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Abstract 

 

 
In large computational challenges scientific workflows have emerged as a widely accepted 

solution for performing in-silico experiments. In general, these in-silico experiments consist of 

series of particularly data and compute intensive jobs and in most cases their executions require 

parallel and distributed infrastructure (supercomputers, grids, clusters, clouds). The successive 

steps of an experiment are chained to a so called scientific workflow, which can be represented 

by a directed acyclic graph (DAG). The execution of these scientific workflows – depending on 

the field of science – can take a very long time, weeks or even months. The complexity of 

workflows and the continuously changing nature of the environment can hide the details of the 

execution, the partial results and the intermediate computations, and even the results of the 

execution of the same workflow can be different.  

In order to repeat or reproduce a scientific workflow the scientist and also the SWfMS developers 

have to face several challenges. On one hand many workflows are based on special hardware or 

software with the appropriate settings, or third party resources which create dependencies of the 

execution. These dependencies have to be handled or even eliminated with tools developed for 

this purpose. On the other hand, the ancestry of the results may raise problems when someone 

wants to reuse the whole or a part of the workflow. To conserve this information rich provenance 

data have to be collected during the execution. 

In this dissertation I deal with the requirements and the analysis of the reproducibility. I set out 

methods based on provenance data to handle or eliminate the unavailable or changing descriptors 

in order to be able reproduce an – in other way – non-reproducible scientific workflow. In this 

way I intend to support the scientist’s community in designing and creating reproducible scientific 

workflows. 

In the first two thesis groups I introduced the mathematical model of the reproducibility analysis, 

I investigated and proved the behavior of the changing descriptors referred to the jobs which can 

influence the reproducibility. In addition I presented methods to determine the coverage of the 

descriptors, the reproducible part of the workflow and the probability of the reproducibility. In 

the third thesis group I introduced two metrics of the reproducibility and I present algorithms to 

evaluate these metrics in polynomial time. Finally I classify scientific workflows from a 

reproducibility perspective. 

  



4 

 

Kivonat 

 

 
Napjainkban, a tudományos világban folytatott tudományos kísérletek egyre növekvő, hatalmas 

adathalmazokra épülnek, melyek feldolgozása és a rajtuk végzett számítások a hagyományos 

laboratórium adta lehetőségeket messzemenően meghaladják. Ennek következtében a tudós 

közösségek körében egyre népszerűbbé és nélkülözhetetlenebbé válnak az un. „in-silico” 

(számítógépeken végrehajtott) kísérletek, melyek futtatása párhuzamos és elosztott 

infrastruktúrákat igényelnek, mint a számítási rácsok (grid), fürtök (cluster) vagy egyre inkább a 

felhők (cloud). A kísérletek egyes lépéseinek láncba fűzésével un. tudományos munkafolyamatok 

jönnek létre, melyek futtatása - tudományterülettől függően - hetekig vagy akár hónapok is tarthat. 

A fentebb említett infrastruktúrák különbözőségéből és a folyamatosan változó természetükből 

fakadóan azonban a futás részletei, vagy akár a közbülső számítások és részeredmények is rejtve 

maradhatnak, sőt, két különböző végrehajtás eredményei eltérhetnek egymástól. A tudományos 

munkafolyamatok reprodukálhatóságának biztosítása érdekében, a tudós társadalomnak, - mint 

felhasználóknak - és a munkafolyamatokat futtató, kezelő rendszerek (Scientific Workflow 

Management system) fejlesztőinek két nagy kihívással kell szembenézniük: Egyrészt a 

munkafolyamatok végrehajtása gyakran speciális hardver/szoftver elemeken vagy harmadik féltől 

származó erőforrásokon alapszik, amelyek rendelkezésre állása megkérdőjelezheti egy újra 

futtatás sikerességét. Ennek megoldására olyan eszközöket és módszereket kell fejleszteni, 

melyek kezelik vagy esetleg megkerülik ezeket a függőségeket. Másrészről az eredmények 

eredetének nyomon követhetőségét biztosítani kell. Ennek érdekében, a munkafolyamat-kezelő 

rendszerek un. provenance adatokat gyűjtenek az adatfüggőségekről, a részeredményekről, a 

környezeti változókról valamint a rendszer beállításairól és paramétereiről. 

Jelen kutatásban a tudományos munkafolyamatok reprodukálhatóságának feltételeivel és 

elemzésével foglalkoztam provenance adatok felhasználásával, továbbá a tudós társadalom 

támogatása céljából megoldási lehetőségeket kerestem az egyébként nem reprodukálható 

tudományos munkafolyamatok reprodukálhatóvá tételével kapcsolatban. A módszerek az 

elérhetetlenné váló és változó deszkriptorok kiküszöbölését és kompenzálását kezelik. 

Az első két téziscsoportban a bevezetett matematikai modell építőelemeit definiáltam és 

vizsgáltam, nevezetesen a számítási feladatok reprodukálhatóságát meghatározó deszkriptorok 

romlási mutatóját, változásainak természetét, kapcsolatát és az eredményre vonatkozó hatását. 

Továbbá eljárást dolgoztam ki a deszkriptorok hatósugarának és a tudományos munkafolyamatok 

reprodukálható részének meghatározására, valamint a reprodukálhatóság valószínűségének 

kiszámítására. A harmadik téziscsoportban a reprodukálhatóság mértékeit definiálom és 

polinomiális lépésszámú algoritmust mutatok be a mértékek becslésére. Végezetül a tudományos 

munkafolyamatokat osztályoztam reprodukálhatósági szempontból.  
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1 INTRODUCTION 

 

 

 

1.1 Scientific experiments – In vivo, In vitro, In situ, In silico 

During the last decade, scientific workflows have emerged as a widely-accepted solution for 

performing in silico experiments for large computational challenges. The traditional scientific 

experiments are conducted on living organisms, called in vivo (Latin: “within the living”), in the 

nature, called in situ (Latin: locally, on site) or in laboratories, called in vitro (Latin: in glass) 

experiments. During in vivo experiments, the effects of various biological entities are tested in 

their original environment on whole living organisms, usually animals or humans.  In situ 

observation is performed on site, typically in the habitat of the animal being studied and generally 

it is the environment that is modified in order to increase/improve the life conditions of a certain 

animal. The in vitro term refers to a controlled environment such as test tubes, flasks, petri dishes, 

etc. where the studied component is tested in an isolated way from their original, living 

surroundings.  These experiments have fewer variables and simpler conditions than in vivo 

experiments and they can avoid the continuously changing impact and interactions of real life. 

This way/Thus they could allow a more fine-grained analysis of the studied phenomena. At the 

same time, correlating their results to real-world scenarios was not always straightforward, thus, 

generally in vitro results have to be verified in the original environment. 

In contrast to the traditional methods, the in silico (Latin: in silicon, referring to semiconductor 

computer chips) experiments are performed on computer or via computer simulation, modelling 

the original components, variables and the studied effects. Thanks to the particularly fast growing 

of computer science technology these experiments become more and more complex, more data 

and compute intensive which requires parallel and distributed infrastructure (supercomputers, 

grids, clusters, clouds) to enact them. Generally, these in-silico experiments consist of a huge 

amount of activities (call jobs) – their number can reach hundreds or even thousands - which 

invoke particularly data and compute intensive programs. Tying the jobs to a single, multi thread 

chain provides a scientific workflow to model the in-silico experiments which can be executed 

by the Scientific Workflow Management Systems. 
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1.2 Reproducibility 

To be able to proof or verify a scientific claim, the repeatability or the reproducibility of any type 

of experiments is a crucial requirement in the scientist’s community. The different users for 

different purposes may be interested in reproducing of the scientific workflow. The scientists have 

to prove its results, other scientists would like to reuse the results and reviewers intend to verify 

the correctness of the results (Koop & al, 2011). A reproducible workflow can be shared in 

repositories and it can become useful building blocks that can be reused, combined or modified 

for developing new experiments. 

In the traditional method, the scientists make notes about the steps of the experiments, the partial 

results and the environment to make the experiments reproducible. Additionally, during the 

history of the scientific research, different standards, metrics, measurements and conventions had 

been developed to allow to provide the exact descriptions, the repeatability and the possibility of 

reusing each other’s results. After all, certain types of the scientific experiments are unable to be 

repeatable because of the continuously changing environment such as the living organisms or 

nature in which many factors can be interacts and, in this way influence the results. Similarly, in 

case of the in-silico experiments, the same way has to be walked and has to develop tools to make 

them reproducible. On one hand, like the scientist make notes about the traditional experiments, 

provenance information has to be collected about the environment of the execution and the partial 

result of the scientific workflow. On the other hand, the ontologies of these type of experiments 

also has to be developed to allow the knowledge sharing and the reusability on the so called 

scientific workflow repositories. However, many researcher work in these fields the 

reproducibility of the scientific workflows is still a big challenge because of: 

 The complexity and the ever-changing nature of the parallel and distributed 

infrastructure: Computations on a parallel and distributed computer system arise 

particularly acute difficulties for reproducibility since, in typical parallel usage, the 

number of processors may vary from run to run. Even if the same number of processors 

is used, computations may be split differently between them or combined in a different 

order. Since computer arithmetic is not commutative, associative, or distributive, 

achieving the same results twice can be a matter of luck. Similar challenges arise when 

porting a code from one hardware or software platform to another (Stodden & al., 2013)  

 The labyrinthine dependencies of the different applications and services: A scientific 

workflow inherently can interconnect hundred or even thousand jobs which can be based 

on different tools and applications which has to work together and deliver data to each 

other. In addition, each job can depend on external inputs complicating the connections 

and dependencies. 
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 The complexity of the scientific workflows managing a huge amount of data. 

 

1.3 Motivation 

Zhao et al. (Zhao & al, 2012) and Hettne (Hettne & al, 2012) investigated the main purposes of 

the so-called workflow decay, which means that year by year the ability and success of the re-

execution of any workflow significantly reduces. In their investigation, they examined 92 Taverna 

workflows from myExperiment repository in 2007-2012 and re-execute them. This workflow 

selection had a large coverage of domain according to 18 different scientific (such as life sciences, 

astronomy, or cheminformatics) and non-scientific domains (such as testing of Grid services). 

The analysis showed that nearly 80% of the tested workflows failed to be either executed or 

produce the same results. The causes of workflow decay can be classified into four categories: 

1. Volatile third-party Resources 

2. Missing example data 

3. Missing execution environment 

4. Insufficient descriptions about workflows 

By incorporating these results, we have deeply investigated the requirements of the 

reproducibility and I intended to find methods which make the scientific workflows reproducible. 

To sum up our conclusions, in order to reproduce an in-silico experiment the scientist community 

and the system developers have to face three important challenges: 

1. More and more meta-data have to be collected and stored about the infrastructure, the 

environment, the data dependencies and the partial results of an execution in order to make 

us capable of reconstructing the execution in a later time even in a different infrastructure. 

The collected data – called provenance data – help to store the actual parameters of the 

environments, the partial and final data product and system variables.  

2. Descriptions and samples should be stored together with the workflows which are provided 

by the user (scientist). 

3. Some services or input data can change or become unavailable during the years. For example, 

third party services, special local services or continuously changing databases. Scientific 

workflows which are established on them can become instable and non-reproducible. In 

addition, certain computations may base on random generated values (for example, in case 

of image processing) thus, its execution are not deterministic so these computations cannot 

be repeated to provide the same result in a later time. These factors – call dependencies of 
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the execution - can especially influence the reproducibility of the scientific workflows, 

consequently, they have been eliminated or handled. 

In this dissertation, I deal with the third item. 

The goal of computational reproducibility is to provide a solid foundation to computational 

science, much like a rigorous proof is the foundation of mathematics. Such a foundation permits 

the transfer of knowledge that can be understood, implemented, evaluated, and used by others. 

(Stodden & al., 2013) 

However, nowadays more and more workflow repositories (myExperiment; CrowdLabs etc.) can 

help the knowledge sharing and the reusability, the reproducibility cannot be guaranteed by the 

systems. The ultimate goal of my research is to support the scientist by giving information about 

the reproducibility of the workflows found in the repositories. Investigating and analyzing the 

change of the components (call descriptors) required to the re-execution I reveal their nature and 

I can identify the crucial descriptor which can prevent the reproducibility. In certain cases, based 

on the behavior of the crucial component an evaluation can be performed for the case of 

unavailability which can replace the missing component with a simulated one making the 

workflow reproducible. With help of this reproducibility analysis also the probability of 

reproducibility can be calculated or the reproducible part of the workflow can be determined. To 

make the workflow reproducible, extra computations, resources or time are required which 

impose an extra cost for the execution. This cost can be measured and it can qualify the workflow 

from the reproducibility perspective. Additionally, the analysis presented in this dissertation can 

support the scientist not only to find the most suitable and reliable workflow on the repository but 

also can help to design a reproducible scientific workflow. The process, from the first execution 

of a workflow to achieving a complete and reproducible workflow is very long and the jobs get 

over a lot of change. 

 

1.4 Research methodology 

As a starting point of my research I thoroughly investigated the related work in the theme of 

reproducibility and the provenance which is the most significant requirements of the 

reproducibility. According to the reviewed literature I gave a taxonomy about dependencies of 

the scientific workflows and about the most necessary datasets required to reproduce a scientific 

workflow. 

Based on this investigation I formalized the problem and set out the mathematical model of the 

reproducibility analysis. First, I introduced the necessary terms and definitions according to the 

reproducible job and workflow which serve as a building blocks to determine and prove the 

statements and the methods. With help of the mathematical statistics tool, I analyzed the nature 
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of the descriptors based on a sample set originating from the previous executions of the workflow 

to find statistical approximation tools to describe the relation between the descriptors and the 

results. Additionally, I introduced two metrics of the reproducibility based on the probability 

theory, the Average Reproducibility Cost (ARC) and the Non-reproducibility Probability (NRP) 

and defined a calculation method to calculate them in polynomial time. The universal 

approximation capabilities of neural networks have been well documented by several papers 

(Hornik & al., 1989), (Hornik & al., 1990), (Hornik, 1991) and I applied the Radial Basis Function 

(RBF) networks to evaluate the ARC in case if the exact calculation is not possible. To evaluate 

the NRP the Chernoff’s inequality (Bucklew & Sadowsky, 1993) was applied based on Large 

Deviation Theory which concerns the asymptotic behavior of remote tails of sequences of 

probability distributions. 

To perform the statistical calculations and prove the assumptions and the results, I used the 

MatLab and Excel applications. 

 

1.5 Thesis structure 

This dissertation is organized as follows: In the next section (2) the background of the scientific 

workflows is presented, their representation, life cycles and the most relevant Scientific Workflow 

Management Systems are described with special emphasis of their provenance and reproducibility 

support. Also in this section the WS-PGARDE/gUSE system is introduced since the 

implementation of this investigation is planned into it. In section 3 I deal with the requirements 

of the reproducibility and seven datasets are defined to establish the basis of this investigation, 

namely the descriptor-space which contains all the necessary information to reproduce a scientific 

workflow. Section 4 represents our mathematical model of the reproducibility analysis with the 

necessary definitions and terms. I introduce two ultimate characteristics of the descriptors, the 

theoretical and the empirical decay-parameter which help to analyze the behavior of the 

descriptors and the relation with the job results. In section 5 I deal with the effect of the changing 

descriptor, how many jobs are infected by the effect and the evaluability of the deviation of the 

result. Section 6 contains the probability investigation of the workflows and a method is presented 

to calculate the theoretical and the empirical probability of reproducibility. In section 7 I introduce 

the metrics of the reproducibility, ARC and NRP and two algorithms are determined to evaluate 

the metrics in polynomial time. In section 8 the classification of the scientific workflows is 

presented according to the reproducibility. Finally, I the results are concluded, the theses are 

described and I reveals some research direction along which this PHD research can be developed.  
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2 STATE OF THE ART 

 

 

 

In this section the background of the scientific workflows, their natures, representation and 

lifecycle are presented, in addition a literature survey is given about the most relevant scientific 

workflow management systems (SWfMS) and their support of the reproducibility to highlight the 

focus and the background of this research. 

 

2.1 Scientific Workflows 

Applying scientific workflow to perform in-silico experiment is a more and more prevalent 

solution among the scientist’s communities. Scientific workflow is concerned  with  the  

automation  of  scientific processes in which jobs are structured  based  on their control  and data  

dependencies. In many research field, such as high-energy physics, gravitational-wave physics, 

geophysics, astronomy, seismology, meteorology and bioinformatics, these in-silico experiments 

consist of series of particularly data and compute intensive jobs. In order to support complex 

scientific experiments, distributed resources such as computational devices, data, applications and 

scientific instruments need to be orchestrated while managing workflow operations within 

super/hypercomputers, grids, clusters or clouds (Gil & al, 2006) (Barker & Hemet, 2007). 

 

2.1.1 Scientific Workflow Life Cycle 

The various phases and steps associated with planning, executing, and analyzing scientific 

workflows comprise the scientific workflow life cycle (WFLC) (Deelman & Gil, 2006), (Gil & 

al, 2007) (Deelman & al, 2009). The following phases are largely supported by existing workflow 

systems using a wide variety of approaches and techniques. (Ludäscher & al, Scientific process 

automation and workflow management; Scientific Data Management: Challenges, Existing 

Technology, and Deployment, 2009)  

Hypothesis Generation (Modification): Development of a scientific workflow usually starts with 

hypothesis generation. Scientists working on a problem, gather information, data and 

requirements about the related issues to make assumptions about a scientific process. From these 

data they build a specification which can be modified later during the whole lifecycle, or after the 

result analysis. 

Experiment / Workflow Design: During the experiment an actual workflow is assembled based on 

this specification. This phase is the workflow development or design phase, which differs from 
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general programming in many ways. It is usually the composition and configuration of a special-

purpose workflow from pre-existing, more general-purpose components, sub-workflows, and 

services. During workflow composition, the workflow developer either creates a new workflow 

by modifying an existing one or composes a new workflow from scratch using components and 

sub workflows obtained from a repository. In contrast to the business workflow world, where 

standards have been developed over the years (e.g., WS-BPEL 2.0 (Jordan, 2007)), scientific 

workflow systems tend to use a language set of internal languages and exchange formats (e.g., 

SCUFL (Taverna, 2009), GPEL (Wang, 2005), and MOML (Brooks, 2008)). Reasons for this 

diversity include the wide range of computation models used in scientific workflows and the 

initial focus of development efforts on scientist oriented functionality rather than standardization. 

Instantiation: Once the workflow description is constructed, scientific workflow systems often 

provide various functions prior to execution. These functions may include workflow validation, 

resource allocation, scheduling, optimization, parameter binding and configuration. Workflow 

mapping is sometimes used to refer to optimization and scheduling decisions made during this 

phase. 

