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This thesis is concerned with the development of intelligent decision models from a

theoretical point of view. It covers two main topics: in chapters 2-3, two special types of

aggregation functions are studied, while in chapters 4-6, the so-called general nilpotent

operator system is introduced and examined.

Chapter 1 gives an introduction to the topic of aggregation functions and intelligent

decision modeling. The basic preliminaries are also given here.

In Chapter 2, the properties of a new construction method of aggregation functions from

two given ones, called threshold construction, are discussed. This class of non-symmetric

functions provides a generalization of t-norms and t-conorms by partitioning the unit

interval with respect to only one variable. In fuzzy modeling framework, the relationship

of the input and the output can be modeled by splitting the input into fuzzy regions for

which we can describe the output in different ways. In several applications, the roles

of the inputs are not symmetric, which indicates the use of the examined construction.

The results of this chapter can be found in Csiszár and Fodor, [19].

Chapter 3 presents new construction methods of uninorms with fixed values along the

borders. Sufficient and necessary conditions are presented. The results of this chapter

can be found in Csiszár and Fodor, [20].

In Chapter 4, the concept of a nilpotent connective system is introduced. It is shown that

a consistent logical system generated by nilpotent operators is not necessarily isomorphic

to  Lukasiewicz-logic, which means that nilpotent logical systems are wider than we

have thought earlier. Using more than one generator functions, three naturally derived

negations are examined. It is shown that the coincidence of the three negations leads

back to a system which is isomorphic to  Lukasiewicz-logic. Consistent nilpotent logical

structures with three different negations are also provided. The results of this chapter

can be found in Dombi and Csiszár, [27].

In Chapter 5, implication operators in bounded systems are deeply examined. Both R-

and S-implications with respect to the three naturally derived negations of the bounded

system are considered. It is shown that these implications never coincide in a bounded

system, as the condition of coincidence is equivalent to the coincidence of the negations,

which would lead to  Lukasiewicz logic. The formulae and the basic properties of four

different types of implications are given, two of which fulfill all the basic properties

generally required for implications. The results of this chapter can be found in Dombi

and Csiszár, [28].

Chapter 6 gives a detailed discussion of equivalence operators in bounded systems. Three

different types of operators are studied. The paradox of the equivalence relation is solved

by aggregating the implication-based equivalence and its dual operator. It is shown that



the aggregated equivalence has preferable properties such as associativity and threshold

transitivity. The results of this chapter can be found in Dombi and Csiszár, [29].

The final Chapter 7 summarizes the main results and suggests some future research

directions that could provide the next steps along the path to a practical and widely

applicable system.
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Chapter 1

Introduction

1.1 Aggregation and decision

Aggregation is the process of combining several numerical values into a single represen-

tative one. The function, which performs this process is called an aggregation function.

Despite the simplicity of this definition, the size of the field of its applications is in-

credibly huge: applied mathematics (e.g. probability theory, statistics, decision theory),

computer sciences (e.g. artificial intelligence, operation research, pattern recognition

and image processing), economics and finance, multicriteria decision aid, etc (see e.g.

[10], [43]).

If we think of the arithmetic mean, we can see that the history of aggregation is as

old as mathematics itself. However, it was only in the last decades, when the rapid

development of the above mentioned fields (mainly due to the arrival of computers)

made it necessary to establish a sound theoretic basis for aggregation. The problem of

data fusion, synthesis of information or aggregating criteria to form overall decision is of

considerable importance in many fields of human knowledge. Due to the fact that data

is obtained in an easier way, this field is of increasing interest.

One of the most prominent group of applications of aggregation functions comes from

decision theory. Making decisions often leads to aggregating preferences or scores on a

given set of alternatives, the preferences being obtained from several decision makers,

experts, voters or representing different points of view, criteria, objectives. This concerns

decision under multiple criteria or multiple attributes, multiperson decision making and

multiobjective optimization [38].

The main factor in determining the structure of the needed aggregation function is the

relationship between the criteria. At one extreme there is the case in which we desire

1
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all the criteria to be satisfied. At the other extreme is the situation in which we want

the satisfaction of any of the criteria. These two extreme cases lead to the use of ”and”

and ”or” operators to combine the criteria functions. A decision can be interpreted as

the intersection of fuzzy sets, usually computed by applying a t-norm based operator,

when there is no compensation between low and high degrees of membership. If it is

interpreted as the union of fuzzy sets, represented by a t-conorm based operator, full

compensation is assumed. However, it is obvious that no managerial decision represents

any of these extreme situations.

As it is well-known, uninorms generalize both t-norms and t-conorms as they allow a

neutral element anywhere in the unit interval. In the first part of the thesis (sections

2 and 3), results on further constructions of continuous aggregation functions are pre-

sented.

Another outstanding application of aggregation functions comes from artificial intelli-

gence, fuzzy logic [34]. Pattern recognition and classification, as well as image analysis

are typical examples. According to Aristotle, in mathematics it was originally assumed

that ”the same thing cannot at the same time both belong and not belong to the same

object and in the same respect. [...] Of any object, one thing must be either asserted

or denied.” The idea of many-valued logic was initiated by Jan  Lukasiewicz around

1920. ”Logic changes from its very foundations if we assume that in addition to truth

and falsehood there is also some third logical value or several such values” [50]. Many-

valued logic was for several decades considered as a purely theoretical topic. It was the

introduction of fuzzy sets by Zadeh in 1965 [82], which opened the way to fuzzy logics.

Aggregation functions are inevitably used in fuzzy logic, as a generalization of logical

connectives. In artificial intelligence, these techniques are mainly used when a system has

to make a decision. It is possible that the system has not only a single criteria for each

alternative, but several ones. This case corresponds to a multicriteria decision-making

problem. Furthermore, if a system needs a good representation of an environment, it

needs the knowledge supplied by information sources in order to be reliable. However,

the information supplied by a single information source (by a single expert or sensor)

is often not reliable enough. That is why the information provided from several sensors

(or experts) should be combined to improve data reliability and accuracy and also to

include some features that are impossible to perceive with individual sensors.

One of the most significant problems of fuzzy set theory is the proper choice of set-

theoretic operations [68, 77]. The class of nilpotent t-norms has preferable properties

which make them more usable in building up logical structures. Among these properties

are the fulfillment of the law of contradiction and the excluded middle, or the coincidence

of the residual and the S-implication [33, 74]. Due to the fact that all continuous
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Archimedean (i.e. representable) nilpotent t-norms are isomorphic to the  Lukasiewicz

t-norm [43] [50], the previously studied nilpotent systems were all isomorphic to the

well-known  Lukasiewicz-logic.

In the second part of the thesis (sections 4, 5 and 6), logical systems, more specifically,

nilpotent logical systems are in consideration. It is shown that a consistent logical

system generated by nilpotent operators is not necessarily isomorphic to  Lukasiewicz-

logic. This new type of nilpotent logical systems is called a bounded system, which

has the advantage of three naturally derived negations. Implication and equivalence

operators in bounded systems are deeply examined and a wide range of examples is also

presented.

1.2 Basic preliminaries

First, I recall some basic notations and results regarding negation operators, t-norms

and t-conorms that will be useful in the sequel.

1.2.1 Negations

Definition 1.1. A unary operation n : [0, 1] → [0, 1] is called a negation if it is non-

increasing and compatible with classical logic, i.e. n(0) = 1 and n(1) = 0.

A negation is strict if it is also strictly decreasing and continuous.

A negation is strong if it is also involutive, i.e. n(n(x)) = x.

Due to the continuity and strict monotonicity of n, for continuous negations there always

exists some ν∗, for which n(ν∗) = ν∗ holds. ν∗ is called the neutral value of the negation

and the notation nν∗ stands for a negation operator with neutral value ν∗. In the

literature ν∗ is often denoted by e. In Figure 1.1 we can see some negations with

different ν∗ values.

Drastic negations [78] are the so-called intuitionistic and dual intuitionistic negations

(denoted by n0 and n1 respectively):

n0(x) =

{
1 if x = 0

0 if x > 0
and n1(x) =

{
1 if x < 1

0 if x = 1

These drastic negations are neither continuous nor strictly decreasing, therefore they are

not strict negations, but we can get them as limits of strict negations.
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Figure 1.1: Continuous negations with different ν∗ values

Definition 1.2. A continuous, strictly increasing function ϕ : [a, b]→ [a, b] with bound-

ary conditions ϕ(a) = a, ϕ(b) = b is called an automorphism of [a, b].

The well-known representation theorem was obtained by Trillas.

Proposition 1.3. (Trillas, [73]) n is a strong negation if and only if

n(x) = f−1n (1− fn(x)),

where fn : [0, 1]→ [0, 1] is an automorphism of [0, 1].

Remark 1.4. This result also means that n is a strong negation iff

n(x) = f−1n
(
n′ (fn(x))

)
(1.1)

where fn, called the generator function of n, fn : [0; 1] → [0; 1] is a strictly monotone,

continuous function with fn(0) = 0 and fn(1) = 1 and n′ is a strong negation.

Example 1.1. For fn(x) = x2 and n′(x) = 1−x
1+x we get n(x) =

√
1−x2
1+x2

.

1.2.2 Triangular norms and conorms

A triangular norm (t-norm for short) T is a binary operation on the closed unit interval

[0, 1] such that ([0, 1], T ) is an abelian semigroup with neutral element 1 which is totally

ordered, i.e., for all x1, x2, y1, y2 ∈ [0, 1] with x1 ≤ x2 and y1 ≤ y2 we have T (x1, y1) ≤
T (x2, y2), where ≤ is the natural order on [0, 1].
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Standard examples of t-norms are the minimum TM, the product TP, the  Lukasiewicz

t-norm TL given by TL(x, y) = max(x + y − 1, 0), and the drastic product TD with

TD(1, x) = TD(x, 1) = x, and TD(x, y) = 0 otherwise. Clearly, TM and TD are the

greatest and smallest t-norm, respectively, i.e., for each t-norm T we have TD ≤ T ≤ TM.

A triangular conorm (t-conorm for short) S is a binary operation on the closed unit

interval [0, 1] such that ([0, 1], S) is an abelian semigroup with neutral element 0 which is

totally ordered. Standard examples of t-conorms are the maximum SM, the probabilistic

sum SP, the  Lukasiewicz t-conorm SL given by SL(x, y) = min(x+y, 1), and the drastic

sum SD with SD(0, x) = SD(x, 0) = x, and SD(x, y) = 1 otherwise. Clearly, SM and

SD are the smallest and greatest t-conorm, respectively, i.e., for each t-cnorm S we have

SM ≤ S ≤ SD.

A continuous t-norm T is said to be Archimedean if T (x, x) < x holds for all x ∈ (0, 1). A

continuous Archimedean T is called strict if T is strictly monotone; i.e. T (x, y) < T (x, z)

whenever x ∈ (0, 1] and y < z , and nilpotent if there exist x, y ∈ (0, 1) such that

T (x, y) = 0.

From the duality between t-norms and t-conorms, we can easily derive the following

properties. A continuous t-conorm S is said to be Archimedean if S(x, x) > x holds

for every x, y ∈ (0, 1). A continuous Archimedean S is called strict if S is strictly

monotone; i.e. S(x, y) < S(x, z) whenever x ∈ [0, 1) and y < z, and nilpotent if there

exist x, y ∈ (0, 1) such that S(x, y) = 1. A t-norm is said to be positive if x, y > 0

implies T (x, y) > 0.

From the duality between t-norms and t-conorms we can easily get the following prop-

erties as well. A continuous t-conorm S is said to be Archimedean if S(x, x) > x holds

for every x, y ∈ (0, 1), strict if S is strictly monotone i.e. S(x, y) < S(x, z) whenever

x ∈ [0, 1) and y < z, and nilpotent if there exist x, y ∈ (0, 1) such that S(x, y) = 1.

Proposition 1.5. (Baczyński, [7], Ling, [53]) A function T : [0, 1]2 → [0, 1] is a contin-

uous Archimedean t-norm iff it has a continuous additive generator, i.e. there exists a

continuous strictly decreasing function t : [0, 1]→ [0,∞] with t(1) = 0, which is uniquely

determined up to a positive multiplicative constant, such that

T (x, y) = t−1(min(t(x) + t(y), t(0)), x, y ∈ [0, 1]. (1.2)

Proposition 1.6. (Baczyński, [7], Ling, [53]) A function S : [0, 1]2 → [0, 1] is a contin-

uous Archimedean t-conorm iff it has a continuous additive generator, i.e. there exists a

continuous strictly increasing function s : [0, 1]→ [0,∞] with s(0) = 0, which is uniquely
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determined up to a positive multiplicative constant, such that

S(x, y) = s−1(min(s(x) + s(y), s(1)), x, y ∈ [0, 1]. (1.3)

Proposition 1.7. [43]

A t-norm T is strict if and only if t(0) =∞ holds for each continuous additive generator

t of T.

