Obuda University

PhD Thesis

Reproducibility analysis of the scientific workflows

Anna Banati

Supervisors:
Péter Kacsuk, Phd, Prof.
Miklos Kozlovszky, Phd

Doctoral School of Applied Informatics

Budapest, 2016.

Statement

I, Anna Banati, hereby declare that | have written this PhD thesis myself, and have only used
sources that have been explicitly cited herein. Every part that has been borrowed from external
sources (either verbatim, or reworded but with essentially the same content) is unambiguously

denoted as such, with a reference to the original source.

Abstract

In large computational challenges scientific workflows have emerged as a widely accepted
solution for performing in-silico experiments. In general, these in-silico experiments consist of
series of particularly data and compute intensive jobs and in most cases their executions require
parallel and distributed infrastructure (supercomputers, grids, clusters, clouds). The successive
steps of an experiment are chained to a so called scientific workflow, which can be represented
by a directed acyclic graph (DAG). The execution of these scientific workflows — depending on
the field of science — can take a very long time, weeks or even months. The complexity of
workflows and the continuously changing nature of the environment can hide the details of the
execution, the partial results and the intermediate computations, and even the results of the
execution of the same workflow can be different.

In order to repeat or reproduce a scientific workflow the scientist and also the SWfMS developers
have to face several challenges. On one hand many workflows are based on special hardware or
software with the appropriate settings, or third party resources which create dependencies of the
execution. These dependencies have to be handled or even eliminated with tools developed for
this purpose. On the other hand, the ancestry of the results may raise problems when someone
wants to reuse the whole or a part of the workflow. To conserve this information rich provenance
data have to be collected during the execution.

In this dissertation | deal with the requirements and the analysis of the reproducibility. I set out
methods based on provenance data to handle or eliminate the unavailable or changing descriptors
in order to be able reproduce an — in other way — non-reproducible scientific workflow. In this
way I intend to support the scientist’s community in designing and creating reproducible scientific
workflows.

In the first two thesis groups | introduced the mathematical model of the reproducibility analysis,
| investigated and proved the behavior of the changing descriptors referred to the jobs which can
influence the reproducibility. In addition | presented methods to determine the coverage of the
descriptors, the reproducible part of the workflow and the probability of the reproducibility. In
the third thesis group | introduced two metrics of the reproducibility and | present algorithms to
evaluate these metrics in polynomial time. Finally | classify scientific workflows from a

reproducibility perspective.

Kivonat

Napjainkban, a tudomanyos vilagban folytatott tudomanyos kisérletek egyre novekvd, hatalmas
adathalmazokra épiilnek, melyek feldolgozasa és a rajtuk végzett szamitdsok a hagyomanyos
laboratorium adta lehet6ségeket messzemenéen meghaladjak. Ennek kovetkeztében a tudos
kozosségek korében egyre népszeriibbé és nélkiilozhetetlenebbé valnak az un. ,,in-silico”
(szamitogépeken végrehajtott) kisérletek, melyek futtatdsa parhuzamos ¢és elosztott
infrastruktarakat igényelnek, mint a szamitasi racsok (grid), fiirtok (cluster) vagy egyre inkabb a
felhdk (cloud). A kisérletek egyes 1épéseinek lancba flizésével un. tudomanyos munkafolyamatok
jonnek létre, melyek futtatasa - tudomanyteriilettdl fiiggéen - hetekig vagy akar honapok is tarthat.
A fentebb emlitett infrastrukturak kiillonb6z6ségébdl és a folyamatosan valtozo természetiikbol
fakaddan azonban a futés részletei, vagy akar a kozbiils6 szamitasok és részeredmények is rejtve
maradhatnak, sét, két kiilonbozé végrehajtas eredményei eltérhetnek egymastdl. A tudomanyos
munkafolyamatok reprodukalhatosaganak biztositasa érdekében, a tudos tarsadalomnak, - mint
felhasznaloknak - és a munkafolyamatokat futtatd, kezeld rendszerek (Scientific Workflow
Management system) fejlesztdinek két nagy kihivassal kell szembenézniiik: Egyrészt a
munkafolyamatok végrehajtasa gyakran specialis hardver/szoftver elemeken vagy harmadik félt6l
szarmazo6 erdforrasokon alapszik, amelyek rendelkezésre allasa megkérddjelezheti egy ujra
futtatas sikerességét. Ennek megoldasara olyan eszkozoket és modszereket kell fejleszteni,
melyek kezelik vagy esetleg megkeriilik ezeket a fliiggéségeket. Masrészrél az eredmények
eredetének nyomon kovethetdségét biztositani kell. Ennek érdekében, a munkafolyamat-kezeld
rendszerek un. provenance adatokat gyiijtenck az adatfiiggdségekrdl, a részeredményekrodl, a
kornyezeti valtozokrol valamint a rendszer beallitasairdl és paramétereirdl.

Jelen kutatdsban a tudomanyos munkafolyamatok reprodukalhatdsaganak feltételeivel és
elemzésével foglalkoztam provenance adatok felhasznalasaval, tovabba a tudds tarsadalom
tamogatasa céljabol megoldasi lehetoségeket kerestem az egyébként nem reprodukalhato
tudomanyos munkafolyamatok reprodukalhatova tételével kapcsolatban. A modszerek az
elérhetetlenné valo és valtozé deszkriptorok kikiiszobolését és kompenzalasat kezelik.

Az els6 két téziscsoportban a bevezetett matematikai modell épitdelemeit definialtam és
vizsgaltam, nevezetesen a szamitasi feladatok reprodukalhatosagat meghatarozd deszkriptorok
romlasi mutatojat, valtozasainak természetét, kapcsolatat és az eredményre vonatkoz6 hatasat.
Tovabba eljarast dolgoztam ki a deszkriptorok hatésugaranak és a tudomanyos munkafolyamatok
reprodukalhaté részének meghatarozasara, valamint a reprodukalhatosadg valdszinliségének
kiszamitasara. A harmadik téziscsoportban a reprodukalhatosag mértékeit definialom és
polinomialis 1épésszam algoritmust mutatok be a mértékek becslésére. Végezetiil a tudomanyos

munkafolyamatokat osztalyoztam reprodukalhatdsagi szempontbol.

Content

1 INTRODUCTION ...ttt bbb 13
1.1 Scientific experiments — In vivo, In vitro, In situ, In SICO...........ccccvririrnnnnne 13
1.2 ReproduCibilityccoviiiiiee e 14
1.3 IMIOTIVALION...cviiiieiieie e bbbttt bbb 15
1.4 Research methodology.........coooiiiiiiiiiiiee e 16
1.5 TRESIS SLIUCTUIE ...ttt 17

2 STATE OF THE ART .ottt 18
2.1 SCIeNtific WOIKFIOWSooieiiicciecece e 18

2.1.1 Scientific Workflow Life CyClecccooveviiiiiicec e 18
2.1.2 Scientific workflow representation............ccccoovveveiicieevecce e 19
2.2 Scientific Workflows Management SYStEmccoceveririinienenenene e 21
2.3 PIOVENANCE.....cuiiiiieiiie ettt ettt ettt sb et b e sn e e nne e s b e e sbeeenee 25
A ST o oo [0 Tod] o1 11 Y SRS 26
2.4.1 Techniques and tO0IScccoiiiiiiiiiieeee e 27

3 REQUIREMENTS OF THE REPRODUCIBILITY ..ccoootiiiiiiiieieie e 29
3.1 DEPENUEBNCIESveevieie ettt ettt e e te e enteenaenreens 29
3.2 DALASELS ...ttt sre e b raeenee s 30
3.3 Datasets fOr JODS. ..o 34
3.4 DependencCy dataSelccceiieiieiii i 35
K TR T o] o o] 1111 o] o S 35

4 THE REPRODUCIBILITY ANALYSIS ...ttt 36
4.1 The different levels of the re-eXeCution..........ccoccvveiiiiniinicierc e 36

411 RepeataDility ..o 38
4.1.2 Variability ..c..ocoiiii s 38
4.1.3 POMabilityccooiiiiicice s 39
414 ReproduCibiliTyccoiiiiiiiii s 39
4.2 NON-0eterMiniSCLIC JODS ...c.viiiiirieii it 39
4.3 The deSCrIPLOr-SPACEccuvieiieiiieeiiee ettt ettt ae e ee et eabeesraeene e 40
4.4 Definitions of reproducible job and Workflow..............ccooeviiiiiniiiiiins 40
45 The SAMPIE SELoviiiiicieee e 43
4.6 The theoretical decay Parameterccoiveiieiie e 44
4.7 The diStanCe MELMICccuiiieie e es 46

4.8 The empirical decay-parameter concerned to time-dependent descriptors...... 46
4.9 The empirical decay-parameter concerned to time-independent descriptors .. 47

4.10 Investigation of the behavior of the descriptors..........cccoevvieiiiciiinecen 48
4.10.1 SIMUIALIONS ...c.viiiiiiiiieiieie e bbb s 49
4.10.2 LINBAMLY .oeiveieieiie ettt ettt ettt e ns 49
4.10.3 Exponantial and logarithmic changeccccocoiiiniicice 52
4.10.4 FIUCTUBLION ..ottt bbb 55
4.10.5 OULIIEIS .o bbb 58

411 (OF0] 0 od (1] [0 o PO USRS 62

4.12 Novel scientific reSUlts (tNESES).......c.civveiviieiiee e 63
INVESTIGATION OF THE EFFECT OF A CHANGING DESCRIPTOR.......... 65

5.1 The impact factor of a changing descriptor for the result...............ccccoenien. 65

5.2 Partially reproducible scientific WOrkflows............c.ccccovevviiiiciciicie e, 66

5.3 Determination of the desCriptor COVErage.........ccovuvrveieereieeieereseese e 67

5.4 The reproducibility rate iNEX..........ccocviiiiiiiiiiiese e 68

5.5 Determination of the reproducible subworkflow............ccccccoovveiiiiinciccee. 68

5.6 Reproducibility by SUDSEITULION..........cccviiiiiieir e 69

5.7 Determination of the substitutional and the approximation function 70

5.8 Reproducible scientific workflows with the given probability....................... 71

5.9 Theoretical probability............cccooveiiiiiiic 71

5.10 Empirical probability..........cocoiiiiiii 72

511 CONCIUSION.....oiiiiiiiieiee e et ens 73

512 Novel scientific results (tNESES)........covveiiiieieeie e 74
THE REPRODUCIBILITY METRICScoo i 76

6.1 The “Tepair-CoSt”......cueiiiiiiieii e 76

6.2 The reproducCibility MELFICS.......ccciiiiice e 77

6.3 Average ReproduCibility COSt..........cccouriiiiiiiieiese e 77

6.4 Non-reproducibility Probability (NRP)cccooiiiiiice e 78

6.5 Evaluation of the Average Reproducibility Cost...........ccccovveviivciicii e, 80

6.6 The upper bound of the unreproducibility probability............ccccoiiiininnnnnn. 81

6.7 Classification of scientific workflows based on reproducibility analysis........ 83
6.7.1 Reproducible WOrkFlOWScccceeiiiiiiiiiciecce e 83
6.7.2 Reproducible workflow with extra COStcccovvriiiiiieiiisc s 84
6.7.3 Approximetly reproducible Workflowsccccooveeiiiiiiiciccc 84
6.7.4 Reproducible workflows with a given probabilitycccooeiiiiinnnn 84
6.7.5 Non-reproducible WOrkflOWS...........ccoeiiiiiiiiiicc s 85
6.7.6 Partially reproducible WOrkflows ... 85

6

7
8

9

6.8 Conclusion

6.9 Novel scientific results (thESES)ccvveveiiiiiieii i
PRACTICAL APPLICABILITY OF THE RESULTS......cccee i,

CONCLUSION

8.1 FULUIe reSEaArCh irBCHINOSvveeeeeee et
BIB IO G R A PHY oottt e e et e e et e e e e e ereee et areeeetaraarearaaees

List of figures

1. Figure: A simple scientific workflow example with four jobs (J1, J2, Js, Ja) in gUSE 20
2. Figure: A scientific workflow example from www.myexperiment.org.........c.ceeverervevnenne. 20
3. Figure Operation of the Rescue feature in the WS-PGRADE/QUSE system............cccceoveuene. 23
4. Figure The connection of the different levels of re-eXecutionc.ccoevvvviiiiiciiiinne, 38
5. Figure The backward subworkflow of @ job Ji.........cccoeiiiiiiiiiii e, 41
6. Figure The illustration of the numerator and the denominator in the time-dependent empirical
(o[- Tor. SRS 51
7. Figure The proof of the lINEArItYcccveiiiiiiiicece s 52

8. Figure The time-dependent empirical decay-parameter in case of exponential growth of the
descriptor based 0N 50 SAMPIES.c.civiiiiiiiee et 53
9. Figure The time-dependent empirical decay-parameter in case of radical growth of the
descriptor based 0N 50 SAMPIEScc.civiieii e e e ras 53
10. Figure The time-dependent empirical decay-parameter in case of logarithmic growth of the
descriptor based 0N 50 SAMPIESc..civiieiiiiee e 54
11. Figure The time-dependent empirical decay-parameter in case of randomly growth of the
descriptor based 0N 50 SAMPIES.........cviiiiiie e 55
12. Figure The time-independent emp. decay of the periodically changing descriptor values ... 56
13. Figure The time-dependent empirical decay-parameter in case of sinus change of the
descriptor based 0N 50 SAMPIES.........oiiiiiiir e 56
14. Figure The time-dependent empirical decay-parameter in case of random change in [0,1]
interval Dased 0N 50 SAMPIES. ..ot s 57
15. Figure The time-dependent empirical decay-parameter in case of random change in different
interval based 0N 50 SAMPIES. ..ot 57
16. Figure The time-dependent empirical decay-parameter in case of random change with
irrelevant first value based on 50 SAMPIESccoviiiiiiiiiiciec e e 58
17. Figure The time-independnet emp. decay when outliers are among the descriptor values... 58

18. Figure The time-dependent empirical decay-parameter in case of outliers based on 50 samples

19. Figure Summary chart about the time-dependent empirical decay in case of different change
in the descriptor value based 0N 50 SAMPIESoov i 60
20. Figure Summary chart about the time-independent empirical decay in case of different change
in the descriptor value based 0N 50 SAMPIESooi i 61

21. Figure Summary chart about the time-dependent empirical decay when the change is small

. Figure The forward sub-workflow of @ jOD Ji.......cccocvieeiiiei e, 66
. Figure The coverage of the deSCriPLOr Vijcoveveieiiiiiie e 67
. Figure The pseudo code of the determination of the rperoducible part of the SWf.............. 69
. Figure: The pseudo code of the estimation of the ARCccoeiiiiiiiicic, 81
. Figure: The pseudo code of the estimation of the NRPcccccoiiiiiiiiiiiiec, 83
. Figure The flowchart of the reproducing ProCESScccverererieieiiniiise e 89

. Figure The block diagram of the reproducing ProCess.........ccuvvvveieieeriesiesieese s eseese s 89

List of tables

1. Table Categories of workflow execution dependencies...........cccvcvereiieeiiiiiiieese e 30
2. Table Summary table about the datasetS.........c.ccveeii i 33
3. Table The different levels Of the re-eXeCULIONccviiiiiniieie e 36
4. Table: The extended descriptor-space of a given job ..o, 77
5. Table The classification of the scientific WOrkfIowccocoveriiiiiiiii e 83

10

file:///C:/Users/ThinkPad%20Edge%20E220s/Documents/sajat/phd/ertekezes/ertekezes-reproanal23.docx%23_Toc467342452

List of abbreviations

Abbreviation

ARC
DAG
HPC
NRP
OPM
PDB
RGV
RBF
RO
SWf
SWIMS
VM
W3C
WFLC

Meaning

Average Reproducibility Cost

Directed Acyclic Graph

High Performance Computing Infrastructures
Non-reproducibility probability

Open Provenance Model

Provenance Database

Random Generated Values

Radial Basis Function

Research Object

Scientific Workflow

Scientific Workflow Management System
Virtual Machine

World Wide Web Consortium

Workflow Life Cycle

11

ACKNOWLEDGEMENT

Firstly, 1 would like to thank my supervisors, Mikloés Kozlovszky and Péter Kacsuk for being
tolerant, and always helpful as a colleague and supervisor. Their guidance in general and technical
suggestions in particular have really guided me during this study. Their calm and friendly
demeanour allowed me to discuss and share ideas with him at any time.

Furthermore, | am thankful to Dr Janos Levendovszky, my first supervisor at Budapest University
of Technology and Economics who showed me the beauty of the research and introduced me to

network reliability.

Moreover, | would like to thank my friend and colleague, Eszter Kail who accompanied me along

this struggling way.

Without the support of parents and family, this long period of research would not have been
possible. The support | received from my mother cannot be described in words. My husband
whose patience and care allow me to complete this work and our children who had to miss me so

long.

12

1 INTRODUCTION

1.1 Scientific experiments — In vivo, Invitro, In situ, In silico

During the last decade, scientific workflows have emerged as a widely-accepted solution for
performing in silico experiments for large computational challenges. The traditional scientific
experiments are conducted on living organisms, called in vivo (Latin: “within the living”), in the
nature, called in situ (Latin: locally, on site) or in laboratories, called in vitro (Latin: in glass)
experiments. During in vivo experiments, the effects of various biological entities are tested in
their original environment on whole living organisms, usually animals or humans. In situ
observation is performed on site, typically in the habitat of the animal being studied and generally
it is the environment that is modified in order to increase/improve the life conditions of a certain
animal. The in vitro term refers to a controlled environment such as test tubes, flasks, petri dishes,
etc. where the studied component is tested in an isolated way from their original, living
surroundings. These experiments have fewer variables and simpler conditions than in vivo
experiments and they can avoid the continuously changing impact and interactions of real life.
This way/Thus they could allow a more fine-grained analysis of the studied phenomena. At the
same time, correlating their results to real-world scenarios was not always straightforward, thus,
generally in vitro results have to be verified in the original environment.

In contrast to the traditional methods, the in silico (Latin: in silicon, referring to semiconductor
computer chips) experiments are performed on computer or via computer simulation, modelling
the original components, variables and the studied effects. Thanks to the particularly fast growing
of computer science technology these experiments become more and more complex, more data
and compute intensive which requires parallel and distributed infrastructure (supercomputers,
grids, clusters, clouds) to enact them. Generally, these in-silico experiments consist of a huge
amount of activities (call jobs) — their number can reach hundreds or even thousands - which
invoke particularly data and compute intensive programs. Tying the jobs to a single, multi thread
chain provides a scientific workflow to model the in-silico experiments which can be executed

by the Scientific Workflow Management Systems.

13

12 Reproducibility

To be able to proof or verify a scientific claim, the repeatability or the reproducibility of any type
of experiments is a crucial requirement in the scientist’s community. The different users for
different purposes may be interested in reproducing of the scientific workflow. The scientists have
to prove its results, other scientists would like to reuse the results and reviewers intend to verify
the correctness of the results (Koop & al, 2011). A reproducible workflow can be shared in
repositories and it can become useful building blocks that can be reused, combined or modified

for developing new experiments.