Execution: After the workflow instantiation, the workflow can be executed. During execution, a 

workflow system may record provenance information (data and process history) as well as 

provide real-time monitoring and failover functions. Depending on the system, provenance 

information generally involves the recording of the steps that were invoked during workflow 

execution, the data consumed and produced by each step, a set of data dependencies stating which 

data was used to derive other data, the parameter settings used for each step, and so on. If 

workflow migration or adaptation (i.e.: change the workflow model or the running instance) is 

enabled or supported during execution (e.g., due to the changing environment), the evolution of 

such a dynamic workflow may be recorded as well to support subsequent event handling. 

Result Analysis: After workflow execution, scientists often need to inspect and interpret workflow 

results. This involves evaluation of the results, examination of workflow execution traces, 

workflow debugging and performance analysis. 

Data and workflow products can be published and shared. As workflows and data products are 

committed to a shared repository, new iterations of the workflow life cycle can begin. 

 

2.1.2 Scientific workflow representation 

At the most abstract level, essentially all workflows are a series of functional units, whether they 

are components, jobs or services, and the dependencies between them which define the order in 

which the units must be executed. The most common representation is the directed graph, either 

acyclic (DAG) or the less used cyclic (DCG), which allow loops (Deelman & al, 2009). This latter 
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one represents the recursive scientific workflow. In this dissertation, I deal with the scientific 

workflow represented by DAG. 

The nodes represent the jobs (denoted by Ji), which includes the experimental computations based 

on the input data accessed through their input ports. In addition, these jobs can product output 

data, which can be forwarded through their output ports to the input port of the next job. The 

edges of a DAG represent the dataflow between the jobs (Figure 1.). Figure 2 shows a more 

complex workflow downloaded from the myExperiment to demonstrate a typical scientific 

workflow. 

 

1. Figure: A simple scientific workflow example with four jobs (J1, J2, J3, J4) in gUSE 

 

 

2. Figure: A scientific workflow example from www.myexperiment.org 
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In this research, the scientific workflows represented by a directed acyclic graph denoted by G(V, 

E), where V denotes the set of jobs and E denotes the dataflow between jobs. 

𝑉 = {𝐽1, … , 𝐽𝑁}, where 𝑁 ∈ ℕ; the number of the job of a given workflow 

𝐸 = {(𝐽𝑖, 𝐽𝑗) ∈ 𝑉 × 𝑉|𝑖 ∈ [1, 2, …𝑁 − 1]; 𝑗 ∈ [2, 3, … ,𝑁] 𝑎𝑛𝑑 𝑖 ≠ 𝑗} 

 

2.2 Scientific Workflows Management system 

Scientific workflow systems are used to develop complex scientific applications by connecting 

different algorithms to each other. Such organization of huge computational and data intensive 

algorithms aim to provide user friendly, end-to-end solution for scientists (Talia, 2013). The 

following requirements should be met by the Scientific Workflow Management System 

(SWfMS): 

 

 provide an easy-to-use environment for individual application scientists themselves to 

create their own workflows 

 provide interactive tools for the scientists enabling them to execute their workflows and 

view their results in real-time 

 simplify the process of sharing and reusing workflows among the scientist community 

 enable scientists to track the provenance of the workflow execution results and the 

workflow creation steps. 

 

Yu et al (Yu & Buyya, A Taxonomy of Workflow Management Systems for Grid Computing, 

2005) , (Yu & Buyya, 2005) gave a detailed taxonomy about the SWfMS for in which they 

characterized and classified approaches of scientific workflow systems in the   context of Grid 

computing. It consists of four elements of a SWfMS: (a)  workflow  design,  (b)  workflow 

scheduling,  (c)  fault  tolerance  and  (d)  data  movement. From the point of view of the workflow 

design the systems can be categorized by workflow structure (DAG and non-DAG), workflow 

specification (abstract, concrete) and workflow composition (user-directed, automatic). The 

workflow scheduling can be classified from the perspective of architecture (centralized, 

hierarchical and decentralized), decision making (local, global), planning scheme (static, 

dynamic) and strategies (performance driven, market-driven and trust-driven). The fault tolerance 

can be performed at task level and workflow level and the data movement can be automatic and 

user-directed. 

In the next I introduce the most relevant SWfMS with special emphasis on their provenance and 

reproducibility support. The WS-PGRADE/gUSE is presented in more detailed manner since the 
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methods and the processes of the reproducibility analysis written in this dissertation will be 

implemented in it. 

gUSE (Balaskó & al., 2013) (grid and cloud user support environment) is a well-known and 

permanently improving open source science gateway (SG) framework developed by Laboratory 

of Parallel and Distributed Systems (LPDS) that enables users the convenient and easy access to 

grid and cloud infrastructures. It has been developed to support a large variety of user 

communities. It provides a generic purpose, workflow-oriented graphical user interface to create 

and run workflows on various Distributed Computing Infrastructures (DCIs) including clusters, 

grids, desktop grids and clouds. [ (gUSE)] The WS-PGRADE Portal [ (PGRADE)] is a web based 

front end of the gUSE infrastructure. The structure of WS-PGRADE workflows are represented 

by DAG. The nodes of the graph, namely jobs are the smallest units of a workflow. They represent 

a single algorithm, a stand-alone program or a web-service call to be executed. Ports represent 

input and output connectors of the given job node. Directed edges of the graph represent data 

dependency (and corresponding file transfer) among the workflow nodes. This abstract workflow 

can be used in the second step to generate various concrete workflows by configuring detailed 

properties (first of all the executable, the input/output files where needed and the target DCI) of 

the nodes representing the atomic execution units of the workflow. 

A job may be executed if there is a proper data (or dataset in case of a collector port) at each of 

its input ports and there is no prohibiting programmed condition excluding the execution of the 

job. The execution of a workflow instance is data driven forced by the graph structure: A node 

will be activated (the associated job submitted or the associated service called) when the required 

input data elements (usually file, or set of files) become available at each input port of the node.  

In the WS-PGRADE/gUSE system with help of the “RESCUE” feature the user has the possibility 

to re-execute a job which does not own all the necessary inputs but the provenance data is 

available from the previous executions. 

When submitting a job which has the identifier originated from the previous execution, the 

workflow instance (WFI) queries the description file of the workflow. This XML file includes the 

jobs belonging to the workflow. Their input and output ports, their relations and the identifiers of 

the job instances executed previously with their outputs. After processing the XML file, a 

workflow model is created in the memory representing the given workflow during its execution. 

At this point the Runtime Engine (RE) takes over the control to determine the “ready to run” jobs 

then it examines whether these jobs have already stored outputs originated from previous 

executions. Concerning the answer the RE puts the job in the input or in the output queue. (Fig. 

3) 
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3. Figure Operation of the Rescue feature in the WS-PGRADE/gUSE system 

 

Taverna (Oinn & al., 2006) (Oinn & al, 2004) is an open-source Java-based workflow 

management system developed at the University of Manchester. Taverna supports on one hand 

the life sciences community (biology, chemistry, and medicine) to design and execute scientific 

workflows on the other hand the in-silico experiments. It can invoke any web service by simply 

providing the URL of its WSDL document which is very important in allowing users of Taverna 

to reuse code that is available on the internet. Therefore, the system is open to third-part legacy 

code by providing interoperability with web services. In addition, Taverna use the 

myExperiment platform for sharing workflows; (Goble & al., 2010). 

A disadvantage of integrating third-party Web Services is the variable reliability of those 

services. If services are frequently unavailable, or if there are changes to service 

interfaces, workflows will not function correctly on occasion of re-execution 

(Wolstencroft, 2013). 

The Taverna Provenance suite records service invocations, intermediate and final workflow 

results and exports provenance in the Open Provenance Model format [ (OPM)] and the W3C 

PROV [ (PROV)] model. 

 

Galaxy (Goecks, 2010), (Afgan, 2016) Galaxy is a web-based genomic workbench that enables 

users to perform computational analyses of genomic data. The public Galaxy service makes 

analysis tools, genomic data, tutorial demonstrations, persistent workspaces, and publication 

services available to any scientist that has access to the Internet. Galaxy automatically 

generates metadata for each analysis step. Galaxy's metadata includes every piece of 

information necessary to track provenance and ensure repeatability of that step: input 
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datasets, tools used, parameter values, and output datasets. Galaxy groups a series of 

analysis steps into a history, and users can create, copy, and version histories. 

 

Triana (Taylor, 2004) (Taylor J. , 2005) is a Java-based scientific workflow system, developed at 

the Cardiff University, which combines a visual interface with data analysis tools. It can connect 

heterogeneous tools (e.g., web services, Java units, and JXTA services) in one workflow. Triana 

comes with a wide variety of built-in tools for signal-analysis, image manipulation, desktop 

publishing, and so forth and has the ability for users to easily integrate their own tools. 

 

Pegasus (Deelman, 2005) is developed at the University of Southern California, it includes a set 

of technologies to execute scientific workflows in a number of different environments (desktops, 

clusters, Grids, Clouds). Pegasus has been used in several scientific areas including 

bioinformatics, astronomy, earthquake science, gravitational wave physics, and ocean science. It 

consists of three main components: the mapper, which builds an executable workflow based on 

an abstract workflow; the Execution engine, which executes in appropriate order the jobs; and the 

job manager, which is in charge of managing single workflow jobs. Wings (Gil, 2011), (Kim, 

2008) providing automatic workflow validation and provenance frame work. It uses semantic 

representations to reason about application-level constraints, generating not only a valid workflow 

but also detailed application-level metadata and provenance information for new workflow data 

products. Pegasus maps and restructures the workflow to make its execution efficient, creating 

provenance information that relates the final executed workflow to the original workflow 

specification. 

 

Kepler (Altintas, 2004) is a Java-based open source software framework providing a graphical 

user interface and a run-time engine that can execute workflows either from within the graphical 

interface or from a command line. It is developed and maintained by a team consisting of several 

key institutions at the University of California and has been used to design and execute various 

workflows in biology, ecology, geology, chemistry, and astrophysics. The provenance framework 

of Kepler (Bowers, 2008), (Altintas I. , 2006) keep track of all aspects of provenance (workflow 

evolution, data and process provenance). To enable provenance collection, it provides a 

Provenance Recorder (PR) component In order to capture run-time information event listener 

interfaces are implemented and when something interesting happens, the event listeners registered 

and take the appropriate action. 

 



25 

 

2.3 Provenance 

Provenance data that carries information about the source, origin and processes that are involved 

in producing data play important role in reproducibility and knowledge sharing in the scientist 

community. Concerning provenance data lot of issues arise: during which workflow lifecycle 

phase data have to be captured, what kind of data and in what kind of structure need to be captured, 

captured data how can be stored, queried and analyzed effectively or who, why and when will use 

the captured information. The runtime provenance can be utilized in many area, for example fault 

tolerance, SWfMS optimization and workflow control. 

There are two distinct forms of provenance (Clifford & al., 2008) (Davidson & Freire, 2008) 

(Freire & al., 2014),: prospective and retrospective. Prospective provenance captures the 

specification of a computational task (i.e., a workflow)—it corresponds to  the steps  that  need  

to  be  followed (or  a  recipe)  to  generate  a data product or class of data products. 

Retrospective provenance captures the steps that were executed as well as information about the 

execution environment used to derive a specific data product— a detailed log of the execution of 

a computational task. (J.Freire & al., 2011), (Freire & al., 2012) 

Despite the efforts on building a standard Open Provenance Model [ (OPM)], provenance is 

tightly coupled to SWfMS. Thus scientific workflow provenance concepts, representation and 

mechanisms are very heterogeneous, difficult to integrate and dependent on the SWfMS 

(Davidson & Freire, 2008). To help comparing, integrating and analyzing scientific workflow 

provenance, Cruz in (Cruz & al., 2009) presents a taxonomy about provenance characteristics. 

PROV-man is an easily deployable implementation of the W3C standardized PROV. The PROV 

gives recommendations on the data model and defines various aspects that are necessary to share 

provenance data between heterogeneous systems. The PROV-man framework consists of an 

optimized data model based on a relational database system (DBMS) and an API that can be 

adjusted to several systems (Benabdelkader, 2014), (PROV) (Benabdelkader, 2011) (D-PROV) 

Costa et al. in their paper (Costa & al., 2013) investigated the usefulness of runtime generated 

provenance data. They found that provenance data can be useful for failure handling, adaptive 

scheduling and workflow monitoring. Based on PROV recommendation they created their own 

data modelling structure. 

The Karma provenance framework (Simmhan & al., 2006) provides generic solution for 

collecting provenance for heterogeneous workflow environments.  

As an antecedent of this research four different levels of provenance data were defined because 

during the execution of a workflow four components can change that would affect the 

reproducibility: the infrastructure, the environment, the data and the workflow model. [7-B] 
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1. The first is a system level provenance, which stores the type of infrastructure, the 

variables of the system and the timing parameters. At this level happens the storing the 

details of the mapping process and as a result, we can answer the question of what, where, 

when and how long has been executed. This information supports the portability of the 

workflow which is a crucial requirement of reproducibility. 

2. The environmental provenance stores the actual execution details which includes the 

operating system properties (identity, version, updates, etc.), the system calls the used 

libraries and the code interpreter properties. The execution of a workflow may rely on a 

particular local execution environment, for example, a local R server or a specific version 

of workflow execution software, which also has to be captured as provenance data or 

virtual machine snapshot. 

3. The third category is data provenance. In the literature, the provenance often refers to 

data provenance, which deals with the lineage of a data product or with origin of a result. 

With this data provenance, we can track the way of the results and dependency between 

the partial results. This information can support the visualization, the deep and complete 

troubleshooting of the experimental model, the proving of the experiment but first of all 

the reproducibility. In addition, in one of our previous paper [B-10] we investigated the 

possibility and the need of user steering. We found that some parameters, filter criteria 

and input data set need to be modified during execution, which rely on data provenance. 

4. The last provenance level tracks the modifications of the workflow model. The scientist 

during the workflow lifecycle often performs minor changes, which can be 

undocumented and later it is difficult to identify or restore. This phenomenon is usually 

referred as workflow evolution. Provenance data collected at this level can support the 

workflow versioning.  

This structured provenance information of a workflow can support reproducibility at different 

levels if it meets the requirements of independency. In addition, extra provenance information 

can be stored in that cases, in which however the workflow contains some dependencies but these 

dependencies can be eliminated with usage of extra resources. 

 

2.4 Reproducibility 

 

The researchers dealing with the reproducibility of scientific workflows have to approach this 

issue from two different aspects. First, the requirements of the reproducibility have to be 

investigated, analyzed and collected. Secondly, techniques and tools have to be developed and 

implemented to help the scientist in creating reproducible workflows. 
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Researchers of this field agree on the importance of the careful design (Roure & al, 2011), 

(Mesirov, 2010), (Missier & al., 2013), (Peng & al., 2011), (Woodman & al.) which on one hand, 

it means the increased robustness of the scientific code, such as  modular design and detailed 

description about the workflow, about the input/output data examples and consequent annotations 

(Davison, 2012). On the other hand, the careful design includes the careful usage of volatile third 

party or special local services. 

Groth et al. (Groth & al., 2009) based on several use cases analyzed the characteristics of 

applications used by workflows and listed seven requirements in order to enable the 

reproducibility of results and the determination of provenance.  In addition, they showed that a 

combination of VM technology for partial workflow re-run along with provenance can be useful 

in certain cases to promote reproducibility.  

Davison (Davison, 2012) investigated which provenance data have to be captured in order to 

reproduce the workflow. He listed six vital areas such as hardware platform, operating system 

identity and version, input and output data etc.  

Zhao et al. (Zhao & al, 2012) in their paper investigated the cause of the so called workflow decay. 

They examined 92 Taverna workflows submitted in the period between 2007 and 2012 and found 

four major causes: 1. Missing volatile third party resources 2. Missing example data 3. Missing 

execution environment (requirement of special local services) and 4. Insufficient descriptions 

about workflows. Hettne et al. (Hettne & al, 2012) in their papers listed ten best practices to 

prevent the workflow decay.  

 

2.4.1 Techniques and tools 

There are available tools existing, VisTrail, ReproZip or PROB (Chirigati, D, & Freire, 2013), 

(Freire & al., 2014), (Korolev & al., 2014) which allow the researcher and the scientist to create 

reproducible workflows. With the help of VisTrail (Freire & al., 2014), (Koop & al, 2013) 

reproducible paper can be created, which includes not only the description of scientific 

experiment, but all the links for input data, applications and visualized output. These links always 

harmonize with the actually applied input data, filter or other parameters.  ReproZip (Chirigati, 

D, & Freire, 2013) is another tool, which stitches together the detailed provenance information 

and the environmental parameters into a self-contained reproducible package. 

The Research Object (RO) approach (Bechhofer & al, 2010), (Belhajjame & al., 2012) is a new 

direction in this research field. RO defines an extendable model, which aggregates a number of 

resources in a core or unit. Namely a workflow template; workflow runs obtained by enacting the 

workflow template; other artifacts which can be of different kinds; annotations describing the 

aforementioned elements and their relationships. Accordingly to the RO, the authors in 
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(Belhajjame, 2015) also investigate the requirements of the reproducibility and the required 

information necessary to achieve it. They created ontologies, which help to uniform these data. 

These ontologies can help our work and give us a basis to perform our reproducibility analysis 

and make the workflows reproducible despite their dependencies. 

Piccolo et al (Piccolo & Frampton, 2015) collected the tools and techniques and proposed six 

strategies which can help the scientist to create reproducible scientific workflows. 

Santana-Perez et al (Santana-Perez & Perez-Hernandez, 2015) proposed an alternative approach 

to reproduce scientific workflows which focused on the equipment of a computational 

experiment. They have developed an infrastructure-aware approach for computational execution 

environment conservation and reproducibility based on documenting the components of the 

infrastructure. 

Gesing at al. in (Gesing & al., 2014) describe the approach targeting various workflow systems 

and building a single user interface for editing and monitoring workflows under consideration of 

aspects such as optimization and provenance of data. Their goal is to ease the use of workflows 

for scientists and other researchers. They designed a new user interface and its supporting 

infrastructure which makes it possible to discover existing workflows, modifying them as 

necessary, and to execute them in a flexible, scalable manner on diverse underlying workflow 

engines. 