A t-norm T is nilpotent if and only if t(0) < ∞ holds for each continuous additive

generator t of T.

A t-conorm S is strict if and only if s(1) =∞ holds for each continuous additive gener-

ator s of S.

A t-conorm S is nilpotent if and only if s(1) < ∞ holds for each continuous additive

generator s of S.

In both of the above mentioned Propositions 1.5 and 1.6 we can allow the generator

functions to be strictly increasing or strictly decreasing, which will result in the fact

that they will be determined up to a (not necessarily positive) multiplicative constant.

For an increasing generator function t of a t-conorm and similarly for a decreasing

generator function s of a t-conorm, min in (1.2) and (1.3) has to be replaced by max.

In this case we will have t(0) = ±∞ and s(1) = ±∞ for strict norms and similarly,

t(0) <∞ or t(0) > −∞ and s(1) <∞ or s(1) > −∞ for the nilpotent ones.

Proposition 1.8. [43] Let T be a continuous Archimedean t-norm.

If T is strict, then it is isomorphic to the product t-norm TP , i.e., there exists an

automorphism of the unit interval φ such that Tφ = φ−1 (T (φ(x), φ(y))) = TP.

If T is nilpotent, then it is isomorphic to the  Lukasiewicz t-norm TL, i.e., there exists

an automorphism of the unit interval φ such that Tφ = φ−1 (T (φ(x), φ(y))) = TL.

From the definitions of t-norms and t-conorms it follows immediately that t-norms are

conjunctive, while t-conorms are disjunctive aggregation functions. Therefore, they are

widely used as conjunctions and disjunctions in multivalued logical structures.

The logical system based on the nilpotent  Lukasiewicz t-norm as conjunction is called

 Lukasiewicz-logic [45, 54, 63].

The use of the so-called cutting function makes the formulae simpler.
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Definition 1.9. (Sabo et al., [66], Dombi and Csiszár, [27]) Let us define the cutting

operation [ ] by

[x] =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if 1 < x

and let the notation [ ] also act as ’brackets’ when writing the argument of an operator,

so that we can write f [x] instead of f([x]).



Chapter 2

Threshold Construction of

Aggregation Functions

2.1 Motivation and scope

In 2012 Massanet and Torrens [58] introduced a new construction method of a fuzzy

implication from two given ones. Now this idea is appropriately extended to construc-

tions of continuous aggregation functions from a t-norm and a t-conorm, based on an

adequate scaling on the second variable of the initial operators [19]. This construction

can be usuful in fuzzy applications where the inputs have different semantic contents.

Let T be a t-norm, S be a t-conorm, and a ∈ (0, 1). Let us define two binary operators

as follows. Let

A<T,a,S> (x, y) =


T (x, ya ), if x ∈ [0, 1] , y ∈ [0, a]

S
(
x, y−a1−a

)
, if x ∈ [0, 1] , y ∈ (a, 1]

,

and

A<T,a,S> (x, y) = A<T,a,S> (y, x) .

See Fig. 2.1.

8



Chapter 2. Threshold Construction of Aggregation Functions 9

0 0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

(a) A〈TM, 1
2
,SM〉

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

(b) A〈TP,
1
2
,SP〉

Figure 2.1: Special types of A<T,a,S> (x, y)

2.2 Properties

In this section we examine the main properties, such as neutral or idempotent elements,

associativity, of A<T,a,S> (x, y) and A<T,a,S> (x, y).

As it is easy to see, a is the right neutral element of A<T,a,S> (x, y), i.e., A<T,a,S> (x, a) =

T (x, 1) = x, for all x ∈ [0, 1] . Similarly, A<T,a,S> (x, 1) = 1 and A<T,a,S> (x, 0) = 0.

We can also see that a is an idempotent element of A<T,a,S> and A<T,a,S>.

It can be shown that A<T,a,S>(x, y) and A<T,a,S> (x, y) are always monotone non-

decreasing.

Due to the construction, both functions A<T,a,S>(x, y) and A<T,a,S> (x, y) are continu-

ous when T and S are continuous.

Since associativity is a key property of t-norms and t-conorms, it would be good to

hand down some version of associativity to the constructions. A simple counterexample

reveals that neither A<T,a,S> (x, y) nor A<T,a,S> (x, y) is associative for arbitrary T and

S. Indeed, let T = TM, S = SM, and a = 1
2 . Then we have

A<T,a,S>

(
A<T,a,S>

(
2

3
,
2

3

)
,
1

4

)
=

1

2
6= A<T,a,S>

(
2

3
, A<T,a,S>

(
2

3
,
1

4

))
=

2

3
.

Thus, we study the following problem. Let T be a given t-norm. Does there exist a

t-conorm S such that A<T,a,S> is associative?

To solve the functional equation of associativity, the following cases are to be examined:

1. y ≤ a, z ≤ a
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2. y ≤ a, z > a

3. y > a, z ≤ a

4. y > a, z > a.

It can be shown that if A is associative, then T is necessarily a-migrative, i.e., T (a, v) =

av ∀v ∈ [0, 1], see the definition and fundamental results about migrativity in [39].

In a similar way, we can conclude that S(a, v) = a+ (1− a)v ∀v ∈ [0, 1].

This means, that the a-migrativity is necessary but not sufficient condition of associa-

tivity of A. Indeed, for example when T = TP, the constructed A will not be associative.

Moreover, if we examine cases iii. and iv., we can see that A can never be associative

on the whole unit square [0, 1].

Studying the particular case when T = TP, SSP, and a = 1
2 , we obtain

A<TP, 12 ,SP>
(x, y) =


2xy, if x ∈ [0, 1] , y ∈

[
0, 12
]

2x+ 2y − 2xy − 1, if x ∈ [0, 1] , y ∈
(
1
2 , 1
]
.

It can easily be seen thatA<TP, 12 ,SP>
(x, y) is not associative. Moreover, A<TP, 12 ,SP>

(x, y)

does not fulfill any of the associativity-like equations (see e.g. Grassmann, cyclic, Hosszú

in [56]), and it is not bisymmetric either.

2.3 Symmetrization

Since A<T,a,S>(x, y) and A<T,a,S> (x, y) are obviously not symmetric, it is natural to

study symmetrized versions of both functions. First we consider the following way of

symmetrization of A<T,a,S>, denoted by B<T,a,S>:

B<T,a,S>(x, y) = A<T,a,S>(min(x, y),max(x, y)).

See Fig. 2.2.

The monotonicity of B<T,a,S>(x, y) follows from the monotonicity of A<T,a,S>(x, y).

The continuity of B<T,a,S> follows from the continuity of A<T,a,S> and A<T,a,S>.

We can see that B<T,a,S> (x, y) is not associative for arbitrary T and S either.
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Figure 2.2: Special types of B<T,a,S> (x, y)

Moreover, B<TP, 12 ,SP>
(x, y) does not fulfil any of the associativity-like equations and it

is not bisymmetric.

Let us study the particular case when T = TP, S = SP, and a = 1
2 . In this case we

obtain

B<TP, 12 ,SP>
(x, y) =


2xy, if max(x, y) ∈

[
0, 12
]

2x+ 2y − 2xy − 1, if max(x, y) ∈
(
1
2 , 1
]
.

Now we define two further symmetrization ofA<T,a,S>, denoted by C<T,a,S> andD<T,a,S>,

as follows:

C<T,a,S>(x, y) = min
(
A<T,a,S>(x, y), A<T,a,S>(x, y)

)
and

D<T,a,S>(x, y) = max
(
A<T,a,S>(x, y), A<T,a,S>(x, y)

)
.

See Fig. 2.3. Both functions can be written in explicit forms, by applying the definitions

of A<T,a,S>:

C<T,a,S> (x, y) =


S
(
x, y−a1−a

)
, if x ∈ (a, 1] , y ∈ (a, 1]

T
(
x, ya

)
otherwise,
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Figure 2.3: Special types of C<T,a,S> (x, y) and D<T,a,S> (x, y)

and

D<T,a,S> (x, y) =


T
(
x, ya

)
, if x ∈ [0, a] , y ∈ [0, a]

S
(
x, y−a1−a

)
otherwise.

We can see that C<T,a,S>(1, x) = 1 if x ∈ (a, 1], and similarly, C<T,a,S>(0, x) = 0.

For D we obtain D<T,a,S>(0, x) = 0 if x ≤ a, and in this case D<T,a,S>(0, x) = 0 also

holds.

Clearly, C<T,a,S>(x, y) and D<T,a,S> (x, y) are monotone non-decreasing.

The continuity of C<T,a,S> and D<T,a,S> follows from the continuity of A<T,a,S> and

A<T,a,S>.

However, it can be shown that C<T,a,S> (x, y) is not associative.



Chapter 2. Threshold Construction of Aggregation Functions 13

Moreover, C<TP, 12 ,SP>
(x, y) does not fulfil any of the associativity-like equations and it

is not bisymmetric.

Studying the particular case when T = TP, S = SP, and a = 1
2 , we obtain

C<TP, 12 ,SP> (x, y) =



2xy, if x ∈
[
0, 12
]
, y ∈

[
0, 12
]

2x+ 2y − 2xy − 1, if x ∈
(
1
2 , 1
]
, y ∈

(
1
2 , 1
]

min (2xy, 2x+ 2y − 2xy − 1) , if x ∈
[
0, 12
]
, y ∈

(
1
2 , 1
]

min (2xy, 2x+ 2y − 2xy − 1) , if x ∈
(
1
2 , 1
]
, y ∈

[
0, 12
]
,

that is,

C<TP, 12 ,SP>
(x, y) =


2x+ 2y − 2xy − 1, if x ∈

(
1
2 , 1
]
, y ∈

(
1
2 , 1
]

2xy, otherwise.

Similarly, we have

D<TP, 12 ,SP> (x, y) =



2xy, if x ∈
[
0, 12
]
, y ∈

[
0, 12
]

2x+ 2y − 2xy − 1, if x ∈
(
1
2 , 1
]
, y ∈

(
1
2 , 1
]

max (2xy, 2x+ 2y − 2xy − 1) , if x ∈
[
0, 12
]
, y ∈

(
1
2 , 1
]

max (2xy, 2x+ 2y − 2xy − 1) , if x ∈
(
1
2 , 1
]
, y ∈

[
0, 12
]
,

i.e.

D<TP, 12 ,SP> (x, y) =


2xy, if x ∈

[
0, 12
]
, y ∈

[
0, 12
]

2x+ 2y − 2xy − 1, otherwise.

Finally, using a representable uninorm U and its dual Ud instead of min and max

in the process of symmetrization we can define another functions E<T,a,S>(x, y) and

F<T,a,S>(x, y) as follows:

E<T,a,S>(x, y) = U
(
A<T,a,S>(x, y), A<T,a,S>(x, y)

)
and

F<T,a,S>(x, y) = A<T,a,S>

(
U(x, y), Ud(x, y)

)
.
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In the particular case when U is the so-called 3Π operator, ie., when

U(x, y) =

 0 , if (x, y) ∈ {(1, 0), (0, 1)}
xy

(1− x)(1− y) + xy
, otherwise,

the symmetrized function F<TP, 12 ,SP>
(x, y), does not fulfil any of the associativity-like

equations and it is not bisymmetric either.

2.4 Overview

In this section, a new generation method of aggregation functions from two given ones,

called threshold construction method, was examined. The most usual properties were

investigated and the necessary conditions to ensure them were studied.

Thesis 1.1. The new type of aggregation function turned out to be monotonic and

continuous, having a right-neutral and idempotent element. Three possible ways of

symmetrizations are studied, two of them using min-max operators and the third

using uninorms. After proving the lack of associativity in all cases, the bisymmetry

and all the other associativity-like equations known from the literature are studied.



Chapter 3

Uninorms with Fixed Values

along Their Borders

3.1 Motivation and scope

The concept of uninorms was introduced in 1996 by Yager and Rybalov [79], as a gener-

alization of both t-norms and t-conorms (see also Dombi, [31]). Since their introduction,

uninorms have been studied deeply by numerous authors from theoretical and also from

application points of view. They turned out to be useful in many fields like expert

systems [22], aggregation [80] and fuzzy integral [11, 49]. Idempotent uninorms were

characterized in [21]. Recently, a characterization of the class of uninorms with strict

underlying t-norm and t-conorm was presented in [41]. In [52] the authors showed that

uninorms with nilpotent underlying t-norm and t-conorm belong to Umin or Umax. In

this section some further construction methods of uninorms from given t-norms and

t-conorms are discussed and sufficient and necessary conditions are presented.