In the traditional method, the scientists make notes about the steps of the experiments, the partial
results and the environment to make the experiments reproducible. Additionally, during the
history of the scientific research, different standards, metrics, measurements and conventions had
been developed to allow to provide the exact descriptions, the repeatability and the possibility of
reusing each other’s results. After all, certain types of the scientific experiments are unable to be
repeatable because of the continuously changing environment such as the living organisms or
nature in which many factors can be interacts and, in this way influence the results. Similarly, in
case of the in-silico experiments, the same way has to be walked and has to develop tools to make
them reproducible. On one hand, like the scientist make notes about the traditional experiments,
provenance information has to be collected about the environment of the execution and the partial
result of the scientific workflow. On the other hand, the ontologies of these type of experiments
also has to be developed to allow the knowledge sharing and the reusability on the so called
scientific workflow repositories. However, many researcher work in these fields the

reproducibility of the scientific workflows is still a big challenge because of:

e The complexity and the ever-changing nature of the parallel and distributed
infrastructure: Computations on a parallel and distributed computer system arise
particularly acute difficulties for reproducibility since, in typical parallel usage, the
number of processors may vary from run to run. Even if the same number of processors
is used, computations may be split differently between them or combined in a different
order. Since computer arithmetic is not commutative, associative, or distributive,
achieving the same results twice can be a matter of luck. Similar challenges arise when
porting a code from one hardware or software platform to another (Stodden & al., 2013)

e The labyrinthine dependencies of the different applications and services: A scientific
workflow inherently can interconnect hundred or even thousand jobs which can be based
on different tools and applications which has to work together and deliver data to each
other. In addition, each job can depend on external inputs complicating the connections

and dependencies.

14

e The complexity of the scientific workflows managing a huge amount of data.

1.3 Motivation

Zhao et al. (Zhao & al, 2012) and Hettne (Hettne & al, 2012) investigated the main purposes of
the so-called workflow decay, which means that year by year the ability and success of the re-
execution of any workflow significantly reduces. In their investigation, they examined 92 Taverna
workflows from myExperiment repository in 2007-2012 and re-execute them. This workflow
selection had a large coverage of domain according to 18 different scientific (such as life sciences,
astronomy, or cheminformatics) and non-scientific domains (such as testing of Grid services).
The analysis showed that nearly 80% of the tested workflows failed to be either executed or

produce the same results. The causes of workflow decay can be classified into four categories:

1. Volatile third-party Resources
2. Missing example data
3. Missing execution environment

4, Insufficient descriptions about workflows

By incorporating these results, we have deeply investigated the requirements of the

reproducibility and | intended to find methods which make the scientific workflows reproducible.

To sum up our conclusions, in order to reproduce an in-silico experiment the scientist community

and the system developers have to face three important challenges:

1. More and more meta-data have to be collected and stored about the infrastructure, the
environment, the data dependencies and the partial results of an execution in order to make
us capable of reconstructing the execution in a later time even in a different infrastructure.
The collected data — called provenance data — help to store the actual parameters of the

environments, the partial and final data product and system variables.

2. Descriptions and samples should be stored together with the workflows which are provided

by the user (scientist).

3. Some services or input data can change or become unavailable during the years. For example,
third party services, special local services or continuously changing databases. Scientific
workflows which are established on them can become instable and non-reproducible. In
addition, certain computations may base on random generated values (for example, in case
of image processing) thus, its execution are not deterministic so these computations cannot

be repeated to provide the same result in a later time. These factors — call dependencies of

15

the execution - can especially influence the reproducibility of the scientific workflows,

consequently, they have been eliminated or handled.
In this dissertation, | deal with the third item.

The goal of computational reproducibility is to provide a solid foundation to computational
science, much like a rigorous proof is the foundation of mathematics. Such a foundation permits
the transfer of knowledge that can be understood, implemented, evaluated, and used by others.
(Stodden & al., 2013)

However, nowadays more and more workflow repositories (myExperiment; CrowdLabs etc.) can
help the knowledge sharing and the reusability, the reproducibility cannot be guaranteed by the
systems. The ultimate goal of my research is to support the scientist by giving information about
the reproducibility of the workflows found in the repositories. Investigating and analyzing the
change of the components (call descriptors) required to the re-execution | reveal their nature and
I can identify the crucial descriptor which can prevent the reproducibility. In certain cases, based
on the behavior of the crucial component an evaluation can be performed for the case of
unavailability which can replace the missing component with a simulated one making the
workflow reproducible. With help of this reproducibility analysis also the probability of
reproducibility can be calculated or the reproducible part of the workflow can be determined. To
make the workflow reproducible, extra computations, resources or time are required which
impose an extra cost for the execution. This cost can be measured and it can qualify the workflow
from the reproducibility perspective. Additionally, the analysis presented in this dissertation can
support the scientist not only to find the most suitable and reliable workflow on the repository but
also can help to design a reproducible scientific workflow. The process, from the first execution
of a workflow to achieving a complete and reproducible workflow is very long and the jobs get

over a lot of change.

14 Research methodology

As a starting point of my research | thoroughly investigated the related work in the theme of
reproducibility and the provenance which is the most significant requirements of the
reproducibility. According to the reviewed literature | gave a taxonomy about dependencies of
the scientific workflows and about the most necessary datasets required to reproduce a scientific
workflow.

Based on this investigation | formalized the problem and set out the mathematical model of the
reproducibility analysis. First, | introduced the necessary terms and definitions according to the
reproducible job and workflow which serve as a building blocks to determine and prove the

statements and the methods. With help of the mathematical statistics tool, | analyzed the nature

16

of the descriptors based on a sample set originating from the previous executions of the workflow
to find statistical approximation tools to describe the relation between the descriptors and the
results. Additionally, | introduced two metrics of the reproducibility based on the probability
theory, the Average Reproducibility Cost (ARC) and the Non-reproducibility Probability (NRP)
and defined a calculation method to calculate them in polynomial time. The universal
approximation capabilities of neural networks have been well documented by several papers
(Hornik & al., 1989), (Hornik & al., 1990), (Hornik, 1991) and | applied the Radial Basis Function
(RBF) networks to evaluate the ARC in case if the exact calculation is not possible. To evaluate
the NRP the Chernoff’s inequality (Bucklew & Sadowsky, 1993) was applied based on Large
Deviation Theory which concerns the asymptotic behavior of remote tails of sequences of
probability distributions.

To perform the statistical calculations and prove the assumptions and the results, | used the

MatLab and Excel applications.

15 Thesis structure

This dissertation is organized as follows: In the next section (2) the background of the scientific
workflows is presented, their representation, life cycles and the most relevant Scientific Workflow
Management Systems are described with special emphasis of their provenance and reproducibility
support. Also in this section the WS-PGARDE/gQUSE system is introduced since the
implementation of this investigation is planned into it. In section 3 | deal with the requirements
of the reproducibility and seven datasets are defined to establish the basis of this investigation,
namely the descriptor-space which contains all the necessary information to reproduce a scientific
workflow. Section 4 represents our mathematical model of the reproducibility analysis with the
necessary definitions and terms. | introduce two ultimate characteristics of the descriptors, the
theoretical and the empirical decay-parameter which help to analyze the behavior of the
descriptors and the relation with the job results. In section 5 I deal with the effect of the changing
descriptor, how many jobs are infected by the effect and the evaluability of the deviation of the
result. Section 6 contains the probability investigation of the workflows and a method is presented
to calculate the theoretical and the empirical probability of reproducibility. In section 7 I introduce
the metrics of the reproducibility, ARC and NRP and two algorithms are determined to evaluate
the metrics in polynomial time. In section 8 the classification of the scientific workflows is
presented according to the reproducibility. Finally, | the results are concluded, the theses are

described and | reveals some research direction along which this PHD research can be developed.

17

2 STATE OF THE ART

In this section the background of the scientific workflows, their natures, representation and
lifecycle are presented, in addition a literature survey is given about the most relevant scientific
workflow management systems (SWfMS) and their support of the reproducibility to highlight the
focus and the background of this research.

2.1 Scientific Workflows

Applying scientific workflow to perform in-silico experiment is a more and more prevalent
solution among the scientist’s communities. Scientific workflow is concerned with the
automation of scientific processes in which jobs are structured based on their control and data
dependencies. In many research field, such as high-energy physics, gravitational-wave physics,
geophysics, astronomy, seismology, meteorology and bioinformatics, these in-silico experiments
consist of series of particularly data and compute intensive jobs. In order to support complex
scientific experiments, distributed resources such as computational devices, data, applications and
scientific instruments need to be orchestrated while managing workflow operations within

super/hypercomputers, grids, clusters or clouds (Gil & al, 2006) (Barker & Hemet, 2007).

2.1.1 Scientific Workflow Life Cycle

The various phases and steps associated with planning, executing, and analyzing scientific
workflows comprise the scientific workflow life cycle (WFLC) (Deelman & Gil, 2006), (Gil &
al, 2007) (Deelman & al, 2009). The following phases are largely supported by existing workflow
systems using a wide variety of approaches and techniques. (Luddscher & al, Scientific process
automation and workflow management; Scientific Data Management: Challenges, Existing
Technology, and Deployment, 2009)

Hypothesis Generation (Modification): Development of a scientific workflow usually starts with
hypothesis generation. Scientists working on a problem, gather information, data and
requirements about the related issues to make assumptions about a scientific process. From these
data they build a specification which can be modified later during the whole lifecycle, or after the
result analysis.

Experiment / Workflow Design: During the experiment an actual workflow is assembled based on

this specification. This phase is the workflow development or design phase, which differs from

18

general programming in many ways. It is usually the composition and configuration of a special-
purpose workflow from pre-existing, more general-purpose components, sub-workflows, and
services. During workflow composition, the workflow developer either creates a new workflow
by modifying an existing one or composes a new workflow from scratch using components and
sub workflows obtained from a repository. In contrast to the business workflow world, where
standards have been developed over the years (e.g., WS-BPEL 2.0 (Jordan, 2007)), scientific
workflow systems tend to use a language set of internal languages and exchange formats (e.g.,
SCUFL (Taverna, 2009), GPEL (Wang, 2005), and MOML (Brooks, 2008)). Reasons for this
diversity include the wide range of computation models used in scientific workflows and the
initial focus of development efforts on scientist oriented functionality rather than standardization.
Instantiation: Once the workflow description is constructed, scientific workflow systems often
provide various functions prior to execution. These functions may include workflow validation,
resource allocation, scheduling, optimization, parameter binding and configuration. Workflow
mapping is sometimes used to refer to optimization and scheduling decisions made during this
phase.

Execution: After the workflow instantiation, the workflow can be executed. During execution, a
workflow system may record provenance information (data and process history) as well as
provide real-time monitoring and failover functions. Depending on the system, provenance
information generally involves the recording of the steps that were invoked during workflow
execution, the data consumed and produced by each step, a set of data dependencies stating which
data was used to derive other data, the parameter settings used for each step, and so on. If
workflow migration or adaptation (i.e.: change the workflow model or the running instance) is
enabled or supported during execution (e.g., due to the changing environment), the evolution of
such a dynamic workflow may be recorded as well to support subsequent event handling.

Result Analysis: After workflow execution, scientists often need to inspect and interpret workflow
results. This involves evaluation of the results, examination of workflow execution traces,
workflow debugging and performance analysis.

Data and workflow products can be published and shared. As workflows and data products are

committed to a shared repository, new iterations of the workflow life cycle can begin.

2.1.2 Scientific workflow representation

At the most abstract level, essentially all workflows are a series of functional units, whether they
are components, jobs or services, and the dependencies between them which define the order in
which the units must be executed. The most common representation is the directed graph, either
acyclic (DAG) or the less used cyclic (DCG), which allow loops (Deelman & al, 2009). This latter

19

one represents the recursive scientific workflow. In this dissertation, | deal with the scientific
workflow represented by DAG.

The nodes represent the jobs (denoted by Ji), which includes the experimental computations based
on the input data accessed through their input ports. In addition, these jobs can product output
data, which can be forwarded through their output ports to the input port of the next job. The
edges of a DAG represent the dataflow between the jobs (Figure 1.). Figure 2 shows a more
complex workflow downloaded from the myExperiment to demonstrate a typical scientific

workflow.

1. Figure: A simple scientific workflow example with four jobs (13, J,, J3, J4) in gUSE

(oo . [| [| (s | [) o | [mm v | e | e oo | ©

http://mww.myexperiment.org/workflows/10.html

2. Figure: A scientific workflow example from www.myexperiment.org

20

In this research, the scientific workflows represented by a directed acyclic graph denoted by G(V,
E), where V denotes the set of jobs and E denotes the dataflow between jobs.

V ={Ji,....,Jy}, where N € N; the number of the job of a given workflow
E={(J,J;))eVxVl]ie[1,2,..N—1];j€[2,3,..,N] and i # j}

2.2 Scientific Workflows Management system

Scientific workflow systems are used to develop complex scientific applications by connecting
different algorithms to each other. Such organization of huge computational and data intensive
algorithms aim to provide user friendly, end-to-end solution for scientists (Talia, 2013). The
following requirements should be met by the Scientific Workflow Management System
(SWEMS):

e provide an easy-to-use environment for individual application scientists themselves to
create their own workflows

e provide interactive tools for the scientists enabling them to execute their workflows and
view their results in real-time

e simplify the process of sharing and reusing workflows among the scientist community

e enable scientists to track the provenance of the workflow execution results and the

workflow creation steps.

Yu et al (Yu & Buyya, A Taxonomy of Workflow Management Systems for Grid Computing,
2005) , (Yu & Buyya, 2005) gave a detailed taxonomy about the SWfMS for in which they
characterized and classified approaches of scientific workflow systems in the context of Grid
computing. It consists of four elements of a SWfMS: (a) workflow design, (b) workflow
scheduling, (c) fault tolerance and (d) data movement. From the point of view of the workflow
design the systems can be categorized by workflow structure (DAG and non-DAG), workflow
specification (abstract, concrete) and workflow composition (user-directed, automatic). The
workflow scheduling can be classified from the perspective of architecture (centralized,
hierarchical and decentralized), decision making (local, global), planning scheme (static,
dynamic) and strategies (performance driven, market-driven and trust-driven). The fault tolerance
can be performed at task level and workflow level and the data movement can be automatic and
user-directed.

In the next I introduce the most relevant SWfMS with special emphasis on their provenance and

reproducibility support. The WS-PGRADE/gQUSE is presented in more detailed manner since the
21

methods and the processes of the reproducibility analysis written in this dissertation will be
implemented in it.

gUSE (Balaské & al., 2013) (grid and cloud user support environment) is a well-known and
permanently improving open source science gateway (SG) framework developed by Laboratory
of Parallel and Distributed Systems (LPDS) that enables users the convenient and easy access to
grid and cloud infrastructures. It has been developed to support a large variety of user
communities. It provides a generic purpose, workflow-oriented graphical user interface to create
and run workflows on various Distributed Computing Infrastructures (DCIs) including clusters,
grids, desktop grids and clouds. [(QUSE)] The WS-PGRADE Portal [(PGRADE)] is a web based
front end of the gUSE infrastructure. The structure of WS-PGRADE workflows are represented
by DAG. The nodes of the graph, namely jobs are the smallest units of a workflow. They represent
a single algorithm, a stand-alone program or a web-service call to be executed. Ports represent
input and output connectors of the given job node. Directed edges of the graph represent data
dependency (and corresponding file transfer) among the workflow nodes. This abstract workflow
can be used in the second step to generate various concrete workflows by configuring detailed
properties (first of all the executable, the input/output files where needed and the target DCI) of
the nodes representing the atomic execution units of the workflow.

A job may be executed if there is a proper data (or dataset in case of a collector port) at each of
its input ports and there is no prohibiting programmed condition excluding the execution of the
job. The execution of a workflow instance is data driven forced by the graph structure: A node
will be activated (the associated job submitted or the associated service called) when the required
input data elements (usually file, or set of files) become available at each input port of the node.

In the WS-PGRADE/gUSE system with help of the “RESCUE” feature the user has the possibility
to re-execute a job which does not own all the necessary inputs but the provenance data is
available from the previous executions.

When submitting a job which has the identifier originated from the previous execution, the
workflow instance (WFI) queries the description file of the workflow. This XML file includes the
jobs belonging to the workflow. Their input and output ports, their relations and the identifiers of
the job instances executed previously with their outputs. After processing the XML file, a
workflow model is created in the memory representing the given workflow during its execution.
At this point the Runtime Engine (RE) takes over the control to determine the “ready to run” jobs
then it examines whether these jobs have already stored outputs originated from previous
executions. Concerning the answer the RE puts the job in the input or in the output queue. (Fig.
3)

22

DCI-Bridge

A

WS-PGRADE >

WF model Runtime Engine

Get runnable [« Input

outpul
queue|

JOB 1D JOB ID
PID PID Is Rescue? p—s|
Outputs Outputs NO T

YES

3. Figure Operation of the Rescue feature in the WS-PGRADE/gUSE system

Taverna (Oinn & al., 2006) (Oinn & al, 2004) is an open-source Java-based workflow
management system developed at the University of Manchester. Taverna supports on one hand
the life sciences community (biology, chemistry, and medicine) to design and execute scientific
workflows on the other hand the in-silico experiments. It can invoke any web service by simply
providing the URL of its WSDL document which is very important in allowing users of Taverna
to reuse code that is available on the internet. Therefore, the system is open to third-part legacy
code by providing interoperability with web services. In addition, Taverna use the
myExperiment platform for sharing workflows; (Goble & al., 2010).

A disadvantage of integrating third-party Web Services is the variable reliability of those
services. If services are frequently unavailable, or if there are changes to service
interfaces, workflows will not function correctly on occasion of re-execution
(Wolstencroft, 2013).

The Taverna Provenance suite records service invocations, intermediate and final workflow
results and exports provenance in the Open Provenance Model format [(OPM)] and the W3C
PROV [(PROV)] model.

Galaxy (Goecks, 2010), (Afgan, 2016) Galaxy is a web-based genomic workbench that enables
users to perform computational analyses of genomic data. The public Galaxy service makes
analysis tools, genomic data, tutorial demonstrations, persistent workspaces, and publication
services available to any scientist that has access to the Internet. Galaxy automatically
generates metadata for each analysis step. Galaxy's metadata includes every piece of
information necessary to track provenance and ensure repeatability of that step: input

23

datasets, tools used, parameter values, and output datasets. Galaxy groups a series of
analysis steps into a history, and users can create, copy, and version histories.

Triana (Taylor, 2004) (Taylor J. , 2005) is a Java-based scientific workflow system, developed at
the Cardiff University, which combines a visual interface with data analysis tools. It can connect
heterogeneous tools (e.g., web services, Java units, and JXTA services) in one workflow. Triana
comes with a wide variety of built-in tools for signal-analysis, image manipulation, desktop

publishing, and so forth and has the ability for users to easily integrate their own tools.

Pegasus (Deelman, 2005) is developed at the University of Southern California, it includes a set
of technologies to execute scientific workflows in a number of different environments (desktops,
clusters, Grids, Clouds). Pegasus has been used in several scientific areas including
bioinformatics, astronomy, earthquake science, gravitational wave physics, and ocean science. It
consists of three main components: the mapper, which builds an executable workflow based on
an abstract workflow; the Execution engine, which executes in appropriate order the jobs; and the
job manager, which is in charge of managing single workflow jobs. Wings (Gil, 2011), (Kim,
2008) providing automatic workflow validation and provenance frame work. It uses semantic
representations to reason about application-level constraints, generating not only a valid workflow
but also detailed application-level metadata and provenance information for new workflow data
products. Pegasus maps and restructures the workflow to make its execution efficient, creating
provenance information that relates the final executed workflow to the original workflow

specification.

