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ABSTRACT

In the past 20 years, research activities related to rolsotigery have
gained much attention due to the rapid development of istdgronal sys-
tems. Advanced surgical devices present a fine example ofaHaMachine
Interfaces as well. While many surgical maneuvers haveadjrdeen im-
plemented with a degree of autonomy, most of these surgibalttic devices
are still used as teleoperation systems. This means thanarhsurgeon is
always required to be present in the control loop, as an tgerdarallel
to the evolution of telesurgery, different model-basedtmmethods have
been developed, and experimentally tested. These enhamsparency and
increase latency-tolerance, both in terms of long distéspace robotics, in-
tercontinental operations) and short distance (local artFEscenarios) teleop-
eration. The effectiveness of traditional real-time cohinethods decreases
significantly with the increase of time-delay, while timarying latency intro-
duces further challenges. A suitable controller can ensigtequality control
signals and improved human sensory feedback. This can @bchieved
by adequate models for all components of the telesurgiciérys, including
models of the human operator, the robot and the tool-tisgeeaiction. Us-
ing haptic controllers and accounting for the tissue dyrmamone can also
address issues arising from communication latency. $talihd accuracy
deterioration caused by latency and other external diahads, such as con-
tacting hard tissues or elastic tool deformation, can aésadzounted for by
using realistic soft tissue models. The integration of éhresdels into model-
based force control algorithms largely increase the rotasst and reliability
of robot-assisted interventions.

In telesurgery, cutting, indentation and grasping are guigw types of
tissue manipulations that require high precision tools tuthniques. The
majority of modern telesurgical systems use only visualllbeek, while the
applicability of force or haptic feedback has been a lastesgparch topic in
the field. An efficient implementation of force control inporating haptic
feedback can enhance the surgeon’s sensory capabilitiegdibe operation.
In order to achieve better performance for surgical rolso#ipplications—
in terms of stable control for teleoperation—it is crucialunderstand the
behavior of soft tissues through modeling their mechampoaperties.

Creating an accurate tool-tissue interaction model waurlgtly aid the
design of model-based control methods. This way, forcearesp of the ma-
nipulation is estimated using the model, and the requirpdtiforce (control
signal) can be derived. This allows the control of the tissuamipulator (in
most cases, a surgical tool held by the robotic arm), in ai@earry out the
surgical manipulation tasks in an efficient, stable and mteuwvay.

The problem of distinguishing between soft tissues byrigdtieir me-
chanical properties is often referred to as the cognitile ob haptic devices
in simulation environments. It is a common view that todayisgical simula-
tors that are using haptic interfaces should rely on simmgehanical models
of soft tissues, instead of complex, parameterized fingemeht models, thus



enhancing real-time operation and focusing on the mosesentative me-
chanical effects, such as creep (the phenomenon of perindagrmation
due to mechanical stress), stress relaxation or resicheaisst

This work presents a novel method for enhancing force feedivetele-
operation systems using a model-based approach. The aocraddtess the
design challenges of master—slave type telesurgical mgstevhich mostly
arise from the system complexity, the communication delay the integra-
tion of haptic feedback between the master and slave devides way, the
most relevant qualitative and quantitative indicatorsotfatic systems can be
improved, such as precision, performance and reliabilityorder to achieve
the control goals, modeling of the tool-tissue interactoming the proce-
dures is crucial, which requires the formulation and veatfmn of a general-
ized mechanical soft tissue model. This can be used foibtelr@action force
estimation during a pre-defined surgical intervention.

Given an appropriate soft tissue model, its integratiorosssble into a
user-defined model-based control method, which allowsiiectimplemen-
tation into modern surgical robotics systems. This work glises a theoreti-
cal background on the methodology and verification of a psedaonlinear
soft tissue model. The verification is supported by a prattieethodology on
the integration into the da Vinci Surgical System, and theesponding de-
velopment environment, the da Vinci Research Kit. A polytopodel-based
interaction controller is proposed, and control perforo&ais investigated in
order to address robustness against model uncertaintiesae-delay.

Along with force control, the problem of haptic feedbacketesurgical
systems is also addressed in this work. The da Vinci Sur§gstlem currently
lacks haptic feedback capabilities, limiting its usabiiit everyday surgical
practice. This thesis proposes a validation method fou¢issodels and their
polytopic representation by creating an experimental éaork using the da
Vinci Research Kit. Once allowing haptic feedback from thenipulated real
tissue, this feature can be extended to surgical simulatsorg virtual tissue
models, based on the proposed soft tissue modeling method.

The field of application of the proposed methods can be dividéo
three large groups. First, robotic surgical systems withtinfeedback ca-
pabilities can be improved by reflecting an estimated reactorce to the
operator, based on the tissue mechanical properties amdnuiion data.
Second, surgical simulators for training and education lmarenhanced by
implementing the tissue model, creating a realistic virerazironment for
practical training and trials on specific interventions;tsas prostatectomy,
cholecystectomy or appendectomy. Third, the proposed kmaded force
control method can improve the performance of automatsdeisnanipula-
tion tasks for fully or semi-automated surgical systemsluding suturing,
coagulation, cutting and grasping.

The integration of the proposed methods and models intacalimnse
is a question of availability of hardware and software congs, too. The
commercially available telesurgical systems were dontlpaiot designed to
reflect force feedback to the operator, therefore a newestslale compo-



nent is needed for reliable operation. Such systems arer uiedelopment,
but these are still awaiting commercialization and apprivean national and
global regulatory bodies. In the meanwhile, there is a wadege of compo-
nents available for research and development uses, bathis tof hardware
and software. Open-source repositories and global contres@re actively
working on the enhancement of prototypes and commerciatylable sur-
gical systems, where methods and models, such as the orsemtae in this
work can be further developed, tested and validated.



KIVONAT

Az elmdlt 20 évben a robotsebészethez kapcsolodaadsat jelentds
eredményeket hoztak, killondsen az ember—gép aiolaaasok teruletéen. Ma
mar szamos, a mitében gyakran alkalmazott mozdulbggtiratd végre bizo-
nyos fokl onallosag mellett a modern sebészeti lwredsekben, ugyanakkor
ezek az eszkozok tovabbra is elsésorban mester—satdga teleoperacios
(tavsebészeti) rendszerekként mikodnek. Enneketelden a sebész tovabb-
ra is,integralis része” a szabalyozasi kornek, a doraeatal €s a mozgaspa-
rancsok kiadasa a sebész feladatkorébe tartoznakerdbotika fejlédésével
parhuzamosan szamos olyan modell-alapl szabalyo®idszer latott nap-
vilagot, mely lehet6vé teszi az erdvisszacsatol&stizel0 szamara, és robusz-
tusan kezeli az idokésleltetésbdl adodd nem Kiyalenségeket, mind na-
gyobb tavolsagok esetében (lrrobotika, kontinenselteveld teleoperacio),
mind lokalis kdrnyezetben. A hagyomanyos szabalgon@dszerek haté-
konysagat nagymértékben befolyasolja az idég@seérteke, a késleltetés val-
takozo értéke pedig Gjabb kihivasokat jelent méasragzési, rendszermérete-
zési szakaszban. Megfelelo tervezési eljarassthjaid az szabalyozas min6-
sége, és stabilabb visszacsatolas valosithatd ,sebé&sz feleé. Ehhez minde-
nekel6tt szilkség van a tavsebészeti rendszerek koemseinek modelljére,
igy példaul a human operator, a szolga oldali robo#issaiz Un. eszkdz—szovet
kdlcsonhatas dinamikajanak leirasara. Az iekgsbol és egyéb kilsd zavaro
tenyezoktol (pl. a sebészeszkdzok rugalmas dedordja, kemény szovet-
tel vald Utkozés) szarmazo stabilitasvesztep@statlansag kezelhetd meg-
feleld lagyszovetmodellek alkalmazasaval, melyhagyban hozzajarulhat a
lagyszovet dinamikajanak vizsgalata és haptikusk@sdk hasznalata. Egy
modellel tamogatott er6szabalyozasi modszer jékar novelheti a robotok-
kal tamogatott sebészeti beavatkozasok robusztaséagnegbizhatosagat.

A vagas, tapintas és a szovetek megragadasa nghédg azokra a
tavsebészeti manipulacidkra, melyek nagy pontdssgarkozoket és tech-
nikakat igényelnek. A modern tavsebészeti rendszéibkyomorészt csak
képi visszacsatolast tesznek lehetbve, bar azesrbaptikus visszacsatolas al-
kalmazhatbsaga régota foglalkoztatja a kutatokgy @yan erdszabalyozasi
modszer hatékony megvalositasa, mely tartalmazzptlus visszacsatolas
f6 elemeit, jelentésen noveli a sebész altal érteké informacio mértékét a
beavatkozas soran. A modern sebészrobotikai rendseestében a beavat-
kozasok minéségének és megbizhatbsaganalkésiheez kritikus tényezo a
lagyszovetek mechanikai tulajdonsagainak ismer#éetye a megfeleld esz-
koz—szovet kdlcsonhatas modelljének feladl#aEzaltal a manipulacié soran
jelentkez6 erbvalasz becsiilhetd a modell segigélg és a kivant bemeneti
szabalyzojelek szamithatbak a robotkar irarsétioz.

Az egyes lagyszovetek megkulonboztetésenek éeéadyyakran a hapti-
kus eszkozok kognitiv szerepeként emlegetjuk, meyszimulacios kornye-
zetekben kiemelt jelentdsége vahltalanosan elfogadott nézet, hogy a mai
haptikus eszkdzokkel felszerelt sebészeti szimutkt@seteben egyszeriibb
mechanikai modellekre van szilkségunk a nehezen zidtd, vegeselem-



modszer alapjan felallitott modellekkel szemben. &lzetbséget nydijt ar-
ra, hogy a valos ideji mikodés mellett a szoveteknalelzészek szamara
tenylegesen fontos mechanikai viselkedését tudjukileSzemben a gyakran
elhanyagolhato6 részleteket targyaldo mikromechamiegkozelitéssel.

A kutatasom egyik kozbensb célja egy olyan modell-alspabalyozasi
modszer kifejlesztése volt, amely a napjainkban hdstiaoperacios sebész-
robotikai rendszerek struktlrajabol és a haptiksszacsatolasbol eredd ter-
vezési nehézségeket oldja fel, ezaltal javitva a tighban fontos mutatokat,
igy példaul a pontossagot, teljesitményt és a nagtiosagot. A kitlizott
célok megvalbsitasahoz szilkség van egy olyan nméchisszovetmodell meg-
alkotasara és hitelesitésére, mely egy meghatéireebészrobotikai beavat-
kozas esetén alkalmas arra, hogy az eszkoz—szoveakhote soran ebredd
reakcioerdket megfeleld pontossaggal becsilje. tatasi célok kozott szere-
pelt a javasolt modell kiterjesztése a szovet felietétetszoleges alakvalto-
zasanak esetére is. Sikeres verifikacio utan a matkelmazhatd egy modell-
alap(i iranyitasi folyamatban, mely felepitésbtrédéen beépitheté &budai
Egyetemen talalhato da Vinci sebészrobot fejlesatikézetbe. Az erbszaba-
lyozas mellett szerepet kap a haptikus visszacsatoléyeha da Vinci se-
bészrobotikai rendszer egy jelentds hianyossagallpétd, illetve a robusz-
tussag vizsgalata az idokésleltetésbdl és a leogidellparaméterek eltéré-
sébdl adodo hibak esetére. A javasolt nemline&isstmodell, annak kvazi-
linearis alakra hozasa, transzformacibja, a szatzalyi struktira megalkotasa,
végil pedig a modszer Kisérleti igazolasa képdeattnunka gerincét.

A javasolt modszer alkalmazhatosagi korét haronefdlet foglalja 0sz-
sze. Elsbként azok a sebészrobotikai rendszerek, medyelelkeznek a hap-
tikus visszacsatolas lehet6ségével, a reakcioen$idt ertékének visszacsa-
tolasaval segithetik a sebészek munkajat a benttisatvetmodell segitségeé-
vel. Masodsorban a sebészeti szimulatorok és oktatdliezések fejlesztése-
hez jarulhat hozza egy olyan altalanos szovetmonhaly példaul a prosztata-
és epeholyag-eltavolitas vagy vakbélmitétekatiddara valosagha virtualis
kornyezetet épit fel. Harmadrészt, a javasolt modipu er6szabalyozasi
modszer az egyes automatizalt szovetmanipulaciasldtok elvégzését na-
gyobb biztonsaggal és pontossaggal tudja majd kiatele

A bemutatott modellek &és modszerek integralhatosaiga az elerhetd
szoftveres, mind pedig a hardveres eszkozkt6l is fuggapgjainkban kereske-
delmiforgalomban kaphato teleoperacios rendszerak magyon kis hanyada
alkalmas erdvisszacsatolasra, ezért a megbizhat@d&shez j6l megterve-
zett szolga-oldali komponensekre van szilkség. llyedseerek jelenleg is
fejlesztés alatt allnak, azonban ezek egyelére mégalkatmazhatbak a Kli-
nikai gyakorlatban a sziikséges engedélyek nélkiyddgkkor szamos kom-
ponens all a kutatok és fejlesztdk rendelkezéséséserban nyilt forraskodi
szoftveres kdnyvtarak és nemzetkdzi kozossediak &gy a prototipusok és
a mar kereskedelmi forgalomban kaphatd sebészeti berések fejlesztése
aktivan folytatodik majd az elkdvetkez6 években. &adtbéséget nyljt az Uj
modszerek és modellek — hasonloan az ebben a doktekezésben bemuta-
tottakhoz — tesztelésére, fejlesztésére és hitekse.
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Structure of the Thesis

The thesis is divided into seven chapters. Chapter 1 gives@mview on the components
of teleoperation systems, emphasizing the role of modefingodern surgical applica-
tions. A section of this chapter is dedicated for the disicusef the challenges arising
due to communication latency, from the controller desigmpof view. Two important
theoretical overviews are also presented: a brief sumnsagpven on the most widely
used rheological soft tissue models and their validity, gredmost relevant definitions of
Tensor Product Model Transformation are listed. Furtheenibis chapter introduces the
frequently used keywords and concepts of the thesis.

Chapter 2 collects the challenges in the main topics of tksish highlighting why
these problems require a solution utilizing novel appresaciThe problems stated in this
chapter are related, but not restricted to the model-basexiigation of telesurgical ap-
plications. The aim of my work is to propose a solution to thelsallenges.

Chapter 3 explains the methods by which the research datefardnce literature was
collected, and which specific techniques or protocols weszluo propose a solution for
the research problems.

Chapters 4, 5 and 6 are covering the topics of the three ntesrd groups, introducing
the core research of my Ph.D. work. The chapters indepelydaetdiress the problems
stated in chapter 2, guiding the reader through the majpissté solution development,
methodology, theoretical background and experimentati@abn. The results and the
evaluation of the findings are discussed at the end of eagiterha

Finally, chapter 7 gives a structured summary of the keyltesd my research, pro-
viding an outlook on the current and future efforts that céhize the findings of this
work.

Numbering of equations, tables and figures is following tinecsure of the chapters.
The independent references are numbered as [1],[2]esigelated own publications are
denoted as [TA-1],[TA-2],..., while the own publicatiortsat are not related to this thesis
are numbered as [TA-I],[TA-ll],... The language of the tiseis English, following the
U.S. English grammar and spelling rules.



Notations and Symbols
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ACMIT
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CISST
CPS
DoF
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FEM
FPGA
GUI
HMI
HRI
IEEE
JHU
LMI
LQ
MIS
MPC
MTM(L/R)
MVS
NASA
NEEMO
NN
OR
PDC
PSM
(@)LPV
RMS(E)
ROS
SAGES
SAW
SLS
TP

TABLE 1
COMMON ABBREVIATIONS AND NOTATIONS
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Computer Integrated Surgical Systems and Technology
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Defense Advanced Research Projects Agency
da Vinci Research Kit
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Finite Element Modeling

Field-Programmable Gate Array

Graphical User Interface

Human—Machine Interface

Human—Robot Interaction

Institute of Electrical and Electronics Engineers
Johns Hopkins University
Linear Matrix Inequality

Linear Quadratic

Minimally Invasive Surgery

Model Predictive Control

Master Tool Manipulator (Left/Right)
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National Aeronautics and Space Administration
NASA Extreme Environment Mission Operations
Neural Network(s)

Operating Room

Parallel Distributed Compensator

Patient Side Manipulator

(quasi) Linear Parameter Varying

Root Mean Square (Error)

Robot Operating System

Society of American Gastrointestinal and Endosc8pigeons
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Standard Linear Solid
Tensor Product
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TABLE 2
COMMON VARIABLES AND SYMBOLS

Tissue surface area

Linear damper stiffness

Local stiffness parameters

Linear validity range

Deviation of X from the desired value
Root mean square error

Force response of systesyis

Desired force

Transfer function (human behavior)
Linear spring stiffness

Nonlinear spring stiffness

Vector of parameters

Radius of affected surface

Core tensor

Complex frequency

General time constant

System matrix

Sampling time

Equilibrium state input

General input function

Compression rate

Weighting function, vector of weighting functions
Disturbance input

Transfer function (representing systeyy
Vector of state variables

Desired state, indentation depth

First derivative of the state variables w.r.t. time
System output function

Performance output
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Chapter 1
INTRODUCTION

1.1 A Brief History of Robotic Surgery

In recent years, a large number of surgical robotic systerdsabotic surgery related re-
search have been initiated and conducted. As a result,liss#fware and hardware tools
appeared on the market, which accelerated the pursuit ferresearch results in mod-
ern robotic surgery and telesurgery. Computer-Integr&tedery (CIS) and telemedicine
are becoming popular in the world’s developed countrieprawing the quality of med-
ical treatment and patient care. The development of thestersyg requires a strict and
effective cooperation of surgeons, Information Technpl@d) experts, engineers and
scientists from the various fields of natural and human seigncreating the possibility
of remote or even transcontinental surgery. The conceftesfe systems often originate
from specific extreme applications, thus their testing aéspires extreme environments,
such as weightlessness or extremely high pressure.

There is no consensus about the title of “the first surgichbt since it is hard to
define, what criteria should be used to claim such a robdesfumdamental. The first sys-
tems, which appeared in the 1970s were used for differeposeass, primarily as assisting
devices and supporting manipulators. The concept of tietgics for surgery appeared in
the early 1970s, initiated by the National Aeronautics apdc® Administration (NASA).
The goal of the original project was to provide medical daasice for the astronauts during
their remote mission. For this purpose, remotely contdoltébots would have been used,
operated from the Earth. At that time, the proposal was nadéd, and only limited doc-
umentation remained accessible. The idea was concludedhiora period of time, and
another 15 years passed until the first prototypes appeaestly backed by US military
grants. During the development phase, it became apparantdntrolling telesurgical
robots is very challenging, due to the effects of time-delaysed by the large distances.
The attention from telesurgery in space shifted to shoritgadce telesurgery solutions,
leading to the introduction of the first surgical robots te tharket by the 1990s.

The most successful robotic system for surgery, the da \Buoegical System (Intu-
itive Surgical, Sunnyvale, CA) grew out of the early resutisccessfully combining the
advantages of various prototypes. In the past 20 years)oémiy continued to improve,
and instead of the military applications, the private seb@s become the driving force
of the surgical robotics industry, which is now an estimatetket of $5 billion per year.
Along with the constant improvement, other robotic deviappeared for enhancing sur-
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gical capabilities, namely, in the fields of telesurgeryaga-guided surgery and coopera-
tively controlled surgical robotics. In all of these fields, important trend is that pre- and
intra-operative information—in the form of imaging, phgiigical data collection, etc.—
are playing an increasingly significant role during the pbare, and are enabling robotic
systems to gain more autonomy. The field is rapidly chandimagks to the hundreds of
research teams focusing on relevant projects. The congpagipabilities of modern ICT
devices allow the usage of more sophisticated systems,Jeoweverarching regulations
and standards in the field are still missing. Surgical rolpecgic standards (currently
under development) will make it possible for the industpkyers to better design their
systems, to be able to prove their safety and accuracy taitherties. As for today, most
applications keep the human operator active in the conap,| enabling the robot only
to enhance the surgeons’ capabilities. Autonomous tastuéea on Earth and in space
remains a research topic for the future.

1.2 Modeling Teleoperation Systems

Healthcare services that are performed, or supported tsdlom long distances have
opened new frontiers in diagnostics and surgery. The im&ad of teleoperation first ap-
peared in the early 1950s, while the idea telesurgery was &long the concept of space
exploration, initiated by NASA in the 1970s. Although thencept of telesurgery in space
has never been implemented in real clinical applicatioel simulations and research
projects have led to a breakthrough in 2001, when the firstéontinental telesurgical
procedure, théindhberg operatiorwas carried out between the USA and France, based
on ISDN communication [1]. The successful procedure prdfatitheoretically, in spe-
cial cases, medical doctors, nurses and surgeons couldat@mtd reach out for patients
thousands of kilometers away. It is most likely that in thamfiture, the research and
development of telesurgical systems will focus on applicet in remote, rural and dan-
gerous areas, such as war zones or contaminated sect@®vitent that the difference
between surgical procedures on Earth and in space envirdsnsehuge. During the past
decade, several remote surgery experiments were condogtBASA on Earth, under
extreme conditions. The trials took place in the world’syogmérmanent undersea labora-
tory, NEEMO (NASA Extreme Environment Mission Operationg)ncluding their latest
project on July 21, 2016.