The results of this section can be found in Csiszár and Fodor, [20].

Definition 3.1. A mapping U : [0, 1]× [0, 1]→ [0, 1] is a uninorm if it is commutative,

associative, nondecreasing and there exists e ∈ [0, 1] such that U(e, x) = x for all

x ∈ [0, 1].

The structure of uninorms was first examined by Fodor, Yager and Rybalov in [40].

First let us recall two classes of uninorms from [40] that play a key role in this section.

Proposition 3.2. Suppose that U is a uninorm with neutral element e ∈]0, 1[ and both

functions x→ U(x, 1) and x→ U(x, 0) (x ∈ [0, 1]) are continuous except perhaps at the

point x = e. Then U is given by one of the following forms.

15
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1. If U(0, 1) = 0 then

U(x, y) =


eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

min(x, y), otherwise.

(3.1)

2. If U(0, 1) = 1 then

U(x, y) =


eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

max(x, y), otherwise.

(3.2)

The class of uninorms having form 3.1 is denoted by Umin, while the class with form 3.2

is denoted by Umax.

3.2 Results

Proposition 3.3. (See also Li et al., [52].) Let T be a strict t-norm, S be a strict

t-conorm and e ∈]0, 1[. The function

U1(x, y) =



eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

1, x = 1 or y = 1;

min(x, y), otherwise.

(3.3)

is a uninorm with neutral element e (see Figure 3.1).

Proof. To prove that U1 is a uninorm, we have to show that it is associative, commutative

and that it has a neutral element e ∈ (0, 1). Commutativity is obvious. From the

properties of t-norms and t-conorms it follows immediately that e ∈ (0, 1) is a neutral

element.

Note that U1 differs from Umin only at points where either x = 1 or y = 1. Since the

associativity of Umin is already known from [40], we only need to concentrate on the

border lines where at least one of the variables of U1 is 1.

To examine the associative equation

U1(x, U1(y, z)) = U1(U1(x, y), z), (3.4)
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we need to take the following possibilities into consideration:

1. If x = 1 or z = 1, then U1(x, U1(y, z)) = 1 = U1(U1(x, y), z).

2. If U1(y, z) = 1 or U1(x, y) = 1, then by using the strict monotonicity of S(x, y),

we get x = 1 or y = 1. Thus U1(x, U1(y, z)) = 1 = U1(U1(x, y), z).

Remark 3.4. Note that the strict property of S cannot be omitted in Proposition 3.3

(i.e. the statement does not hold for arbitrary t-conorms). For a counterexample let us

choose TP, SL, e = 0.3, x = 0.7, y = 0.8, and z = 0. In this case U1(0.7, U1(0.8, 0)) = 0,

while U1(U1(0.7, 0.8), 0) = 1.

Proposition 3.5. (See also Theorem 4 in Li et al., [52].) U1 in (3.3) is a uninorm if

and only if S is dual to a positive t-norm.

Proof. The condition is sufficient, since in this case the proof is similar to that of Propo-

sition 3.3.

Now I show that it is also necessary.

Let us assume indirectly that there exist x0, y0 6= 1, for which U1(x0, y0) = 1. Obviously,

x0, y0 > e. Let z0 < e, z0 6= 1 so that U(y0, z0) 6= 1. In this case the right hand side of

the associativity equation in (3.4) is trivially 1, while the left hand side is z0, which is a

contradiction.

Proposition 3.6. Let T be a strict t-norm, S be a strict t-conorm and e ∈]0, 1[. The

function

U2(x, y) =



eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

1, x = 1, y 6= 0 or x 6= 0, y = 1;

min(x, y), otherwise.

(3.5)

is a uninorm with neutral element e (see Figure 3.1).

Proof. To prove that U2 is a uninorm, we have to show that it is associative, commutative

and that it has a neutral element e ∈ (0, 1). Commutativity is obvious. From the

properties of t-norms and t-conorms it follows immediately that e ∈ (0, 1) is a neutral

element.
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Note that U2 differs from U1 only at points (1, 0) and (0, 1). Since the associativity of

U1 is already known (see Proposition 3.3), we only need to concentrate on the vertices

of the unit square.

Since we examine the equation

U2(x, U2(y, z)) = U2(U2(x, y), z), (3.6)

we need to take the following possibilities into consideration:

1. For x = 0 or z = 0 the two sides of the associativity equation in (3.6) are trivially

0.

2. For x = 1 and U2(y, z) = 0 by using the strict monotonicity of T we obtain that

either y = 0 or z = 0. This obviously means that the two sides of the associativity

equation in (3.6) are equally 0. The proof is similar for z = 1 and U2(x, y) = 0.

Remark 3.7. Note that the strict property cannot be omitted in the Proposition 3.6

(i.e. the statement does not hold for arbitrary t-norms and t-conorms). For a coun-

terexample let us choose TL, SP, e = 0.3, x = 1, y = 0.1, and z = 0.1. In this case

U2(1, U2(0.1, 0.1)) = 0, while U2(U2(1, 0.1), 0.1) = 1.

Proposition 3.8. (See also Theorem 5 in Li et al., [52].) U2 in (3.5) is a uninorm if

and only if T (x, y) is a positive t-norm, and S(x, y) is dual to a positive t-norm.

Proof. This condition is sufficient, since in this case the proof is similar to that of

Proposition 3.6.

Now I show that it is also necessary. From the proof of Proposition 3.5 the necessity

of the second condition is trivial. We only need to show that if U2(x, y) = 0 does not

imply x = 0 or y = 0, then the associativity does not hold. Let us assume indirectly

that there exist y0, z0 6= 0, for which U2(y0, z0) = 0. Obviously, y0, z0 < e. For x = 1 the

left hand side of the associativity equation in (3.6) is trivially 0, while the left hand side

is 1, which is a contradiction.
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Figure 3.1: U1 and U2

Proposition 3.9. (See also Li et al., [52].) Let T be a strict t-norm, S be a strict

t-conorm and e ∈]0, 1[. The function

U3(x, y) =



eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

0, x = 0 or y = 0;

max(x, y), otherwise.

(3.7)

is a uninorm with neutral element e (see Figure 3.2).

Proof. To prove that U3 is a uninorm, we have to show that it is associative, commutative

and that it has a neutral element e ∈ (0, 1). Commutativity is obvious. From the

properties of t-norms and t-conorms it follows immediately that e ∈ (0, 1) is a neutral

element.

Note that U3 differs from Umax only at points where either x = 0 or y = 0. Since the

associativity of Umax(x, y) is already known from [40], we only need to concentrate on

the border lines where at least one of the variables of U3 is 0.

To examine the associative equation

U3(x, U3(y, z)) = U3(U3(x, y), z), (3.8)

we need to take the following possibilities into consideration:
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1. If x = 0 or z = 0, then U3(x, U3(y, z)) = 0 = U3(U3(x, y), z).

2. If U3(y, z) = 0 or U3(x, y) = 1, then by using the strict monotonicity of S(x, y),

we get x = 0 or y = 0. Thus U3(x, U3(y, z)) = 0 = U3(U3(x, y), z).

Remark 3.10. Note that the strict property of T cannot be omitted in Proposition 3.9 (i.e.

the statement does not hold for arbitrary t-norms). For a counterexample let us choose

TL, SP, e = 0.3, x = 0.1, y = 0.1, and z = 0.8. In this case U3(0.1, U3(0.1, 0.8)) = 0.8,

while U3(U3(0.1, 0.1), 0.8) = 0.

Proposition 3.11. (See also Theorem 4 in Li et al., [52].) U3 in (3.7) is a uninorm if

and only if T is a positive t-norm.

Proof. The condition is sufficient, since in this case the proof is similar to that of Propo-

sition 3.9.

Now I show that it is also necessary.

Let us assume indirectly that there exist x0, y0 6= 0, for which U3(x0, y0) = 0. Obviously,

x0, y0 < e. Let z0 6= 0 so that U3(y0, z0) 6= 0. (It is easy to see that such z0 always exists,

since we can always chose z0 > e.) In this case the right hand side of the associativity

equation in (3.8) is trivially 0, while the left hand side is z0, which is a contradiction.

Remark 3.12. Note that Proposition 3.11 is dual to Proposition 3.5.

Proposition 3.13. (See also Li et al., [52].) Let T be a strict t-norm, S be a strict

t-conorm and e ∈]0, 1[. The function

U4(x, y) =



eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

0, x = 0, y 6= 1 or x 6= 1, y = 0;

max(x, y), otherwise.

(3.9)

is a uninorm with neutral element e (see figure 3.2).

Proof. To prove that U4 is a uninorm, we have to show that it is associative, commutative

and that it has a neutral element e ∈ (0, 1). Commutativity is obvious. From the

properties of t-norms and t-conorms it follows immediately that e ∈ (0, 1) is a neutral

element.
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Note that U4 differs from U3 only at points (1, 0) and (0, 1). Since the associativity of

U3 is already known (see Proposition 3.9), we only need to concentrate on the vertices

of the unit square.

Since we examine the equation

U4(x, U4(y, z)) = U4(U4(x, y), z), (3.10)

we need to take the following possibilities into consideration:

1. For x = 1 or z = 1 the two sides of the associativity equation in (3.6) are trivially

1.

2. For x = 0 and U4(y, z) = 1 by using the strict monotonicity of S(x, y) we obtain

that either y = 1 or z = 1. This obviously means that the two sides of the

associativity equation in (3.6) are equally 1. The proof is similar for z = 0 and

U4(x, y) = 1.

Remark 3.14. Note that the strict property cannot be omitted in the Proposition 3.13

(i.e. the statement does not hold for arbitrary t-norms and t-conorms). For a coun-

terexample let us choose TP, SL, e = 0.3, x = 0, y = 0.8, and z = 0.9 In this case

U4(0, U4(0.8, 0.9)) = 0, while U4(U4(0, 0.8), 0.9) = 1.

Proposition 3.15. (See also Theorem 5 in Li et al., [52].) U4 in (3.9) is a uninorm if

and only if T is a positive t-norm, and S is dual to a positive t-norm.

Proof. The condition is sufficient, since in this case the proof is similar to that of Propo-

sition 3.13.

Now I show that it is also necessary. From the proof of Proposition 3.11 the necessity of

the first condition is trivial. We only need to show that if U4(x, y) = 1 does not imply

x = 1 or y = 1, then the associativity does not hold. Let us assume indirectly that there

exists y0, z0 6= 1, for which U4(y0, z0) = 1. Obviously, y0, z0 > e. For x = 0 the left hand

side of the associativity equation in (3.10) is trivially 1, while the left hand side is 0,

which is a contradiction.

Remark 3.16. Note that Proposition 3.15 is dual to Proposition 3.8.
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Figure 3.2: U3 and U4
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Figure 3.3: U5

Let us now consider a function U5 such that

U5(x, y) =



eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

1, x = 1 and y ≥ a or y = 1 and x ≥ a;

min(x, y), otherwise.

(3.11)

where T is a t-norm, S is a t-conorm, e ∈]0, 1[, a ∈]0, e[ (see Figure 3.3).
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Let us consider the conditions under which U5 can be a uninorm. Suppose that U5 is a

uninorm with neutral element e.

Proposition 3.17. If U5 is a uninorm with neutral element e, then U5(a, a) = a.

Proof. From the conjunctive property of t-norms it follows immediately that U5(a, a) ≤
a. Suppose U5(a, a) < a. Then by the definition of U5, U5(1, U5(a, a)) < 1. On the other

hand, by assiociativity, U5(U5(1, a), a) = U5(1, a) = 1, a contradiction.

Corollary 3.18. If U5 is a uninorm with neutral value e, then T is an ordinal sum (see

Figure 3.3) of two t-norms, T1 and T2, i.e.

T (x, y) =


a · T1

(
x
a ,

y
a

)
if (x, y) ∈ [0, a]2

a+ (e− a) · T2
(
x−a
e−a ,

y−a
e−a

)
if (x, y) ∈ [a, e]2

min(x, y) otherwise

(3.12)

Corollary 3.19. U ′5 and U ′′5 defined below are also uninorms (see Figure 3.4):

U ′5(x, y) =



eT2
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

1, x = 1 or y = 1;

min(x, y), otherwise.

(3.13)

U ′′5 (x, y) =



eT1
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

1, x = 1 or y = 1;

min(x, y), otherwise.

(3.14)

Corollary 3.20. From Proposition 3.3 and Corollary 3.19 it follows immediately, that

if U5 is a uninorm, then S must be dual to a positive t-norm.

Proposition 3.21. U5 is a uninorm if and only if S is dual to a positive t-norm.