Kepler (Altintas, 2004) is a Java-based open source software framework providing a graphical
user interface and a run-time engine that can execute workflows either from within the graphical
interface or from a command line. It is developed and maintained by a team consisting of several
key institutions at the University of California and has been used to design and execute various
workflows in biology, ecology, geology, chemistry, and astrophysics. The provenance framework
of Kepler (Bowers, 2008), (Altintas 1. , 2006) keep track of all aspects of provenance (workflow
evolution, data and process provenance). To enable provenance collection, it provides a
Provenance Recorder (PR) component In order to capture run-time information event listener
interfaces are implemented and when something interesting happens, the event listeners registered

and take the appropriate action.

24

2.3 Provenance

Provenance data that carries information about the source, origin and processes that are involved
in producing data play important role in reproducibility and knowledge sharing in the scientist
community. Concerning provenance data lot of issues arise: during which workflow lifecycle
phase data have to be captured, what kind of data and in what kind of structure need to be captured,
captured data how can be stored, queried and analyzed effectively or who, why and when will use
the captured information. The runtime provenance can be utilized in many area, for example fault
tolerance, SWfMS optimization and workflow control.

There are two distinct forms of provenance (Clifford & al., 2008) (Davidson & Freire, 2008)
(Freire & al., 2014),: prospective and retrospective. Prospective provenance captures the
specification of a computational task (i.e., a workflow)—it corresponds to the steps that need
to be followed (or a recipe) to generate a data product or class of data products.
Retrospective provenance captures the steps that were executed as well as information about the
execution environment used to derive a specific data product— a detailed log of the execution of
a computational task. (J.Freire & al., 2011), (Freire & al., 2012)

Despite the efforts on building a standard Open Provenance Model [(OPM)], provenance is
tightly coupled to SWfMS. Thus scientific workflow provenance concepts, representation and
mechanisms are very heterogeneous, difficult to integrate and dependent on the SWfMS
(Davidson & Freire, 2008). To help comparing, integrating and analyzing scientific workflow
provenance, Cruz in (Cruz & al., 2009) presents a taxonomy about provenance characteristics.
PROV-man is an easily deployable implementation of the W3C standardized PROV. The PROV
gives recommendations on the data model and defines various aspects that are necessary to share
provenance data between heterogeneous systems. The PROV-man framework consists of an
optimized data model based on a relational database system (DBMS) and an API that can be
adjusted to several systems (Benabdelkader, 2014), (PROV) (Benabdelkader, 2011) (D-PROV)
Costa et al. in their paper (Costa & al., 2013) investigated the usefulness of runtime generated
provenance data. They found that provenance data can be useful for failure handling, adaptive
scheduling and workflow monitoring. Based on PROV recommendation they created their own
data modelling structure.

The Karma provenance framework (Simmhan & al., 2006) provides generic solution for

collecting provenance for heterogeneous workflow environments.

As an antecedent of this research four different levels of provenance data were defined because
during the execution of a workflow four components can change that would affect the

reproducibility: the infrastructure, the environment, the data and the workflow model. [7-B]

25

1. The first is a system level provenance, which stores the type of infrastructure, the
variables of the system and the timing parameters. At this level happens the storing the
details of the mapping process and as a result, we can answer the question of what, where,
when and how long has been executed. This information supports the portability of the
workflow which is a crucial requirement of reproducibility.

2. The environmental provenance stores the actual execution details which includes the
operating system properties (identity, version, updates, etc.), the system calls the used
libraries and the code interpreter properties. The execution of a workflow may rely on a
particular local execution environment, for example, a local R server or a specific version
of workflow execution software, which also has to be captured as provenance data or
virtual machine snapshot.

3. The third category is data provenance. In the literature, the provenance often refers to
data provenance, which deals with the lineage of a data product or with origin of a result.
With this data provenance, we can track the way of the results and dependency between
the partial results. This information can support the visualization, the deep and complete
troubleshooting of the experimental model, the proving of the experiment but first of all
the reproducibility. In addition, in one of our previous paper [B-10] we investigated the
possibility and the need of user steering. We found that some parameters, filter criteria
and input data set need to be modified during execution, which rely on data provenance.

4. The last provenance level tracks the modifications of the workflow model. The scientist
during the workflow lifecycle often performs minor changes, which can be
undocumented and later it is difficult to identify or restore. This phenomenon is usually
referred as workflow evolution. Provenance data collected at this level can support the
workflow versioning.

This structured provenance information of a workflow can support reproducibility at different
levels if it meets the requirements of independency. In addition, extra provenance information
can be stored in that cases, in which however the workflow contains some dependencies but these

dependencies can be eliminated with usage of extra resources.

24 Reproducibility

The researchers dealing with the reproducibility of scientific workflows have to approach this
issue from two different aspects. First, the requirements of the reproducibility have to be
investigated, analyzed and collected. Secondly, techniques and tools have to be developed and

implemented to help the scientist in creating reproducible workflows.

26

Researchers of this field agree on the importance of the careful design (Roure & al, 2011),
(Mesirov, 2010), (Missier & al., 2013), (Peng & al., 2011), (Woodman & al.) which on one hand,
it means the increased robustness of the scientific code, such as modular design and detailed
description about the workflow, about the input/output data examples and consequent annotations
(Davison, 2012). On the other hand, the careful design includes the careful usage of volatile third
party or special local services.

Groth et al. (Groth & al., 2009) based on several use cases analyzed the characteristics of
applications used by workflows and listed seven requirements in order to enable the
reproducibility of results and the determination of provenance. In addition, they showed that a
combination of VM technology for partial workflow re-run along with provenance can be useful
in certain cases to promote reproducibility.

Davison (Davison, 2012) investigated which provenance data have to be captured in order to
reproduce the workflow. He listed six vital areas such as hardware platform, operating system
identity and version, input and output data etc.

Zhao et al. (Zhao & al, 2012) in their paper investigated the cause of the so called workflow decay.
They examined 92 Taverna workflows submitted in the period between 2007 and 2012 and found
four major causes: 1. Missing volatile third party resources 2. Missing example data 3. Missing
execution environment (requirement of special local services) and 4. Insufficient descriptions
about workflows. Hettne et al. (Hettne & al, 2012) in their papers listed ten best practices to
prevent the workflow decay.

2.4.1 Techniques and tools

There are available tools existing, VisTrail, ReproZip or PROB (Chirigati, D, & Freire, 2013),
(Freire & al., 2014), (Korolev & al., 2014) which allow the researcher and the scientist to create
reproducible workflows. With the help of VisTrail (Freire & al., 2014), (Koop & al, 2013)
reproducible paper can be created, which includes not only the description of scientific
experiment, but all the links for input data, applications and visualized output. These links always
harmonize with the actually applied input data, filter or other parameters. ReproZip (Chirigati,
D, & Freire, 2013) is another tool, which stitches together the detailed provenance information
and the environmental parameters into a self-contained reproducible package.

The Research Object (RO) approach (Bechhofer & al, 2010), (Belhajjame & al., 2012) is a new
direction in this research field. RO defines an extendable model, which aggregates a number of
resources in a core or unit. Namely a workflow template; workflow runs obtained by enacting the
workflow template; other artifacts which can be of different kinds; annotations describing the

aforementioned elements and their relationships. Accordingly to the RO, the authors in

27

(Belhajjame, 2015) also investigate the requirements of the reproducibility and the required
information necessary to achieve it. They created ontologies, which help to uniform these data.
These ontologies can help our work and give us a basis to perform our reproducibility analysis
and make the workflows reproducible despite their dependencies.

Piccolo et al (Piccolo & Frampton, 2015) collected the tools and techniques and proposed six
strategies which can help the scientist to create reproducible scientific workflows.
Santana-Perez et al (Santana-Perez & Perez-Hernandez, 2015) proposed an alternative approach
to reproduce scientific workflows which focused on the equipment of a computational
experiment. They have developed an infrastructure-aware approach for computational execution
environment conservation and reproducibility based on documenting the components of the
infrastructure.

Gesing at al. in (Gesing & al., 2014) describe the approach targeting various workflow systems
and building a single user interface for editing and monitoring workflows under consideration of
aspects such as optimization and provenance of data. Their goal is to ease the use of workflows
for scientists and other researchers. They designed a new user interface and its supporting
infrastructure which makes it possible to discover existing workflows, modifying them as
necessary, and to execute them in a flexible, scalable manner on diverse underlying workflow
engines.

Bioconductor (Gentleman, 2004) and similar platforms, such as BioPerl (Stajich, 2002) and
Biopython (Chapman & Chang, 2000) represent an approach to reproducibility that uses libraries
and scripts built on top of a fully featured programming language. Because Bioconductor is built
directly on top of a fully featured programming language, it provides flexibility. In the same time
this advantage can be exploited by only users which has programming experience. Bioconductor

lacks automatic provenance tracking or a simple sharing model.

28

3 REQUIREMENTS OF THE REPRODUCIBILITY

The implementation of the reproducible and reusable scientific workflows is not an easy task and

many obstacles have to be removed toward the goal. Three main components play important role

in the process:

31

The SWFMS should support the scientist with automatic provenance data collection about
the environment of execution and about the data production process. | determined the four
levels of the provenance (subsection 2.3), and the different utilizations of the captured data
in the different levels. Capturing provenance data during the running time of the workflow

is crucial to create reproducible workflows.

The scientists should carefully design the workflow (for example with special attention for
modularity and robustness of the code (Davison, 2012) and give a description about the
operation of experiment, the input and output data, even they should show samples. (Zhao
& al, 2012) (Hettne & al, 2012).

The dependencies of the workflow execution should be eliminated. A workflow execution
may depend on volatile third party resources and services; special hardware or software
elements which are available only in a few and special infrastructure; deadlines, which
cannot be accomplished on every infrastructure or it can be based on non-deterministic

computation which apply for example random generated values.

Dependencies

The execution of a workflow may require many resources, such as third party or local services,

database services or even special hardware infrastructure. These resources are not constantly

available, they can change their location, their access condition or the provided services from time

to time. These conditions, which we refer to as dependencies, significantly complicate the chances

of reproducibility and repeatability. We have classified the dependencies into three categories:

infrastructural dependency, data dependency and job execution dependency as shown in table 1.

[7-B]

29

infrastructural data job execution

e spec. hardware |e changing e deterministic
demand e TP demand e dependency between
¢ local spec demand jobs

e Third Party demand
¢ Local spec demand

1. Table Categories of workflow execution dependencies

By infrastructural dependency I mean special hardware requirements, which are available solely
on the local system or not evidently provided by other systems, such a special processing unit
(GPU, GPGPU).

In the group of data dependency, we listed the cases which does not guarantee the accessibility of
the input dataset in another time interval. The causes can be that the data is provided by a third
party or special local services. Occasionally the problem origins from the continuously changing
and updated database that stores the input data. These changes are impossible to restore from
provenance data.

The job execution can also depend on a third party or local services, but the main problem arises
when the job execution is not deterministic. The operation of GPU or GPGPU are based on
random processes consequently the results of re-executions may differ. Moreover, if the
dependency factor is too high between the jobs, the reproducibility is harder to guarantee.

These conditions are all necessary to perform reproducibility of workflow execution. In section 5
we give a mathematical formula to determine the rate of reproducibility of a given workflow.
With help of this measurement the scientist can see how much part of the workflow can be
reproducible with 100 percent at a later period of time. Knowing this information, the scientist
can decide to apply for example an extra provenance policy with extra resource requirement,

which stores the whole third party data or apply virtual machine towards the reproducibility.

3.2 Datasets

To support and facilitate the work of the scientist by the SWfMS to create a well-documented and
reproducible scientific workflow. The basic idea of our work is given by MIAME which describes
the Minimum Information About a Microarray Experiment that is needed to enable the
interpretation of the results of the experiment unambiguously and potentially to reproduce the
experiment (MIAME) (Brazma & al, 2011). We collected and categorized the minimal sufficient

information into seven different datasets, which target different problems to solve. Accordingly,

30

one of the types of data serves the documentation of experiment and helps to share it in a scientific
workflow repository. Other type of data describes the data dependency and the process of data
product and it is necessary for the proving and verification of the workflow. There is data which is
needed to the repeatability or reproducibility of workflows in different infrastructure and
environment. Finally, we collected information to help identifying the critical points of the
execution which reduce the possibility of reproducibility or even arrest it [6-B].

The datasets are created in the different phases of the scientific workflow lifecycle (Ludédscher &
al, 2009) and originate from three different sources. The scientist can give information when to
design the abstract model, when to get the results or after the results are published. Other
information can be gained from provenance database and there is information which can be

generated automatically by the system.
With the help of our proposal we wish to solve the following problems:

. how to create a detailed description about scientific experiment;

. which minimal information is necessary to be collected from the scientists about their

experiments to achieve a reproducible workflow;
. which minimal information is necessary from provenance to reproduce the experiments;

. which data and information can be generated automatically by the SWfMS in order to

implement a reproducible scientific workflow;

. which jobs at which point do not meet the requirements of independencies.

If the goal is to repeat or reproduce the workflow execution on a different infrastructure, we have
to store the descriptors and parameters of the infrastructure, the middleware and the operating

systems in details too.

I defined seven types of datasets which contain the necessary and sufficient information about the
experiment. An overview table summarizes the seven datasets and shows some examples about

the stored data. (Table 1.) Data collected into different datasets target different problems to solve.

One part of the collected information of these datasets originates from the user, who creates the
workflow. In the design phase the user establishes the abstract workflow model, defines the jobs,
determines the input/output ports and specifies the input data and so on. Simultaneously, in order
to achieve the reproducibility of workflow the user has to create the appropriate documentation
about the experiment in a specific way, form and order. Such information is for example some
personal data (name, date, etc.), the description of experiment (title, topic, goal, etc.), the samples
about the necessary input, partial and output data, special hardware, application or service

requirements and so on.

31

There are provenance data too in the datasets which have to be captured by the SWfMS in running
time. For example, the version number and the variation of a given workflow, the number of
submissions, the used data or parameter set during the previous executions, the makespan of
execution or the number and types of failures occurred in running time. Information like these can
be also crucial when the results of experiment have to be reproduced in a later time or in a different

environment.

The third type of information is generated automatically by the system after the workflow is
submitted, in the instantiation phase of the workflow lifecycle. This information can be obtained
from the users too, but simpler, faster and even more precise and trusty if it is automated (for
example workflow and job IDs, number of ports etc.). There exists such information too, which is
created manually by the user at the beginning, but since the datasets and the database continuously
grow and more and more data are collected, the system could “learn” certain information and fill

in automatically the appropriate entries of datasets.

Scientist fills in in the]) R
) filled in by Provenance | Scientist fill out after
design phase or before)))
in the execution phase the execution

submit the workflow

number of ex-

] . submission, number of o .
o title, topic, author(s), . . publication details,
general description of failure, duration of

date, institute, experiences,

environmental
description of

execution

middleware, volume of
resources, number of
VM

based on the actual

execution, resource

usage (CPU, RAM,
DISK, sth),

experiment execution, statistical data
laboratory, comment . comment
based on previous
execution
start/end time of
detailed infrastructure, OS, execution, statistical data

detailed description of

workflow

abstract wf (DAG), wf
version, used parameter
set, requirements
(resources, libraries,
applications with
version number), place
of input/output data files
or storage), types of

input/output data,

constraints, deadlines,

dependencies

research field specific
information

number of input/output
ports, input/output data,
types of input/output
data, volume of
description of task-1 input/output data,
example input/output
description of task-N data, place of
input/output data,
necessary application,
version number of app.,

dependencies, constrain

2. Table Summary table about the datasets

General Description of Workflow (GDW).

This dataset contains general information about the scientific experiment such as title; author’s
name and its profile; the date; the institute’s name and address, where the experiment is conducted
and so on. In addition, general description of the experiment and data samples is also very
important to be documented and stored. Most of the information originated from the users and it is
necessary to create well-documented workflows, which will be reusable and understandable even
after years. Certain entries are created in the design phase and others after the execution or later
(for example publication details). However there exist information which is generated
automatically by the SWfMS, such as Experiment ID, which is a unique identifier (explD) referred

to the given workflow.

Detailed Description of Workflow (DDW)

The specification of the workflow is stored in the DDW. The experiment is modelled with an
acyclic directed graph (DAG) (figure 1.) which is the most important part of this documentation in
a graphical manner too. In addition, detailed information can be found in this dataset about the
workflow (version number, parent workflows, required parameter set), the input/output data
(number, type, amount, location, access method) the optional constraints or deadlines or other
requirements. Automatically generated information is for example the number of input/output

ports, the number of jobs, the number of entry/exit tasks

33

Detailed Description of Infrastructure (DDI)

If the goal is to repeat or reproduce the workflow execution on a different infrastructure, we have
to store the descriptors and parameters of the infrastructure, the middleware and the operating
systems in details too.

Detailed Description of Environment (DDE).

If the goal is to repeat or reproduce the workflow execution in a later time, we have to store the
detailed environmental parameters. In this dataset, the following data can be found: the
environmental variables and parameters; the circumstances of the execution; the state descriptors
of the used resources; the time stamps; the required libraries, applications, data and services (with
their exhaustive descriptions such as location, access method, version number etc.). This
information can be captured during execution and can be stored as provenance data in a provenance

database. The fields of this dataset filled in from this database.

3.3 Datasets for jobs

Every job has two datasets, the Detailed Description of Job (DDJ) and the Detailed Description of
Environment of Job (DDEJ). Data in DDJ was collected based on two aspects: the first one helps
understand the operation of a given job. The second one helps to follow the computational process
and the partial or final results. DDEJ stores information about the environmental parameters of the
execution, which serves the reproducibility. The number of DDJs (and also DDEJ) is equal to the

number of jobs in the whole workflow.
Detailed Description of Job (DDJ)

The jobs in the abstract workflow model are organized into levels. The predecessors of any job are
in lower level, the successors of a job are in upper level. This precedency appears in the naming
convention of the job ID, which is referred to the exp ID and the sequence number of a level and
the sequence number of a job in the given level. The entry job has not any input port or predecessor
job, the exit job has not any output port or successor job. Also in this case, certain entries originate
from the user (general description, job’s name, sample input/output data, location and access
method of input/output data, special hardware/application/service requirements etc.) and others are
generated automatically by the system (job ID, predecessor and successor jobs, number of

input/output ports, resource requirements).

Detailed Description of Environment of Job (DDEJ)

34

Provenance data can be used to fill in the most fields, such as type and number of failures;
failure rate; start/end time of execution, waiting time, used resources, statistical data about previous
executions and so on. The rest of necessary information can be generated automatically by the
SWFMS such as type of code, compiler, resource requirements, virtual machine requirements and
its state descriptors and so on.

34 Dependency dataset

In the instantiation phase of the workflow lifecycle, the SWfMS can examine the dependencies
of the submitted workflow. With help of the given results together with the information gained
from the user the system can create a so called Dependency Dataset, which will store all the jobs
which depend on any external circumstances and may not be reproducible.

35 Conclusion

In this section, we investigated the necessary and sufficient information about scientific
workflows to make them reproducible. We gave a proposal how to create the documentation of
the scientific experiment to achieve this goal. The documentation consists of different datasets
(related to the whole workflow and to the particular jobs) which are filled in from tree different
sources: the scientist, the system and the provenance database. These datasets contain among
others detailed information about the operation of the experiment; description and samples about
input, partial and output data; and environmental descriptors. In addition, we specified another
dataset about jobs, which depend on external conditions and can prevent the reproducibility or
reusability of workflow. These datasets are necessary to create the so called descriptor-space

introduced in the next section.