Emerging issues in telesurgery include the modeling anttalorhallenges of both the
master and slave sides, while the communication with thgicaircrew on Earth creates
further issues to address, such as transmission data Iges) &atency (delayed infor-
mation transmission) and lagging (delayed response). Wéhncrease of the distance
between the master and slave sides, these effects are radgmfany disturbing effects
can be reduced in a general teleoperation surgical robggtes by a well-chosen system
architecture and proper control methods. A detailed redbaut the current capabilities
in surgical robotics, primarily focusing on teleoperatgdtems was published by Hoeck-
elmannret al.[2], while available options and a proposed control and rfingéramework
for telesurgical applications was proposed by Jordan.gfTat16]. One of the major
issues of currently available telesurgical systems is dlo& bf reliable haptic feedback,
leaving surgeons to only rely on their visual sensing dupragedures. This chapter gives
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an overview of the concept of telesurgery, approaching tbelpm from the modeling
point of view, addressing the effect of force control andrble of modeling.

Today, the da Vinci Surgical System is the best-known andtrpopular surgical
robotic system, functioning as a teleoperated manipulata of September 30, 2016,
there was an installed base of 3,803 units worldwide: 2,50he United States, 644 in
Europe, 476 in Asia, and 182 in the rest of the wérlth the case of the da Vinci, the
system is not used routinely for long-distance procedunesiaterventions. Primarily,
this is due to the limitations of the communication proteedhich is a custom-developed
component of the system, and due to the missing completé flragaework underlying
long-distance surgical robotic procedures [3]. Howeusgré is a potential for using the
da Vinci robot at a greater distance, which has been provesbime limited experiments.
One of these includes the collaborative telerobotic syrgetiative by DARPA in 2005,
when several modified da Vinci consoles were able to ovetfa&eontrol from one an-
other through the Internet [4]. In 2008, Canadian Surgiedhhologies and Advances
Robotics (CSTAR, London, ON) used the core network of Beh#&a for testing a mod-
ified, telesurgery-enabled version of the da Vinci. Altdgget six successful pyeloplasty
procedures were performed on porcine kidneys using teesyrwith the slave manipu-
lator located in Halifax, Nova Scotia, 1,700 kilometers gfram the controllers [5]. The
Plugfest was one of the most notable experiments in the gassyallowing eight mas-
ter devices of various surgical robots to connect with sawalmachines [6]. Simulated
interventions, such as peg transfer tasks (SAGES Fundamaftiaparoscopic Surgery)
were successfully supported globally for more than 24 hausing the Interoperable Tele-
operation Protocol (ITP) [7]. The recent advances in thaléity of the Internet network
allows these high-level experiments to be executed sdfelyever, the Internet backbone
infrastructure is becoming overloaded, with an immedi#feceon the lag times. In order
to protect the patients in the future, some of the securgtyas need to be addressed, in
accordance with the IEC 80001-1:2010 (Application of riskmagement for IT-networks
incorporating medical devices) [8]. When we discuss cdmiver a delayed communica-
tion channel, numerous safety and performance issues &usthermore, there is a need
for surgical training in the use of latency-affected mastmsole, helping the operators
learn how to tolerate latencies and other disturbing e$ffQjt

1.2.1 Components of Teleoperation Systems

Just like every teleoperation system, master—slave alngibotic systems in general con-
sist of three major components from the control and modgboigt of view: the slave
device, the master device and the communication systenhelfigld of telesurgery, the
slave-side modeling is extended with the phenomena oftissl+e interaction, the contact
problem addressing the behavior of the tool and the soft/tissue under manipulation.
The modeling of the components is essential for building lad\emulator for the sys-
tem as a whole, creating the possibility of observation arayais of control attributes,
properties and behaviors. The models are subject to validdioth individually and as a
part of the assembly. The schematic illustration of the fimn@l components of a general
telesurgical system is shown in Fig. 1.1.

http://www.intuitivesurgical.com/company/fags.html
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Communication channel> |

Fig. 1.1. Block diagram of a general telesurgical systemmftioe control point of view.
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Communication System

The communication system is the component responsibledta tlansfer, coding and
decoding control signals and other tasks that make the conaation between the master
and slave devices possible. In general, the communicayisters includes a transmitter,
a receiver and the communication medium. Signal qualitylatahcy are both dependent
from the subcomponents, individually. Besides qualityéss data loss is one of the most
critical problems to be solved in telesurgical systemsgcWis, in general, the best handled
by particular custom-designed protocols or the User Datag?Protocol (UDP).

Humans have limited adaptability to time-delay, it gengraaries between 300-500
milliseconds. In 2001, during the first trans-Atlantic ®legical intervention, the Zeus
robot was in use, created by Computer Motion (Mountain Vied). A mean signal delay
of 155 ms was recorded [10]. According to the measuremebts)8of lag appeared in
signal transmission, while it took 70 ms to encode and detlogleideo streaming from
the slave side. It is important to note that currently algscal robots employed routinely
in clinical applications are only providing visual and amdeedback. Haptic feedback is
yet to be perfected due to stability issues, and data engedinld also increase the lag in
long-distance communication.

In order to achieve low dynamic distortion to the user, lagévices have low intrinsic
friction, however, the transparency of the system is Igrgéflected by the computer inter-
face. Digital control loops introduce non-idealities intosystem through force/position
data quantization, time-delay and time discretizatior].[&ll these effects introduce ex-
cess energy into the system (energy leaks), which may lead tmstable control loop, if
this energy is not dissipated through control or the medafiction of the devices [12].

Effects of time-delay can be reduced with various contrahods designed for latency-
tolerance, therefore, there is an opportunity to bridggdadistances with these technolo-
gies. In order to achieve this, the system components mustdokeled in a robust way,
including all three main components of the teleoperaticstesy. From the communica-
tion system approach, the master includes a controlleardhuman operator (usually
subject to latencies), which is interconnected with theeslamodel through a high-delay
communication medium. Using appropriate predictive aalers, the time-delay can be
partially alleviated in the deriving cascade setup, if tbatooller is well-tuned for both
the master and slave systems [13].
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Master Model

The master side is the component, where the human operaaonttrol device is located.
In the past decades, several human models have been creatitt¢ss the human behav-
ior in the control loop. One of the most significant classioaldels is the crossover model,
which was developed in the 1960s in order to model the behatitighter pilots during
flight [14]. The crossover model is based on the time-depanden-linear response of
the human body, using a quasi-linear approximation. Thepbexity of the model highly
depends on the precision of the task to be executed. Howbeee is a commonly used,
reasonably good approximation:

1 —TS
Hs) = K, ¢ (1.1)

Pris+17ys+1’

where the term in the brackets stands for the human physaalognitations, including
the delay of the human reaction time. The time constantefers to the neuromuscular
system, where the delay occurds, represents a static gain, whitg and 7, express
the time-delay section and the control time constant, sdy. The trade-off for the
simplicity of this model is that it does not represent otlaetailed human attributes, such
as motivation, expertise and fatigue. Another popular rmofléhuman operators was
created by Ornstein [15]. A significant development comgdoethe crossover model is
that the Ornstein model can also be applied in tracking tsplest

__ WSt a
N 6282 + b15 + bo

H(s) (1.2)
The a andb coefficient values are determined by taking some physitabates into ac-
count, such as velocity or static gain, and are usually nbthfrom user trials, where the
participants carry out a carefully designed task. Due ta¢tegively high number of pa-
rameters, this model can become rather sophisticatesiatiaone to describe neuromus-
cular effects or other dynamic response characteristigls Burthermore, a large variety
of sensory input noise can be modeled using a general sigrtatlolince, creating the pos-
sibility to include vision modeling [17]. In practice, theast commonly used non-linear
human operator model is the GM/UMTRI car driver represéoatdeveloped at Gen-
eral Motors. The basis of this model is a general, quasalitEtMTRI driver model [18].
These models have been widely used for the representatioaster—slave type telesur-
gical tasks, as numerous components of the driver modellsdimg path observation and
planning activities, speed control and sensory limitatiestan be associated with compo-
nents of a telesurgical system during tissue manipulati®h [

Slave Side Models

In telesurgical applications, functionality and safetguigements are higher than in other
robotic applications. At the design stage, autonomouslibipes and proper mechanical
modeling are important in satisfying these. In general,kinematic model of a slave
robot is described at a high level of precision, enablingritegration in dynamic and
kinematic models [20, 21]. These models, along with the gypate image guidance and
modeling, can largely increase the accuracy and safetyrgfcal interventions [22]. In
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robotic surgery, one of the most critical issues is the @bescription of the model of the
robot arm, the model of the manipulated tissue and the behafthese elements during
manipulation tasks on contact. This thesis primarily f@susn soft tissue manipulation
problems, while the issues involving hard tissues are iridbes of machining technology
studies, since drilling, milling and turning are affectgdgveat vibration, and thus require
stability issues. Most of the types of human soft tissuesrdremogeneous, viscoelastic,
anisotropic and highly non-linear materials, thereforadgimg is of high importance not
only in robot control, but also in the use of surgical simoitat

Tool-Tissue Interaction Models

A comprehensive study about the existing soft tissue magld in most MIS applications
and virtual surgical simulators was presented by Famaeghnidn [23], introducing three
major categories of deformation models: heuristic mod®atinuum-mechanics models
and hybrid models. The complexity of each model mentioneavalvaries on a wide
scale, although it is commonly accepted that approachesil@as continuum-mechanics
provide a more realistic response, but require signifigamityjher computational capac-
ity. Analytical solution to the used mathematical modelsagally do not exist. On the
contrary, heuristic models that consist of lumped, lineassrspring—damper elements,
which can be used for describing simple surgical tasks,ngedle insertion. The derived
equations can usually be solved analytically.

While the modeling of soft tissue behavior—the force and&formation response of
the tissue due to its interaction with the surgical toolss-heaen in the focus of research
for long, the challenging field of gaining information abdbé interactions of the robot
arm and the tissue has only reached popularity recently. fgntbe arising issues, it is
important to mention the problem of force feedback, the modef tools and the interac-
tion with organs itself. A comprehensive review on curr@al-ttissue interaction models
was carried out in [TA-14], providing a survey on researctufing on interactions de-
scribed by models, following the principles of continuumaianics and finite element
methods. The focus of interest can also be extended to moikelesurgical applications,
without strict boundaries of categories, giving an ovesveg model properties. In [24], a
simple 1 Degree of Freedom (DoF) model of a rigid master anxibfle slave connection
was introduced. Here, the problem of tool flexibility is aglssed as one of the greatest
issues in the case of tool tissue interactions, since fagosisg can only be applied at the
fixed end of the tool, and its deflection can only be estimaBesides tool flexibility, the
compliant parameters of the models of the robotic arm aisdéis are also important, and
take significant parts of the tool tissue interaction syst@ther extensions of the model
exist for rigid slave, flexible joint and flexible master degtions, the complexity of the
model of the whole system can be extremely high. Great adgaruf this approach is that
not only the tool flexibility, but the whole transparency betsystem is addressed. It is
important to mention though that no detailed tissue mode$irprovided, the use of rigid
specimen model indicates that this approach is rather flogus teleoperation. Basdo-
ganet al.addressed the importance of tool-tissue interaction ntoglgl medical training
through simulation in virtual reality, focusing on issu@shaptics in MIS [25]. When
working with soft tissues, the elastic behavior of the toah wsually be omitted, using
rigid models of surgical accessories. In their work, theyaduced two new approaches
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to tissue modeling: the mesh-based Finite Element (FE) modgieg modal analysis and
the real-time meshless method of finite spheres. In thealignvironment, collision de-
tection and perception of multiple tissue layers was coeaecompanied with force and
torque feedback to user’s hand. This feature is supportefriog and position sensors
mounted on the tool, which is held by the user instead of atrolbom. The complexity of
the above mentioned methods is in connection with the requaomputational effort. In
simple problems, the use of the method of finite spheres igesigd. Another approach
to meshless methods was introduced by Btal.,, where several layers were used as the
model of the soft tissue, their interaction modeled with arfstic Kelvin model [26].
Modeling of two important viscoelastic properties, theegreand relaxation is possible
with this new three-parameter viscoelastic model, imprgithe performance of conven-
tional mass—spring—damper approaches. Yamamoto sudgestethod for the detection
of lumps in organ tissues, such as kidney, liver and heatt [¥e importance of this work
was a comprehensive comparison of seven different tissuimiased in point-to-point
palpation. The aim of the tests and model validations wasdate a graphical overlay
system that stores data on palpation results, creatingaa sohle overlay on the actual
tissue, processing the acquired data using several tissdels) with a single 1 DoF force
sensor at the fixed end of the tool. Yamametal. also created an interpolable interface
with haptic feedback and augmented visual feedback andnpeed palpation and surface
detection tasks using vision-based forbidden-regiomaltixtures (control boundaries for
safety that should not be crossed during an interventid@j) [Ehe tests were carried out on
manufactured artificial tissues based on existing comraky@vailable artificial prostate,
using a complex, but—based on previous measurements—aae¢dunt—Crossley model.
Position, velocity and force sensors were mounted on tlve steanipulator and the visual
feedback to the human user was generated with a stereorggsbem.

When dealing with viscoelastic materials interacting wiblols, coupled problems
arise, where additional mechanical models are requiree@saribe the system response.
A fine example to this issue is the task of needle insertiorerevtfriction and the stick-
slip phenomenon cause difficulties in assessing real tissbavior in practice [29]. It is
important to mention that even when the best-suited mattieahanodels are employed,
material properties (Young-modulus, Poisson-ratio,)etan only be estimated. Valida-
tion of their values requires circumstantial physical ekpents. When using heuristic,
mechanical tissue models, the acquisition of explicit, deneral material properties are
omitted. Instead of using tables and possible ranges o ghkeeperties, spring and damp-
ing coefficients must be obtained from measurements, even wbthing else but the tool
shape is changed. In their work, Leoeigal.introduced and validated a mechanical model
of liver tissue and its interaction with scalpel blade, trepa distributed model of me-
chanical viscoelastic elements [30]. With the serial catine of a Maxwell and Kelvin
element, they introduced the Maxwell-Kelvin viscoelagtiement. The primary aim of
their work was to account for the tissue surface deformatiomto the extensive shape of
the tool, validating with the cutting experiment, where a dHJorce sensor was placed
at the scalpel blade holder integrated with position measent, as shown in Fig. 1.2.
Besides many constitutive ideas, a great number of defigsigan be found in the model
that still needs to be improved, including mathematicabresrin modeling, contradictions
in the measurement result evaluation, inappropriate ukamfce transformation and the
overall pertinence of experimental results. Finding andesting these deficiencies is a
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Fig. 1.2. The proposed Maxwell-Kelvin viscoelastic eleinaft) and the distributed tool-tissue interac-
tion model (right), as it was published by Leoegal. [30].

part of this work, the proposed corrections to the methagiobnd mathematical formu-
lations were published in [TA-6].

Liu et al. introduced a method for force control for robotic-assiacyery on beat-
ing heart, thus applying motion compensation for the pecioabtion of the organ [31].
By installing a force sensor at the end of the instrument, tesxcking the 3D motion of
the beating heart, they compared four different models ftbenviewpoint of tracking
performance of the desired force. Besides the conventiosabelastic models, a fourth,
fractional derivative model of viscosity was examined. @héhe relevant results of this
experiment was to underline the importance of the rightahof tissue model.

In the past years, much focus has been drawn on needle arsertideling. Due to the
simplicity of the tool geometry, needle insertion problemese much discussed using Fi-
nite Element Modeling (FEM). Finite Element Analysis (FE&)x widely used approach
for tool tissue interaction modeling, where commerciallgitable FEA software packages
are used to aid and simulate the operation area. The gregthndtin mechanical mod-
els can provide incredibly accurate and realistic soluttmrsimulation. One of the largest
drawbacks of this method is the sensitivity of computatitinge length with respect to the
parameters used in FE simulations. These parameters amndetd solely by the user,
including spatial and time resolutions, thus many simatatineed to be carried out on
the same model to achieve the desired level of reliabiligks&let al.introduced a novel
technique to use real-time remeshing in the case of FEA rrgf32]. A mesh-based
linear elastic model of both the needle and tissue was uggtlyiag remeshing in order
to compensate organ shift due to the invasiveness. The tam® of the model is that
both the tool and the tissue deformations were accountedlfbough the motion models
were the simplest possible in 3D. Continuum mechanics alsages numerous models
that can be used for modeling organ and tissue deformatimhgiaetics.

Approaches using linear and nonlinear models of elast@cgywidely used in practice.
Linear models have limited usability despite the many ath@es they carry (simplicity,
easy-calculation and small requirements on computaticaphcity) due to inhomoge-
neous, anisotropic, non-linear characteristics of tissual large relative deformations,
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strains. However, nonlinear models in continuum mechde&d to moderately complex
models, even in simple surgical tasks. Mistal.introduced a detailed complex mechani-
cal model of continuum mechanics for the analytical modgdind experimental validation
of needle bending at insertion into soft tissues [33]. A hgfeestic Neo—Hookean rupture
model was used to describe the material properties and leeladvthe soft tissue stimu-
lant (gel), assuming linear elasticity in case of the neeBlbgeriments were carried out
using different bevel-tipped needles and the needle bgralin/ature was validated using
an unfiltered camera data. The importance of the work layisdratea of needle insertion
path planning.

In the area of tool-tissue interaction research, one miglnterested in rupture mod-
eling. While most of the existing mechanical models assieversible tissue deformation,
even in the case of MIS, tissue rupture cannot be avoidedva&dhand Dupon developed
an analytical model of tissue rapture during needle inserfiocusing on the calculation
of required insertion force [34]. The great advantage of thodel is that despite the
complex mechanical structure, the insertion events aidetivinto four different models,
decomposing the process into moderately complex partsu@isiodeling was aided with
a modified Kelvin model, making the parameters of the lin@smgonents dependent of
the deformation rate. The analytical model validated theeements, showing that the
required insertion force is inversely proportional to thedrtion speed.

It is also important to mention models that are not direcegatibing insertion and
cutting problems, but are rather used for investigatingraxttion of cable-driven manip-
ulators controlled by human operators, acting on soft éssuKosariet al. introduced
an adaptive parameter estimation and Model PredictiverGofMPC) method on cable-
driven surgical manipulators, developing a 1 DoF mechamicalel, concentrating on the
problem of trajectory tracking [35]. Therefore, insteadlad estimation of tissue reaction
forces, focus was drawn to the response of the cable-driampulator in order to create
a realistic force feedback to human user. The moderatelyptmtmodel accounts for
numerous mechanical properties and solves an optimalaqmioblem for automating
tissue compression.

Arguably, FEA-based solutions are still popular for modgland predicting soft tis-
sue behavior for specific use-cases. However, this apprisagtt heavily supported by
patient-specific information and requires an extensiveoperative phase due to the com-
plex boundary conditions. Due to the high computationalgrerance required, real-time
utilization in teleoperation systems is not achievable &varable resolution. Thus, as
of today, this approach is not scaling well to various inéeions, and therefore cannot
be easily generalized. On the other hand, FEA dominantigg@n complex continuum-
mechanics based models of the soft tissues, emphasizimgrtiteomechanical behavior
during the interventions, which is a useful property for rkaty coupled problems (ther-
momechanics, fluid dynamics etc.). On the macro scale, whestof today’s telesurgical
systems are operated, these effects are usually negligitdethus the tissue behavior can
be addressed with simplified models, concentrating on aeewmechanical properties.

The proper modeling of tool-tissue interactions is a refewapic in standardization
methods. With the help of initial calculations and simudas, efficient control methods
can be chosen to avoid undesired pain and injury levels. &adrinjury onset levels for
static contact force and peak pressure values has beerydesparched and standardized
in the literature [36].
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1.2.2 Addressing Latency in Teleoperation Systems

The general concept of teleoperation has long been usedriousafields of robotics,

including manufacturing, logistics and various servicbatics scenarios [10]. Today,
long-distance teleoperation is an actively discussecctopspace exploration [37] and
intervention in hazardous environments [38]. Where tradil control algorithms might
fail, latency-induced challenges can be addressed by rdees, including soft computing
methods, neural control [39], supervisory control throligiernet communication [40],

passivity-based control [41] and various types of MPC fansparent teleoperation [42]
and hybrid MPC solutions to Neural Network (NN) based cdntrethods [43].

