,

an new algorithm is introduced by which the stability of RFPT can be regained in very

short time. It is also proved and illustrated via simulation results (where the system is

forced to follow a prescribed trajectory) that by applying the algorithm to the RFPT

the tracking error of the Φ6-type Van der Pol oscillator can be reduced significantly.

3.5 The cart-pendulum system

The cart-pendulum systems are one of the benchmark problems in the control area.

They are often used to demonstrate methods in linear control such as the stabilization

of unstable systems. Since these systems are nonlinear, they have also been useful in

presenting some of the ideas in nonlinear control. The basic of the model is an inverted

pendulum attached to a cart which is moved by a motor. The user is able to set the
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3.5 The cart-pendulum system

position and velocity of the cart through this motor and the track restricts the cart to

move in one horizontal line. Sensors are attached to the cart and the pivots in order to

measure the cart position and the joint angle of the pendulum, respectively. Figure 3.10

describes how the model is built.

The system’s state propagation can be described by two equations where the fol-

lowing parameters (marked in Fig. 3.10) are used, respectively: M denotes the weight

of the cart, while m and Lp are related to the weight and the length of the pendulum.

xc stands for the linear position of the cart and θ denotes the angular rotation of the

hinge.

The Euler-Lagrange equations (taken from [62]) of motion describing this system

and the applied torques (F on the cart and Fp on the pendulum) are

(M +m) ẍc + bcpẋc +mLpθ̈ cos θ −mLpθ̇2 sin θ = F (3.9)

mLp

(
cos θẍc + Lpθ̈ − g sin θ

)
= Fp = 0 (3.10)

where bcp parameter marks for the friction of the cart, while g stands for the gravity.

Since the pendulum is not driven directly, Fp has to be 0. From (3.9) and (3.10) the

second derivatives can easily be calculated:

M

m, Lp

xc

θ

Figure 3.10: The cart-pendulum system got from [62].
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3. NONLINEAR SYSTEMS

θ̈ = ((M +m) g sin θ + µcp cos θ) /KLp (3.11)

ẍc = − (mg sin θ cos θ + µcp) /K (3.12)

where

K = m cos2 θ − (M +m) (3.13)

µcp = F +mLpθ̇
2 sin θ − bcpẋc (3.14)

In Chapter 9, a new, Robust Fixed Point Transformations-based Fuzzy Logic Con-

troller is presented for the same problem using the same values showing that RFPT can

be combined with any Fuzzy Logic Controller in case an approximate model is used in

the control task. As result the tracking error can significantly be reduced.

3.6 The dynamic model of the cart plus double pendulum

system

The basic idea of the cart plus double pendulum system is similar as described in

Section 3.5. There are two pendulums connected to the cart (instead of one), they are

assembled on the cart by parallel shafts. Each pendulum has a rod of negligible mass,

but considerable length: L1 and L2, and at the end of them there is a ball of negligible

size, and of considerable mass: m1 and m2. The cart has a body of considerable

mass: M , and wheels of negligible masses and momentums. The angular rotations

of the hinges are denoted by θ1 and θ2, while the position of the cart is marked by

xc. The sketch of the cart plus double pendulum system is given in Fig. 3.11. The

Euler-Lagrange equations of motion of this system are as follows:

 m1L
2
1 0 −m1L1 sin θ1

0 m2L
2
2 −m2L2 sin θ2

−m1L1 sin θ1 −m2L2 sin θ2 M +m1 +m2

 θ̈1

θ̈2

ẍc

+

+

 m1L1g cos θ1

m2L2g cos θ2

−m1L1 cos θ1θ̇
2
1 −m2L2 cos θ2θ̇

2
2

 =

 F1

F2

F3

 (3.15)
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θ1

θ2

M

xc

m1, L1

m2, L2

Figure 3.11: The cart plus double pendulum system.

in which the F3 6= 0 condition expresses the car’s driving system. Evidently, if sin θ1 =

sin θ2 = 0 simultaneously in (3.15) then neither θ̈1, nor θ̈2 give any contribution to

F3. Therefore, ẍc cannot be controlled by prescribing θ̈1 and θ̈2, which means that the

underactuated system is dynamically singular in these points.

In Chapter 7, a new fuzzy-like parameter tuning of Robust Fixed Point Transforma-

tions is shown and investigated via simulations, where the cart plus double pendulum

system is used. The parameter tuning gives an additional improvement achieved by

RFPT.

3.7 Hydrodynamic models of freeway traffic

As mentioned earlier, Robust Fixed Point Transformations can be used advantageously

when someone tries to examine a complex system approximated by a very rough model.

One of the examples could be the emission rate of exhaust fumes of freeway traffic. The

emission rate depends on a lot of things (e.g. road conditions, traffic properties, vehicle

properties, meteorology, etc.), so exact modeling is a very difficult task. Thus instead

of that the use of an approximate model can be suggested. If only two attributes (the

vehicle density and the average speed of the cars) are considered and RFPT is applied

then the incoming traffic can be controlled and by this the emission rate of exhaust

fumes can be kept under a prescribed limit.
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Figure 3.12: The discretized hydrodynamic model of freeway traffic, based on [63].

The approximate model is illustrated in Fig. 3.12. For simplicity, let us assume a

one dimensional state variable for the road having six segments, from 0 to 5. The road

segments have equal lengths denoted by Lrs. An additional side road (r2) is applied at

segment 2 where external vehicles can come in the traffic. Segments 0 and 5 represent

the boundary conditions determining the propagation of the state variables of segments

1 to 4 by keeping time as continuous variable. A discretized approximation of the (in

this case one dimensional) space variable is also applied. The state variables are the

vehicle density (ρ), i.e. the number of vehicles over the road segment of unit length,

and the velocity of the traffic (v). The quantity ρv (1/s) denotes the traffic current

density by the use of which “conservation” of the vehicles (they cannot disappear and

new vehicles can appear only in road segment 0 or the side road) can be described by

(3.16)-(3.19).

ρ̇1 =
q0 − ρ1v1

Lrsλft
(3.16)

ρ̇2 =
ρ1v1 − ρ2v2 + r2

Lrsλft
(3.17)

ρ̇3 =
ρ2v2 − ρ3v3

Lrsλft
(3.18)

ρ̇4 =
ρ3v3 − ρ4v4

Lrsλft
(3.19)
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v̇1 =
V (ρ1)− v1

τ
+
v1(v0 − v2)

2Lrs
− η

τ2Lrs

ρ2 − ρ0

ρ1 + κ
(3.20)

v̇2 =
V (ρ2)− v2

τ
+
v2(v1 − v3)

2Lrs
− η

τ2Lrs

ρ3 − ρ1

ρ2 + κ
− δ

Lrs

r2v2

ρ2 + κ
(3.21)

v̇3 =
V (ρ3)− v3

τ
+
v3(v2 − v4)

2Lrs
− η

τ2Lrs

ρ4 − ρ2

ρ3 + κ
(3.22)

v̇4 =
V (ρ4)− v4

τ
+
v4(v3 − v5)

2Lrs
− η

τ2Lrs

ρ5 − ρ3

ρ4 + κ
(3.23)

where τ , η, κ, and δ are free parameters.

The dynamic behavior of this system is described by (3.19)-(3.23) in which for

function V (ρ) (which denotes the steady-state speed-density characteristic) various

suggestions can be found in the literature as e.g. the Greenshields model [64]:

V (ρ) := vfree

(
1− ρ

2ρcr

)
(3.24)

and the Papageorgiou model [65]:

V (ρ) := vfree exp

(
−1

b

[
ρ

ρcr

]b)
(3.25)

where ρcr denotes the critical vehicle density (density of jams), vfree marks the velocity

of the traffic flow and b is a free parameter.

The first relationship established by Greenshields may provide negative velocities

that are not allowed under normal conditions in a real traffic. The second one, the

Papageorgiou model always results in interpretable nonnegative values. On this reason

the latter approach is used.

If the additional ingress rate from the ramp (r2) is applied at segment 2 then the

appropriate dynamic model is given by (3.16)-(3.23). If electronically controlled road

signs are used, the quantities ρ0, v0 (consequently q0 := ρ0v0), v4 and v5 can be set

as constant boundary conditions which together with (3.23) with v̇4 = 0 immediately

determine the density in segment 5 (ρ5). Therefore the state variables remain only

ρ1, ρ2, ρ3, ρ4, v1, v2, and v3 for which we can define a coupled first order nonlinear

differential equation system.

It must be noted that these equations describe a strongly “underactuated” system:

there is only one time-varying control signal (r2) that influences the propagation of

seven state variables. Therefore there are three choices:
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3. NONLINEAR SYSTEMS

1. Only one of these variables is chosen and is precisely controlled.

2. An expression calculated from these variables is precisely controlled.

3. Some kind of optimal controller is applied. In this case, a cost function describes

the weighted significance of the control of the individual variables.

In Chapter 11, after introducing the quasi-stationary solutions for the system, and

making a stability analysis of these solutions a new controller is proposed for the quasi-

stationary approach.

3.8 The qualitative properties of tire-road friction and the

Burckhardt tire model

To model and analyze traffic-related phenomenons, in many of the cases it is necessary

to model the vehicles themselves. Because of the increasing safety expectations of

todays everyday people make tests of their cars (e.g. braking distance [66]). Many of the

test results are public and can be used for comparative analysis for the determination of

the effectiveness of an idea or method. This section focuses on braking problems since

it not just helps to prevent crashes, but can save human life as well at e.g. difficult

road conditions.

For designing braking systems, tire models are essential since they describe the

connection between the road and the wheels. One of the most popular tire models was

developed by Bakker, Pacejka and Lidner in 1989 [67]. This model obtained especial

attention in the forthcoming 10 years (e.g. [68, 69, 70]). Its original form was developed

in the form of a single–variable function that describes the dependence of the friction

coefficient (µ) on the wheel slip: λt := (v − rω)/v, in which v denotes the velocity of

the car body with respect to the road, r is the radius of the wheel, and ω describes the

rotational velocity of the wheel axis. According to the sign selection convention in case

v > 0 then the v = rω condition corresponds to free rolling, v < rω corresponds to

skidding with accelerating, and the v > rω condition pertains to skidding with braking.

If motor brake is used in principle the ω < 0 case also may occur. However, by the

use of the conventional braking dials utilizing the friction forces, only the 0 ≤ rω ≤ v

interval has physical meaning. The so-called “Magic Formula” developed by Bakker et

al. uses an analytical formula for the function µ(λt) as

46



3.8 The qualitative properties of tire-road friction and the Burckhardt tire
model

µ(λt) = D sin {C arctan [Bλt − E(Bλt − arctan(Bλt))]} (3.26)

that has geometrically well-interpreted parameters as “Stiffness Factor” (B), “Shape

Factor” (C), “Peak Factor” (D), and “Curvature Factor” (E). Besides the fact that

the identification of these parameters needs very sophisticated test equipment ([71]),

it suffers from certain deficiencies from physical point of view: in the definition of λt

if (3.26) is normalized according to v then the Magic Formula does not depend any

more on |v| (just the relative velocity of the skidding surfaces v − rω). To amend this

“absence” Burckhardt suggested a modified version [72]:

µ(λt, v) = e−B4v
[
B1

(
1− e−B2λt

)
−B3λt

]
. (3.27)

For describing typical conditions, typical estimated values of these parameters are avail-

able. For describing typical road conditions Burckhardt determined appropriate values

for parameters B1, B2, B3, and B4 [72], as shown in Table 3.1.

If the model is used for analysis of a braking process the term containing the coeffi-

cient B1 increases with increasing λt while the term containing B3 decreases. Therefore

the maximum wheel slip is at some λmax between 0 and 1. The coefficient with B4 takes

into consideration the dependence on |v|. The aim is to apply an appropriate braking

strategy that keeps the deceleration of the wheel body at the prescribed value (if it is

allowed by the road conditions) or keep it at the possible maximum. If braking starts

at a free rolling state then at the beginning big negative ω̇ is needed until achieving the

maximum of the friction coefficient. Thus, ω must be slowly decreased (as the velocity

v also decreases) for keeping the friction coefficient near its maximum. A possible new

strategy (with Robust Fixed Point Transformations) and a simple new vehicle model

are suggested in Chapter 12, an the results are compared to public car test results.

Asphalt type B1 B2 B3 B4

dry 1.2801 23.9900 0.5200 0.02

wet 0.8570 33.8220 0.3470 0.04

snowy 0.1946 94.129 0.0646 0.04

Table 3.1: Parameter setting for the different asphalt conditions got from [72].
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3.9 Summary

In this chapter, several widely used nonlinear systems are summarized. First some

chaotic attractors are detailed, like the FitzHugh-Nagumo neuron modell, the Duffing

system, the Matsumoto-Chua circuit, and the Φ6-type Van der Pol oscillator. Then,

the cart-pendulum and the cart plus double pendulum systems are described. Finally,

two realistic models are presented: the hydrodynamic model of freeway traffic, and the

Burckhardt tire model. These systems are essential in understanding the new results

in the next chapters.

48



4

Robust Fixed Point

Transformations

In the previous chapter, those nonlinear systems are described that are essential for

the analysis of the theses of this dissertation. In this chapter, the main process of

the classical feedback control and the role of Robust Fixed Point Transformations are

summarized. The following sections form the direct basis for the new results introduced

in Chapters 5-11.

4.1 The expected-observed response scheme

Classical feedback control is a method that modifies the behavior of a system in a

prescribed way. The expected-observed response scheme is the part of the classical

feedback control. Usually, classical feedback control tasks are built as follows: There is

a prescribed or “desired” behavior rd for an existing system. The existing system has

some kind of “excitation”, for example some kind of torque or a control signal u which

forces the system to produce the desired response. Different forces (gravity, friction,

sometimes an accelerating motor, disturbance, etc.) take effect on the system. The

actual value of the control signal has to be calculated with respect to these forces.

The control task can be formulated by the following equation

rr = ϕ(u) (4.1)
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rr
Controller System ( )

Inverse
Model (        )

dr d
appru

1
appr 

Figure 4.1: The block scheme of the classical feedback control Robust Fixed Point Trans-

formations deal with.

which describes the correspondence of the control signal (u) and the actual system

response rr (after applying u on it). The main difficulty here is that the controlled sys-

tem (with mapping ϕ) is not exactly known. For the proper control signal computation

(ud = ϕ−1(rd)) only approximate models (ϕ−1
appr) can be of help:

udappr = ϕ−1
appr(r

d) (4.2)

The approximation results in an error because the controller treats the approximate

model as it was the desired one. The desired control force for the system could be

achieved only by using an exact inverse model. So applying the approximate control

signal to the system, gives the realized response. The correspondence between the

realized (rr) and the desired response (rd) is

rr ≡ ϕ(ϕ−1
appr(r

d)) ≡ f(rd) 6= rd (4.3)

The structure of the system can be seen in Fig. 4.1. Since the controlled system is not

exactly known, neither can be determined function f = ϕ−1
appr ◦ϕ . All that can be done

is measure its output and based on it build a strategy to decrease the error.

4.2 The proof of the local convergence

As it is mentioned above it is hard to find the proper (desired) control signal ud for

an unknown system since the system’s behavior cannot exactly be predicted. Using an

approximate model may help to roughly determine the control signal (udappr), but it is

not always enough. Extra (usually iterative) calculations and time are needed.

The principle of RFPT is a strategy which shows how to determine an appropriate

control signal which is able to control the not-exactly known system based on the
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4.2 The proof of the local convergence

approximate model. It constructs a function G1 which transforms udappr so that it gets

closer to ud: |G1(udappr) − ud| < |udappr − ud|. In [21] authors show an iterative fixed

point searching algorithm. Based on Banach’s fixed point theorem [73] they prove that

if

1. G1 is differentiable and

2. |G′1| ≤M < 1, where M ∈ R

then

• The sequence constructed by G1 is convergent and

• The fixed point of G1 is the sequence’s limit value.

In other words if the fixed point of function G1 is ud (G1(ud) = ud), then the sequence

built by G1 converges to ud. In the next few paragraphs a short proof of this statement

is shown.

Take the next iterative sequence: {u0, u1 = G1(u0), ... , un+1 = G1(un)}. If it is

supposed that G1 is differentiable then in the first step the contractivity of G1 is shown.

The definition of contractivity is ∃ 0 ≤M < 1 ∀a, b ∈ R |G1(a)−G1(b)| ≤M |a− b|. If

|G′1| ≤M < 1, then

|G1(a)−G1(b)| = |
b∫
a

G′1(u)du| ≤
b∫
a

|G′1(u)|du ≤M |b− a| (4.4)

If G1 is contractive then a sequence built up with it is convergent in Banach spaces.

Take the set of the real numbers R as a linear normed space where the two operations

are the common addition and the multiplication with real numbers and the norm is the

absolute value. In this case, this space is complete, therefore it is Banach space. So

{un} is convergent.

In the last step it is shown that the limit value of the sequence is the fixed point of

G1. If L, n ∈ N and L, n > 0 then

|un+L − un| = |G1(un+L−1)−G1(un−1)| ≤ ... ≤Mn|uL − u0| → 0 as n→∞ (4.5)
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The proof contains a sequence of equivalent steps. It means that if the two condi-

tions are fulfilled and the fixed point of G1 is ud, then the sequence constructed by G1

will converge to ud. So the next task is the construction of the proper mapping G1.

The next section deals with a possible representative.

4.3 The RFPT-based Model Reference Adaptive Controller

However, any appropriate G1 function could be used, in the following, without limiting

the universality, that function is shown and later applied which is suggested by Tar

et.al. in [23]:

G1

(
u, udappr

)
= (u+K)

(
1 +B tanh

(
A
(
h (u)− udappr

)))
−K (4.6)

where ϕ−1
appr(ϕ(x)) = h(x), h

(
ud
)

= udappr, and

G′1

(
u, udappr

)
=

(u+K)ABh′ (u)

cosh2
(
A
(
h (u)− udappr

)) + 1 +B tanh
(
A
(
h (u)− udappr

))
(4.7)

In the equation A, B, and K are free parameters. They can be chosen so that the

necessary limitation
∣∣G′1 (u, udappr)∣∣ < 1 is guaranteed. It has two fixed points: ud and

−K. The latter can easily be excluded since there is more than one order of magnitude

between the values of the two fixed points (further K is a free parameter chosen by

the user). This means that if G1 is flat enough around ud, the iteration will converge

to it, so G1(u, udappr) will get closer to ud than udappr. G1 is robust with the respect to

fluctuation of the system (with mapping ϕ). This robustness is a consequence of the

strong nonlinear saturation of the sigmoid function tanh(), and can be approximately

investigated by the use of an affine approximation of ϕ(G1(ϕ−1
appr(x))) in the vicinity of

ud. The iteration generated by G1 converge with a considerable speed even nearby ud.