Bioconductor (Gentleman, 2004) and similar platforms, such as BioPerl (Stajich, 2002) and 

Biopython (Chapman & Chang, 2000) represent an approach to reproducibility that uses libraries 

and scripts built on top of a fully featured programming language. Because Bioconductor is built 

directly on top of a fully featured programming language, it provides flexibility. In the same time 

this advantage can be exploited by only users which has programming experience. Bioconductor 

lacks automatic provenance tracking or a simple sharing model. 
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3 REQUIREMENTS OF THE REPRODUCIBILITY 

 

 

 

The implementation of the reproducible and reusable scientific workflows is not an easy task and 

many obstacles have to be removed toward the goal. Three main components play important role 

in the process: 

 The SWfMS should support the scientist with automatic provenance data collection about 

the environment of execution and about the data production process. I determined the four 

levels of the provenance (subsection 2.3), and the different utilizations of the captured data 

in the different levels. Capturing provenance data during the running time of the workflow 

is crucial to create reproducible workflows. 

 The scientists should carefully design the workflow (for example with special attention for 

modularity and robustness of the code (Davison, 2012) and give a description about the 

operation of experiment, the input and output data, even they should show samples. (Zhao 

& al, 2012) (Hettne & al, 2012). 

 The dependencies of the workflow execution should be eliminated. A workflow execution 

may depend on volatile third party resources and services; special hardware or software 

elements which are available only in a few and special infrastructure; deadlines, which 

cannot be accomplished on every infrastructure or it can be based on non-deterministic 

computation which apply for example random generated values. 

 

3.1 Dependencies 

The execution of a workflow may require many resources, such as third party or local services, 

database services or even special hardware infrastructure. These resources are not constantly 

available, they can change their location, their access condition or the provided services from time 

to time. These conditions, which we refer to as dependencies, significantly complicate the chances 

of reproducibility and repeatability. We have classified the dependencies into three categories: 

infrastructural dependency, data dependency and job execution dependency as shown in table 1. 

[7-B] 
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1. Table Categories of workflow execution dependencies 

 

By infrastructural dependency I mean special hardware requirements, which are available solely 

on the local system or not evidently provided by other systems, such a special processing unit 

(GPU, GPGPU). 

In the group of data dependency, we listed the cases which does not guarantee the accessibility of 

the input dataset in another time interval. The causes can be that the data is provided by a third 

party or special local services. Occasionally the problem origins from the continuously changing 

and updated database that stores the input data. These changes are impossible to restore from 

provenance data. 

The job execution can also depend on a third party or local services, but the main problem arises 

when the job execution is not deterministic. The operation of GPU or GPGPU are based on 

random processes consequently the results of re-executions may differ. Moreover, if the 

dependency factor is too high between the jobs, the reproducibility is harder to guarantee. 

These conditions are all necessary to perform reproducibility of workflow execution. In section 5 

we give a mathematical formula to determine the rate of reproducibility of a given workflow. 

With help of this measurement the scientist can see how much part of the workflow can be 

reproducible with 100 percent at a later period of time. Knowing this information, the scientist 

can decide to apply for example an extra provenance policy with extra resource requirement, 

which stores the whole third party data or apply virtual machine towards the reproducibility. 

 

3.2 Datasets 

To support and facilitate the work of the scientist by the SWfMS to create a well-documented and 

reproducible scientific workflow. The basic idea of our work is given by MIAME which describes 

the Minimum Information About a Microarray Experiment that is needed to enable the 

interpretation of the results of the experiment unambiguously and potentially to reproduce the 

experiment (MIAME) (Brazma & al, 2011). We collected and categorized the minimal sufficient 

information into seven different datasets, which target different problems to solve. Accordingly, 

 

infrastructural data job execution 

  spec. hardware 

demand 

 changing 

 TP demand 

 local spec demand 

 deterministic 

 dependency between 

jobs  

 Third Party demand 

 Local spec demand 
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one of the types of data serves the documentation of experiment and helps to share it in a scientific 

workflow repository. Other type of data describes the data dependency and the process of data 

product and it is necessary for the proving and verification of the workflow. There is data which is 

needed to the repeatability or reproducibility of workflows in different infrastructure and 

environment. Finally, we collected information to help identifying the critical points of the 

execution which reduce the possibility of reproducibility or even arrest it [6-B]. 

The datasets are created in the different phases of the scientific workflow lifecycle (Ludäscher & 

al, 2009) and originate from three different sources. The scientist can give information when to 

design the abstract model, when to get the results or after the results are published. Other 

information can be gained from provenance database and there is information which can be 

generated automatically by the system. 

With the help of our proposal we wish to solve the following problems: 

• how to create a detailed description about scientific experiment; 

• which minimal information is necessary to be collected from the scientists about their 

experiments to achieve a reproducible workflow; 

• which minimal information is necessary from provenance to reproduce the experiments; 

• which data and information can be generated automatically by the SWfMS in order to 

implement a reproducible scientific workflow; 

• which jobs at which point do not meet the requirements of independencies. 

If the goal is to repeat or reproduce the workflow execution on a different infrastructure, we have 

to store the descriptors and parameters of the infrastructure, the middleware and the operating 

systems in details too.  

I defined seven types of datasets which contain the necessary and sufficient information about the 

experiment. An overview table summarizes the seven datasets and shows some examples about 

the stored data.  (Table 1.)  Data collected into different datasets target different problems to solve.  

One part of the collected information of these datasets originates from the user, who creates the 

workflow. In the design phase the user establishes the abstract workflow model, defines the jobs, 

determines the input/output ports and specifies the input data and so on. Simultaneously, in order 

to achieve the reproducibility of workflow the user has to create the appropriate documentation 

about the experiment in a specific way, form and order. Such information is for example some 

personal data (name, date, etc.), the description of experiment (title, topic, goal, etc.), the samples 

about the necessary input, partial and output data, special hardware, application or service 

requirements and so on. 
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There are provenance data too in the datasets which have to be captured by the SWfMS in running 

time. For example, the version number and the variation of a given workflow, the number of 

submissions, the used data or parameter set during the previous executions, the makespan of 

execution or the number and types of failures occurred in running time. Information like these can 

be also crucial when the results of experiment have to be reproduced in a later time or in a different 

environment. 

The third type of information is generated automatically by the system after the workflow is 

submitted, in the instantiation phase of the workflow lifecycle. This information can be obtained 

from the users too, but simpler, faster and even more precise and trusty if it is automated (for 

example workflow and job IDs, number of ports etc.). There exists such information too, which is 

created manually by the user at the beginning, but since the datasets and the database continuously 

grow and more and more data are collected, the system could “learn” certain information and fill 

in automatically the appropriate entries of datasets. 

 

Scientist fills in in the 

design phase or before 

submit the workflow 

filled in by Provenance 

in the execution phase 

Scientist fill out after 

the execution 

general description of 

experiment 

title, topic, author(s), 

date, institute, 

laboratory, comment 

number of ex-

submission, number of 

failure, duration of 

execution, statistical data 

based on previous 

execution 

publication details, 

experiences, 

comment 

detailed 

environmental 

description of 

execution 

infrastructure, OS, 

middleware, volume of 

resources, number of 

VM 

start/end time of 

execution, statistical data 

based on the actual 

execution, resource 

usage (CPU, RAM, 

DISK, stb), 

 

detailed description of 

workflow 

abstract wf (DAG), wf 

version, used parameter 

set, requirements 

(resources, libraries, 

applications with 

version number), place 

of input/output data files 

or storage), types of 

input/output data, 
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constraints, deadlines, 

dependencies 

research field specific 

information 
   

description of task-1 

… 

description of task-N 

number of input/output 

ports, input/output data, 

types of input/output 

data, volume of 

input/output data, 

example input/output 

data, place of 

input/output data, 

necessary application, 

version number of app., 

dependencies, constrain 

  

2. Table Summary table about the datasets 

General Description of Workflow (GDW). 

This dataset contains general information about the scientific experiment such as title; author’s 

name and its profile; the date; the institute’s name and address, where the experiment is conducted 

and so on. In addition, general description of the experiment and data samples is also very 

important to be documented and stored. Most of the information originated from the users and it is 

necessary to create well-documented workflows, which will be reusable and understandable even 

after years. Certain entries are created in the design phase and others after the execution or later 

(for example publication details). However there exist information which is generated 

automatically by the SWfMS, such as Experiment ID, which is a unique identifier (expID) referred 

to the given workflow. 

 

Detailed Description of Workflow (DDW) 

The specification of the workflow is stored in the DDW. The experiment is modelled with an 

acyclic directed graph (DAG) (figure 1.) which is the most important part of this documentation in 

a graphical manner too. In addition, detailed information can be found in this dataset about the 

workflow (version number, parent workflows, required parameter set), the input/output data 

(number, type, amount, location, access method) the optional constraints or deadlines or other 

requirements. Automatically generated information is for example the number of input/output 

ports, the number of jobs, the number of entry/exit tasks 
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Detailed Description of Infrastructure (DDI) 

If the goal is to repeat or reproduce the workflow execution on a different infrastructure, we have 

to store the descriptors and parameters of the infrastructure, the middleware and the operating 

systems in details too.  

 

Detailed Description of Environment (DDE). 

If the goal is to repeat or reproduce the workflow execution in a later time, we have to store the 

detailed environmental parameters. In this dataset, the following data can be found: the 

environmental variables and parameters; the circumstances of the execution; the state descriptors 

of the used resources; the time stamps; the required libraries, applications, data and services (with 

their exhaustive descriptions such as location, access method, version number etc.). This 

information can be captured during execution and can be stored as provenance data in a provenance 

database. The fields of this dataset filled in from this database. 

 

3.3 Datasets for jobs 

Every job has two datasets, the Detailed Description of Job (DDJ) and the Detailed Description of 

Environment of Job (DDEJ). Data in DDJ was collected based on two aspects: the first one helps 

understand the operation of a given job. The second one helps to follow the computational process 

and the partial or final results. DDEJ stores information about the environmental parameters of the 

execution, which serves the reproducibility. The number of DDJs (and also DDEJ) is equal to the 

number of jobs in the whole workflow. 

Detailed Description of Job (DDJ) 

The jobs in the abstract workflow model are organized into levels. The predecessors of any job are 

in lower level, the successors of a job are in upper level. This precedency appears in the naming 

convention of the job ID, which is referred to the exp ID and the sequence number of a level and 

the sequence number of a job in the given level. The entry job has not any input port or predecessor 

job, the exit job has not any output port or successor job. Also in this case, certain entries originate 

from the user (general description, job’s name, sample input/output data, location and access 

method of input/output data, special hardware/application/service requirements etc.) and others are 

generated automatically by the system (job ID, predecessor and successor jobs, number of 

input/output ports, resource requirements).  

Detailed Description of Environment of Job (DDEJ) 
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Provenance data can be used to fill in the most fields, such as type and number of failures; 

failure rate; start/end time of execution, waiting time, used resources, statistical data about previous 

executions and so on. The rest of necessary information can be generated automatically by the 

SWfMS such as type of code, compiler, resource requirements, virtual machine requirements and 

its state descriptors and so on. 

 

3.4 Dependency dataset 

In the instantiation phase of the workflow lifecycle, the SWfMS can examine the dependencies 

of the submitted workflow. With help of the given results together with the information gained 

from the user the system can create a so called Dependency Dataset, which will store all the jobs 

which depend on any external circumstances and may not be reproducible.  

 

3.5 Conclusion 

In this section, we investigated the necessary and sufficient information about scientific 

workflows to make them reproducible. We gave a proposal how to create the documentation of 

the scientific experiment to achieve this goal. The documentation consists of different datasets 

(related to the whole workflow and to the particular jobs) which are filled in from tree different 

sources: the scientist, the system and the provenance database. These datasets contain among 

others detailed information about the operation of the experiment; description and samples about 

input, partial and output data; and environmental descriptors. In addition, we specified another 

dataset about jobs, which depend on external conditions and can prevent the reproducibility or 

reusability of workflow. These datasets are necessary to create the so called descriptor-space 

introduced in the next section. 
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4 THE REPRODUCIBILITY ANALYSIS  

 

 

 

In this section based on the datasets mentioned in the previous section I introduce the term of 

descriptor-space providing the basis of the reproducibility analysis. With help of the descriptor-

space I give the definitions of reproducible job and workflows. In addition, I also introduce the 

term of decay-parameter to determine the behavior of the changing descriptors. Analyzing these 

changes, methods can be given to handle or eliminate the dependencies generated by them. 

 

4.1 The different levels of the re-execution 

The re-execution of a scientific workflow may have different purposes and goals and the different 

cases can require different conditions to perform this progress. Sometimes the exact repetition of 

the workflow is adequate for system developers to analyze the system and to develop a new one 

while another time the reproducing is necessary for the scientists to judge their scientific claims. 

Additionally, during the way which the scientists can take from designing a scientific workflow 

to verifying it, they pass the different phases of the re-execution from the repetition to the 

reproduction. Conversely, I separated the four goals of the re-execution: repetition, variation, 

repetition in different environment (portability) and reproduction (Table 3).  

 

To re-execute a single job of the scientific workflow, all the parameters must be stored such as 

inputs, code variables, program settings, environmental parameters etc. which unambiguously 

determine the job execution. This have to be done for every job of the workflow. The parameters 

needed to re-execution I call descriptors and they can be originated directly from the users or they 

can be collected from provenance information and system logs. At the first execution of a 

 

Level Meaning 

repeatability 
The workflow can be successfully re-executed using 

the original artifacts, data and conditions. 

variability 
The workflow can be successfully re-executed using 
the original artifacts, data and conditions., but with 

some measured modification of a parameter 

portability 
The workflow can be successfully re-executed using 
the original data and conditions but different artifacts. 

reproducibility 
The workflow can be successfully re-executed, 

independently from the scientist 

3. Table The different levels of the re-execution  
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scientific workflows the value of the descriptors can be stored. Depending on which information 

are provided by the descriptors, they can be categorized into three groups: user specific, 

environmental and operation-related descriptors.  

The user specific descriptors depend on the user such as inputs, variables or parameters of the job, 

the user can directly determine them or they can be captured by the provenance framework of the 

SWfMS. 

The environmental descriptors refer to the parameters and variables of the enacting infrastructure 

such as the operating system with the appropriate version, the type of the CPU, the starting time 

of the job’s running, the used libraries etc.  Generally, they can be originated from the log and/or 

the provenance database. 

The operation related descriptors relate to the operation of the system or reflect to the actual state 

of the system. In the most cases the value of these descriptors continuously change in time making 

the job nondeterministic. One of the examples is the random generated values (RGV). If a job 

based on RGV, this value kept unknown, it is not available nor in the provenance information nor 

in the logs and the result (output) of the job will never be the same. Since every generator is a 

pseudo random generator, knowing operation and the algorithm of the generator, the “random” 

result can be reproduced and the job can be made deterministic. Another way is that the RGV is 

captured and stored by an extra tool (script) developed for this purpose. Operation related 

descriptor can be also a return value of a system calls, which based on the actual time, the actual 

free amount of memory or other actual state of the system. In this cases the only possible solution 

is an extra tool developed for this purpose which can store these values. 

The following figure can illustrate the relation of the different level (Figure 4.) 
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4. Figure The connection of the different levels of re-execution 

 

4.1.1 Repeatability 

Repeatability concerns the exact repetition of a scientific workflow, using the same experimental 

apparatus, the same inputs and settings of the jobs under the same conditions. It is a first step on 

the way toward the reproducibility and verifying the scientific claims. The arising failures during 

achieving the exact repeatability can expose hidden assumption about the experiment or the 

environment. Additionally, in certain research field the repetitions may not be 100% exact, due 

to the statistical variation and the measurement errors. Thus, the repetition is a useful process to 

calculate confidence intervals for the result of the scientific workflows. (Feitelson, 2015) 

According to repeatability, it can be assumed that the most descriptors does not change in time. 

The only decay factor may be found among the operation related descriptors are the random 

generated values, time based values or other system calls that depend on the actual state of the 

system. The user specific and the environmental descriptors are the same at every execution. 

 

4.1.2 Variability 

At the level of the variability the goal is to re-run the scientific workflow on the same 

infrastructure under the same condition with some intentional and measured modification of the 

jobs. The variation is the second step on the way toward the reproducibility. Variation can extend 

the understanding of the scientific experiment or the system being studied. (Feitelson, 2015) 

Performing several variations can provide a distribution of results, and give the possibility to 

 

repeatable workflows 

variable workflows portable workflows reproducible 
workflows 
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investigate whether the original result is in the middle of this distribution or in its tail. In this case, 

besides operation related descriptors user specific descriptors may also change. 

 

4.1.3 Portability 

The portability of a scientific workflow means the ability to run exactly the same workflow in a 

different environment or infrastructure under the same conditions. This is the third step on the 

way toward the reproducibility, and it is also one of the requirements of the reproducibility. 

Failures arising during achieving the portability can show the infrastructure dependent component 

of the execution and can provide important information about the robustness of the original 

scientific workflow. Additionally, it can depend on having a full and detailed descriptions of the 

original experiment which is also crucial to achieve the reproducibility and the reusability. 

According to the descriptors the environmental and the operation related descriptors can change 

while the user specific descriptors are the same. 

 

4.1.4 Reproducibility   

The term reproducibility means the ability for anyone who has access to the description of the 

original experiment and its results to reproduce those results independently, even under the 

different environment, with the goal to verify or reuse the original experimenter’s claims. 

Consequently, a reproducible scientific workflow has the ability of repeatability, variability and 

portability too. It is the basis of sharing and reusing them in scientific workflow repositories. All 

the three type of the descriptor can change in time. 

 

4.2 Non-determinisctic jobs 

Typically, the operation-related descriptors such as random generated values, time-based values, 

etc. make the jobs non-deterministic preventing the reproducibility. This non-deterministic factor 

can be eliminated by operating system level tools developed for this purpose which can capture 

and store the return value of the system-calls. In this way, every job can be made deterministic 

thus hereafter in this dissertation I deal with deterministic jobs only.  
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4.3 The descriptor-space 

Based on the datasets mentioned in the section 3, a so-called descriptor-space can be assigned to 

every job of a scientific workflows. In the datasets, the parameters - related to the descriptions of 

the SWf (sample data, descriptions, author’s name etc.) – can be omitted and hereafter, I assume 

that a detailed and sufficient description is provided by the user about the SWf. which is enough 

to reproduce the workflow from that point of view. Based on the remain parameters a so-called 

descriptor-space can be defined. The theoretical descriptor-space contains all the descriptors 

which are necessary to re-execute the job. The descriptor-space assigned to the job Ji can be 

denoted as follows: 

 𝐷𝐽𝑖 = {𝑑𝑖1, 𝑑𝑖2, … , 𝑑𝑖𝐾𝑖} (4.3.1) 

where 𝑑𝑖𝑗 denotes the j-th descriptor of the job Ji 

During an execution, the descriptors get a concrete value according to a given time t0: 

 𝑑𝑖𝑗(𝑡0) = 𝑣𝑖𝑗
𝑡0 = 𝑣𝑖𝑗

(0)
 (4.3.2) 

In this way, the concrete instantiation of a descriptor-space can be written as follows: 

 𝐷𝑖𝑗
𝑡0 = {𝑣𝑖1

𝑡0 , 𝑣𝑖2
𝑡0 , … , 𝑣𝑖3

𝑡0} (4.3.3) 

With help of the descriptor-space the deterministic scientific workflows and its jobs can be 

interpreted as a multivariate function:  

 𝑆𝑊𝐹(𝑡0, 𝐽1, 𝐽2, … , 𝐽𝑁) = 𝑅 (4.3.4) 

where R is the result (output) of the scientific workflow and N is the number of the jobs and  

 𝐽𝑂𝐵𝑖(𝑡0, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐾𝑖) = 𝐽𝑂𝐵𝑖(𝑡0, 𝐷𝐽𝑖) = 𝑅𝑖
𝑡0, (4.3.5) 

where 𝑖 = 1,… ,𝑁 and 𝐾𝑖 is the number of the descriptors of the job Ji and since the t0 is indicated 

as the variable of the function, for the sake of simpler notation the t0 upper index is omitted on 

𝑣𝑖𝑗
𝑡0. 