Current, commercially available telesurgical systemkzetithe concept of unilateral
teleoperation, where the position and/or force data froemtlaster console is transmitted
to the slave system, whereas the operator only receivealfesedback from the environ-
ment through the mounted camera system. However, in alateoperation, there is a
communication of force and position data in both directiohthe teleoperation system.
This structure allows haptic feedback to the operator.efioee an extended virtual pres-
ence can be established in the physical surgical enviropimeneasing transparency [44].
There is a vast literature of control architectures addngshallenges and proposing solu-
tions to bilateral teleoperation systems, emphasizingfieet of time-delay caused by the
communication latency between the master and slave sidémtga percentage of these
approaches are variations of position—position teledmerd45], position—force [46] or
force—force teleoperation [47]. Other approaches includgecial group of linear con-
trollers, robustH;,; control, system dynamics assessment and adaptive nankoea
trollers [48, 49, 50]. Obstacle avoidance, motion guidaano@ inertia scaling also play an
important role in describing the dynamics of the specifiedpkration task, where passive
decomposition [51] and time-domain passivity controllgg2] can enhance the perfor-
mance of actions.

Depending on the nature of the applications, the latencpmrounication can range
between milliseconds (Internet-based teleoperation rires&ial conditions) to several
minutes (space exploration). The magnitude of time-dedajyetermined by the distance
between the master and slave devices and the medium of coigatian. It is a common
view that in robotic systems, time-delay enforces a trafiédetween the teleoperation
stability and the control performance of the system. Looatd feedback at the master
side largely affects the performance and transparencyra-tielayed teleoperation sys-
tems, which varies for different bilateral teleoperatiochatectures and the magnitude of
the latency [53]. A common approach to increase robustrfets@yed teleoperation is to
apply additional damping on both the master and slave sidleeo$ystem, however, this
often leads to a slow response of the system [54], degratBrgpntrol performance. As
the transparency of the system decreases, some methodsnopartsate the performance
decay in bilateral teleoperation, by using scatteringth§b], wave-variable control [56]
or passivity control [57]. Other approaches include therteinitoring of force feedback
under low latencies [58].

In the past decades, it has become a common view that larggsdedquire accurate
models of the operation environment based on predicti@atitrg a quasi real-time sim-
ulated response to the operator [59]. One of the most sudctegproaches to predictive
control methods are utilizing the Smith predictor [60], lelseveral approaches combine
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the Smith predictor with Kalman filtering for achieving letiperformance results [61,
62]. The linear approximation of the effect of time-delayiso a common modeling ap-
proach in teleoperation control, utilizing the state-spapresentation of the system based
on the first-order Taylor-expansion of the system [63, 64].

In order to summarize the challenges and current poss#silib teleoperation with
time-delay in the range of a few seconds, a detailed repgrbbean published by NASA
in 2002 [65]. The report lists some of the most importantdaamhd guidelines in tele-
operation, highlighting the importance of predictive désfs, where a realistic model of
the environment is shown to the operator, which responsésetonaster console input
real-time. This approach has proven to be very efficientaef liitency is under 1 sec-
ond, however, it requires a reliable model of the task emwirent, including the slave and
slave—environment interaction models [66]. Another fiafly discussed issue is related
to the compliance of the slave side, as it can reduce the gBgadime and the overall
forces acting on the environment during the manipulatiaf).[6rom the haptics point of
view, force reflection in bilateral teleoperation is crién terms of stability. In real-life
applications, direct force feedback can only be appliediogf with latencies under 2 sec-
onds, however, in this range, high performance in comegieoperation tasks can only
be achieved with force feedback [68]. While this feedbaakloa achieved by numerous
ways directly or indirectly, such as using visual feed onftree magnitude, or reflection
of the force the hand of the operator that does not take pdieiteleoperation, the best
solution is considered to be when the interaction forcensutated and fed back to the op-
erator based on the system model. Aiding this approach frenthteoretical background,
this thesis gives a proposal for modeling methodology ofrikeraction environment dur-
ing teleoperation, more precisely, the modeling of toskte interaction in the case of
telesurgical manipulations on soft tissue.

1.3 Theoretical Tools Used in the Thesis

1.3.1 Heuristic Models in Soft Tissue Modeling

As it was discussed by Famaey and Sloten, the mass—sprimgpetanodeling approach
is the simplest possible way of modeling the behavior of sefiues [23]. Due to the
unique material properties of soft tissues (anisotromcaelasticity, inhomogeneity etc.),
describing their behavior under manipulation tasks is hiferent from other materials
that are used in industrial or other service robotic appbca. The main idea of this
approach is that linear or nonlinear spring and damper eilt&srege combined together
in a serial or parallel way, creating an assembly, which, wégbjected to deformation,
would present similar mechanical properties as the reptedesoft tissue. A detailed
explanation of the structure of mass—spring—damper madgdspublished by Wang and
Hirai [69], investigating the behavior if serial and paedlinodels. They also discussed
experimental results related to the rheological behaviaroonmercially available clay
and Japanese sweets materials, using model parameteatastim

In order to efficiently apply this model, thgt) deformation paths of the end points of
the combined mechanical elements need to be known in tinoeided that this informa-
tion is given, the force response can be described with alsimpthematical expression.
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Fig. 1.3. Commonly used models for representing the mechhbehavior of viscoelastic materials:
a) Kelvin—\Voigt model, b) Maxwell model, c) Kelvin model.

The reaction force arising in the mechanical elements catebermined from basic me-
chanical properties. In the case of a spring element, tiheef(f,) is calculated from the
spring stiffness valuek), and the deformation of the spring in the longitudinal diien:

fs = ]{Z(.Tl — SL’Q), (13)

wherez; andz, represent the end coordinates of the spring and damper elenide re-
action force (;) arising in the damper elements is calculated using the daymoefficient
value(b) and the rate of deformation of the damper element:

fa = b(&1 — T9), (1.4)

wherez; andi, refer to the speed that the end coordinates are moving thyglaimal
direction. In heuristic soft tissue modeling, there aree¢hbasic models that are com-
monly used for describing tissue behavior in terms of vitxsieeity: the Kelvin—\oigt,
the Maxwell and the Kelvin models, as shown in Fig. 1.3 [70].tHis section, only the
behavior of linear models is discussed, but the generatigéisn applies to the nonlinear
models, as well.

The Kelvin—Voigt model is the most commonly used heuristiodel in analytical
mechanics, capable of representing stress relaxationemedsible deformation. There
exists an analytical solution to the force response in thien fof an ordinary differential
equation. This model is very popular in many fields of studeg ¢ its simplicity and
easy interpretation. However, step-input response fanstcannot be modeled using the
Kelvin—Voigt model, as the reaction force arising as a itestib step-like deformation
would be infinitely large due to the parallel connection o ttamper element. In time
domain, the force response function for the Kelvin—\Voigtdelds described by:

whereu(t) is the deformation function. Similarly, the force respofsection in the fre-
guency domain is as follows:

Fry(s) = (bs + k)U(s). (1.6)
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Fig. 1.4. Two basic combinations of the mass—spring—dawipeoelastic models: a) the Maxwell-Kelvin
model and b) the Wiechert model.

The Maxwell model is the simplest approach to madekp In this model, a damper
and a spring element are connected serially, making the Inngdble for modeling stress
relaxation. A major drawback of the Maxwell model is that tbiee response valug ;)
will asymptotically converge to O in the case of a constadweheation input. Therefore,
this model is not capable of modeling residual stress. Thehdeformation of the system
cannot be expressed as the function of the acting forceshvidithe result of the internal
dynamics of this model, since the position of the virtual snasint connecting the spring
and damper elements cannot be measured. On the other hahd,frequency domain,
the transfer function can be easily determined:

kbs
sl

The Kelvin element is created by the parallel connection iexwell-element and a
single linear spring element. This combination is ofternefd to as the Standard Linear
Solid model in viscoelasticity. In heuristic soft tissuenbeior modeling, this is the most
commonly used mass—spring—damper model, providing thplesnpossible approach of
representing residual stress, stress relaxation andoddastavior in the case of step-inputs.
In time domain, there exists a closed-form formulation tteri as follows:

FM(S)

(1.7)

b . b ko .
Fre@t) + —Fre(t) = ko (u(®) + — ( 1+ 2au(®) ) ). (1.8)
/{71 kO kl
In the frequency domain, the transfer function of the Kekf@ement is:
. b(k’o + k’l)S + k?ok?l
Fx(s) = — U(s). (1.9)

Due to the rapid development in the fields of robot control smdical robotics, the
creation of more sophisticated models has become essensiaft tissue behavior mod-
eling. The accuracy requirements of advanced robotic cairgpplications were not met
anymore by the previously described simple models. In orderchieve better perfor-
mance in these applications, new combinations of dampespridg elements were pro-
posed. A new dynamic model is, where a Kelvin and a Maxwelhelet are connected
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serially, creating a mass—spring—damper model consistirfye mechanical elements
(Fig. 1.4). The major advantages of this model are that bwtletastic behavior and stress
relaxation of the tissue can be described in a significantdyeneffective and sophisticated
manner, compared to the general Kelvin model. In the frequeilomain, the transfer
function is written as:

2
AQMKS + AlMKS

F s) =
MK( ) B2]MK82 + Bl]\/IKS + BOI\/IK

Uls), (1.10)

whereAs,, ., A1, Bay s By Boy e @re linear combinations of parametérsk,, ko,

b, andb,. It is important to note that increasing the complexity ofeatistic model does
not necessary lead to better accuracy in terms of systenvioemaodeling. In the case of
the Maxwell-Kelvin model, used in [30], the reaction forc#l wonverge to 0, similarly
to the Maxwell model, therefore this model is clearly not best choice for modeling
long-term stress relaxation. It can easily be seen thakrketis a damper element that is
placed in the “cross-section” of the model (there is no gpelement “bypassing” the flow
of the force), the resulting reaction force would be 0 in tteady-state.

If a Kelvin element and several Maxwell elements are coreteitt a parallel way, the
generalized Maxwell model is created. If there is only onexMall element integrated
in the model, its simplest form, the Wiechert model is detiv&Vith this approach, the
modeling of the reaction force becomes smooth and signtficarore accurate due to the
possibility of finer “tuning” of mechanical parameters. Aaiéed comparison between the
Standard Linear Solid and the Wiechert models have beendadby Wanget al. [71],
highlighting the advantages of using the latter in liver @piken organ force response
modeling. Parameter estimation of the Wiechert model reslzen done by Machiraju
et al. [72], although the results were only based on tissue rdtaxatata, proposing its
integration into finite element modeling softwares.

The transfer function of the Wiechert model is as follows:

o A2W82 + A1W5 + A2W U
BQWS2 + BlWS + BOW

F(s) (s) = Wi (s)U(s), (1.12)

where

Ay = bibo(ko + k1 + ko),
Ay = (bika(ko + k1) + boki (ko + k),

Aoy, = kokikaba,

Bay, = b1bs,

Blw = biky + boky and
BOW = kyks.

This transfer function plays a fundamental role in the itigagion of the force response
curves of the linear Wiechert model, a methodology disalissdetails in chapter 4.

1.3.2 Tensor Product Model Transformation

Tensor Product Model Transformation (TP transformatiorsfoort) is a novel concept in
guasi-Linear Parameter Varying (qLPV) model-based cdnptaying a central role pro-
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viding valuable mean for connecting identification methadd polytopic systems theo-
ries. The basic idea behind TP Model Transformation is #estiormation of an arbitrary
function into polytopic TP form which is also capable of d#sing nonlinear dynami-
cal systems for the purpose of controller design via lineatrixinequalities. The concept
was introduced by Baranyi [73], and a practical guide foagplicability for gLPV control
theory was published in [74].

In this section, some of the fundamental definitions of theMdlel Transformation
are recalled.

Definition (LPV/gLPV model):
Consider the following LPV model:

r(t)} {X(t)}
y(®)| =S(p®) |ul®) |, (1.12)
z(t) w(t)

with state vectowx(t), measured output(t), performance output(¢), input u(¢), and
disturbance inputv(t). TheS(p(t)) € S system matrix can be partitioned #o(p(¢)),
B(p(t)), C(p(t)) etc. system matrices, and it is defined over a hyper-rectangarame-
ter domain:

p(t) € Q = [ay,b1] X [az, by] X .. X [an,by] € RY. (1.13)

If the parameters ip(¢) are not independent from the(t) state variables, it is called
quasi-LPV (qLPV) model.

Definition (Finite element polytopic model):
The (1.12) LPV/gLPV model, where the system matrix is givercanvex combina-
tions of vertex system matrices:

Zwr )S, Vp e, (1.14)

where for thep parameter-dependent weighting functiens

> wi(p)=1, w(p)>0 VrpeQ. (1.15)

The term finite indicates that is bounded.

Definition (Finite element polytopic TP model):

The (1.12) LPV/gLPV model, where the system matrix is givercanvex combina-
tions of vertex system matrices, and the weighting functiare decomposed to product
of univariate functions:

Z Z Z Hw n .71 J2,-5IN " (1-16)

Jji=1j2=1 jn=1n=1

Applying the compact notation based on tensor algebra éiatier's work [75]) one has:

S(p(1)) = § 8w (pu(1), (1.17)
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where the core tensaf € S/1*/2x*Jn s constructed from the vertex system matri-
cesS;, i,..ix € S, and the row vectow ™ (p,(t)) contains scalar weighting functions
5:’ (pn(t)), (Jn = 1...Jy) that represent convex combinations as (1.15) forall
The polytopic TP model (1.17) is a special class of polytamiodels, where the
weighting functions are decomposed to the tensor produstiofriate functions.

w

Definition (TP Model Transformation):

TP Model Transformation is a numerical method that tramsfothe LPV/gLPV mod-
els to polytopic TP model, so that the Linear Matrix IneqyalLMI) methods developed
for polytopic model-based control can be applied to theltegumodel [73].

The polytopic TP representation of an LPV/qQLPV system caolitained in various
ways, of which the Minimal Volume Simplex (MVS) type polyiepnodel is used in this
work, defined below:

Definition (MVS Polytopic TP model):

The (1.17) polytopic TP model, where tifec S’/+**/~ core tensor is constructed
from theS;, ;. matrices, in such a way that thi§);, —; n-mode subtensors construct the
minimal volume enclosing simplex for the

S % Wi () (1.18)

trajectory for alln = 1...N., where

(S Xn W)jl7j2---jn71,i7zajn+1---jN = Z Sjlaj2---jn717in7]—n+l---jNWinjn' (119)
Jn
In the proposed structure, a TP-type polytopic controBartilized, where the control
signal is computed as:

u=— (Fn%1 w™) (pn(t))) X. (1.20)

Feedback gainE;, ;, ., are stored in tensof.

It is important to note that the discussed model representagre also valid in dis-
crete time domain, with no fundamental restrictions. Fertieading about the TP Model
Transformation, the MVS-type polytopic TP model generaaad manipulation methods
can be found in [76, 77, 78, 79].



Chapter 2
RESEARCH PROBLEM STATEMENT

Robots are gradually entering the operating room, aidingompletely taking over dif-
ferent surgical maneuvers. The state-of-the-art is thedelrobotic systems are used as
human-operated, telesurgical systems, where the humaatopes an integral part of the
control loop, while the robot is mimicking the gestures @& surgeon. The primary aim of
telesurgical devices is to enhance the performance of ttgeen, applying hand tremor
filtering, virtual guiding and motion scaling. From the emggring point of view, these
teleoperation systems should provide a transparentpleland robust operation, which
requires advanced approaches in terms of controller desidisystem modeling. In order
to avoid stability loss and accuracy deterioration, thebfgms of signal latency due to
the remote operation, elastic tool deformation and unddduard tissue contact can be
addressed by reliable soft tissue models. This way, vaiseegsarios of the tool-tissue
interaction can be approached from the modeling point ofivie

Robot-assisted tissue manipulation requires high p@tisols and techniques. To-
day’s telesurgical systems dominantly rely on visual festththe commercially available
systems do not provide haptic feedback to the surgeon. Agléitement of force sensors
into the surgical tools used in Minimally Invasive Surgesyvery challenging, an alter-
native approach is needed for indirect reaction force egton, in order to provide force
sensation to the operator. Furthermore, automated surgteaventions also require an
estimation of the behavior of the manipulated environmd&iie unique behavior of soft
tissues as viscoelastic materials can only be describeddhysticated mathematical mod-
els, as the currently used models are only representingrdukgied behavior locally. As
the soft tissue is an integral part of the manipulation, titegration of its model at various
level of engineering design is crucial.

» Problem 1 There is a need for a general soft tissue model that canseprsoft
tissue behavior during surgical interventions. The motelL&d give a relation be-
tween tissue deformation and the reaction force, and stgvéda quantitative rep-
resentation of the material, with adequate spatial and ¢eahpesolution.

Teleoperation systems in general require sophisticatettaapproaches in order to
assure transparency of the system and increase reliabilibdern telesurgical systems
dominantly use traditional control approaches in ordentogase robustness, which often
means a trade-off for the accuracy requirements. An apjatteptool—-tissue interaction
model opens up the possibility for applying model-basedtrobmethods, allowing a
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direct implementation to complete surgical robotics syste Modern model-based con-
troller design methods are limited by the mathematicaleg@ntation of the system, there-
fore bringing the interaction models to a design-compatibim is essential.

* Problem 2 Control methods in telesurgical applications need to calysophisti-
cated models of the tool-tissue interaction, requiringrtieelels to be represented
in predefined forms. In the meantime, the controller pertoroe should be robust
against time-delay and modeling uncertainties.

Haptic feedback in robot-assisted surgical systems offerpossibility to reflect the
estimated or directly measured reaction force to the oper&urthermore, surgical sim-
ulators with haptic feedback can introduce an importanttion for surgical training in
education, where accurate soft tissue models can be userefing virtual surgical sce-
narios. As different haptic devices provide different sgim and scaling of the reflected
force, there is a need for a performance evaluation of the afilachine Interface for
specific setups, addressing the validity of the utilized ss$ue models.

* Problem 3 A general methodology is needed for addressing the usahilid va-
lidity range of tool-tissue interaction models in telescatjscenarios, where haptic
feedback is available. The methodology should be exterml&dth living and ar-
tificial tissues, and an appropriate framework is requiaddata acquisition, pro-
cessing and evaluation.

Modeling of telesurgical systems is a complex task, wheoé-tssue interaction and
soft tissue modeling play an essential part. However, tipecggiate models of the slave
side (robotic arm), operator behavior and the communinaystem all have to improved
simultaneously in order to achieve a superior performandelesurgery. The problems
stated in this chapter are focusing on an important part afehbased design and usabil-
ity approaches, their discussion in this work proposest®uis that can aid the further
research of the scientific community in the field.



Chapter 3
METHODS

During my doctoral research, | relied on specific method®rms of experimental data
collection, research protocols and techniques. Each ofabearch problems and state-
ments of the hypotheses were relying on these methods. faer provides a detailed
description of the research plan, step-by-step, focusmgsoelaboration in the thesis
groups.

The primary question in my research proposal was relateuetstate-of-the-art of the
existing tool-tissue interaction models. It was my goalhtestigate, to what extent this
models could be used for improving the performance of te¢gsal interventions, with
special attention to the model description, its integrghithto control methods in general,
and finally, the validity of the specific interaction modeighe wide range of telesurgical
applications.

As of today, there is no general consensus on which tool:iggeraction to chose
for specific applications. An ambitious plan was formed togmse a general model that
can be utilized in a wide range of intervention modeling,atiequired the investigation
of the current tool-tissue interaction models, analyzentlaad find the best-fitting high
level approach for my goals. | have created a structureddrsiny literature research,
where | collected the properties of the investigated tosddie interaction models, avail-
able from the most extensive scientific paper libraries mttipic. | have collected the
modeling approaches used in these works, focusing on sesfidimodels, tool models,
clinical use case, feedback type to the operator, applisdass and model complexity.
The literature research was covering the material of ovescintific papers in the topic
of tool-tissue interaction, distinguished by their numbiecitation, publication date and
relevance. Novel, well-cited papers with explicit focustoal-tissue interaction received
a higher preference, while older, less-cited ones were asadeference in the comparison
and assessment of modeling approaches.

After concluding the first phase of the literature reseatchave collected 3 tool-
tissue interaction models, which provided promising apphes for the improvement of
telesurgical performance, tackling 3 independent chgéerin modern surgical robotics
design: the flexibility of cable-driven surgical tools; theblem of motion compensation
in the case of moving organs; and the mechanical modelingfofissue behavior during
the tool-tissue interaction. While there is a rich literatdiscussing methods for dealing
with these challenges, | have decided to conduct a deepestigation in the field of soft
tissue modeling, proposing that a sufficiently accuratetssfue model can be generalized
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for a wide range of modeling surgical interventions. Sucldet@ould be directly utilized
by various tool-tissue interaction approaches, e.g., tmagfdeable-driven interaction.

The behavior of soft tissues and viscoelastic materiale baen the subject of research
for long, not restricted for surgical robotics applicasorHowever, a general soft tissue
model has not been proposed yet, most of the approaches csorted into tree large
groups:

* rheological models,
* continuum-mechanics based models,
* hybrid models.

In search for a general solution, which could quantitagivelpresent the macroscopic
mechanical properties of soft tissues, my literature meseaas focusing on rheological
models and their use for specific tissue modeling and cheniaation applications. Based
on the collection of research papers utilizing this appno&created and overview of the
existing model variations, addressing their advantagddaadvantages, finding that the
Wiechert model provides the most general, yet simple detsen of tissue behavior.