Because of its robustness, function ϕ has less influence on its behavior.

Due to the principle of causality this iterative controller learns from the past expe-

rience therefore u and h(u) can be calculated with one step delay. It means that they

are got from the previous step. It causes one step delay in the computation and also

a possible instability if the cycle time of the controller is “big”. If ud varies quickly,
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4.3 The RFPT-based Model Reference Adaptive Controller

thanks to the shift, udappr can get out from interval where G1 converges to ud. In Chap-

ter 7, it is introduced that this disadvantage can be fixed by a fuzzy-like parameter

tuning.

If it is assumed that ud varies slowly, then G1(u, udappr) is a proper choice. In practice

the smaller A is, the wider “window” is got where function G1 converges to ud (instead

of −K). After setting A, the better value is found for K, the quicker convergence is

gained (B is always ±1, K is a very big negative and A is a very small positive number,

they can be set by trial and error). Furthermore, tanh can be replaced by any bounded,

strictly monotonously increasing differentiable σ(x) function that fulfills the property

σ(0) = 0, e.g. σ(x) = x/(1 + |x|).
The controller’s logic is very similar to that of the Model Reference Adaptive Con-

troller (see Subsection 2.2.3): The controller (PD) determines the desired system re-

sponse and then it is converted to the dimension of control forces so they together

represent the reference model. The appropriate control force is calculated based on

the variation of h(u), so it is like the adaptation law. The RFPT part (G1) calculates

the proper control force, so it can be assumed as the controller. Finally the system is

the system itself. The aforesaid RFPT-based Model Reference Adaptive Controller is

shown in Fig. 4.2.

PD
controller

Inverse
Model (       ) G1 System ( )

Delay

Delay

Inverse
Model (       )

dr
d
appru rr

u

 uh

1
appr

1
appr



Figure 4.2: The block scheme of the Robust Fixed Point Transformations-based Model

Reference Adaptive Controller.
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4.4 The RFPT-based PD Controller

In the previous section, a method is shown how to find the proper control signal for

a partly known system by using an approximate model. It is based on the idea of

appropriately transforming the control signal calculated by the PID controller. In this

section, a second approach is described for the problem.

The second option is to ameliorate the PID controller’s result is finding the function

Gd2, which maps the previously explained desired state of the system rd to some r∗ so

ϕ−1
appr (r∗) = ud and Gd2(rd) = r∗. Since the difference between ϕ−1

appr and ϕ−1 is not

known, this is also not possible in practice. The other option can be to construct a

function G2 which at least takes rd closer to r∗. In other words, function G2 has to be

applied to transform rd by using the inverse approximation of model: |G2(rd) − r∗| <
|rd − r∗|.

The iterative fixed point searching algorithm, defined in Section 4.2 can be applied

here, too. The proof of convergence is the same. The only thing that remains is the

construction of the proper mapping G2. In [21] the following function is proposed:

G2

(
r, rd

)
= (r +K)

(
1 +B tanh

(
A
(
f (r)− rd

)))
−K (4.8)

where ϕ(ϕ−1
appr(x)) = f(x), f (r∗) = rd, and

G′2

(
r, rd

)
=

(r +K)ABf ′ (r)

cosh2 (A (f (r)− rd))
+ 1 +B tanh

(
A
(
f (r)− rd

))
(4.9)

This function has the same conditions as (4.6). It also has the one step delay, so

G2(r, rd) is a proper choice only if rd varies slowly. The system with the RFPT-based

PD Controller is shown in Fig. 4.3.

4.5 Summary

In this chapter, the basics of Robust Fixed Point Transformations are explained. First,

the concept of the classical feedback control is detailed where RFPT can be used,

then proof of RFPT’s convergence is shown. Finally, two possibilities for RFPT-based

classical controllers can be seen: the RFPT-based Model Reference Adaptive Controller

and the RFPT-based PD controller. The most important difference between the two
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PD
controller G2 System ( )

Delay

Delay

Inverse
Model (       )

rr

 rf

d
appru

1
appr 

r
dr

Figure 4.3: The block scheme of the Robust Fixed Point Transformations-based PID

controller.

structures is that RFPT improves their results in different dimensions: in the dimension

of the control forces and the state variables, respectively.
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5

Robust Fixed Point

Transformations in chaos

synchronization

After providing a brief review of the litarature, in this chapter, the first new results

are presented. A possible new application area of Robust Fixed Point Transformations

is proposed and investigated: the field of chaos synchronization. Some chaotic oscil-

lators are first modeled, then approximated, and finally controlled with RFPT-based

controllers to prove the effectiveness of RFPT. In the later chapters similar approaches

can be seen when new algorithms for RFPT are tested, and other RFPT-based con-

trollers are designed for different chaotic systems.

5.1 Introduction

Nowadays, improving an existing system’s results (speed, accuracy, efficiency, etc.)

is very important since there is competition between manufacturers of machines, like

industrial machines, cars, public vehicles, robots and labor-saving devices. On one

hand, accuracy is more and more expected. On the other hand, avoiding a system to

behave in an unwanted way is an other important issue.

Chaotic phenomena are present in our lives, especially in the nature. Usually,

dynamical systems produce chaotic behavior. Unfortunately, chaos is present also in

the control engineering and may cause major problems, like the sliding mode controllers’
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SYNCHRONIZATION

chattering effect or the more familiar phenomenon of car skidding. Generally, chaos is

something that scientist want to stop.

A possible way to analyze, handle, or avoid chaotic behavior is chaos synchroniza-

tion, this is why it is an important research issue. In chaos synchronization different

attractors are typically used. For example, the Chua circuits [55] are used in elec-

tricity, Rössler’s attractors [74] are applied in chemistry, the Lorenz systems [75] which

were developed to model atmospheric convection and the Duffing systems [57] to model

oscillators.

Regarding accuracy, there is an extra problem the manufacturers have to deal with.

Replacing an existing system with a better one is sometimes very expensive so cheap

modifications can bring more financial benefit. Scientists realize this monetary problem

also: many papers can be found in the literature how to upgrade existing controllers’

results without modifying it considerably.

One of the possible ameliorating methods is the so called Robust Fixed Point Trans-

formations (RFPT) [23] which can improve existing controllers’ results without too

many modifications in the actual system. In this chapter, author shows that Robust

Fixed Point Transformations can be advantageously utilized in a new field: the field of

chaos synchronization. The chaotic systems presented in Chapter 3 are applied here,

as well. Approximate models are constructed and used for the different attractors, and

RFPT-based controllers are designed for the synchronization. The only constraint for

the approximate models is that the sign of the differentiated composition of the system

and the approximate model has to be known. After that the results are analyzed by

simulations.

5.2 The synchronization of two FitzHugh-Nagumo neu-

rons

In this section, the RFPT-based synchronization of two coupled FitzHugh-Nagumo

neurons are presented. The background of the FitzHugh-Nagumo neuron models is

presented in Section 3.1. First, a simple approximate model and a controller are con-

structed according to the requirement detailed above.

The approximate model for the control process is designed to have a similar struc-

ture to the original system (see Section 3.1). For the illustrative examples the approx-
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5.2 The synchronization of two FitzHugh-Nagumo neurons

imate parameters are set to â = 12, b̂ = 1.5, and ĝc = 0.5. For determining the desired

state of the system a PD controller is chosen as ẍDes3 = ẍ1 + 2Λ(ẋ1− ẋ3) + Λ2(x1− x3)

with Λ = 2/s. For improving the controller the second RFPT-version is chosen (see

Section 4.4).

In the second step the simulations are made in Scilab-5.1.1 [76] (developed by the

Consortium Scilab (DIGITEO)) and the related graphical programming tool SCICOS

4.2. In the illustrated examples the free parameters of function G2 are set to B = 1,

A = 5× 10−7 and K = −106. The applied parameter values (as written in Section 3.1)

are a1 = 10, a2 = 5, b1 = 1, b2 = 0.5, I(t) = Aexctsin(2πfexctt) where Aexct = 0.5, and

fexct = 1.271Hz, gc = 0.02. For the simulations the Scilab uses a solver for ordinary

differential equations in which the integration method is automatically set by the system

depending on the stiffness of the problem. The maximum step size of the integration is

not limited, it is automatically set by SCICOS, too. The Integrator absolute tolerance

parameter is set to 0.01, and the Integrator relative tolerance is 0.001. The cycle time

for the delays is set to ∆tCycle = 2ms. The initial states of the state variables are

x1 = 0.005, x2 = 0.005, y1 = −0.005, and y2 = −0.005, a slight asymmetry is assumed.

The disturbance forces are assumed to be high-frequency periodic signals with half

amplitude of the external excitation I.

In the following illustrative simulation results are presented for comparing the tra-

ditional (C1) and the RFPT-based PD controller (C2). The disturbed control and the

disturbed control are also compared. Figure 5.1 reveals the tracking error in the four

cases. It can be seen that the error achieved by controller C1 is reduced when RFPT is

used. Figure 5.2 displays the realized responses vs. the desired ones. In ideal case one

single line could be seen. With controller C2 without disturbances the figure shows al-

most one single line, but with controller C1 there is a significant difference between the

system responses. With disturbances the system responses are chaotic, but controller

C2 achieves better results.

5.2.1 The effect of noise reduction on the synchronization two FitzHugh-

Nagumo neurons

A very important area of research for nonlinear dynamical systems is the effect of noise,

since noise can drastically modify the dynamics of a system. It can be present as a

driving force or as an unwanted disturbance causing nondeterministic, or sometimes
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Figure 5.1: The tracking error (x1 − y1) achieved by controllers C1 and C2: C1 without

disturbances (upper left); C2 without disturbances (upper right); C1 with disturbances

(lower left); C2 with disturbances (lower right). RFPT reduces the error every time to its

one third.

chaotic behavior. The noise can appear as a consequence of a physical/dynamical

attribute, e.g. thermal noise in every system warmer than absolute zero or the noise in

nerve cells coming from synaptic events. In this case, basic physical knowledge is needed

to understand, and if it is necessary, avoid the effects [77]. The other possibility is the

unavoidable measurement noise, i.e. when the responses or state variables of a system

are not calculated, but measured by some sensors affected by unknown external forces.

When a sensor is used the user cannot assume that it measures everything correctly.

Sensors always involve measuring noise. Luckily, nowadays many solutions exist to

filter this kind of noise (e.g [78, 79, 80, 81, 82, 83, 84]). In the present literature the

great majority of noise filters follow the model-based approach. The greatest impact on

the field is given by Rudolf Kálmán who introduced the model-based state estimation

in the early sixties [85, 86, 87, 88, 89].
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Figure 5.2: The realized ÿ1 values vs. the desired ÿDes
1 values for controllers C1 and

C2: C1 without disturbances (upper left); C2 without disturbances (upper right); C1 with

disturbances (lower left); C2 with disturbances (lower right). In ideal case one single

straight line could be seen. With controller C2 the figure shows almost one straight line,

but with controller C1 there is a significant difference between the system responses.

The use of Kalman filters are based on certain assumptions regarding the statistical

nature of the occuring noises. Furthermore, the Kalman filters have to be designed

very carefully to avoid divergences [90].

A big disadvantage of Kalman filters is that whenever there is no reliable system

approximation they cannot be applied. A different approach, the application of model-

independent filters become necessary. In this section, it is examined how the filtering

affects the performance of Robust Fixed Point Transformations. For the illustration,

first a simple noise filter, an approximate model, and a controller are constructed.

A linear noise filter can be modeled in two ways in the time domain: in continuous

case as an integral function as f̃(t) :=
∫∞

0 F (τ)f(t− τ)dτ or in discrete case as a sum

f̃k :=
∑∞

i=0 Fifk−i. f denotes the systems’ states, F (τ) is a monotonously decreasing
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function, and Fk-s are discrete weights that normally converge to zero as τ , k → ∞.

They correspond to the “forgetting speed” of the filter. They can be calculated in

discrete case as Fk := βk(1 − β) with 0 < β < 1. For saving space and time Fk-s can

be calculated by a simple buffer P : Pn+1 = βPn + fk+1, f̃k+1 = (1 − β)Pk+1. The

actual value of β directly influences the “memory” of the filter: the larger value β has,

the longer memory the filter has. In the following, the approximate model and the

controller are detailed.

In fact, the approximate model is an inverse model as explained in Chapter 4. For

simulation purposes, the same parameter settings are used as in the previous section:

â = 12, b̂ = 1.5, and ĝ = 0.5. By the use of the same PD controller relatively

good tracking accuracy can be achieved if the feedback parameters are big enough.

However, big feedback in the derivative term causes big disturbances in case of noisy

signals. Within the frames of the PD controllers reduced feedback coefficients result

in inaccurate tracking. The real virtues of the RFPT-based controller can be well

observed when a relatively fast signal has to be slowly approximated. On this reason,

in this section the same type of controller is applied with Λ = 0.2fexct. For improving

the controller the second RFPT-version is chosen (see Section 4.4). In the following,

simulation details and results are presented.

The task is to synchronize two chaotic FitzHugh-Nagumo neurons described in

Section 3.1. In (3.2) x1 and x2 denote the master system while y1 and y2 describe the

state of the slave system. Regarding the control task, assume that y1 has to precisely

track x1 by properly setting u̇. For calculating the differentiated control force, the

observation of ÿ1 and ẍ1 is needed. Assume furthermore that there are simple sensors

directly observing x1 and y1. The sensors have some observation noise that spreads

through the numerical derivation with finite time-resolution ∆tCycle. To reduce the

effects of this noise the above detailed filter is used.

The simulations are made in Scilab-5.1.1 [76] (developed by the Consortium Scilab

(DIGITEO)) and the related graphical programming tool SCICOS 4.2. For SCICOS

the maximum step size of the integration is not limited in the simulations. In the

illustrative examples the Integrator absolute tolerance parameter is set to 0.01, and the

Integrator relative tolerance is 0.001. In the RFPT-based case the ∆tCycle = 0.1ms

cycle time is chosen with K = −1000000, A = 5× 10−7 and B = 1 settings. The initial

values for the state variables are x1 = 0, x2 = 0, y1 = 0.005, and y2 = 0.
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Since the adaptive controller works by observing ẍ1 and ÿ1 it may be sensitive to the

observation noises. In this approach, in noisy case, it is assumed that the quantities x1

and y1 are directly observed as noisy signals. Their 1st and 2nd derivatives are estimated

as ẋ(tn) ≈ [x(tn)−x(tn−1)]/∆tCycle, ẍ(tn) ≈ [x(tn)− 2x(tn−1) +x(tn−2)]/∆t2Cycle. The

estimated values can be filtered accordingly. The β = 0 case corresponds to no filtering,

while the 0 < β < 1 corresponds to some filtering with shorter or longer filter memory.

The simulations are made to be able to compare two controllers: without RFPT

(C1) and with RFPT (C2), to be able to compare results without and with measurement

noise, and to be able to compare two noise filters: filter with β = 0.9 (F1) and filter

with β = 0.5 (F2). In this section, six cases are presented: 1. with controller C1,

without noise, without filter; 2. with controller C2, without noise, without filter; 3.

with controller C2, with noise, without filter; 4. with controller C2, without noise, with

filter F1; 5. with controller C2, with noise, with filter F1; 6. with controller C2, with

noise, with filter F2.

The first group of figures (Fig. 5.3) reveals the tracking error of the first state

variable of the two systems e = x1 − x3 in all of the six cases. It reveals that without

noise and filtering C2 can gain more smooth and a little bit better trajectory tracking.

With noise and without filter the initial error is very high (10000%) though later it

converges to zero. The F1 (without noise) does not increase the error, moreover it

damps it a little bit. In the lowest figures, the results are shown with noise and with

filters F1 (β = 0.9) and F2 (β = 0.5). F1 gives significantly better results than the

other filter.

The second group of figures (Fig. 5.4) reveals the connection of the desired and

realized system responses ÿDes1 − ÿ1. The bow–tie shaped figure in the first chart

reveals that with C1 (due to the parameter estimation errors) the trajectory tracking is

not precisely realized. The effects of RFPT can be well observed in the second figure:

ÿ1 becomes almost identical to ÿDes1 . The last non chaotic figure (without noise but

with filtering) does not differ from the second one which means that the filter does

not “disturb” the improved results of RFPT. According to the simulations the noise

filtering with β = 0.9 seems to work well. The other figures are noisy because the

feedback in the derivative term of the PD controller causes disturbances in case of

noisy signals.
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Figure 5.3: Tracking error of the first state variable e1 = x1 − y1. Upper left: with

controller C1, without noise, without filter; Upper right: with controller C2, without noise,

without filter; Middle left: with controller C2, with noise, without filter; Middle right: with

controller C2, without noise, with filter F1; Lower left: with controller C2, with noise, with

filter F1; Lower right: with controller C2, with noise, with filter F2. The filter improves

the results in every case and does not disturb RFPT. β = 0.9 (F1) seems to be the best

choice.
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Figure 5.4: Response error ÿDes
1 − ÿ1. Upper left: with controller C1, without noise,

without filter; Upper right: with controller C2, without noise, without filter; Middle left:

with controller C2, with noise, without filter; Middle right: with controller C2, without

noise, with filter F1; Lower left: with controller C2, with noise, with filter F1; Lower right:

with controller C2, with noise, with filter F2. Controller C2 brings the best results. The

other cases are noisy because the noise is not filtered out in this level. β = 0.9 (F1) seems

to be the best choice.
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5.3 Synchronizing two Matsumoto-Chua circuits

In this section, the RFPT-based synchronization of two Matsumoto-Chua circuits is

presented. The background of the circuits is presented in Section 3.2. First, a simple

approximate model and a controller are constructed.

Without limiting the generality of the result, the following parameters are chosen

for the illustrative examples: Cmc1 = 1/10F , Cmc2 = 2F , Lc = 1/7H, G = 0.7 1
Ω ,

Ssmall = −0.1 1
Ω , Sbig = −4 1

Ω . The simulations are made in Scilab-5.1.1 [76] (developed

by the Consortium Scilab (DIGITEO)) and the related graphical programming tool

SCICOS 4.2. The maximum step size of the solver of SCICOS is identical with the cycle

time of RFPT: 10−2 s. The Integrator absolute tolerance parameter is set to 0.001, and

the Integrator relative tolerance is 0.0001. The parameters values for function G2 are

B = 1, K = −10000, and A = 10−4. In the simulations the slave system has the same

initial conditions as the master system: vC10 = 1.45305V , vC20 = −4.36956V , and

iL0 = −0.15034A.