35

4 THE REPRODUCIBILITY ANALYSIS

In this section based on the datasets mentioned in the previous section I introduce the term of
descriptor-space providing the basis of the reproducibility analysis. With help of the descriptor-
space | give the definitions of reproducible job and workflows. In addition, I also introduce the
term of decay-parameter to determine the behavior of the changing descriptors. Analyzing these

changes, methods can be given to handle or eliminate the dependencies generated by them.

4.1 The different levels of the re-execution

The re-execution of a scientific workflow may have different purposes and goals and the different
cases can require different conditions to perform this progress. Sometimes the exact repetition of
the workflow is adequate for system developers to analyze the system and to develop a new one
while another time the reproducing is necessary for the scientists to judge their scientific claims.
Additionally, during the way which the scientists can take from designing a scientific workflow
to verifying it, they pass the different phases of the re-execution from the repetition to the
reproduction. Conversely, | separated the four goals of the re-execution: repetition, variation,

repetition in different environment (portability) and reproduction (Table 3).

Level Meaning

The workflow can be successfully re-executed using

repeatability the original artifacts, data and conditions.

The workflow can be successfully re-executed using
variability the original artifacts, data and conditions., but with
some measured modification of a parameter

The workflow can be successfully re-executed using

portability the original data and conditions but different artifacts.

The workflow can be successfully re-executed,

reproducibility independently from the scientist

3. Table The different levels of the re-execution

To re-execute a single job of the scientific workflow, all the parameters must be stored such as
inputs, code variables, program settings, environmental parameters etc. which unambiguously
determine the job execution. This have to be done for every job of the workflow. The parameters
needed to re-execution | call descriptors and they can be originated directly from the users or they

can be collected from provenance information and system logs. At the first execution of a

36

scientific workflows the value of the descriptors can be stored. Depending on which information
are provided by the descriptors, they can be categorized into three groups: user specific,

environmental and operation-related descriptors.

The user specific descriptors depend on the user such as inputs, variables or parameters of the job,
the user can directly determine them or they can be captured by the provenance framework of the
SWFMS.

The environmental descriptors refer to the parameters and variables of the enacting infrastructure
such as the operating system with the appropriate version, the type of the CPU, the starting time
of the job’s running, the used libraries etc. Generally, they can be originated from the log and/or

the provenance database.

The operation related descriptors relate to the operation of the system or reflect to the actual state
of the system. In the most cases the value of these descriptors continuously change in time making
the job nondeterministic. One of the examples is the random generated values (RGV). If a job
based on RGV, this value kept unknown, it is not available nor in the provenance information nor
in the logs and the result (output) of the job will never be the same. Since every generator is a
pseudo random generator, knowing operation and the algorithm of the generator, the “random”
result can be reproduced and the job can be made deterministic. Another way is that the RGV is
captured and stored by an extra tool (script) developed for this purpose. Operation related
descriptor can be also a return value of a system calls, which based on the actual time, the actual
free amount of memory or other actual state of the system. In this cases the only possible solution

is an extra tool developed for this purpose which can store these values.

The following figure can illustrate the relation of the different level (Figure 4.)

37

repeatable workflows

reproducible
workflows

variable workflows portable workflows

4. Figure The connection of the different levels of re-execution

4.1.1 Repeatability

Repeatability concerns the exact repetition of a scientific workflow, using the same experimental
apparatus, the same inputs and settings of the jobs under the same conditions. It is a first step on
the way toward the reproducibility and verifying the scientific claims. The arising failures during
achieving the exact repeatability can expose hidden assumption about the experiment or the
environment. Additionally, in certain research field the repetitions may not be 100% exact, due
to the statistical variation and the measurement errors. Thus, the repetition is a useful process to
calculate confidence intervals for the result of the scientific workflows. (Feitelson, 2015)
According to repeatability, it can be assumed that the most descriptors does not change in time.
The only decay factor may be found among the operation related descriptors are the random
generated values, time based values or other system calls that depend on the actual state of the

system. The user specific and the environmental descriptors are the same at every execution.

4.1.2 Variability

At the level of the variability the goal is to re-run the scientific workflow on the same
infrastructure under the same condition with some intentional and measured modification of the
jobs. The variation is the second step on the way toward the reproducibility. Variation can extend
the understanding of the scientific experiment or the system being studied. (Feitelson, 2015)

Performing several variations can provide a distribution of results, and give the possibility to

38

investigate whether the original result is in the middle of this distribution or in its tail. In this case,

besides operation related descriptors user specific descriptors may also change.

4.1.3 Portability

The portability of a scientific workflow means the ability to run exactly the same workflow in a
different environment or infrastructure under the same conditions. This is the third step on the
way toward the reproducibility, and it is also one of the requirements of the reproducibility.
Failures arising during achieving the portability can show the infrastructure dependent component
of the execution and can provide important information about the robustness of the original
scientific workflow. Additionally, it can depend on having a full and detailed descriptions of the
original experiment which is also crucial to achieve the reproducibility and the reusability.
According to the descriptors the environmental and the operation related descriptors can change

while the user specific descriptors are the same.

4.1.4 Reproducibility

The term reproducibility means the ability for anyone who has access to the description of the
original experiment and its results to reproduce those results independently, even under the
different environment, with the goal to verify or reuse the original experimenter’s claims.
Consequently, a reproducible scientific workflow has the ability of repeatability, variability and
portability too. It is the basis of sharing and reusing them in scientific workflow repositories. All

the three type of the descriptor can change in time.

4.2 Non-determinisctic jobs

Typically, the operation-related descriptors such as random generated values, time-based values,
etc. make the jobs non-deterministic preventing the reproducibility. This non-deterministic factor
can be eliminated by operating system level tools developed for this purpose which can capture
and store the return value of the system-calls. In this way, every job can be made deterministic

thus hereafter in this dissertation | deal with deterministic jobs only.

39

43 The descriptor-space

Based on the datasets mentioned in the section 3, a so-called descriptor-space can be assigned to
every job of a scientific workflows. In the datasets, the parameters - related to the descriptions of
the SWT (sample data, descriptions, author’s name etc.) — can be omitted and hereafter, | assume
that a detailed and sufficient description is provided by the user about the SWf. which is enough
to reproduce the workflow from that point of view. Based on the remain parameters a so-called
descriptor-space can be defined. The theoretical descriptor-space contains all the descriptors
which are necessary to re-execute the job. The descriptor-space assigned to the job Ji can be
denoted as follows:

D, = {di1, diz, ..., dig,} (4.3.1)
where d;; denotes the j-th descriptor of the job Ji

During an execution, the descriptors get a concrete value according to a given time to:

dij(to) = v? = v’ (4.3.2)

In this way, the concrete instantiation of a descriptor-space can be written as follows:

D ={vy, v, .., v3 (4.3.3)
With help of the descriptor-space the deterministic scientific workflows and its jobs can be

interpreted as a multivariate function:

SWEF(to,J1.J2, -+ n) = R (4.3.4)
where R is the result (output) of the scientific workflow and N is the number of the jobs and
]OBl(tO' Vi1, Vi« viKi) =]OBl(tO' D]l) = Ritoy (435)

where i = 1, ..., N and K; is the number of the descriptors of the job J; and since the t, is indicated

as the variable of the function, for the sake of simpler notation the to upper index is omitted on
to
ij-*
In case of the nondeterministic jobs, stochastic function can be used, therefore the R result can be

v

evaluated with a given probability.

JOB;(to, via, Viz, -, Vi) = Ry (4.3.6)

44 Definitions of reproducible job and workflow

Based on the descriptor-space the definition of a reproducible job can be determined as
a time-invariant function, therefore

Definition (D.4.3.1): A job is reproducible if it meets the following requirement:
JOBTP™ (diy (to), via(to), -, dis,(t0)) =

JOB"P™%(dj1 (to + AL), dip (tg + Ab), .., dig, (to + At)) = R; (4.4.1)

40

for every At.

Notation: 3% JOB; "’ (vi1, iz, ., Vik,) = Ry

Since the scientific workflows consist of many jobs, the definition of the reproducible job has to
be extended for the reproducible scientific workflows. In order to give the definition, some other
term and their indications - which is used in the literature in different way — has to be laid down.
Definition (D.4.3.2): The job Jiis exit job in the scientific workflow, if #]; € V: (J;,J;) € E, in
other words if it has not successor job.

Notation: Jexit

Definition (D.4.3.3): The job Jiis entry job in the scientific workflow, if 2/; € V: (]j,]i) €E,in
other words if it has not predecessor jobs.

Notation: Jentry

Definition (D.4.3.4): The job, which is neither exit nor entry job, it is inside job.

In my research, | assume that every scientific workflows has at least one entry and one exit job.
Definition (D.4.3.5): The backward subworkflow of a job J; is a subgraph of the workflow graph
where the exit job is Ji and the entry job is the entry job of the original workflow graph. (Figure
5)

Notation: SubWFP** = G, (Vsup; E sup) where (Vayp} € V3, {Esyup} € {E}

Jentry

5. Figure The backward subworkflow of a job J;

With the help of these terms the definition of the reproducible job can be extended for scientific

workflow in the following way:

41

Definition (D.4.3.6): The SWF is reproducible, if the exit job and the SubWF};‘;ft" of the exit job

is reproducible.
Notation: SWF"';

Based

on the two definitions (D.4.3.1) and (D.4.3.6) the following statement can be formulated

and proved:

Statement (S.3.3.1): If and only if every job of a scientific workflow is reproducible, then the

scientific workflow is reproducible.
Let the SWF(]l,jz, ""]N) =Y

Proof:

a.

|f v]irepro; i = 1' 2' . N than the SWFrepro

SWEF is reproducible, if its exit job and sub-workflow of the exit job is reproducible.

Let us assume that the swf has k < N exit jobs: Since every job is reproducible, especially

the exit jobs are also reproducible so this condition is fulfilled.

Let us consider the k sub-workflows of the exit jobs (which may not be disjunctive). This

k sub-workflow is reproducible, if on one hand its exit jobs are reproducible, on the other

hand the sub-workflows of these exit jobs are also reproducible. Let us assume, that the k

sub-workflows have | < N-k exit jobs. Since every job is reproducible, especially these |

exit jobs are also reproducible and so on. Since the size of the sub-workflows and the

number of the exit jobs continuously decrease, this algorithm can be continued until there

are not exit jobs and the sub-workflow of the last exit job consist of only the entry job,

which is also reproducible.

QED

Lemma (L1): If we separate the exit jobs from its sub-workflows and in the sub-workflows

we also separate the exit jobs from its sub-workflows and this procedure is repeated until

there are no more exit job and the sub-workflow of the last exit jobs is the entry job, than

every job in the workflow become exit job at least once.

Proof : Since every swf has at least one exit job, we have to investigate only the inside jobs.

Let us investigate an arbitrary inside job Ji, of sub-workflow Gs.

Since Jiis an inside job, 3/; € V: (J;,];) € E. There are two options

i. Jjisan exit job. In this case in the sub-workflow Gs! we can separate the exit job

Jj from its sub-workflow Gs2. In G,? the job J; is necessarily become an exit job,
since G, contains all the paths between the entry job and the predecessor job of
Jj which actually is J;, consequently the job Ji in Gs? has not successor job, it is
an exit job. QED

42

ii. Jjisaninside job. If Jjis an inside job, 3/, € V: (J;,J) € E, which is an exit job
or an inside job. If Ji is an exit job, after two separation step — first J; then also Ji
— become exit job. During the series of separation steps every inside job -
found along the path from the actual inside and to the exit job - eventually
becomes an exit job. QED
b. Ifthe SWF™P® thanv/,"*?"°%;i =1,2,..,N

Since SWF is reproducible, its exit job is also reproducible. We separate the exit job from
its sub-workflow, and the sub-workflow is also reproducible. Based on the lemma L1,
during the separation procedure, every job become exit job at least one time which is
reproducible, consequently every job is reproducible. QED

Corollary (C1): In the case of reproducible scientific workflow every job can be reproduced

independently.

Proof: Based on T1, in a reproducible scientific workflow every job is reproducible. A job is
reproducible based on the definition, if the descriptor-space is known and every decay-parameter
is 0. If the descriptor space is known and stored, the execution of the job does not depend on
neither time nor any external parameters, consequently it can be reproduced anytime and

anywhere. This is true in the case of any job. QED

45 The sample set

During the process of the workflow lifecycle and the way in which the workflow can be formed
to be reproducible many executions and re-executions are performed. The increasing number of
the re-execution gives the possibility to collect and store the descriptor values originated from
different executions generating a continuously growing dataset, called sample set. In the design
phase, certain jobs are modified many times while the others remain unchanged. These latter ones,
already during this phase can provide useful experience about the descriptor values. Although the
sample set of the other type of jobs show slower growth, it can be still augmented while reach the
level of reproducibility. Additionally, because of the users’ demand for re-using each other’s
workflows, subworkflows or even individual jobs can be found in the repositories, with
continuously increasing sample set. The sample set of the job originating from the different
executions can be stored together with the job in the repository to support the reproducibility

analysis when a user intends to reuse it.

43

The sample set used in this dissertation can be written in the following way:

(di1 (to), diz (to), diz(to), ., di, (o), R;* \
| du(t) dp(t) dis(t)s o di (B RS |
5 = {l di1 (t2), diz (t2), diz(t2), ., dig, (t2), R;*2 l}
\d)

i1(ts—1), diz(ts—1), diz(ts—1), v, dige, (Es—1), R

(4.5.1)

where t indicates the time when the scientific workflow was executed.

In the most section, | investigated the jobs in general, independently from the scientific workflow.
Thus, for the sake of simplicity the index i referred to the job Ji can be omitted, additionally the
time ts according to the descriptor value originated from execution s-th, will be indicated in the

upper index.
Conversely, the simpler form of the sample set is the following:

@ L© L© 0 p©)

V2 03
vl(l), 172(1), vél), . v,({l), R®
S = 171(2),172(2)'173@,___’171({2),};,(2) (4.5.2)

171(5—1),172(5—1) ,UI((S_l),R(S_l)

) e

)]

where v;”” is the i-th descriptor value originated from the j-th execution.

4.6 The theoretical decay parameter

The descriptors in the descriptor-space was categorized depend on which information is provided.
Additionally, they have another underlying attribute referring to their decay, namely how they
change and how they can influence the re-execution of the job or the scientific workflow. The
different descriptors can affect or even prevent the re-execution in different way. To describe the
behavior of a descriptor | introduce a so called theoretical decay-parameter which creates four

classes among the descriptors. The decay-parameter can be the following:

a. The decay-parameter of a descriptor can be zero. There are constant descriptor’s values
which do not change under any circumstances; the time does not influence their values
and their availabilities. For example, a job may have constant inputs or parameters. If
a job has two input port getting the values 2 and 3 and the result of the job is the
summation of the inputs, the two descriptors of the job are inputl and input2; the

descriptor’s values are 2 and 3 which cannot be influenced by the time on no conditions.

44

b. Some descriptors depend on external services or resources which can become
unavailable during the years. The decay-parameter of these descriptors are a probability
distribution function (generally exponential distribution function). This distribution
may be given, evaluable or unknown. For example, third party services which can be

unavailable at any time or can leave off to provide their services after the years.

c. Certain descriptors are continuously changing in time. For example, the statistics
gained from continuously growing databases which are fed with more and more data
from sensors or from other resources (in the field of astronomy, bioinformatics etc.).
In this cases the decay-parameter of the descriptor is a function (vary(v)) which

describes the change of the value. This function also can be unknown, known or even

evaluable.
Formally:
0, if the value of the descriptor is not changing
in time
decay(v;) = F;(t), if the availabilitydistribution function of (4.6.1)

of the given value

Vary;(t, v;), if the value of the descriptor is
changing in time

Note: There are descriptors with originally unknown descriptor value, if the descriptors are
operation-related and extra tool is required to be able to capture and store their values. With help
of this tool the decay-parameter can be identified.

Statement (S.4.6.1): If every decay-parameter is zero in a job than the job is reproducible.

Proof: Let J(d;(to),d,(to), .., dk(t0)) = R be a job. If every decay parameter is zero, the
descriptors are constant thus they do not change in time, consequently d;(to) = d;(t, +
At);j =1,2,...,K for every At. In this way, the definition of the reproducible job (D.4.3.1) is
fulfil.

JOB;"P"°(d(to + At), d,(to + At), ..., dg (to + At)) =

JOB;"°P™® (d1(t0); dy(to), ..., d}((to)) =R

QED

45

47 The distance metric

To be able to investigate the variation of a descriptor and the impact of the descriptors on
the result, the deviation of the result or the descriptors must be measurable. Since every
descriptor has a name and a value, in this case the assumption can meet the requirements
in a simple way. In contrast, the outcome of a job can move on a wide range of the
possibilities. They can be for example numerical data, vectors, matrices, diagrams,
images, text files, audio files or video files etc. Additionally, a job can have more output,
too. To find a measurable deviation between two different results belonging to the same
job in can be simply performed in certain cases. It can be even automatically performed
by the system as well, but in other cases, the scientist has to determine the underlying
difference between two results from the perspective of the scientific experiment. For
example, the size or the resolution of an image can be irrelevant but the rate of the three main
colors can be the same at every execution. In this case, the difference between the rate of colors
can be measured. Sometimes there are more important factors and two or three different type of
deviation must be investigated and defined. Harking back to the previous example, assuming that
the images can show a circle or a triangle, and the difference can be importance from only this

point of view. In cases like this the distance can be 1 if the two form is different and 0 if they are
the same.

Conversely, in the most cases, a measurable deviation can be defined over the field of the possible
values of the results, which can be determined automatically by the system or with help of the
scientist. Hereafter | deal with the scientific workflows which meet the requirements that a
distance metric can be defined for the descriptors and the result of the jobs.

In formal:

Yg,: the set of the possible values of descriptor d;

Adi: Ydi X Ydi —> R,

Notation: vi,vj € Ydi: Adi(vi,vj) = ”17] — 'l7i|| (471)

R;: the set of the possible values of the results of job J;
AR:Ri X Ri — R,
NOtationZ Ri,R]’ € Ri: Adi(Rii Rj) = ||Rj - Rl” (472)

48 The empirical decay-parameter concerned to time-dependent descriptors

During the increasing number of the executions, more and more precise knowledge can be

collected based on the sample set about the behavior of the descriptors and most of all about the

46

changing descriptors. The nature of a descriptor can be very diverse, sometimes deterministic
while in certain cases nondeterministic. For example, it can follow an unidirectional, continuously
change which can be linear, exponential, logarithmic etc. or even irregular. Nevertheless, it can
fluctuate about a determinable value and the fluctuation can be periodically or randomly as well.
Additionally, a value of a descriptor can be fixed but at certain executions the descriptor may have
the outliers. To be able to identify the nature of the descriptor and to measure the change of the
descriptor | define the empirical decay-parameter in time-dependent cases and in time-
independent cases too.

decayet%e (At,v;,s) =

(0, if ¥3o4 ||vl~(f) — vi(j_l)” =0)

N |
j =2t1~—7t1
s "vi(j) _vlg_l)

j=2 -t
j ti—tj_q

, if Y5, ||vi(” —yUD ” 40 (4.8.1)

The numerator of the fraction determines the variation of the descriptors depending on time
correlated to the first value of the descriptor. The denominator investigates the variation of the
descriptors correlated to the previous value. Consequently, the rate between the two variations
gives the empirical decay. In other words, this expression investigates the measure of the change
of the descriptor values at the different executions while it observes also whether the values
continuously diverge from the first value or they may fluctuate around a certain value (not
inevitably around the first value).

The empirical decay also can be interpreted for the result of the job as well, if a distance metric

of the result can be determined.