As there is no generally accepted verification method foregking the validity of
soft tissue models, my aim was to propose a methodology Hratam the quantitative
comparison of different viscoelastic materials using theedert model. This part of
the work was done in two phases. First, existing measurenhat from the available
literature was used for verifying the model. Second, expental data was collected in
a structured way, proposing a methodology to create a divastof measurement data.
In these sets of measurements, reaction force data frooet@®mpression was recorded
under known deformation profiles, and the soft tissue modgfigation was carried out
by fitting the simulated tissue behavior on the measurematat, inding the best fitting
set of mechanical parameters representing the Wiecherelmadthe curve fitting was
utilizing the widely-used Root Mean Square Error (RMSE) imization of the distance
of measured and simulated data points. This method wasiseerin the same sparsity of
data points for the performance evaluation of the model ifiterént scenarios.

Taking the Wiechert model as a basic example, investigaliegneasurement data
from the compression tests, | used an analytical methodrpraving the performance
of the linear model. This included a proposal of introdudiiiferent types of nonlinear-
ities into the structure, conducting further research anlitinited literature available on
nonlinear rheological models. Based on practical conatder, | have introduced the non-
linearities through the spring elements of the Wiechertehahd obtained the parameters
of the investigated tissue models using curve fitting methaescribed. The model verifi-
cation for uniform and non-uniform surface deformation vi@kwing this methodology
as well.

The experimental data collection was carried out based anedudly assembled mea-
surement plan, and was documented for better reprodugifilhe measurements required
a palpation tool that was capable of maintaining a presdrdoenpression rate and record-
ing the reaction force by the compressed tissue either byduilt or mounted force
transducer. The simultaneous recording of displacemehfane allowed me to create a
structured set of data for evaluation. This data colleatr@thod was used both fex vivo
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and artificial tissue samples, where the samples were cutbtited to a prescribed ge-
ometry and dimensions. This way, the method can be starmdardand the quantitative
comparison of the tissue parameters can be validated.

Having verified the tissue model, | have conducted an extensisearch on model-
based control methods in robotic surgery, where soft tissogels were utilized to some
extent. By investigating these approaches, | found that fesv of them were relying on
complex, nonlinear tissue models, requiring a controlesign for linear or quasi-linear
model representations. In order to achieve robustnes®ateabign a controller system that
is stable in the Lyapunov sense, LQ optimal control is a pmpabproach, where the con-
troller is in the form of a Parallel Distributed Compensgt®bC). The method required
a discretized representation of the nonlinear system amhiaat architecture. Polytopic
Tensor Product (TP) modeling in an emerging field in the regm&ation of nonlinear sys-
tems for such control problems. Based on this considerdteyeated the Minimal Volume
Simplex (MVS) polytopic TP form of the proposed nonlinearéghert model, and veri-
fied it by investigating its behavior on predefined deformmainput functions, comparing
the output to the one of the qLPV representation of the system

The verification of the TP model was followed by the propogalitferent control ar-
chitectures, which were tested in the MATLAB Simulink (Méthrks, Inc, Natick, MA)
simulation environment. As the conventional control aettures failed to solve the con-
trol problem in practice, | proposed a new modeling methogylin order to comply to
the requirements of the controller design. The model wasdesnd verified on simulated
tracking tasks, and was tested against robustness in thiasiom environment as well.

The polytopic representation of the model allows its easggration into the da Vinci
surgical system, which was the first step towards proposiisgae characterization method-
ology. Such representation allows one to use a large vasfaetgntrol schemes for force
control applications, allowing the reformulation of thghly nonlinear system to the in-
terpolation of linear dynamic systems. The aim of this phaage to address the usability
and validity range of the proposed soft tissue models, rateyy it to a force-feedback pal-
pation scenario, tested by a representative group of gaatits. The planning of the tissue
characterization experiments were based on the findindseditérature research on trials
with haptic devices, investigating different approacltegdlpation scenarios, the average
number and professional background of participants. Tlaeadterization trials were us-
ing the da Vinci Surgical System as the haptic interfacdizirtg the da Vinci Research
Kit (DVRK) and the Robot Operating System (ROS) platformefalpation scenario was
based on the guidelines from the automated tissue palpatperiments, but the compres-
sion rate was controlled by the participants during thddri@ihe participants were asked
to carry out simultaneous palpation using both of the mastdmanipulator arms of the
da Vinci master console, controlling the palpation toolhatheir left hand, and palpating
a virtual, polytopic representation of different tissuedals. Then, they compared the
real and virtual tissues, and looked for the match ofekeivosample from the different
virtual ones. Their comments and final guesses on the magtissue were recorded and
evaluated both verbally and quantitatively. The colledath from the automatic tissue
palpation for parameter estimation, and the charact@izatials provide structured, ag-
gregated data for further investigation of the proposedfigation method, focusing on
this special case of Human—Robot Interaction (HRI). Therfigs of this research provide
valuable information to the research community, in orddvdtier understand the oppor-
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tunities and limitations of using haptic devices in telgscal systems in real-life surgical

scenarios.
Detailed description of the methods and evaluation can tmedan chapters 4, 5 and 6,

while the validity range of the methods is also addresselddarstimmary of these chapters.



Chapter 4

A METHODOLOGY FOR SOFT
TISSUE MODELING

Cutting, indentation and grasping are the most common tgpgssue manipulation that
require high precision tools and techniques in robotic exyrgin order to achieve better
performance for surgical robotics applications in termstable control for teleoperation,
it is crucial to understand the behavior of soft tissuesughotheir mechanical proper-
ties [10]. Creating an accurate tool-tissue interactiod@havould largely aid the design
of model-based control methods. This way, force respongbeeofnanipulation is esti-
mated using the model, and the required input force (cosigyial) can be calculated
that would control the tissue holder (in most cases, thetrolaom) in order to carry out
the surgical manipulation tasks in an efficient, stable axudiigate way. A comprehensive
study of the existing tool-tissue interaction models wasented by Famaey and Sloten
in [23], collecting these into 3 major categories:

» Continuum mechanics-basetbdels, which are mostly based on finite element anal-
ysis approaches;

» Heuristicmodels, which are built up from linear or nonlinear basic hatcal ele-
ments such as springs and dampers;

» Hybrid models, which usually represent a combination of the abosetioned ap-
proaches [80].

It is widely accepted that continuum mechanics-based rsqutelvide the most realistic
response functions. However, a significant disadvantagi@®approach is the vast com-
putational requirement, limiting their usability in retire simulations and applications.
The heuristic models, which are also often referred to asthgs—spring—damper models
or rheological models, are very popular in modeling sulgicanipulation tasks, mainly
indentation and grasping [70]. Using heuristic models)yital solutions could be pro-
vided, making this a great advantage of using this appraaafmainy modeling aspects of
tool-tissue interaction [TA-15]. Several works provideaserement data for soft tissue
indentation force response in both relaxation [81] and a@sgion phases [26]. Heuristic
models were comprehensively discussed by Yamamoto, camgpseveral simple mod-
els in point-to-point palpation for detecting hidden lumpssoft tissues [27]. Alkhouli
et al. investigated the mechanical properties of human adipssads, although the lin-
ear viscoelastic model they used was only applied in thexatilan phase [82]. Troyest
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al. created a nonlinear viscoelastic model that was validaidunelaxation tests, which
is implementable in finite element algorithms in order tordase computational require-
ments [83]. These models, along with the appropriate imaggagce and modeling, can
largely increase the accuracy and safety of surgical ietdgrens [22]. Mechanical models
can also be integrated with visual cues in order to improgg#rformance of haptic feed-
back devices. Such virtual models were used in pseudoefagtiback-based methods by
Li et al,, using a silicone phantom tissue with embedded hard im@gi@4]. A complex
tissue model was presented by Le@t@l., where some of the soft tissue parameters were
integrated, although, the correct acquisition of the patans was not successful [85].
Some relevant measurement results were still publishddd@8pite the ill-formed math-
ematical description.

In their paper, the surface deformation shape was estin@atezlexponential, although
this assumption was not supported by any literature or @xgertal reference, and the rel-
evant geometrical parameters were not published, eithee. r@sulting transfer function
was incorrectly derived for the proposed model, which resbin an estimated force re-
sponse with no physical meaning. Consequently, the puddigfarameters were not fit
to the experimental data, therefore the discussion of teswds incomplete and incor-
rect. The paper was concluded by modifying the Dirac-deltacfion so that it would
fit a single measurement point in the experimental resutiscofrect these shortcomings
of the a priori research, this chapter follows the same basic idea as Lebaf then
correctly deriving the mathematical formulae, and apprating tissue parameters and
surface deformation shape, based on reproducible expatiatndata, which will be used
for the verification of the proposed nonlinear soft tissualeto

4.1 Experimental Verification of the Wiechert Model

Chapter 1.3.1 introduced the most commonly used linear+spssg—damper viscoelas-
tic soft tissue models. Among these models, the Wiechertaein@metimes called the
Maxwell-Wiechert model) is the simplest form of the geniegead Maxwell model. In this
approach, the previously explained Kelvin model is extengd&h a number of Maxwell
elements, making this combination of elements capable @ioimmodeling of the re-
action force of the soft tissue. The transfer function of ¥iechert model is given in
Eqg. (1.11).

4.1.1 Theoretical Verification of the Linear Wiechert Model

In order to address the validity of the currently used lineass—spring—damper models,
ana priori verification of these approaches was carried out in the firase of this work.
The verification was relying on a sufficiently documentedezkpental data by Leongt
al. [30]. In their work, 30 pieces of coagulated liver tissue plea were examined by
indentation. The cylinder-shaped specimens were 10 mmighhand their diameter was
also 10 mm. The tissue specimens were compressed at a ceopreste of 10 mm/s
until the strain of 0.7 was reached, then the relaxationaesp was measured in terms
of the axial force, for a total of 20 minutes of experimentaid. In order to acquire
the measurement data for the purpose of this work, the dataspwere determined by
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Fig. 4.1. Curve fitting using MATLABcftool toolbox. The red curve represents the fitted force response,
the black dots are the original experimental data poimts= 5.4 [N], B = 6.737 [N], C = 6.34 [N],
X =0.003606 [1/s],Y = 0.2248, [1/s].

using traditional image viewer software, recording pixabinate information from the
published force response curves. The curve fitting proeeadas then applied on this set
of points.

In order to simplify the calculations, and to be able to aeat analytical solution for
the force response, the deformation input function was heoldss a step-input, which is a
very good approximation of the original combination of thep and constant deformation
functions due to the long experimental time. Therefore,ftree response function is
given as the inverse Laplace transform of Eq. (1.11), wheedransfer functioly, (s)
is multiplied by the Laplace transform of the step-input.

finlt) = £ {win(s) 2], (4.1)

S

wherey, = 7 mm is the indentation depth at the maximum deformatione ifverse

Laplace transform can be obtained easily using partiatilaadecomposition, then ap-
plying the transformation on each of the elements. Thusigudie Wiechert model for
describing the tissue behavior, the general form of thesfoesponse function is given by:

fw(t) = Ae Xt L Be™ V4 C, (4.2)

where A, B, C, X and Y are unknown parameters that can be aaamom the curve
fitting procedure. The actual model parameters are catulila solving the following set
of algebraic expressions:

A+ B+ C=ky+ ki + ko, (4.3)
]{ZQ kl

X(B+C)+Y(A+C) = =(ko+ k) + 5= (ko + k2), (4.4)
2 1
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TABLE 4.1

PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION TESTS B8ED ON THE EXPERIMENTAL
DATA BY LEONGet al, REPRESENTED BYEQ. (1.11).

Model type ko [IN/m] | k1 [N/m] | ko [N/m] | b1 [Ns/m] | by [Ns/m] | RMSE

Linear Wiechert 906 962 771 4281 21393 | 0.0329
kok1k
CXYy = 2122 (4.5)
b1by
k k
X+v =242 (4.6)
by ba
F1ky
XY = —. 4.7
b (4.7)

The curve fitting procedure was carried out by using the MABL#{tool toolbox. The
values of the unknown model parameters are listed in Talle 4.

Note that these values correspond to the cylindrical tissneple, with the previously
listed geometrical parameters. The model parameters,yaswean be converted to rep-
resent quasi-specific stiffness and damping coefficienteglprojected on a unit surface,
expressed in the dimensions of N/m#) and N/(msm?).

The fitted curve to the given set of data points is shown in &if). The mean square
error of the fitting isc;, = 0.0329 N, where the subscripstands for the step-input. Itis
clear that the Wiechert model describes the tissue behavmsignificantly more accu-
rate manner than the widely used Kelvin model or other, lowreer approaches. This
difference is more significant if the stress relaxation \@stigated in a long time-span.

4.1.2 Model Verification for Non-Ideal Step-Input

As it was discussed in the previous section, the deformatipuat function was modeled
as an ideal step-input on the transfer function Eq. (1.1f)orbtler to verify the model,
the original deformation function by Leorgf al. was applied on the transfer function,
where the maximum deformation of 7 mm was reached by a cardgdormation rate of
1 mm/s. This yielded a different force response curve dubdaelaxation phenomenon
already undergoing during the compression phase. Theatrpoint is the peak force
that is reached at the time of 7 seconds. As it can be obsemvieid)i 4.2, in the case of
the original input function, the largest difference betwéee fitted curve and the model
response appears around this crucial point, correspornldéxmean square error value of
e, = 0.5022 N, where- stands for the non-ideal step-input. This error is one oader
magnitude higher than that of the ideal step-input respoimserder to address the error
of this approximation in terms of physical parameters, aemtion was carried out by
modifying the parameter values one of the branches of theWgie model, thus correcting
the parameters of the serially connected elemerandb,. A new pair of these parameters
was found by post-optimization, where the mean square efrtire response curve was
considered as the cost function. The new model parametetstad in Table 4.2, where
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TABLE 4.2
CORRECTED PARAMETER ESTIMATION RESULTS FROM FORCE RELAXADIN TESTS BASED ON THE
EXPERIMENTAL DATA BY LEONGet al., REPRESENTED BYEQ. (1.11).

k k¥ = c1k k b = cab b
Model type 0 1=am 2 1= > RMSE
[N/m] [N/m] [N/m] [Ns/m] | [Ns/m]
Linear Wiechert| 906 962 771 4281 21393 | 0.0322
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Fig. 4.2. Validation of model parameters. Green: ideal-#t@pt response curve with the uncompensated
model parameters; blue: the response of the model with fgaatinput function with the uncompensated
model parameters; red: the response curve on the origipat fanction with the compensated parameters
kT andb;.

c; = 2 andec, = 1.9 are the constants and represent the magnitude of rdquareection
of the parameters due to the non-ideal step-input.

The simulated force response functions using the corrqgrdeaimeter values are also
shown in Fig. 4.2. The mean square error of the response ofithe corrected system
is e, = 0.0322 N, which is 5.5% lower than in ideal the step-inpuiecéke subscript
stands for the corrected model). In order to highlight tHedences between the response
curves, the simulation data is only displayed until the toh@50 seconds. The resulting
curves after 250 seconds were not significantly different.

4.1.3 Experimental Setup and Data Collection
Experimental Setup

While the results of Section 4.1.2 showed that the linearct\éet-model gives a fairly
good estimation of the tissue behavior in the tissue relaxgthase induced by step-input,
this method does not allow one to address the tissue behawibe case of dynamic
deformation, such as constant compression rate indentatigere exists no relevant mea-
surement data for force response values in the case of ssifietindentation at different
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Fig. 4.3. The proposed linear tool-tissue interaction rhoslkere the Wiechert elements are distributed
along the tissue surface.

constant compression rate values. Therefore, a new sefpefimental tissue compres-
sion tests were carried out and documented in order to hae#er nsight into the tissue
behavior by various manipulations.

Let us consider a tool-tissue interaction model, where Asg81g—damper elements
are distributed under the deformed tissue surface, reprsdy the Wiechert model
(Fig. 4.3). Similar to Section 4.1.2, the model parametars lze obtained by applying
a uniform deformation input on the surface during the follayvexperiment. 6 pieces of
cubic-shaped fresh beef liver samples were investigatéid e edge length of 262 mm.
The size of each specimen was measured before and aftergbaregnts. Each of the
specimens were compressed at three different compresdéem a slow rate of 20 mm/min,
a medium rate of 100 mm/min and a near-step input at 750 mn{maximum compres-
sion rate provided by the system). The indentation testg warried out at the Austrian
Center for Medical Innovation and Technology (ACMIT), WeerNeustadt, on a Thumler
GmbH TH 2730 tensile testing machine connected to an Inteé @&4570 CPU with
4GB RAM, using the ZPM 251 (v4.5) software. The force resjgodiata was collected
with an ATI Industrial Automation Nano 17 titanium six-axi®rce/Torque transducer,
using the 9105-IFPS-1 DAQ Interface and power supply at 6&ZSampling time. An
Intel Core i7-2700 CPU with 8 GB RAM hardware and the ATIComddDAQFT .NET
software interface was used for data visualization ancagtar In the case of each spec-
imen (marked by letters A—F), at first, the low and medium dpadentation tests were
carried out, reaching 4 mm of indentation depth. The deftionanput function was
also recorded for validation purposes. A custom made 3btgutiindenter head with a
flat surface larger than the specimen surface size was nwont¢he force transducer,
in order to achieve a uniform surface deformation at all fwof the tissue on the plane
perpendicular to the indentation axis. The movement of dallstarted 1 mm above the
specimen surface, and in the evaluation, only the first 3.6aimdentation data was used
in order to filter out any nonlinearity in the ramp-input feieo. In the first two cases,
data was recorded only during the head movement, while geesdirsen was subjected to
indentation 12 times. The force response curves showedsteragtic deviation from the
first responses, which allows one to assume that no sulstassue damage was caused
during the initial experiments. The final, near-step inpaswpplied several times on each
specimen, although it was found that the force response ituggnn the relaxation phase
(2 minute) decreased significantly during the second and #xperiments on the same
tissue, supposedly from the severe damage to the internatste. Therefore, in the case
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Fig. 4.4. Experimental setup for beef liver indentatioridest the Austrian Center for Medical Innovation
and Technology.

of each specimen, only the very first set of measured datagpeas used for the parame-
ter estimation from the force response relaxation data. @qrraphy of the experimental
setup is shown in Fig. 4.4, and the detailed flowchart of tepsbf the experiment is
shown in Fig. 4.5.

4.2 Data Collection and Analysis

Relaxation Tests

In order to have an initial estimation on the soft tissue peatrs, the force response data
from relaxation tests was evaluated. The indentation spE&80 mm/min was approxi-
mated with a step-input. An analytical expression for thredaesponse of the soft tissue
can be easily calculated by obtaining the inverse Laplaestorm of Eq. (1.11), using
partial fraction decomposition, where the transfer fumctil’y, (s) is multiplied by the
Laplace transform of the step-input function.

fw, (t) = L7 {WW<3)%} = Zq </<70 + ki (1 — 6_%t) + ko (1 — 6_%t)> . (4.8)

where fy,.(1) is the force magnitude during the relaxation tests apd= 4 mm is the
depth of the compression at the maximum deformation. Thexagion data for all six
specimens is displayed in Fig. 4.6. For better visual repradion, the average response
curves are also shown in Fig. 4.6, which was obtained by t¢gikia average values of the
response data from each specimen, weighted with respeist $arface size and normal-
ized to 20<20 mm. It is important to note that an unexpected break in thees was
observed in all cases, which is most likely the effect of theaderation of the indenter, as
it reaches the prescribed depth. This break does not effeébtce response results signif-
icantly, because the most relevant sections of the respumges are the initial relaxation
slopes (force relaxation) and the steady-state valuesl@i@sstress). As the closed-form
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Fig. 4.5. Flowchart of the steps of soft tissue palpatiorirdudata collection experiments.

solution to the step-input was given, curve fitting on theiokkl measurement data was

applied. For this procedure, the MATLA&tool toolbox was used. The parameters were
independently obtained for each of the six specimens and emmpensated by the tissue

surface magnitude, resulting in six sets of parameterdfiests and damping values:

A

ke = k;f i=1,2,3, (4.9)
Ay

b = bjf,j =1,2, (4.10)

where A is the surface area of each specimen agd= 400 mnf? is the reference sur-
face size. The results of the soft tissue parameter esomé&im force relaxation tests
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TABLE 4.3
INITIAL PARAMETER ESTIMATION FROM RELAXATION TESTS, USING THE LINEAR WIECHERT-MODEL,
REPRESENTED BYEQ. (1.11).

Specimen "o M k2 b b Surface size
[N/m] | [N/m] | [N/m] | [Ns/m] | [Ns/m]
A 119.6 | 110.1| 789 | 36.2 1210 | 20x20 mn?
B 80.2 | 90.6 | 748 | 30.2 860 | 20x20 mn?
Cc 57.9 | 167.8| 101.4| 90.1 1154 | 19x19 mn?
D 82.8 | 138.9| 109.5| 58.5 1249 | 21x21 mn?
E 67.9 | 95.8 | 53.9 | 118.1 | 1312 | 19x19mn?
F 81.1 | 256.2 | 132.9| 105.8 | 1661 | 22x22 mn?