Proof. The necessity of this condition is the statement of Corollary 3.20. Now I prove

that is is also sufficient. Note that U5 differs from Umin only at points (x, y), where

a ≤ x < e and y = 1, or a ≤ y < e and x = 1. Since the associativity of Umin is already

known, we only need to concentrate on these regions.
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Figure 3.4: U ′5 and U ′′5

Since we examine the associativity equation

U5(x, U5(y, z)) = U5(U5(x, y), z), (3.15)

we need to take the following possibilities into consideration:

1. a ≤ x < e and U(y, z) = 1. From U(y, z) = 1 by the dual-positivity of S we get

(a) y = 1 and z ≥ a, or

(b) y ≥ a and z = 1.

In case 1a both sides of the associative equation in (3.15) are trivially 1.

In case 1b the left hand side of (3.15) is 1. In this region

U5(x, y) =


min(x, y), y > e, y 6= 1;

a+ (e− a) · T2
(
x−a
e−a ,

y−a
e−a

)
a ≤ y ≤ e;

1, y = 1,

which means that U5(x, y) ≥ a, and therefore the right hand side of (3.15) is also

1.

2. x = 1 and a ≤ U5(y, z) < e. From the second condition it follows immediately

that a ≤ y ≤ e and a ≤ z ≤ e hold and therefore both sides of the associativity

equation in (3.15) is 1.
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Figure 3.5: U6

3. z = 1 and a ≤ U5(x, y) < e. The proof is similar to case 2.

4. U5(x, y) = 1 and a ≤ z < e. The proof is similar to case 1.

Now let us define a function U6 the following way.

U6(x, y) =



eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

0, x = 0 and y ≤ a or y = 0 and x ≤ a;

max(x, y), otherwise.

(3.16)

where T is a t-norm, S is a t-conorm, e ∈]0, 1[, a ∈]e, 1[ (see Figure 3.5).

I consider the conditions under which U6 can be a uninorm. Suppose that U6 is a

uninorm with neutral element e.

Proposition 3.22. If U6 is a uninorm with neutral element e, then U6(a, a) = a.

Proof. From the disjunctive property of t-conorms it follows immediately that U5(a, a) ≥
a. Suppose U6(a, a) > a. Then by definition, U6(0, U6(a, a)) = a, on the other hand by

associativity U6(0, U6(a, a)) = U6(U6(0, a), a)) = 0, a contradiction.
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Figure 3.6: U ′6 and U ′′6

Corollary 3.23. If U6 is a uninorm with neutral value e, then S is an ordinal sum of

two t-conorms, S1 and S2 (see Figure 3.5).

Corollary 3.24. U ′6 and U ′′6 (see Figure 3.6) are also uninorms.

U ′6(x, y) =



eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S1
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

0, x = 1 or y = 1;

max(x, y), otherwise.

(3.17)

U ′′6 (x, y) =



eT
(
x
e ,

y
e

)
, (x, y) ∈ [0, e]2;

e+ (1− e)S2
(
x−e
1−e ,

y−e
1−e

)
, (x, y) ∈ [e, 1]2;

0, x = 1 or y = 1;

max(x, y), otherwise.

(3.18)

Corollary 3.25. From Proposition 3.3 and Corollary 3.24 it follows immediately, that

if U6 is a uninorm, then T must be a positive t-norm.

Proposition 3.26. U6 is a uninorm if and only if T is a positive t-norm.

Proof. The necessity of this condition is the statement of Corollary 3.25. Now I prove

that is is also sufficient. Note that U6 differs from Umax only at points (x, y), where
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e < x ≤ a and y = 0, or e < y ≤ a and x = 0. Since the associativity of Umax is already

known, we only need to concentrate on these regions.

Since we examine the associativity equation

U6(x, U6(y, z)) = U6(U6(x, y), z), (3.19)

we need to take the following possibilities into consideration:

1. e < x ≤ a and U(y, z) = 0. From U(y, z) = 0 by the positivity of T we get

(a) y = 0 and z ≤ a, or

(b) y ≤ a and z = 0.

In case 1a both sides of the associative equation in (3.19) are trivially 0.

In case 1b the left hand side of (3.19) is 0. In this region

U6(x, y) =


e+ (1− e) · S

(
x−a
e−a ,

y−a
e−a

)
e ≤ y ≤ a;

max(x, y), 0 < y < e, y 6= 1;

0, y = 0,

which means that U6(x, y) ≤ a, and therefore the right hand side of (3.19) is also

0.

2. x = 0 and e < U6(y, z) ≤ a. From the second condition it follows immediately

that e ≤ y ≤ a and e ≤ z ≤ a hold and therefore both sides of the associativity

equation in (3.15) is 0.

3. z = 0 and e < U6(x, y) ≤ a. The proof is similar to case 2.

4. U6(x, y) = 0 and e < z ≤ a. The proof is similar to case 1.

3.3 Overview

In this section, some new construction methods of uninorms with fixed values along the

borders were discussed.

These uninorms differ from Umin or Umax only at points along their boarder lines.
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Sufficient and necessary conditions were presented. Our results show that U1 in (3.3) is

a uninorm if and only if S is dual to a positive t-norm. U2 in (3.5) is a uninorm if and

only if T (x, y) is a positive t-norm, and S(x, y) is dual to a positive t-norm. U3 in (3.7)

is a uninorm if and only if T is a positive t-norm. U4 in (3.9) is a uninorm if and only if

T is a positive t-norm, and S is dual to a positive t-norm. U5 is a uninorm if and only

if S is dual to a positive t-norm. U6 is a uninorm if and only if T is a positive t-norm.

Thesis 1.2. New construction methods of uninorms with fixed values along the

borders are presented. Sufficient and necessary conditions are presented.



Chapter 4

The General Nilpotent Operator

System

4.1 Motivation and scope

One of the most significant problems of fuzzy set theory is the proper choice of set-

theoretic operations [68, 77]. Triangular norms and conorms have thoroughly been

examined in the literature [36, 38, 43, 51]. The most well-characterized class of t-norms

are the so-called representable t-norms, derived from the solution of the associative func-

tional equation [1]. Representable t-norms and t-conorms are often used as conjunctions

and disjunctions in logical structures [42], [62]. Henceforth I refer to representable t-

norms as conjunctions (c(x, y)) and representable t-conorms as disjunctions (d(x, y)). It

is important to note that all strict t-norms are isomorphic to the product torm, while

all nilpotent t-norms are isomorphic to  Lukasiewicz t-norm [43].  Lukasiewicz fuzzy logic

[45, 54, 63, 65] is the logic where the conjunction is the  Lukasiewicz t-norm and the

disjunction is the  Lukasiewicz t-conorm.

The class of non-strict t-norms has preferable properties which make them more usable

in building up logical structures. Among these properties are the fulfillment of the

law of contradiction and the excluded middle, the continuity of the implication or the

coincidence of the residual and the S-implication [33, 74]. Due to the fact that all

continuous Archimedean (i.e. representable) nilpotent t-norms are isomorphic to the

 Lukasiewicz t-norm [43], the previously studied nilpotent systems were all isomorphic

to the well-known  Lukasiewicz-logic.

In this section it is shown that a consistent logical system generated by nilpotent opera-

tors is not necessarily isomorphic to  Lukasiewicz-logic. Of course, this lack of isomorphy

29
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is not the result of introducing a new operator family, it simply means that the system

itself is built up in a significantly different way using more than one generator functions.

This section is organized as follows. First, a characterization of negation operators is

given in Section 4.2, as negations will have an important role to play in Section 4.3.

After considering the class of connective systems generated by nilpotent operators, their

structural properties are examined in Section 4.3. Examples for bounded systems, i.e.

consistent nilpotent systems which are not isomorphic to  Lukasiewicz-logic are shown.

Necessary and sufficient conditions are given for these systems to satisfy the De Morgan

law, classification property and consistency. A wide range of examples for consistent

and non-consistent bounded systems can be found in Section 4.4.

The results of this chapter can be found in Dombi and Csiszár, [27].

4.2 Characterization of strict negation operators

The main goal of this section is to present a representation of strict negations with a

wide range of examples, since negations will have a very important role to play in the

next section.

First let us see some further examples for negation operators. Hamacher proved in [46]

that the only negation having polynomial form is 1−x, the so-called standard negation,

introduced by Zadeh in [82]. He also proved that if an involutive negation belongs to

the class of rational polynomials, then it has the following form:

nλ(x) =
1− x

1 + λx
, where λ > −1. (4.1)

Sugeno [71] had the same result from the concept of fuzzy measures and integrals.

In the literature, generally the standard negation 1 − x or infrequently 1−x
1+x (4.1) for

λ =1) are used. Here I make suggestions about using different types of negations as

well. The negation operators can be characterized by their neutral values. In [25] (see

also [30]) Dombi introduced the following negation formula by expressing nλ(x) with the

help of its neutral element ν∗:

nν∗(x) =
1

1 + (1−ν∗ν∗
)2 x

1−x
. (4.2)

Note that if ν∗ → 0, then limnν∗(x) = n0(x), if ν∗ → 1, then limnν∗(x) = n1(x) and for

ν∗ = 1
2 we get the standard negation.
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Yager [78] introduced

n(x) = (1− xα)1/α , α > 0. (4.3)

Both this type of negation operator and the above-mentioned nλ reduce to the standard

negation when α = 1 and λ = 0 respectively.

It is easy to see that the neutral value of the negation operator in (4.3) is 2−
1
α . If we

write this negation operator by using its neutral value as a parameter, we get n(x) =(
1− x−

1
log2ν∗

)−log2ν∗
.

Note that the representation in Proposition 1.4 is not unique. It is not always easy to

find a generator function. The following propositions state that there can be infinitely

many generator functions for a negation operator.

Proposition 4.1. Let ν∗ ∈ (0, 1), f : [0, 1]→ [0, 1]

f(x) =


1

1+
(

1−ν∗
ν∗
· 1−x
x

)α if x 6= 0

0 if x = 0.

is a generator function of the negation nν∗ (see (4.2)) for any α 6= 0.

Proof. It can easily be seen that f−1(x) = 1

1+ ν∗
1−ν∗ (

1−x
x )

1
α
, and 1−f(x) = 1

1+
(

1−ν∗
ν∗
· 1−x
x

)−α ,
hence f−1 (1− f(x)) = 1

1+
(

1−ν∗
ν∗

)2
x

1−x

= nν∗(x).

Remark 4.2. Note that in Proposition 4.1, if f is a generator function of n, then f−1

also generates n.

Proposition 4.3. In Proposition 1.3 (Trillas) the generator function can also be de-

creasing.

Proof. I shall prove that if fn is a generator function of n, then gn(x) = 1−fn(x) is also a

generator function of n. If fn is the generator function of n, then n(x) = f−1(1−fn(x)).

If gn(x) = 1−fn(x) then g−1n (x) = f−1n (1−x). With this generator function the negation

has the following form: g−1(1− g(x)) =

= g−1 (1− (1− fn(x))) = g−1(fn(x)) = f−1n (1 − fn(x)). Since fn is increasing, gn is

decreasing.

For the neutral element ν∗, using the representation theorem, we get ν∗ = f−1 (1− f (ν∗)) ,

so ν∗ = f−1
(
1
2

)
.
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For the generator function g(x) = ax−1
a−1 , where a > 0, a 6= 1, we get

n(x) = loga (a+ 1− ax) . (4.4)

If we choose the inverse function g−1(x) = loga (x(a− 1) + 1) for the generator function,

we obtain

n(x) =
1− x

1 + x(a− 1)
, (4.5)

which was mentioned above.

In this section three basic families of strict negations generated by rational, power and

exponential functions were considered. (See also Tables A.1, A.3 and A.4.)

4.3 Nilpotent connective systems

Next, instead of operators in themselves, connective systems are considered.

Definition 4.4. The triple (c, d, n), where c is a t-norm, d is a t-conorm and n is a

strong negation, is called a connective system.

Definition 4.5. A connective system is nilpotent if the conjunction c is a nilpotent

t-norm, and the disjunction d is a nilpotent t-conorm.

Definition 4.6. Two connective systems (c1, d1, n1) and (c2, d2, n2) are isomorphic if

there exists a bijection φ : [0, 1]→ [0, 1] such that

φ−1 (c1 (φ(x), φ(y))) = c2(x, y)

φ−1 (d1 (φ(x), φ(y))) = d2(x, y)

φ−1 (n1 (φ(x))) = n2(x).

In the nilpotent case, the generator functions of the disjunction and the conjunction

being determined up to a multiplicative constant can be normalized the following way:

fc(x) :=
t(x)

t(0)
, fd(x) :=

s(x)

s(1)
.