The approximate model of the slave system is designed to have the same structure

and parameter values than the master Matsumoto-Chua circuits: Ĉmc1 = Cmc1 , Ĉmc2 =

Cmc2 , L̂c = L, Ĝ = G, Ŝsmall = −0.05, Ŝbig = −3.5. The slave system parameters are

set differently: C̃mc1 = 0.9Cmc1 , C̃mc2 = 0.8Cmc2 , L̃c = 0.7L, G̃ = 0.9G, S̃small = −0.05,

S̃big = −3.5. For determining the desired state of the system a PI controller is chosen

v̇DesC2 = v̇NomC2 + Λ
(
vNomC2 − vC2

)
with a small feedback gain Λ = 2/s. For improving

the controller the second RFPT-version is used (see Section 4.4). In the following,

simulation details and results are presented.

Hereunder, illustrative simulation results can be seen with PI control (C1), and with

RFPT-based PI control (C2). In Fig. 5.5 the driven signals versus the reference signals

can be followed. Figure 5.6 shows the tracking error versus time. The figures well reveal

the improvement achieved by RFPT: with controller C1 the system responses differ from

each other significantly, but with controller C2 the differences and the tracking error

are reduced considerably. In Fig. 5.7 the control currents of the two controllers can be

compared.

According to the simulations the performance of controller C2 is far better than

that of controller C1 with small exponent Λ = 2/s. If Λ is increased then better results

can be gained, but without the extension of function G2 it does not reach the results
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of the RFPT-based controller with small Λ. Figure 5.8 shows the results of controller

C1 with Λ = 10/s.

5.4 Summary

In this chapter, a new application area of Robust Fixed Point Transformations is pro-

posed and investigated: the field of chaos synchronization. Chaos synchronization is

very useful to supervise natural processes and to test the effectiveness of controllers. For

this purpose approximate models are built for different chaotic attractors and Robust

Fixed Point Transformations-based controllers are designed to synchronize the chaotic

systems based on the approximate models. Then the effectiveness of the proposed tools

are analyzed by simulations. The results prove that the performance of the original

controllers can significantly be increased with RFPT, and that even a poorly adjusted

controller combined with RFPT outperforms a well set controller.

The results considered to be new have been published in journal paper [J2] and

conference papers [C1, C4, C5, C6, C7, C8, C19]. Similar achievements with different

attractors can be seen in Chapters 6 where two Duffing systems are synchronized, and

in Chapter 8 where the chaotic Φ6-type Van der Pol oscillator is controlled.
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Figure 5.5: The realized system response ( ˙̃vC2) versus the desired response (v̇C2) with

controller C1 (upper); with controller C2 (lower). In ideal case one single straight line

could be seen. With controller C2 the figure shows almost one straight line, but with C1

there is a significant difference between the system responses.
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Figure 5.6: Tracking error vC2 − ṽC2 with controller C1 (upper); with controller C2

(lower). The tracking error is reduced significantly with RFPT.

����
���

	



�

	�

�

�


	

�



��
�	

�	�

�

Time[s]

����
���

	



	�

	


�
�



�




��

�	


�	�
�


Time[s]

Figure 5.7: The control current versus time (in s units) with controller C1 (upper); with

controller C2 (lower).
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6

The “recalculated” Robust Fixed

Point Transformations

In the previous chapter, a new application area for Robust Fixed Point Transformations

is proposed and investigated: the field of chaos synchronization. In this chapter, based

on the preliminary knowledge of RFPT, a new structure with an additional controller is

introduced to improve existing controllers’ results. The extra controller gains additional

tracking error reduction compared to the original two versions. In the following, it

is investigated if RFPT is able to improve the results of the soft-computing-based

controllers.

6.1 The RFPT-based “recalculated” PD Controller

In Chapter 4 two options are reviewed how to build in a simple transformation (G)

into a controller so that the system gives more accurate response. In the following,

another possibility is shown how the system’s results can be improved. The idea is

based on the theory that in a simple feedback control there are three main tools: a

controller (PD()), an approximate inverse model (ϕ−1
appr()), and the system itself (ϕ()).

In Chapter 4 it is shown how authors build in the improver function between the model

and the system

ϕ(G1(ϕ−1
appr(PD(rrn)))) = rrn+1 (6.1)

and between the controller and the model
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ϕ(ϕ−1
appr(G2(PD(rrn)))) = rrn+1 (6.2)

In this chapter, a new adaptation to Robust Fixed Point Transformations is introduced:

a function further improving the performance is included between the system and the

controller:

ϕ(ϕ−1
appr(PD(G3(rrn)))) = rrn+1 (6.3)

Based on the previous chapter’s logic the goal is to find the function (Gd3), which

maps rd to some r∗G so that PD (r∗G)=r∗ (where ϕ−1
appr (r∗)=u

d and PD() denotes the

PD controller). In effect this means that the controller has to be tricked about where

the proper place for the system is. So it is forced to map its inputs to somewhere

else. Since ϕ is still not known, the exact value of r∗G still cannot be determined. All

that can be done is constructing function G3 which at least takes rd closer to r∗G, so

|G3(rd)− r∗G| < |rd − r∗G|.
The iterative fixed point searching algorithm is adaptable again. The same proof is

valid in this case. The only thing that has to be done is the construction of the proper

mapping G3. Based on the previous results the following function is proposed:

G3

(
PD(r), rd

)
= (PD(r) +K)

(
1 +B tanh

(
A
(
f (PD(r))− rd

)))
−K (6.4)

where ϕ(ϕ−1
appr(x)) = f(x), f

(
PD(rG∗ )

)
= rd, and

G′3

(
r, rd

)
=

(r +K)ABf ′ (r)

cosh2 (A (f (r)− rd))
+ 1 +B tanh

(
A
(
f (r)− rd

))
(6.5)

This function has the same conditions as (4.6). It also has the shift inside, so

G3(PD(r), rd) is a proper choice only if rd varies slowly.

The system with the RFPT-based “recalculated” PD Controller is shown in Fig. 6.1.

The block scheme is very similar to the RFPT-based simple PD controller’s (Fig. 4.3),

but there is a significant difference: rd is not just transformed, but a new desired

response is calculated with the help of a second controller. This new desired response

is calculated from the transformed desired response (transformed by G3), so the inverse

approximation is taken into account. The recalculation of the desired response is made

by a second controller, which (in most cases) reduces additionally the tracking error. In

the simulations the same controllers can be used, but ad-libitum, they can be different.
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Figure 6.1: The block diagram of the RFPT-based “recalculated” controller scheme. An

extra controller is added which causes the further decrease in the tracking error.

6.2 Simulation results

In this section, illustrative simulation results are presented using chaotic systems. The

task is to synchronize two nonlinear Duffing systems that are not identical. The sim-

ulations are made by the MATLAB-Simulink pair. The programs use a solver for

ordinary differential equations (ode45 [91]). The tracking error is strongly related to

the integrator absolute tolerance. The tolerance is set organically in every case (10−3)

to be able to compare them. The maximum step size of the integration is also the

same (10−3) in every simulation. Without limiting the generality of the new result, in

the examples the parameter values for the two Duffing systems are set to α1 = 1N ,

α2 = 0.8N , β1 = 1 N
m2 , β2 = 1.5 N

m2 , δ1 = 0.2N , δ2 = 0.3N , ωd = 2Hz, and a = 1.2Nm.

The approximate inverse model has the same structure than the systems (see (3.6) and

(3.7)), but different parameters are assumed: α̂ = 1.5N , β̂ = 0.5 N
m2 , and δ̂ = 0.1N .

For the tracking error reduction the following PD controller is used:

ẏDes2 = ẏ2 + 2Λ(x2 − y2) + Λ2(x1 − y1) (6.6)

where Λ = 5/s.

The simulations are made both with and without disturbance. The tanh() function

makes the RFPT-based controllers very robust, so the disturbances do not increase the

tracking errors’ order of magnitude in the RFPT-based simulations. That is why it is
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Figure 6.2: The disturbance forces applied on the master (upper) and the slave (lower)

systems (defined in (3.6)-(3.7)).

not necessary to show the “disturbed” results. The disturbing sine waves are presented

in Fig. 10.2.

The simulations are made by using PD controllers, in first case without (controller

C1 denotes double PD, C2 marks MRAC, and C3 stands for a simple PD controller),

then based with all the three types of RFPT (the first two types are explained in

Chapter 4; C4 denotes the RFPT-based “recalculated” controller, C5 marks the RFPT-

based MRAC, and C6 stands for the RFPT-based PD controller).

In the first step simulation results of the three different controllers are shown without

the RFPT extensions (C1, C2, and C3). Figures 6.3 and 6.4 illustrate the tracking errors

of the first (e1 = x1 − y1) and second (e2 = x2 − y2) state variables. The figures reveal

that synchronization cannot be achieved by simply using a Model Reference Adaptive

Controller with model approximation (C2) described in Section 4.3. The other two

controllers (C1 nad C3) proved to be successful, but the proposed new “recalculated”

structure C1 gives more accurate results than C3 (thanks to the second controller).
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Figure 6.3: The tracking errors of the first state variable of the slave systems with

controllers C1, C2, and C3 (e1 = x1 − y1); upper: C1, middle: C2, lower: C3. As it is

shown, C2 may fail. C3 might succeed, but does not accomplish as well as C1 which has

two PD controllers.
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Figure 6.4: The tracking errors of the second state variables of the slave systems with

controllers C1, C2, and C3 (e2 = x2 − y2); upper: C1, middle: C2, lower: C3. As it is

shown, C2 may fail. C3 might succeed, but does not accomplish as well as C1 which has

two PD controllers.
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The differences between the desired and realized responses without RFPT are il-

lustrated in Fig. 6.5. The MRAC version predicts the failure of the synchronization

at the early stage of the simulation when the tracking errors are “small” yet. The

“recalculated” structure achieves the most accurate results again.

In the last step simulation results are shown when applying RFPT. The values

of the free parameters of G1, G2, and G3 are marked in Table 6.1. Figures 6.6 and

6.7 illustrate the tracking errors of the first and second state variables. The figures

reveal that the RFPT-based traditional PD controller (C6) lowers the tracking error by

more than two orders of magnitude. The RFPT-based MRAC (C5) now succeeds and

generates similar tracking error than C6. The proposed “recalculated” controller (C4)

lowers the error with an additional 50% compared to the other methods.

The differences between the desired and realized responses in the RFPT-based case

can be seen in Fig. 6.8. C5 and C6 result in similar errors. The proposed “recalculated”

controller C4 bisects the error here, too.

6.3 Summary

Robust Fixed Point Transformation is often applied to improve existing and well be-

having controllers’ results in case an approximate model is used in the control task.

In this chapter, a new approach to Robust Fixed Point Transformations is introduced.

The approach is based on the idea of integrating a second controller into the system.

The great advantage of the second controller is that with the help of it the proposed

new RFPT-based “recalculated” controller considerably decreases the tracking error

A B K

G1 2× 10−5 -1 70000

G2 10−2 1 -100

G3 10−2 1 -100

Table 6.1: The values of the free parameters of G1, G2, and G3.

77



6. THE “RECALCULATED” ROBUST FIXED POINT
TRANSFORMATIONS

0 20 40 60 80 100

-6

-4

-2

0

2

4

6

t [s]

e p [m
/s^

2]

0 10 20 30 40 50
-3000

-2000

-1000

0

1000

2000

3000

t [s]

e  
[m
/s^

2]
p

0 10 20 30 40 50 60 70 80 90 100

-10

-5

0

5

10

t [s]

e p [m
/s^

2]

Figure 6.5: The difference between the desired and the realized response (ep = ẏd2 − ẏr2)

with controllers C1, C2, and C3 (e2 = x2 − y2); upper: C1, middle: C2 (0-50 seconds),

lower: C3. As it can be seen, C2 may predict the failure in early stage. C3 might succeed,

but not as well as C1 which has two PD controllers.
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Figure 6.6: The tracking errors of the first state variables of the slave systems with

controllers C4, C5, and C6 (e1 = x1−y1); upper: C4, middle: C5, lower: C6. It can be well

seen that they all reduce the tracking error by more than two orders of magnitude, but the

introduced controller C4 gives 50% better result because of the second PD controller.
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Figure 6.7: The tracking errors of the second state variables of the slave systems with

controllers C4, C5, and C6 (e2 = x2−y2); upper: C4, middle: C5, lower: C6. It can be well

seen that they all reduce the tracking error by more than two orders of magnitude, but the

proposed controller C4 gives 50% better result because of the second PD controller.
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Figure 6.8: The difference between the desired and the realized response (ep = ẏd2 − ẏr2)

with controllers C4, C5, and C6 (e2 = x2 − y2); upper: C4, middle: C5, lower: C6. As

it can be seen C5 and C6 generate similar results. The error achieved by the proposed

“recalculated” controller C4 is one third of the others because of the integrated second

controller.
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achieved by the previous versions of RFPT (by approximately 50%). However the sec-

ond controller gives the burden of increased computational time, in case of using simple

controllers, like the PID-type controllers, the drawback is negligible.

The result considered to be new has been published in journal paper [J2].

82



7

Fuzzy-type parameter tuning for

Robust Fixed Point

Transformations

In the previous chapter, a proposition is shown how to modify the structure of Robust

Fixed Point Transformations. Since it does not prevent the stability problems, in this

chapter, a new method is introduced how the results and the stability of the RFPT can

be improved. The approach is based on the idea of tuning one of the three parameters

of RFPT (see (4.6)). It is assumed that one of the three free parameters of RFPT does

not have to be changed and there is a correspondence between the others. So if two

parameters are fixed, only the third one has to be tuned. With this modification and a

stabilization algorithm introduced in the next chapter, the stability of the RFPT-based

controllers can be achieved.

7.1 The parameter tuning for RFPT

In this section, a possible parameter tuning strategy for RFPT is shown. According to

the results of numerous simulations made for various physical systems, it becomes clear

that two of the RFPT’s parameters, B and K, can be easily determined and fixed. The

problem is that fine tuning of A may be required for precise trajectory tracking. In [92]

a relatively complicated tuning strategy is applied. However, the observation comes

that if A remains inside of a range, then function G (where G represents G1 or G2 from

83
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Chapter 4, or G3 from Chapter 6) transforms its input closer to the right solution and

the tuning of parameter A influences only the speed of the convergence.

Since parameter A always gets a small positive number as a value, the new tuning

strategy is based on the idea of using a set of possible {A1 = 10−∆, A2 = 10−2∆, . . . , Am =

10−m∆} parameters instead of using a single one. Then, the possible Ai parameters are

substituted into function G (the example is shown for G2) and the function’s possible

outputs are calculated. The final output of RFPT H is got as a weighted sum of the

possible outputs of function G:

H
(
r, rd

)
=

m∑
i=1

wixi (7.1)

where

xi := (r +K)
[
1 +B tanh

(
Ai

[
f (r)− rd

])]
−K (7.2)

The wi > 0 weighting factors can be determined in many ways, e.g. they can be

calculated through an optimization over Rm. The idea of this thesis is applying a

Gaussian-like function ϑ to calculate the weighting factors. ϑ can be explained as a

fuzzy-like membership function of all of the values i∆ and its outputs w̃i as fuzzy-like

membership values, where the used defuzzification method is the center of gravity [93]:

w̃i := ϑ (i, ζ, ς,∆) =
1

ς2 + (i∆− ζ)2 (7.3)

and their normalized values

wi :=
w̃i
m∑
j=1

w̃j

(7.4)

The block diagram of the proposed tuning method is shown in Fig. 7.1. The main

idea lies in the modification of the remaining parameters of function ϑ after fixing its

size (ς), and the number of- and step size between the possible Ai parameters (m and

∆, respectively). It can be done according to the following strategy. The center of the

membership function (ζ) is set to an initial value and it is changed in every step. ϑ

moves in time along the horizontal axis x with constant velocity ζ̇ > 0. As the function

moves in positive direction, the weights of the possible outputs (xi) where i∆ < ζ
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Figure 7.1: The block diagram of the proposed tuning strategy.

decrease while those with i∆ > ζ increase. The greatest weight is given to that xj for

which |j∆ − ζ| is minimal. The velocity of function ϑ can be determined as ζ̇ = ±vζ
where vζ > 0 is constant. If a given ζ̇ causes that the sum of the absolute response

error (
∣∣rr − rd∣∣, see Chapter 4) decrease within five control steps, it is kept. Otherwise,

its sign is changed. Function ϑ is illustrated in Fig. 7.2.

7.2 Simulation Results

In the previous chapters, the RFPT method is used in that case if only one signal has

to be transformed. If function G has multiple inputs, it has to be modified: e.g. instead

of the absolute value, some kind of norm has to be used. To save computational time

a different form of the function is used from this point: ~h := f(~r) − ~rd, ~e := ~h/||~h||,
B̃ = B tanh(A||~h||), so that G(r, rd) = (1 + B̃)~r + B̃K~e. If ||~h|| is very small, the

approximation G(~r) = ~r can be applied (since then the system is already in the very

close vicinity of the fixed point).
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Figure 7.2: Function ϑ in case of ς = 1.

In the following, some details are shown for the illustrative example. The above

explained new parameter tuning is applied to control a cart plus double pendulum

system (explained in Section 3.6). In the example a traditional PID controller is used:

first without RFPT (controller C1), then with basic RFPT (controller C2), and finally,

with RFPT and parameter tuning (controller C3). The PID controller can be described

as

ẍc
Des = ẍc

N + 3Λė+ 3Λ2e+ Λ3

∫
e (7.5)

where e = xNc − xc denotes the tracking error, xNc corresponds to the nominal-, while

xc to the realized/simulated trajectory. The task is not to balance the pendulums,

but to follow a third order spline function. The simulations are made by the use of

SCILAB 5.1.1 and its graphical tool Scicos 4.2. In the present example, the following

parameters are chosen without limiting the generality of the new result. The maximum

step size of Scicos’s integrator is set to 10−3 s. The free parameters of RFPT are set to

K = −3.2 × 104, B = 1, {Ai := 10−8+iς |i = 0, . . . , 9}, ς = 0.4, ∆ = 2ς, and |ζ̇| = 200.