Average | 81.6 | 143.2| 91.9 | 732 | 1241 | 407.83 mr# |

are shown in Table 4.3. It can be observed that the indivigaghmeter values are in
the same order of magnitude for all specimens, in some casexdarate deviation can
be found from the average value. This can be considered asil of the non-identical
deformation input from the tensile machine, the imperfettical shape of the specimens,
and the varying internal fiber structure of the liver. Thisidéon from the average can
be observed in the verification phase and at additional @xpets onex vivotissues, pre-
sented in chapter 6, and are less significant in the caseifiiatttissue samples. The
effect on the validity range of the model in tissue charazag¢ion is also discussed in
chapter 6, utilizing further experimental results andiredyon the quantitative representa-
tion of different tissue samples, while the effect of inemtrparameter estimation on the
force control performance is addressed in chapter 5.

251

Specimen A
Specimen B
Specimen C
Specimen D
Specimen E
Specimen F
Average

Force [N]

0 10 20 30 40 50 60
Time [s]

Fig. 4.6. Force response curves for step-input relaxatistst
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Constant Compression Rate Indentation Tests

As it was shown previously (Sections 4.1.2 and 4.2), the Waecmodel gives a very
good approximation of the soft tissue behavior in the forlaxation phase, verified on
the experimental data. Theoretically, using this modekdaesponse curves in the case
of other known displacement functions can be estimated. alolate the results, two
more sets of indentation tests with constant compressi@s raere carried out on each
of the specimens. The average force response curves forspachmen for the cases of
20 mm/min and 100 mm/min are displayed in Fig. 4.7 and Fig, #eS8pectively, along
with the global weighted average response curve. Note tndidtter visualization, the
curves are displayed in an indentation depth—force gragteadl of the previously used
time—force diagram. The indentation depth was 4 mm. Thedgonly show the first
3.6 mm of deformation for previously discussed reasonslizufty) the same method for
obtaining the analytical force response as it was used istégeinput case, the following
analytical expression was obtained for the force response:

1 v —k1y —kay
fwe(t) =L {Ww(s)?} =0 (kOtJr by <1 —e n ) + by (1 —e P )) . (4.11)
where v denotes the compression rate (20 mm/min or 100 mm/min) fand stands
for the force response magnitude. Ideally, by substituthng model parameters into
Eqg. (4.11), the force response data should predict the measat data. Considering that
the 750 mm/min indentation was approximated as a stepsiapuinor compensation of
the previously obtained parameters would still be needesveder, the constant compres-
sion rate indentation results showed that the shape of éigtaral response curve largely
differs from that of the measured response, clearly queastipthe validity of the linear
Wiechert model in this indentation phase. From the haptudi@ation point of view,
tissue behavior under constant compression rate is significmore relevant than under
relaxation. The average measurement data and the predésponse curves at the com-
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Fig. 4.7. Force response curves for constant compresdieimdentation tests at 20 mm/min.
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Fig. 4.8. Force response curves for constant compresdieindentation tests at 2700 mm/min.

pression rate of 100 mm/min are shown in Fig. 4.9. The bestditturve, assuming posi-
tive mechanical parameter values is also displayed in F83.7#he measurement data and
its major deviation from the estimated response impliestti@reaction force magnitude
under constant compression rates represent progres$inesst characteristics instead of
a linear one. This phenomenon may be caused by the compléxamieal structure of the

0.8 T T T T T T T
Average measured data at 100 mm/min
0.7 Best fit curve using MATLAB cftool g
Estimated force response
0.6 1
0.5 : : : 4
z
o 04r 4
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O |
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Fig. 4.9. \Verification of the results of the linear Wiecherael at the compression rate of 200 mm/min.
The blue curve shows the predicted force response from ttareaer data acquired from relaxation tests,
while the measured force response is represented by tHedulage. The green curve corresponds to the best
fit using reasonable mechanical parameters, clearly itidicthat the model is not capable of predicting the
reaction force in the case of constant compression rates.
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liver tissue, which cannot be observed during step-respogisxation tests. According
to the Wiechert model, one would expect a superpositionaftien forces of a linearly
elastic elementi() and two Maxwell elements that introduce damping (strelsscation)
into the system, which is well-represented by the analysohution. However, the shape
of the measured response curves does not show any natulexadtien at a first glance,
indicating that tissue behavior might be more complex, asudised in the next section.

4.3 Introduction of Novel Nonlinear Soft Tissue Models

4.3.1 The Two-phase and Nonlinear Wiechert model

In general, the damping parameters of a dynamic system toer rdifficult to estimate.
In most cases, the behavior of a viscous damper element roxapmated using trivial
methods, such as modal damping [86]. Therefore, it is moreergent to introduce
nonlinearity to a given model through the stiffness elermeit the proposed two-phase
Wiechert model, the mechanical behavior is anticipatecbiews. Although liver is a
largely homogeneous and isotropic soft tissue, signifitargl of porosity can be found
in its structure. This two-phase structure delays the @kstic behavior during the com-
pression phase until a certain indentation dépgreached. The single spring elemépt
becomes nonlinear (with exponential characteristics)lethe remaining two elements,
serially connected to the damping elements, will behaveskeg/dd stiffness in the system:

k’o([[’) = Koe"mx, (412)
0 if z <6
(x)=4{" 4.1
k() {Kj ifz>6 (4.13)

forallz > 0andj =1, 2. If kg =0, ko() is a linear stiffness, while also settiing= 0
would yield the previously introduced linear Wiechert mode

While the previous variation introduces two new parametgando to the linear sys-
tem, in this third approach, the complexity of the model m@&ased by adding yet another
parameter, upon the assumption that there should be nandiisaities in the mathematical
description of the model, and the progressive stiffnessacteristics should be coupled
with the phenomenon of relaxation as well. In this nonlinesse, all of the three spring
elements have the same behavior, with the following stinealues defined:

kj(.’lf) = Kje“jm (414)

for j =1, 2, 3. This representation yields a total of 8 unknown patans for the curve
fitting, creating a model that could be used both in compoesand relaxation phases for
reaction force estimation.

4.3.2 \Verification of the Nonlinear Wiechert Model

Table 4.4 shows the values of the individual mechanicalrpatars and combined RMSE
values obtained by the best-fit curves in all three casessigt above. As the curve fitting
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TABLE 4.4
PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION AND CONBANT COMPRESSION RATE
TESTS REPRESENTED BYEQS. (1.11), (4.12), (4.13A\ND (4.14).

Model Ky K, Ky by by Ko K1 K9 ) RMSE
type [N/m] | [N/m] | [N/m] | [Ns/m] | [Ns/m] | [m~] | [m~'] | [m~] | [mm] || comb.
Linear 4.86 | 57.81 | 53.32| 9987 | 10464 - - - - 1.1941
Two-phase| 8.25 | 90.88 | 3.49 | 800.9 | 0.093 | 601.1 - - 1.8 0.2804
Nonlinear | 2.03 | 0.438 | 0.102| 5073 | 39.24 | 909.9 | 1522 | 81.18 - 0.1319

procedure was running simultaneously on both dataset& MfeE value was computed
as the sum of the individual errors for both curves. The dated force response curves
using the listed parameters are shown in Fig. 4.10 and Fig. 4Clearly, the purely linear
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Fig. 4.10. Calculated force response curves using the pesirsets from Table 4.4, in the case of tissue
indentation at constant compression rate of 20 mm/s.

model (red curve) is not capable of modeling soft tissue Wehan both the cases of stress
relaxation and constant compression rate force resportse mechanical explanation of
this phenomenon is that a system with linear spring and dasipments attached to each
other as in the Wiechert model, cannot represent a progeessse in the reaction force
under constant compression rates. Because of the presketmeedamping elements, the
slope of the force response curve must decrease by the laplsysics. Therefore, the
linear Wiechert model will never fit the presented experitabdata either qualitatively
or quantitatively. The two-phase model (green curve) thices the progressive stiffness
characteristics using a single spring element, while thecebf damping is delayed by
As shown in Fig. 4.10 and Fig. 4.11, the curve fitting is mofective than in the linear
case. However, the sudden change in the stiffness chasdicteupon reaching impairs
the smoothness of the response function. This issue canrbaa&ied by using the non-
linear Wiechert model (blue curve) with three spring eleteewith progressive stiffness
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Fig. 4.11. Calculated force response curves using the pearsets from Table 4.4, in the case of tissue
indentation with a step-input, recording the stress reélaralata.

characteristics. The figures show that the fitted curvessgmesenting the model behavior
very well, with a largest relative error of 12%. Table 4.4\wkdhat the level of nonlin-
earity of the spring elements is higher than in the previausrhodels, ad(,, K; and K,
values are in average one order of magnitude lower than ihirtear or in the two-phase
case. This indicates that the general behavior of the systenainly determined by the
nonlinear characteristics of the spring elements.

Due to the nonlinear form of the model, no analytical exgoestor the force response
can be obtained. Instead of using the MATLA&Rool, thefminsearcHunction was applied
to find the optimal set of parameters [TA-8]. The values of itigividual mechanical
parameters and combined root mean square error valuescava shTable 4.4. The curve
fitting was carried out simultaneously on both datasets oiB@min and 750 mm/min
responses, and the combined error values were obtained asrthof the individual errors
for each curve, serving as the cost functionflomsearch The estimated force responses,
utilizing the parameters from Table 4.4, are shown in Fij04nd Fig. 4.11.

In order to verify the parameters independently, a simohatvas run on the nonlinear
model with the obtained parameters, with the constant cessgwn indentation rate of
100 mm/s. The nonlinear system can be represented by tbe/fol system of differential
eqguations:

jf(] = U(t),
1
jfl = —Kl(ﬂfo — SCl)eﬁl(xo_xl),
b
1
Zt'g = b—QKQ(I‘O — IEQ)GKQ(IO_QQ), (415)

whereu(t) is the surface deformation rate, denotes the position of an arbitrary point at
the surface, whilex; and z, represent two virtual points, connecting—b, and
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ko—bs elements, respectively. The system output is the reactaref F'(t), calculated
by

F(t) = Koxoenoxo + Kl (370 . xl)e/ﬂ(xo—xl)
+ KQ(iU(] — SCQ)@KQ(:EO*:EQ). (416)

The simulation results were mapped on the experimental slatavn in Fig. 4.12. The
average RMSE, calculated separately with respect to eadtinsen, yielded
ervse = 0.1748 N, with an average relative error of 30%, which intisahat the model
represents the investigated manipulation tasks very Welas expected that the simulated
curve gave lower force values than those of the measurekle gmtameters were obtained
partly by fitting the curve on the step-response. In the s, ideal step-input was as-
sumed, while, during the experiments, the maximum indemtagpeed was 750 mm/min.
This lower-than-desired indentation speed yielded loviéness values due to the rapid
relaxation during the compression phase. The effect catbereed in both Fig. 4.10 and
Fig. 4.12.

The exact deformation input function of the tensile machgeot known, therefore
an approximation was employed for the non-ideal step-ifynuttion to verify the above
mentioned phenomenon. The simulated non-ideal deformats chosen as 375 mm/min
constant ramp input, considering the nominal 750 mm/minmheétion rate and the decel-
eration of the indenter head at the maximum indentationrd&gte results of curve fitting
for the nonlinear Wiechert model, accounting for non-idgap input, and the correspond-
ing parameter values are displayed in Fig. 4.13, Fig. 4. t4Table 4.5, respectively.

Significant difference between the compensated and unawsaped parameter values
can only be observed in thevalues, which corresponds to the nonlinearity of the spring
elements. The RMSE value for the new curves is nearly one afd@agnitude lower,
while the largest relative error is 25%, similarly to theea$ ideal step-input simulation.

12 T T T T T T T
Specimen A
Specimen B
1r | ——r Specimen C
Specimen D
Specimen E
Specimen F
Simulation
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0 0.5 1 15 2 25 3 35
Indentation depth [mm]

Fig. 4.12. Force response curves for constant compressietirtdentation tests at 100 mm/min, showing
the simulated response of the nonlinear model, using trenpeters listed in Table 4.4.
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Fig. 4.13. Compensated force response curves, accoumtingph-ideal step-input, using the parameter
sets from Table 4.5, in the case of tissue indentation attanhsompression rate of 20 mm/s.
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Fig. 4.14. Compensated force response curves, accoumtingph-ideal step-input, using the parameter
sets from Table 4.5, in the case of tissue indentation witke@mput, recording the stress relaxation data.

TABLE 4.5
PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION AND CONBANT COMPRESSION RATE
TESTS ACCOUNTING FOR THE NONIDEAL STEP-INPUT, REPRESENTED BYEQ (4.14).

Model Ky Ki Ky b1 by Ko K1 Ko RMSE
type [N/m] | [N/m] | [N/m] | [Ns/m] | [Ns/m] | [m~!] | [m~!] | [m~!] | comb.
Nonlinear| 0.483 | 1.501 | 0.102 | 13448 | 12.91 | 1231 | 1.231| 31.79 | 0.0295
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Fig. 4.15. Force response curves for constant compressietirmdentation tests at 100 mm/min, showing
the simulated response of the nonlinear model, using theoeosated parameters listed in Table 4.5.

Mapping the simulation results to the experiment at 100 mmgonstant deformation
rate, the average RMSE yielded,,;sx = 0.1898 N, with the average relative error of
25%, 5% lower than in the uncompensated case. This inditdaé¢$he non-ideal step-
input needs to be accounted for, as tissue relaxation tdées m a very short time, even
during rapid compression phase. The validation curveshierl00 mm/min indentation
tests with the compensated parameters is shown in Fig. 4.15.

4.3.3 Model Verification with Non-Uniform Surface Deformation

In order to verify the approach proposed in Fig. 5.5, extdrtddhe case of non-uniform
surface deformation, additional palpation tests werei@mut. Three specimens with
the dimensions of 26525x200 mm from the same beef liver were palpated with a sharp
instrument, though not physically damaging the surfacenstmt rate indentations were
carried out at four different indentation rates (5 mm/s, 1/s7 20 mm/s and 40 mm/s)
at different points of the surface of each specimens, reagohimm of indentation depth.
The indenter used for the experiments was a 3D-printed pietevas mounted on the flat
instrument used in the experiments at uniform deformatinthe tip, the indenter had
the sharpness of 30its length was 30 mm. It was assumed that the indenter create
line-like deformation input on the surface of the specim@espendicular to their longest
dimension. The schematic figure of the non-uniform indeoats shown in Fig. 4.16, a
photo of the experiment is presented in Fig. 4.17 In ordestorate the reaction force, a
few assumptions have been made prior to the verification:

* only uniaxial deformation is considered, therefore alh+wertical forces are ne-
glected in the calculations,

* it is assumed that the indentation only affects the liveucttire in a certaip dis-
tance from the indentation point,
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Fig. 4.16. The schematic figure of the non-uniform indeotatésts.

Fig. 4.17. Experimental setup for non-uniform surface defation indentation tests.

* the surface deformation shape is approximated as a qi@flrattion and is uni-
form along the width of the specimen.

The reaction force is assumed to be the sum of the reactiomsimtely small elements
on the tissue surface:

F(t)= // fly,z t)dydz, (4.17)

where f(y, z,t) is the force response of a single infinitely small elementatdurface
point (y, z) at a given timet. f(y, z,t) can be calculated by solving Eq. (4.16) for each
surface element, using the unique deformation tatg¢) of the element, and utilizing
specificstiffness and damping values shown in Table 4.6. These fgpgaiues were
obtained by normalizing the appropriate parameters to tiniase size of 1 th In the
next step, the tissue surface was discretized using sghamed elementd; = A, .,
with the edge length of 0.1 mm. The corresponding deformate profilesy;(t), were
obtained as follows. The indentation tests were recordea \ageo camera, fixed along
the z-axis. Movements of 7 surface points were tracked blyaing 12 video files frame-
by-frame, at the time intervals of 1 sec. The resolution ef picture was 19891080
pixels, the recordings were taken at 25 frames per secondvémage deformation profile
was calculated by processing the data manually. It was fothad a reasonably good
approximation to the final deformation surface (after réagthex, = 6 mm indentation
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Fig. 4.18. The final deformation surface at 6 mm indentatigptld. The red bars indicate the deviation of
the measured position data of the examined surface pgiats16 mm.

depth) was:
Tdq 2
z(y) = ;(\y\ - p)° (4.18)
which assumes that the deformation surface is symmetiic#he axis of indentation.
Furthermore, it is assumed that
dx
Wly=p
neglecting the doming effects during the indentation @grefdeformation in the negative
axis direction). These effects are more relevant at theonsgiar from the indentation
point, and due to the progressive spring characteristitekermodel, these regions con-
tribute very little to the overall force response. The finalface deformation shape is
shown in Fig. 4.18, along with the error bars, which show tgation of the investigated
surface points from the proposed surface function.
Utilizing the assumptions above, the deformation rate fgrofit) can be obtained at each
surface point4;, provided by the following equation:

=0, (4.19)

v(y,t) = %(\y\ —p)?, (4.20)

indicating that in the case of constant indentation rateh esurface point is moving at
a constant speed. Eq. (4.17) was solved for each elementhanibrice response was
obtained and summed according to Eq. (4.18). Simulatiamteeand the estimated force
response for the™3 specimen at 10 mm/min indentation rate are shown in Fig..4Ak9

it is shown in Fig. 4.19, the measured force response cunviglly follow the estimated
curve reasonably well, both qualitatively and quantitliv It can be observed that at the

TABLE 4.6
SPECIFIC PARAMETER VALUES FOR THE USE OF NONUNIFORM SURFACE DEFORMATION MODEL
VERIFICATION, REPRESENTED BYEQ. (4.15).

Kg INIm3] | K5 INIm3] | K3 [N/m3] | b5 [Ns/n]
5075 1095 255 127108

b5 [Ns/m®] | ko [Mm™] | k1 [m™Y] | ko [m™1]
1.1.108 909.9 1522 81.189
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Fig. 4.19. Measurement results and estimated force regdonshe case of 10 mm/min indentation for
non-uniform surface deformation.
TABLE 4.7
VERIFICATION CASES FOR NONUNIFORM SURFACE DEFORMATION AND THE OBTAINED ROOT MEAN
SQUARE ERROR(RMSE) VALUES.

Sp. No. | Indentation speed RMSE
5 mm/min 1.384
5 mm/min 2.015
10 mm/min 1.4682
20 mm/min 1.9002
40 mm/min 2.8214

W W WIN|F

indentation depth of 4 mm, the slope of the measured cunegsases rapidly, which is

assumed to be due to the tension forces normal to the ingemgatis. This is an expected
behavior, indicating that at higher deformation levelg, thDoF approach of the problem
should be handled with caution. The validity range of thepps®ed method is determined
in 20% relative deformation, measuredeqvivoliver samples with the thickness of 2 cm.
The RMSE values for each verification case are shown in Talfletde largest relative

error is 35% below 20% of relative deformation. The propaseftitissue model can also
be extended to more complex surface deformation functibtisat is the case, given that
the boundary conditions are well-defined, one would finddirlement modeling methods
a useful tool for determining the surface deformation stapetion [87].

4.4 Summary of the Thesis

Mass—spring—damper models play a significant role in ssfti® modeling, as the simplic-
ity of the approach reduces computational requirementgeoed to finite element-based
methods, offering a tool for real-time tissue behavior datian and reaction force esti-
mation. This chapter presented a method for reaction fastimation in the case when
the surface deformation shape is known. A novel nonlineadlehwas created and veri-
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fied on liver tissue samples. It was shown that in the caseitdnam surface deformation,
the estimated force response gave a very good match on theureegent data. It was
also shown that in the case of non-uniform surface defoonathe idea of distributed
mass—spring—damper models led to a reasonably good astinoteaction forces.

The primary limitation of this approach appears when thedgisg function of the
surface deformation shape takes steep slopes and suddegeshamplifying the effect of
lateral tension forces. These effects can be compensattaking the elongation of the
tissue surface into account, which is part of my future work.

Despite its limitations, the model could be a useful tool imodeling and reaction
force estimation when carrying out surgical manipulatiaith blunt instruments, pro-
viding model data for model-based haptic feedback contethads and virtual surgical
simulators. Based on the results discussed in this chapyeyrther future work includes
the extension of the model to more complex surface defoonstireal-time prediction of
the reaction force based on on-line deformation shape measmt and the integration of
the model into virtual simulators for modeling specific Soajjinterventions.



Chapter 5

POLYTOPIC MODEL-BASED
INTERACTION CONTROL

Surgical robots, as Cyber-Phyisical Systems (CPS), arebtie finest examples of ad-
vanced Human—Machine Interfaces (HMI). Many types of siaignanipulations have a
certain degree of autonomy, however, the human operataygsn) is still present as an
integral part of the control loop. Thus, cognitive skille axploited during the interven-

tions, although the teleoperation systems dominantly is&alfeedback over force/haptic
feedback [TA-16]. Haptic feedback-based force controtissaly studied in master—slave
teleoperation structures, since the sensory capabitfiise human operators can be in-
creased with a successful and reliable implementation. gldistance telesurgery also
carries the difficulties originating from time-delay, whican induce instability in force-

controlled systems, especially in the case of contact watidl Isurfaces [TA-7]. To over-

come these issues, several approaches have been studiednnyears.