0 if S21|RY — RUD|| =0
decaylime(At,R,s) = zs.—iw 52
mp T s 51| pU -1 8.
L e [RD—GD]’ if Y3Z1|[RDP —RUV|| 20 |
T

4.9 The empirical decay-parameter concerned to time-independent descriptors

There are descriptors which do not depend on time and the time may become an embarrassing
factor during the observation of their behaviors. For example, if a descriptor value shows a
constant pattern with some outliers it does not depend the time but the time-dependent decay
cannot show this phenomenon. To extend or complete the investigation of the descriptor value a

time-independent decay also has to be introduced in the following way:

47

0, if j;% ”vi(f) - vi(j_l)” =0
decayomy (Av;, s) = Z§21||Vi(j)—vi(1)||

v

(4.8.1)

if 251 [|vi @ — w77 % 0

The meaning of this expression is very similar to the time-dependent one the only different is that
it overlooks the elapsed time between two values.

Note: If the sampling is equidistant the time-independent form of the empirical decay can be
applied.

4.10 Investigation of the behavior of the descriptors

First, the definition of a reproducible job has to be investigated in case of the empirical decay-
parameter. It is clear, that if a job is reproducible then the decay,,,,(At,R,s) = 0, conversely,
the statement is not so evident. Concerning to the empirical decay, the size of the sample set (s)
is an important information, it is an important characteristic of the empirical decay. If there is no
information about the theoretical nature of the descriptor, all the knowledge about it can be based
on only the samples and any prediction of the descriptor value cannot be guaranteed. The more
samples can ensure the more probable prediction. Consequently, every statement of the empirical
decay has to refer to the experience gained from the s executions.

e The empirical definition can be given as: If Zﬁl decayemy(At,v;,s) =0 and
decayemy(At,R;,s) = 0 than J; is repeatable based on s execution. This means that the
descriptor values have not change during the s executions thus it can be concluded that
the job was successfully re-executed s times without change of descriptors. In this case
the reproducibility cannot be guaranteed, only the repeatability.

o |If Zﬁl decayemy(At,v;,s) = 0 and decayymy(At,R;,s) # 0 than the D; descriptor-
space is not complete. Since the deterministic behavior of the jobs has been
assumed, in this case there exist at least one unknown descriptor which influences
the result of the job.

o |If Zﬁl decayemy(At,v;,s) #0 and decayemp(At,R;,s) =0 than J; s
variable/portable/reproducible based on s execution and over the {v;y,v;,..., V. }
descriptor-set. The level of the re-execution is determined by the type of the descriptor.
If the changing descriptors are user-defined descriptor, the job is variable. If the changing
descriptors are environmental descriptors the job is portable and if both, the job is

reproducible referring to the changing descriptors.

48

o If Zﬁl decayemp (At,v;,s) # 0 and decayempy(At, Ry, s) # 0 than
cor(8; j—1(vy), 8 j—1(R)) must be investigated. There is two cases:
a. the connection between the descriptor and the result can be determined or even

predicted,

b. there is no correlation between the variables.

4.10.1 Simulations

The empirical decay had been introduced to give information about the nature of the
descriptors. Thus, the possible values and the behavior of the “decay-function” have to be
analyzed to be able to predict the change of the descriptors. To identify the nature of the
change simulations were performed based on the sample sets containing 20, 50 and 100
elements. In time-dependent case the time intervals were generated randomly based on a non-
determined “time-unit” which can be hours, days, weeks or even months. The measure of te
“time-unit” does not influence the values of the empirical decay-parameter. The simulations
showed that typically 20-30 — it depends on the nature of the change — samples, in other word
executions are necessary to be able to correctly evaluate the change and 50 samples are
enough, to clearly show the results. The figures, in the next subsections are created based on
50 samples. Some of the results can be proved by mathematical tools which are described
below. I investigated the following different, typical sorts of changes:

e continuously increasing deviation from the starting value in irregular (random) and
regular cases (linear, exponential, radical and logarithmic)
o fluctuating deviation in random and periodic (sinus) cases

o the descriptor values typically do not change but a few outliers can be found

4.10.2 Linearity

In the linear case both the time-dependent and time-independent decay-parameter can
unambiguously determine the change of the descriptor by a well-defined expression or a

concrete value.

Statement (S.4.10.1.1): If the descriptor is time independent and the change is linear

than decayemy,(Av;,s) =1+ %

49

Proof: Let &, ,, indicates the distance between two instantiations of the descriptor value i-th:

5m,n(vi) = |

On—-11(v;) let be denoted by 6.

vi(”)—vi(m)”. Since the change is linear Ym,n € [1,5]: 81 m(v) =

25;1 v(]) _v.(l) 5:16 (v
deCaYumy(Av;,s) = Jj 1|| l. (l'—1!| _ 25:1_—11 1,/ (V)

) ”vi(f) - v’ ” 25=16j-1,; (1)
_ 0428438+ +(s=DF _ 142434+ (s—2)
B (s—1)8 B (s—1)

s—2

o AHG=2)—— (5—1)(5—2)_1+s—2
B (s—1) - 2(s—-1) 2

Statement (S.4.10.1.2): If and only if the descriptor is time-dependent and the change is linear
than

decaybime(Av;,s) = 1 forevery s € N.
Proof:
a. Letthe change be linear.

Actually, both the numerator and the denominator of the expression (4.8.2) is a slope (tan a)
of the line in a given time interval. In the case of the numerator the “big” triangle ((t1,v1);
(ti,v1); (ti,v1)) has to be investigated and in the case of the denominator the expression refers
to the “little” triangle (figure 6). Assuming the linearity, all the slopes are equal in all the

interval consequently

o)
S _ .
decayiinf (Avy, s) = : ||v-(f?— ;(1,-_1)” = EZ _ 3 .222 -
T

6 —t,

50

=
[

6. Figure The illustration of the numerator and the denominator in the time-dependent empirical decay

b. Let decayiims (Av;,s) = 1 foreverys € N

Following the base assumption of the fraction is 1 for every s € N, it means that the slopes
are equal in case of the numerator (in which the point of reference is the initial descriptor
value at the time to) and the denominator (in which the change is measured from the previous
value) too. Since the statement has to be true for every s € N, it is true in the case of s = 1
and s = 2. In this case, not only the means are equal but also the element of the summation.
Starting from this point, if the fraction is 1, every appropriate element in the summation of
the numerator and the denominator is equal. Additionally, the elements of the summation are

equal too. Letting tan a be the elements of the summation. The claim is negated to

assume that there is at least one element (%) in the summation which differs
from the others. Let it be indicated by tan g . If tan § is found in the numerator than
it has to be found in the denominator too. But if the deviation is g in the numerator,
the deviation is y in the denominator and y # £ since the two triangles (figure 7) are
not similar. This result is in contradiction with the starting statement, that the elements
of the summation in the numerator and in the denominator, are equal. It means that

the slopes are equal and the two lines is coincident. QED

51

7. Figure The proof of the linearity

4.10.3 Exponantial and logarithmic change
The continuously increasing (or decreasing) change has three basic trends:

1. the exponential, in which the degree of the change is continuously increases
2. the logarithmic or radical, in which the degree of the change is continuously decreases

3. irregular increase
Exponential growth

In time-dependent cases, the simulations were performed on the sample set in which the increase
of the descriptor values follow the exponential function on different power (2., 3., 4., 5., 6., 7.,
10., 15., 20). (Figure 8) The results showed that in case of a not too fast increase (second or third
power) the decay function is a monotone decreasing function which has a well-recognizable
characteristic. But fast increase (on 10. 15. and 20. power) “disorders” the curve and generates

sharp breaks. The decay values remain below 1 and decrease.

52

Exponential growth of the descriptor values

09
08
0,7

0,6

0,2

0,1

Empirical decay-parameter
=} = =
I S 74
1% (=]

8. Figure The time-dependent empirical decay-parameter in case of exponential growth of the descriptor based on 50
samples.

Radical growth:

On figure 9, the radical growth of the descriptor values results monotone increasing, smooth
curves and the values of the time-dependent, empirical decay-parameter remains above 1. The
higher is the index of the radical function the steeper is the empirical decay. The different colors
of the curves indicate the different index of the radical function.

Radical growth of the descriptor values

2,5

Empirical decay-parameter

0,5

12345678 9101112131415161718192021222324252627282930313233343536373839404142434445464748

TIme

9. Figure The time-dependent empirical decay-parameter in case of radical growth of the descriptor based on 50 samples

53

Logarithmic growth

The logarithmic change (figure 10.) in the descriptor values shows a very interesting result; the

empirical decay is in all cases the same independently from the base of the logarithmic function.

The decay value starts from 1 and monotone increases similarly to the logarithmic curve.

2,5

15

0,5

Empirical decay-parameter

Logarithmic growth of the descriptor values

1234567 8910111213141516171819202122232425262728293031323334353637383940414243444546474849
Time

—log?

—log3

log4

log5

—_—logh

—log7

—|og10

—0g20

10. Figure The time-dependent empirical decay-parameter in case of logarithmic growth of the descriptor based on 50

samples

Randomly growth

In the case of the randomly growth (figure 11) the time-dependent decay follow an especially

changeable curve but with increasing size of the sample set the curve becomes smooth and

approaches to 1.

54

Randomly growth of the descriptor values

-
)

P~
=2}

3*t+rand(0,5)

P~
s

3*t4rand(0,10)

»
o

-

3*t+rand(0,15)

e
3

2*t+rand(0,15)

e
=)

Empirical decay-parameter

P
< ——2%*4rand(0,25)

(=]
=
N

o
o

= 5*+rand(0,25)

o

12345678 910111213141516171819202122232425262728293031323334353637383940414243444546474849
Time

11. Figure The time-dependent empirical decay-parameter in case of randomly growth of the descriptor based on 50
samples

4.10.4 Fluctuation

The fluctuation of the descriptor value can be either periodical such as sinus or cosines, or

randomly when the values randomly move in a predefined interval.

Periodical

In time-independent case (figure 12), if decayem,(Av;,s) =~ 1 than the descriptor values
fluctuate about a certain value (the expected value of the descriptors). If the change is periodical
and the long of the period is multiple of the sample size, then decay,m, (Av;,s) = 1. The curve
of the decay also follows an “almost” periodic change which has a minimum of 1, but with the

increasing size of the sample set the “waves” become smaller.

55

Periodical, sinus change of the descriptor values

=
o

o
)

Time-independent emp. decay

12. Figur

In time-dependent case (figure 13), after a few time the decay curve continuously decreases and

o o o Ll
B o o, N B

o

1 3 5 7 9 11 13 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Sequence number of the the execution

e The time-independent emp. decay of the periodically changing descriptor values

the values are small near to O.

09

0,8

0,7

0,6

0,5

0,4

Empirica decay parameter

0,2

0,1

0

13. Figure The time-dependent empirical decay-parameter in case of sinus change of the descriptor based on 50 samples

Periodical change of the descriptor values

—

12345678 9101112131415161718192021222324252627 28293031323334 353637 38394041424344 454647 48
Time

Non-periodical, randomly fluctuation

In time-dependent case the curves are similar to the periodical case. The simulations were
performed on samples generated in different ways: Gaussian distribution in the [0,1] interval on

56

—sin(pi/2)

— 2 *sin(pi/2)

e sin(pi/3)

sin(pi/4)

= sin(pi/5)

the set of real number (figure 14), Gaussian distribution in different interval on the set of integer

(figure 15) and I also investigated the cases, when the first value is irrelevant (figure 16).

The descriptor values are random generated values in [0,1]

16
—Rand1
14
rand2
1,2
. —rand3
2 1
]
53
(5
=
F o8 e rand4
g
g
T 06
= o = rand5
0,4
e randb
02
— rand7

123456 7 8910111213 14151617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Time

14. Figure The time-dependent empirical decay-parameter in case of random change in [0,1] interval based on 50
samples

Random generated descriptor values in different intervall

=
o

—[04]
16
1,4 —[0,5]
> 12
o
(5]
D —1[09]
A |
8
=508
a.
g [0,15]
™ o6
04 —\ —[0,30]
02 e

———————

123456 7 8 910111213141516171819202122232425262728293031323334353637 383940414243 4445464748

e [0,60]

o

Time

15. Figure The time-dependent empirical decay-parameter in case of random change in different interval based on 50
samples

57

Random descriptor value with irrelevant first value
14

e 1 =0

1.2
—1=3

vi=6

038
vi=9

0,6
—\]=12

04

Empirical Decay parameter

v1=15

0,2 I,

— e —

—1=18

1234567 8 91011121314151617181920212223 242526 272829303132 333435363738 3940414243 4445464748 — V=21

Time

16. Figure The time-dependent empirical decay-parameter in case of random change with irrelevant first value based
on 50 samples

4.10.5 OQutliers

In time-independent case (figure 17) the empirical decay clearly shows the outliers. If the

decayemy(Av;, s) # 0 than mindecayem,(Av;, s) = 0.5 which means that the descriptor value

does not change but there are some outliers among the values. At the outliers, the decay curve has
a sharp break. If the first value is the outlier and the other values are same,

the decayemy, (Av;,s) = s — 2

Outliers among the descriptor values

=
= [§S]

o
[0.2]

=
>
>

o
=Y

Time-independent emp. decay
o
M

1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45
sequence number of the execution

17. Figure The time-independnet emp. decay when outliers are among the descriptor values

58

The time-dependent decay is a decreasing step function and the steps show the place of the outliers
(figure 18).
The empirical decay-parameter in case of outliers
0,35
03

0,25

0,2

0,15

01

Empirical decay-parameter

0,05

12345678 91011121314151617 181920 2122 2324252627 28 29 303132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Time

18. Figure The time-dependent empirical decay-parameter in case of outliers based on 50 samples

59

Summarizing the results (figure 19), if the sample size is at least 30, the time-dependent empirical

decay can unambiguously show:

EMPIRICAL DECAY-PARAMETER

25

15

05

it linearly diverges from the first descriptor value — decayet,i,’{;f (Av;,s) =1,

it radically or logarithmically diverges from the first descriptor value -
decaybime (Av;, s) > 1,

it exponentially diverges from the first descriptor value, if the change is not too fast. —
The quadratic diverge: lim decaygi® (v, s) = 0.5

the outliers — it is a step function

the fluctuating change of the descriptors — the decay values approach to 0.

THE DECAY PARAMETER IN CASE OF THE DIFFERENT CHANGE OF THE
DESCRIPTOR VALUES

sin

rand
[0,1]

rand
[0,30]

rand
[0,40]; 3

0

power

Esaly

radical

2log

linear

1234567 89101112131415161718192021222324252627282930313233343536373839404142434445464748
TIME

19. Figure Summary chart about the time-dependent empirical decay in case of different change in the descriptor
value based on 50 samples

60

The time-independent empirical decay can unambiguously show (figure 20, 21):

e the linear diverge from the first descriptor value — decayem, (Av;,s) =1+ %

e the continuously diverge from the first descriptor value — decayem, (Av;,s) > 1

e the outliers — decay.my,(Av;,s) = 0.5, if the first and the s-th descriptor value is not
outlier.

e the randomly fluctuating change of the descriptors — decayem,(Av;,s) <1 or
decayomy(Av;,s) = 1

e the periodic fluctuating change of the descriptors — decayem,(Av;,s) = 1, if the s is

multiple of the period, else decay.m,(Av;,s) = 1and decayemy(Av;,s) > 1

Time-independent empirical decay-parameter in case of the different change of the
descriptor values

~
[s]

= GaussDistr(
01)

w
@

e rand(0,5)

w
=}

rand.
Growth

~N
«

linear

-
]

e periodical

Empirical decay-parameter
= N
o o

v

—). power

o

1234567 8 91011121314151617181920212223242526272829303132333435363738394041424344454647 48 | 0G_2
Sequence number of the executions

20. Figure Summary chart about the time-independent empirical decay in case of different change in the descriptor
value based on 50 samples

61

Time-independent empirical decay-parameter

1,8
= 16 w— OUtliers
]

1,4
£
© 1,2
& Periodical
> 1
(1]
[
2 08 \
© A
= 0,6 \ 7\ a e GaussRand
= 0,4
g (0,1)
- 0,2

0 ran(0,4)

1 3 5 7 9 1113151719 212325 27 29 3133 3537 39 41 43 45 47

Sequence number of the executions

21. Figure Summary chart about the time-dependent empirical decay when the change is small

Analyzing the empirical decay, if it shows a well-identified nature of the descriptor values,
evaluation can be performed to replace the descriptor when it is unavailable.

411 Conclusion

In this section, | introduced the basic terms of my research, namely the descriptor-space and the
decay-parameter. According to these expressions, | differentiated the theoretical and the empirical
approaches. The theoretical descriptor-space contains all the descriptors (descriptor names)
needed to reproduce a job. The theoretical decay-parameter describes the nature of the descriptors
assuming an “a priori” knowledge — originated from the scientist or from the experiences related
to other workflows — about the behavior of the descriptors. But the values of the descriptors can
be assigned to them only in occasion of an execution. During more and more executions, the
descriptor values originated from the different executions can be stored producing a sample-set
and giving the possibilities to the further investigation. Based on this sample-set the empirical
decay-parameter can be defined to identify the behavior of the descriptors in an empirical way, in
cases of the time-dependent and the time-independent descriptors too. The empirical decay-
parameter can clearly show the different types of the change in both cases.

Moreover, based on the descriptor-space | gave the mathematical definitions of the reproducible

job and scientific workflow.

62

4.12 Novel scientific results (theses)

Thesis group 1: | have defined and extended the mathematical definition of the reproducible job
and reproducible scientific workflow and | have determined the empirical and theoretical decay-
parameters of the descriptors.

1. Téziscsoport: Meghataroztam majd Kkiterjesztettem a reprodukalhatosag matematikai

s

elméleti és tapasztalati romlasi mutatoit.

Thesis 1.1

I have introduced the terms of the descriptor-space assigned to the jobs and the theoretical
decay-parameter assigned to the descriptors, and | have determine with these two terms the
definition of a reproducible job.

1.1 Altézis
Bevezettem a szamitasi feladatokhoz (job) rendelt deszkriptor-tér és a deszkriptorokhoz
tartozd elméleti romldsi-mutatd fogalmat, melyek segitségével meghataroztam a

e ey

Related publications: 1-B, 2-B, 3-B, 4-B, 5-B

Thesis 1.2

I have extended the definition of the reproducible job for the scientific DAG (directed
acyclic graph) type workflows and based on the definition | have proved that if and only if
a job is reproducible, than the scientific workflow is also reproducible.

1.2 Altézis:

Kiterjesztettem a reprodukalhat6 szamitasi feladat definiciojat iranyitott kormentes graffal
(DAG) reprezentalhatd tudomanyos munkafolyamat grafokra és a definicidk alapjan
bebizonyitottam, hogy egy tudomanyos munkafolyamat akkor és csak akkor
reprodukalhatd, ha benne minden job reprodukalhato.

Related publications: 1-B, 4-B, 5-B

Thesis 1.3

Based on s previous executions of a deterministic job | have defined an empirical decay-
parameter assigned to the descriptors of a given job in case of time-dependent and time-
independent descriptors and | revealed the relationships between the behavior of the
descriptors and the values of the decay-parameters.

1.3 Altézis

Definialtam s futas alapjan egy determinisztikus job deszkriptoraihoz rendelt
tapasztalati romlasi mutatot idé-fiiggd és ido-fiiggetlen deszkriptorok esetére és

63

feltartam a deszkriptorok viselkedéseinek és a romlasi mutatok értékeinek
Osszefiiggéseit.