The free parameter of the PID controller is Λ = 5/s. The system parameters are:

M = 20 kg, m1 = 8 kg, m2 = 8 kg, L1 = 2m, L2 = 2m, and g = 9.81m/s2. In

the control process an approximate model is used for the cart plus double pendulum

system: it is assumed to have the same structure as the original system. The model

parameters are, as follows: M̂ = 10 kg, m̂1 = 4 kg, m̂2 = 6 kg, L̂1 = L1, L̂2 = L2, and

ĝ = g. In the following, the simulation results are presented.
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In Fig. 7.3 the three phase spaces achieved by controllers C1, C2, and C3 can

be compared. The upper figure reveals that with a simple PID controller (C1) the

trajectory tracking is very imprecise. If parameter A is fixed at 10−6 (C2; middle),

then the trajectory tracking is somewhere accurate but somewhere very poor. With

parameter tuning (C3; lower) the trajectory tracking is well achieved.

Some other results gained by controller C3 are shown in the remaining figures: e.g.

in Fig. 7.4 the tracking error can be followed. According to the author’s observation,

as function ϑ slithers along axis x, the weights wi fluctuate. The fluctuation has a

positive effect on the trajectory tracking as the weights adapt to the required changes.

The process is illustrated in Figs. 7.5–7.7 for the presented simulation. When function

ϑ moves in positive direction, the weights of the higher indexed values become bigger

than that of the lowest ones (i.e. one of the lines is swapped with another one).

Approximately stagnating periods can also be observed, as well as sessions when the

function moves to negative direction.

7.3 Summary

In this chapter, a new parameter tuning strategy is proposed for Robust Fixed Point

Transformations. The method is based on the idea of modifying one of function G’s

(G denotes G1, G2, or G3) free parameters during simulations. The results show that

though RFPT with fixed parameter can ameliorate the controllers’ results in many

cases, stable improvement is not always achievable. The proposed tuning technique can

help this deficiency and precise trajectory tracking can be achieved when the parameter

tuning is switched on.

The result considered to be new has been published in conference papers [C12, C13,

L1, C18].
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Figure 7.3: The nominal xNc vs. ẋNc (black line) and the simulated xc vs. ẋc (blue

line) phase trajectories with controllers C1 (upper), C2 (middle), and C3 (lower). RFPT

improves the PID controller’s results, but stable trajectory tracking is achieved only if the

parameter tuning is switched on (C3).

88



7.3 Summary

0 15 30

0.0150

0.0092

0.0033

-0.0025

-0.0083

-0.0142

-0.0200

Time [s]

Trajectory Tracking Error 10^-1[m]
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Figure 7.5: Excerpt 1: The fluctuation of the weights wi in the first 10 seconds; 0: black,

1: blue, 2: green, 3: cyan, 4: red, 5: magenta, 6: yellow, 7: dark blue, 8: light blue, and

9: dark green. The realized trajectory nears to the nominal one, thus, the weights do not

need to fluctuate.
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Figure 7.6: Excerpt 2: The fluctuation of the weights wi in the second 10 seconds; 0:

black, 1: blue, 2: green, 3: cyan, 4: red, 5: magenta, 6: yellow, 7: dark blue, 8: light

blue, and 9: dark green. The weights significantly fluctuate causing more stable trajectory

tracking.
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Figure 7.7: Excerpt 3: The fluctuation of the weights wi in the last 10 seconds; 0: black,

1: blue, 2: green, 3: cyan, 4: red, 5: magenta, 6: yellow, 7: dark blue, 8: light blue, and

9: dark green. The weights significantly fluctuate causing more stable trajectory tracking.
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8

VS-type stabilization for Robust

Fixed Point Transformations

In Chapter 7, a parameter tuning algorithm is shown that improves the results and the

stability of the Robust Fixed Point Transformations-based controllers. The parameter

tuning provides the first step towards the stability of RFPT because besides all of

its advantages it has a big drawback: It provides stability only of the Gaussian like

shifting function ϑ remains in a certain interval around values log10Ai. If ϑ gets out

of the interval then the RFPT-based controller becomes unstable and as a result the

system to be controlled starts to chatter. The chattering can be dangerous and may

result in the damage of the system.

In this chapter, a further development for RFPT is proposed which is able to guaran-

tee the stability of the RFPT-based controller. With the combination of the previously

suggested parameter tuning algorithm and the proposed VS-type stabilization method

the controller will work in the following way: Although, it may happen that the shift-

ing function ϑ gets far from values log10Ai causing chattering, and temporal loose of

stability, but afterwards the new method forces parameters Ai to move closer to ϑ and

thus, the controller gains back its stability.

After this chapter, the applicability of RFPT in the soft-computing area is consid-

ered.
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8.1 The stabilization algorithm

In Chapter 4, it is explained that the RFPT is based on a function (4.6) with the

help of which a locally convergent sequence can be built. The sequence, depending on

the free parameters of function G (where G represents G1 or G2 from Chapter 4, or

G3 from Chapter 6) can converge to two fixed points: a desired and a false one (−K).

When the free parameters of function G are not set correctly, the series converges to the

false fixed point and the RFPT-based controller becomes unstable near to its desired

solutions. In this case, when function G (the example is shown for G1) gets an input

very close to its desired fixed point, it transforms the input far away. So the next input

will be far from the desired fixed point and will be out of the unstable zone, where

starts to converge again to the desired fixed point. This behavior makes the controller

similar to the Sliding Mode Controllers [94] for which the chattering effect is typical.

The fluctuations observed in the control signal are in the order of magnitude of K,

which is one of the three free parameters of (4.6) (it means huge chattering).

To avoid the stress caused by the fluctuation of the control signal, the following

algorithm is proposed:

• Apply a sigmoid function σV S on the output of function H with properties

σV S(0) = 0 and dσ(x)
dx

∣∣∣
x=0

= 1. Introduce a new parameter Kvssm so that

K � Kvssm > 0 and use as ut+1 = KvssmσV S

(
H(ut|udt+1)

Kvssm

)
;

• Observe the change in the sign of the control signal with the help of a buffer

uBuf : If uBuft+1 = βuBuft +ut−2ut−1 (where β ∈ (0, 1) is a free parameter) becomes

negative, then chattering occurs, since the sign of the control force (or torque)

varies in each control step;

• If uBuf > 0 then apply the fuzzy-like parameter tuning explained in Chapter 7; If

uBuf < 0 then stop the parameter tuning and rigidly push the Ai parameters in

the negative direction (however keeping ∀i Ai > 0), e.g. ∀i Ai := 10−εAi, where

ε ∈ R and ε > 0, because function ϑ tries to refer to an output which cannot be

calculated from the current values of Ai: .

As a result, the chattering is kept at bay. When the parameters {Ai} decrease to

the necessary extent, the convergence is restored and the chattering can completely be

ceased.
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Although, the above algorithm is basically shown for RFPT type 1 (see Section 4.3),

it can be proven that the method can successfully be applied to all the other members

of the RFPT family. The reason for this is that the causes of the chattering (and also

the consequences) are similar in all of the cases.

8.2 Simulation results

In the following, some illustrative simulation results are shown for controlling a Φ6-

type Van der Pol oscillator (described in Section 3.4). The simulations are made in

Scilab environment. In the example, the parameters are set as follows. The integrator

maximum step size of SCICOS equals to 10−3 s. For determining the desired state of

the system the following PID controller is used:

ẍd = ẍNom + 3Λė+ 3Λ2e+ Λ3

∫
e (8.1)

where the tracking error is determined by e = xNom − xr. xNom denotes the nominal

trajectory, xr stands for the realized trajectory, and Λ is a free parameter (Λ = 12/s).

In the example the parameters of RFPT are set to K = 7000, Kvssm = 700, B = −1,

{Ai = 10−3+i∆ i = 0, ..., 2}, ∆ = 0.05, ς = 1, and ζ = 1. The parameter values of the

oscillator are chosen as: µvdp = 0.4; ω2
0 = 0.46; α = 1; λvdp = 0.1; and mvdp = 1.

The approximate model is designed to be very rough, thus, it can be described by

the following equation:

Q = m̂vdpẍ+ k̂x (8.2)

where Q denotes the control force applied on the system. The model parameters can

be set freely, in the examples m̂vdp = 2, and k̂ = 3ω2
0 values are chosen. The nominal

trajectory is determined by a quasi-sinusoidal function as

xNom (t) = C sin (ωt) tanh(ωt) + 1 (8.3)

with C = 1.5 and ω = 3.

During the simulations, two controllers are compared: one without RFPT (C1), and

one with RFPT and parameter tuning extended with chattering reduction (C2). When
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Figure 8.1: The nominal (black) and the realized (blue) phase space achieved by con-

trollers C1 (upper) and C2 (lower). The trajectory tracking is much better when using

C2.

RFPT is applied, chattering occurs possibly causing the damage of the system. With

the application of the proposed algorithm it can be avoided.

In the first figure (see Fig. 8.1) the nominal and simulated phase space using con-

trollers C1 (upper) and C2 (lower) can be compared. With C1 only imprecise trajectory

tracking can be achieved because the model approximation is too rough. With C2 the

trajectories run together.

Figure 8.2 illustrates the applied torques. As it can be seen, with controller C2

chattering occurs three times however it is relaxed in very short time. The chatters can

be seen in details in Fig. 8.3.
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8.2 Simulation results

Figure 8.2: Approximate (Qd
appr; blue), realized (Q = G(Qd

appr); black), and recalculated

(h(Q); red) torques achieved by controllers C1 (upper) and C2 (normal - middle; zoomed

- lower). In the lower figures chattering occurs three times and stopped in short time.

95



8. VS-TYPE STABILIZATION FOR ROBUST FIXED POINT
TRANSFORMATIONS

Figure 8.3: Approximate (Qd
appr; blue), realized (Q = G(Qd

appr); black), and recalculated

(h(Q); red) torques achieved by controller C2, in details. Chattering occurs, but the

proposed algorithm relaxes and stops it in short time.
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The last figure (see Fig. 8.4) illustrates the tracking errors achieved by the two

controllers. The initial balancing period is not shown. As it can be seen, though

chattering affects the system, the tracking error achieved by C2 is significantly smaller.

8.3 Summary

Robust Fixed Point Transformations make the controllers similar to the Sliding Mode

Controllers. The reason of the similarity is that RFPT is based on a function which

can locally converge to the ideal solution. Although, if the RFPT’s free parameters are

not set properly, the RFPT-based controllers can loose their convergence and chatter-

ing may occur. Although, in this chapter, it is shown that though RFPT can make

the controllers unstable for very short periods, it can still improve a controller’s re-

sults. A simple algorithm is introduced to minimize the fluctuation of the system and

thus, preventing it from damages. As a result, stability of the RFPT-based controllers

is achieved and though, function H is not always convergent, RFPT can reduce the

tracking error achieved by the original controller significantly.

The result considered to be new has been published in conference paper [C19].
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Figure 8.4: The tracking error achieved by controllers C1 (upper) and C2 (lower). With

C2 the tracking error is significantly smaller (even with the chattering effect).
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Fuzzyfied Robust Fixed Point

Transformations

In the previous chapters, two methods can be seen to make Robust Fixed Point

Transformations-based controllers stable. In this one and the next chapter, a new

aspect of RFPT is investigated: how it can be used to improve soft computing-based

controllers: in the first case a fuzzy logic controller, then a neural network controller.

The approaches are shown via the control of a cart-pendulum, where an approximate

model is constructed for the system and an RFPT-based soft computing controller (in

this chapter, a fuzzy logic controller) is designed to balance the pendulum based on

the model approximation. In the next chapter, similar efforts are taken with a neural

network controller.

9.1 Introduction

Fuzzy control methodologies have emerged in the recent years as promising tools to

solve nonlinear control problems. The Fuzzy approach was first proposed by Lotfi A.

Zadeh in 1965 when he presented his seminar paper on fuzzy sets [39]. Zadeh showed

that fuzzy logic, unlike classical logic, can handle and interpret values between false (0)

and true (1). One of the most successful application areas of fuzzy theory proved to

be fuzzy logic control (FLC), because FLC systems can replace humans in performing

certain tasks with high risk level, for example in the control of power plants [1].
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The other reason for applying fuzzy techniques in control is their simple approach

(describability with human language) which provides the handle of uncertainty and the

use of heuristic knowledge for nonlinear control problems. In very difficult situations,

where the plant parameters are disturbed or when the system is too complex to be

described by exact mathematical models, adaptive schemes have to be used to gather

data and adjust the control parameters automatically. Based on the universal approx-

imation theorem [43] and by incorporating fuzzy logic systems into adaptive control

schemes, a stable fuzzy adaptive controller is suggested in [44] which was the first con-

troller being able to control unknown nonlinear systems. Later, many adaptive fuzzy

control approaches have been developed for such systems (see e.g. [45, 46]).

In this chapter, to prove that fuzzy logic controller can be combined with Robust

Fixed Point Transformations, a new RFPT-based FLC is introduced. In the example,

the proposed new controller is applied to supervise the balancing of an inverted pen-

dulum on the top of a cart (described in Section 3.5). FLC has successfully been used

in the inverted pendulum-problem, e.g. in [62]. For comparison, in this thesis, the

same controller is used. According to the results, the RFPT-based FLC outperforms

the traditional fuzzy logic controllers and significantly reduces the necessary balancing

time. The more extreme situation is chosen (e.g. if the initial angle of the pendulum is

very high and no friction is assumed) the bigger difference is got between the balancing

times of an RFPT-based and a traditional Fuzzy Logic Controller.

9.2 Extending Fuzzy Logic Control with RFPT

The mathematical basics of FLC are detailed in Subsection 2.3.1. The applied fuzzy

logic controller is taken from [62]. The controller has two inputs: the angle and the

angular velocity of the pendulum. From these values FLC calculates the desired torque

(F ) for the cart. Then, as a part of the control process, the desired ẍc
D is determined

from the desired torque with the approximate model, so the controller has to deal with

double model approximation. Figures 9.1-9.3 show the membership functions of the

FLC’s inputs and output, while in Figs. 9.4 and 9.5 the rule base and the rule surface

can be seen.

Since so far the Robust Fixed Point Transformations method has been applied

to improve only classical controllers, it is important to show, that it can cope with
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Figure 9.1: Membership functions for θ.
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Figure 9.4: Rule base for the Fuzzy Logic Controller.

Figure 9.5: Control surface of the FLC.

102



9.3 Simulation results

RFPT System

Delay

FLC Approximate
Model

Approximate
ModelDelay

Dq q

q

 Fh

d
apprF F

Figure 9.6: The block scheme of the RFPT-based fuzzy logic controller, where q̈ =
[
ẍc, θ̈

]
.

recent controllers, too. In the following, it is shown that fuzzy logic controller, which

is one of the popular soft computing-based controllers, can be improved with RFPT.

Furthermore, the analogy can be applied to all the other types of SC based controllers.

In the examples shown in this chapter, the FLC is extended with the first type RFPT

(see Section 4.3). Figure 9.6 shows the block diagram of the proposed scheme.

9.3 Simulation results

In this section, some illustrative simulation results are presented. The simulation task

is balancing a pendulum on the top of a cart (the details of the system are described

in Section 3.5). The simulations are made by the Matlab-Simulink package. Without

limiting the generality of the new result, in the examples, the following parameters are

used: M = 1.5kg, m = 0.5kg, Lp = 0.1m, g = 9.8m/s2, and bcp = 0.2kg/s.

The approximate model is assumed to have the same structure as the original cart-

pendulum system. The approximate model parameters are set to M̂ = 1.2kg, m̂ =

0.8kg, L̂p = 0.09m, ĝ = 10m/s2 and b̂cp = 0.1kg/s. The initial values for the state

variables are chosen as xc = 0 and θ = 15◦.

During the simulations two controllers are compared: FLC without RFPT (C1), and

FLC with RFPT (C2). In the first example, the simulation runs without measurement

noise. In Figs. 9.7 and 9.8, the angle of the pendulum and the position of the cart,
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Figure 9.7: The angle of the pendulum with controllers C1 (upper) and C2 (lower),

without noise. With C2 the stabilization is achieved twice quicker.
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Figure 9.8: The position of the cart with controllers C1 (upper) and C2 (lower), with-

out noise. The position stabilization is slow in both cases because of the double model

approximation.
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achieved by the two controllers, can be compared, respectively. The parameters for

the transforming function built in the RFPT (G1) are set to B = −1, A = 9 × 10−6,

and K = −105. As the results show, controller C2 can stabilize the pendulum in twice

shorter time than C1.

In the second example, some kind of measurement noise is assumed which is rep-

resented by two sinusoidal waves added to the real system (ẍc and θ̈, respectively).

These waves have the amplitude of 0.4m and 0.5m and frequency of 4Hz and 2.7Hz,

respectively. Figures 9.9 and 9.10 show that controller C2 is twice better again and

while it is able to slowly stabilize the position of the cart, controller C1 cannot.

For the effective comparison, the results of a third simulation are included, too. The

third simulation has very extreme initial conditions: no friction is assumed (b = b̂ = 0),

and the initial state variables are xc = 0 and θ = 72◦. Figure 9.11 illustrates the

variation in the angles of the pendulum achieved by the two controllers. Controller C1

gains only 2◦ improvement in 100 seconds. In contrast, controller C2 can completely

stabilize the pendulum in less than 60 seconds. Because of the model approximation

and that no friction is assumed, the position of the cart, shown in Fig. 9.12, is not

stabilized in neither case.

9.4 Summary

Soft computing-based controllers are widely used, very popular controller types. In this

chapter, an extended FLC scheme is introduced, which offers an opportunity to ame-

liorate an existing and well set controller’s results. As an example, the presented new

Robust Fixed Point Transformation-based fuzzy logic controller is applied to balance

a cart-pendulum system. The results show that in simple cases the RFPT can bisect

the balancing time of the FLC. Furthermore, the more extreme situation is chosen

the bigger difference can be got between the balancing times of an RFPT-based and a

traditional fuzzy logic controller.

The result considered to be new by the author has been published in conference

paper [C20].
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Figure 9.9: The angle of the pendulum achieved by controllers C1 (upper) and C2 (lower),

noise added. Using C2 the stabilization is achieved in twice shorter time.
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Figure 9.10: The position of the cart using controllers C1 (upper) and C2 (lower), with

noise. The position stabilization is achieved only with C2.
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Figure 9.11: The angle of the pendulum using controllers C1 (upper) and C2 (lower),

without noise, starting with very wide initial angle. The improvement of θ achieved by C1

is only 2◦ in 100 seconds, while C2 succeeds in less than 55 seconds.
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Figure 9.12: The position of the cart with controllers C1 (upper) and with C2 (lower),

without noise, with very wide initial angle. Neither of them is stabilized because no friction

is assumed and the model is approximated.
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The Robust Fixed Point

Transformations-based neural

network controllers

In the previous chapter, a method can be seen how to combine RFPT with fuzzy

logic controllers. In this chapter, the idea of improving SC-based controllers is further

developed and extended to NN controllers. First, an improved RFPT and NN combined

controller is introduced. Then, the author shows the steps of the application through

the previously applied benchmark problem via the control of a cart-pendulum system.