One of the most successful approaches is the model-bas&dlaoethod. Providing
a reliable mechanical model of the human body (especiatlgdét tissue, such as organs
or skin) can enhance the available force controllers [TA-14

This chapter extends the usability of the proposed nonlidéachert model for force
control applications. The approach fits to the concept ofjtiesi Linear Parameter Vary-
ing modeling, the polytopic model representations and ithedr Matrix Inequality based
control design methods. The main goal of this work is to irdégithe nonlinear mathemat-
ical model of the process of tool-tissue interaction in@rniodern modeling approach of
gLPV/LMI-based control theory. The systematic derivatodrthe model and the illustra-
tive numerical example will guide the reader through thagfarmation of the nonlinear
system equations into a polytopic TP representation.

It is important to note that the presented soft tissue modsl eveated based on phys-
ical considerations, as it was presented before [TA-8]. T&ti&l Transformation can be
considered as a gateway between the traditional modelsepiations and the polytopic
modeling. It can be proven that mathematically correctibtalanalysis can be achieved
when LMI-based control design is taken into consideratiorthe particular case of this
study, the derived model can be utilized on the slave siddeftéleoperation system,
integrated in a cascade controller assembly [88]. Thisatbsstructure supports the re-
alization of force control in extreme scenarios, such ariobntinental or inter-planetary
teleoperation [1].
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5.1 Models of Soft Tissues in Force Control

The challenge of reaction force estimation and force comrgurgical robotics can be
approached from various directions. No general ideal emixists due to the complexity
of the instruments, wide range of required control methaus lanitations in the final
applications (such as sterilization or restrictions orsseplacement and mounting). One
of the first architectures of such control was developed ©OBRDOC, the first robotic
system to perform complete hip replacement [89]. The coémtigorithm provided an
intuitive HMI allowing the surgeon to guide the robot in aleblorative manner, while
force feedback was used to modify the feed rate for cuttiogieaing a force controlled
velocity input. Leeet al. presented a sensorless method for estimating reactioesforc
acting on a typical surgical robotic instrument, using destdserver. In their approach,
they used a sliding mode control with sliding perturbatidiserver (SMCSPO) for the
instrument manipulation [90]. Yuest al. showed that a force control method using feed-
forward motion terms can largely improve the force trackpegformance in the case of
contact with soft tissues, which is a crucial problem for mpatating loosely attached or
moving organs e.g., during beating heart surgery [91]. Aeotelevant work in the topic
of force tracking in beating heart surgery was publishedioyet al., utilizing the Kelvin—
Boltzmann viscoelastic model [31]. Moreied al. introduced a method for soft tissue
force control using active observers and a viscoelasteraation model, confirming that
using a realistic tissue model can increase the performairtbe force control [92]. Force
control has also been an emerging field of interest in rolwatibeter cardiac ablation [93]
and in minimally invasive surgery [94]

In the following sections, the proposed nonlinear Wieckeft tissue model is trans-
formed to a polytopic gLPV model, representing the tissueatlyics that is—regarding
its mathematical formalism—suitable for direct use of LBdsed control design methods.
As a next step, a model-based force control scheme is pegheriilizing this off-the-shelf
tool-tissue interaction model. The discussed structw@\ves a model-based controller,
where the required states for the state-feedback contarkeacquired using a reference
dynamic model of the system, derived using the nonlinearehddhe discussed approach
utilizes the Tensor Product Model Transformation [95] agsaesmatic methodology capa-
ble of transforming analytical nonlinear gLPV state-speg@esentations into polytopic
form, which can be directly used in LMI-based multi-objgetcontroller synthesis.

5.2 Polytopic TP Model of the Nonlinear Wiechert Model

5.2.1 Model Construction

In order to create an appropriate qLPV model that can be wweldMi-based controller
design, first of all, a goal for the control effort has to be edi. Let us consider the case,
where the position of the instrument tip is controlled bykiag the desired value,(t),
which in mathematical sense could be writtervg&) = x4(t), wherexy(t) denotes the
value of tissue surface deformation.

The corresponding control design methods address theategubf the qLPV model’s
state to 0 by state feedback or output feedback. That is [tR¥ gnodel should be formu-
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lated to represent the error dynamics. This way, the stat®wef the gLPV model must
be chosen as error according to the actual desired statshamutput must also repre-
sent the error. For these reasons, the following stateblagagA\x((t) = xo(t) — x4(t),
Axyi(t) = zo(t) — z1(t) and Az (t) = zo(t) — xo(t) are used in the gLPV model, and its
output similarly, as\y(t) = y(t) — ya(t), wherey,(t) stands for the desired force output

ya(t) = Kozg(t)emoa®, (5.1)
Then, the following qLPV model can be constructed:
Fﬂﬂ:{Mmmimim}fﬁ? 52
Ay(n)] = [Cp) o o ]|
where
T er0x0(t) _p et (t)
p(t) - [eﬁlel(t) er2fea(t) il Ox(())(t)*xjgg - )
0 0 0 1 1
Ap)= |0 —§p 0 | ,B,=|1|,B,= 0],
0 0 —52D2 1 0

C(p) = [KOPB Kipy szﬂ , w(t) = dq(t).

The fact that the desired state appears in the system mhatixsswell the nonlinear prop-
erty of the system: its settling behavior changes withitl(¢) desired state. Because the
Az (t) error variable changes with the desired state;itl{e) signal appears in the qLPV
model and it is considered as disturbance.

Using the gLPV model Eg. (5.2) , the MVS polytopic TP model t&nobtained for
the parameter dependent system matrix:

- (8] % )

considering the nonlinear parameter values from Table dddgh PV parameter and do-
main values from Table 5.1, which were obtained by substiguhe boundary values of
the variables\z,, Ax; andAx, into p.

The transformation yields to an exact polytopic TP modetfowhere

(5.3)

S(p) = S B W (p, (1)) =

=S WO (1)) e WO (pa(®)) o WO (pa(t)) =

2 2 2
=> 3> wit (p1)w'? (p2)w (938, s (5.4)

J1=1j2=1j3=1

TABLE 5.1
QLPV PARAMETER DOMAIN VALUES FOR CREATING THEMVS POLYTOPICTP MODEL.
b1 b2 b3 Co
(-] (] (-] [N/m]

0.9-213482 0.9-2.10592 0.9-1594.8| 1.9792-11000
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Fig. 5.1. Weighting functions/("), w(?) andw(®) of the MVS polytopic TP model for the members of the
parameter vectap(t).

the core tensaf contains the x 2 x 2 vertex systems, and the corresponding weighting
functions are shown in Fig. 5.1.

5.2.2 Model Verification

In order to verify the polytopic TP model, numerical simidat were carried out to com-
pare the force response functions to the original nonlidégerential equations. Simula-
tions results in both the tissue relaxation and constanipcession rate phases are shown
in Fig. 5.2 and Fig. 5.3, respectively. As expected, the fatrans indicate identical dy-
namic behavior for both cases, as the polytopic TP modelpslda of representing the
analytic gLPV model.

The presented polytopic qLPV modeling methodology opensayp possibilities for
addressing the dynamic and stability-related behaviooofmex, nonlinear and parameter-
dependent systems, such as the physical interaction otgaofith biological tissues.
Through LMI-based optimization, control synthesis can be&grmed according to pre-
defined closed loop performance requirements. The polytdopi model representation
that is derived in this study, allows for addressing forcetoa problems in robotic sur-
gical devices. The control goal formulated in Section 5.2 loa handled using static and
dynamic output feedback or state feedback control schese®lh The criteria for op-
timal and/or robust control in LMI-based design can be askird over a given parameter
domain that is relevant to the application.

Using TP Model Transformation, the presented nonlinear tssdue model can be
transformed into a representation that directly fits to Ubalsed controller design. As
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Fig. 5.2. Comparison of the original nonlinear model and TRemodel in the tissue relaxation phase.
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Fig. 5.3. Comparison of the original nonlinear model andTtRemodel in the constant compression rate
deformation phase(t) = 20 mm/min x(t = 0) = [00 0] .

it was shown, the model can represent the behavior of ssfidsin the case of com-
pression tests, which is an important step towards its imphgation into model-based
position/force control problems. The gLPV model defined i £5.2) is written in an
appropriate form for such controller design, where the wigladining the desired state
is part of the modeling. For simplification reasong(t) = 0 mm was assumed in the
open-loop simulation.

In Section 5.3, the reformulation of the above presentetesysnodel is discussed
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in order to determine a representation that will serve asssslar the design of closed
loop control. The structure of the derived qLPV model anddabeesponding polytopic
form allows for applying well known control schemes and s$iyegtg meaningful objective
functions for the purpose of LMI-based optimization. Ingation of the viable closed
loop structures and the actual control design is also adddes the next section.

5.3 Polytopic TP Model for Force Control Applications

Regarding the Polytopic TP Model of the nonlinear systencuesd in Eq. (4.15) and
EqQ. (4.16), the detailed derivation of the model was giveBeaation 5.2, rearranged in a
way that considers the so-called error dynamics. The pexpgsPV model assumes that
the control goal is the force control of the surgical insteunat the tissue surface contact.

In most engineering applications, it is more plausible te discrete time domain in-
stead of continuous representations, due to the samplecera@tmodern control systems.
By introducing the discrete notation, at any time stegne can rewrite Eq. (5.2) as:

[Xﬂ = S(p) N , (5.5)

Yt Uy

where the discretized system matrix, according to the zederohold (ZOH) princi-
ple [96], can be written as:

S(p) = [ C(p) 0
and

p(t) — [eﬁlxl(t) eﬁgxz(t) 6501'0(75)} ,

0 0 0 1
A(p) = %pl _[b(_llpl 19 ,B=10],
b2 0 =3 0

C(p) = [Kop?, + Kip1 + Kapa  —Kip —Kﬂ?z] .

It is important to note that this is only an approximation loé briginal, continuous-time
system, however, from the controller design point of viewgrenrelevant for its better
representation of digitally controlled robotic systeni& = 1 ms denotes the discrete
time-step. This value was selected based on practical @eraions, being a suitable
processing time for current surgical systems [97]. The dosaere obtained by creating
a rough estimate for the lower and upper limitsegf: = 1, 2, 3 during manipulations.
The minimal volume simplex (MVS) polytopic TP model form isitten as:

3
S(p) =S B w" (p,,) =

n=1

=8 x4 W(l)(pu) X2 w® (pQ,t) X3 w®) (p3,t) =

2
- Z Z Z wﬁ)<p1)w]('§)(p2>wj(§)<p3)sj17j2,j37 (57)
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Fig. 5.4. Weighting functions’("), w(?) andw®) of the MVS polytopic TP model represented by Eq. (5.5)
for the members of the parameter veqgt).

where the core tensdf contains the x 2 x 2 vertexes and the corresponding univariate
linear weighting functions, as shown in Fig. 5.4.

5.3.1 Controller Design

While Eqg. (5.5) is mathematically suitable for stable sfaedback controller design, its
practical realization is challenging due to the fact that $hatesr; and x, cannot be
controlled directly, therefore their convergence to theidelr; = O state is very slow. On
the other handy, can be affected directly through speed control—assumindesal input
controller, this holds for the position af, as well—, not taking the system dynamics into
consideration, which subordinates the behavior to the miyecgof the relaxation poles.
Therefore, achieving, = 0 too soon would mean that the output of the system will
only depend on the slowly converging states, which wouldatllotv one to realize the
desired force control performance in surgical roboticserms of speed and precision. To
overcome these limitations, this chapter proposes amalige approach to the control
problem, avoiding the setting af, to a stationary state before the desired time. Let us
consider the force output described in Eg. (4.16) the stiatieeosystem to be controlled.
The derivative of expression Eq. (4.16) takes the form:

F= Eoco(xo, 1, T2) + E1¢1(T0, T1, T2) + To2ca (X0, T1, T2), (5.8)
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where
Cop = Koe’“’xo(l + KJQI‘O) + K1651($0—$1)(1 + lil(l‘o — IL’l))+ (59)
+ KHem @072 (1 4 gy (30 — 2)), (5.10)
CcT = —Klelil(xoiml)(l —+ HlKl(lCO — .I‘l)), (511)
Cy = _K26f62(960—$2)(1 + I{QKQ(ZL‘Q — 1‘2)) (512)
Let us consider
AF = F — F, (5.13)

the new single state variable of the gLPV system, whgéris the desired reaction force to
be achieved. The input of the systemuis= i, and the derivative ofA F' can be written

as
d .
aAF = ZtQCQ + :tlcl + i‘QCQ — Fd. (514)

In the equilibrium state(%AF = 0, therefore:
UegCo + @101 + docy — Fy = 0, (5.15)

whereu,, stands for the input at the equilibrium state. Following ithea on the error
dynamics presented in Section 5.2, the input of the secoRYghodel can be introduced
as:

Au = U — Uegg, (5.16)

where

ueq = —(:tlcl —+ i‘QCQ — Fd)
Co
This approach allows us to collect all system variables ardmeters in a single gLPV
model parametet,, resulting in a very simple form. The schematic block diagia the
controlled system is shown in Fig. 5.5. Introducing the tidigcretization as discussed
above, we can write:

AFtJrl = AFt +Ts- C(]A’U,t. (517)
—>(g)—> Au u
Fd + | Controller > > Nonlinear tissue model 4l >
- +
X,X Ueg
u
‘— Reference tissue model

A

Fig. 5.5. Schematic block diagram of the controlled system.
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Fig. 5.6. Weighting functionw’ of the MVS polytopic TP model represented by Eq. (5.17).

The system matrix can be written in the form of:

1 Ts-¢
S'(co) = ll 0 0 ] (5.18)
The core tensof’ contains 2 vertexes:
1 0.009 1 11

the corresponding weighting functions av§ as shown in Fig. 5.6. The parameter domain
for ¢y was determined numerically, and was refined due to expetaheansiderations.
The numerical values are listed in Table 5.1.

The controller of the system is determined in the following:

u = —F(p)x, (5.20)

where in this particular case:

1 2
F(p)=F X w' = Zl Fiw(co), (5.21)
requiring a stable system in the Lyapunov sense.
Systems that can be described by a model in the form of inf&ipo of linear dynamic
systems, such as the presented polytopic model, can bézadliy a Parallel Distributed
Compensator (PDC), as follows [98].

Let be
A, B
Sr— |:Cr Dr:| _Sil,iQ ----- IN>

wherer = ordering(iy, iz, ...,in)(r = 1...R = [], I,). The functionorderingyields a
linear index, equivalent of an N-dimensional array’s indgx,, ..., iy, the array size is
I, x I, x ... x Iy. The weighting functions can be reformulated as

we(p(t)) = [ wnin (0n(1)).

Theorem (Global and asymptotic stabilization of the convex TP madel
Find X > 0 andM; satisfying equation

XA - A X+M!B! +B,M, >0 (5.22)
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for all r and
~XA! - A, X - XAl - AX+M!B! +BM, +M/B] + B,M, >0, (5.23)

for r < s < R, except for the pair§r, s), such thatw, (p(t))ws(p(t)) = 0 for all p(¢).

The above conditions can be considered as LMIs with respeétandM,., positive
definite matriceX andM,. can be found or show that no such matrices exist. Such repre-
sentations imply that the dynamic linear systems are inicoaus or discrete time normal
state space form, or linear input-output difference egudtrm. If the system consists of
subsystems described by normal form state equations, tiieotler system’s consequents
are linear state feedback laws. Thus, the PDC results inmeanl state regulation, which
is guaranteed if the feedback law satisfies the series of [88s The feedback gains are
obtained by utilizing the solutions fa andM,, such as:

F, = M, X! (5.24)

using the ordering function to determine the componentsmgdrF. An illustrative ex-
ample of an LMI-based PDC controller design for the TORA egstan be found in [98].
Kuti et al. published an extensive literature on the generalizatiagheTP model transfor-
mation for control design, showing that the separated stra®f parameter dependencies
within the polytopic TP model can be exploited during thetcalier design. Correspond-
ing application examples with numerical calculations arifer mechanical systems were
published for a dual-excenter vibration actuator [77], averted pendulum [100], and
fluid volume control in blood purification therapies [101]h& reader is encouraged to
explore these examples for a deeper and general undersgawicthe modeling and con-
troller design techniques employed in this thesis.

The final PDC (Parallel Distributed Compensator) contrdibe the system described
by Eq. (5.18) was found solving the LQ optimal control prablasing convex optimiza-
tion algorithm provided by the MATLARBptooltoolbox and thé&’ALMIPinterface, a tool-
box for optimization and modeling for MATLAB [102, 103]. Thresulting core tensor
yields:

0.36347

F= {0.08747} ' (5-25)

5.3.2 Simulation Results

The proposed closed-loop controller solution was testedsanulated on a typical gesture
of a surgical interventions, grasping. The process of gngspolding and releasing of the
tissue was investigated by settifg to a desired trajectory, followed by the derivation of
control performance and robustness. Three specific casesimestigated in the latter
case: first, the real tissue parameters were ill-estimaid the reference tissue model
parameters were 20% lower than the parameters used footlenttesign. Second, the
simulation of a badly calibrated observer was done by ligeaducing the reference
tissue model output by 20%. Third, a time-delay termrof 2 ms was added to the
reference tissue state output, modeling a slow observeavioeh Simulation results and
the force tracking error for all cases are shown in Fig. 5.9,5.9 and 5.10.
Fig. 5.7 shows that the proposed control scheme is suitablealizing force control

in a stable and precise manner, utilizing the selected issfi¢ model. The tracking error
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Fig. 5.7. Force tracking simulation results for modeling tirasping, holding and release of tissue. The
simulation was carried out on the discrete time systems thétiime-step of 1 ms.
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Fig. 5.8. Tracking error results for modeling the grasphmgding and release of tissue.
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Fig. 5.9. Force tracking simulation results for modeling tfrasping, holding and release of tissue, inves-
tigating the robustness of the proposed method. Case Irrewt@stimation of the tissue parameters in the
reference tissue model. Case 2: incorrectly calibrate@mhsion, state output reduced by 20%. Case 3:

slow observation, state feedback is delayed by 2 ms.

for the presented gesture did not exceed 5 mN, which is adhlptow value for surgi-
cal interventions. The needle-like peaks in the trackinmgrerepresent short transients,
which arise from the sudden change in the time derivativénefdesired force. In prac-
tice, these transients may be extended due to the physitgtions of actuators and the
phenomenon of saturation. The results were achieved usendiscrete sampling rate of
1 ms, which is a realizable processing time for modern safgigstems, in terms of arith-
metic performance. The proposed controller was testedfmrstness in the case of three
different approaches, including ill-conditioned paraenetstimation and observer design,
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Fig. 5.10. Tracking error results for modeling the grasph@ding and release of tissue, investigating the
robustness of the proposed method.
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Fig. 5.11. Tracking performance in close-up view in the nwoical point of the simulation according to
the tracking error results.

and time-delay. The different behavior of these three cissglsown in Fig. 5.11, indicat-

ing that there is no significant decrease in the trackingoperdnce under the mentioned
disturbances. Minor oscillation can be observed in the oéskelayed feedback, which,

when the delay time is increased, ultimately leads to stalbiiss. Further investigation of

the phenomena and implementation of delay-based contiehses are part of my future
work.

5.4 Summary of the Thesis

In this chapter, a control scheme and the correspondingalatgsign methodology were
presented for regulating interaction force during autooosnmanipulation of soft bio-
logical tissues. The proposed approach utilizes recenttsesf polytopic model-based
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control through the framework of Tensor Product Model Tfarmation. The goal of the
presented approach is the control of reaction force duhegabotic interaction with soft
tissues e.g., grasp—hold—release cycles. Since bioldgisaes typically have highly non-
linear dynamic behavior (progressive stiffness charesties, stress relaxation etc.), time
invariant linear controllers cannot provide ideal perfamoe across the whole operation
domain.

Based on my previously published nonlinear tissue model prameter-dependent
error dynamics was derived and the resulted system waswafated in order to avoid the
error rendered by the slow dynamics of one state variable r@tormulated system allows
for concentrating the three original parameter depenésnoto a single parameter, and
construct a feed forward term for the equilibrial input. Add#ional state feedback con-
troller was utilized that handled the unmodeled dynamickfarther disturbances. Since
the state variables cannot be measured in the real procesfgrance tissue model was
used. The state feedback controller was designed by LMéagnthesis providing the
variable gains as parameter dependent polytopic TP fumtidhe overall system was
evaluated via numerical simulations, with very promisieguits. The implementation
of the proposed method into supervised telemanipulagtagurgical equipments would
enhance the performance of these systems, allowing hapigirg) to the operator. Fu-
ture work includes the experimental validation of the syste both virtual andex vivo
environments, extending the model with a discrete-time BE@ observer.