Related publications: 2-B

64

5 INVESTIGATION OF THE EFFECT OF A CHANGING
DESCRIPTOR

In this section, | investigated how one or more changing descriptor can influence the result of the
job, how far the effect of a changing descriptor can spread and which part of a scientific workflow
can be reproduced. Based on the empirical decay-parameter and the sample-set | determine the
coverage of a changing descriptor and the reproducible part of the scientific workflow in other
words the reproducible subworkflow. Further, | give the method to calculate the theoretical and

the empirical probability of the reproducibility.

51 Theimpact factor of a changing descriptor for the result

After the behavior of a descriptor is determined, the effect for the result has to be investigated.
The underlying question is does the variation of a descriptor influences the result of the job and
if yes, in which way? The relationship between the descriptor value and the job result can be
determined by calculating the correlation between their deviations. However, correlation can
show first of all the linear relationship, the value of the correlation near to 0.5 can shows the
relation which is not linear. If the correlation is near to 0, the change of the descriptor value does

not connect with the change of the job result.

Zf=2(51,j (v)—6,,)(841,j(R)—BR)
JIE52306)1s00-80) | [£53 670 (RO-5)’]

cor(8(v),8(R)) = (5.1.1)

If there are many descriptor in the descriptor-space which has non-zero decay-parameter, the
correlation cannot be investigated independently in the case of the different descriptor, thus the

multi-variate correlation has to be calculated in the following way:

27=2(81,1(viy)=85,) (81,1 (viy) =80,) (81,1 (vi,) =8v,) (81,1 (R) ~R)
\/ [250(6-1,1 (i) =80) |- [0 (81,1 (v,) ~80) | [285811 (RD-5R)]

cor(8(v),8(R)) = (5.1.2)

where L indicates the number of the changing descriptors.

If the distance metric of the result consists of more component, the correlation has to be calculated
for every component independently.

When the impact of a changing descriptor for the job result proves true, this descriptor can prevent

to reproduce the job, I call the descriptor crucial descriptor.

65

5.2 Partially reproducible scientific workflows

In this subsection, I deal with the question which part of the scientific workflow is affected by a
descriptor which has a non-zero decay parameter. It may be important to determine the
reproducible part of the workflow or which part can prevent the reproducibility and to inform the
scientist about this fact. In order to formalize the problem, | have introduced some terms and
definitions. The first is the forward subworkflow belonged to a given job.

Definition (D6): The forward subworkflow of a job J; is a subgraph of the workflow graph where
the entry job is Ji and the exit job is the exit job of the original workflow graph. (Figure 22)

Notation: SubWF}{OTWard

\]entr

22. Figure The forward sub-workflow of a job J;

In this way, the coverage of a descriptor also can be defined. Let the J; is a job of the scientific
workflow and vjj is a descriptor of the job Ji.

Definition (D9): The coverage of a descriptor vi; (descriptor coverage) is a forward subworkflow
containing that jobs, which are influenced by this descriptor. (figure 23)

Notation: cvrg(Ji, vij) = {Jk€V | Yk depends on v;}

In other words, if a descriptor value changes the results of the jobs contained by the descriptor
coverage is also changes.

The coverage of a descriptor does not necessarily contain all the path between the given job and
the exit job. It can be occurred, that certain successors are affected by the varying descriptor but

the others are not.

66

53 Determination of the descriptor coverage

Efié/

23. Figure The coverage of the descriptor v;

Jexit

After the definition has introduced, it is necessary that the coverage of a given descriptor can be

determined. Assuming S previous execution of the workflow a sample set S,

subforward can be

created. Let the /1, /5, ..., /¢ are the jobs of the SubWF]’; orward \yhere the C is the number of the

job inthe SubWF/ ™™, the Ry, R, ...

of the job Ji. The sample set contains the vjj and the Ry, R, ...

execution:
R

S]subforward Ul-(jz) Riz) Rgz) R((:Z)

L E
S o)))
Vij Rl) Ry” = R¢

, R are the result of these jobs and the vjj is the descriptor

, Rc originated from the S previous

(5.3.1)

based on the sample set the empirical correlation matrix can be computed as follows:

M.,

/cor (G(UU) 6(vl])) cor (5(vij), 6(R1)) cor (5(17i]-), 6(R2))
cor (S(Rl) S(UU)) cor(6(R1), 8(R1)) cor(6(R1), 6(R2))
Lcor (5 (Rz) 5(vi))) cor(8(Ry),8(R)) cor(8(Ry), 8(R,))

cor (50, 6(vy)) cor(BRBRY) cor(5(Re),5(R))

67

cor (S(Uij), 5(RC))N
cor(6(R1), 6(RC))
cor((S(Rz'), 6(RC))
cor((S(RC'), 6(RC)))

(5.3.2)

The coverage of the given descriptor can be determined based on the first row of the correlation
matrix. The non-zero values can show the influenced jobs. Based on the coverage the non-
reproducibility rate index can be computed which says which part of the scientific workflow is
not reproducible.

54 The reproducibility rate index

With help of the descriptor coverage the reproducible subworkflow can be determined and the
reproducibility rate index can be introduced (RRI). If a scientific workflow contains only one job
(Ji) which has only one descriptor with non-zero decay-parameter (vij) and the Cvrg(v;;) can be
determined, the reproducibility rate index (RRI) can be expressed as:

_ |cvrgw:))|

RRIgingie =0 (5.4.1)

where [V| and |Cvrg(v;;)| denote the number of the jobs in the workflow graph.

If there are more descriptors in the whole workflow which have non-zero decay-parameter the
union of the descriptor coverages has to be determined. The union of a collection of subworkflow
is the subworkflow of all distinct jobs in the collection. In this way the expression (5.4.1) can be

extended as follows:

M
_ |U%:1 Uiy Cv?‘g(vij)|

RRImultiple - _|V| (5-4-2)

where the L (L < N) is the number of the jobs which have descriptor with non-zero decay-
parameter and Mi (M; < K; Vi € [1, N]) is the number of the non-zero decay-parameter in the job
Ji.

55 Determination of the reproducible subworkflow

Based on the descriptor coverage the reproducible subworkflow of the given SWf can be

determined by omitting the coverages of the crucial descriptors. (Figure 24)

68

G(V,E)==SWF;
for i=1 to N
for j=1 to Ki
if decay(vij)#@ than determine SubVV@{m“mrd
m== “the number of jobs in Sube{mwmﬂ”
calculate M_corr(vij)_(m+1)x(m+1);
cvrg(vij)=={};
for k=1 to m+1
if M_corr_1_k#0 than cvrg(vij)==
cvrg(vij)UJk
V=V\Jk)
endif;
endfor;
endif;
endfor;
endfor;

24. Figure The pseudo code of the determination of the rperoducible part of the SWf

5.6 Reproducibility by substitution

In this subsection we investigate the case when one or more of the descriptors is continuously
changing in time and they influence the job result. It can occur for example when a job get input
from a database which continuously collects more and more data from a sensor networks,
consequently the database is also greater and greater. Another example may be the operation
related descriptors which based on some actual state of the system. Beyond the special tool
developed for this purpose may be necessary to store this descriptor value, the value can be change
continuously concerning to the state of the system, such as time or free available memory.
Typically if a job has a descriptor described above, it cannot be reproduced. The ultimate goal is
to give method, which helps to solve this issue by substituting the descriptor or the job result or
by evaluating the deviation of the result based on the changing descriptor. An existing relationship
between the deviation of the descriptor value and the deviation of the job result can give the
possibility to substitute or evaluate the deviation of the result when the original descriptor value
is changed or unavailable. The method, and the parameters of the method can be also stored in
the repositories together with the scientific workflow and if the re-execution of the workflow fail
because of that descriptor, the result still can be reproduced.

In order to achieve my goal | introduced another two terms, namely the substitutional and the
approximative reproducibility referring to that case, in which the decay parameter of the
descriptors changes in time but the variation of the result can be determined or evaluated based
on the variation of the given descriptor. Two options can be differentiated: the first one is that the

variation of the descriptor value is known and it can be described by a mathematical function; and

69

the second one is that the variation of the descriptor value is unknown but an approximation can
be performed which fit to the curve of the change. In both cases a sample set is necessary which

is based on provenance information originated from S previous executions.

Definition (D.5.6.1): The Ji job is reproducible by substitution, if the descriptor space D, =
{Vi1, Vig, o, Vig,} 18 known, k €[1,2,..,K;]:Vary; (At,vy) and based on the function
Vary; (At,v;) a new Vary; (At,vy) can be unambiguously determined which give the
variation of the result depending on the given descriptor.
In other words if JOB; (to, Vix, iz, ..., varyi (to, Vi), .., Vi,) = Ri(to) than

]OBL-(tO + At, vy, Uiy, ..., vary; (At, vy, ...,viKl.) = Vary; (At, vy,) = R (At)
Notation: JOBF“PStitute (Y ary(At, vy))

Definition (D.6.2): The J; job is reproducible by approximation, if the descriptor space D;, =
{Vi1, Vigs o, Vi, } is known, k € [1,2, ..., K;]: Varyu (At, vy) and based on the function
Vary;, (At, vy,) an approximator W, (At, 5 (v)) can be determined to evaluate the deviation
of the job result.

In other words if JOB;(to, Vi1, Vi, -.., varyu (to, Vi), ...,viKl,) = R, (ty) than

JOB;(to + At, Vi1, Vig, ..., varyy (A, vig.), .., Vi) = R, (to) + Wi (AL, §(vyg,))

Notation: JOB;"*™° (W, (At, v;))

The definition D.6.1 says that the result of the job can be determined exactly by a function of the
vy, descriptor while in the second case (D.6.2) an approximator can be found to estimate the

deviation of the result based on the deviation of the given descriptor.

5.7 Determination of the substitutional and the approximation function

Since the crucial descriptors can belong to different types, the approximation method which
evaluate the change of the descriptor or the deviation of the result also can be various. The
relationship between the crucial descriptor and the result can follow different types of function

such as linear, quadratic or higher order, exponential, logarithmic or trigonometric etc.

The substitutional function, if exist, can be determined based on the empirical decay-parameter.
The investigation of the empirical decay-parameter presented in section 4.10 showed the

evaluability of the changing descriptor.

70

To find an approximator which can evaluate the deviation of the job result depends on the impact
factor defined in the subsection 5.1. The correlation between the descriptor and the deviation of
the result can determine the evaluability of the deviation. The simplest case, when the correlation
is nearto 1, since the linear relationship can be simply evaluated by, for example linear regression.
If the correlation less than 1, non-linear evaluation has to be found. Applying the empirical decay-
parameter also for the job result, the nature of the result also can be identified which can help to
find the appropriate approximator. If the correlation is near to 0 there is no relationship between
the change of the descriptor and the deviation of the job thus this crucial descriptor cannot be

compensated with approximation

Storing the approximation and the final results in the repository makes it possible that during the
re-execution of a workflow, the non-reproducible job can be replaced by these approximated or

simulated results.

5.8 Reproducible scientific workflows with the given probability

In this section | introduce a probability value assigned to the descriptors to determine how likely
the value is changed or unavailable. This probability can be generated based on the theoretical
decay-parameter, if the user knows the nature of the descriptor or it can be originated in empirical
way based on the sample set. With help of the probability value, the probability of the
reproducibility can be determined which is an essential information for the scientists on one hand
during the design phase when the scientific workflow is in progress to become reproducible, on

the other hand, when the scientist intend to reuse a workflow from a repository.

Many investigations revealed the problem caused by volatile third party resources (Zhao & al,
2012), when the reproducibility of workflows became uncertain. The third party services or any
external resources can be unavailable during the years. If the decay of the resources and the
probability distribution function can be identified and we can determine its probability
distribution function we can predict the behavior of the workflow on occasion of a re-execution
at a later time. Sometimes the users may have to know the chance of the reproducibility of their
workflow. Assuming that the probability distribution of the third party service is known or

assumable we can inform the users about the expected probability of the reproducibility.

59 Theoretical probability

To formalize the problem, first, we have separated the Mi descriptors of a given job Ji which
depend on external or third party resources and its decay-parameter, which is a probability

distribution function given as follows: Fj; (t), Fi2(t), .., Fyi, (t)- The rest of the descriptors have

71

zero decay-parameter. In this case, at time t0, a given descriptor’s value v;;(d;;)is available with
a given probability (for the sake of the easier comprehensibility hereafter we omitted the i index
referred to the i-th job of a given scientific workflow):

Fi(to) = p®, Fy (o) = p{™, oo, Fiy (t0) = p3® (5.9.1)

Let us assign to the job Ji a state vector y; = (Vi1, Yiz, -, Yim,) € {0,13™i, inwhich the y;; = 1,
if the jth descriptor of the job Ji is unavailable. In this way the probability of a given yi state vector
can be computed as follows:

p) =L, p) (1-p)" " (59.2)

In addition a time interval can be given during which the descriptor is available with a given

probability P.

Since we assume the independency of the descriptors the cumulative distribution function of the

availability referred to the job Ji can be written as follows:
F;(t) = [T/L, Fi;(©) (5.9.3)

Based on the cumulative distribution the probability of the reproducibility can be determined in

the following way:

Pineo(JOB P (x < 1)) = 1 = [I}L; Fyj (%) (5.9.4)

Peneo (SWF™P7° (x <) = [Te (1 = T Py () (5.9.5)

where N is the number of the jobs and M; is the number of the descriptors referred to the job Ji

which has the decay-parameter determined by the probability distribution function.

5.10 Empirical probability

Based on the sample set many useful information can be collected about the descriptors. The
probability of their change or unavailability may be also an important characteristic of the
scientific workflows which can support the reproducibility analysis and also the scientist’s
community to create or reuse a reproducible workflows. Therefore based on the previous

executions of the SWH, the relative incidence of the change/unavailability can be assigned for

72

every descriptor. In this way, assuming the independency of the descriptors, the probability of the
descriptor-space-changing can be calculated as follows:

pi"P (5.10.1)

. K;
Pornp(D; is changed) = j;1,pj¢o ij

emp

where 28 is the relative incidence of that the descriptor value j-th in the job Ji is changed or

unavailable.

In the expression (6.2.1) only the crucial descriptors assist, which can influence the job result. If
a descriptor value did not change at all, its relative incidence is 0. Consequently, if the change of
the descriptor-space means the non-reproducibility, the probability of the reproducibility of a job

can be written as:

Pomp(JOB"P7°) = 1 — Hf;llpjiop{j-mp (5.10.2)

Assuming the independency, the expression (6.2.2) can be easily extended for scientific
workflows:

reproy\ — TN _ K emp
Pemp(SWF) = n=1(1 Hj:ij;topnij) (5.10.3)

If the independency cannot be assumed, the expression (6.2.2) has to calculate for coverage of the
crucial descriptors and then the independency of the coverage can be assumed.

5.11 Conclusion

In this section, I investigated the effect of the changing descriptors for the job result and for the
forward sub-workflow. With help of the sample set and the distance-metric interpreted on the
descriptor values and on the results, | determined the relationship between the deviation of the
descriptor values and the deviation of the results. Calculating the empirical correlation between
these deviations, the type of the relationship can be identified. Knowing the relationship, the
reproducing of the job can be replaced by the evaluation of the deviation when the critical
descriptors are not available or the reproduction cannot be performed. Moreover, with help of the
empirical correlation, the coverage of a critical descriptor can be determined. Based on the

coverage, the reproducible part of the scientific workflow also can be given.

Additionally, the probability of the reproducibility also is an important information to help the

scientist to decide whether a workflow is worth reuse or not. If the theoretical decay-parameter

73

and the probability distribution function is given, the theoretical probability can be calculated
assuming the independency of the descriptors and the jobs. Else, the empirical probability should
be used. Obviously, the assumption of the independency limits the number of the workflows
which fulfil this requirement thus further investigation should be planned in the future work.

512 Novel scientific results (theses)

Thesis group 2: Based on simulations and on the empirical decay-parameters | have investigated
and determined the behavior, the coverage of the changing descriptors and the feasible
approximation of the result deviation.

2. Téziscsoport: Szimulaciok segitségével megvizsgaltam és meghataroztam egy szamitasi feladat
valtozo6 deszkriptorainak viselkedését, hatokgrafjat €s a szamitasi feladat eredményén értelmezett
eltérés kozelithetoségét.

Thesis 2.1

Based on a sample set originated from s previous executions | have defined and realized a
method to determine that subgraph of a given scientific (DAG) workflow, in which the job
results are influenced by a given descriptor.

2.1 Altézis

Kidolgoztam egy eljarast, mellyel ismert deszkriptor-tér esetén és s futasbol szarmazo
provenance adatbol nyert mintahalmaz alapjan meghatarozhaté egy tudomanyos
munkafolyamat graf azon részgrafja, melyben egy adott szamitasi feladat deszkriptoranak
hatésa észlelhetd.

Related publications: 1-B,

Thesis 2.2

I have introduced the term reproducibility rate index (RRI) to calculate how big part of the
scientific workflow is reproducible and | have developed a method to determine the
reproducible sub-graph of a partially reproducible scientific workflow represented by a
DAG.

2.2 Altézis

Bevezettem egy reprodukalhatosagi ardnyszamot (RRI), amely meghatarozza, hogy a
tudomanyos munkafolyamat mekkora részben reprodukalhato és kidolgoztam egy eljarast
a DAG-gal reprezentalhato, részlegesen reprodukalhatd tudoméanyos munkafolyamat
reprodukalhaté részgrafjanak meghatarozasara.

Related publications: 1-B, 7-B

Thesis 2.3

74

I have defined the impact factor term of a changing descriptor set based on s previous
executions, and | have determined the feasible approximation of the result deviation.

2.3 Altézis

Definialtam a valtozé deszkriptor halmaz, s futas alapjan szamitott impakt faktoranak
fogalmat ¢és szimulaciok alapjan meghatdroztam az eredmény valtozasanak
kozelithetdségét.

Related publications: 1-B, 2-B

Thesis 2.4

Based on the theoretical decay-parameter and the empirical probability calculated
according to the s previous job executions, | have defined and proved the theoretical and
the empirical probability of the reproducibility concerning to a given scientific workflow
assuming that the descriptors and the jobs are independent.

2.4 Altézis

Az elméleti romlasi mutaté és az s futdsbol szamitott tapasztalati valdszinliség segitségével
definidltam és bizonyitottam egy tudomanyos munkafolyamat reprodukalhatosaganak
elméleti és tapasztalati valdszinliségét abban az esetben, amikor a deszkriptorok és a
szamitasi feladatok egymastol fliggetlenek.

Related publications: 2-B, 5-B

75

6 THE REPRODUCIBILITY METRICS

In this section | give the metrics of the reproducibility, which helps to measure the cost of the
reproducibility, in other words, how extra-cost — it can be extra computation, extra reproducing
time or extra storage to store the descriptor values or other parameters — is necessary to reproduce
the scientific workflow. In order to achieve this goal, I introduce a so-called repair-cost assigned
to the descriptors. In this way, the Average Reproducibility Cost (ARC) can be calculated and
that how likely the reproducibility cost is over then a predefined threshold. I call this probability
Non-reproducibility Probability (NRP). Since the computation complexity of this metrics
exponentially grows with the size of the descriptor-space | give evaluation methods to be able to
calculate them in polynomial time. Finally, | classify the scientific workflows from the point of

view of the reproducibility.