The NN is trained, built together with RFPT, and the control process is analyzed. The

results show that RFPT can significantly increase the robustness of the NN controller.

After dealing with neural networks, in the next chapter, the applicability of RFPT

in real life is investigated.

10.1 Introduction

Human recognition and control abilities far exceed those of complex intelligent control

systems (e.g. robots). This has motivated scientist to analyze the human thinking to

model nervous systems and use artificial neural networks in many areas (e.g. image

precessing, signal processing, and control) [50]. There are two main advantages of using

NNs: one of them is that NNs can well approximate the behavior of known, partially

known, and unknown nonlinear systems. It can be useful since the controlled system
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is not always known to be able to control accurately. The other advantages are the

learning and adaptation abilities of NNs. Since the controlled systems can change any

time (due to external influence), it worths to use NNs instead of identifying the model

every time it changes.

Since the 1980’s neural networks have been widely used in the control field. In most

of the applications they are used for two purposes: to identify a controlled system (see

e.g. [95, 96, 97, 98, 99]), or to use as a controller (like in [12, 13, 14, 100, 101, 102]).

To identify a controlled system, NNs can be very useful because the systems can-

not be always modeled due to complexity or uncertainty issues. As controllers NNs

can be very powerful if the controlled systems change during usage. The adaptation

or learning algorithm (supervised or unsupervised) which is used to train the neural

network can be applied also in on-line mode. Depending on which type of NN (feed-

forward or feedback) is used, various training algorithms can be applied. For example,

for supervised learning of feedforward networks (e.g. multilayer perceptrons [51]), the

well-known back-propagation algorithm [103] could be mentioned. For feedback NNs’

unsupervised training Hopfield’s method [104] is a proper choice. The difficulty is that

the most popular on-line adaptations can be applied only if the system and the con-

troller are both neural networks. Usually, the systems to be controlled are not neural

networks, but can be approximated by them. In this case, because of the non-exactness

of the models, the model approximation worsens the accuracy of the control.

To reduce the disadvantages caused by the approximation, some improvement on

the control process is needed. One candidate for this can be the application of the

Robust Fixed Point Transformations method. It proved to be advantageous in case

of classical controllers and as it is shown in the previous chapter, in case of fuzzy

controllers, as well. The author of this thesis suggests to combine RFPT also with NN

controllers and shows in the following its advantages and the steps of the development

and usage. The performance of the introduced extended controller is illustrated by

an example. The presented Robust Fixed Point Transformations-based neural network

controller is applied to the control of an inverted pendulum.

In the control process an approximate model of the cart is used which is not a neural

network-based model, thus the on-line adaptation cannot be applied. The inaccuracy of

the model causes difficulties in the control process especially when disturbances occur.

The integration of RFPT can help to match the system and the model and thus, to
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Figure 10.1: The block scheme of the RFPT-based Neural Network controller, where

q̈ = [ẍc, θ̈].

overcome this problem. It helps to make the inaccurate neural network controller

robust. The results show that a simple pre-trained (inaccurate) feedforward neural

network controller can have difficulties when it faces disturbances, but RFPT can reduce

the error caused by the disturbing forces.

10.2 The RFPT-based Neural Network Controller

Figure 10.1 shows the block diagram of the proposed controller. Assume that a de-

sired response q̈d is prescribed for the system, which is determined by a neural network

controller. From the desired response the proper control force has to be calculated for

the system so that it responses in the prescribed way. The proper control force can

be determined by an exact inverse model. Unfortunately, if the system is not known

exactly, it is not possible to create an accurate inverse system: only an approximate

inverse model can be of help. The approximate inverse model calculates the approxi-

mated control force for the system, which by this, results in a realized response (which

differs from the desired one).

Since the controller’s output is determined by assuming exact inverse system, by

properly transforming the output of the controller (based on the approximate inversion),

more accurate system response (closer to the desired response) can be gained. One of
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the possibilities for proper transformation is the function of the second type Robust

Fixed Point Transformations (G2). Because of the tanh function used in G2, RFPT not

just reduces the error caused by the model approximation, but makes the NN controller

robust to the external disturbances.

In the previous chapter, it is shown how to combine fuzzy logic controllers with

the first type of RFPT. In this chapter, similar efforts are taken with the second type

of RFPT. The two combinations show a way how to ameliorate SC controllers with

RFPT.

10.3 Simulation results

In this section, some illustrative simulation results are presented without limiting the

generality of the new controller. The simulation task is balancing a pendulum (θN =

θ̇N = 0) on the top of a cart of changing nominal position (ẋNc = 0, xNc 6= 0). The details

of the system is described in Section 3.5. The nominal position of the cart is described

by a trapezoidal wave with 0.1m of amplitude and 12 s of period. The simulations are

made by the Matlab-Simulink package. In the examples the system parameters are set

to M = 1.5kg, m = 0.5kg, Lp = 0.1m, g = 9.8m/s2, and bcp = 0.1kg/s.

The approximate model is assumed to have the same structure as the original cart-

pendulum system. The model parameters are M̂ = 1.2kg, m̂ = 0.8kg, L̂p = 0.09m,

ĝ = 10m/s2 and b̂cp = 0kg/s. The initial values for the state variables are xc = 0 and

θ = π/10.

The NN part of the proposed controller is a feedforward multilayer perceptron (see

Subsection 2.3.2) supervised by a PD controller:

q̈d = q̈N + 2λ
(
q̇N − q̇

)
+ λ2

(
qN − q

)
(10.1)

where q = [xc, θ], q
N denotes the nominal trajectories for xc and θ, and λ is a free

parameter. The NNC has one hidden layer with ten neurons. The NNC has four

inputs, the error in the angle (eθ = θN − θ) and the angular velocity (ėθ = θ̇N − θ̇)
of the pendulum, and the error in the position (ex = xNc − xc) and the velocity (ėx =

ẋNc − ẋc) of the cart. From these values it calculates the desired second derivatives of

the position (ẍdc) and angle (θ̈d) of the cart and the pendulum, respectively. It is trained

by backpropagation. For the simulations the NN controller is generated by Matlab: the
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Figure 10.2: The disturbances effecting on ẍc (T = 1.5708 s, upper) and effecting on θ̈

(T = 2.3271 s, lower).

training dataset is divided into two separate sets: one for training and one for testing.

The ratio is set to 0.5. The number of epochs is set to 100, while the stopping error

criteria (goal) is 0.1. The input vectors are ex = [−1;−0.8; ...; .0.8; 1] = eθ (ex in m, eθ

in rad), and ėx = [−5;−4.5; ...; .4.5; 5] = eθ (ėx in m/s, eθ in rad/s). After the training,

a Simulink block is generated for the network by the gensim command.

During the simulations two controllers are compared: one without RFPT (C1),

and one with RFPT (C2). Non disturbed control is also compared to the case with

disturbances (which are sinusoidal waves, effecting ẍc and θ̈, see Fig. 10.2).

In Fig. 10.3 four examples for the nominal and realized cart trajectories are il-

lustrated. The results are a bit shifted because of the model approximation. When

disturbances affect the system, the increased tracking error is visible only when RFPT

is not used.

In Fig. 10.4 the tracking error in the positions of the cart is shown. Without distur-

bance the realized trajectories are a little bit shifted from the nominal one, otherwise

they are very similar. The effect of the disturbance is observable only when RFPT is

not applied. With disturbance the improvement seems obvious since without RFPT
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Figure 10.3: The nominal and realized trajectories of the cart with controllers C1 and

C2: C1 without disturbance (first); C2 without disturbance (second); C1 with disturbance

(third); C2 with disturbance (fourth). The trajectories are a bit shifted from the nominal

ones. Without disturbance no significant difference can be seen. With disturbance the

improvement of RFPT is obvious.
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Figure 10.4: The error in the position of the cart with controllers C1 and C2: C1 without

disturbance (first); C2 without disturbance (second); C1 with disturbance (third); C2 with

disturbance (fourth). Without disturbance no significant difference can be seen, without

RFPT the trajectories are a bit more shifted than with RFPT. With disturbance the

improvement of RFPT is obvious.

117



10. THE ROBUST FIXED POINT TRANSFORMATIONS-BASED
NEURAL NETWORK CONTROLLERS

there is a well observable fluctuation in the tracking error of xc which depends on the

disturbance.

In Fig. 10.5 the angles of the pendulum are illustrated for the above four exam-

ples. Without RFPT the errors can easily be seen and the disturbance strongly affect

the angle. With RFPT the angles remain almost zero. The RFPT-based results are

illustrated in Fig. 10.6 with zoom, to be able to determine the order and the shift of

them.

10.4 Summary

Neural networks are widely used to investigate the behavior of unknown systems. In

this paper, an extended neural network control scheme is introduced. The presented

RFPT-based NNC is applied to balance a pendulum in the top of a cart of changing

nominal position. The results show that if disturbance forces affect the system, the

robustness of the controller is significantly increased by the use of RFPT and the

tracking errors are decreased by orders of magnitude. Though in ideal environment

the RFPT extension does not bring great improvement it cannot be assumed that real

systems are not effected by external unknown forces.

The result considered to be new has been published in journal paper [J4].
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Figure 10.5: The angle of the pendulum with controllers C1 and C2: C1 without dis-

turbance (first); C2 without disturbance (second); C1 with disturbance (third); C2 with

disturbance (fourth). Without RFPT the pendulum traverses strongly because of the sud-

den position change of the cart. With RFPT the angle remain almost zero. The two

RFPT-based figures are shown zoomed in Fig. 10.6.
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Figure 10.6: The zoomed angle of the pendulum with controller C2: without disturbance

(upper); with disturbance (lower). The improvement is around two orders of magnitude

compared to the angles achieved with the traditional NN controller.
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Emission control of exhaust

fumes with Robust Fixed Point

Transformations

In the previous two chapters, it is shown how the performance of soft computing-based,

fuzzy and NN controllers can be improved with Robust Fixed Point Transformations.

In this chapter, a special approach is investigated: RFPT is applied to a certain existing

real life problem. The problem itself includes the control of a complex system, which has

a direct effect on environmental pollution. It covers the traffic flow control considering

the emission rate of exhaust fumes of freeway traffic.

As the first step, an approximate hydrodynamic model is analyzed (see Section 3.7)

which uses only two parameters of the freeway traffic (vehicle density and traffic ve-

locity). This type of model proved to be successful at other fields of engineering, e.g.

Electronics and Nuclear Science (see e.g. [105, 106, 107, 108]) and also for traffic flow

modeling (see e.g. [63, 109]). The model analysis includes the determination of the

stationary solutions, followed by stability investigations.

As the second step, after determining the emission rate of exhaust fumes of freeway

traffic, a new attribute is introduced which is strongly related to it and can more easily

be measured by cheap loop detectors.

Finally, a control strategy is proposed to keep the emission rate of exhaust fumes at

a desired level for the stationary solutions based on the introduced new attribute. Since

the model approximation may lead to accuracy problems, the process is improved by the
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application of RFPT. The suggested technique can help to improve/optimize problems

which are too complex to be modeled with enough precision to ensure appropriate

control actions.

11.1 The basic control strategy in quasi-stationary ap-

proach

In Section 3.7, it is explained that there is a possibility to approximate the freeway

traffic by a hydrodynamic model. The model needs only two properties of the traffic:

the vehicle density ρ and the velocity v. According to this consumption, the system

can be described by differential equations (3.16)-(3.23). In the following, the possible

control strategies are analyzed based on the stability property of some given stationary

solutions.

Assume that for a fixed additional input, i.e. control signal, r̂2 (see Fig. 3.12 and

(3.16)-(3.23)) there exists a stationary solution system i.e. ρ̂1, ρ̂2, ρ̂3, ρ̂4, v̂1, v̂2, and

v̂3, for which ˙̂ρ1 = 0, ˙̂ρ2 = 0, ˙̂ρ3 = 0, ˙̂ρ4 = 0, ˙̂v1 = 0, ˙̂v2 = 0, and ˙̂v3 = 0, but these

solutions are unstable. Such a dynamic system requires very fast feedback signal in

r2 to stabilize the stationary solutions. In this case, the task is very difficult, and the

successful practical implementation is dubious. But if the stationary solutions were

stable, the control task could be approached in a far simpler way. In stable case,

small steps in the control signal could result in small modifications of the controlled

quantities.

The proposed control strategy is similar to that of some traditional approaches

which are applied e.g. in Thermodynamics and Chemistry when the states of the

thermal equilibrium are stable or at least metastable (i.e. they show stability at least

against small perturbations). As an example some quasi-stationary thermodynamic

processes can be mentioned where the state propagation is modeled as a sequence of

stationary states like in [110, 111]. Similar example can be the stationary solutions

of certain multiple-compartment process models of the human glucose-insulin system

(e.g. [112, 113]). Their solutions all show stability that eases their control.

Based on the above, well investigated traditional results, if the stability of the

quasy-stationary solutions of (3.16)-(3.23) could be found then a link could be estab-

lished between the two approaches and the system model could be simply used for
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determining the necessary small steps in r2. Thus, instead of applying fast dynamic

feedback, a simple iterative controller (like the Robust Fixed Point Transformations-

based controllers) could be used for the compensation of the modeling errors. In the

next subsection the stationary solutions of the hydrodynamical model (explained in

Section 3.7) are investigated and by that the necessary link is built.

11.1.1 The stationary solutions of the dynamic model

In Section 3.7, it is told that the quantities ρ0, v0 (consequently q0 = ρ0v0), v4 and v5

can be set as constant boundary conditions. If it is assumed that the control signal

r̂2=constant, then (3.16)-(3.23) take the form of

0 =
q̂0 − ρ̂1v̂1

Lrsλft
(11.1)

0 =
ρ̂1v̂1 − ρ̂2v̂2 + r̂2

Lrsλft
(11.2)

0 =
ρ̂2v̂2 − ρ̂3v̂3

Lrsλft
(11.3)

0 =
ρ̂3v̂3 − ρ̂4v̂4

Lrsλft
(11.4)

0 =
V (ρ̂1)− v̂1

τ
+
v̂1(v̂0 − v̂2)

2Lrs
− η

τ2Lrs

ρ̂2 − ρ̂0

ρ̂1 + κ
(11.5)

0 =
V (ρ̂2)− v̂2

τ
+
v̂2(v̂1 − v̂3)

2Lrs
− η

τ2Lrs

ρ̂3 − ρ̂1

ρ̂2 + κ
− δ

Lrs

r̂2v̂2

ρ̂2 + κ
(11.6)

0 =
V (ρ̂3)− v̂3

τ
+
v̂3(v̂2 − v̂4)

2Lrs
− η

τ2Lrs

ρ̂4 − ρ̂2

ρ̂3 + κ
(11.7)

with the explicit equation for ρ̂5 as

ρ̂5 = ρ̂3 − τ2Lrs(ρ̂4+κ)
η ×

[
V (ρ̂4)−v̂4

τ + v̂4(v̂3−v̂5)
2Lrs

]
. (11.8)

Due to nonlinearities in (11.1)-(11.7), the stationary solutions can be found in the

following way. For reducing the complexity, a simple method can be proposed. The

occurrence of (ρ̂i + κ) in the denominators may cause division by zero in numerical

algorithms. So in the first step such divisions are eliminated via multiplication in

(11.1)-(11.6). It results
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0 = f1 := 2Lrs(ρ̂1κ)[V (ρ̂1)− v̂1] + τ(ρ̂1 + κ)v̂1(v̂0 − v̂2)− η(ρ̂2 − ρ̂0) (11.9)

0 = f2 := 2Lrs(ρ̂2 + κ)[V (ρ̂2)− v̂2] + τ(ρ̂2 + κ)v̂2(v̂1 − v̂3)− (11.10)

− η(ρ̂3 − ρ̂1)− 2τδr̂2v̂2

0 = f3 := 2Lrs(ρ̂3 + κ)[V (ρ̂3)− v̂3] + τ(ρ̂3 + κ)v̂3(v̂2 − v̂4)− (11.11)

− η(ρ̂4 − ρ̂2)

0 = f4 := q̂0 − ρ̂1v̂1 (11.12)

0 = f5 := ρ̂1v̂1 − ρ̂2v̂2 + r̂2 (11.13)

0 = f6 := ρ̂2v̂2 − ρ̂3v̂3 (11.14)

0 = f7 := ρ̂3v̂3 − ρ̂4v̂4 (11.15)

In the second step, (11.9)-(11.15) are solved by error optimization (minimization).

The proposed optimization method is the generalized reduced gradient (GRG) method

[114] because is has been proven to be a precise and accurate method for solving

nonlinear programming problems. By solving the problem

min f1 : ∀i 2 ≤ i ≤ 7 fi = 0&fi > 0 (11.16)

where 50 ≤ q̂0 ≤ 800 and 0 ≤ r̂2 ≤ 522, it can be proven that there is dependence

of the coefficients of the r̂2-based polynomial on q̂0 and the dependence can be well

approximated by a third order polynomial. As a result, the stationary solutions can

be well approximated in the investigated parameter range (with 3rd order two-variable

polynomials according to r̂2 and q̂0).

In the last step, it is shown that the coefficients of the got third order polynomial

depend on q̂0. The dependence is approximated also by third order polynomials.

Calculation tests can be made e.g. in MS Excel environment with the following

steps:

1. Implement f1 in the cells of worksheets, while ∀i 2 ≤ i ≤ 7 fi in Visual Basic

macros.

2. Calculate the values ∀i fi with discrete modification of r̂2 from 0 to 522 (maximal

load of the ramp).
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3. Let f1 = 0 the goal and ∀i 2 ≤ i ≤ 7 fi = 0 the constraints of the solver.

4. Repeat the solver’s calculations with different parameter settings, e.g. q̂0 =50,

100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800.

The optimization for the last step can be done similarly.

Representative samples for the polynomial fitting are given in Figs. 11.1-11.3, where

the model parameters are set as follows: the critical density is ρcr = 26 1
km and b = 2.5;

in the Papageorgiou model τ = 0.0087h, η = 29.3505 km2

h , κ = 20.77 1
km , and δ = 0.05;

in the hydrodynamical model the number of lanes λft = 1, and the length of the

segments Lrs = 0.5 km; the velocity of the free flow is vfree = 114 km
h ; the boundary

conditions are set as v4 = v5 = v0 = 114 km
h , and r̂2 is varied in 18 vehicle

h steps from 0

to 522; the calculations are repeated where q̂0 takes the {50, 100, 150, 200, 250, 300,

350, 400, 450, 500, 550, 600, 650, 700, 750, 800} values.