Remark 4.7. Thus, the normalized generator functions are uniquely defined.

I will use normalized generator functions for conjunctions and disjunctions well. This

means that the normalized generator functions of conjunctions, disjunctions and nega-

tions are

fc, fd, fn : [0, 1]→ [0, 1].
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I will suppose that fc is continuous and strictly decreasing, fd is continuous and strictly

increasing and fn is continuous and strictly monotone.

Note that by using Proposition 4.3, there are two special negations generated by the

normalized additive generators of the conjunction and the disjunction.

Definition 4.8. The negations nc and nd generated by fc and fd respectively,

nc(x) = f−1c (1− fc(x))

and

nd(x) = f−1d (1− fd(x))

are called natural negations of c and d respectively.

This means that for a connective system with normalized generator functions fc, fd and fn

we can associate three negations by (1.1), nc, nd and n.

Proposition 4.9. With the help of the cutting operator (see Definition 1.9), we can write

the conjunction and disjunction in the following form, where fc and fd are decreasing

and increasing normalized generator functions respectively.

c(x, y) = f−1c [fc(x) + fc(y)], (4.6)

d(x, y) = f−1d [fd(x) + fd(y)]. (4.7)

Proof. From (1.2) we know that

c(x, y) = f−1c (min(fc(x) + fc(y), fc(0)) = f−1c (min(fc(x) + fc(y), 1) = f−1c [fc(x)+fc(y)],

and similarly, from (1.3)

d(x, y) = f−1d (min(fd(x) + fd(y), fd(0)) = f−1d (min(fd(x) + fd(y), 1) = f−1d [fd(x)+fd(y)].

Remark 4.10. Note that in Proposition 4.9 it is necessary to use normalized generator

functions as the following example shows. This fact supports the use of normalized

functions.

Example 4.1. Let fc(x) = 2− 2x.

c

(
1

2
,
1

2

)
= f−1c (min (fc(x) + fc(y), fc(0))) = f−1c (2) = 0,
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while

f−1c

[
fc

(
1

2

)
+ fc

(
1

2

)]
= f−1c [2− 1 + 2− 1] = f−1c [2] = f−1c (1) =

1

2
.

Remark 4.11. Note that using the cutting function defined above we can omit applying

the min and max operators. In the literature, the use of the pseudo-inverse was replaced

by the forms (1.2) and (1.3), which is now replaced by (4.6) and (4.7).

Definition 4.12. A connective system is called  Lukasiewicz system if it is isomorphic

to ([x + y − 1], [x + y], 1 − x), i.e. if there exists a bijection φ : [0, 1] → [0, 1] such

that the connective system has the form (φ−1[φ(x) +φ(y)−1], φ−1[φ(x) +φ(y)], φ−1[1−
φ(x)]) for ∀x, y ∈ [0, 1].

Proposition 4.13. For nilpotent t-norms and t-conorms Definition 4.8 is equivalent to

the following definition (also denoted by NT and NS, see Klement et al., [51], p. 232

and Baczyński and Jayaram, [4], Definition 2.3.1.):

nc(x) = NT (x) = sup {y ∈ [0, 1] | c(x, y) = 0}, x ∈ [0, 1],

nd(x) = NS(x) = inf {y ∈ [0, 1] | d(x, y) = 1}, x ∈ [0, 1].

Proof. For the conjunction, c(x, y) = f−1c [fc(x) + fc(y)] = 0 iff fc(x) + fc(y) ≥ 1, from

which y ≤ f−1c (1− fc(x)) = nc(x). For y = nc(x), c(x, nc(x)) = 0 is trivial. The proof

is similar for the disjunction as well.

4.3.1 Structural properties of connective systems

Definition 4.14. Classification property means that the law of contradiction holds,

i.e.

c(x, n(x)) = 0, ∀x, y ∈ [0, 1], (4.8)

and the excluded third principle holds as well, i.e.

d(x, n(x)) = 1, ∀x, y ∈ [0, 1]. (4.9)

Definition 4.15. The De Morgan identity means that

c(n(x), n(y)) = n(d(x, y)) (4.10)

or

d(n(x), n(y)) = n(c(x, y)). (4.11)



Chapter 4. The General Niloptent Operator System 35

Remark 4.16. These two forms of the De Morgan law are equivalent if the negation is

involutive. The first De Morgan law holds with a strict negation n if and only if the

second holds with n−1 (see Fodor and Roubens, [38], p. 18)

Definition 4.17. A connective system is said to be consistent if the classification

property (Definition 4.14) and the De Morgan identity (Definition 4.15) hold.

4.3.1.1 Classification property

Now I will examine the conditions that the connectives and their normalized generator

functions in a connective system must satisfy if we want the classification property to

hold.

Proposition 4.18. (See also Fodor and Roubens, [38], 1.5.4. and 1.5.5., and Baczyński

and Jayaram, [4], 2.3.2.) In a connective system (c, d, n) the classification property holds

iff

nd(x) ≤ n(x) ≤ nc(x), for ∀x ∈ [0, 1]

where nc and nd are the natural negations of c and d, respectively.

Proof. From the excluded third principle, we have d(x, n(x)) = 1. Using the normalized

generator function, f−1d [fd(x) + fd(n(x))] = 1. It means that fd(x) + fd(n(x)) ≥ 1, from

which fd(n(x)) ≥ 1− fd(x).

fd and its inverse f−1d are strictly increasing, thus we get the left hand side of the

inequality:

n(x) ≥ f−1d (1− fd(x)) = nd(x).

Similarly, we get the right hand side from the law of contradiction c(x, n(x)) = 0. Using

the normalized generator function we get f−1c [fc(x) + fc(n(x))] = 0. From the definition

of the cutting function fc(x) + fc(n(x)) ≥ 1, which means that fc(n(x)) ≥ 1 − fc(x).

Since fc and f−1c are strictly decreasing,

n(x) ≤ f−1c (1− fc(x)) = nc(x),

nd(x) ≤ n(x) ≤ nc(x).

Remark 4.19. Generally, in a consistent system only one negation is used in the litera-

ture. The logical connectives are usually generated by a single generator function.

c(x, y) = f−1 [f(x) + f(y)− 1] ,
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d(x, y) = f−1 [f(x) + f(y)] ,

n(x) = f−1 (1− f(x)) ,

where f : [0, 1]→ [0, 1] is a continuous, strictly increasing function.

The question arises immediately, whether the use of more than one negation is possible.

This possibility will be considered later in detail (see 4.3.2.1).

Next I give examples for connective systems in which the classification property holds,

but which does not fulfil the De Morgan law.

In Section 4.4, an overview of all the examples included in the following part of this

section is presented. The examples from the rational family will be considered in detail

in 4.3.2.1.

Example 4.2. Let fn(x) := x2, fc(x) :=
√

1− x and fd(x) :=
√
x. This connective

system fulfills the classification property but does not fulfill the De Morgan law. (See

also Table A.1.)

Another example can be obtained by using the rational family of normalized generators

functions

fn(x) =
1

1 + ν
1−ν

1−x
x

, fn(0) = 0,

fc(x) =
1

1 + νc
1−νc

x
1−x

, fc(1) = 0,

fd(x) =
1

1 + νd
1−νd

1−x
x

, fd(0) = 0,

choosing e.g. νd = 0.3, νc = 0.7 and ν = 0.5. (See Table A.4.)

The existence of such systems explains why we have to consider the De Morgan law in

the following section.

4.3.1.2 The De Morgan law

Now I will examine the conditions that the connectives and their normalized generator

functions must satisfy, if we want the connective system to fulfill the De Morgan law.

Before stating Proposition 4.23 we need to solve the following functional equation.

Lemma 4.20. Let u : [0, 1] −→ [0, 1] be a continuous, strictly increasing function with

u(0) = 0 and u(1) = 1. The functional equation

[u(x) + u(y)] = u[x+ y] (4.12)
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(where [ ] stands for the cutting operator defined in Definition 1.9) has a unique solution

u(x) = x.

Proof. • First I prove that u[0] = 0. Let us suppose that u[0] = c, where 0 ≤ c ≤ 1.

Then

c = u[0 + 0] = [2u(0)],

which means c = [2c] i.e. c = 1, or c = 0, but c = 1 contradicts u(0) = 0.

• Second, I show that u[1] = 1. Similarly, let us suppose that u[1] = c, where 0 ≤
c ≤ 1. Then c = u[1 + 1] = [2u(1)], which means c = [2c] i.e. c = 1, or c = 0,

but for c = 0 we get contradiction.

• Third, I prove that u
(
1
2

)
= 1

2 .

If x < 1
2 , then 2x < 1. u is strictly increasing, therefore u(2x) < 1 as well. u[2x] =

u(2x) = 2u(x) = [2u(x)], because of the continuity of u, limx→ 1
2
u(2x) = u(1),

2 limx→ 1
2
u(x) = 1, which implies u

(
1
2

)
= 1

2 .

• Similarly, we can prove that u
(

1
2m

)
= 1

2m .

• Next, I prove that u
(
3
4

)
= 3

4 .

u
(
3
4

)
= u

(
1
2 + 1

4

)
= u

(
1
2

)
+ u

(
1
4

)
= 1

2 + 1
4 = 3

4 .

• In a similar way, we obtain that for u
(
k
2m

)
= k

2m .

Then, for any rational number from [0, 1], we have u(x) = x.

• Let r be any arbitrary irrational number from [0, 1]. There exists a sequence of

rational numbers qn such that ∀n : qn ∈ [0, 1] and qn −→ r.

Because of the continuity of u we have u(qn) −→ u(r), which implies u(r) = r.

Note that the solution of the following general form of the functional equation (4.12)

can be found in the papers of Baczynski [6], [7] (Propositions 3.4. and 3.6.).

Proposition 4.21. Fix real a, b > 0. For a function f : [0, a] → [0, b], the following

statements are equivalent.

1. f satisfies the functional equation

f(min(x+ y, a)) = min(f(x) + f(y), b) ∀x, y ∈ [0, a].

2. Either f = b, or f = 0, or

f(x) =

0 if x = 0

b if 0 < x ≤ a
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or there exists a unique constant c ∈ [b/a,∞) such that

f(x) = min(cx, b), x ∈ [0, a].

Remark 4.22. Specially, for a = b = 1 we get the statement of Lemma 4.20.

Proposition 4.23. If fc is the normalized generator function of a conjunction in a

connective system, fd is a normalized generator function of the disjunction and n is a

strong negation, then the following statements are equivalent:

1. The De Morgan law holds in the connective system. That is,

c(n(x), n(y)) = n(d(x, y)). (4.13)

2. The normalized generator functions of the conjunction, disjunction and negation

operator obey the following equations (which are obviously equivalent to each other):

n(x) = f−1c (fd(x)) = f−1d (fc(x)) , (4.14)

fc(x) = fd(n(x)) or equivalently fd(x) = fc(n(x)). (4.15)

Proof. (4.15)⇒ (4.13) is obvious.

(4.13) ⇒ (4.14): Let us write the De Morgan law using the normalized generator func-

tions.

f−1c [fc(n(x)) + fc(n(y))]) = n(f−1d [fd(x) + fd(y)]).

Applying fc(x) to both sides of the equation we obtain

[fc(n(x)) + fc(n(y))] = fc(n(f−1d [fd(x) + fd(y)])).

Let us substitute x = f−1d (x). Then we have

[fc(n(f−1d (x))) + fc(n(f−1d (y)))] = fc(n(f−1d [fd(f
−1
d (x)) + fd(f

−1
d (y))])).

From this, we get the following functional equation:

[fc(n(f−1d (x))) + fc(n(f−1d (y)))] = fc(n(f−1d [x+ y])).

If we use u(x) := fc(n(f−1d (x))), then we get the following form of the functional equa-

tion:

[u(x) + u(y)] = u[x+ y].
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We can readily see that function u(x) satisfies the conditions of Lemma 4.20, i.e. it is

a continuous, strictly monotone increasing function with u(0) = 0 and u(1) = 1. This

means that by Lemma 4.20, u(x) = x. Hence, fc
(
n
(
f−1d (x)

))
= x.

Remark 4.24. Note that in Proposition 4.23 any two of n, fc, fd determine the third.

However, note that this remark above does not mean that any two of n, fc, fd can be

chosen arbitrary. If fc and fd are given and we want the De Morgan property to hold, we

obtain n from ((4.14)). This means that for fc and fd the equation in (4.14) has to hold.

Hence, in order to get an involutive negation, we must take notice of the appropriate

relationship of the normalized generator functions as the following example shows.

Example 4.3. Let fc(x) = 1− xα and fd(x) = xβ, where α 6= β. Then

f−1c (fd(x)) =
α
√

1− xβ 6= β
√

1− xα = f−1d (fc(x)) .