In case of the nondeterministic jobs, stochastic function can be used, therefore the R result can be 

evaluated with a given probability. 

 𝐽𝑂𝐵𝑖(𝑡0, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐾𝑖) = 𝑅̂𝑖 (4.3.6) 

 

4.4 Definitions of reproducible job and workflow 

Based on the descriptor-space the definition of a reproducible job can be determined as 
a time-invariant function, therefore 

Definition (D.4.3.1): A job is reproducible if it meets the following requirement: 

𝐽𝑂𝐵𝑖
𝑟𝑒𝑝𝑟𝑜 (𝑑𝑖1(𝑡0), 𝑣𝑖2(𝑡0), … , 𝑑𝑖𝐾𝑖(𝑡0)) = 

𝐽𝑂𝐵𝑖
𝑟𝑒𝑝𝑟𝑜(𝑑𝑖1(𝑡0 + ∆𝑡), 𝑑𝑖2(𝑡0 + ∆𝑡),… , 𝑑𝑖𝐾𝑖(𝑡0 + ∆𝑡)) = 𝑅𝑖 (4.4.1) 
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 for every ∆t.  
 

Notation: Ji
repro;  𝐽𝑂𝐵𝑖

𝑟𝑒𝑝𝑟𝑜
(𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐾𝑖) = 𝑅𝑖 

 

Since the scientific workflows consist of many jobs, the definition of the reproducible job has to 

be extended for the reproducible scientific workflows. In order to give the definition, some other 

term and their indications - which is used in the literature in different way – has to be laid down. 

Definition (D.4.3.2): The job Ji is exit job in the scientific workflow, if ∄𝐽𝑗 ∈ 𝑉: (𝐽𝑖, 𝐽𝑗) ∈ 𝐸, in 

other words if it has not successor job. 

Notation: Jexit 

Definition (D.4.3.3): The job Ji is entry job in the scientific workflow, if ∄𝐽𝑗 ∈ 𝑉: (𝐽𝑗, 𝐽𝑖) ∈ 𝐸, in 

other words if it has not predecessor jobs. 

Notation: Jentry 

Definition (D.4.3.4): The job, which is neither exit nor entry job, it is inside job. 

In my research, I assume that every scientific workflows has at least one entry and one exit job.   

Definition (D.4.3.5): The backward subworkflow of a job Ji is a subgraph of the workflow graph 

where the exit job is Ji and the entry job is the entry job of the original workflow graph. (Figure 

5) 

Notation: 𝑆𝑢𝑏𝑊𝐹𝐽𝑖
𝑏𝑎𝑐𝑘 = 𝐺𝑠𝑢𝑏(𝑉𝑠𝑢𝑏; 𝐸 𝑠𝑢𝑏) 𝑤ℎ𝑒𝑟𝑒 {𝑉𝑠𝑢𝑏} ⊆ {𝑉} , {𝐸𝑠𝑢𝑏} ⊆ {𝐸} 

 

 

5. Figure The backward subworkflow of a job Ji 

 

With the help of these terms the definition of the reproducible job can be extended for scientific 

workflow in the following way: 

Jentry 

Ji 

Jexit 
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Definition (D.4.3.6): The SWF is reproducible, if the exit job and the 𝑆𝑢𝑏𝑊𝐹𝐽𝑒𝑥𝑖𝑡
𝑏𝑎𝑐𝑘 of the exit job 

is reproducible. 

Notation: SWFrepro;   

 

Based on the two definitions (D.4.3.1) and (D.4.3.6) the following statement can be formulated 

and proved:  

Statement (S.3.3.1): If and only if every job of a scientific workflow is reproducible, then the 

scientific workflow is reproducible. 

Let the  𝑆𝑊𝐹(𝐽1, 𝐽2, … , 𝐽𝑁) = 𝑌 

Proof:  

a. If  ∀𝐽𝑖
𝑟𝑒𝑝𝑟𝑜; 𝑖 = 1, 2, … , 𝑁 than the SWFrepro 

SWF is reproducible, if its exit job and sub-workflow of the exit job is reproducible. 

Let us assume that the swf has k < N exit jobs: Since every job is reproducible, especially 

the exit jobs are also reproducible so this condition is fulfilled. 

Let us consider the k sub-workflows of the exit jobs (which may not be disjunctive). This 

k sub-workflow is reproducible, if on one hand its exit jobs are reproducible, on the other 

hand the sub-workflows of these exit jobs are also reproducible. Let us assume, that the k 

sub-workflows have l < N-k exit jobs. Since every job is reproducible, especially these l 

exit jobs are also reproducible and so on. Since the size of the sub-workflows and the 

number of the exit jobs continuously decrease, this algorithm can be continued until there 

are not exit jobs and the sub-workflow of the last exit job consist of only the entry job, 

which is also reproducible. 

QED 

Lemma (L1): If we separate the exit jobs from its sub-workflows and in the sub-workflows 

we also separate the exit jobs from its sub-workflows and this procedure is repeated until 

there are no more exit job and the sub-workflow of the last exit jobs is the entry job, than 

every job in the workflow become exit job at least once. 

Proof : Since every swf has at least one exit job, we have to investigate only the inside jobs. 

Let us investigate an arbitrary inside job Ji, of sub-workflow Gs. 

Since Ji is an inside job, ∃𝐽𝑗 ∈ 𝑉: (𝐽𝑖, 𝐽𝑗) ∈ 𝐸. There are two options 

i. Jj is an exit job. In this case in the sub-workflow Gs
1 we can separate the exit job 

Jj from its sub-workflow Gs
2. In Gs

2 the job Ji is necessarily become an exit job, 

since Gs
2 contains all the paths between the entry job and the predecessor job of 

Jj which actually is Ji, consequently the job Ji in Gs
2 has not successor job, it is 

an exit job. QED  
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ii. Jj is an inside job. If Jj is an inside job, ∃𝐽𝑘 ∈ 𝑉: (𝐽𝑗, 𝐽𝑘) ∈ 𝐸, which is an exit job 

or an inside job. If Jk is an exit job, after two separation step – first Jj then also Ji 

– become exit job. During the series of separation steps every inside job  - 

found along the path from the actual inside and to the exit job  - eventually 

becomes an exit job. QED 

b. If the SWFrepro, than ∀𝐽𝑖
𝑟𝑒𝑝𝑟𝑜; 𝑖 = 1, 2,… ,𝑁 

Since SWF is reproducible, its exit job is also reproducible. We separate the exit job from 

its sub-workflow, and the sub-workflow is also reproducible. Based on the lemma L1, 

during the separation procedure, every job become exit job at least one time which is 

reproducible, consequently every job is reproducible. QED   

 

Corollary (C1): In the case of reproducible scientific workflow every job can be reproduced 

independently. 

Proof: Based on T1, in a reproducible scientific workflow every job is reproducible. A job is 

reproducible based on the definition, if the descriptor-space is known and every decay-parameter 

is 0. If the descriptor space is known and stored, the execution of the job does not depend on 

neither time nor any external parameters, consequently it can be reproduced anytime and 

anywhere. This is true in the case of any job. QED 

 

4.5 The sample set 

During the process of the workflow lifecycle and the way in which the workflow can be formed 

to be reproducible many executions and re-executions are performed. The increasing number of 

the re-execution gives the possibility to collect and store the descriptor values originated from 

different executions generating a continuously growing dataset, called sample set. In the design 

phase, certain jobs are modified many times while the others remain unchanged. These latter ones, 

already during this phase can provide useful experience about the descriptor values. Although the 

sample set of the other type of jobs show slower growth, it can be still augmented while reach the 

level of reproducibility.  Additionally, because of the users’ demand for re-using each other’s 

workflows, subworkflows or even individual jobs can be found in the repositories, with 

continuously increasing sample set. The sample set of the job originating from the different 

executions can be stored together with the job in the repository to support the reproducibility 

analysis when a user intends to reuse it. 
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The sample set used in this dissertation can be written in the following way: 

𝑆𝐽𝑖 =

{
 
 

 
 

𝑑𝑖1(𝑡0), 𝑑𝑖2(𝑡0), 𝑑𝑖3(𝑡0),… , 𝑑𝑖𝐾𝑖(𝑡0), 𝑅𝑖
𝑡0

𝑑𝑖1(𝑡1), 𝑑𝑖2(𝑡1), 𝑑𝑖3(𝑡1),… , 𝑑𝑖𝐾𝑖(𝑡1), 𝑅𝑖
𝑡1

𝑑𝑖1(𝑡2), 𝑑𝑖2(𝑡2), 𝑑𝑖3(𝑡2),… , 𝑑𝑖𝐾𝑖(𝑡2), 𝑅𝑖
𝑡2

…
𝑑𝑖1(𝑡𝑠−1), 𝑑𝑖2(𝑡𝑠−1), 𝑑𝑖3(𝑡𝑠−1),… , 𝑑𝑖𝐾𝑖(𝑡𝑠−1), 𝑅𝑖

𝑡𝑠−1}
 
 

 
 

 (4.5.1) 

where t indicates the time when the scientific workflow was executed. 

In the most section, I investigated the jobs in general, independently from the scientific workflow. 

Thus, for the sake of simplicity the index i referred to the job Ji can be omitted, additionally the 

time ts , according to the descriptor value originated from execution s-th, will be indicated in the 

upper index. 

Conversely, the simpler form of the sample set is the following:  

𝑆 =

{
 
 

 
 𝑣1

(0)
, 𝑣2
(0)
, 𝑣3
(0)
, … , 𝑣𝐾

(0)
, 𝑅(0)

𝑣1
(1), 𝑣2

(1), 𝑣3
(1), … , 𝑣𝐾

(1), 𝑅(1)

𝑣1
(2), 𝑣2

(2), 𝑣3
(2), … , 𝑣𝐾

(2), 𝑅(2)

…
𝑣1
(𝑠−1)

, 𝑣2
(𝑠−1)

, … , 𝑣𝐾
(𝑠−1), 𝑅(𝑠−1)}

 
 

 
 

 (4.5.2) 

where 𝑣𝑖
(𝑗)

 is the i-th descriptor value originated from the j-th execution. 

 

4.6 The theoretical decay parameter 

The descriptors in the descriptor-space was categorized depend on which information is provided. 

Additionally, they have another underlying attribute referring to their decay, namely how they 

change and how they can influence the re-execution of the job or the scientific workflow. The 

different descriptors can affect or even prevent the re-execution in different way. To describe the 

behavior of a descriptor I introduce a so called theoretical decay-parameter which creates four 

classes among the descriptors. The decay-parameter can be the following: 

a. The decay-parameter of a descriptor can be zero. There are constant descriptor’s values 

which do not change under any circumstances; the time does not influence their values 

and their availabilities. For example, a job may have constant inputs or parameters. If 

a job has two input port getting the values 2 and 3 and the result of the job is the 

summation of the inputs, the two descriptors of the job are input1 and input2; the 

descriptor’s values are 2 and 3 which cannot be influenced by the time on no conditions. 
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b. Some descriptors depend on external services or resources which can become 

unavailable during the years. The decay-parameter of these descriptors are a probability 

distribution function (generally exponential distribution function). This distribution 

may be given, evaluable or unknown. For example, third party services which can be 

unavailable at any time or can leave off to provide their services after the years. 

c. Certain descriptors are continuously changing in time. For example, the statistics 

gained from continuously growing databases which are fed with more and more data 

from sensors or from other resources (in the field of astronomy, bioinformatics etc.). 

In this cases the decay-parameter of the descriptor is a function (vary(v)) which 

describes the change of the value. This function also can be unknown, known or even 

evaluable.  

Formally: 

 𝑑𝑒𝑐𝑎𝑦(𝑣𝑖) =

{
 
 
 
 

 
 
 
 
0,            if the value of the descriptor is not changing

          in time            

 
                  

𝐹𝑖(𝑡),            if  the availabilitydistribution function of 

               of the given value

 
𝑉𝑎𝑟𝑦𝑖(𝑡,  𝑣𝑖),             if the value of the descriptor is  

                     changing in time
 

 (4.6.1) 

 

Note: There are descriptors with originally unknown descriptor value, if the descriptors are 

operation-related and extra tool is required to be able to capture and store their values. With help 

of this tool the decay-parameter can be identified. 

 

Statement (S.4.6.1): If every decay-parameter is zero in a job than the job is reproducible. 

Proof: Let 𝐽(𝑑1(𝑡0), 𝑑2(𝑡0),… , 𝑑𝐾(𝑡0)) = 𝑅 be a job. If every decay parameter is zero, the 

descriptors are constant thus they do not change in time, consequently 𝑑𝑗(𝑡0) = 𝑑𝑗(𝑡0 +

∆𝑡); 𝑗 = 1, 2, … , 𝐾 for every ∆𝑡. In this way, the definition of the reproducible job (D.4.3.1) is 

fulfil. 

𝐽𝑂𝐵𝑖
𝑟𝑒𝑝𝑟𝑜(𝑑1(𝑡0 + ∆𝑡), 𝑑2(𝑡0 + ∆𝑡), … , 𝑑𝐾(𝑡0 + ∆𝑡)) =

𝐽𝑂𝐵𝑖
𝑟𝑒𝑝𝑟𝑜(𝑑1(𝑡0), 𝑑2(𝑡0),… , 𝑑𝐾(𝑡0)) = 𝑅   

QED 
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4.7 The distance metric  

To be able to investigate the variation of a descriptor and the impact of the descriptors on 

the result, the deviation of the result or the descriptors must be measurable. Since every 

descriptor has a name and a value, in this case the assumption can meet the requirements 

in a simple way. In contrast, the outcome of a job can move on a wide range of the 

possibilities. They can be for example numerical data, vectors, matrices, diagrams, 

images, text files, audio files or video files etc. Additionally, a job can have more output, 

too. To find a measurable deviation between two different results belonging to the same 

job in can be simply performed in certain cases. It can be even automatically performed 

by the system as well, but in other cases, the scientist has to determine the underlying 

difference between two results from the perspective of the scientific experiment. For 

example, the size or the resolution of an image can be irrelevant but the rate of the three main 

colors can be the same at every execution. In this case, the difference between the rate of colors 

can be measured. Sometimes there are more important factors and two or three different type of 

deviation must be investigated and defined. Harking back to the previous example, assuming that 

the images can show a circle or a triangle, and the difference can be importance from only this 

point of view. In cases like this the distance can be 1 if the two form is different and 0 if they are 

the same.  

Conversely, in the most cases, a measurable deviation can be defined over the field of the possible 

values of the results, which can be determined automatically by the system or with help of the 

scientist. Hereafter I deal with the scientific workflows which meet the requirements that a 

distance metric can be defined for the descriptors and the result of the jobs. 

In formal: 

Υ𝑑𝑖: the set of the possible values of descriptor 𝑑𝑖 

Δ𝑑𝑖: Υ𝑑𝑖 × Υ𝑑𝑖 ⟼ℝ,  

Notation: 𝑣𝑖 , 𝑣𝑗 ∈ Υ𝑑𝑖: Δ𝑑𝑖(𝑣𝑖, 𝑣𝑗) = ‖𝑣𝑗 − 𝑣𝑖‖ (4.7.1) 

 

ℛ𝑖: the set of the possible values of the results of job 𝐽𝑖 

Δ𝑅: ℛ𝑖 × ℛ𝑖 ⟼ℝ,  

Notation: 𝑅𝑖, 𝑅𝑗 ∈ ℛ𝑖: Δ𝑑𝑖(𝑅𝑖, 𝑅𝑗) = ‖𝑅𝑗 − 𝑅𝑖‖ (4.7.2) 

 

4.8 The empirical decay-parameter concerned to time-dependent descriptors 

During the increasing number of the executions, more and more precise knowledge can be 

collected based on the sample set about the behavior of the descriptors and most of all about the 
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changing descriptors. The nature of a descriptor can be very diverse, sometimes deterministic 

while in certain cases nondeterministic. For example, it can follow an unidirectional, continuously 

change which can be linear, exponential, logarithmic etc. or even irregular. Nevertheless, it can 

fluctuate about a determinable value and the fluctuation can be periodically or randomly as well. 

Additionally, a value of a descriptor can be fixed but at certain executions the descriptor may have 

the outliers. To be able to identify the nature of the descriptor and to measure the change of the 

descriptor I define the empirical decay-parameter in time-dependent cases and in time-

independent cases too. 

𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
𝑡𝑖𝑚𝑒(∆𝑡, 𝑣𝑖, 𝑠) =

{
 
 

 
 0,                                                        if ∑ ‖𝑣𝑖

(𝑗) − 𝑣𝑖
(𝑗−1)

‖𝑠
𝑗=1 = 0

∑
‖𝑣𝑖

(𝑗)−𝑣
𝑖
(1)

‖

𝑡𝑗−𝑡1

𝑠
𝑗=2

∑
‖𝑣𝑖

(𝑗)−𝑣
𝑖
(𝑗−1)

‖

𝑡𝑗−𝑡𝑗−1

𝑠
𝑗=2

,               if ∑ ‖𝑣𝑖
(𝑗) − 𝑣𝑖

(𝑗−1)
‖𝑠

𝑗=1 ≠ 0

}
 
 

 
 

 (4.8.1) 

 

The numerator of the fraction determines the variation of the descriptors depending on time 

correlated to the first value of the descriptor. The denominator investigates the variation of the 

descriptors correlated to the previous value. Consequently, the rate between the two variations 

gives the empirical decay. In other words, this expression investigates the measure of the change 

of the descriptor values at the different executions while it observes also whether the values 

continuously diverge from the first value or they may fluctuate around a certain value (not 

inevitably around the first value). 