In the next section, the emission factor of exhaust fumes is briefly considered and

a new value is proposed for control purposes.

11.1.2 Introduction of the Emission Factor

For calculating the emission, it is assumed that at high velocities the most significant

dissipative factor is the drag force generated by the eddying air. The drag force is

proportional to the square of the velocity: F = Cv2 in which coefficient C depends

on the particular vehicles. At velocity v the power consumption of this drag force is

Fv = Cv3 which roughly determines its fuel consumption. On a road segment with

length Lrs and at vehicle density ρ, the number of cars on the road segment can be

determined as Lrsρ. The vehicles on the given road segment produce LrsCρv
3 power

consumption which roughly determines the emission rate of exhaust fumes on this

segment (C denotes some average for the various vehicles present on the segment). It

is very difficult to obtain information on C, however, the emission for any car still

strongly depends on the factor

Ef := ρv3. (11.17)

Ef can be measured easily by cheap and simple inductive loop detectors (see e.g.

[115, 116]). On this reason, (11.17) is referred to as the emission factor. In case of

stationary flow, Ef can be expressed in road segment 3 as
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Figure 11.1: Fitted third order polynomials (rho i pol, upper; v i pol, lower) for the

parameters(rho i and v i, respectively) for q̂0 = 50 (where i ∈ N).
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Figure 11.2: The dependence of the first two coefficients of the r̂2-based polynomial

(c c0 var and c c1 var, where var may represents rho1, rho2, rho3, rho3, rho5, v1, v2, or

v3) on q̂0 and the third order polynomial approximation (C c0 var f and C c1 var f) of

this dependence.
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Figure 11.3: The dependence of the first two coefficients of the r̂2-based polynomial

(c c2 var and c c3 var, where var may represents rho1, rho2, rho3, rho3, rho5, v1, v2, or

v3) on q̂0 and the third order polynomial approximation (C c2 var f and C c3 var f) of

this dependence.

128



11.1 The basic control strategy in quasi-stationary approach

Ef = (q̂0 + r̂2)v2
3 (11.18)

since ρ̂3v̂3 = q̂0 + r̂2. Independently of the actual (unknown) value of C, this factor

must be decreased if the contamination of air is too high, or it can be increased if the

actual concentration of the exhaust fumes in the air is under some prescribed threshold.

On this reason direct polynomial fitting for Ef can be made, too (see Fig. 11.4).

To sum up, the stationary behavior of the system can be well approximated in

the given parameter range by a few simple matrices (containing the coefficients of the

polynomial fitting). On the basis of the above calculations, it can be observed that

the emission factor Ef is monotonous strongly increasing function of r̂2 in each case.

Therefore in the possession of the actual q̂0 value, by decreasing r̂2 step-by-step from

a big initial value, the function of Ef can numerically be inverted. With the inversion

the appropriate r̂2 can numerically be determined for a desired Ef . On the other hand,

due to the drastic increase in Ef (depending on ρ̂3 and v̂3), it can be expected that

relatively small model parameter errors may lead to drastic estimation error in Ef

(if it is wished to be estimated on the basis of the model). Therefore simultaneous

measurement of ρ̂3 and v̂3 is desirable.

For the use of the stationary model the stability of the stationary states is required.

This problem is discussed in the next subsection.

11.1.3 Formal analysis of the stability of the stationary solutions

The fundamental approach for the stability analysis is based on perturbation calculus

according to which first order linear differential equations are derived for the little

perturbations of the stationary states. In this approach, the third or higher order

terms in the perturbations are simply neglected. Accordingly, {ρi := ρ̂i + ερi|i =

1, 2, 3, 4}, {vi := v̂i + εvi|i = 1, 2, 3}, {ρ̇i := ερ̇i|i = 1, 2, 3, 4}, {v̇i := εv̇i|i = 1, 2, 3},

and q̂0 =constant, ρ̂0 =constant, v̂0 =constant, v̂4 =constant, v̂5 =constant, and finally

r̂2 =constant. By neglecting the higher order terms and taking into account the already

known information on the stationary states, the following set of linear equations is

obtained for the time-dependence of the perturbations:
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Emission Factor: (q_0+r_2)v_3^2
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Figure 11.4: Fitted third order polynomial for the emission factor for q̂0 = 50 (upper)

and the dependence of the first coefficient of the (r̂2-based) polynomial (C c0) on q̂0 and

its third order polynomial approximation (C c0 EF f; lower).
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ερ̇1 ≈
q̂0 − (ρ̂1 + ερ1)(v̂1 + εv1)

Lrsλft
≈ q̂0 − ρ̂1v̂1 − v̂1ερ1 − ρ̂1εv1

Lrsλft
≈ − v̂1ερ1 − ρ̂1εv1

Lrsλft
(11.19)

In similar manner:

ερ̇2 ≈
v̂1ερ1 + ρ̂1εv1 − v̂2ερ2 − ρ̂2εv2

Lrsλft
, (11.20)

ερ̇3 ≈
v̂2ερ2 + ρ̂2εv2 − v̂3ερ3 − ρ̂3εv3

Lrsλft
. (11.21)

For calculating the perturbations of the velocity components, the following approxima-

tions are needed: 1
x+εx ≈

1
x −

εx
x2 and V (ρ̂1 + ερ1) ≈ V (ρ̂1) + V ′(ρ̂1)ερ1. With these

approximations it can be obtained that

εv̇1 ≈ V (ρ̂1)+V ′(ρ̂1)ερ1−v̂1−εv1

τ + (v̂1+εv1)(v̂0−v̂2−εv2)
2Lrs

−
− η
τ2Lrs

[
1

ρ̂1+κ −
ερ1

(ρ̂1+κ)2

]
(ρ̂2 + ερ2 − ρ̂0)

(11.22)

that contains the following 0th and 1st order terms:

εv̇1 ≈ V (ρ̂1)−v̂1

τ + v̂1(v̂0−v̂2)
2Lrs

− η
τ2Lrs

ρ̂2−ρ̂0

ρ̂1+κ +

+V ′(ρ̂1)ερ1−εv1

τ + −v̂1εv2+(v̂0−v̂2)εv1

2Lrs
− η

τ2Lrs

[
ερ2

ρ̂1+κ −
(ρ̂2−ρ̂0)ερ1

(ρ̂1+κ)2

]
.

(11.23)

By utilizing the stationary equations and selecting the coefficients of the 0-2nd order

terms in the perturbations, it is obtained that

εv̇1 ≈
[
V ′(ρ̂1)
τ + η(ρ̂2−ρ̂0)

τ2Lrs(ρ̂1+κ)2

]
ερ1−

− η
τ2Lrs(ρ̂1+κ)ερ2 +

[
− 1
τ + v̂0−v̂2

2Lrs

]
εv1 − v̂1

2Lrs
εv2.

(11.24)

Similar considerations can be applied for εv̇2 resulting in

εv̇2 ≈
[
V ′(ρ̂2)
τ + η(ρ̂3−ρ̂1)

τ2Lrs(ρ̂2+κ)2 + εr̂2v̂2
Lrs(ρ̂2+κ)2

]
ερ2 +

[
−1
τ + v̂1−v̂3

2Lrs
− εr̂2

Lrs(ρ̂2+κ)

]
εv2+

+ η
τ2Lrs(ρ̂2+κ)ερ1 − v̂2

2Lrs
εv3 − η

τ2Lrs(ρ̂2+κ)ερ3 + v̂2
2Lrs

εv1.

(11.25)

Finally, for εv̇3 it is yielded that

εv̇3 ≈
[
V ′(ρ̂3)
τ + η(ρ̂4−ρ̂2)

τ2Lrs(ρ̂3+κ)2

]
ερ3 +

[
−1
τ + v̂2−v̂4

2Lrs

]
εv3+

+ η
τ2Lrs(ρ̂3+κ)ερ2 − η

τ2Lrs(ρ̂3+κ)ερ4 + v̂3
2Lrs

εv2

(11.26)
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By the use of these calculations, a simple matrix equation form ẋ = Ax can obtained

for the small state perturbations in which x := (ερ1, ερ2, ερ3, ερ4, εv1, εv2, εv3)T , and

A =



A1,1 0 0 0 A1,5 0 0
A2,1 A2,2 0 0 A2,5 A2,6 0

0 A3,2 A3,3 0 0 A3,6 A3,7

0 0 A4,3 A4,4 0 0 A4,7

A5,1 A5,2 0 0 A5,5 A5,6 0
A6,1 A6,2 A6,3 0 A6,5 A6,6 A6,7

0 A7,2 A7,3 A7,4 0 A7,6 A7,7


(11.27)

The identically non-zero terms are individually marked in A. The appropriate matrix

elements are obtained from the above perturbation calculus as

A1,1 = −v̂1
Lrsλft

; A1,5 = −ρ̂1

Lrsλft
; A2,5 = ρ̂1

Lrsλft
;A2,1 = v̂1

Lrsλft
; A2,2 = −v̂2

Lrsλft
;

A3,2 = v̂2
Lrsλft

; A3,3 = −v̂3
Lrsλft

; A3,6 = ρ̂2

Lrsλft
;A3,7 = −ρ̂3

Lrsλft
;

A4,3 = v̂3
Lrsλft

; A4,4 = −v̂4
Lrsλft

; A4,7 = ρ̂3

Lrsλft
;A5,1 =

[
V ′(ρ̂1)
τ + η(ρ̂2−ρ̂0)

τ2Lrs(ρ̂1+κ)2

]
;

A5,2 = − η
τ2Lrs(ρ̂1+κ) ;A5,5 =

[
− 1
τ + v̂0−v̂2

2Lrs

]
; A5,6 = − v̂1

2Lrs
;

A6,2 =
[
V ′(ρ̂2)
τ + η(ρ̂3−ρ̂1)

τ2Lrs(ρ̂2+κ)2 + εr̂2v̂2
Lrs(ρ̂2+κ)2

]
A6,6 =

[
−1
τ + v̂1−v̂3

2Lrs
− εr̂2

Lrs(ρ̂2+κ)

]
;

A6,1 = η
τ2Lrs(ρ̂2+κ) ; A6,7 = − v̂2

2Lrs
;A6,3 = − η

τ2Lrs(ρ̂2+κ) ; A6,5 = v̂2
2Lrs

;

A7,3 =
[
V ′(ρ̂3)
τ + η(ρ̂4−ρ̂2)

τ2Lrs(ρ̂3+κ)2

]
;A7,7 =

[
−1
τ + v̂2−v̂4

2Lrs

]
;

A7,2 = η
τ2Lrs(ρ̂3+κ) ; A7,4 = − η

τ2Lrs(ρ̂3+κ) ;A7,6 = v̂3
2Lrs

.

(11.28)

From the control theory of linear, parameter-invariant systems it is known that the

satisfactory and necessary condition of stability is that the eigenvalues of matrix A must

have only negative real parts (see [117]). Therefore, by the use of the polynomial fitting

of the stationary states of (3.16)-(3.23), the spectrum of A is determined numerically by

varying q̂0 in 50/h units and gently varying r̂2 ∈ [0, 522] vehicle/h. All the solutions are

found to be stable, though, they contain damped fluctuations. Therefore, the simple

control approach based on the automatic relaxation of the perturbations of the quasi-

stationary states is adaptable. Since in the analyzed problem a rough model is used, the

controller may also need iterative adaptive corrections for which the author suggests

the use of Robust Fixed Point Transformations.
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11.2 Simulation results

The effectiveness of the proposed control strategy is investigated via simulations in

Scilab-SCICOS environment. In the examples, freeway traffic is controlled without

(C1) and with RFPT (C2). The aim of the control is that the emission factor tracks a

nominal trajectory which in all of the presented examples is a sinusoidal wave.

In the illustrative examples, without limiting the generality, the following param-

eter values are used: for sampling time ∆tsampling = 0.028h ≈ 100.8 s, for the free

parameters of the second type of RFPT (see Section 4.4) K = −1010, A = 5 × 10−12,

and B = 1, and for the maximum step size of the integrator ∆tsampling/50 are chosen.

For the control of the emission factor at road segment 3 (see Fig. 3.12), the 3rd

order polynomial fitting of Ef is directly calculated. Utilizing the fact that Ef is a

monotonously increasing function of r̂2 (for arbitrary positive q̂0), a simple inverse

function can be utilized to find a model-based r̂d2appr value for a prescribed ÊNomf ≡ Êdf
emission factor. The controller without RFPT (C1) directly introduces this value to

the inverse model. The RFPT-based controller (C2) transforms (improves) the gained

value to calculate a better input for the approximate model. The structural scheme of

the controller is shown in Fig. 11.5.

Numerous simulations have been made for exact and approximate inverse models

(RFPT is needed in both cases because the polynomial fitting causes approximation). In

Wave
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Delay
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fÊ
d
fÊ
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Figure 11.5: The block scheme of the RFPT-based control of Ef .
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the analyses the used approximate model had the same structure as the inverse system,

however with different parameter settings. The approximate parameters (marked by

symbol ∼) are set as follows: ṽfree = 1.20vfree, b̃ = 1.2b, L̃rs = Lrs, ρ̃cr = 1.2ρcr,

τ̃ = 1.2τ , η̃ = 1.2η, κ̃ = 1.2κ, δ̃ = 1.2δ, and λ̃ft = λft. The not enumerated parameters’

values are also increased by 20%.

In the first example, in the simulations q̂0 is varied in drastic steps while Edf varies

continuously (see Fig. 11.6) and the cycle time of the controller ∆tCycle is set to be

very big (∆tCycle ≈ 100 s). The given situation has been investigated using exact

model parameter settings and both controllers C1 and C2, then using approximate

model parameters and controller C2. Figure 11.7 shows the tracking errors achieved

in the three different situations. The first figure (using controller C1) reveals that the

fitted stationary approximation is in harmony with the output of the dynamic model,

but the sign of the tracking error is identical in the great majority of the simulation

time (the approximation is a little bit shifted from the nominal values). With controller

C2 the error oscillates always around zero, so the RFPT-based controller achieves good

tracking of the emission factor Ef . Although, the model approximation increases the

tracking error, but not significantly. Figure 11.8 shows the variation of r2 during

simulations.

In the next example, in the simulations both q̂0 and Edf vary continuously (see

Fig. 11.9) and the approximate model parameters are used during all the simulations.

In the practice in urban traffic the available time for crossing a street is about 10 s,

so better accuracy can be expected with smaller sampling time than that of the previ-

ous example. The first two simulations are made with high sampling time, but in the

third example ∆tCycle is decreased to 10 s. The tracking error of the emission factor is

shown in Fig. 11.10. The simulations show that with controller C1 the error remains

shifted (like in the previous example) and gets ten times bigger because of the param-

eter approximations. Thus, Ef drastically depends on the model parameters. On the

other hand, with controller C2 the error fluctuates around zero and its order of mag-

nitude does not increase. Further, if low sample time is applied, the error is reduced

significantly. The variation of r2 is illustrated in Fig. 11.11.
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[h]

[h]

Figure 11.6: Ex1.: The nominal emission factor (upper; in km2/h3 units) and the vari-

ation of q̂0 (lower). In the first example, q̂0 is varied in drastic steps while Ed
f varies

continuously.

11.3 Summary

In this chapter, a possible application of Robust Fixed Point Transformations is pro-

posed. The task is to solve the control of the emission rate of exhaust fumes of freeway

traffic based on a given approximate hydrodynamic traffic model. First, a link has been

established between different successful applications of such models and the current

problem: a numerical method is introduced for determining the stationary solutions of

the system and then the stability of the solutions is shown. Finally, a simple RFPT-

based control strategy is presented based on an introduced attribute (related to the

emission rate), which successfully can handle the system even in case of rough model

approximation.

The results show that the proposed controller seems to be a prospective solution: It

is based on a simple 3rd order polynomial approach of the quasi-stationary states and
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Figure 11.7: Ex1.: Tracking errors of the emission factor with exact model parameters

using controller C1 (upper); with exact model parameters using controller C2 (middle); with

approximate model parameters using controller C2 (lower; Ef in km2/h3 units). When

using C1 there is a permanent error component (it is strongly shifted), otherwise there is

not. The parameter approximation results in a slight increase in the error.
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Figure 11.8: Ex1.: Illustration of the control signal (additional vehicles let into the

system from the ramp in road segment 2 r2): with exact model parameters using controller

C1 (upper); with exact model parameters using C2 (middle); with approximate model

parameters using C2 (lower).
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[h]

[h]

Figure 11.9: Ex2.: The nominal emission factor (upper; in km2/h3 units) and the varia-

tion of q̂0 (lower). In this example, both vary continuously.

the transformation of RFPT. It applies the ingress rate from a ramp in the preceding

road segment as control signal and requires only the measuring of the traffic velocity

and vehicle density in the controlled segment. The proposed method applies offline

processing of the available analytical model for the determination of the stationary

state. The control process can be solved by common, commercially available softwares

that do not require more computational capacity than that of a common laptop or

a PC. So the real-time computations need very little computational capacity if the

model detailed in Section 3.7 is used. Since the suggested method needs continuous

observations, it cannot ensure “asymptotic stability” (any correction is possible only

after the observation). It can guarantee only stability (in Lyapunov sense).

The results considered to be new have been published in journal paper [J1] and

conference papers [C16, C17, U1].
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Figure 11.10: Ex2.:Tracking errors of the emission factor with exact model parameters

using controller C1 (upper); with exact model parameters using controller C2 (middle); with

approximate model parameters using controller C2 (lower; Ef in km2/h3 units). When

using C1 the error is shifted, otherwise it is not. The low sampling time results in error

reduction.
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Figure 11.11: Ex2.: Illustration of the control signal (additional vehicles let into the

system from the ramp in road segment 2 r2): with exact model parameters using controller

C1 (upper); with exact model parameters using C2 (middle); with approximate model

parameters using C2 (lower).
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Anti-lock braking system

In the previous chapter, a real life problem has been attached. An approximate hydro-

dynamic model has been adapted, analyzed, and used for the RFPT-based control of a

certain freeway traffic. Following the focusing on real-life problems, in this chapter, as

a preliminary investigation, a new type of anti-lock braking system is introduced which

uses only the measurable parameters of a car. The greatest advantage of the proposed

system is that it is far simpler than any of the ABS systems found in the literature. The

proposed approach uses the approximation of a vehicle model, so the new model and

controller might be considered as a preparation for a new application of RFPT in real

life. The results show that despite the rough approximation, the proposed structure

works well and generates similar results to real cars of today.