Proposition 4.25. If the De Morgan property holds in a connective system (c, d, n),

then

nc (n(x)) = n (nd(x)) (4.16)

and similarly,

nd (n(x)) = n (nc(x)) , (4.17)

where nc and nd are the natural negations.

Proof. Because of the involutive property of n it is enough to prove (4.16).

n
(
f−1c (1− fc (n(x)))

)
= f−1d

(
fc
(
f−1c

(
1− fc

(
f−1c (fd(x))

))))
= nd(x).

Corollary 4.26. If the De Morgan law holds in a connective system (c, d, n), then

n(x) = nc(x) if and only if n(x) = nd(x), (4.18)

where nc and nd are the natural negations.

Remark 4.27. Note that we can readily see that if any two of n, nd, nc are equal, then

the third is equal to them as well.

Proposition 4.28. Let h be the transformation for which h (fc(x)) = fd(x) in a con-

nective system in which the De Morgan property holds. Then h is a (strong) negation.
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Proof. By using the involutive property of n, we get

f−1d (fc(x)) = f−1c (fd(x)) ,

fd(x) = fc
(
f−1d (fc(x))

)
,

fc(x) = fd
(
f−1c (fd(x))

)
= h (fd(x)) ,

f−1c (x) = f−1d
(
h−1(x)

)
,

fd
(
f−1c (x)

)
= h−1(x) = h(x).

So h is also involutive. It is easy to see that h(0) = 1, h(1) = 0 and h(x) = fd
(
f−1c (x)

)
is strictly monotone decreasing.

Now I give examples for consistent and non-consistent connective systems where the De

Morgan property holds. For examples from the rational family of normalized generator

functions see propositions 4.38 and 4.40.

Example 4.4. If in a connective system the conjunction, the disjunction and the nega-

tion have the following forms

fn(x) = x, fc(x) = (1− x)α, fd(x) = xα,

then this connective system is consistent (i.e. the De Morgan law and the classification

property hold), if and only if 0 < α ≤ 1. (See also Table A.1.)

Proof. It is easy to see, that from the Proposition 4.15 formula (4.14) is true for the

mentioned normalized generator and negation functions:

xα = (1− (1− x))α,

which means that the De Morgan law holds.

It is easy to see that the classification property holds if and only if

xα + (1− x)α ≥ 1,

which is only true if for 0 < α ≤ 1.

Remark 4.29. Note that the example above shows that there exists a system in which

the De Morgan property holds, whereas the classification property does not (for α > 1).

(See also Table A.1.)
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For an example from the rational family of normalized generator functions (see propo-

sitions 4.38 and 4.40 and also Table A.4)

fn(x) =
1

1 + ν
1−ν

1−x
x

, fn(0) = 0,

fc(x) =
1

1 + νc
1−νc

x
1−x

, fd(0) = 0,

fd(x) =
1

1 + νd
1−νd

1−x
x

, fc(1) = 0,

we can choose e.g. ν = 0.6, νc = 0.2 and νd = 0.36.

Example 4.5. If we express the normalized generator functions in Example 4.4 in terms

of the neutral values of the related negations, we get

fn(x) = x, fc(x) = (1− x)
1

log0.5(1−νc) , fd(x) = xlogνd (0.5).

This system fulfills the De Morgan identity iff νc + νd = 1, and is consistent iff νd ≤ 1
2

also holds. (See also Table A.1.)

4.3.2 Consistent connective systems

Now consistent connective systems (in which the De Morgan property and the classifi-

cation property hold together) are to be considered.

Proposition 4.30. 1. If the connective system (c, d, n) is consistent, then fc(x) +

fd(x) ≥ 1 for any x ∈ [0, 1], where fc and fd are the normalized generator functions

of the conjunction c and the disjunction d respectively.

2. If fc(x) + fd(x) ≥ 1 for any x ∈ [0, 1] and the De Morgan law holds, then the

connective system (c, d, n) satisfies the classification property as well (which now

means that the system is consistent).

Proof. By Proposition 4.18, the classification property holds if and only if

f−1d (1− fd(x)) = nd(x) ≤ n(x) ≤ nc(x) = f−1c (1− fc(x))

and by Proposition 4.23, the De Morgan identity holds if and only if

n(x) = f−1d (fc(x)) = f−1c (fd(x)) .
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From the right hand side of the inequality we get

f−1c (fd(x)) ≤ f−1c (1− fc(x)) ,

so

fc(x) + fd(x) ≥ 1.

Similarly, we get the same from the left hand side of the inequality.

Remark 4.31. Note that as Example 4.2 shows, fc(x) + fd(x) ≥ 1 does not imply the De

Morgan law, even if the classification property holds.

Moreover, fc(x)+fd(x) ≥ 1 without the De Morgan law does not imply the classification

property either (for a counterexample we can chose fn = x2 and α = 0.7 in Example

4.4).

Next, examples for consistent systems are presented.

Example 4.6. If in a connective system the generator function of the conjunction, the

disjunction and the negation have the following forms

fc(x) = 1− xα, fd(x) = xα, fn(x) = xα,

where α > 0, then the De Morgan law and the classification property hold for every α.

(See also Table A.1.)

Example 4.7. More generally, the connective system with generator functions

fc(x) = (1− xα)
β
α , fd(x) = xβ, fn(x) = xα,

where α, β > 0 is consistent if and only if β ≤ α. (See also Table A.1.)

Note that Example 4.7 reduces to Example 4.4 if α = 1 and 0 < β ≤ 1 and to Example

4.6 if α = β.

Proposition 4.32. In a connective system the following equations are equivalent:

fc(x) + fd(x) = 1 (4.19)

nc(x) = nd(x), (4.20)

where fc, fd are the normalized generator functions of the conjunction and the disjunction

and nc, nd are the natural negations.
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Proof. From fd(x) = 1− fc(x),

f−1d (x) = f−1c (1− x)

and

nd(x) = f−1d (1−fd(x)) = f−1d (1−(1− fc(x))) = f−1d (fc(x)) = n(x) = f−1c (1−fc(x)) = nc(x).

Remark 4.33. Let us suppose that in a connective system the De Morgan property holds.

If condition (4.19) holds, then

nc(x) = n(x) = nd(x),

and therefore the system is consistent.

Remark 4.34. Note that if condition (4.19) holds, we get the the classical nilpotent

( Lukasiewicz) logic.

4.3.2.1 Bounded systems

The question arises, whether we can use more than one generator functions in our

connective system without losing consistency. In the literature only systems generated

by only one generator function have been considered, see e.g. Baczyński and Jayaram,

[4], Theorem 2.3.18. In these systems the natural negations of the conjunction and the

disjunction coincide with the negation operator. Next, the case nc(x) 6= nd(x) 6= n(x) is

examined.

Definition 4.35. A nilpotent connective system is called a bounded system if

fc(x) + fd(x) > 1, or equivalently nd(x) < n(x) < nc(x)

holds for all x ∈ (0, 1), where fc and fd are the normalized generator functions of the

conjunction and disjunction, and nc, nd are the natural negations.

The following example shows the existence of consistent bounded systems.

Example 4.8. (See also Table A.1.) The connective system generated by

fc(x) := 1− xα, fd(x) := 1− (1− x)α, n(x) := 1− x, α ∈ (1,∞]

is a consistent bounded system.
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Proof. Applying (4.14) from Proposition 4.23, we obtain: fc(n(x)) = 1−(1−x)α = fd(x),

which means that the De Morgan law holds. It is easy to see that nc(x) = α
√

1− xα,
nd(x) = 1− α

√
1− (1− x)α, i.e.

nd(x) < n(x) < nc(x),

which means that the classification property is also true (see Figure 4.1).

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4.1

For the normalized generator functions we have fc(x) + fd(x) > 1 for all x ∈ (0, 1).

Remark 4.36. In Example 4.8 for α = 1 we get nd(x) = n(x) = nc(x), i.e. fc(x)+fd(x) =

1.

Proposition 4.37. In a connective system (c, d, n), the following statements are equiv-

alent:

fc(x) + fd(x) > 1 for all x ∈ (0, 1), (4.21)

fd
(
f−1c (x)

)
> 1− x for all x ∈ (0, 1), (4.22)

fc
(
f−1d (x)

)
> 1− x for all x ∈ (0, 1), (4.23)

where fc and fd are the normalized generator functions of c and d.

Proof. From nd(x) < n(x) < nc(x) we have f−1d (1− fd(x)) < f−1c (fd (x)) . Substituting

x by fd(x) we get f−1d (1− x) < f−1c (x), i.e. fc
(
f−1d (x)

)
> 1−x, which is also equivalent

to fc
(
f−1d (1− x)

)
> x.

Next I consider the case of the rational family of the normalized generator functions

introduced by Dombi in [25].
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Proposition 4.38. For the Dombi functions (see also Equation (4.2) and Proposition

4.1)

fn(x) =
1

1 + ν
1−ν

1−x
x

, fn(0) = 0,

fc(x) =
1

1 + νc
1−νc

x
1−x

, fd(0) = 0,

fd(x) =
1

1 + νd
1−νd

1−x
x

, fc(1) = 0,

the following statements are equivalent:

1. The connective system generated by the Dombi functions in Proposition 4.38 sat-

isfies the De Morgan law.

2. For parameters νd and νc in the normalized generator functions and for parameter

ν in the negation function the following equation holds:(
1− ν
ν

)2

=
νc

1− νc
1− νd
νd

. (4.24)

Proof. By Proposition 4.23, the De Morgan law holds iff:

fc(n(x)) = fd(x). (4.25)

From Proposition 4.1 for α = −1 we know that

n(x) =
1

1 +
(
1−ν
ν

)2 x
1−x

, (4.26)

so

fc(n(x)) =
1

1 + ( νc
1−νc )( ν

1−ν )2 1−xx
=

1

1 + νd
1−νd

1−x
x

.

This means that the equality (4.25) holds if and only if the parameters on the left and

the right hand side are equal, i.e.:(
1− ν
ν

)2

=
νc

1− νc
1− νd
νd

. (4.27)

Remark 4.39. From (4.27) we get that the De Morgan law holds iff

ν =
1

1 +
√

νc
1−νc

1−νd
νd

. (4.28)
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(a) The relationship of νc and νd for different fixed
values of ν

(b) ν as a function of νc and νd

Figure 4.2: The relationship between ν, νc and νd in consistent rational systems

Proposition 4.40. For the natural negations derived from the Dombi functions defined

in Proposition 4.38, the following statements are equivalent for x ∈ (0, 1):

nd(x) < n(x) < nc(x), (4.29)

νd < ν < νc. (4.30)

Proof.
1

1 + (1−νdνd
)2 x

1−x
<

1

1 +
(
1−ν
ν

)2 x
1−x

(see Table A.5) if and only if νd < ν. Similarly, we can prove the other side of the

inequality as well.

Remark 4.41. Note that if the De Morgan property holds,

fc(x) + fd(x) > 1 (4.31)

is also equivalent to (4.29) and (4.30).

Proposition 4.42. For the Dombi functions defined in Proposition 4.38, the followings

are equivalent for x ∈ (0, 1):

fc(x) + fd(x) > 1, (4.32)

νc + νd < 1. (4.33)
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Proof.
1

1 +
(

νc
1−νc

x
1−x

) > 1− 1

1 +
(

νd
1−νd

1−x
x

) =
1

1 +
(
1−νd
νd

x
1−x

)
if and only if

νc
1− νc

<
νd

1− νd
,

which is equivalent to νc + νd < 1.

Remark 4.43. Note that if the De Morgan property holds,

nd(x) < n(x) < nc(x) (4.34)

is also equivalent to (4.32) and (4.33).

The relationship between νc and νd from Propositions 4.40 and 4.42 can be seen in

Figure 4.2. In Figure 4.2 we can see the possible values of νc and νd for fixed values of

ν. The values of ν as a function of νc and νd can be seen on Figure 4.2.

Remark 4.44. By using (4.34), (4.33) and (4.28) we obtain that in a consistent system

with

fc(x) + fd(x) > 1, ν < 1
2 always holds.

Remark 4.45. For ν = 1
2 we get

√
νc

1−νc
1−νd
νd

= 1, so νc = νd = ν = 1
2 .

Example 4.9. For νc = 0.5 and νd = 0.1 ν = 0.25, νc + νd < 1 and nd(x) < n(x) <

nc(x).

In Figure 4.3 and 4.3 examples for conjunctions and disjunctions are shown for fc(x) +

fd(x) = 1 and for fc(x) + fd(x) > 1 respectively. Note that the coincidence and the

separation of nc and nd (see their alternative definition in Proposition 4.13 as well) can

easily be seen.