The empirical decay also can be interpreted for the result of the job as well, if a distance metric 

of the result can be determined. 

𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
𝑡𝑖𝑚𝑒(∆𝑡, 𝑅 , 𝑠) =

{
 
 

 
 
0,                                                        if ∑ ‖𝑅(𝑗) − 𝑅 

(𝑗−1)‖𝑠−1
𝑗=1 = 0

∑
‖𝑅(𝑗)−𝑅 

(1)‖

𝑡𝑗−𝑡1

𝑠−1
𝑗=1

∑
‖𝑅(𝑗)−𝑣 

(𝑗−1)‖

𝑡𝑗−𝑡𝑗−1

𝑠−1
𝑗=1

,               if ∑ ‖𝑅(𝑗) − 𝑅 
(𝑗−1)‖𝑠−1

𝑗=1 ≠ 0

}
 
 

 
 

 (4.8.2) 

  

4.9 The empirical decay-parameter concerned to time-independent descriptors 

There are descriptors which do not depend on time and the time may become an embarrassing 

factor during the observation of their behaviors. For example, if a descriptor value shows a 

constant pattern with some outliers it does not depend the time but the time-dependent decay 

cannot show this phenomenon. To extend or complete the investigation of the descriptor value a 

time-independent decay also has to be introduced in the following way: 
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𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) = {

0,                                                        if ∑ ‖𝑣𝑖
(𝑗) − 𝑣𝑖

(𝑗−1)
‖𝑠−1

𝑗=1 = 0

∑ ‖𝑣𝑖
(𝑗)−𝑣𝑖

(1)
‖𝑠−1

𝑗=1

∑ ‖𝑣𝑖
(𝑗)−𝑣

𝑖
(𝑗−1)

‖𝑠−1
𝑗=1

,               if ∑ ‖𝑣𝑖
(𝑗) − 𝑣𝑖

(𝑗−1)
‖𝑠−1

𝑗=1 ≠ 0
} (4.8.1) 

 

The meaning of this expression is very similar to the time-dependent one the only different is that 

it overlooks the elapsed time between two values.  

Note: If the sampling is equidistant the time-independent form of the empirical decay can be 

applied. 

 

4.10 Investigation of the behavior of the descriptors 

First, the definition of a reproducible job has to be investigated in case of the empirical decay-

parameter. It is clear, that if a job is reproducible then the 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝(∆𝑡, R, 𝑠) = 0, conversely, 

the statement is not so evident. Concerning to the empirical decay, the size of the sample set (s) 

is an important information, it is an important characteristic of the empirical decay. If there is no 

information about the theoretical nature of the descriptor, all the knowledge about it can be based 

on only the samples and any prediction of the descriptor value cannot be guaranteed. The more 

samples can ensure the more probable prediction. Consequently, every statement of the empirical 

decay has to refer to the experience gained from the s executions. 

 The empirical definition can be given as: If ∑ 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝(∆𝑡, 𝑣𝑖, 𝑠) = 0
𝐾𝑖
𝑖=1  and 

𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑡, 𝑅𝑖 , 𝑠) = 0  than 𝐽𝑖 is repeatable based on s execution. This means that the 

descriptor values have not change during the s executions thus it can be concluded that 

the job was successfully re-executed s times without change of descriptors. In this case 

the reproducibility cannot be guaranteed, only the repeatability. 

 If ∑ 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝(∆𝑡, 𝑣𝑖 , 𝑠) = 0
𝐾𝑖
𝑖=1  and 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝

 (∆𝑡, 𝑅𝑖, 𝑠) ≠ 0  than the 𝐷𝑖 descriptor-

space is not complete. Since the deterministic behavior of the jobs has been 

assumed, in this case there exist at least one unknown descriptor which influences 

the result of the job.   

 If ∑ 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝(∆𝑡, 𝑣𝑖 , 𝑠) ≠ 0
𝐾𝑖
𝑖=1  and 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝

 (∆𝑡, 𝑅𝑖, 𝑠) = 0  than 𝐽𝑖 is 

variable/portable/reproducible based on s execution and over the {𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐿} 

descriptor-set. The level of the re-execution is determined by the type of the descriptor. 

If the changing descriptors are user-defined descriptor, the job is variable. If the changing 

descriptors are environmental descriptors the job is portable and if both, the job is 

reproducible referring to the changing descriptors. 
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 If ∑ 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝(∆𝑡, 𝑣𝑖 , 𝑠) ≠ 0
𝐾𝑖
𝑖=1  and 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝

 (∆𝑡, 𝑅𝑖, 𝑠) ≠ 0  than 

𝑐𝑜𝑟(𝛿𝑗,𝑗−1(𝑣𝑖), 𝛿𝑗,𝑗−1(𝑅)) must be investigated. There is two cases: 

a. the connection between the descriptor and the result can be determined or even 

predicted, 

b. there is no correlation between the variables. 

 

4.10.1 Simulations 

The empirical decay had been introduced to give information about the nature of the 

descriptors. Thus, the possible values and the behavior of the “decay-function” have to be 

analyzed to be able to predict the change of the descriptors. To identify the nature of the 

change simulations were performed based on the sample sets containing 20, 50 and 100 

elements. In time-dependent case the time intervals were generated randomly based on a non-

determined “time-unit” which can be hours, days, weeks or even months. The measure of te 

“time-unit” does not influence the values of the empirical decay-parameter.  The simulations 

showed that typically 20-30 – it depends on the nature of the change – samples, in other word 

executions are necessary to be able to correctly evaluate the change and 50 samples are 

enough, to clearly show the results. The figures, in the next subsections are created based on 

50 samples. Some of the results can be proved by mathematical tools which are described 

below. I investigated the following different, typical sorts of changes: 

 continuously increasing deviation from the starting value in irregular (random) and 

regular cases (linear, exponential, radical and logarithmic) 

 fluctuating deviation in random and periodic (sinus) cases 

 the descriptor values typically do not change but a few outliers can be found  

 

4.10.2 Linearity  

In the linear case both the time-dependent and time-independent decay-parameter can 

unambiguously determine the change of the descriptor by a well-defined expression or a 

concrete value.  

Statement (S.4.10.1.1): If the descriptor is time independent and the change is linear 

than 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) = 1 +

𝑠−2

2
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Proof: Let 𝛿𝑚,𝑛 indicates the distance between two instantiations of the descriptor value i-th: 

𝛿𝑚,𝑛(𝑣𝑖) = ‖𝑣𝑖
(𝑛)
− 𝑣𝑖

(𝑚)
‖. Since the change is linear ∀𝑚, 𝑛 ∈ [1, 𝑠]: 𝛿𝑚−1,𝑚(𝑣𝑖) =

𝛿𝑛−1,𝑛(𝑣𝑖) let be denoted by 𝛿. 

𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) =

∑ ‖𝑣𝑖
(𝑗) − 𝑣𝑖

(1)
‖𝑠−1

𝑗=1

∑ ‖𝑣𝑖
(𝑗) − 𝑣𝑖

(𝑗−1)
‖𝑠−1

𝑗=1

=
∑ 𝛿1,𝑗(𝑣𝑖)
𝑠−1
𝑗=1

∑ 𝛿𝑗−1,𝑗(𝑣𝑖)
𝑠−1
𝑗=1

=
𝛿 + 2𝛿 + 3𝛿 +⋯+ (𝑠 − 1)𝛿

(𝑠 − 1)𝛿
= 1 +

1 + 2 + 3 +⋯+ (𝑠 − 2)

(𝑠 − 1)

= 1 +
(1 + (𝑠 − 2))

𝑠 − 2
2

(𝑠 − 1)
= 1 +

(𝑠 − 1)(𝑠 − 2)

2(𝑠 − 1)
= 1 +

𝑠 − 2

2
 

 

Statement (S.4.10.1.2): If and only if the descriptor is time-dependent and the change is linear 

than 

 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
𝑡𝑖𝑚𝑒(∆𝑣𝑖, 𝑠) = 1 for every 𝑠 ∈ ℕ. 

Proof: 

a.  Let the change be linear. 

Actually, both the numerator and the denominator of the expression (4.8.2) is a slope (tan𝛼) 

of the line in a given time interval. In the case of the numerator the “big” triangle ((t1,v1); 

(ti,v1); (ti,v1)) has to be investigated and in the case of the denominator the expression refers 

to the “little” triangle (figure 6). Assuming the linearity, all the slopes are equal in all the 

interval consequently  

 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
𝑡𝑖𝑚𝑒(∆𝑣𝑖, 𝑠) =

∑
‖𝑣𝑖

(𝑗) − 𝑣𝑖
(1)
‖

𝑡𝑗 − 𝑡1
𝑠−1
𝑗=1

∑
‖𝑣𝑖

(𝑗) − 𝑣𝑖
(𝑗−1)

‖

𝑡𝑗 − 𝑡𝑗−1
𝑠−1
𝑗=1

=
(𝑠 − 1) ∙ tan𝛼

(𝑠 − 1) ∙ tan𝛼
= 1 
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6. Figure The illustration of the numerator and the denominator in the time-dependent empirical decay 

b. Let 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
𝑡𝑖𝑚𝑒(∆𝑣𝑖, 𝑠) = 1 for every 𝑠 ∈ ℕ 

Following the base assumption of the fraction is 1 for every 𝑠 ∈ ℕ, it means that the slopes 

are equal in case of the numerator (in which the point of reference is the initial descriptor 

value at the time t0) and the denominator (in which the change is measured from the previous 

value) too. Since the statement has to be true for every 𝑠 ∈ ℕ, it is true in the case of 𝑠 = 1 

and 𝑠 = 2. In this case, not only the means are equal but also the element of the summation. 

Starting from this point, if the fraction is 1, every appropriate element in the summation of 

the numerator and the denominator is equal. Additionally, the elements of the summation are 

equal too. Letting tan𝛼 be the elements of the summation. The claim is negated to 

assume that there is at least one element (
‖𝑣 

(𝑖)−𝑣 
(𝑖−1)‖

𝑡𝑖−𝑡𝑖−1
) in the summation which differs 

from the others. Let it be indicated by tan𝛽 . If tan𝛽 is found in the numerator than 

it has to be found in the denominator too. But if the deviation is β in the numerator, 

the deviation is γ in the denominator and 𝛾 ≠ 𝛽 since the two triangles (figure 7) are 

not similar. This result is in contradiction with the starting statement, that the elements 

of the summation in the numerator and in the denominator, are equal. It means that 

the slopes are equal and the two lines is coincident. QED 
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7. Figure The proof of the linearity  

 

4.10.3 Exponantial and logarithmic change 

The continuously increasing (or decreasing) change has three basic trends: 

1. the exponential, in which the degree of the change is continuously increases 

2. the logarithmic or radical, in which the degree of the change is continuously decreases 

3. irregular increase  

Exponential growth  

In time-dependent cases, the simulations were performed on the sample set in which the increase 

of the descriptor values follow the exponential function on different power (2., 3., 4., 5., 6., 7., 

10., 15., 20).  (Figure 8) The results showed that in case of a not too fast increase (second or third 

power) the decay function is a monotone decreasing function which has a well-recognizable 

characteristic. But fast increase (on 10. 15. and 20. power) “disorders” the curve and generates 

sharp breaks. The decay values remain below 1 and decrease. 
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8. Figure The time-dependent empirical decay-parameter in case of exponential growth of the descriptor based on 50 

samples. 

  

Radical growth:  

On figure 9, the radical growth of the descriptor values results monotone increasing, smooth 

curves and the values of the time-dependent, empirical decay-parameter remains above 1. The 

higher is the index of the radical function the steeper is the empirical decay. The different colors 

of the curves indicate the different index of the radical function. 

 

9. Figure The time-dependent empirical decay-parameter in case of radical growth of the descriptor based on 50 samples 
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Logarithmic growth 

The logarithmic change (figure 10.) in the descriptor values shows a very interesting result; the 

empirical decay is in all cases the same independently from the base of the logarithmic function. 

The decay value starts from 1 and monotone increases similarly to the logarithmic curve. 

 
10. Figure The time-dependent empirical decay-parameter in case of logarithmic growth of the descriptor based on 50 

samples 

 

Randomly growth 

In the case of the randomly growth (figure 11) the time-dependent decay follow an especially 

changeable curve but with increasing size of the sample set the curve becomes smooth and 

approaches to 1. 
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11. Figure The time-dependent empirical decay-parameter in case of randomly growth of the descriptor based on 50 

samples 

 

 

 
4.10.4 Fluctuation 

The fluctuation of the descriptor value can be either periodical such as sinus or cosines, or 

randomly when the values randomly move in a predefined interval.   

Periodical 

In time-independent case (figure 12), if   𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) ≈ 1 than the descriptor values 

fluctuate about a certain value (the expected value of the descriptors). If the change is periodical 

and the long of the period is multiple of the sample size, then   𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) = 1. The curve 

of the decay also follows an “almost” periodic change which has a minimum of 1, but with the 

increasing size of the sample set the “waves” become smaller.  
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12. Figure The time-independent emp. decay of the periodically changing descriptor values 

 

In time-dependent case (figure 13), after a few time the decay curve continuously decreases and 

the values are small near to 0. 

 

13. Figure The time-dependent empirical decay-parameter in case of sinus change of the descriptor based on 50 samples 

 

Non-periodical, randomly fluctuation 

In time-dependent case the curves are similar to the periodical case. The simulations were 

performed on samples generated in different ways: Gaussian distribution in the [0,1] interval on 
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the set of real number (figure 14), Gaussian distribution in different interval on the set of integer 

(figure 15) and I also investigated the cases, when the first value is irrelevant (figure 16).  

 

14. Figure The time-dependent empirical decay-parameter in case of random change in [0,1] interval based on 50 

samples 

 

 

15. Figure The time-dependent empirical decay-parameter in case of random change in different interval based on 50 

samples 
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16. Figure The time-dependent empirical decay-parameter in case of random change with irrelevant first value based 

on 50 samples 

 

4.10.5 Outliers 

In time-independent case (figure 17) the empirical decay clearly shows the outliers. If the 

𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) ≠ 0 than  min

 
𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝

 (∆𝑣𝑖, 𝑠) = 0.5 which means that the descriptor value 

does not change but there are some outliers among the values. At the outliers, the decay curve has 

a sharp break. If the first value is the outlier and the other values are same, 

the 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) = 𝑠 − 2  

 

17. Figure The time-independnet emp. decay when outliers are among the descriptor values 
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The time-dependent decay is a decreasing step function and the steps show the place of the outliers 

(figure 18). 

 

18. Figure The time-dependent empirical decay-parameter in case of outliers based on 50 samples 
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Summarizing the results (figure 19), if the sample size is at least 30, the time-dependent empirical 

decay can unambiguously show: 

 it linearly diverges from the first descriptor value –  𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
𝑡𝑖𝑚𝑒(∆𝑣𝑖, 𝑠) = 1, 

 it radically or logarithmically diverges from the first descriptor value –   

𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
𝑡𝑖𝑚𝑒(∆𝑣𝑖, 𝑠) > 1, 

 it exponentially diverges from the first descriptor value, if the change is not too fast. – 

The quadratic diverge: lim
𝑠→∞

𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
𝑡𝑖𝑚𝑒(∆𝑣𝑖, 𝑠) = 0.5 

 the outliers –   it is a step function 

 the fluctuating change of the descriptors –   the decay values approach to 0. 

 

 

19. Figure Summary chart about the time-dependent empirical decay in case of different change in the descriptor 

value based on 50 samples 
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The time-independent empirical decay can unambiguously show (figure 20, 21):  

 the linear diverge from the first descriptor value –  𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) = 1 +

𝑠−2

2
 

 the continuously diverge from the first descriptor value –  𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) ≫ 1 

 the outliers –  𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) = 0.5, if the first and the s-th descriptor value is not 

outlier. 

 the randomly fluctuating change of the descriptors –   𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) < 1 or 

 𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) ≈ 1 

 the periodic fluctuating change of the descriptors –   𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) = 1, if the s is 

multiple of the period, else  𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝
 (∆𝑣𝑖, 𝑠) ≈ 1 and  𝑑𝑒𝑐𝑎𝑦𝑒𝑚𝑝

 (∆𝑣𝑖, 𝑠) > 1 

 

 
20. Figure Summary chart about the time-independent empirical decay in case of different change in the descriptor 
value based on 50 samples 
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21. Figure Summary chart about the time-dependent empirical decay when the change is small 

 
Analyzing the empirical decay, if it shows a well-identified nature of the descriptor values, 

evaluation can be performed to replace the descriptor when it is unavailable. 

 

4.11 Conclusion 

 
In this section, I introduced the basic terms of my research, namely the descriptor-space and the 

decay-parameter. According to these expressions, I differentiated the theoretical and the empirical 

approaches. The theoretical descriptor-space contains all the descriptors (descriptor names) 

needed to reproduce a job. The theoretical decay-parameter describes the nature of the descriptors 

assuming an “a priori” knowledge – originated from the scientist or from the experiences related 

to other workflows –  about the behavior of the descriptors. But the values of the descriptors can 

be assigned to them only in occasion of an execution. During more and more executions, the 

descriptor values originated from the different executions can be stored producing a sample-set 

and giving the possibilities to the further investigation. Based on this sample-set the empirical 

decay-parameter can be defined to identify the behavior of the descriptors in an empirical way, in 

cases of the time-dependent and the time-independent descriptors too. The empirical decay-

parameter can clearly show the different types of the change in both cases. 

Moreover, based on the descriptor-space I gave the mathematical definitions of the reproducible 

job and scientific workflow.   
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4.12 Novel scientific results (theses) 

Thesis group 1: I have defined and extended the mathematical definition of the reproducible job 

and reproducible scientific workflow and I have determined the empirical and theoretical decay-

parameters of the descriptors. 

 

1. Téziscsoport: Meghatároztam majd kiterjesztettem a reprodukálhatóság matematikai 

definícióját és egzakt matematikai számítások mentén meghatároztam egy számítási feladat 

elméleti és tapasztalati romlási mutatóit. 

 

Thesis 1.1 

I have introduced the terms of the descriptor-space assigned to the jobs and the theoretical 

decay-parameter assigned to the descriptors, and I have determine with these two terms the 

definition of a reproducible job. 

 

1.1 Altézis 

Bevezettem a számítási feladatokhoz (job) rendelt deszkriptor-tér és a deszkriptorokhoz 

tartozó elméleti romlási-mutató fogalmát, melyek segítségével meghatároztam a 

reprodukálható számítási feladat definícióját.  

 

Related publications: 1-B, 2-B, 3-B, 4-B, 5-B 

 

 

Thesis 1.2 

I have extended the definition of the reproducible job for the scientific DAG (directed 

acyclic graph) type workflows and based on the definition I have proved that if and only if 

a job is reproducible, than the scientific workflow is also reproducible. 