6.1 The “repair-cost”

The ultimate goal of my research is to make the workflow reproducible in sense that | intend to
set out different methods which help reproduce an originally non-reproducible job. In other words,
if a job has a time-based operation-related descriptor which make doubtful or questionable the re-
execution of the job a method is required to eliminate or replace it and reproduce the job without
the descriptor in dispute. For example, according to a descriptor which has the decay-parameter
determined by a vary function, the value of the descriptor may be evaluated or even the result of
the descriptor may be evaluated as well. In certain cases, the job cannot be made reproducible
in any circumstance, only a given subworkflow of the original workflow can be reproduced or
even only the probability of the reproducibility can be determined. To be able formalize and
measure this extra work needed to reproduce a job | assigned to every descriptor a cost index
which is a real number in the interval [0, 1]. The cost-index can refer to extra time, computation

or storage, etc.

76

The following table represents the descriptor-space extended by the cost index and the probability:

6.2 The reproducibility metrics

Descriptor’s Descriptor’s .
Decay-parameter Cost Cost probability
name value
d: v = vi(t) decay(v1) C1 P1
d, V2 = Vo(t) decay(v2) C2 P2
dk Vi = Vk(t) decay(vk) Ck Pk

4. Table: The extended descriptor-space of a given job

It may be important to inform the user about the conditions of reproducibility of his workflow or
even the cost of the reproducibility. Introducing the cost-index assigned to the descriptors the
guestion may be what will be the expected cost to reproduce the scientific workflow. Since only
the probabilities of the cost are available, the exact computation is not possible but the expected
cost can be computed. Additionally it can be also determined how likely the reproducibility cost
is over a predefined threshold in other words whether the reproducibility cost worth the “invested
work” or not. Conversely | determined two measures: the Average Reproducibility Cost (ARC)

and the Non-Reproducibility Probability (NRP).

6.3 Average Reproducibility Cost

In order to perform the computation of the ARC, | introduced some additional expression. Based
on the descriptor space we can create a binary state vector of the job J;:

Vi = Oin Yizs - Vi) € {0,135 (6.3.1)

in which the y; = 1 with probability pi, if the ith descriptor value of the job Ji is unavailable or
changed but with the help of the cost assigned to it the job can be reproduced. In this way the
probability of a given y state vector can be computed as follows:

pO») =,y (1-p;) (63.2)
The cost of a state vector is the following:

I =Xc (6.3.3)
The ARC assigned to the job Ji expressed as

77

ARC;, = Yyey gP(Y) (6.3.4)

and the ARC assigned to the scientific workflow SWF expressed as

ARCsyr = Z?’:1E (Q(Y)) (6.3.5)

6.4 Non-reproducibility Probability (NRP)

When the overall cost of making the workflow reproducible is greater than a predefined C cost,
generally the reproducibility do not worth the time and the cost to perform it. In other words in
that case the workflow is not reproducible. If the users are informed about this fact, they have the

possibility to modify their workflow or to apply other virtualization tools (Virtual Machin).

The NRP of a given job Ji is expressed as

P(g(yi) > €) = Xy.g(»>cP(¥i) (6.4.1)
where C is a given level of the reproducibility cost and

and the NRP of a sientific workflow SWF is expressed as

NRPsyr =TI P(g (y;,) > ©) (6.4.2)

The mathematical model described in the previous subsection is similar to the model of the
network reliability analysis which investigate the availability and the reliability of a
communication network infrastructure such as SDH, IP or ATM.. In that model the network
component such as switches, routers etc. are represented by an N dimensional vector y € Y =
{0,1}", where N is the number of the network components and the vector element y; = 0, if the
i-th network component is operational and y; = 1 with the probability p;, if the i-th network
component is malfunctioning. Additionally, a measure of loss is given by g(y) (g: Y = R), which
expresses the loss of system performance due to a failure scenario represented by vector y. The

two main reliability measures are the following:

1. Egy) =2yergMpry) (6.1)
2. P(g(y) >C) =2yg¢)>cP¥) (6.2)

where C is a given level of degradation in performance.

This two measure can be translated to my approach of the reproducibility such as Average
Reproducibility Cost (ARC) and the Non-Reproducibility Probability (NRP). Concerning to the

78

reproducibility the network components are the descriptors and the measure of loss is the repair
cost. A descriptor is “malfunctioning” if the descriptor value is changed or unavailable. ARC
means the expected reproducibility cost which is necessary to make the scientific workflow
reproducible. If the process of making the workflow reproducible is over a predefined threshold,
the reproducibility do not worth the “invested work” namely the extra cost which is provided by
the method and extra tools needed to the reproducibility.

It follows from the definitions of ARC and NRP is clear that exact computation bases on
calculating g(y) for each possible binary state vector, which entails 2" computations. Since the
number of the descriptors referred to a single job can fall into the range from a few hundred to a
couple of thousand even in point of the whole scientific workflow which typically has hundreds
of jobs, ‘taking a full walk’ in the state space for calculating the reproducibility measures is clearly
out of reach. Therefore, I have to calculate ARC and NRP approximately by using an estimation
function, which is based on only a few samples {(y;, g(v;)), i = 1,...,S} taken from the state
space. Of course, the underlying question is how to find the most optimal or typical samples which
furnish the most accurate estimation despite the small number of samples. There are many
classical methods of the reliability analysis, which define the method of sampling and the
estimation of the E(g(y)) is performed based on the samples:

a) The Monte Carlo method, which is based on a random samples

b) The importance sampling, which tries to tailor the sample-taking procedures to the most
relevant samples

¢) The Stratified sampling, which accelerates the Monte Carlo simulation by grouping the

samples into different classes.

Another approach is the estimation by transforming method. The main idea in this method to find
an appropriate transformation which maps the loss function g(y) into a function f(y, w) which
lends itself for easy statistical calculations. The vector w denotes the free parameters which can

be subject to learning in order to fit the curve f(y,w) to the specific loss function g(y).

Namely, the evaluation is done in three steps:
1. generating a sample set 7™ = {(y,,g(y,)k =1..,N}

2. finding wop by minimizing the approximation error over the sample set, where the

approximation error is defined as follows:

minY>(g(y,)~ £y, W)y

k=1

3. calculating the expected value E(f (y,wOpt)) by analytical tools.

79

This method proves to be a viable alternative to the classical statistical estimations if the learning
algorithm is not too complex and if it does not require an over-excessively large training set to
obtain a good approximation.

6.5 Evaluation of the Average Reproducibility Cost

The average reproducibility cost (ARC) is a good starting point to inform the scientists about the
reproducibility conditions of their workflow. In view of ARC they can consider the possibilities
and the thought of a possible modification. After all in certain cases the size of the descriptor-
space can be enormous in addition it can exponentially increase. If this computation is sticky or
a real-time reply is needed an evaluation can be applied.

The universal approximation capabilities of neural networks have been well documented by
several papers (Hornik & al., 1989), (Hornik & al., 1990), (Hornik, 1991) Therefore, it seems
plausible to construct f(y,w) as a neural network. In order to fulfil the condition which enforces
the analytical calculation of E(f(y,w)) the choice fell on Radial Basis Function (RBF) networks:

K
tly,w) = welly -y) (6.5.1)
k=1
where ¢ is similar to the Gaussian density function:
—Z (Yi_Yi(k))
olly -y [)=e * (6.5.2)

where o is the deviation of y; probability variables.

In this way the g(y) function can be evaluated by f(y,w) and the expected value can be estimated

as follows:

ARC = E(g(y)) = E(f(y,w)) (6.5.3)

The training set contains of all the state vectors where only one component is 1 and the others are

0. In this way the size of the training set is K, the number of the descriptors for a given job is:

) ={(y1,901), (y2.952), . (yx. 9K)) } (6.5.4)

Based on the training set the optimal weights woy can be determined minimizing the following

mean square error:

Wope = min %L, (9(vi) — £ (31, w))? (6.5.6)

80

Applying the radial basis function the approximator can be determined in the following way:

f@) =EZZiwie(ly —y@[D (6.5.7)

, -3K -7
where p(|ly —yP||) =e™ 20

The expected value of the f approximator can be calculated in the following way:

B@) =E{ Y wiolly =yl |= D wie (o(ly = 01)

-0y

K K D
(3’1 yj)
ZWkE e 20 ZZWkE 1_[e 20
i=1 j=1

In this way the ARC can be calculated for every job in a scientific workflow, furthermore the
ARCws can be calculated for the whole workflow summarizing the ARCjo. Figure (figure 25)

shows the pseudo code of the algorithm.

ARCeppr=0

for i=1 to N
get J;
generate Tty ={yi, g(yi)}
calculate wept
calculate f(y,Wopt)
calculate E(f(y,Wopt))
ARC==ARC+E (f(y,Wopt))

end

25. Figure: The pseudo code of the estimation of the ARC

6.6 The upper bound of the unreproducibility probability

In probability theory, the theory of large deviations is concerned with the study of probabilities

of rare events. In Large Deviation Theory, the Chernoff bound gives exponentially decreasing

81

bounds on tail distributions of sums of independent random variables. Assuming the

independency of the descriptor it can be applied to give a sharper upper bound of the NRP.

In the case when the cost-function is a linear function of the binary variables y; we can apply the
Chernoff-bound methods and give an upper bound to the probability defined by the equation is

P(g(y) > €) = P(ZE wiy; > €) = ¢(C) < eEimatilwis)=s0) (6.6.1)

The functions y;(s) are the logarithmic momentum generator functions of the random variables

WiYi:

ui(s) = logee"vis (6.6.2)
dup;i(s)

where s: $i, “E2 =

This functions can be easily calculated as the following:
pi(s) = logEe" P =log(p;e”* + (1 —p;)) (6.6.3)

If the cost-function is not linear it has to be approximated by a linear function:

IW = f@¥) =T wiy; (6.6.4)

In this way, the evaluation is similar to the evaluation of the ARC using the capability of the
neural networks. A training set must be generated. It should contain all the state vector which
has only one element with the value of 1, and all the others are 0. In this way, the size of the
training set is equal to K, where the K is the number of the descriptor in a given job. Based on
the training set the optimal w; values can be calculated by minimizing the mean square error in

the following way:

.1 2
Wopt* m‘;n;Zf:l(g (yi) — Zﬁ'(:l Wj}’ij) (6.6.5)
The minimization is based on solving the linear equation system.

In this way the approximator ¢(C) function can be calculated as:

P(g(y) > C) < @(C) = eXiz #ilwis)=sC (6.6.6)

82

NRPeppr=1

for i=1 to N
get J;
generate T V={y;, g(yi)}
calculate wopt
calculate F(y,Wopt)
calculate ¢(C)
NRP==NRP* ¢(C)

end

26. Figure: The pseudo code of the estimation of the NRP

When the overall cost function of the scientific workflow is greater than a predefined C cost,
generally the reproducibility does not worth the time and the cost to perform it. In other words, in
that case the workflow is not reproducible. If the users are informed about this fact, they have the

possibility to modify their workflow or to apply other virtualization tools.

6.7 Classification of scientific workflows based on reproducibility analysis

Analyzing the decay parameters of the descriptors we can classify the scientific workflows. First,
we can separate the workflows which decay-parameters for all the jobs are zero. These workflows
are reproducible at any time and any circumstance since they do not have dependencies. Than we
can determine those ones which can influence the reproducibility of the workflow in other words

which have non-zero decay parameter(s). Six groups have been created:

decay-parameter cost category
decay(v)=0 cost=0 reproducible
decay(v) is unknown - non-reproducible

decay(v) is unknown, the

descriptor value cannot be stored cost = Cy reproducible with extra cost
decay(v) = F(t) cost = C, reproducible with probability P
decay(v) = vary(t,v) cost = Cs approximately reproducible

5. Table The classification of the scientific workflow

6.7.1 Reproducible workflows

The first group represents the reproducible workflows. In this case, all the decay-parameters of

all the jobs belonged to a workflow are zero. These workflows are reproducible and they can be

83

executed and re-executed at any time and any circumstance since they are not influenced by

dependencies.

6.7.2 Reproducible workflow with extra cost

There are workflows, which have operation related descriptors which are unknown in normal
circumstance, but with the help of additional resources or tools these dependencies can be
eliminated. For example, if a computation is based on random generated value, this descriptor’s
value is unknown. In this case with the help of an extra, operation system level tool we can capture
the return value of the system call and we can store it in the provenance database. Another
example is when a virtualization tool, such as a virtual machine have to be applied to make the

workflow reproducible.

6.7.3 Approximetly reproducible workflows

In certain cases the workflow execution may depend on some continuously changing resource.
For example there are continuously growing databases which get the data from sensor networks
without intermission. If the computation of a workflow use some statistical parameters of this
database, the statistical values never will be the same. Moreover the descriptor can be operation-
related descriptor which is based random value or time or other parameter referred to the state of
the system and the values are captured by the appropriate tools. In this case the appropriate
descriptor’s value of the given job may change on occasion of every re-execution, consequently

the reproducibility of this workflow could be failed.

In this case, analyzing the change of the descriptor value and the effect for the result, in certain
cases the relationship and an estimation method can be determined to replace the descriptor value
or even the result of the job. On occasion of a later re-execution, if reproducing is not possible or
the crucial descriptor is unavailable, this evaluating method can be applied and an evaluated result

can be done.

6.7.4 Reproducible workflows with a given probability

Many investigations revealed the problem caused by volatile third party resources, when the
reproducibility of workflows became uncertain. The third party services or any external resources
can be unavailable during the years. If there are no method to handle or eliminate this dependency,
the probability of the reproducibility can be determined based on the theoretical decay-parameter

(if the availability of the service can be given by the user or by the third party) or based on the

84

sample set in empirical way. Sometime the users may have to know the chance of the
reproducibility of a workflow for example when they look for one in the repositories. Assuming
that the probability distribution of the third party service is known, assumable or evaluable
information can be provided to the users about the expected probability of the reproducibility.

6.7.5 Non-reproducible workflows

There is no method to make the workflow reproducible. In this case the scientific workflow may

have too many dependencies or it probably contains very complex non-deterministic job or jobs.

6.7.6 Partially reproducible workflows

If a workflow has a crucial descriptor which influence the reproducibility and there are no method
to compensate or eliminate this descriptor, the job containing this descriptor become non-
reproducible. However, it does not mean, that the whole workflow is also non-reproducible.
Determining the coverage of that crucial descriptor the reproducible part of the SWF can be

identified. The reproducible part of the SWF also can be in any group listed above.

6.8 Conclusion

In this section | defined the metrics of the reproducibility, the ARC and the NRP. | determined
the expected cost for making a workflow reproducible and we also gave an efficient adaptive
evaluation method for the ARC. The method is very useful in the continuously changing
environment in which scientific workflows are mostly enacted. Further | determined the
probability that how likely the reproducibility cost is greater than a predefined threshold and |
also gave an upper limit for the probability of making a workflow reproducible with a cost greater
than a predefined C threshold. The analysis was bounded on the special cases when the cost
function is linear or can be approximated by a linear function. The advantage of this evaluation is
the simply computation but it provides a rough estimation. The future work may extend our

evaluations on higher order approximations as well.

Finally, I investigated the possible types of the scientific workflows from the point of view of
their reproducibility. The basis of the analysis is the decay-parameter which describes the type
and the measure of the change of the descriptor’s values. According to this parameter we
determined a cost function which means the “work™ required to reproduce the given job or

workflow. In this way, the classification of the scientific workflows can be given and how they

85

can be reproduced in a later time. In the different categories, | set up methods to make the

workflows reproducible or we gave the probability and the extra cost of the reproducibility.

6.9 Novel scientific results (theses)

Thesis group 3: | defined two metrics of the reproducibility and | determined approximations to

evaluate them in polynomial time if the exact calculation is not possible in real-time.

3. Téziscsoport: Definidltam a reprodukalhatosag koltségének mérdszamait és polinomialis
1épésszamu kozelitd eljarast hataroztam meg ezek becslésére abban az esetben, amikor a pontos

szamitas nem lehetséges valds idében.
Thesis 3.1

I have introduced the term of the repairing cost-index assigned to the computational job
descriptors, which gives the ability to determine the reproducibility metrics of the DAG
type scientific workflow:, namely the Average Reproducibility Cost (ARC) and the Non-
Reproducibility Probability (NRP) values

3.1 Altézis

Bevezettem a szamitasi feladat deszkriptoraihoz rendelt javitasi koltség fogalmat, melynek
segitségével meghataroztam az iranyitott kormentes grafokkal reprezentalhato tudomanyos
munkafolyamatok reprodukalhatosagi mértékeit, a reprodukalhatosag atlagos koltségét

(ARC) és a reprodukalhatatlansagi valoszintiséget (NRP).

Related publications: 3-B, 4-B, 5-B

Thesis 3.2

I have determined a real time computable method to evaluate in polynomial time the ARC

of a DAG type scientific workflow in case the descriptors are independent.
3.2 Altézis

Meghatéaroztam egy valds idében szamolhatd polinomialis 1épésszamu kozelitd eljarast a
DAG tudoméanyos munkafolyamatok atlagos reprodukalhatosagi koltségének (ARC)

becslésére abban az esetben, amikor a deszkriptorok egymastol fiiggetlenek.

86

Related publications: 4-B

Thesis 3.3

I have determined a real time computable method to calculate upper estimates in
polynomial time the NRP value of a scientific workflow, when the descriptors and jobs are
independent and the g(y) cost function is the linear function of the y; binary variables.

3.3 Altézis

Valos idében szdmolhatd, polinomidlis lépésszamu felsd becslést hatdroztam meg a
reprodukalhatatlansagi valosziniiségre abban az esetben, amikor a g(y) koltségfiiggvény az
yi binaris valtozok linearis fliggvénye, valamint a deszkriptorok és a jobok egymastol

fliggetlenek.

Related publications: 3-B

Thesis 3.4

Based on the decay-parameters and the cost index | have categorized from the

reproducibility perspective the scientific DAG-type workflows.
3.4 Altézis

A tapasztalati romlasi mutato és a deszkriptorok javitasi koltsége alapjan osztalyoztam a
DAG-gal reprezentalhatdo tudomanyos munkafolyamatokat reprodukalhatosagi

szempontbol.

Related publications: 5-B

87

7 PRACTICAL APPLICABILITY OF THE RESULTS

Based on this research | designed two extra modules of the WSPGRADE/gUSE to reproduce an
in other way non-reproducible SWT. It performs an pre-analysis phase before re-execute a SWf
based on the descriptor space to determine in which way the SWf can be reproduced and which
extra tools (evaluation tool, descriptor value capture or extra storage) is required. After the re-
execution an post analysis phase perform an estimation (if necessary) and updates the provenance

database with the appropriate parameters needed to evaluation.

The process of reproducibility-analysis

Based on the descriptor’s space the pre-analyzer performs a classification of the jobs of the given
WT. Depending on the classification, the job can be executed in three ways:

1. Standard execution, if all the decay parameters are zero.

2. Replacing the execution with evaluation, if there are changing descriptor values in the
descriptor-space and their availabilities are changing in time.

3. Execution with descriptor value capture (VC) tool, if the execution of the job is based on

operation related descriptor value or the value cannot be stored due to the

In all cases updating the Provenance Database (PDB) is performed occasionally by extra

provenance information (for example a random value).

Based on the PDB the post-analyzer creates a sample set. The evaluator module computes the

evaluated output of the given job (figure 26, 27)

88

hanging?
NO

descriptor i
storable

!//ﬁues the

NO

skip

descriptor is

(Future work)

Execution with

YES

creating descriptor space

Y

getting runnable job

oes the DV
is available?

Does all DP
is zero?