4.4 Overview

Next we give an overview of the three families of normalized generator functions used

in our examples and propositions, namely power, exponential and rational functions

(see also (4.2), (4.3) and (4.4)). See tables A.1, A.3 and A.4. For the power generator

functions the logical connectives are also given, see Table A.2. In the case of the rational

and in a special case of the power functions we give the normalized generators in terms

of the neutral values as well. Finally, we give some examples of consistent connective

systems with mixed types of normalized generator functions, see Table A.6.
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(a) νc = 0.6 and νd = 0.4 (νc + νd = 1) (b) νc = 0.4 and νd = 0.3 (νc + νd < 1)

Figure 4.3: Conjunction c[x, y] and disjunction d[x, y]

Thesis 2.1.

The concept of a nilpotent connective system is introduced. It is shown that a

consistent logical system generated by nilpotent operators is not necessarily isomor-

phic to  Lukasiewicz-logic, which means that nilpotent logical systems are wider than

we have thought earlier. Using more than one generator functions, three naturally

derived negations are examined. It is shown that the coincidence of the three nega-

tions leads back to a system which is isomorphic to  Lukasiewicz-logic. Consistent

nilpotent logical structures with three different negations are also provided.

Thesis 2.2.

Necessary and sufficient conditions for the classification property (the excluded mid-

dle and the law of contradiction), the De Morgan law and consistency have been

given.



Chapter 5

Implication Operators in

Bounded Systems

5.1 Motivation and scope

In Section 4, it was shown that a consistent connective system generated by nilpo-

tent operators is not necessarily isomorphic to  Lukasiewicz-system. Using more than

one generator function, consistent nilpotent connective systems could be obtained in

a significantly different way with three naturally derived negations. Those consistent

nilpotent connective systems which are not isomorphic to  Lukasiewicz logic are called

bounded systems. Based on the results of Section 4, now I focus on implications in

bounded systems.

The results of this chapter can be found in Dombi and Csiszár, [27].

Fuzzy implications are definitely among the most important operations in fuzzy logic

[4, 57]. Firstly, other basic logical connectives of the binary logic can be obtained

from the classical implication. Secondly, the implication operator plays a crucial role in

the inference mechanisms of any logic, like modus ponens, modus tollens, hypothetical

syllogism in classical logic. Fuzzy implications all generalize the classical implication

with the two possible crisp values from 0, 1, to the fuzzy concept with truth values from

the unit interval [0, 1] [82]. In classical logic the implication can be defined in several

ways. The most well-known implications are the usual material implication from the

Kleene algebra, the implication obtained as the residuum of the conjunction in Heyting

algebra (also called pseudo-Boolean algebra) in the intuitionistic logic framework and

the implication in the setting of quantum logic. While all these differently defined

implications have identical truth tables in the classical case, the natural generalizations

49
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of the above definitions in the fuzzy logic framework are not identical. This fact has led

to some throughout research on fuzzy implications [2, 5, 6, 7, 8, 48, 64, 69, 70, 75].

Next I focus on residual and S-implication operators in bounded systems. This section

is organized as follows. After some preliminaries in Section 5.2, I examine the residual

implication in Section 5.3 and S-implications with special attention to the ordering prop-

erty in Section 5.4. In Section 5.6 I show that in a bounded system, the minimum and

maximum operators can also be expressed in terms of the conjunction, the implication

and the negation. Finally in Section 5.5 I show that in a bounded system the implica-

tions examined in this section can never coincide. The formulae and the properties of

implications are summarized in Section 5.7.

5.2 Preliminaries

A mapping i : [0, 1]2 → [0, 1] is called an implication operator if and only if it satisfies

the boundary conditions i(0, 0) = i(0, 1) = i(1, 1) = 1 and i(1, 0) = 0.

The above conditions are the minimum requirements for an implication operator. Other

potentially interesting properties of implication operators are listed in [4, 14, 33, 69,

75]. All fuzzy implications can be obtained by generalizing the implication operator

of classical logic. In this sense, Fodor and Roubens, [38], established the following

definition.

Definition 5.1. A fuzzy implication is a function i : [0, 1]2 → [0, 1] that satisfies the

following properties:

1. The first place antitonicity:

for all x1, x2, y ∈ [0, 1] (if x1 ≤ x2 then i(x1, y) ≥ i(x2, y)). (FA)

2. The second place isotonicity:

for all x, y1, y2 ∈ [0, 1] (if y1 ≤ y2 then i(x, y1) ≤ i(x, y2)). (SI)

3. The dominance of falsity of antecedent:

i(0, y) = 1 for all y ∈ [0, 1]. (DF)

4. The dominance of truth of consequent:

i(x, 1) = 1 for all x ∈ [0, 1]. (DT)
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5. The boundary condition:

i(1, 0) = 0 and i(1, 1) = 1. (BC)

Other important but usually not required properties of fuzzy implications are defined

below (see Baczyński and Jayaram, [4]).

Definition 5.2. A fuzzy implication i satisfies

1. The left neutrality property (the neutrality of truth) if

i(1, y) = y for all y ∈ [0, 1]. (LN)

2. The exchange principle if

i(x, i(y, z)) = i(y, i(x, z)) for all x, y, z ∈ [0, 1]. (EP)

3. The identity principle if

i(x, x) = 1 for all x ∈ [0, 1]. (IP)

4. The strong negation principle if the mapping n∗ defined as

n∗(x) = i(x, 0) for all x ∈ [0, 1] (SN)

is a strong negation.

5. The law of contraposition (or in other words,the contrapositive symmetry) with

respect to a strong negation n if

i(x, y) = i(n∗(y), n∗(x)) for all x, y ∈ [0, 1]. (LC)

6. The ordering property if

i(x, y) = 1 if and only if x ≤ y for all x, y ∈ [0, 1]. (OP)

Remark 5.3. The negation operator n∗ is also called the natural negation of the impli-

cation i (see Baczyński and Jayaram, [4]).

A detailed study of possible relations between all these properties can be found in [4,

14, 70]. Notice that other properties can also be found in the literature. In particular,

i(x, n∗(x)) = n∗(x) for all x ∈ [0, 1], where n∗ is a strong negation (see Mas et al., [57]).
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Three well-established classes of implication operators are (S,N)-, QL- and R-implications.

Definition 5.4. (Baczyński and Jayaram, [4], page 57.) A function i : [0, 1]2 → [0, 1] is

called an S-implication if there exists a t-conorm S and a strong negation n∗ such that

iS(x, y) = S(n∗(x), y), x, y ∈ [0, 1].

Definition 5.5. (Baczyński and Jayaram, [4], page 90.) A function i : [0, 1]2 → [0, 1] is

called a QL-operation if there exists a t-conorm S, a t-norm T and a strong negation n∗

such that

iQ(x, y) = S(n∗(x), T (x, y)), x, y ∈ [0, 1].

In general, QL-operations violate property (FA). For the conditions under which (FA) is

satisfied see Fodor, [37]. When a QL-operation is a fuzzy implication, then it is called

a QL-implication.

Definition 5.6. (Baczyński and Jayaram, [4], page 68.) A function i : [0, 1]2 → [0, 1] is

called an R-implication if there exists a t-norm T such that

iR(x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}.

In the case where the given t-norm is left-continuous, I will refer to the R-implication

defined above as a residual implication [4, 48, 50]. Note that in this case we have

T (x, y) = inf
z

(z ∈ [0, 1], | i(x, z) ≥ y) . It is easy to see that both S-implications and

R-implications satisfy properties (FA)-(BC), regardless of the t-norm T , the t-conorm

S and the strong negation n∗ types. Hence, they are implications in the Fodor and

Roubens sense. Different characterizations of S-implications, QL-implications and R-

implications can be found in the literature (for details, see [5, 35, 38]). It is worth

mentioning here that new characterizations of R and S-implications can also be found

at Trillas, [76].

Next, implications in bounded systems are to be examined.

5.3 R-implications in bounded systems

For implications in nilpotent connective systems notation i is used. For the residual

implication, we easily get the following formula (see Theorem 2.5.21., Baczyński and

Jayaram, [4]).
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Proposition 5.7. In a nilpotent connective system (c, d, n) the residual implication has

the following form.

iR(x, y) = f−1c
[
fc(y)− fc(x)

]
,

where fc is the additive generator function of c, and [ ] is the cutting operator defined

in Definition 1.9.

Proof. From the definition of residual implication,

iR(x, y) = max {z : c(x, z) ≤ y} ,

where

c(x, z) = f−1c
[
fc(x) + fc(z)

]
≤ y.

From this, we have z = f−1c
[
fc(y)− fc(x)

]
.

Proposition 5.8. We can also express iR by using the negation operator and the nor-

malized additive generator function of d.

Proof. From n(x) = f−1c (fd(x)), we have

fc(x) = fd(n(x)) and f−1c (x) = n−1
(
f−1d (x)

)
,

iR(x, y) = n−1
(
f−1d

[
fd(n(x))− fd(n(y))

])
.

The notation H is introduced below for further applications. A new formula for iR is

given in (5.2) by using H.

H(x) = 1− fd(n(x)), (5.1)

so n−1
(
f−1d (x)

)
= H−1(1− x). From this we have

iR(x, y) = H−1
(
1−

[
1−H(x)− (1−H(y))

])
= H−1 [H(y)−H(x) + 1] . (5.2)

Next, the properties in Definition 5.2 are examined to see whether they are compatible

with the R-implication in a nilpotent connective system.
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Remark 5.9. Note that the following results regarding the properties of iR correspond

with Section 2.5. at Baczyński and Jayaram, [4].

Proposition 5.10. In a nilpotent connective system, iR satisfies

1. the left neutrality property (the neutrality of truth), (LN) i.e.

iR(1, y) = y for all y ∈ [0, 1],

2. the exchange principle, (EP) i.e.

iR (x, iR(y, z)) = iR (y, iR(x, z)) for all x, y, z ∈ [0, 1],

3. the identity principle, (IP) i.e.

iR (x, x) = 1 for all x ∈ [0, 1],

4. the strong negation principle, (SN), since

n∗R(x) = iR (x, 0) = nc(x) for all x, y ∈ [0, 1] is a strong negation,

5. the law of contraposition (contrapositive symmetry), (LC) with respect to the

strong negation in (SN); i.e. iR (x, y) = iR(nc(y), nc(x))

for all x, y ∈ [0, 1],

6. the ordering principle, (OP) is valid for iR(x, y), i. e.

iR(x, y) = 1 if and only if x ≤ y.

Proof. LN, EP, IP and OP always hold for an R-implication derived from a continuous

t-norm (see Theorem 2.5.7, Baczyński and Jayaram, [4]).

LC follows directly from the definition of nc.

EP and OP together always imply SN for continuous implications (see Corollary 1.4.19,

Baczyńskiand Jayaram, [4]).

Remark 5.11. Note that the law of contraposition (contrapositive symmetry), (LC)

with respect to the strong negation n; i.e. iR(x, y) = iR(n(y), n(x))

for all x, y ∈ [0, 1], never holds in a bounded system (see also Corollary 1.5.12., Baczyński

and Jayaram, [4]).

Proof. I prove that iR(x, y) = iR(n(y), n(x)) holds for all x, y ∈ [0, 1] if and only if

fc(x) + fd(x) = 1; i.e. the system is a  Lukasiewicz logical system.

If x ≤ y, then n(y) ≤ n(x), and therefore from the ordering property we get that both

sides are equal to 1.
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If x > y, then the two sides of the equality are equal if and only if

fc(y)− fc(x) = fd(x)− fd(y), i.e. fc(x) + fd(x) = fc(y) + fd(y)

for all x, y ∈ [0, 1], which means that fc(x) + fd(x) is constant.

Since fc(0) + fd(0) = 1, fc(x) + fd(x) = 1.

A different form of the residual implication is also given in the following section.

5.4 S-implications in bounded systems

In a nilpotent connective system (c, d, n) we can define different types of S-implications.

Definition 5.12.

1. iSn(x, y) = d(n(x), y), x, y ∈ [0, 1],

2. iSd(x, y) = d(nd(x), y), x, y ∈ [0, 1],

3. iSc(x, y) = d(nc(x), y), x, y ∈ [0, 1],

where nc and nd are the natural negations of c and d.

Replacing the disjunction in the definitions above by an appropriate composition of

negations and the conjunction leads us to further possible definitions of implications.

Since in a bounded system the negations n, nc and nd never coincide, negations different

from n can also be used similarly to the De Morgan identity.