 

1.2 Altézis: 

Kiterjesztettem a reprodukálható számítási feladat definícióját irányított körmentes gráffal 

(DAG) reprezentálható tudományos munkafolyamat gráfokra és a definíciók alapján 

bebizonyítottam, hogy egy tudományos munkafolyamat akkor és csak akkor 

reprodukálható, ha benne minden job reprodukálható.  

  

Related publications: 1-B, 4-B, 5-B 

 

 

Thesis 1.3 

Based on s previous executions of a deterministic job I have defined an empirical decay-

parameter assigned to the descriptors of a given job in case of time-dependent and time-

independent descriptors and I revealed the relationships between the behavior of the 

descriptors and the values of the decay-parameters. 

 

1.3 Altézis 

Definiáltam s futás alapján egy determinisztikus job deszkriptoraihoz rendelt 

tapasztalati romlási mutatót idő-függő és idő-független deszkriptorok esetére és 
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feltártam a deszkriptorok viselkedéseinek és a romlási mutatók értékeinek 

összefüggéseit. 

 

 

Related publications: 2-B  
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5 INVESTIGATION OF THE EFFECT OF A CHANGING 

DESCRIPTOR 

 

 

 

In this section, I investigated how one or more changing descriptor can influence the result of the 

job, how far the effect of a changing descriptor can spread and which part of a scientific workflow 

can be reproduced. Based on the empirical decay-parameter and the sample-set I determine the 

coverage of a changing descriptor and the reproducible part of the scientific workflow in other 

words the reproducible subworkflow. Further, I give the method to calculate the theoretical and 

the empirical probability of the reproducibility.    

 

5.1 The impact factor of a changing descriptor for the result 

After the behavior of a descriptor is determined, the effect for the result has to be investigated. 

The underlying question is does the variation of a descriptor influences the result of the job and 

if yes, in which way? The relationship between the descriptor value and the job result can be 

determined by calculating the correlation between their deviations. However, correlation can 

show first of all the linear relationship, the value of the correlation near to 0.5 can shows the 

relation which is not linear. If the correlation is near to 0, the change of the descriptor value does 

not connect with the change of the job result.  

𝑐𝑜𝑟(𝛿(𝑣𝑖), 𝛿(𝑅)) =
∑ (𝛿1,𝑗(𝑣𝑖)−𝛿𝑣𝑖

̅̅ ̅̅̅)𝑆
𝑗=2 (𝛿1,𝑗(𝑅𝑖)−𝛿𝑅̅̅ ̅̅ )

√[∑ (𝛿𝑗−1,𝑗(𝑣𝑖)−𝛿𝑣𝑖
̅̅ ̅̅̅)

2𝑆−1
𝑖=0 ][∑ (𝛿𝑗−1,𝑗(𝑅𝑖)−𝛿𝑅̅̅ ̅̅ )

2𝑆−1
𝑖=0 ]

 (5.1.1) 

If there are many descriptor in the descriptor-space which has non-zero decay-parameter, the 

correlation cannot be investigated independently in the case of the different descriptor, thus the 

multi-variate correlation has to be calculated in the following way: 

𝑐𝑜𝑟(𝛿(𝑣𝑖), 𝛿(𝑅)) =
∑ (𝛿1,𝑗(𝑣𝑖1)−𝛿𝑣𝑖

̅̅ ̅̅̅)(𝛿1,𝑗(𝑣𝑖2)−𝛿𝑣𝑖
̅̅ ̅̅̅)…(𝛿1,𝑗(𝑣𝑖𝐿)−𝛿𝑣𝑖

̅̅ ̅̅̅)𝑆
𝑗=2 (𝛿1,𝑗(𝑅𝑖)−𝛿𝑅̅̅ ̅̅ )

√[∑ (𝛿𝑗−1,𝑗(𝑣𝑖1)−𝛿𝑣𝑖
̅̅ ̅̅̅)

2𝑆−1
𝑖=0 ]…[∑ (𝛿𝑗−1,𝑗(𝑣𝑖𝐿)−𝛿𝑣𝑖

̅̅ ̅̅̅)
2𝑆−1

𝑖=0 ][∑ (𝛿𝑗−1,𝑗(𝑅𝑖)−𝛿𝑅̅̅ ̅̅ )
2𝑆−1

𝑖=0 ]

 (5.1.2) 

 

where L indicates the number of the changing descriptors. 

If the distance metric of the result consists of more component, the correlation has to be calculated 

for every component independently. 

When the impact of a changing descriptor for the job result proves true, this descriptor can prevent 

to reproduce the job, I call the descriptor crucial descriptor. 
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5.2 Partially reproducible scientific workflows 

In this subsection, I deal with the question which part of the scientific workflow is affected by a 

descriptor which has a non-zero decay parameter. It may be important to determine the 

reproducible part of the workflow or which part can prevent the reproducibility and to inform the 

scientist about this fact. In order to formalize the problem, I have introduced some terms and 

definitions. The first is the forward subworkflow belonged to a given job. 

Definition (D6): The forward subworkflow of a job Ji is a subgraph of the workflow graph where 

the entry job is Ji and the exit job is the exit job of the original workflow graph. (Figure 22) 

 Notation: 𝑆𝑢𝑏𝑊𝐹𝐽𝑖
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

 

 

 

22. Figure The forward sub-workflow of a job Ji 

 

In this way, the coverage of a descriptor also can be defined. Let the Ji is a job of the scientific 

workflow and vij is a descriptor of the job Ji. 

Definition (D9): The coverage of a descriptor vij (descriptor coverage) is a forward subworkflow 

containing that jobs, which are influenced by this descriptor. (figure 23) 

Notation: cvrg(Ji, vij) = {Jk∈V | Yk depends on vij} 

In other words, if a descriptor value changes the results of the jobs contained by the descriptor 

coverage is also changes. 

The coverage of a descriptor does not necessarily contain all the path between the given job and 

the exit job. It can be occurred, that certain successors are affected by the varying descriptor but 

the others are not.  

 

Jentr

y 

Ji 

Jex
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23. Figure The coverage of the descriptor vij 

 

5.3 Determination of the descriptor coverage 

After the definition has introduced, it is necessary that the coverage of a given descriptor can be 

determined. Assuming S previous execution of the workflow a sample set 𝑆𝐽𝑖
𝑠𝑢𝑏𝑓𝑜𝑟𝑤𝑎𝑟𝑑

can be 

created. Let the 𝐽1, 𝐽2, … , 𝐽𝐶 are the jobs of the 𝑆𝑢𝑏𝑊𝐹𝐽𝑖
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

, where the C is the number of the 

job in the 𝑆𝑢𝑏𝑊𝐹𝐽𝑖
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

, the 𝑅1, 𝑅2, … , 𝑅𝐶 are the result of these jobs and the vij is the descriptor 

of the job Ji. The sample set contains the vij and the 𝑅1, 𝑅2, … , 𝑅𝐶 originated from the S previous 

execution: 

𝑆𝐽𝑖
𝑠𝑢𝑏𝑓𝑜𝑟𝑤𝑎𝑟𝑑

=

{
 
 

 
 𝑣𝑖𝑗

(1)
𝑅1
(1)

𝑅2
(1)

⋯ 𝑅𝐶
(1)

𝑣𝑖𝑗
(2)

𝑅1
(2)

𝑅2
(2)

⋯ 𝑅𝐶
(2)

⋮

𝑣𝑖𝑗
(𝑆)

⋮

𝑅1
(𝑆)

⋮ ⋱ ⋮

𝑅2
(𝑆)

⋯ 𝑅𝐶
(𝑆)
}
 
 

 
 

 (5.3.1) 

based on the sample set the empirical correlation matrix can be computed as follows:  

𝑀𝑐𝑜𝑟 =

(

 
 
 
 
 

𝑐𝑜𝑟 (𝛿(𝑣𝑖𝑗), 𝛿(𝑣𝑖𝑗)) 𝑐𝑜𝑟 (𝛿(𝑣𝑖𝑗), 𝛿(𝑅1)) 𝑐𝑜𝑟 (𝛿(𝑣𝑖𝑗), 𝛿(𝑅2)) … 𝑐𝑜𝑟 (𝛿(𝑣𝑖𝑗), 𝛿(𝑅𝐶))

𝑐𝑜𝑟 (𝛿(𝑅1), 𝛿(𝑣𝑖𝑗)) 𝑐𝑜𝑟(𝛿(𝑅1), 𝛿(𝑅1)) 𝑐𝑜𝑟(𝛿(𝑅1), 𝛿(𝑅2)) … 𝑐𝑜𝑟(𝛿(𝑅1), 𝛿(𝑅𝐶))

𝑐𝑜𝑟 (𝛿(𝑅2), 𝛿(𝑣𝑖𝑗))

⋮

𝑐𝑜𝑟 (𝛿(𝑅𝐶), 𝛿(𝑣𝑖𝑗))

𝑐𝑜𝑟(𝛿(𝑅2), 𝛿(𝑅1))

⋮
𝑐𝑜𝑟(𝛿(𝑅𝐶), 𝛿(𝑅1))

𝑐𝑜𝑟(𝛿(𝑅2), 𝛿(𝑅2))

⋮
𝑐𝑜𝑟(𝛿(𝑅𝐶), 𝛿(𝑅2))

…
⋱
…

𝑐𝑜𝑟(𝛿(𝑅2), 𝛿(𝑅𝐶))

⋮
𝑐𝑜𝑟(𝛿(𝑅𝐶), 𝛿(𝑅𝐶)) )

 
 
 
 
 

 (5.3.2) 

Jentry 

 

Ji, 

vij 

Jexit 
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The coverage of the given descriptor can be determined based on the first row of the correlation 

matrix. The non-zero values can show the influenced jobs. Based on the coverage the non-

reproducibility rate index can be computed which says which part of the scientific workflow is 

not reproducible. 

 

5.4 The reproducibility rate index 

With help of the descriptor coverage the reproducible subworkflow can be determined and the 

reproducibility rate index can be introduced (RRI).  If a scientific workflow contains only one job 

(Ji) which has only one descriptor with non-zero decay-parameter (vij) and the 𝐶𝑣𝑟𝑔(𝑣𝑖𝑗) can be 

determined, the reproducibility rate index (RRI) can be expressed as: 

𝑅𝑅𝐼𝑠𝑖𝑛𝑔𝑙𝑒 =
|𝐶𝑣𝑟𝑔(𝑣𝑖𝑗)|

|𝑉|
 (5.4.1) 

where |𝑉| and |𝐶𝑣𝑟𝑔(𝑣𝑖𝑗)| denote the number of the jobs in the workflow graph. 

If there are more descriptors in the whole workflow which have non-zero decay-parameter the 

union of the descriptor coverages has to be determined. The union of a collection of subworkflow 

is the subworkflow of all distinct jobs in the collection. In this way the expression (5.4.1) can be 

extended as follows: 

𝑅𝑅𝐼𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 =
|⋃ ⋃ 𝐶𝑣𝑟𝑔(𝑣𝑖𝑗)

𝑀𝑖
𝑗=1

𝐿
𝑖=1 |

|𝑉|
 (5.4.2) 

where the L (𝐿 ≤ 𝑁) is the number of the jobs which have descriptor with non-zero decay-

parameter and Mi (𝑀𝑖 ≤ 𝐾𝑖 ∀𝑖 ∈ [1, 𝑁]) is the number of the non-zero decay-parameter in the job 

Ji. 

 

5.5 Determination of the reproducible subworkflow 

Based on the descriptor coverage the reproducible subworkflow of the given SWf can be 

determined by omitting the coverages of the crucial descriptors. (Figure 24) 
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24. Figure The pseudo code of the determination of the rperoducible part of the SWf 

 

5.6 Reproducibility by substitution 

In this subsection we investigate the case when one or more of the descriptors is continuously 

changing in time and they influence the job result. It can occur for example when a job get input 

from a database which continuously collects more and more data from a sensor networks, 

consequently the database is also greater and greater. Another example may be the operation 

related descriptors which based on some actual state of the system. Beyond the special tool 

developed for this purpose may be necessary to store this descriptor value, the value can be change 

continuously concerning to the state of the system, such as time or free available memory. 

Typically if a job has a descriptor described above, it cannot be reproduced. The ultimate goal is 

to give method, which helps to solve this issue by substituting the descriptor or the job result or 

by evaluating the deviation of the result based on the changing descriptor. An existing relationship 

between the deviation of the descriptor value and the deviation of the job result can give the 

possibility to substitute or evaluate the deviation of the result when the original descriptor value 

is changed or unavailable. The method, and the parameters of the method can be also stored in 

the repositories together with the scientific workflow and if the re-execution of the workflow fail 

because of that descriptor, the result still can be reproduced.  

In order to achieve my goal I introduced another two terms, namely the substitutional and the 

approximative reproducibility referring to that case, in which the decay parameter of the 

descriptors changes in time but the variation of the result can be determined or evaluated based 

on the variation of the given descriptor. Two options can be differentiated: the first one is that the 

variation of the descriptor value is known and it can be described by a mathematical function; and 

G(V,E)==SWF; 
for i=1 to N 
 for j=1 to Ki 

  if decay(vij)≠0 than determine 𝑆𝑢𝑏𝑊𝐹𝐽𝑖
𝑓𝑜𝑟𝑤𝑎𝑟𝑑 

m== “the number of jobs in 𝑆𝑢𝑏𝑊𝐹𝐽𝑖
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

” 

calculate M_corr(vij)_(m+1)x(m+1); 
cvrg(vij)=={}; 
for k=1 to m+1 
 if M_corr_1_k≠0 than cvrg(vij)== 

cvrg(vij)UJk 
   V=V\Jk, 
   endif; 
  endfor; 
  endif; 
 endfor; 
endfor; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ARCeppr=0 
for i=1 to N 
 get Ji 
 generate τJi(Ki)={yi, g(yi)} 
 calculate wopt 
 calculate f(y,wopt) 
 calculate E(f(y,wopt)) 
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the second one is that the variation of the descriptor value is unknown but an approximation can 

be performed which fit to the curve of the change. In both cases a sample set is necessary which 

is based on provenance information originated from S previous executions.   

Definition (D.5.6.1): The Ji job is reproducible by substitution, if the descriptor space 𝐷𝐽𝑖 =

{𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐾𝑖} is known, 𝑘 ∈ [1, 2, … , 𝐾𝑖]: 𝑉𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘) and based on the function 

𝑉𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘) a new 𝑉𝑎𝑟𝑦𝑖
∗(∆𝑡, 𝑣𝑖𝑘) can be unambiguously determined which give the 

variation of the result depending on the given descriptor. 

In other words if 𝐽𝑂𝐵𝑖(𝑡0, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑎𝑟𝑦𝑖𝑘(𝑡0, 𝑣𝑖𝑘), … , 𝑣𝑖𝐾𝑖) = 𝑅𝑖(𝑡0) than 

𝐽𝑂𝐵𝑖(𝑡0 + ∆𝑡, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘), … , 𝑣𝑖𝐾𝑖) = 𝑉𝑎𝑟𝑦𝑖
∗(∆𝑡, 𝑣𝑖𝑘) = 𝑅1(∆𝑡) 

Notation: 𝐽𝑂𝐵𝑖
𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒(𝑉𝑎𝑟𝑦𝑖

∗(∆𝑡, 𝑣𝑖𝑘)) 

 

Definition (D.6.2): The Ji job is reproducible by approximation, if the descriptor space 𝐷𝐽𝑖 =

{𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐾𝑖} is known, 𝑘 ∈ [1, 2, … , 𝐾𝑖]: 𝑉𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘  ) and based on the function 

𝑉𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘  ) an approximator Ψ𝑖𝑘
 (∆𝑡, 𝛿(𝑣𝑖𝑘) ) can be determined to evaluate the deviation 

of the job result. 

In other words if 𝐽𝑂𝐵𝑖(𝑡0, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑎𝑟𝑦𝑖𝑘(𝑡0, 𝑣𝑖𝑘), … , 𝑣𝑖𝐾𝑖) = 𝑅1(𝑡0) than 

𝐽𝑂𝐵𝑖(𝑡0 + ∆𝑡, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑎𝑟𝑦𝑖𝑘(∆𝑡, 𝑣𝑖𝑘),… , 𝑣𝑖𝐾𝑖) ≈ 𝑅𝑖̃(𝑡0) + Ψ𝑖𝑘
 (∆𝑡, 𝛿(𝑣𝑖𝑘) )  

Notation: 𝐽𝑂𝐵𝑖
𝑎𝑝𝑝𝑟𝑜

(Ψ𝑖𝑘
 (∆𝑡, 𝑣𝑖  )) 

The definition D.6.1 says that the result of the job can be determined exactly by a function of the 

𝑣𝑖𝑘 descriptor while in the second case (D.6.2) an approximator can be found to estimate the 

deviation of the result based on the deviation of the given descriptor. 

 

5.7 Determination of the substitutional and the approximation function 

Since the crucial descriptors can belong to different types, the approximation method which 

evaluate the change of the descriptor or the deviation of the result also can be various. The 

relationship between the crucial descriptor and the result can follow different types of function 

such as linear, quadratic or higher order, exponential, logarithmic or trigonometric etc. 

The substitutional function, if exist, can be determined based on the empirical decay-parameter. 

The investigation of the empirical decay-parameter presented in section 4.10 showed the 

evaluability of the changing descriptor.  
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To find an approximator which can evaluate the deviation of the job result depends on the impact 

factor defined in the subsection 5.1. The correlation between the descriptor and the deviation of 

the result can determine the evaluability of the deviation. The simplest case, when the correlation 

is near to 1, since the linear relationship can be simply evaluated by, for example linear regression. 

If the correlation less than 1, non-linear evaluation has to be found. Applying the empirical decay-

parameter also for the job result, the nature of the result also can be identified which can help to 

find the appropriate approximator. If the correlation is near to 0 there is no relationship between 

the change of the descriptor and the deviation of the job thus this crucial descriptor cannot be 

compensated with approximation  

Storing the approximation and the final results in the repository makes it possible that during the 

re-execution of a workflow, the non-reproducible job can be replaced by these approximated or 

simulated results. 

 

5.8 Reproducible scientific workflows with the given probability 

 

In this section I introduce a probability value assigned to the descriptors to determine how likely 

the value is changed or unavailable. This probability can be generated based on the theoretical 

decay-parameter, if the user knows the nature of the descriptor or it can be originated in empirical 

way based on the sample set. With help of the probability value, the probability of the 

reproducibility can be determined which is an essential information for the scientists on one hand 

during the design phase when the scientific workflow is in progress to become reproducible, on 

the other hand, when the scientist intend to reuse a workflow from a repository.  