Chapter 6

USABILITY ASSESMENT OF THE
PROPOSED SOFT TISSUE MODEL

6.1 Haptic Feedback in Telesurgery

6.1.1 The Role of Haptic Feedback

The number of Minimally Invasive Surgical procedures istoarously increasing. MIS
allows shorter patient recovery time and the decrease gfcaltrauma. However, due to
the long, rigid design of the MIS tools, the limited visiondaconfined operation space,
several ergonomic difficulties and limitations have ards# aire yet to be solved. These
include the deprivation of dexterity, loss of depth permaptiue to the two-dimensional
video image feedback, distributed hand—eye coordinatimhspecial tool manipulation,
and most importantly, the loss of tactile feedback [104]. iVimost of these limita-
tions were addressed and partially solved with the intrédocof robot-assisted MIS
and telesurgery, by using stereo visual feedback, trenterifi and ergonomic Human—
Machine Interfaces, the lack of force feedback limits théitgibof the surgeon during
organ palpation, tumor localization and the identificatadrother anatomical structures
during surgery [105].

The role of haptic feedback in telesurgery is twofold. Firestoring tactile informa-
tion is essential for assessing the surface textural ptiegeof the investigated organs.
This feature is generally useful for artery and lump detecttherefore the lack of tactile
feedback leads to a more difficult localization of palpalmeraalies, such as kidney stones
or tumors. Second, haptics may provide a realistic forcdlfaek to the robot operator
(the surgeon), providing information about the mechaneteracteristics of the tissue.
Haptic feedback improves the quality of basic surgical nn&ees (grasping, palpation,
cutting), and allows collision detection. Further safetydtions can also be implemented,
such as the application of virtual fixtures both in the caseté-operative scenarios and
surgical simulators [106]. Tissue characterization reggicomplex perception of the op-
erating environment, where beside tissue stiffness (lemg)n relaxation properties and
other viscoelastic phenomena can also be investigatedcaodited for, when using hap-
tic feedback. It was also shown that for tissue characteoizaasks, utilizing force feed-
back leads to better results than only visual feedback,eyhiith the combination of the
two, superior results can be achieved [107].
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While the lack of haptic feedback proves to be a limitatiomtodern robot-assisted
MIS procedures, today’s telesurgical systems provide mdinuted solutions that are
commercially available. Increased cost, sterilizatidfialilties and the sizing limitations
of force sensors at the end effector are key issues in intinduhaptic feedback to these
systems through direct force sensing at the tool tip. Toesklthese, several approaches
were investigated for indirect force estimation, e.g. actimg for joint flexibility [24],
the dynamics of cable-driven manipulators [35] or forcaneation through soft tissue
modeling [TA-6].

There is no general consensus among laparoscopic surgéoasd at what level
would haptic feedback improve the outcome of procedureso/Ating to many surgeons,
having higher quality visual feedback alone provides adeginformation about the tis-
sue palpation force for safe and reliable operation, howekie lack of haptic feedback
is often considered as a major limitation in robot-assi8i8 procedures [108]. Clearly,
an experienced surgeon finds the lack of haptic feedbackdisggbing, than a novice.
However, in haptic guidance, learning spatiotemporaéttajies, contrary motion com-
pensation and strategy planning, the presence of haptbé&e& and/or surgical simulators
can greatly enhance force skill learning for trainees [109]

Providing a complex and reliable perception for the opesatioaptic devices can not
only enhance intra-operative performance, but also becamessential tool in surgical
training and pre-operative planning. In recent years, geaf surgical simulators have
largely increased, offering different training scenariasatomical variations and condi-
tions in the operating environment [110]. Using haptic desi a new dimension opened
up in performance evaluation during procedures. Moreale,to the complex mechani-
cal behavior of soft tissues, augmented simulations reqefierence data from real surgi-
cal scenarios, and should be tested by human operatorsantordalidate the usability of
the virtual models [111].

The problem of distinguishing between soft tissues byrgdiheir mechanical prop-
erties is often referred to as the cognitive role of hapticiaks in simulation environ-
ments [112]. It is a common view that today’s surgical sinigthat are using haptic
interfaces should rely on simple mechanical models of s$sdues, instead of complex,
parameterized finite element models, thus enhancingiraealdperation, and focusing on
the most representative mechanical effects. By usingdsdahaptic devices and account-
ing for the tissue dynamics, one can also solve issues @fi®m communication latency
and high computational requirements by investigating haadter and slave/environment
interactions [113]. Stability and accuracy deteriorattaused by latency and other ex-
ternal disturbances, such as contacting hard tissues sirocelaol deformation, can also
be addressed using realistic soft tissue models, theigratien into model-based force
control algorithms largely increase the robustness andhiéty of robot-assisted inter-
ventions [TA-13].

This chapter presents a novel methodology for testing thbility of soft tissue mod-
els in robot-assisted MIS setups, focusing on the modelechamecal properties of soft
tissues and their integration into surgical simulatordwkptic capabilities.
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6.1.2 Different approaches

The integration of soft tissue properties to robot-asdisted virtual reality based MIS
procedures is an actively researched topic within the fiélsleogical robotics. Methods
for acquiring useful measurement data use a combined expetal procedure of mea-
suring tissue relaxation force under step-like tissue gesgion and force measurement
during constant compression rate indentation input. Sahat. proposed a method for
tissue parameter estimation using a custom indenter dlapagoscopic surgery, employ-
ing inverse finite element solution to estimate optimum galof nonlinear hyperelastic
and elastic properties [114]. Beccagtial. developed a tool for intra-operative wireless
tissue palpation, using a cylindrical palpation probeinesting local volumetric stiffness
values, assuming linear elastic behavior of the tissue][115

A deformable model-based on nonlinear elasticity and felgenent method for haptic
surgical simulators was proposed in [116], validated ofrtie®e simulations of laparo-
scopic surgical gestures on virtual liver models. Trejbal. suggested an augmented hy-
brid impedance control scheme to perform force controlyipling model-based control
background for tactile sensing instrument in intra-opeeatissue palpation [117]. En-
doscopically guided, minimally invasive cannulation t@skere investigated by Wagner
et al, testing the hypothesis that force feedback can improwg@lrperformance, find-
ing that applied forces by the surgeons can be decreasedd®e tvith adequate training
background [118]. Tholegt al. developed an automated laparoscopic grasper with force
feedback capability, in order to aid the surgeons in difiieging tissue stiffness through
the PHANTOM (Sensable Technologies, Woburn, MA) hapticicey104]. Participants
were asked to differentiate between tissues, having peovitsual and/or haptic feedback
to complete the task. Lubcat al. published an extensive patient-specific data for facial
tissue characterization, relying on linear elastic moflEl9], while a FEA-based charac-
terization method and soft tissue deformation model wapgsed by Zowet al.in [120].

Alternative approaches are also popular in general foredlfack for laparoscopic
training and procedures. Horemanal. developed a training system that provided visual
haptic feedback of the interaction forces during procedil2&]. They found that provid-
ing haptic feedback through visual representation conadg improved the quality of the
solved tasks. A detailed feasibility study of lung tumored#ion using kinesthetic feed-
back was published by McCreest al, creating arex vivoexperimental environment,
modeling various tissue stiffness values, injecting agtr healthy tissues, substituting
haptic feedback with recorded force data [122].

The viscoelastic tissue model used in this work is taken fobapter 4, implemented
as a parameter-dependent, discretized virtual modedbase¢he Tensor Product model
transformation, as derived in chapter 5. The aim of this pludshe research is to provide
a general methodology for addressing the usability andiiglrange of the proposed
tool-tissue interaction model in telesurgical scenamdgere haptic feedback is available.

6.2 Research Hardware Environment

On closed systems, it is fairly difficult to conduct fundart@mesearch, for obvious rea-
sons. Therefore, in order to achieve technological deveéy, some of the manufacturers
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grant partial accessibility to their closed systems. Inddge of the da Vinci, there exists a
real-time stream of kinematic and user event data from thetrthat can be read, provided
by the da Vinci APL. It is important to mention that the totepfacement of certain compo-
nents, such as the controller body, can transform the da $tstem into and open-source
platform. Raven Il is one of the most successful open-sorobetic platforms. Devel-
oped at the University of Washington and supported by DARM#e Raven Il became
the greatest competitor of the da Vinci system. Furthermenté the help of the National
Institutes of Health (NIH), 8 robots have been created and distributed to Europeal
North-American locations. Currently, the Raven Il resbgptatform can be purchased
from Applied Dexterity Inc3 The platform operates based on the Robot Operating System
architecture.

6.2.1 The da Vinci Research Kit

The da Vinci Research Kit is one of the most capable resedatfopns in surgical
robotics. In fact, the kit is a collection of retired, firstrgeration da Vinci robot compo-
nents and tools, provided with additional open-sourcerobatectronics and software. As
the platform serves as the primary hardware in the expetsr@nducted in this chapter,
a short description of its components and capabilitiesssudised in the next subsections.

6.2.2 Hardware Components
The DVRK contains the components listed below:

» Two da Vinci Master Tool Manipulators (MTMs),
Two da Vinci Patient Side Manipulators (PSMs),
A stereo viewer,

A foot pedal tray,

Manipulator Interface Boards (dMIBs),

Basic accessory Kkit.

The research kit contains the original, unmodified meclsmiomponents therefore it is
possible to transform a da Vinci Classic system into a rebelat, although some of the
components are not available for researchers due to theimewcial use. In the DVRK
hardware set, the Endoscopic Camera Manipulator (ECM)tiswetuded along with sev-
eral other components from the original system, but the Gfdkese elements is not a
major issue from the development point of view. In generail,résearch purposes, the
control electronics and control software are the most e¢sdqrarts of the system. Re-
cently, a novel, open controller platform was created by JWidrcester Polytechnic In-
stitute (WPI) and their partners [123]. The source files efdbntrol electronics were also
published online. The research platform is equipped withEftE 1394a Firewire inter-
face, capable of maintaining a communication speed of 40ii/8&a. In order to achieve

Ihttp://www.darpa.mil
2http://www.nih.gov/
Shttp://applieddexterity.com/
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a satisfactory degree of security and reliability, it isaal to create real-time communi-
cation between the devices in the system. The control bdudes two FPGA modules
and two Quad Linear Amplifiers (QLA), as shown in Fig. 6.1.

PCside | Control electronics side Mechatronics side

FPGA = QLA
i
FPGA = QLA

Master Tool
Manipulators

PC

<Real time> FPGA e aLAa

Patient Side
Manipulators

FPGA QLA

Fig. 6.1. Schematic representation of the DVRK hardwarectire.

The assembly described above is capable of driving andabng a single robotic
tool. Two da Vinci Master Tool Manipulators and two da Vineitent Side Manipulators
can be controlled using four sets of control electronicguireng a total of 8 pieces of
FPGAs and QLAs. The integration of the DVRK to a retired, yiudperational da Vinci
robot is shown in Fig. 6.2.

Fig. 6.2. The da Vinci Surgical System and the da Vinci Rede&it. System components: Patient Side
Manipulators (left), the DVRK controller (middle) and thealster Tool Manipulators (right).

The da Vinci Research Kit is based on the centralized contipatand distributed I/O
architecture [124]. The main advantage of this structutéas there is only one control
electronics that maintains contact with the peripheraliapand outputs, allowing the
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central computer unit to perform the calculations, locatethe control units. In general,
the central unit is a Linux-based computer with some reaétcomponent expansion.

Low Level Software Architecture

The FPGA module firmware is available onlfpend published under a BSD license,
therefore it can be freely modified. The RT-FireWire is onéhefbest approaches to solve
the real-time communication between the subsystems ovewire, while the commu-
nication implementation is achieved through standard X.i@d++ libraries [125]. The
PC-side operating system is preferably Linux-based, a® tbeists a real-time exten-
sion (RTLinux), a Linux OS that runs under the supervisioradfard real-time micro-
kernel [126]. The software architecture, as a whole, can\bdet! into five functional lay-
ers (I-V) and three development layers (A-C) [123]. The fioral layers, implemented
on the PC side, are stratified by the complexity of their fiorgtwhile the development
layers are sorted by the programming language complexdy tlse. The open-source
property is extensively supported by the previously desdiSAW and CISST libraries,
allowing the system to be used as a completely open resekattbrp.

6.3 A Methodology for Model Evaluation and Usability

Direct haptic sensation during open surgical proceduremismportant guide for sur-
geons for the assessment of the types and health of diffenatdmical structures. How-
ever, in the case of MIS and robot assisted surgical proesgaumerous tasks require a
new approach in the interpretation of haptic informatiargtsas tissue characterization,
classification, lump detection and localization [127]. Thenan sensing of soft tissue
characteristics through robot-assisted palpation is gatexprocess from mechanical and
neurophysiological points of view. Due to the tissue coanpdie and its highly nonlinear
behavior, and the indirect transfer of haptic informatiefiicient tool-tissue interaction
modeling requires an understanding the limits of humangmian, when the palpation
is carried out using a teleoperation system [128]. This way,only the quality of robot-
assisted haptic feedback can be assessed, but one candisssathe validity of the soft
tissue models used for the enhancement of model-basedtamthods for telesurgi-
cal applications. The purpose of this work is to provide aegahmethodology for the
evaluation of such soft tissue models through understgriti@ human perception of re-
action force during the remote palpatione vivoand artificial soft tissues, and during
the palpation of virtual tissue models.

Tissue samples with different mechanical properties warestigated during the ex-
periments, which were completed in two phases: Phase | aasePh During Phase I,
the artificial tissue samples were selected from a wide rahggffness, being compared
to two very differentex vivosoft tissue samples: chicken liver and chicken breast.rAfte
the evaluation of Phase I, new artificial tissues samples werated, aiming to match the
mechanical properties of the selecedvivotissue sample, based on their estimated be-
havior. In Phase |, 2x vivosamples and 3 artificial tissue phantoms were preparedifor th
task. In Phase Il, a refined set of 14 artificial tissue phasta@re compared to a single

*https://github.com/jhu-cisst/mechatronics-firmwariliF PGA-Program
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ex vivochicken breast sample, as explained in Section 6.3.1. Erpets were carried out
using the da Vinci Research Kit, integrated in the Computtedrated Surgical Systems
and Technology (CISST) toolkit [TA-12]. Force sensing wekiaved using an OptoForce
(OptoForce Ltd., Budapest, Hungary). The instruments wesgrated using the Robot
Operating System Indigo version under a 64 bit Ubuntu 14108 &perating system. The
ROS packages were based on the 08/2016 release of the Jopkissldniversity sawin-
tuitiveResearchKit distribution

6.3.1 Experimental Methodology

In both phases of the experiments, the first step was to detertine mechanical prop-
erties of the samples, using curve fitting on the nonlineassyspring—damper Wiechert
model, following the experimental setup published in [TR-&fter the acquisition of the
parameters, participants were asked to carry out remoteF] ®aal palpation on each
of the samples, using the da Vinci Master Tool Manipulato W) as the master device.
The physical palpation of the tissues was done with the daiVAatient Side Manipulator
(PSM) equipped with an OptoForce 3 DoF sensor, as shown ir6R3g The applied force
was fed back to the operator through the MTM, serving as aihdpvice, which was
allowed by a custom software implementation for the DVRKeTheoretical resolution
of the OptoForce sensor was 0.0025 N, while the resolutiash@PSM force feedback
values was 0.1 N, which was taken into consideration in fopgcaling during the trials,
as explained later. The nominal load capacity of the Optoé-eensor was 40 N for 1 mm
single axis deformation at 2% nonlinearity. Having veriftad maximum reaction force
values measured, it was assumed that the relative defamaftihe elastic sensor surface
was less than 5% with respect to the tissue deformation,hwhias negligible compared
to the uncertainties originated from the non-rigidnesshef PSM arms. After the tele-
operated palpation, participants were asked to carry ouitasi maneuvers using the da
Vinci MTM, palpating the virtual models of the selected tissamples. Participants were
allowed to compare the sense of touch during teleoperatidiviatual palpation using the
da Vinci device at any time, and were asked to pair up theiis=alés with the virtual ones.
The usability study was validated by evaluating the corastwers both qualitatively and
quantitatively.

6.3.2 Data Collection and Analysis

Data collection was done by recording the reaction forcenefgalpated tissues during
their controlled deformation. The thickness of the invgestied artificial tissue samples
was identically 20 mm, thex vivotissue samples had a deviation-85 mm from that
dimension. Palpation test on tk& vivotissues were carried out at different points of the
surface, indicating that this deviation does not have agwyicant effect on the measured
reaction force data. The indentation depth of all measunésngas 4 mm, and regardless
of the non-uniform surface deformation, each of the sampl® modeled as a single
nonlinear Wiechert element. These assumptions are validnthe investigated range of
deformation, and the tissue parameter values can be gzmeeréd specific stiffness and

Shttps://github.com/jhu-dvrk/sawlintuitiveResearchiki
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Fig. 6.3. Indentation tests on a silicone artificial tissaeple, using the da Vinci PSM arm with an
OptoForce 3 DoF force sensor.

damping parameters using the method developed in-hous&] T&ach of the samples
were subjected to a step-like deformation, where the cosspre rate was 50 mm/s, and
the relaxation response was measured for 30 seconds. A&eelaxation tests, the sam-
ples were compressed at a constant compression rate of 0% amd the force response
during the compression was recorded. As each sample wasl te$imes for both types
deformation tests, the results were averaged and procksdexssue parameter acquisition
by fitting the force response data to the theoretical resppis-8]. Data collection was
done at the sampling rate of 50 Hz, taking into consideratiahthe da Vinci Research Kit
supports 60 Hz at maximum, while the OptoForce device caitydzandle 200—300 Hz
sampling rate as well.

6.4 Results

The results section is divided into two parts: automatiadatlection for tissue parameter
estimation; and tissue characterization/comparisoistridissue comparison was done
both in Phase | and Phase Il with different groups of volursted heir task was to find
the matching virtual tissue model to the actually palpateel the answers were recorded
and evaluated. Typical palpation movements and reactime$overe recorded as well, as
presented in Sections 6.4.1 and 6.4.2.
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6.4.1 Results for Phase I: User Matches
Data Collection

During Phase I, three silicone artificial tissue samplesewaolded using Silorub ds f-
TG silicone, and were softened using Rubosil methyl-sileoil. Samples A, B and C
contained 0, 15% and 30% silicone oil, respectively. €revivochicken breast sample
was marked as specimen D, while tie vivochicken liver sample was marked as spec-
imen E. Theex vivosamples were covered with fresh-keeping film in order to kbep
silicone surface of the OptoForce sensor intact. Typicaldaelaxation response curves
and the results of constant compression rate indentateoshenwn in Fig. 6.4 and Fig. 6.5,
respectively.
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Fig. 6.4. Typical relaxation force response curves for leenens used during Phase I, assuming step-like
deformation and 4 mm indentation depth.

As itis shown in the figures, the stiffness characteristfab® artificial tissue samples
are close to linear and there the relaxation phenomenorgigyiide. However, Fig. 6.4
shows that the breast and liver samples have a significané@sz in the reaction force

TABLE 6.1
PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION AND CONBANT COMPRESSION RATE
TESTS DURINGPHASE I.

. Ky K, K, by b2 Ko K1 Ko
Specimen
[N/m] | [N/m] | [N/m] | [Ns/m] | [Ns/m] [m=1 [m—1 [m—14
A 1093.1| 1.0616| 251.09| 9209.2| 190 0.0056899| 531.99| 0.00093
B 1002.3| 1.0861| 190.38| 104350| 145.76| 3.3147e-05 22.679| 3.3201e-05
C 473.13| 17.062| 70.787| 88365 | 66.985 58.497 234.68| 7.2614e-05
D 1.0001| 1.0091| 28.361| 28.287 | 8.2608 577.97 969.71 10.898
E 1.007 | 86.917| 184.27| 5375.5| 4.4498 8830.2 291.66 40.536
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Fig. 6.5. Typical force response curves for the specimeed daring Phase I, assuming constant compres-
sion rate deformation and 4 mm indentation depth.

due to tissue relaxation, as expected. Tissue parameteesasquired by curve fitting,
using the MATLAB fminsearchfunction, taking the sum of the RMSE values from both
experimental data sets as the cost function for each sampkesimulated response was
calculated by solving Eqg. (4.15) and Eq. (4.16) for the iedlgparameter values for the
nonlinear Wiechert model. The estimated parameters fdr ebthe specimens, based on
the results of curve fitting, are shown in Table 6.1. It is im@nt to note that these values
are only valid for this specific experimental setup, as thegater focuses on the empirical
comparison methodology of the investigated samples idsieproposing global parame-
ters value sets for the chosen materials.

Tissue Characterization Trials

The virtual Tensor Product model of each of the specimensveaed and implemented
into the experimental software. The da Vinci MTM served asptic device, requesting
force commands from either directly from the OptoForce sensfrom the virtual model
(simulation). The current position and velocity of the MTM e implemented as the input
of the system. A force upscaling factor of 10 was applied felpimg the participants
distinguishing between the models. The measured maximagtioa force applied by
the da Vinci MTMs was below 50 N, which did not exceed the 63 hisdion limit.
The upscaling of the 4 mm indentation was determined by thigcEants, restricted by
the workspace of the da Vinci MTM. The scaling factor of théantation depth upscaling
was set for each volunteer independently by their choicgtygmcally had a scaling factor
of 20-50.