12.1 Introduction

Friction is a phenomenon which is present in everyday life. Without it, many types of

everyday motions would not be possible (think e.g. on rolling, stepping, ...) thus, it

is a basic and determining force that has helped the formation of our culture. In real

life, it is present everywhere so it has to be taken in account in every task that involves

moving. Its advantages have to used, while its disadvantages have to be avoided.

As a disadvantage, in control tasks, friction is a strongly nonlinear phenomenon

which generates only undesirable external disturbances that has to be compensated by

the controllers. E.g. in the low velocity regime of mechanical devices it causes the

so-called stick–slip phenomenon resulting in unwanted oscillations in the system. For
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the compensation various methods have been proposed starting from the nineties to

the recent past (see e.g. [118, 119]).

As an advantage, in case of driving, friction is a primary factor to determine the

limits of the vehicle’s acceleration and deceleration. The possible maximum accelera-

tion and deceleration of the vehicle body is determined by a parameter called friction

coefficient. The friction coefficient describes the contact of the road and the wheels,

therefore its behavior is extensively studied for various tire types under various envi-

ronmental conditions. From around 1990 scientists realize the importance of another

variable that determines the maximal friction: it is called wheel slip. Wheel slip is de-

fined as the ratio of the wheel’s rotational speed and that of an equivalent free-rolling

wheel. It is possibly the most important factor on which the available maximal friction

coefficient depends [67, 120]. And yet, from physical point of view, the wheel slip may

suffer from criticism since it does not convey information on the relative velocity of

the tire’s contact point and the road surface. Though, it has great fundamental sig-

nificance. The problem is widely investigated and several results are summarized in

[68, 69, 70, 72] and later in e.g. [71, 121, 122, 123, 124].

Besides modeling friction, considerable efforts are exerted for developing efficient

controllers for braking systems. Here only some of the characteristic approaches are

enumerated. In [125] the effect of the active suspension system is investigated. In [126]

an eddy current-based brake by wire system is designed with especial emphasis on the

empirical data that seems to be strongly dependent on the testing environment.

The sliding mode controllers offer widely studied possibilities for braking purposes.

In the early approaches (see e.g. [127] and [128]), the optimal slip value is assumed

to be a priori known. In [129] an optimum search technique for wheel slip is applied.

Possibilities for the reduction of chattering are studied e.g. in [130, 131]. In [132]

typical friction coefficient – slip curves are obtained based on numerous experiments.

Soft-computing approaches are also used in braking: In [133, 134] fuzzy sets, in

[135] genetic neural fuzzy control, in [136] self learning techniques and in [137] learning

neuro–fuzzy techniques are applied. Grey system modeling is an alternative successful

possibility for developing some abilities for automatic prediction applied in braking

control [138].

After the extensive investigations of the friction models, the reader can be convinced

that simple, efficient, and reliable braking control cannot be constructed based on
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modeling and / or identifying the parameters of the actual friction conditions. However,

the previously developed friction models well describe certain qualitative properties of

tire friction. So it seems to be more viable way to construct a controller that works by

simply observing the qualitative properties of the motion. In the following, a simple

vehicle model and a control strategy are proposed based on the qualitative properties

of the friction explained in Section 3.8.

12.2 The vehicle model and the suggested control ap-

proach

For constructing a simple vehicle model, it is assumed that the car has four wheels in

more or less symmetric positions. Then the proposed model can be described by the

following Euler-Lagrange equations:

ω̇ = [rFzµ(ω, v)−Bwω − Tb] /J
v̇ = [−4Fzµ(ω, v)−Bvv] /m

Ṫb = [−Tb +KbPb] /τabs

(12.1)

where Fz denotes the vertical contact force (in this case it is assumed to be constant

but if the cushion/swinging of the chassis in the vertical direction is taken into account

it may depend on time to some extent); J denotes the constant inertial momentum of

the wheel/wheel shaft/motor system; m is the mass of the car; Bv and Bw are viscous

friction coefficients; Pb denotes the pressure in the braking system (in this case in

arbitrary units); Kb is a gain constant; Tb marks the braking torque; and τabs denotes

the time constant of the hydraulic braking system. The other quantities are defined

as in Section 3.8 (ω: rotational velocity of the wheel axis; r: radius of the wheel; µ:

friction coefficient; v: velocity of the vehicle). It is reasonable to assume that ω can

be measured directly, while v̇ is also measurable by cheap acceleration sensors (due to

skidding ω and v are independent quantities). Altogether it means that every variable

in these equations can be measured by sensors. This makes the model very simple.

For controller design, it is assumed that m, Bv, Bw, and τabs are approximated by m̂,

B̂v, B̂w, and τ̂abs, respectively. This is a reasonable supposition since the vehicle’s full

mass depends on the actual payload while viscous friction may depend on environmental

conditions as temperature, etc. The gravitational acceleration g is also approximated

as ĝ. It is reasonable to assume that the other quantities (J , r, Kb) can be precisely
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known. For µ(ω, v) no model is used due to its unreliable nature. Instead of that an

estimation for the quantity ϑabs := Fzµ is used as

ϑEst = −(m̂v̇ + B̂vv)/4 (12.2)

where ϑ̇Est can be monitored. For slowly varying Fz this roughly corresponds to Fzµ̇ =

Fz
∂µ
∂ω ω̇ + Fz

∂µ
∂v v̇. If ϑ̇Est > 0 then it is reasonable to further decrease ω̇ assuming that

the prescribed deceleration of the car body have not yet been achieved. For this purpose

a maximal deceleration for ω can be prescribed as ω̈Des = −DMax
ω . If the prescribed

deceleration for the car body DMax
v is achieved or ϑEst cannot be increased, then ω

should be stabilized at its present value by the control rule

ω̈Des = −Λω̇ (12.3)

where Λ is a positive constant. In the possession of the appropriate ω̈Des and the

estimated parameters, the approximate ṪEstb can be calculated with the help of the

first equation in (12.1):

ṪEstb = (−Jω̈Des + rϑ̇Est − B̂wω̇). (12.4)

Ṫb can be substituted to the third equation of (12.1) by ṪEstb . With the approximate

parameters the approximate braking pressure is achievable. Since it cannot be negative,

the proper expression is

PEstb = max[0, (τ̂absṪ
Est
b + TEstb )/Kb] (12.5)

The concrete braking torque Tb can be obtained by numerical integration of the

third equation of (12.1) and using the approximate value τ̂abs.

The block scheme of the above described system is shown in Fig. 12.1.

Controller System ( )Inverse
Model (       )

bTv  ,,Est
b

Est
b PT ,

1
appr 

Des

Figure 12.1: The block scheme of the proposed anti-lock braking system.
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12.3 Simulation results

In this section, some illustrative simulation results are presented without limiting the

generality of the proposed method. The simulations of the anti-lock braking are

made in Scilab-SCICOS environment. In the examples, the numerical parameters

are, as follows: Bv = 0.5Ns/m, Bw = 0.05Nms/rad, m = 1600 kg, r = 0.25m,

J = 500 kgm2, τabs = 0.001 s, g = 9.81m/s2, Fz = mg/4, Kb = 0.1, B̂v = 1Ns/m,

B̂w = 0.1Nms/rad, m̂ = 2000 kg, t̂au = 0.0015 s, ĝ=10m/s2, and F̂ z = m̂ĝ/4. The

controller’s parameter settings are: DMax
v = 3 g, DMax

ω = 100 rad/s3, and Λ = 500/s.

In the numerical simulations the exact value of µ is calculated from (3.27) with the

numerical approximation of 1/v as v/(a2 + v2) with a = 10−3 m/s to avoid numerical

singularities at v = 0. The initial velocity of the (free rolling) car is vini = 52m/s.

In the first example, it is assumed that braking is initiated on dry asphalt that later

becomes wet, snowy, wet, and dry again. The variation of v, ω, and µ during braking

is illustrated in Fig. 12.2. The changing road conditions can be well observed: e.g. on

snowy asphalt the velocity is almost constant and the friction coefficient is very low.

The figure reveals that in the beginning, considerable braking action is possible even on

the wet asphalt session. The stagnation in v after 12 s may be related to the low relative

velocity. Figures 12.3 reveals the pressure on the braking system. It can be seen that

the braking process is very similar to that of real cars’ real ABS. Figure 12.4 shows

that the relative velocity is kept at a relatively high value during the whole braking

session. Finally, in Fig. 12.5 the braking distance can be seen.

In the second example, the simulation is made on dry asphalt. Compared to the

changing road conditions, Fig. 12.6 reveals that the friction coefficient is kept at rel-

atively high value with even more braking (Fig. 12.7) and even more relative velocity

(Fig. 12.8). The braking route becomes considerably shorter, too (see Fig. 12.9). The

braking distance is similar to a Lotus Elise S2’s non official braking route which does

not have ABS (see [66]).

In the case of evenly dry asphalt the variation of the estimated ϑ̇Est is not so hectic

so Fig. 12.10 provides good information on the operation of the controller.
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Figure 12.2: The variation of v, ω, and µ during braking in case of varying road condi-

tions: 0 − 5 s: dry, 5 − 7 s: wet, 7 − 9 s: snowy, 9 − 11 s: wet, and 11 − 16 s: dry. The

changing road conditions can be well observed, e.g. on snowy asphalt the velocity is almost

constant and the friction coefficient is very low.

12.4 Summary

In this chapter, preliminary investigations are made on a possible anti-lock braking

system that does not wish to use or identify any sophisticated friction model. The

reason for this approach is the fact that these models are strongly nonlinear, difficult

to identify, and their parameters can change suddenly with varying road conditions.
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Figure 12.3: The variation of the braking pressure Pb and the braking torque Tb in case

of varying road conditions. The figures reveal similar braking process to that of a real ABS

system.

Instead of a friction model, a simple vehicle model is suggested together with a simple

control rule. The results show that though the calculations based on the proposed model

contain a lot of approximations, the controller indicates the proper control actions so

that the system produces similar results to a real car used today.

The result considered to be new has been published in conference paper [C2]. Based

on the proposed model the suggested approach has been extended with a new tire model

and an RFPT-based controller in [139].
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Figure 12.4: The variation of the relative velocity v−rω in case of varying road conditions.

It is kept at a relatively high value during the whole braking session.
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Figure 12.5: The braking distance in case of varying road conditions.
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Figure 12.7: The variation of the braking pressure Pb and the braking torque Tb during

braking on dry asphalt. Relatively high values can be observed during the whole session.

The figures reveal similar braking process to that of a real ABS system.
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Figure 12.8: The variation of the relative velocity v− rω during braking on dry asphalt.

The relative velocity is kept high during the whole session.
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Figure 12.9: The braking distance on dry asphalt vs. time (in s units). The braking

route is decreased significantly compared to the changing road conditions (see Fig. 12.5).

The braking distance is similar to a Lotus Elise S2’s non official braking route (see [66]).
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Figure 12.10: The desired and the realized value of ω̈ and the the estimated ϑ̇Est value

during braking on dry asphalt.
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13

Conclusions

After detailing the results, in this chapter, the final conclusions are summarized.

13.1 The most important statements of the thesis

Nowadays, control, especially automated control of systems with uncertainties is essen-

tial in everyday life. The uncertainties can be classified in many different ways, e.g.

the system can be known, partially known, or unknown; the data/information can be

exact, uncertain, inaccurate, or lack of data, etc.

In this thesis, that classification is followed which considers the efficiency of the

applied controllers. From this point of view, three important groups can be divided:

1. when the system contains unknown parameters 2. when the system has unknown

dynamics 3. when the the system’s state cannot be measured [4]. Without attempting

to be comprehensive, there are some important types of controllers that fit the dif-

ferent situations, e.g. sliding mode controllers, fuzzy logic controllers, neural network

controllers, and robust controllers, etc.

When the controlled system is just partly known robust controllers bring the most

benefit so they are popular, applied, and improved in our days, too. One of the re-

cent robust control strategies is the method called Robust Fixed Point Transformations

(RFPT). It can be used both in traditional feedback control systems and Model Ref-

erence Adaptive Control systems and also for single input – single output systems and

multiple input – multiple output systems. Its aim is to make controllers robust when
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an approximate model is used in the control process to estimate the behavior of the

system.

This dissertation focuses on improving RFPT, because

1. It guarantees only local stability of the controller according to Lyapunov’s stabil-

ity theorem;

2. Up till now it has been applied to ameliorate only traditional controllers;

3. It can a be a powerful method to analyze and control systems with modeling

difficulties (either because the analytical model is not known or is too complex

to be used).

First, in Chapter 5, a new application area is introduced for Robust Fixed Point

Transformations: the chaos synchronization. Several chaotic oscillators are analyzed,

modeled, and controlled with RFPT to show that the improved controllers achieve more

precise trajectory tracking.

Based on the main focus and the three possible positions of the RFPT in the control

loop, a new structure for RFPT is introduced. The structure is based on the idea of

integrating a further controller into the system. The second controller gains an extra

tracking error reduction compared to the original structures without increasing the

computational burden significantly. This results in a more precise trajectory tracking.

In the third part (Chapters 7 and 8), two methods are proposed that make the

RFPT-based controllers stable. First, a fuzzy-like parameter tuning, then a VS-type

stabilization method is suggested to make sure that if the RFPT-based controllers loose

their stability then it is gained back within a very short time. The two methods make

the RFPT-based controllers stable and because of this, more trustworthy.

In the next step, RFPT’s joint applicability is verified with two of the increasingly

prevalent soft-computing-based controllers: first with a fuzzy logic controller then with

a neural network controller. The results show that the robustness of these controllers

can be increased with RFPT and because of that the RFPT-based soft-computing-

based controllers give more accurate results than the original ones. The two approaches

prove that RFPT can advantageously be used for solving recent problems with current

techniques and gives an opportunity to improve two more and more popular controllers.
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Finally, a further aspect, the applicability of RFPT in complex real-life systems is

attached: first, a hydrodynamic model of freeway traffic is analyzed from the viewpoint

of stability which has only two variables (traffic density and velocity) and controlled

with RFPT-based controllers in quasi-stationary cases, then a simple model for an anti-

lock braking system is designed and controlled. Besides that the constructed models

have only partial information about their environment, they show similar behavior to

real life. The results show that if a system cannot be modeled accurately because of the

lack of resources or knowledge, approximate models also can be used successfully. The

approximate model has the advantage that it is less complex and thus, simple controllers

can be designed for them. The inaccuracy of the controllers then can be ameliorated

by combining them with adaptive techniques, like RFPT. By this, the models can be

forced to behave more similar to the real system than without the suggested adaptive

improvements.

13.2 The new scientific results of the thesis

I. Thesis Robust Fixed Point Transformations in chaos synchronization.

I proposed a new application area for Robust Fixed Point Transformations: the

chaos synchronization. Based on the literature I studied the most important

chaotic attractors (FitzHugh-Nagumo, Matsumoto-Chua, Duffing, and Van der

Pol oscillators) and I designed approximate models and controllers for them. I

showed that if the parameters of a chaotic system are not known exactly or exter-

nal disturbances affect the system, then RFPT is an effective method to get more

accurate trajectory tracking [J2, C1, C4, C5, C6, C7, C8, C19].

II. Thesis Mathematical development for Robust Fixed Point Transformation.

I analyzed the mathematical background of Robust Fixed Point Transformations.

I proposed a new structure for RFPT in which two controllers are integrated into

the system. I showed that the new structure gains an additional tracking error

reduction compared to the original RFPT methods [J2].
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III. Thesis group Stability of the Robust Fixed Point Transformations-based con-

trollers.

3.1 I considered the stability of the Robust Fixed Point Transformations-based

controllers and I introduced an innovative fuzzy-like parameter tuning method

for RFPT. I showed that more stable results of RFPT can be gained if the

fuzzy-like parameter tuning is applied in the control process [C12, C13, L1,

C18].

3.2 I reconsidered the stability of the Robust Fixed Point Transformations-based

controllers and I proposed a new VS-type stabilization algorithm for RFPT.

I showed that when the RFPT-based controller falls out from the local inter-

val of convergence it becomes unstable and generates the so-called chattering

effect. I showed that the proposed algorithm can reduce the order of fluctu-

ation and can stop chattering within very short time. As a consequence the

stability of the RFPT-based controllers can be gained [C19].

IV. Thesis group Joint applicability of Robust Fixed Point Transformations.

4.1 I suggested the combination of fuzzy logic controllers (FLC) and RFPT and I

designed an RFPT-based fuzzy logic controller. I compared the performance

of the FLC and that of the RFPT-based FLC and I verified via simulations

that the robustness of the original FLC can be increased with the application

of RFPT and by this the error produced by the original fuzzy logic controller

can be reduced significantly [C20].

4.2 I suggested the combination of neural network controllers (NNC) and RFPT

and I designed an RFPT-based neural network controller. I compared the

performance of the NNC and that of the RFPT-based NNC and I verified

via simulations that the robustness of the original NNC can be increased

with the application of RFPT and by this the error generated by the original

neural network controller can be reduced significantly [J4].
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V. Thesis group The applicability of Robust Fixed Point Transformations in com-

plex, partially known systems.

5.1 I investigated the applicability of Robust Fixed Point Transformations in

complex, partially known systems. For this, I studied a hydrodynamic model

of freeway traffic. I determined the stationary solutions of the model, and

analyzed their stability. I introduced a new attribute which is strongly related

to the emission rate of exhaust fumes of the freeway traffic (and based on

the new attribute the control strategy can be more simple). I designed an

RFPT-based controller to control the emission rate of exhaust fumes for

the quasi-stationary solutions based on the new attribute connected to the

emission rate. I showed that the RFPT-based controller is able to limit the

emission rate with proper control actions, while the original one (without

RFPT) cannot [J1, C16, C17,U1].

5.2 I investigated a further new area where the Robust Fixed Point Transforma-

tions method is a promising candidate to improve the control performance.

I suggested a simple vehicle model to be used in anti-lock braking systems.

I showed that the introduced model is simpler (both from the point of view

of complexity and that of the measurability of the considered effecting co-

efficients) than any effective model known from the literature. I designed

a controller which uses only the suggested rough approximate model and

showed that good results can be gained with it [C2].

13.3 Application and future work

Recently, model-based approaches have proved to be very advantageous in control tasks.

Although, many problems arise from the high complexity of the tasks and also from

the inaccuracy, uncertainty, and vagueness of our knowledge about the systems to be

controlled. In such situations, classical control methods may fail to work.

Robust controllers are one of the best solutions to handle uncertain systems, among

which the Robust Fixed Point Transformations-based controllers are outstanding tools.