Many investigations revealed the problem caused by volatile third party resources (Zhao & al, 

2012), when the reproducibility of workflows became uncertain. The third party services or any 

external resources can be unavailable during the years. If the decay of the resources and the 

probability distribution function can be identified and we can determine its probability 

distribution function we can predict the behavior of the workflow on occasion of a re-execution 

at a later time. Sometimes the users may have to know the chance of the reproducibility of their 

workflow. Assuming that the probability distribution of the third party service is known or 

assumable we can inform the users about the expected probability of the reproducibility. 

5.9 Theoretical probability 

To formalize the problem, first, we have separated the Mi descriptors of a given job Ji which 

depend on external or third party resources and its decay-parameter, which is a probability 

distribution function given as follows: 𝐹𝑖1(𝑡), 𝐹𝑖2(𝑡), … , 𝐹𝑖𝑀𝑖
(𝑡). The rest of the descriptors have 
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zero decay-parameter. In this case, at time t0, a given descriptor’s value 𝑣𝑖𝑗(𝑑𝑖𝑗)is available with 

a given probability (for the sake of the easier comprehensibility hereafter we omitted the i index 

referred to the i-th job of a given scientific workflow): 

𝐹1(𝑡0) = 𝑝1
(𝑡0), 𝐹2(𝑡0) = 𝑝2

(𝑡0), … , 𝐹𝑀(𝑡0) = 𝑝𝑀
(𝑡0) (5.9.1) 

Let us assign to the job Ji a state vector y𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑀𝑖
) ∈ {0,1}𝑀𝑖, in which the 𝑦𝑖𝑗 = 1 , 

if the jth descriptor of the job Ji is unavailable. In this way the probability of a given yi state vector 

can be computed as follows: 

𝑝(𝑦) = ∏ 𝑝
𝑗

𝑦𝑗
(1 − 𝑝𝑗)

1−𝑦𝑗𝑀
𝑗=1  (5.9.2) 

In addition a time interval can be given during which the descriptor is available with a given 

probability P. 

Since we assume the independency of the descriptors the cumulative distribution function of the 

availability referred to the job Ji can be written as follows: 

F𝑖(𝑡) = ∏ 𝐹𝑖𝑗(𝑡)
𝑀
𝑗=1  (5.9.3) 

Based on the cumulative distribution the probability of the reproducibility can be determined in 

the following way: 

P𝑡ℎ𝑒𝑜(JOB𝑖
𝑟𝑒𝑝𝑟𝑜(x < t)) = 1 −∏ 𝐹𝑖𝑗(𝑥)

𝑀
𝑗=1  (5.9.4) 

P𝑡ℎ𝑒𝑜(SWF
𝑟𝑒𝑝𝑟𝑜(x < t)) = ∏ (1 −∏ 𝐹𝑛𝑖𝑗(𝑥)

𝑀𝑖
𝑗=1 )𝑁

𝑛=1  (5.9.5) 

where N is the number of the jobs and Mi is the number of the descriptors referred to the job Ji 

which has the decay-parameter determined by the probability distribution function. 

 

5.10 Empirical probability 

Based on the sample set many useful information can be collected about the descriptors. The 

probability of their change or unavailability may be also an important characteristic of the 

scientific workflows which can support the reproducibility analysis and also the scientist’s 

community to create or reuse a reproducible workflows. Therefore based on the previous 

executions of the SWf, the relative incidence of the change/unavailability can be assigned for 
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every descriptor. In this way, assuming the independency of the descriptors, the probability of the 

descriptor-space-changing can be calculated as follows:  

𝑃𝑒𝑚𝑝(𝐷𝑖 𝑖𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑) = ∏ 𝑝𝑖𝑗
𝑒𝑚𝑝𝐾𝑖 

𝑗=1,𝑝𝑗≠0
 (5.10.1) 

 

where 𝑝𝑖𝑗
𝑒𝑚𝑝

 is the relative incidence of that the descriptor value j-th in the job Ji is changed or 

unavailable. 

In the expression (6.2.1) only the crucial descriptors assist, which can influence the job result. If 

a descriptor value did not change at all, its relative incidence is 0. Consequently, if the change of 

the descriptor-space means the non-reproducibility, the probability of the reproducibility of a job 

can be written as: 

𝑃𝑒𝑚𝑝(JOB𝑖
𝑟𝑒𝑝𝑟𝑜) = 1 − ∏ 𝑝𝑖𝑗

𝑒𝑚𝑝𝐾𝑖
𝑗=1,𝑝𝑗≠0

 (5.10.2) 

Assuming the independency, the expression (6.2.2) can be easily extended for scientific 

workflows: 

 

𝑃𝑒𝑚𝑝(SWF
𝑟𝑒𝑝𝑟𝑜) = ∏ (1 −∏ 𝑝𝑛𝑖𝑗

𝑒𝑚𝑝𝐾𝑖
𝑗=1,𝑝𝑗≠0

)𝑁
𝑛=1  (5.10.3) 

 

If the independency cannot be assumed, the expression (6.2.2) has to calculate for coverage of the 

crucial descriptors and then the independency of the coverage can be assumed.  

 

 

5.11 Conclusion 

 

In this section, I investigated the effect of the changing descriptors for the job result and for the 

forward sub-workflow. With help of the sample set and the distance-metric interpreted on the 

descriptor values and on the results, I determined the relationship between the deviation of the 

descriptor values and the deviation of the results. Calculating the empirical correlation between 

these deviations, the type of the relationship can be identified. Knowing the relationship, the 

reproducing of the job can be replaced by the evaluation of the deviation when the critical 

descriptors are not available or the reproduction cannot be performed. Moreover, with help of the 

empirical correlation, the coverage of a critical descriptor can be determined.  Based on the 

coverage, the reproducible part of the scientific workflow also can be given. 

Additionally, the probability of the reproducibility also is an important information to help the 

scientist to decide whether a workflow is worth reuse or not. If the theoretical decay-parameter 
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and the probability distribution function is given, the theoretical probability can be calculated 

assuming the independency of the descriptors and the jobs. Else, the empirical probability should 

be used. Obviously, the assumption of the independency limits the number of the workflows 

which fulfil this requirement thus further investigation should be planned in the future work. 

 

5.12  Novel scientific results (theses) 

 
Thesis group 2: Based on simulations and on the empirical decay-parameters I have investigated 

and determined the behavior, the coverage of the changing descriptors and the feasible 

approximation of the result deviation. 

 

2. Téziscsoport: Szimulációk segítségével megvizsgáltam és meghatároztam egy számítási feladat 

változó deszkriptorainak viselkedését, hatókgráfját és a számítási feladat eredményén értelmezett 

eltérés közelíthetőségét. 

 

Thesis 2.1 

Based on a sample set originated from s previous executions I have defined and realized a 

method to determine that subgraph of a given scientific (DAG) workflow, in which the job 

results are influenced by a given descriptor. 

 

2.1 Altézis  

Kidolgoztam egy eljárást, mellyel ismert deszkriptor-tér esetén és s futásból származó 

provenance adatból nyert mintahalmaz alapján meghatározható egy tudományos 

munkafolyamat gráf azon részgráfja, melyben egy adott számítási feladat deszkriptorának 

hatása észlelhető. 

 

Related publications: 1-B,  

 

 

Thesis 2.2 

I have introduced the term reproducibility rate index (RRI) to calculate how big part of the 

scientific workflow is reproducible and I have developed a method to determine the 

reproducible sub-graph of a partially reproducible scientific workflow represented by a 

DAG. 

 

2.2 Altézis  

Bevezettem egy reprodukálhatósági arányszámot (RRI), amely meghatározza, hogy a 

tudományos munkafolyamat mekkora részben reprodukálható és kidolgoztam egy eljárást 

a DAG-gal reprezentálható, részlegesen reprodukálható tudományos munkafolyamat 

reprodukálható részgráfjának meghatározására. 

 

Related publications: 1-B, 7-B 

 

 

Thesis 2.3 
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I have defined the impact factor term of a changing descriptor set based on s previous 

executions, and I have determined the feasible approximation of the result deviation. 

 

2.3 Altézis 

Definiáltam a változó deszkriptor halmaz, s futás alapján számított impakt faktorának 

fogalmát és szimulációk alapján meghatároztam az eredmény változásának 

közelíthetőségét. 

 

Related publications: 1-B, 2-B 

 

Thesis 2.4 

Based on the theoretical decay-parameter and the empirical probability calculated 

according to the s previous job executions, I have defined and proved the theoretical and 

the empirical probability of the reproducibility concerning to a given scientific workflow 

assuming that the descriptors and the jobs are independent. 

 

2.4 Altézis 

Az elméleti romlási mutató és az s futásból számított tapasztalati valószínűség segítségével 

definiáltam és bizonyítottam egy tudományos munkafolyamat reprodukálhatóságának 

elméleti és tapasztalati valószínűségét abban az esetben, amikor a deszkriptorok és a 

számítási feladatok egymástól függetlenek. 

 

Related publications: 2-B, 5-B 
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6 THE REPRODUCIBILITY METRICS 

 

 
 

In this section I give the metrics of the reproducibility, which helps to measure the cost of the 

reproducibility, in other words, how extra-cost – it can be extra computation, extra reproducing 

time or extra storage to store the descriptor values or other parameters – is necessary to reproduce 

the scientific workflow. In order to achieve this goal, I introduce a so-called repair-cost assigned 

to the descriptors. In this way, the Average Reproducibility Cost (ARC) can be calculated and 

that how likely the reproducibility cost is over then a predefined threshold. I call this probability 

Non-reproducibility Probability (NRP). Since the computation complexity of this metrics 

exponentially grows with the size of the descriptor-space I give evaluation methods to be able to 

calculate them in polynomial time. Finally, I classify the scientific workflows from the point of 

view of the reproducibility. 

 

6.1 The “repair-cost”  

The ultimate goal of my research is to make the workflow reproducible in sense that I intend to 

set out different methods which help reproduce an originally non-reproducible job. In other words, 

if a job has a time-based operation-related descriptor which make doubtful or questionable the re-

execution of the job a method is required to eliminate or replace it and reproduce the job without 

the descriptor in dispute. For example, according to a descriptor which has the decay-parameter 

determined by a vary function, the value of the descriptor may be evaluated or even the result of 

the descriptor may be evaluated as well.   In certain cases, the job cannot be made reproducible 

in any circumstance, only a given subworkflow of the original workflow can be reproduced or 

even only the probability of the reproducibility can be determined. To be able formalize and 

measure this extra work needed to reproduce a job I assigned to every descriptor a cost index 

which is a real number in the interval [0, 1]. The cost-index can refer to extra time, computation 

or storage, etc. 
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The following table represents the descriptor-space extended by the cost index and the probability: 

6.2 The reproducibility metrics 

It may be important to inform the user about the conditions of reproducibility of his workflow or 

even the cost of the reproducibility. Introducing the cost-index assigned to the descriptors the 

question may be what will be the expected cost to reproduce the scientific workflow. Since only 

the probabilities of the cost are available, the exact computation is not possible but the expected 

cost can be computed. Additionally it can be also determined how likely the reproducibility cost 

is over a predefined threshold in other words whether the reproducibility cost worth the “invested 

work” or not. Conversely I determined two measures: the Average Reproducibility Cost (ARC) 

and the Non-Reproducibility Probability (NRP).  

6.3 Average Reproducibility Cost 

In order to perform the computation of the ARC, I introduced some additional expression. Based 

on the descriptor space we can create a binary state vector of the job Ji: 

y𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝐾𝑖) ∈ {0,1}
𝐾𝑖 (6.3.1) 

 in which the 𝑦𝑖 = 1 with probability pi , if the ith descriptor value of the job Ji  is unavailable or 

changed but with the help of the cost assigned to it the job can be reproduced. In this way the 

probability of a given y state vector can be computed as follows: 

𝑝(y) = ∏ 𝑝
𝑗

𝑦𝑗(1 − 𝑝𝑗)
1−𝑦𝑗𝑀

𝑗=1  (6.3.2) 

The cost of a state vector is the following: 

𝑔(y) = ∑ 𝑐𝑖
𝐾
𝑖=1     (6.3.3) 

The ARC assigned to the job Ji expressed as 

 

Descriptor’s 

name 

Descriptor’s 

value 
Decay-parameter Cost Cost probability 

d1 v1 = v1(t) decay(v1) c1 p1 

d2 v2 = v2(t) decay(v2) c2 p2 

… … … …  

dK vK = vK(t) decay(vK) cK pK 

4. Table: The extended descriptor-space of a given job 
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𝐴𝑅𝐶𝐽𝑖 = ∑ 𝑔(y)𝑝(y)𝑦∈𝑌  (6.3.4) 

and the ARC assigned to the scientific workflow SWF expressed as 

𝐴𝑅𝐶𝑆𝑊𝐹 = ∑ 𝐸𝑁
𝑗=1 (𝑔(y)) (6.3.5) 

 

6.4 Non-reproducibility Probability (NRP) 

When the overall cost of making the workflow reproducible is greater than a predefined C cost, 

generally the reproducibility do not worth the time and the cost to perform it. In other words in 

that case the workflow is not reproducible. If the users are informed about this fact, they have the 

possibility to modify their workflow or to apply other virtualization tools (Virtual Machin). 

The NRP of a given job Ji is expressed as 

𝑃(𝑔(y𝑖) > 𝐶) = ∑ 𝑝(y𝑖)𝑌:𝑔(y)>𝐶  (6.4.1) 

where C is a given level of the reproducibility cost and  

and the NRP of a sientific workflow SWF is expressed as 

𝑁𝑅𝑃𝑆𝑊𝐹 = ∏ 𝑃(𝑔 (y𝐽𝑗) > 𝐶)
𝑁
𝑗=1  (6.4.2) 

 

The mathematical model described in the previous subsection is similar to the model of the 

network reliability analysis which investigate the availability and the reliability of a 

communication network infrastructure such as SDH, IP or ATM.. In that model the network 

component such as switches, routers etc. are represented by an N dimensional vector y ∈ 𝑌 =

{0,1}𝑁, where N is the number of the network components and the vector element 𝑦𝑖 = 0, if the 

i-th network component is operational and 𝑦𝑖 = 1 with the probability pi, if the i-th network 

component is malfunctioning. Additionally, a measure of loss is given by 𝑔(y) (𝑔: 𝑌 → ℝ), which 

expresses the loss of system performance due to a failure scenario represented by vector y. The 

two main reliability measures are the following: 

1. E𝑔(y) = ∑ 𝑔(y)𝑝(y)y∈𝑌  (6.1) 

2. 𝑃(𝑔(y) > 𝐶) = ∑ 𝑝(y)y:𝑔(y)>𝐶  (6.2) 

where C is a given level of degradation in performance. 

This two measure can be translated to my approach of the reproducibility such as Average 

Reproducibility Cost (ARC) and the Non-Reproducibility Probability (NRP). Concerning to the 
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reproducibility the network components are the descriptors and the measure of loss is the repair 

cost. A descriptor is “malfunctioning” if the descriptor value is changed or unavailable. ARC 

means the expected reproducibility cost which is necessary to make the scientific workflow 

reproducible. If the process of making the workflow reproducible is over a predefined threshold, 

the reproducibility do not worth the “invested work” namely the extra cost which is provided by 

the method and extra tools needed to the reproducibility. 

It follows from the definitions of ARC and NRP is clear that exact computation bases on 

calculating 𝑔(y) for each possible binary state vector, which entails 2N computations. Since the 

number of the descriptors referred to a single job can fall into the range from a few hundred to a 

couple of thousand even in point of the whole scientific workflow which typically has hundreds 

of jobs, ‘taking a full walk’ in the state space for calculating the reproducibility measures is clearly 

out of reach. Therefore, I have to calculate ARC and NRP approximately by using an estimation 

function, which is based on only a few samples {(y𝑖, 𝑔(y𝑖)), 𝑖 = 1,… , 𝑆} taken from the state 

space. Of course, the underlying question is how to find the most optimal or typical samples which 

furnish the most accurate estimation despite the small number of samples. There are many 

classical methods of the reliability analysis, which define the method of sampling and the 

estimation of the E(𝑔(y)) is performed based on the samples:  

a) The Monte Carlo method, which is based on a random samples 

b) The importance sampling, which tries to tailor the sample-taking procedures to the most 

relevant samples 

c) The Stratified sampling, which accelerates the Monte Carlo simulation by grouping the 

samples into different classes. 

Another approach is the estimation by transforming method. The main idea in this method to find 

an appropriate transformation which maps the loss function 𝑔(y) into a function f(y, w) which 

lends itself for easy statistical calculations. The vector w denotes the free parameters which can 

be subject to learning in order to fit the curve f(y,w) to the specific loss function 𝑔(y).  

Namely, the evaluation is done in three steps: 

1. generating a sample set      Nkg kk

N ,...,1,,  yy  

2. finding wopt by minimizing the approximation error over the sample set, where the 

approximation error is defined as follows: 

    



N

k

kk
w

opt wfgw
1

2
,min yy  

3. calculating the expected value   
optf wy,E  by analytical tools. 
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This method proves to be a viable alternative to the classical statistical estimations if the learning 

algorithm is not too complex and if it does not require an over-excessively large training set to 

obtain a good approximation. 

 

6.5 Evaluation of the Average Reproducibility Cost 

The average reproducibility cost (ARC) is a good starting point to inform the scientists about the 

reproducibility conditions of their workflow. In view of ARC they can consider the possibilities 

and the thought of a possible modification. After all in certain cases the size of the descriptor-

space can be enormous in addition it can exponentially increase. If this computation is sticky or 

a real-time reply is needed an evaluation can be applied.  

The universal approximation capabilities of neural networks have been well documented by 

several papers (Hornik & al., 1989), (Hornik & al., 1990), (Hornik, 1991) Therefore, it seems 

plausible to construct f(y,w) as a neural network. In order to fulfil the condition which enforces 

the analytical calculation of E(f(y,w)) the choice fell on Radial Basis Function (RBF) networks: 

   



K

k

kkwf
1

, yywy   (6.5.1) 

where φ is similar to the Gaussian density function: 

 
  

 2





 k
ii yy

k eyy  (6.5.2) 

where σ is the deviation of yi probability variables. 