10 subjects participated in the Phase | trials: 8 male andnlie volunteers. 1 par-
ticipant had hands-on surgical experience, 4 came fromaakengineering background,
while 1 participant had no experience in engineering peactiParticipants were aged
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between 21-40 years, with an average age of 25. At the begrfieach trial, the par-
ticipants were asked to investigate the virtual models bym@ssing and releasing them,
assessing the tissue properties (stiffness, relaxatiastiebehavior) verbally. Then, after
getting familiar with the virtual models, the simulation svewitched to the real-time pal-
pation of the tissues. The patrticipants could switch backnfthe actual palpation to the
palpation of the virtual models at any time, and were askedtda a conclusion, which
virtual model (A—E) corresponds to thex vivotissue. For the palpation tests, gravity
compensation of the da Vinci MTM was switched off due to knatability issues of the
DVRK in the current master release of the Software Developridé (SDK) and the ori-
entation of the last 4 axes (tool tip orientation) was logkatbwing only z-axis motion
(direction along the PSM tool shaft.

Altogether, 20 trials (10 participants for 2 tissue models)e carried out. 95% of the
participants accurately paired tle& vivotissue to its corresponding virtual model. One
participant mistook specimen D (the chicken breast sanfiptehe virtual model E (liver
sample), the rest of the answers were correct from all ppatits. Besides the correctness
of the answer, some general conclusions were recorded freerticipants, listed below:

» Models A and B were significantly stiffer than the rest of #tual models and the
ex vivopalpated samples: 85%

» Theex vivosamples had progressive stiffness characteristics, wistihosed mod-
els A, B and C from the comparison: 65%

» The reaction force from specimen and model E was very diffiodeel, even in the
case of rapid compression: 70%

 Participants spent most of the palpation time differaimgbetween models C and
D before drawing the final conclusion, when palpating speaim: 75%

6.4.2 Results for Phase Il: User Matches

Based on the results of Phase I, Phase Il was planned, takimgécount the following:

* The liver tissue sample was removed from the investigatioato its low stiffness
compared to the silicone samples.

» Specimens A and B were also removed due to their signifizdatger stiffness
compared to the chicken breast sample.

» Specimen C was kept as a reference, and further siliconplsarwere created by
adding more silicone oil during the preparation, until l@ag physical limits (satu-
ration of oil in the silicone).

Data Collection

During Phase Il, 14 silicone artificial tissue samples weesaied, utilizing the same
method as in Phase |. The samples were molded from SilorlT @sdilicone, softening
was carried out with a combination of Rubosil methyl-sihieocoil and Rubosil silicone
grease. Binding was enhanced by using Silorub ds K RTV-2ysdfadding 2 ml to every
20 ml of silicone used. Samples were numbered from 1-14textesith a uniform cubic
shape with the edge length of 20 mm. Baking soda was addedriplsd3 to further
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soften the silicone by creating artificial inclusions, amdegar was added to sample 14,
also for softening purposes. Samples were numbered from, Lréated with a uniform
cubic shape with the edge length of 20 mm. The volume ratidhefsilicone, oil and
grease for each of the samples is listed in Table 6.2. é&heivochicken breast sample
was marked as specimen 15. All samples were covered with-kesping film in order to
keep the silicone oil from damaging the silicone surfacenef@ptoForce sensor. Typical
force relaxation response curves and the results of canstampression rate indentation
are shown in Fig. 6.6 and Fig. 6.7, respectively. The avefage response curves used
for model identification are also displayed in the Figures.
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Fig. 6.6. Measured and average (black) force response £timveéhe specimens used during Phase II,
assuming step-like deformation and 4 mm indentation depth.

TABLE 6.2
SILICONE—OIL—GREASE VOLUME RATIO USED FOR CREATING ARTIFICIAL TISSUE SAMLES FOR
PHASE Il. "BAKING SODA ADDED; ™ VINEGAR ADDED.

Specimen 1 2 3 4 5 6 7 8 9
silicone : oil | 1:0.30| 1:0.50| 1:0.75| 1:1 | 1:1.25| 1:1.50| 1:1.85]| 1:2.25| 1:2.70
Specimen 10 11 12 13 14

silicone : oil : greasg 1:0.30:0.50| 1:0.30:1| 1:0.30:1.70| 1:0.30:1.70:0.80| 1:0.30:1.70:0.80:0.8D0
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Fig. 6.7. Measured and average (black) force responsesumihase Il, assuming constant compression
rate deformation and 4 mm indentation depth.

Tissue Characterization Trials

Before the tissue characterization trials, six siliconeceamens were selected based on
the different behavior of the created tissue samples duhieglata collection phase. The
samples were selected from a wide range of stiffness andmemireaction force values,
taking into account that some of these samples had veryasitvehavior during relaxation
and constant compression rate indentation tests. ThealiftR model of each of the
selected samples and te& vivochicken breast sample were created similar to that of
Phase | and was implemented into the software. The pararestienation results for
the selected samples from the indentation tests for Phaa® Ishown in Table 6.2. In
order to improve haptic sensation and enhance compaydbgitveen the virtual and real
specimens, the da Vinci MTML (left-side MTM) served as a Iafgleoperation device,
requesting force commands directly from the OptoForcemensile the da Vinci MTMR
(right-side MTM) reflected force values from the virtual neb@simulation). The current
position and velocity of the MTML and MTML were implementesithe inputs of the real
and virtual systems, respectively. For Phase Il, a forcealpg) factor of 20 was applied
for helping the participants distinguishing between thelels, and the upscaling of the
4 mm indentation at the MTMs was identically set as in Pha3éé participants were
requested to aim for identical ranges for both MTMs, in otdenake it easier to compare
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samples. This way, simultaneously and identically movimg tivo MTMs, the real and
virtual tools reached the tissue surface at the same z-itadedof the MTMs.

In Phase I, 23 participants went through the trials, 19 raalkd 3 female participants.
3 volunteers had hands-on surgical experience, 15 camedngimeering or medical en-
gineering background, 5 of them came from other fields. Th#qgg@ants were aged
between 21-60 years, with an average age of 30 years. At ¢jiertaeg of each trials, the
participants were asked to practice individually on bothN@rms in order to achieve a
stable grip, doing so by resting their lower arm on the softd&Vinci master console.
Once a stable teleoperation was achieved, a randomly chvaseal model was fed to the
MTMR, while the force signal from the OptoForce sensor wasstantly fed back to the
MTML from the indentation of thex vivochicken breast tissue. On request of the partic-
ipants, the virtual model was switched to another one of thesaibilities (models of the
selected 6 artificial tissues and the model of the chickeaditessue), until they found the
best match between the virtual and real tissues accordangsiibjective haptic sensation.
Gravity compensation of the da Vinci MTMs was switched offlahe orientation of the
last four axes were locked, as it was done in Phase |. Fig. 8r8marizes the answers
from the participants on which virtual tissue model resedlthe most on the behavior of
theex vivochicken breast tissue during the palpation tests from th&u28essive trials.

6.4.3 Discussion of the Results

Results of Phase | indicated that the participants were t@btistinguish between the
investigated silicone samples and #e vivotissue samples in 95%, which verifies the
usability of the tissue model if there is a significant diffiece between the mechanical
properties of the samples. During Phase Il, 7 of 23 partidgpavere able to correctly
match the virtual chicken breast model to thevivotissue, while samples 8 and 10 were
chosen 5 and 9 times, respectively. Based on these resudtenportant conclusions can
be drawn:

» The soft tissue model used for representing the tissuevimahia sufficiently good
for use in haptic simulators, training and general reactiwoe estimation. This is
based on the observation that a significant percentage (80%grticipants were
able to match the virtual soft tissue model to the real one.

TABLE 6.3
PARAMETER ESTIMATION RESULTS FROM FORCE RELAXATION AND CONBANT COMPRESSION RATE
TESTS DURINGPHASE II.

i Ky K K> b1 bo Ko K1 Ko
Specimen
[N/m] | [N/m] | [N/m] | [Ns/m]| [Ns/m]| [m~'] | [m~'] | [m~1]
2 115.97| 2.45 5.10e-7| 238.59| 13.58 | 90.32 | 747.11| 19.98
3 99.572| 0.11764| 0.101 | 10.001| 115.64| 118.85| 1.56e3| 115.51
5 69.62 5.58 0.10 1.07 | 166.37| 142.92| 577.81| 332.75
8 63.95 0.48 3.44e-5| 0.61 9.07 9.94 | 990.62| 59.83
10 25.54 | 1.00e-3| 1.00e-3| 0.63 | 141.44| 222.95| 2.31e3| 1.55
12 18.79 5.65 0.17 0.29 0.07 | 226.61| 355.52| 431.72
15 (exvivg | 18.89 0.54 13.89 | 329.43| 17.09 | 217.35| 1.38e3| 16.70
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Fig. 6.8. Tissue characterization results from Phase thrsarizing the participants answers to the ques-
tion: "Which virtual tissue model's behavior resembles st to theex vivochicken breast?’ The correct
answer is indicated by a different color, belonging to sai.

* Silicon samples 8 and 10 with the proposed composition apalde of modeling
soft tissues (in this particular case, chicken breast)tifi@ally built surgical sce-
narios or physical phantoms. The conclusion is based onabereation that a large
percentage (60%) of the participants were unable to distengoetween the physi-
cally palpated soft tissue sample and the virtual model @fihcon artificial tissue
samples of similar mechanical properties. This similastyased on the observation
of tissue relaxation and constant compression rate tests.

6.5 Summary of the Thesis

Along with force control, the problem of haptic feedbacketesurgical systems remains
an open challenge in the related cognitive or ergonomicdietdesearch. Current surgical
teleoperation systems lack haptic feedback capabilltreging their usability in everyday
practice. This work proposed a validation method for tisswgelels and their polytopic
representation by creating an experimental frameworkguie da Vinci Research Kit.
Furthermore, allowing haptic feedback from the manipulasal tissue, functionality can
be extended to surgical simulation using virtual tissue et®dreated by the proposed soft
tissue modeling method.

The experimental methodology provided results, which sftbihiat the proposed non-
linear tissue model very well mimics the mechanical behragidhe ex vivotissue both
from qualitative and quantitative point of view. This allswne to integrate the model
into virtual tissue models used in surgical simulators, ieheis critical to have a realistic
haptic sensation reflected to the human operator when matiipmthe tissues. Results
also showed that using a haptic interface, it is challengindistinguish between arti-
ficial silicone tissues and real tissues during teleopanaindicating that by creating a
silicone sample by the methods presented in this work, calr¢riaining can be enhanced
by artificial tissue phantoms, though providing realis@ptic sensation to the trainees.
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Henceforward, this chapter described a methodology fogtiamtitative evaluation of
haptic teleoperation devices for soft tissue characteoizaUtilizing a structured method
for extracting mechanical properties @t vivoor artificial soft tissues, the simultaneous
palpation of real and virtual samples is an efficient way egasing the capabilities of both
the human operator and the teleoperation system with higetitback. Furthermore, when
the palpation is carried out through a teleoperated ingninwith force feedback, the
proposed tissue model gives a realistic reflection of theadyo behavior of the palpated
samples, both quantitatively and qualitatively.

Future work focuses on the extension of the system databab#drentex vivotissue
models, developing methods for creating artificial silie@amples based on the mechan-
ical properties of these models and on the implementatiothiefapproach into more
complex virtual surgical scenarios.



Chapter 7
CONCLUSION

7.1  Summary of Contributions

My thesis gives an overview of the importance of tool-tissueraction modeling in the
control engineering design of modern telesurgical systerhe work relies on an exten-
sive literature review of the existing tool-tissue intéi@c models, soft tissue modeling
approaches and their validity range. A novel nonlineartsdgtie model was proposed and
verified experimentally, motivated by the limitations ofr@nt rheological, widely used
soft tissue models. Literature research has also beerdart on the existing methods
for force control and haptic feedback on current surgichbtic applications, extending
the scope to open-source software and hardware tools galdendevelopment of these
systems. In order to verify the proposed tissue model anubitgopic representation for
model-based control approaches, an experimental ugateiting method was proposed
and carried out with the aid of human participants, addngssie practical usability of the
integrated topics investigated in the thesis.

Addressing the challenges statedHAroblem 1 explained in chapter 2, | developed
and verified a novel tool-tissue interaction approachpthicing a nonlinear soft tissue
model. In chapter 4, | carried out a detailed investigatiblin@ar mass—spring—damper
soft tissue models, exploring their usability for modelswdt tissue behavior during tissue
palpation, based on experimental data. | showed that whddihear Wiechert model
represents this behavior in tissue relaxation phase, thdehfails in the prediction of
reaction forces in constant compression rate phase, batltajively and quantitatively.
Based on the measurements, | conducted on liver tissue sarapthe Austrian Center
for Medical Innovation and Technology, | created an 8-pat@mnonlinear mass—spring—
damper model, and obtained the representative tissue pseesrby curve fitting to the
data. It was found that in the case of uniaxial deformatiba,reaction force from tissue
palpation can be estimated very accurately. The model vgasvalrified for non-uniform
surface deformation scenarios, where the deformationesivags estimated empirically,
showing that for deformations until 20%, the method givesoadyestimation on these
forces. The method was later successfully applied for iiffeex vivoand artificial tissue
samples as well, in the context of parameter acquisitiomapter 6.

In the next phase of my work, | carried out an extensive litemresearch on the
current control methods used in telesurgical applicatemslescribed in chapter 5, ad-
dressingProblem 2 | found that communication delay in teleoperation systemasmajor
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contributor to stability and accuracy degradation durivese interventions, which restricts
the possible use of these systems to unilateral teleoparstienarios. However, besides
opening up possibilities to bilateral approaches, thabé execution of (semi-)automated
surgical tasks requires the integration of the tissue miodile controller design. Based
on the concept of Tensor Product modeling, | created thetguoly representation of the
tissue model and following the guidelines of Linear Matmiegjuality approach, | tested
the proposed controller against various force trackintstelsfound that due to the slow
poles of the system, the conventional modeling approathifatracking tasks, therefore
a | proposed and verified a novel methodology for the reptasen of these models, a
controller design for discretized systems, and addressmgstness in terms of parameter
uncertainty and latency.

In the context of investigating the practical usability loé proposed soft tissue model,
| suggested a novel methodology for its evaluation from tyetic bilateral teleoperation
point of view in chapter 6, addressigoblem 3 Based on the methods from chapter 4,
| carried out further measurements on teo vivotissue samples and 17 silicone phan-
toms with different mechanical properties, mimicking thehlvior of theex vivopieces.
| created a comparative list of the mechanical propertiethe$se samples, based on the
proposed nonlinear Wiechert model, and integrated themragbtissue samples to the
da Vinci Surgical System. | proposed an experimental meilogy, where participants
with different engineering and medical background wereedgk address the difference
between the properties of the teleoperation-based tisdpatpn and the palpation of the
virtual tissues, created using the model utilizing the pmpyc representation discussed in
chapter 5. From the trials | concluded that the proposedimea tissue model very well
mimics the mechanical behavior of the ex vivo tissue botHitaiaely and quantitatively.
This allows its integration into virtual tissue models usedurgical simulators, where it
is critical to have a realistic haptic sensation reflectethéohuman operator when manip-
ulating the tissues. | also found that using the da Vinci MTddsa haptic interface, it is
challenging to distinguish between artificial siliconestiss and real tissues during teleop-
eration, indicating that by creating a silicone sample etiog to the guidelines presented
in this work, surgical training can be accelerated and ecdhiby artificial tissue phan-
toms, yet providing realistic haptic sensation to the &am
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7.2 New Scientific Results

Thesis 1

| developed and verified a novel, nonlinear, 8-parametesagwing—damper soft tissue
model. In contrast to the current models employed, the @i@ie advantage of this model
is that it represents the soft tissue behavior in both pusxagion and constant defor-
mation rate compression phases. | showed that in the caseiafial deformation, the
reaction force from tissue palpation can be estimated wittadive error of 12%. | ver-
ified the model for non-uniform surface deformations, shngnrinat below 20% relative
deformation, the reaction forces can be estimated withadivelerror of 35%.
Related publications: [TA-3, TA-6, TA-7, TA-8, TA-11, TAZ1 TA-14, TA-15, TA-16].

Thesis 2

Based on the concept of Tensor Product modeling, | creage@dlytopic representation
of the nonlinear soft tissue model, and showed that thisessmtation described the soft
tissue behavior with sufficient accuracy for controllerigas Utilizing the Linear Matrix
Inequality method, | designed a controller for the forcetoalrtask in teleoperation sys-
tems. | found that due to the slow poles of the system, theardional design strategies
were not applicable, and | proposed a new approach for degidorce feedback control
with polytopic representation of the tool-tissue intei@timodel. | verified the designed
controller for robustness in terms of parameter uncestant time-delay.

Related publications: [TA-4, TA-5].

Thesis 3

| designed the evaluation of tissue characterizationstrighere based on the outcome of
independent test subjects, | experimentally proved thaptibposed nonlinear soft tissue
model represents the behaviomafvivotissues both qualitatively and quantitatively. In the
case of the force-feedback teleoperation system, 30% difuh®n operators were able to
distinguish betweepx vivoand artificial soft tissues, which verifies the realistic dabr
representation of the nonlinear soft tissue model. Fumibee, 60% of human operators
mistook the virtual models of artificial soft tissues fx vivomodels in force-feedback
teleoperation scenarios, when the quantitative mechigmacameters of the virtual models
were alike. This validates the use of artificial soft tissaimples in education and research.
Related publications: [TA-1, TA-2]

Other publications related to the Ph.D. thesis and the apaaging research work:
[TA-9, TA-10, TA-12].
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7.3 Future Work

The field of surgical robotics is rapidly changing and is unmnstant development. It is
expected that in the next years, numerous challenges weill teebe solved, with a growing
need for model-based solutions. | am enthusiastic in extgrithe scope of my Ph.D.
research to these new areas, applying the results in theatlenvironment as well. At the
Antal Bejczy Center for Intelligent Robotics, there areeaty numerous students from
different academic levels, who are involved in the rese#opits, achieving outstanding
results.

During my research, | had the opportunity to start buildimgraternational network
with researchers in various fields of surgical robotics. I@nvinced that these connec-
tions can lead to fruitful joint collaborations, interr@ial projects. Thanks to the unique,
extensive and diverse robot infrastructure of our Cenbbere is a positive outlook on fu-
ture cooperations with our regional partners. | would likdaighlight the Austrian Center
for Medical Innovation and Technology (ACMIT) in Wiener Ns&tadt, and the Central
European Living Lab for Intelligent Robotics (CELLI), a paership of regional higher
education and research institutions. @kuda University is conducting an active research
on the da Vinci Research Kit, we are becoming an integral gfaat unique community,
managed by the prestigious Johns Hopkins University, wapdns up new opportunities
towards international collaborations. On the other hahd,results in tissue characteri-
zation and the quantitative assessmentof/iivoand silicone tissue samples can initiate
discussion with experts in surgical simulator and trairbog developers.

The results of chapter 4 showed that the proposed model carsbphisticated tool
for estimating the force response of the tissue during safgnanipulations. This allows
its integration into model-based control approaches amgicl simulators for training
and education. While chapter 5 and 6 discussed these da&shn details, alternative
approaches to these challenges can also rely on thesesrddaiever, there is still room
for the investigation of the case of complex surface deftionascenarios, the real-time
prediction of the reaction force based on on-line deforamashape measurement and the
modeling of more sophisticated surgical interventionsaAsng-term plan, the extension
of the model to multidimensional deformation and the coasition of lateral forces dur-
ing the manipulation also poses an interesting researaty @pwell as its integration into
coupled problems including invasive, biochemical andrtfemechanical interactions.

As a future work, the control architecture proposed in chaptcan be generalized
for various tissue manipulation tasks during robotic styg&he implementation of this
method into supervised teleoperation systems can enhamnfm@mpance both in terms of
precision and robustness, and the research can be extemdied investigation of bilateral
teleoperation scenarios with haptic feedback. Thereftie experimental validation of
the control algorithm is a first step of the future work, aiilig it both in virtual and
ex vivosurgical scenarios. This requires the model of the disg¢nete PDC observer in
the simulation environment, which is an ongoing researdioddy.

The methodology discussed in chapter 6 allows one to cregenaral database of
differentex vivotissue models and widely-used silicone materials for pirargeneration
and assembly. It can also aid the field of tissue engineevipgavide realistic tissue sam-
ples for modeling and planning surgical interventions.uF@itwork also aims to create a
methodology for the development of artificial silicone s&spmimicking the mechan-
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ical behavior of various soft tissues, based on the paramatguired for the proposed
nonlinear soft tissue model. The implementation of the aggin to more complex vir-
tual surgical scenarios is also possible, while the vabaedf the method using different
haptic devices is also among future research topics.

The major topics discussed in this thesis work are parthzirtg the results in a hi-
erarchical way: the proposed and verified soft tissue madesed for the model-based
controller design, while the polytopic representationtitaed for the tissue characteri-
zation trials in the implementation phase. While strongipmected, these topics can be
further developed independently as well. This allows onextend the scope of research
and use the results in other fields of studies outside medichhologies.

While this work tends to give a solution to the problems statechapter 2, naturally,
new questions arose during the elaboration on the topicsgalith challenges to be
addressed in the field of surgical robotics. This work presidnd outlook on these issues
in-line, providing an extensive literature reference furge interested in them.
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