Standard execution

.

Update PDB

Standard execution

Replace the DV or the
ocutput of the execution
with an evaluated one

Updating PDB

VC tool

A

Y

Creating sample set

Y

Updating PDB

Evaluation

27. Figure The flowchart of the reproducing process

Descriptor

Database
of the given
workflow

JOB MANAGER

Job classification based on
the decay parameter of the jobs

Pre-analyzer

Standard
execution
Evaluation - -
Execution with
Executor VC tool
Evaluator [* Sample set

Post-analyzer

Provenance
Database
of the
given
workflow

28. Figure The block diagram of the reproducing process

89

8 CONCLUSION

During the last decades the e-science widely gather ground among the scientific communities.
Thanks to the high performance computing and to the parallel and distributed systems the classical
analytical experiments conducted in the laboratories are taken over by the data and compute
intensive in-silico experiments. The steps of these experiments are chained to a so called scientific
workflow. An essential part of the scientific method is to repeat and reproduce the experiments
of other scientists and to test the outcomes themselves even in a different execution environment.
A scientific workflow is reproducible, if it can be re-executed without failures and gives the same
result as the first time. In this approach the failures do not mean the failures of the Scientific
Workflow Management System (SWfMS) but the correctness and the availability of the inputs,
libraries, variables etc. The different users for different purposes may be interested in reproducing
of the scientific workflow. The scientists have to prove its results, other scientists would like to
reuse the results and reviewers intend to verify the correctness of the results. A reproducible
workflow can be shared in repositories and it can become useful building blocks that can be

reused, combined or modified for developing new experiments.

In this dissertation | investigated the requirements of the reproducibility and | set out methods
which can handle and solve the problem of changing or missing descriptors to be able to reproduce
a— in other way — non-reproducible scientific workflow. In order to achieve this goal | formalized
the problem and based on provenance database | introduced the term of the descriptor-space
which contains all the necessary component (call descriptor) to reproduce a job. Concerning to
the descriptors | defined the theoretical and the empirical decay-parameter which describe the
change of the descriptor in time-dependent and time-independent cases as well. Additionally, with
the help of the decay parameters the crucial descriptors — which can influence or even prevent to
reproduce a SWf — can be identified. Based on provenance database | created a sample set referred
to a job which contains the descriptors of the job originated from the previous executions.
Analyzing the empirical decay-parameter based on the sample set the relation can be determined
between the change of the descriptor values and the empirical decay-parameter. Our goal was to
find methods which can help to compensate the changing nature of the descriptors and which can
help to perform evaluation to make the scientific workflow reproducible by replacing the missing
values with simulated ones. In addition | determined the impact of a descriptor which says how
the descriptor influences the result of a given job. The sample set also can help to determine the
probability of the reproducibility and the reproducible part of a given SWT. Since the basis of our
analysis is the decay-parameter, according to it | assigned to every descriptor a cost-index which

means the “work” required to reproduce a given job or workflow. In this way | introduced two

90

measures of the reproducibility: the Average Reproducibility Cost and the Non-reproducibility
Probability. The first one determines the expected value of the cost to reproduce a — on other way
— non-reproducible SWf. The other measure is the Non-reproducibility Probability which gives
how likely the reproducibility cost is greater than a predefined C threshold. The analyses was
bounded on the special cases when the cost function is linear or can be approximated by a linear
function. Finally I classified the scientific workflows from the reproducibility perspective and |
determined the reproducible, partial reproducible, reproducible by substitution, reproducible with

probability p and the non-reproducible scientific workflows.

During the design phase the results of this investigation can help the scientists to analyze the
crucial descriptors of their workflow which can prevent to reproduce it. Additionally, storing this
information, statistics and evaluation methods together with the workflows in the repositories,
can provide a useful tool to support the reusability of the SWf making it reproducible and the

scientists to find the most adequate (in sense of reproducibility) workflow to reuse.

8.1 Future research directinos

As a further extension of my research | plan to investigate scientific workflows
represented by non-DAGSs. These cyclic graph may contain execution loops which results
recursive workflows. Moreover, the evaluability of the two reproducibility metrics, ARC
and NRP can be investigated without assuming the independency of the descriptors.
First and foremost an implementation of the extension (mentioned in section 9) should be
carried out in WSPGRADE/gUSE scientific workflow management system developed by
MTA SZTAKI.

91

9 BIBLIOGRAPHY

Afgan, E. (2016). Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D.,
Cech, M., ... & Griining, B. "The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2016 update.” . Nucleic acids research
gkw343.

Altintas. (2004). 1. Altintas, C. Berkley, E. Jacger, M. Jones, B. Ludéscher, and S. Mock,
“Kepler: an extensible system for design and execution of scientific workflows”.
Proceedings of the 16th International Conference on Scientific and Statistical
Database Management (SSDBM '04) (pp. 423-424). New York, NY, USA,: IEEE
Computer Society.

Altintas, 1. (2006). Altintas, I., Barney, O., Jaeger-Frank, E. "Provenance collection
support in the kepler scientific workflow system™. In International Provenance
and Annotation Workshop (pp. 118-132). Springer Berlin Heidelberg.

Balasko, A., & al., e. (2013). Building science gateways by utilizing the generic WS-
PGRADE/gUSE workflow system. Computer Science, 307-325.

Barker, A., & Hemet, J. V. (2007). Scientific workflow: a survey and research directions.
In Parallel Processing and Applied Mathematics (pp. 746-753). Springer Berlin
Heidelberg.

Bechhofer, S., & al, e. (2010). Research objects: Towards exchange and reuse of digital
knowledge. . The Future of the Web for Collaborative Science.

Belhajjame. (2015). Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma,
R., ... & Klyne, Using a suite of ontologies for preserving workow-centric research
objects. Web Semantics: Science, Services and Agents on the World Wide Web.

Belhajjame, K., & al., e. (2012). Workflow-centric research objects: First class citizens
in scholarly discourse, Proceedings of Sepublica, 1-12.

Benabdelkader, A. (2011). A provenance approach to trace scientific experiments on a
grid infrastructure; E-Science (e-Science); IEEE 7th INternational Conf. on
IEEE, (pp. 134-141).

Benabdelkader, A. (2014). Provenance Manager: PROV-man an Implementation of the
PROV Standard, Provenance Taskforce. Budapest.

Bowers, S. (2008). Bowers, S., McPhillips, T. M., Ludischer, B. "Provenance in
collection-oriented scientific workflows". Concurrency and Computation:
Practice and Experience, 20(5), , 519-529.

Brazma, A., & al, e. (2011). Minimum information about a microarray experiment
(MIAME)—toward standards for microarray data. , 29(4),. Nature genetics,
29(4), 365-371.

Brooks, C. (2008). Heterogeneous Concurrent Modeling and Design in Java (Volume 3:
Ptolemy 1l Domains). Technical Report No. UCB/EECS-2008-37.

Bucklew, J. A., & Sadowsky, J. S. (1993). A contribution to the theory of Chernoff
bounds. IEEE Transactions on Information Theory, 39(1), 249-254.

Chapman, B., & Chang, J. (2000). "Biopython: Python tools for computational biology."
. ACM Sigbio Newsletter, (pp. 15-19).

Chirigati, F., D, S., & Freire, J. (2013). Using Provenance to Support Computational
Reproducibility. TaPP.

Clifford, B., & al., e. (2008). Tracking provenance in a virtual data grid. Concurrency and
Computation: Practice and Experience, 20(5).

92

Costa, F., & al., e. (2013). Capturing and Querying workflow runtime provenance with
prov: a practical aproach. Proceedings of the Joint EDBT/ICDT 2013 Workshop;
(pp. 282-289). ACM.

Cruz, S., & al., e. (2009). Toward a Taxonoomy of Provenance in Scientific Workflow
Management Systems. 2009 Congress on Services-I. (pp. 259-266). IEEE.
Davidson, S. B., & Freire, J. (2008). Provenance and scientific workflows: challenges and
opportunities. Proceedings of the 2008 ACM SIGMOD international conference

on Management of data (pp. 1345-1350). ACM.

Davison, A. (2012, july). Automated Capture of Experiment Context for Easier
Reproducibility in Computational Research . Computing in Science &
Engineering, 14/ 4, 48-56.

Deelman. (2005). E. Deelman, G. Singh, M. H. Su et al., “Pegasus: a framework for
mapping complex scientific workflows onto distributed systems,”, vol. 13, no. 3,.
Scientific Programming, 219-237.

Deelman, E., & al, e. (2009). Workflows and e-Science: An overview of workflow system
features and capabilities; Future Generation Computer Systems, 528-540.
Deelman, E., & Gil, Y. (2006). Managing Large-Scale Scientific Workflows in
Distributed Environments: Experiences and Challenges, e-Science, 144.
D-PROV. (n.d.). D-PROV: Extending the PROV Provenance Model with Workflow

Structure.

Feitelson, D. G. (2015). From repeatability to reproducibility and corroboration. ACM
SIGOPS Operating Systems Review 49(1), (pp. 3-11).

Freire, & al., e. (2014). Reproducibility Using VisTrails. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download doi:10.1.1.369.9566.

Freire, J., & al., e. (2012). Computational reproducibility: state-of-the-art, challenges, and
database research opportunities. Proceedings of the 2012 ACM SIGMOD
international conference on management of data (pp. 593-596). ACM.

Gentleman, R. (2004). Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, ...& Zhang
J: Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol. 5: R80-10.1186/gb-2004-5-10-r80.

Gesing, S., & al., e. (2014). Workflows in a dashboard: a new generation of usability. In
proceedings of 9th Workshop on Workflows in Support of Large-Scale Science
(WORKS), IEEE, 82-93.

Gil. (2011). Gil, Y., Ratnakar, V., Kim, J., Gonzalez-Calero, P. A., Groth, P., Moody, J.,
& Deelman, E. Wings: Intelligent workflow-based design of computational
experiments. IEEE Intelligent Systems, 26(1), 62-72.

Gil, Y., & al, e. (2006). Report on the 2006 NSF Workshop on Challenges of Scientific
Workflow; .

Gil, Y., & al, e. (2007). Examining the challenges of scientific workflows; leee computer
40 (12), (pp. 26-34).

Goble, C., & al., e. (2010). myExperiment: a repository and social network for the sharing
of bioinformatics workflows. Nucleic Acids Research, 38(2), W677-W682.

Goecks, J. (2010). A. Nekrutenko; J. Taylor: Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational research in the
life sciences. Genome biology, 11(8).

Groth, P., & al., e. (2009). Pipeline-centric provenance model. in proceedings of the 4th
Workshop on Workflows in Support of Large-scale Science, (p. 4).

gUSE. (n.d.). User's Guide: http://guse.hu/about/home. SZTAKI LPDS.

Hettne, K., & al, e. (2012). Best Practices for Workflow Design: How to Prevent
Workflow Decay. SWATALS.

93

Hornik, K. (1991). Approximation Capabilities of Multilayer Feedforward Networks,
Neural Networks, 4, 251-257.

Hornik, K., & al., e. (1989). Multilayer Feedforward Networks are Universal
Approximators; Neural Networks, 2, 359-366.

Hornik, K., & al., e. (1990). Universal Approximation of an Unknown Mapping and Its
Derivatives Using Multilayer Feedforward Networks, Neural Networks, 3, 251-
257.

J.Freire, & al., e. (2011). Exploring the coming repositories of reproducible experiments:
Challenges and opportunities. Proceedings of the VLDB Endowment, (pp. 9-27).

Jordan, D. (2007). Web Services Business Process Execution Language, Version 2.0
(WS-BPEL 2.0),.

Kim, J. (2008). Kim, J., Deelman, E., Gil, Y., Mehta, G., & Ratnakar, V. "Provenance
trails in the wings/pegasus system™ . Concurrency and Computation: Practice and
Experience, 20(5), , 587-597.

Koop, D., & al, e. (2011). A Provenance-Based Infrastructure to Support the Life Cycle
of Executable Papers. Procedia Computer Science, 648-657.

Koop, J., & al, e. (2013). Enabling Reproducible Science with VisTrails”, arXiv preprint
arXiv:1309.1784, 2013. arXiv preprint arXiv:1309.1784,.

Korolev, A., & al., e. (2014). PROB: A tool for Tracking Provenance and Reproducibility
of Big Data Experiments. Reproduce'14. HPCA, 11, 264-286.

Ludéscher, B., & al, e. (2009). Scientific process automation and workflow management,
Scientific Data Management: Challenges, Existing Technology, and Deployment,
Computational Science Series, 476-508.

Ludischer, B., & al, e. (2009). Scientific process automation and workflow management;
Scientific Data Management: Challenges, Existing Technology, and Deployment.
Computational Science Series, 476-508.

Mates, P., & al., e. (2011). Crowdlabs: Social analysis and visualization for the sciences."
. International Conference on Scientific and Statistical Database Management.
(pp. 555-564). Springer Berlin Heidelberg.

Mesirov. (2010, january). Accessible Reproducible Research. Science, 327(5964), 415-
416.

MIAME. (n.d.). http://fged.org/projects/miame/.

Missier, S., & al., e. (2013). Provenance and data differencing for workflow
reproducibility analysis. Concurrency and Computation: Practice and
Experience.

Oinn, & al, e. (2004). Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20(17), 3045-3054.

Oinn, T., & al., e. (2006). Taverna: a tool for the composition and enactment of
bioinformatics workflows. Concurrency Computation Practice and Experience,
18(10), 1067-1100.

OPM. (n.d.). OPM: http://openprovenance.org/.

Peng, R. D., & al., e. (2011, december). Reproducible Research in Computational
Science. Science, 334(6060), 1226-1227.

PGRADE. (n.d.). User's Guide:
http://sourceforge.net/projects/guse/_les/3.7.4/Documentation. SZTAKI LPDS.

Piccolo, S. R., & Frampton, A. B. (2015). Tools and techniques for computational
reproducibility. . In: bioRxiv, 022707.

PROV. (n.d.). http://www.w3.0rg/TR/prov-overwiews/.

Roure, D., & al, e. (2011). Towards the preservation of scientific workows. Proceedings
of 8th International Conference on Preservation of Digital Objects. iPRES.

94

Santana-Perez, I., & Perez-Hernandez, M. (2015). Towards Reproducibility in Scientific
Workows: An Infrastructure-Based Approach. Scientific Programming, 11.

Simmhan, Y., & al., e. (2006). Performance evaluation of the karma provenance
framework for scientific workflows. In Provenance and Amotation of Data (pp.
222-236). Springer.

Stajich. (2002). Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A,
Dagdigian, C., ... & Lehvislaiho, H. "The Bioperl toolkit: Perl modules for the
life sciences” . Genome research, 12(10), , 1611-1618.

Stodden, V., & al., e. (2013). Setting the default to reproducible. computational science
research. SIAM News, 46, 4-6. computational science research. SIAM News, 46,
4-6.

Talia, D. (2013). Workflow Systems for Science: Concepts and Tools. ISRN Software
Engineering.

Taverna. (2009). The Taverna projekt; http://www.taverna.org.uk.

Taylor. (2004). 1. Taylor, M. Shields, I. Wang, and O. Rana, “Triana, applications within
Grid computing and peer to peer environments,”. Journal of Grid Computing, 1,
199-217.

Taylor, J. (2005). L. Taylor, M. Shields, I. Wang, and A. Harrison, “Visual grid workflow
in Triana,”. Journal of Grid Computing, 3(3-4), 153-169.

Wang, Y. (2005). A New Grid Workflow Description Language. A New Grid Workflow
Description Language, (pp. 257-260).

Wolstencroft, K. (2013). Wolstencroft, K., Haines, R., Fellows, D., Williams, A.,
Withers, D., Owen, S., ... & Bhagat, J; The Taverna workflow suite: designing
and executing workflows of Web Services on the desktop, web or in the cloud.
Nucleic acids research.

Woodman, H., & al., e. (n.d.). Achieving reproducibility by combining provenance with
service and workflow versioning. Proceedings of the 6th workshop on Workflows
in support of large-scale science , (pp. 127-136).

Yu, J., & Buyya, R. (2005). A taxonomy of scientific workflow systems for grid computing,
ACM Sigmod Record, 34(3), (pp. 44-49).

Yu, J., & Buyya, R. (2005). A Taxonomy of Workflow Management Systems for Grid
Computing. Journal of Grid Computing, 171-200.

Zhao, J., & al, e. (2012). Why workflows break—Understanding and combating decay in
Taverna workflows. E-Science (e-Science), 2012 IEEE 8th International
Conference on, (pp. 1-9).

95

Own Publications Pertaining to Theses

1-B

2-B

3-B

4-B

5-B

6-B

7-B

8-B

9-B

A. Banati, P. Kacsuk, M. Kozlovszky: Reproducibility analysis of scientific workflows;
Acta Politechnica Hungarica, accepted, unpublished

A. Banati, P. Kacsuk, M. Kozlovszky; Investigation of the Descriptors to make the
Scientific Workflows reproducible; CINTI 2016 - 17th IEEE International Symposium
on Computational Intelligence and Informatics. Budapest, Hungary, (IEEE
Computational Intelligence Society)

A. Béanati, P. Karasz, P. Kacsuk, M. Kozlovszky: Evaluating the Average Reproducibility
Cost of the Scientific Workflows, In: International Symposium on Intelligent Sytems and
Informatics (SISY), 2016

A. Bénati, P. Kacsuk, M. Kozlovszky, M. Evaluating the Reproducibility cost of the
scientific workflows Applied Computational Intelligence and Informatics (SACI), 2016
IEEE 11th Jubilee International Symposium on. IEEE, 2016

A. Banati, P. Kacsuk, M. Kozlovszky; Classification of Scientific Workflows Based on
Reproducibility Analysis; 39th International Convention on Information and
Communication Technology, Electronics and Microelectronics: MIPRO 2016. Opatia,
Rijeka: Croatian Society for Information and Communication Technology Electronics
and Microelectronics (MIPRO’16),

A. Banati, P. Kacsuk, M. Kozlovszky; Minimal sufficient information about the scientific
workflows to create reproducible experiment; 19th IEEE International Conference on
Intelligent Engineering Systems: INES 2015. Bratislava, 2015.09.03-2015.09.05.
Bratislava: IEEE, 2015. pp. 189-194.

A. Banati, P. Kacsuk, M. Kozlovszky; Four level provenance support to achieve portable
reproducibility of scientific workflows; 38th International Convention on Information
and Communication Technology, Electronics and Microelectronics: MIPRO 2015.
Opatia, may, 2015. Rijeka: Croatian Society for Information and Communication
Technology Electronics and Microelectronics (MIPRO’15), pp. 241-244.

Eszter Kail, Anna Banati, Péter Kacsuk, Miklos Kozlovszky; Dynamic workflow support
in gUSE; 37th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO’14). Opatija, Croitia, 2014.05.26-2014.05.30.
Rijeka: IEEE, 2014. pp. 369-374.

Eszter Kail, Anna Banati, Péter Kacsuk, Miklos Kozlovszky; Provenance based adaptive
and dynamic workflows; CINTI 2014 - 15th IEEE International Symposium on
Computational Intelligence and Informatics. Budapest, Hungary, 2014.11.19-
2014.11.21. (IEEE Computational Intelligence Society) pp. 215-219.

96

10-B Eszter Kail, Anna Banati, Péter Kacsuk, Miklos Kozlovszky: Provenance Based Runtime
Manipulation and Dynamic Execution Framework for Scientific Workflows, in Scientific
Bulletin of The Politehnica University of Timisoara, 2016, Vol: 61(75) No: 1

97