In this way the 𝑔(y) function can be evaluated by f(y,w) and the expected value can be estimated 

as follows: 

𝐴𝑅𝐶 = 𝐸(𝑔(y)) ≈ 𝐸(𝑓(y,w)) (6.5.3) 

The training set contains of all the state vectors where only one component is 1 and the others are 

0. In this way the size of the training set is K, the number of the descriptors for a given job is:  

𝜏(𝐾) = {(y1, 𝑔(y1)), (y2, 𝑔(y2)), … , (yK, 𝑔(yK))} (6.5.4) 

Based on the training set the optimal weights wopt can be determined minimizing the following 

mean square error: 

w𝑜𝑝𝑡 = min
𝑤
∑ (𝑔(y𝑖) − 𝑓(yi, w))

2𝐾
𝑖=1  (6.5.6) 
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Applying the radial basis function the approximator can be determined in the following way: 

𝑓(y) = ∑ 𝑤𝑖𝜑(‖y − y
(𝑖)‖)𝐾

𝑖=1  (6.5.7) 

where 𝜑(‖y − y(𝑗)‖) = 𝑒
−∑ (𝑦𝑖−𝑦𝑖

(𝑘)
)𝐾

𝑖=1
2𝜎 . 

The expected value of the f approximator can be calculated in the following way: 

𝐸(𝑓(y)) = 𝐸 (∑𝑤𝑖

𝐾

𝑖=1

𝜑(‖y − 𝑦(𝑖)‖)) =∑𝑤𝑘

𝐾

𝑖=1

𝐸 (𝜑(‖𝑦 − 𝑦(𝑖)‖))

=∑𝑤𝑘

𝐾

𝑖=1

𝐸 (𝑒
−∑ (𝑦𝑗−𝑦𝑗

(𝑖)
)𝐾

𝑗=1

2𝜎 ) =∑𝑤𝑘

𝐾

𝑖=1

𝐸 (∏𝑒
−(𝑦𝑗−𝑦𝑗

(𝑖)
)

2𝜎

𝐾

𝑗=1

)

=∑𝑤𝑘

𝐾

𝑖=1

∏𝐸(𝑒
−(𝑦𝑗−𝑦𝑗

(𝑖)
)

2𝜎 )

𝐾

𝑗=1

=∑𝑤𝑘

𝐾

𝑖=1

∏(𝑝𝑗𝑒
−(1−𝑦𝑗

(𝑖)
)
2

2𝜎 + (1 − 𝑝𝑗)𝑒
−(𝑦𝑗

(𝑖)
)
2

2𝜎 )

𝐾

𝑗=1

 

In this way the ARC can be calculated for every job in a scientific workflow, furthermore the 

ARCswf can be calculated for the whole workflow summarizing the ARCjob. Figure (figure 25) 

shows the pseudo code of the algorithm. 

 

25. Figure: The pseudo code of the estimation of the ARC  

 

6.6 The upper bound of the unreproducibility probability 

In probability theory, the theory of large deviations is concerned with the study of probabilities 

of rare events. In Large Deviation Theory, the Chernoff bound gives exponentially decreasing 

ARCeppr=0 
for i=1 to N 
 get Ji 
 generate τJi(Ki)={yi, g(yi)} 
 calculate wopt 
 calculate f(y,wopt) 
 calculate E(f(y,wopt)) 
 ARC==ARC+E(f(y,wopt)) 
end 
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bounds on tail distributions of sums of independent random variables. Assuming the 

independency of the descriptor it can be applied to give a sharper upper bound of the NRP. 

In the case when the cost-function is a linear function of the binary variables yi we can apply the 

Chernoff-bound methods and give an upper bound to the probability defined by the equation is  

𝑃(𝑔(𝑦) > 𝐶) = 𝑃(∑ 𝑤𝑖𝑦𝑖
𝐾
𝑖=1 > 𝐶) = 𝜙(𝐶) < 𝑒(∑ 𝜇𝑖(𝑤𝑖𝑠)−𝑠𝐶

𝐾
𝑖=1 ) (6.6.1) 

The functions 𝜇𝑖(𝑠) are the logarithmic momentum generator functions of the random variables 

wiyi: 

𝜇𝑖(𝑠) = 𝑙𝑜𝑔𝐸𝑒
𝑤𝑖𝑦𝑖𝑠 (6.6.2) 

where 𝑠: ∑
𝑑𝜇𝑖(𝑠)

𝑑𝑠
= 𝐶𝐾

𝑖=1  

This functions can be easily calculated as the following: 

𝜇𝑖(𝑠) = 𝑙𝑜𝑔E𝑒
𝑤𝑖𝑦𝑖𝑠 = log (𝑝𝑖𝑒

𝑤𝑖𝑠 + (1 − 𝑝𝑖)) (6.6.3) 

If the cost-function is not linear it has to be approximated by a linear function: 

 

𝑔(𝐲) ≈  𝑓(𝐲) = ∑ 𝑤𝑖𝑦𝑖
𝐾
𝑖=1  (6.6.4) 

In this way, the evaluation is similar to the evaluation of the ARC using the capability of the 

neural networks. A training set must be generated. It should contain all the state vector which 

has only one element with the value of 1, and all the others are 0. In this way, the size of the 

training set is equal to K, where the K is the number of the descriptor in a given job. Based on 

the training set the optimal wi values can be calculated by minimizing the mean square error in 

the following way: 

𝐰𝑜𝑝𝑡:min
𝑤

1

𝐾
∑ (𝑔(𝐲𝑖) − ∑ 𝑤𝑗𝑦𝑖𝑗

𝐾
𝑗=1 )

2𝐾
𝑖=1  (6.6.5) 

The minimization is based on solving the linear equation system. 

In this way the approximator φ(C) function can be calculated as: 

𝑃(𝑔(𝐲) > 𝐶) < 𝜑(𝐶) = 𝑒∑ 𝜇𝑖(𝑤𝑖𝑠)−𝑠𝐶
𝐾
𝑖=1  (6.6.6) 
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26. Figure: The pseudo code of the estimation of the NRP 

 

When the overall cost function of the scientific workflow is greater than a predefined C cost, 

generally the reproducibility does not worth the time and the cost to perform it. In other words, in 

that case the workflow is not reproducible. If the users are informed about this fact, they have the 

possibility to modify their workflow or to apply other virtualization tools. 

 

6.7 Classification of scientific workflows based on reproducibility analysis 

 

Analyzing the decay parameters of the descriptors we can classify the scientific workflows. First, 

we can separate the workflows which decay-parameters for all the jobs are zero. These workflows 

are reproducible at any time and any circumstance since they do not have dependencies. Than we 

can determine those ones which can influence the reproducibility of the workflow in other words 

which have non-zero decay parameter(s). Six groups have been created: 

 

decay-parameter cost category 

decay(v)=0 cost = 0 reproducible 

decay(v) is unknown -- non-reproducible 

decay(v) is unknown, the 

descriptor value cannot be stored 
cost = C1 reproducible with extra cost 

decay(v) = F(t) cost = C2 reproducible with probability P 

decay(v) = vary(t,v) cost = C3 approximately reproducible 

5. Table The classification of the scientific workflow 

 

6.7.1 Reproducible workflows 

The first group represents the reproducible workflows. In this case, all the decay-parameters of 

all the jobs belonged to a workflow are zero. These workflows are reproducible and they can be 

NRPeppr=1 
for i=1 to N 
 get Ji 
 generate τJi(Ki)={yi, g(yi)} 
 calculate wopt 
 calculate f(y,wopt) 
 calculate φ(C) 
 NRP==NRP* φ(C) 
end 
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executed and re-executed at any time and any circumstance since they are not influenced by 

dependencies. 

 

6.7.2 Reproducible workflow with extra cost 

There are workflows, which have operation related descriptors which are unknown in normal 

circumstance, but with the help of additional resources or tools these dependencies can be 

eliminated. For example, if a computation is based on random generated value, this descriptor’s 

value is unknown. In this case with the help of an extra, operation system level tool we can capture 

the return value of the system call and we can store it in the provenance database. Another 

example is when a virtualization tool, such as a virtual machine have to be applied to make the 

workflow reproducible.  

 

 
6.7.3 Approximetly reproducible workflows 

In certain cases the workflow execution may depend on some continuously changing resource. 

For example there are continuously growing databases which get the data from sensor networks 

without intermission. If the computation of a workflow use some statistical parameters of this 

database, the statistical values never will be the same. Moreover the descriptor can be operation-

related descriptor which is based random value or time or other parameter referred to the state of 

the system and the values are captured by the appropriate tools. In this case the appropriate 

descriptor’s value of the given job may change on occasion of every re-execution, consequently 

the reproducibility of this workflow could be failed.   

In this case, analyzing the change of the descriptor value and the effect for the result, in certain 

cases the relationship and an estimation method can be determined to replace the descriptor value 

or even the result of the job. On occasion of a later re-execution, if reproducing is not possible or 

the crucial descriptor is unavailable, this evaluating method can be applied and an evaluated result 

can be done.     

 

6.7.4  Reproducible workflows with a given probability 

Many investigations revealed the problem caused by volatile third party resources, when the 

reproducibility of workflows became uncertain. The third party services or any external resources 

can be unavailable during the years. If there are no method to handle or eliminate this dependency, 

the probability of the reproducibility can be determined based on the theoretical decay-parameter 

(if the availability of the service can be given by the user or by the third party) or based on the 
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sample set in empirical way. Sometime the users may have to know the chance of the 

reproducibility of a workflow for example when they look for one in the repositories. Assuming 

that the probability distribution of the third party service is known, assumable or evaluable 

information can be provided to the users about the expected probability of the reproducibility. 

 

6.7.5 Non-reproducible workflows 

There is no method to make the workflow reproducible. In this case the scientific workflow may 

have too many dependencies or it probably contains very complex non-deterministic job or jobs. 

 

6.7.6 Partially reproducible workflows 

If a workflow has a crucial descriptor which influence the reproducibility and there are no method 

to compensate or eliminate this descriptor, the job containing this descriptor become non-

reproducible. However, it does not mean, that the whole workflow is also non-reproducible. 

Determining the coverage of that crucial descriptor the reproducible part of the SWF can be 

identified. The reproducible part of the SWF also can be in any group listed above. 

 

6.8 Conclusion 

 

In this section I defined the metrics of the reproducibility, the ARC and the NRP. I determined 

the expected cost for making a workflow reproducible and we also gave an efficient adaptive 

evaluation method for the ARC. The method is very useful in the continuously changing 

environment in which scientific workflows are mostly enacted. Further I determined the 

probability that how likely the reproducibility cost is greater than a predefined threshold and I 

also gave an upper limit for the probability of making a workflow reproducible with a cost greater 

than a predefined C threshold. The analysis was bounded on the special cases when the cost 

function is linear or can be approximated by a linear function. The advantage of this evaluation is 

the simply computation but it provides a rough estimation.  The future work may extend our 

evaluations on higher order approximations as well. 

Finally, I investigated the possible types of the scientific workflows from the point of view of 

their reproducibility. The basis of the analysis is the decay-parameter which describes the type 

and the measure of the change of the descriptor’s values. According to this parameter we 

determined a cost function which means the “work” required to reproduce the given job or 

workflow. In this way, the classification of the scientific workflows can be given and how they 
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can be reproduced in a later time. In the different categories, I set up methods to make the 

workflows reproducible or we gave the probability and the extra cost of the reproducibility. 

 

 

6.9 Novel scientific results (theses) 

 

Thesis group 3: I defined two metrics of the reproducibility and I determined approximations to 

evaluate them in polynomial time if the exact calculation is not possible in real-time. 

3. Téziscsoport: Definiáltam a reprodukálhatóság költségének mérőszámait és polinomiális 

lépésszámú közelítő eljárást határoztam meg ezek becslésére abban az esetben, amikor a pontos 

számítás nem lehetséges valós időben. 

Thesis 3.1 

I have introduced the term of the repairing cost-index assigned to the computational job 

descriptors, which gives the ability to determine the reproducibility metrics of the DAG 

type scientific workflow:, namely the Average Reproducibility Cost (ARC) and the Non-

Reproducibility Probability (NRP) values 

3.1 Altézis 

Bevezettem a számítási feladat deszkriptoraihoz rendelt javítási költség fogalmát, melynek 

segítségével meghatároztam az irányított körmentes gráfokkal reprezentálható tudományos 

munkafolyamatok reprodukálhatósági mértékeit, a reprodukálhatóság átlagos költségét 

(ARC) és a reprodukálhatatlansági valószínűséget (NRP). 

Related publications: 3-B, 4-B, 5-B  

 

Thesis 3.2 

I have determined a real time computable method to evaluate in polynomial time the ARC 

of a DAG type scientific workflow in case the descriptors are independent. 

3.2 Altézis  

Meghatároztam egy valós időben számolható polinomiális lépésszámú közelítő eljárást a 

DAG tudományos munkafolyamatok átlagos reprodukálhatósági költségének (ARC) 

becslésére abban az esetben, amikor a deszkriptorok egymástól függetlenek.  
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Related publications: 4-B 

 

Thesis 3.3 

I have determined a real time computable method to calculate upper estimates in 

polynomial time the NRP value of a scientific workflow, when the descriptors and jobs are 

independent and the g(y) cost function is the linear function of the yi binary variables.  

3.3 Altézis 

Valós időben számolható, polinomiális lépésszámú felső becslést határoztam meg a 

reprodukálhatatlansági valószínűségre abban az esetben, amikor a g(y) költségfüggvény az 

yi bináris változók lineáris függvénye, valamint a deszkriptorok és a jobok egymástól 

függetlenek.  

Related publications: 3-B 

 

Thesis 3.4 

Based on the decay-parameters and the cost index I have categorized from the 

reproducibility perspective the scientific DAG-type workflows. 

3.4 Altézis  

A tapasztalati romlási mutató és a deszkriptorok javítási költsége alapján osztályoztam a 

DAG-gal reprezentálható tudományos munkafolyamatokat reprodukálhatósági 

szempontból. 

Related publications: 5-B 
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7 PRACTICAL  APPLICABILITY OF THE RESULTS 

 

 
 

Based on this research I designed two extra modules of the WSPGRADE/gUSE to reproduce an 

in other way non-reproducible SWf. It performs an pre-analysis phase before re-execute a SWf 

based on the descriptor space to determine in which way the SWf can be reproduced and which 

extra tools (evaluation tool, descriptor value capture or extra storage) is required. After the re-

execution an post analysis phase perform an estimation (if necessary) and updates the provenance 

database with the appropriate parameters needed to evaluation. 

 

The process of reproducibility-analysis 

Based on the descriptor’s space the pre-analyzer performs a classification of the jobs of the given 

Wf. Depending on the classification, the job can be executed in three ways: 

1. Standard execution, if all the decay parameters are zero. 

2. Replacing the execution with evaluation, if there are changing descriptor values in the 

descriptor-space and their availabilities are changing in time. 

3. Execution with descriptor value capture (VC) tool, if the execution of the job is based on 

operation related descriptor value or the value cannot be stored due to the  

In all cases updating the Provenance Database (PDB) is performed occasionally by extra 

provenance information (for example a random value). 

Based on the PDB the post-analyzer creates a sample set. The evaluator module computes the 

evaluated output of the given job (figure 26, 27) 
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27. Figure The flowchart of the reproducing process 

  

 

28. Figure The block diagram of the reproducing process 
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8 CONCLUSION 

 

 

During the last decades the e-science widely gather ground among the scientific communities. 

Thanks to the high performance computing and to the parallel and distributed systems the classical 

analytical experiments conducted in the laboratories are taken over by the data and compute 

intensive in-silico experiments. The steps of these experiments are chained to a so called scientific 

workflow. An essential part of the scientific method is to repeat and reproduce the experiments 

of other scientists and to test the outcomes themselves even in a different execution environment. 

A scientific workflow is reproducible, if it can be re-executed without failures and gives the same 

result as the first time. In this approach the failures do not mean the failures of the Scientific 

Workflow Management System (SWfMS) but the correctness and the availability of the inputs, 

libraries, variables etc. The different users for different purposes may be interested in reproducing 

of the scientific workflow. The scientists have to prove its results, other scientists would like to 

reuse the results and reviewers intend to verify the correctness of the results. A reproducible 

workflow can be shared in repositories and it can become useful building blocks that can be 

reused, combined or modified for developing new experiments. 

In this dissertation I investigated the requirements of the reproducibility and I set out methods 

which can handle and solve the problem of changing or missing descriptors to be able to reproduce 

a – in other way – non-reproducible scientific workflow. In order to achieve this goal I formalized 

the problem and based on provenance database I introduced the term of the descriptor-space 

which contains all the necessary component (call descriptor) to reproduce a job. Concerning to 

the descriptors I defined the theoretical and the empirical decay-parameter which describe the 

change of the descriptor in time-dependent and time-independent cases as well. Additionally, with 

the help of the decay parameters the crucial descriptors – which can influence or even prevent to 

reproduce a SWf – can be identified. Based on provenance database I created a sample set referred 

to a job which contains the descriptors of the job originated from the previous executions. 

Analyzing the empirical decay-parameter based on the sample set the relation can be determined 

between the change of the descriptor values and the empirical decay-parameter. Our goal was to 

find methods which can help to compensate the changing nature of the descriptors and which can 

help to perform evaluation to make the scientific workflow reproducible by replacing the missing 

values with simulated ones. In addition I determined the impact of a descriptor which says how 

the descriptor influences the result of a given job. The sample set also can help to determine the 

probability of the reproducibility and the reproducible part of a given SWf. Since the basis of our 

analysis is the decay-parameter, according to it I assigned to every descriptor a cost-index which 

means the “work” required to reproduce a given job or workflow. In this way I introduced two 
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measures of the reproducibility: the Average Reproducibility Cost and the Non-reproducibility 

Probability. The first one determines the expected value of the cost to reproduce a – on other way 

– non-reproducible SWf. The other measure is the Non-reproducibility Probability which gives 

how likely the reproducibility cost is greater than a predefined C threshold. The analyses was 

bounded on the special cases when the cost function is linear or can be approximated by a linear 

function. Finally I classified the scientific workflows from the reproducibility perspective and I 

determined the reproducible, partial reproducible, reproducible by substitution, reproducible with 

probability p and the non-reproducible scientific workflows.   

During the design phase the results of this investigation can help the scientists to analyze the 

crucial descriptors of their workflow which can prevent to reproduce it. Additionally, storing this 

information, statistics and evaluation methods together with the workflows in the repositories, 

can provide a useful tool to support the reusability of the SWf making it reproducible and the 

scientists to find the most adequate (in sense of reproducibility) workflow to reuse. 

 

8.1 Future research directinos 

 

As a further extension of my research I plan to investigate scientific workflows 

represented by non-DAGs. These cyclic graph may contain execution loops which results 

recursive workflows. Moreover, the evaluability of the two reproducibility metrics, ARC 

and NRP can be investigated without assuming the independency of the descriptors. 

First and foremost an implementation of the extension (mentioned in section 9) should be 

carried out in WSPGRADE/gUSE scientific workflow management system developed by 

MTA SZTAKI.  
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