They can advantageously be used to restructure and improve existing controllers that

use approximate models for the control process. In this thesis, different application
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areas, e.g. chaos synchronization and traffic control, are suggested (and examples are

shown) where RFPT can be a good candidate. Similar considerations can be made

in other fields of engineering, like industry, manufacturing, and machines (etc.), where

controllers are widely used and the uncertainties of the system approximations have to

be handled.

The topics concerned by this dissertation leave several open questions that need

further research:

1. The VS-type stabilization method of RFPT deals with the decrease of the pos-

sible Ai parameters to regain the stability of the RFPT-based controllers. New

algorithms might be more effective which, in certain cases, can also increases

these parameters to achieve more accurate results.

2. Since the exact relationship between parameters A and K is not determined yet

(it strongly depends on the control task), further parameter tuning methods, e.g.

neural network tuning, could be used to calculate their appropriate values.

3. The dissertation investigates only two possibilities of improving soft-computing-

based controllers. Other approaches could be analyzed, too.

4. For the emission control of exhaust fumes of freeway traffic, fitted polynomial

packages could be prepared for several reasonable ρ0, v0, and v4 = v5 combinations

depending on some “typical” traffic situations, since the boundary conditions

significantly influence the behavior of the solutions.

5. For the emission control problem, higher number of road segments may lead to

better approximation of the continuum model, e.g. receding horizon controllers

(also known as model predictive controllers, see [140]) could be used.

6. The anti-lock braking system, shown in this thesis, does not allow the direct

application of adaptive techniques. Thus, a possible development could be re-

structuring and applying improver techniques, like RFPT, in this approach. (In

this direction, the first step has already been taken. In [139], the authors, based

on my approach, extended their tire model with RFPT).
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C1 – C1 S. John, J. O. Pedro, L. T. Kóczy, “Adaptive Improvement of a Passive

Antilock Brake Control,” In: Proc. of IEEE AFRICON, Livingstone,

Zambia, pp. 1–6, 2011.
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Živčák (Eds.), Aspects of Computational Intelligence: Theory and Ap-

plications Topics in Intelligent Engineering and Informatics, Springer

Berlin Heidelberg, 2, pp. 85–104, 2013.

160



13.4 Publications of the author
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C17. J. K. Tar, L. Horváth, I. J. Rudas, T. A. Várkonyi, “Adaptive Control of Ap-

proximately Modeled Freeway Traffic by Robust Fixed Point Transformations,”

In: Proc. of the 12th WSEAS International Conference on Applied Computer

Science (ACS), Singapore City, Singapore, pp. 81–86, 2012, ISBN: 978-1-61804-

092-3.
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Benedecsik, “Anytime Algorithms in Intelligent Mea-

surement and Control,” In: CD-ROM Proc. of the World

Automation Congress (WAC), Maui, USA, p. ISIAC-156,

2000.
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Appendix A

Acronyms

CD Compact Disk

RFPT Robust Fixed Point Transformations

CTC Computed Torque Control

PID Proportional-Integral-Derivative

PD Proportional-Derivative

PI Proportional-Integral

MRAC Model Reference Adaptive Controller

SC Soft Computing

FLC Fuzzy Logic Controller

CoA Center of Area defuzzification method

CoG Center of Gravity defuzzification

method

CoM Center of Maxima defuzzification

method

MoM Mean of Maxima defuzzification method

NN Neural network

NNC Neural network controller

MLP MultiLayer Perceptron

LMS Least Mean Square algorithm

FHN FitzHugh-Nagumo

SMC Sliding Mode Controller

GRG Generalized Reduced Gradient

MS Microsoft

ABS Anti-lock Braking System
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Appendix B

List of

notations

α Free variable of the Φ6-type Van der

Pol oscillator

α1 Free variable of the master Duffing

system

α2 Free variable of the slave Duffing sys-

tem

β Free parameter of a noise filter

β1 Free variable of the master Duffing

system

β2 Free variable of the slave Duffing sys-

tem

· Symbol that marks differentiated

value (one dot: first derivative; two

dots: second derivative)

∆tCycle Cycle time of RFPT

∆tsampling Sampling time of the sensors in the

hydrodynamical model of freeway

traffic

∆ The step between the Ai values

δ Free parameter of the hydrodynami-

cal model of freeway traffic

δ1 Free variable of the master Duffing

system

δ2 Free variable of the slave Duffing sys-

tem

η Free parameter of the hydrodynami-

cal model of freeway traffic

ρ̂0 The stationary number of the vehi-

cles in the zeroth road segment

ρ̂1 The stationary number of the vehi-

cles in the first road segment

ρ̂2 The stationary number of the vehi-

cles in the second road segment

ρ̂3 The stationary number of the vehi-

cles in the third road segment

ρ̂4 The stationary number of the vehi-

cles in the fourth road segment

ρ̂5 The stationary number of the vehi-

cles in the fifth road segment

τ̂abs Approximated time constant of the

hydraulic braking system

â Free parameter of the approximate

FitzHugh-Nagumo neuron model

b̂ Free parameter of the approximate

FitzHugh-Nagumo neuron model

B̂v Approximated friction coefficient

B̂w Approximated friction coefficient

b̂cp Approximated friction in the cart-

pendulum model

Ĉmc1 First capacitor of the approximate

Matsumoto-Chua model

Ĉmc2 Second capacitor of the approximate

Matsumoto-Chua model

Ĝ Reciprocal value of a common resis-

tor of the approximate Matsumoto-

Chua model

ĝ Approximated gravity, ĝ = 10m/s2

ĝc Coupling element of the approximate

FitzHugh-Nagumo neuron model

k̂ Approximate parameter of the Φ6-

type Van der Pol model
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L̂1 Approximated length of the first pen-

dulum in the cart plus double pendu-

lum model

L̂2 Approximated length of the second

pendulum in the cart plus double

pendulum model

L̂c Inductance of a coil of the approxi-

mate Matsumoto-Chua model

L̂p Approximated length of the pendu-

lum in the cart-pendulum model

M̂ Approximated mass of the cart in the

cart-pendulum and the cart plus dou-

ble pendulum models

m̂ Approximated mass

m̂1 Approximated mass of the first pen-

dulum in the cart plus double pendu-

lum model

m̂2 Approximated mass of the second

pendulum in the cart plus double

pendulum model

m̂vdp Approximate inertia of the Φ6-type

Van der Pol model

r̂2 Fixed ingress rate from the ramp in

the second road segment

Ŝbig Approximate parameter of the

Matsumoto-Chua circuit

Ŝsmall Approximate parameter for deter-

mining the value of gc

v̂0 Stationary velocity of the traffic in

the zeroth road segment

v̂1 Stationary velocity of the traffic in

the first road segment

v̂2 Stationary velocity of the traffic in

the second road segment

v̂3 Stationary velocity of the traffic in

the third road segment

v̂4 Stationary velocity of the traffic in

the fourth road segment

v̂5 Stationary velocity of the traffic in

the fifth road segment

κ Free parameter of the hydrodynami-

cal model of freeway traffic

λ Free parameter of the PI, PD, and

PID controllers

λt Wheel slip

λft Number of lanes in the hydrodynam-

ical model of freeway traffic

λmax Maximal wheel slip

λvdp Free variable of the Φ6-type Van der

Pol oscillator

µ Friction coefficient

µvdp Free variable of the Φ6-type Van der

Pol oscillator

ω0 Free variable of the Φ6-type Van der

Pol oscillator

ω Rotational velocity

ωd Frequency of the excitation of the

Duffing systems

C Average for the vehicles in the hydro-

dynamical model of freeway traffic

ρ0 The number of the vehicles in the ze-

roth road segment

ρ1 The number of the vehicles in the

first road segment

ρ2 The number of the vehicles in the sec-

ond road segment

ρ3 The number of the vehicles in the

third road segment

ρ4 The number of the vehicles in the

fourth road segment

ρ5 The number of the vehicles in the

fifth road segment

ρcr Critical vehicle density of the freeway

traffic
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τ Free parameter of the hydrodynami-

cal model of freeway traffic

τabs Time constant of the hydraulic brak-

ing system

θ Angle of the pendulum in the cart-

pendulum system

θ1 The angle of the first pendulum in

the cart plus double pendulum sys-

tem

θ2 The angle of the second pendulum in

the cart plus double pendulum sys-

tem

δ̃ Approximate parameter of the hy-

drodynamical model of freeway traf-

fic

η̃ Approximate parameter of the hy-

drodynamical model of freeway traf-

fic

κ̃ Approximate parameter of the hy-

drodynamical model of freeway traf-

fic

λ̃ft Approximate number of lanes in the

hydrodynamical model of freeway

traffic

ρ̃cr Approximate critical vehicle density

of the freeway traffic

τ̃ Approximate parameter of the hy-

drodynamical model of freeway traf-

fic

b̃ Approximate parameter of the Papa-

georgiou model

C̃mc1 First capacitor of the slave

Matsumoto-Chua model

C̃mc2 Second apacitor of the slave

Matsumoto-Chua model

G̃ Reciprocal value of a common re-

sistor of the slave Matsumoto-Chua

model

g̃mc Nonlinear element of the slave

Matsumoto-Chua circuit

L̃c Inductance of a coil of the slave

Matsumoto-Chua model

L̃rs Approximate length of the road seg-

ments

S̃big Free parameter for determining the

value of g̃mc in the slave Matsumoto-

Chua circuit

S̃small Free parameter for determining the

value of g̃mc in the slave Matsumoto-

Chua circuit

ṽfree Approximate velocity of the traffic

flow

ϕ Representative of the controlled sys-

tems

ϕ−1
appr Representative of the approximate

inverse models of the controlled sys-

tems

ς The height of Gaussian-like function

ϑ

ϑ Gaussian-like function

ϑEst Approximation of ϑabs

ϑabs ϑabs := Fzµ

∧ Symbol that marks approximated

value

ζ The center of the Gaussian-like func-

tion ϑ

{Ai} Possible values for parameter A

A Free parameter of functions G1, G2,

and G3

a Amplitude of the excitation of the

Duffing systems

a1 Free parameter of the FitzHugh-

Nagumo neuron model

a2 Free parameter of the FitzHugh-

Nagumo neuron model
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B Free parameter of functions G1, G2,

and G3

b Free parameter of the Papageorgiou

model

B1 Free variable of the Burckhardt tire

model

b1 Free parameter of the FitzHugh-

Nagumo neuron model

B2 Free variable of the Burckhardt tire

model

b2 Free parameter of the FitzHugh-

Nagumo neuron model

B3 Free variable of the Burckhardt tire

model

B4 Free variable of the Burckhardt tire

model

Bv Friction coefficient

Bw Friction coefficient

bcp Friction in the cart-pendulum system

Cmc1 First capacitor of the master

Matsumoto-Chua circuit

Cmc2 Second capacitor of the Matsumoto-

Chua circuit

C1 Proposed controller without RFPT

extenstion

C2 Proposed controller, usually with

RFPT extenstion (except Chapter 6)

C3 PD controller without RFPT exten-

stion in Chapter 6 or RFPT-based

PID controller with parameter tun-

ing in Chapter 7

C4 RFPT-based “recalculated PD con-

troller

C5 RFPT-based model reference adap-

tive controller

C6 RFPT-based PD controller

d1 Disturbance force for the mater sys-

tems

DMax
ω Opposite of the maximal deceleration

for ω

DMax
v Opposite of the maximal deceleration

for the car body

e Tracking error

e1 Tracking error of the first state vari-

ables

e2 Tracking error of the second state

variables

Ef Emission factor in the hydrodynami-

cal model of freeway traffic

F Applied force in the cart-pendulum

system

f f (x) = ϕ
(
ϕ−1
appr (x)

)
, where f(r∗) =

rd

F1 Applied force on the first pendulum

in the cart plus double pendulum sys-

tem

F2 Applied force on the second pendu-

lum in the cart plus double pendulum

system

Fz Vertical contact force

G Reciprocal value of a common resis-

tor of the master Matsumoto-Chua

circuit

g Gravity, g = 9.81m/s2

G (Ai) Function G1, G2, or G3 where pa-

rameter A is replaced with Ai

G1 The function used by the RFPT-

based MRAC

G2 The function used by the RFPT-

based PD controller

G3 The function used by the recalcu-

lated RFPT-based PD controller

gc Coupling element for two FitzHugh-

Nagumo neurons
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gmc Nonlinear element of the master

Matsumoto-Chua circuit

H The output of the fuzzy-like param-

eter tuning

h h (x) = ϕ−1
appr (ϕ (x)), where h(ud) =

udappr

I External excitation of the systems

causing chaotic behavior

iL Current of the inductance of the mas-

ter Matsumoto-Chua circuit

iu Control current for the slave

Matsumoto-Chua circuit

J Constant inertial momentum of the

wheel/wheel shaft/motor system

K Free parameter of functions G1, G2,

and G3

Kb Gain constant of the proposed vehi-

cle model

Kvssm Free parameter for the chattering re-

duction algorithm

L1 Length of the first pendulum in the

cart plus double pendulum system

L2 Length of the second pendulum in

the cart plus double pendulum sys-

tem

Lc Inductance of a coil of the master

Matsumoto-Chua circuit

Lp The length of the pendulum in the

cart-pendulum system

Lrs The length of the road segments

M Mass of the cart in the cart-

pendulum and the cart plus double

pendulum system

m Mass

m1 Mass of the first pendulum in the cart

plus double pendulum system

m2 Mass of the second pendulum in the

cart plus double pendulum system

mvdp Some inertia of the Φ6-type Van der

Pol oscillator

Pb Pressure in the braking system

PEstb Estimated pressure in the braking

system

Q Applied torque or control force

Qdappr Approximate control force calculated

by the approximate inverse model

q0 The traffic current density in the ze-

roth road segment

q1 The traffic current density in the first

road segment

q2 The traffic current density in the sec-

ond road segment

q3 The traffic current density in the

third road segment

q4 The traffic current density in the

fourth road segment

q5 The traffic current density in the fifth

road segment

r Radius of the wheel

r∗G System response so that

f(PD(r∗G)) = rd

rd Desired system response

rdn Desired system response in the nth

simulation step

rr Realized system response in the nth

simulation step

rr Realized system response

r∗ System response so that ϕ−1
appr (r∗) =

ud

r2 The ingress rate from the ramp in the

second road segment

Sbig Free parameter for determining

the value of gmc in the master

Matsumoto-Chua circuit
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Ssmall Free parameter for determining

the value of gmc in the master

Matsumoto-Chua circuit

t Time

Tb Braking torque

TEstb Estimated braking torque

tn Time of the nth control step

u Control force

ud Desired control force

udappr Approximate control signal calcu-

lated by the approximate inverse

model

v Velocity

v0 The velocity of the traffic in the ze-

roth road segment

v1 The velocity of the traffic in the first

road segment

v2 The velocity of the traffic in the sec-

ond road segment

v3 The velocity of the traffic in the third

road segment

v4 The velocity of the traffic in the

fourth road segment

v5 The velocity of the traffic in the fifth

road segment

vζ The speed of the movement of

Gaussian-like function ϑ

vC1 Voltage of capacitor Cmc1 of the mas-

ter Matsumoto-Chua circuit

vC2 Voltage of capacitor Cmc2 of the mas-

ter Matsumoto-Chua circuit

vfree Velocity of the traffic flow

wi Weighting factors for parameters Ai

x System state variable

xD Desired state of the systems calcu-

lated by a controller

xd Desired state of the systems calcu-

lated by a controller

xN Marks the nominal trajectory for a

system with state variable x

xDes Desired state of the systems calcu-

lated by a controller

xNom Marks the nominal trajectory for a

system with state variable x

x1 Master system’s first state variable

x2 Mater system’s second state variable

xc The position of the cart in the cart-

pendulum and the cart plus double

pendulum systems

y1 Slave system’s first state variable

y2 Slave system’s second state variable

178



Appendix C

List of figures

2.1 The block scheme of the traditional PID Controller. . . . . . . . . . . . 10

2.2 The block scheme of the traditional Model Reference Adaptive Controller

taken from [38]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Fuzzy reasoning, taken from [49]. . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The scheme of a neuron without memory, with equal inputs, taken from

[49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Typical nonlinearities in neurons: binary (left); piecewise-linear (mid-

dle); sigmoid (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 An example for a multilayer perceptron, taken from [49]. . . . . . . . . . 26

2.7 The block scheme of the training, where u the independent variables, n

stands for the noise signals, and C marks the criteria function (usually

a least mean square function), taken from [49]. . . . . . . . . . . . . . . 27

2.8 An illustrative example for modifying the weights of a neuron, taken

from [49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Phase space of the master FitzHugh-Nagumo system. . . . . . . . . . . . 32

3.2 The tracking error (left) and system response tracking (right) of the FHN

neurons without control, with x1 = 0.005, x2 = 0.005, y1 = −0.005, and

y2 = −0.005 initial values. In case of perfect tracking, the right figure

would contain one straight line. . . . . . . . . . . . . . . . . . . . . . . . 33

179



C. LIST OF FIGURES

3.3 The tracking error (left) and system response tracking (right) of the FHN

neurons without control, with x1 = 0, x2 = 0, y1 = 0.005, and Y2 = 0

initial values. In case of perfect tracking, the right figure would contain

one straight line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 The Matsumoto-Chua circuit of [56] completed by a current generator

of signal iu for control purposes. . . . . . . . . . . . . . . . . . . . . . . 35

3.5 A 3D view of the chaotic trajectory produced by the master Matsumoto-

Chua system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 The realized system response ( ˙̃vC2 as v C2 dot) versus the desired re-

sponse (v̇C2 as v C2 Master dot) of the Matsumoto-Chua circuits with-

out control. In ideal case one single straight line could be seen. . . . . . 36
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ẏr2) with controllers C1, C2, and C3 (e2 = x2 − y2); upper: C1, middle:

C2 (0-50 seconds), lower: C3. As it can be seen, C2 may predict the

failure in early stage. C3 might succeed, but not as well as C1 which has

two PD controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 The tracking errors of the first state variables of the slave systems with

controllers C4, C5, and C6 (e1 = x1− y1); upper: C4, middle: C5, lower:

C6. It can be well seen that they all reduce the tracking error by more

than two orders of magnitude, but the introduced controller C4 gives

50% better result because of the second PD controller. . . . . . . . . . . 79

6.7 The tracking errors of the second state variables of the slave systems

with controllers C4, C5, and C6 (e2 = x2 − y2); upper: C4, middle: C5,

lower: C6. It can be well seen that they all reduce the tracking error

by more than two orders of magnitude, but the proposed controller C4

gives 50% better result because of the second PD controller. . . . . . . . 80

182



6.8 The difference between the desired and the realized response (ep = ẏd2 −
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