Definition 5.13. In a nilpotent connective system (c, d, n)

1. icSn(x, y) = n (c(x, n(y))) , x, y ∈ [0, 1],

2. icSd(x, y) = nd (c(x, nd(y))) , x, y ∈ [0, 1],

3. icSc(x, y) = nc (c(x, nc(y))) , x, y ∈ [0, 1].

where nc and nd are the natural negations of c and d.

Note that from the De Morgan identity it follows immediately that

icSn(x, y) = iSn(x, y) and as the following proposition shows, icSc is the residual implica-

tion.

Proposition 5.14. In a nilpotent connective system (c, d, n)

icSc(x, y) = f−1c [fc(y) − fc(x)] = iR(x, y), where fc is the normalized additive generator

function of c.
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Proof.

icSc(x, y) = nc (c(x, nc(y))) =

= nc
(
f−1c [fc(x) + 1− fc(y)]

)
=

= f−1c [1− (1− fc(y) + fc(x))] =

= f−1c [fc(y)− fc(x)].

5.4.1 Properties of iSn , iSd and iSc

First the formulae for the S-implications defined above are given.

Proposition 5.15. In a nilpotent connective system (c, d, n)

1. iSn(x, y) = f−1d [fc(x) + fd(y)],

2. iSd(x, y) = f−1d [1− fd(x) + fd(y)],

3. iSc(x, y) = f−1d [fd(y) + fd(nc(x))] ,

where fc and fd are the normalized additive generator functions of c and d, respectively.

Proof. All the three formulae are easy to verify.

Next, the basic properties of the S-implications in a nilpotent connective system are

stated. Note that the following results are consistent with those described in Section

2.5, Baczyński and Jayaram, [4].

Proposition 5.16. In a nilpotent connective system, iSn , iSd and iSc satisfy

1. the left neutrality property (the neutrality of truth), (LN), i.e. i(1, y) = y for

all y ∈ [0, 1],

2. the exchange principle, (EP), i.e. i (x, i(y, z)) = i (y, i(x, z)) for all x, y, z ∈
[0, 1],

3. the identity principle, (IP), i.e. i (x, x) = 1 for all x ∈ [0, 1],

4. the strong negation principle , (SN) since iS (x, 0) for all x, y ∈ [0, 1] is a strong

negation,
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5. the law of contraposition (contrapositive symmetry), (LC) with respect to the

strong negation in SN.

Proof.

1. LN holds for every S-implication (see Proposition 2.4.3, Baczyński and Jayaram,

[4]),

2. EP holds for every S-implication (see Proposition 2.4.3, Baczyński and Jayaram,

[4]),

3. IP holds as well, because of the consistency property and the use of nilpotent

operators (see Theorem 2.4.17, Baczyński and Jayaram, [4]).

4. For SN,

(a) n∗n(x) = iSn (x, 0) = d(n(x), 0) = f−1d [fd (n(x)) + 0] = n(x),

(b) n∗d(x) = iSd (x, 0) = d(nd(x), 0) = f−1d [fd (nd(x)) + 0] = nd(x),

(c) n∗c(x) = iSc (x, 0) = d(nc(x), 0) = f−1d [fd (nc(x)) + 0] = nc(x),

5. LC is trivial.

5.4.2 S-implications and the ordering property

First, the so-called weak ordering principle for implications is defined. Although the

ordering principle plays an important role, as we will see, only the weak ordering property

can be required in general.

Definition 5.17. The implication i satisfies the weak ordering principle

(WOP) if the following statement holds:

i(x, y) = 1 if and only if x ≤ τ(y),

where τ is a strictly increasing function from [0, 1]→ [0, 1] with τ(0) = 0 and τ(1) = 1.

Remark 5.18. In the terminology of Maes and De Baets, τ from Definition 5.17 is an

affirmation (see Maes and De Baets, [55]).

Remark 5.19. Note that for τ(x) = x we get the original ordering property (OP).

Henceforth I use the following notations for the composition of two negation operators.
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Definition 5.20. In a connective system (c, d, n)

τn,d(x) := n(nd(x)),

and

τc,d(x) := nc(nd(x)),

where nc and nd are the natural negations of c and d respectively.

Remark 5.21. Note that in a consistent connective system τd,n = τn,c and similarly,

τc,n = τn,d.

Proposition 5.22. In a nilpotent connective system iSd satisfies the ordering princi-

ple (OP), while iSn and iSc satisfy the weak ordering principle (WOP).

Proof.

For iSd we have the following:

iSd(x, y) = 1 if and only if f−1d [fd(nd(x)) + fd(y)] = 1,

which means that fd(nd(x)) + fd(y) ≥ 1, from which we get nd(x) ≥ nd(y), which holds

if and only if x ≤ y.

For iSc , let τ(x) = τc,d(x) = nc(nd(x)).

iSc(x, y) = 1 if and only if f−1d [fd(nc(x)) + fd(y)] = 1,

which means that fd(nc(x)) + fd(y) ≥ 1, from which we get nc(x) ≥ nd(y), so x ≤
nc(nd(y)) = τc,d(y).

Similarly, for iSn , let τ(x) = τn,d(x) = n(nd(x)).

iSn(x, y) = 1 if and only if f−1d [fd(n(x)) + fd(y)] = 1,

which means that fd(n(x)) + fd(y) ≥ 1, from which we get n(x) ≥ nd(y), so x ≤
n(nd(y)) = τn,d(y).

Next I give an example for a bounded system illustrating that iSn does not satisfy the

ordering property. For fc(x) = 1− x2; fd(x) = 1− (1− x)2;

n(x) = 1−x, there exist an x and a y for which iSn(x, y) = 1 and y < x, i.e. the ordering

principle does not hold, because iSn(x, y) = 1 if and only if

d(n(x), y) = 1.

For x = 0.5 and y = 0.4 we get

fc(0.5) + fd(0.4) = (1− 0.52) + (1− (1− 0.4)2) = 0.75 + (1− 0.36) = 1.39,

so i(0.5, 0.4) = 1 and (y < x).
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Remark 5.23. Note that the following statements are equivalent:

iSc(x, y) = 1 if and only if x ≤ y (5.3)

fc(x) + fd(x) = 1 for all x ∈ [0, 1]. (5.4)

In other words, the ordering property, (OP) never holds in a bounded system.

I show that the ordering property holds if and only if fc(x) + fd(x) = 1. We have

nc(x) ≥ nd(y). This means that the ordering property for iSc (and also similarly for iSn)

is equivalent to the followings: nc(x) ≥ nd(y) if and only if

x ≤ y.

It is easy to see that the condition above holds if and only if nd(x) = nc(x), i.e. fc(x) +

fd(x) = 1.

5.5 Comparison of implications in bounded systems

Now I prove that in a bounded system, the different types of implications considered so

far never coincide.

Proposition 5.24. In a connective system (c, d, n), any two of the implications defined

so far coincide if and only if fc(x) + fd(x) = 1, where fc and fd are the normalized

additive generator functions of c and d respectively.

Proof. It was shown in Section 4 that in a bounded system (where nc, nd and n are

different) the natural negations of the implications in question are the same only in the

case of iR and iSd , which simply means that it is sufficient to examine their equality.

Since iR satisfies OP while iSc for fc(x) + fd(x) 6= 1 does not (see Table A.7), we see

that in a bounded system they cannot be equal.

Remark 5.25. It is clear that in a  Lukasiewicz logical system

(where fc(x) + fd(x) = 1), all the implications considered in this section coincide.

From the results of sections 5.3 and 5.4, we can say that in a bounded system we have

two different implications (namely iR and iSd) that satisfy all of the properties LN−OP
(see Table A.7). Hence, the notations ic and id are used, to coincide with the additive
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generator functions fc and fd used in the formulae of the implications, respectively (see

Table A.7). Henceforth let us use the following notation for sake of simplicity.

id(x, y) := iSd(x, y) and ic(x, y) := iR(x, y). (5.5)

5.6 Min and Max operators in nilpotent connective sys-

tems

In this section I show that in a nilpotent connective system, the minimum and maximum

operators can be expressed in terms of the conjunction, the disjunction and the negation.

Proposition 5.26. c (x, ic(x, y)) = Min(x, y), x, y ∈ [0, 1]

Proof. c (x, ic(x, y)) = f−1c [fc(x) + [fc(y)− fc(x)]] .

For x ≤ y fc(x) ≥ fc(y), which means that c [x, ic(x, y)] = x.

Similarly, for x ≥ y fc(x) ≤ fc(y), which means that c (x, ic(x, y)) = y.

Proposition 5.27. n (c (n(x), ic (n(x), n(y)))) = Max (x, y), x, y ∈ [0, 1]

Proof. The statement follows immediately from the previous proposition (or also can

been proved similarly).

5.7 Overview

In Table A.7, the results concerning the properties of each implication are listed. For

rational additive generator functions, the implications have been plotted in Figures 5.1

to 5.3. The formulae of the additive generators and the implications are summarized in

Tables A.7 and A.4.
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(a) ic for νc = 0.4 (b) ic for νc = 0.6

(c) id for νd = 0.3 (d) id for νd = 0.6

Figure 5.1: ic and id implications for rational generators
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(a) νc = 0.7 and νd = 0.3 (b) νc = 0.4 and νd = 0.3

Figure 5.3: Sc-implications for rational generators

(a) νc = 0.6 and νd = 0.4 (b) νc = 0.4 and νd = 0.3

Figure 5.2: Sn-implications for rational generators
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Thesis 2.3.

Both R- and S-implications with respect to the three naturally derived negations

of the bounded system are considered. It is shown that these implications never

coincide in a bounded system, as the condition of coincidence is equivalent to the

coincidence of the negations, which would lead to  Lukasiewicz logic. The formulae

and the basic properties of four different types of implications are given, two of which

fulfill all the basic properties generally required for implications. A wide range of

examples is also presented. The concept of a weak ordering property is defined.

Two different implications, ic and id are introduced, both of which fulfill all the

basic features generally required for implications.



Chapter 6

Equivalence Operators in

Bounded Systems

6.1 Motivation and scope

The theory of fuzzy relations is a generalization of that of crisp relations of a set. Zadeh

introduced the concept of fuzzy relations in [82] and the concept of fuzzy similarity

relations in [83]. Since then, many authors studied fuzzy equivalence relations [15,

16, 60, 61] and it has proven to be useful in different contexts such as fuzzy control,

approximate reasoning and fuzzy cluster analysis. As the research progressed, it became

clear that any given relation may or may not satisfy a particular requirement for the

fuzzy equivalence relation introduced by Zadeh.

As shown by Gupta and Gupta, [44], the condition µ(x, x) = 1 for ∀x ∈ X is too strong

for defining a fuzzy reflexive relation µ on a set X (see also Yeh, [81] and Chon, [17]).

Therefore, new types of fuzzy reflexive relations were needed to be introduced. Yeh, [81],

defined the concept of ε-reflexive fuzzy relations and weakly reflexive fuzzy relations by

weakening the standard reflexive fuzzy relation to µ(x, x) ≥ ε > 0. Gupta and Gupta,

[44], introduced G-reflexive fuzzy relations as a generalization of reflexive fuzzy relations.

While discussing fuzzy transitive relations, different approaches have been adopted. The

first type of transitivity is that introduced by Zadeh in [83], and the second type of tran-

sitivity is the so-called T-transitivity of fuzzy relations, defined with the help of the

t-norm. In [12, 13, 18, 24], fuzzy T- transitivity has been deeply studied. Recently,

Mesiar et al., [59], have noticed that the associativity of a t-norm is superfluous in the

above context, especially since we never have to aggregate more than two arguments.

Thus, they have substituted a conjunctor instead of a t-norm. An alternative approach

64
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based on implications has been considered by Schmechel and Thiele, [67, 72]. Jayaram

and Mesiar, [47], studied I-transitivity, where the implicator I is nothing more than a

binary operator satisfying the boundary conditions of an implication. Another type of

transitivity, the so-called ε-fuzzy transitivity, has been introduced by Beg and Ashraf,

[9]. Ali et al., [3], introduced the concept of (α, β)-fuzzy reflexive relations, as a general-

ization of fuzzy reflexive relation as well as of fuzzy G-reflexive relations. More general

types of fuzzy symmetric relation, a (α, β)-fuzzy symmetric relation and (α, β)-fuzzy

transitive relations, were also studied. The concepts of (α, β)-fuzzy reflexive, symmetric

and transitive relations naturally lead to the concept of (α, β)-fuzzy equivalence rela-

tions on a set. De Baets and Mesiar, [23], introduced the concept of a T-partition as a

generalization of that of a classical partition.

Although the mentioned list of authors is by no means complete, it gives us a slight idea

about the importance of the concept of fuzzy equivalence relations in different contexts.

Now I resolve a paradox of the equivalence relation by aggregating the implication-based

equivalence and its dual operator.

In Section 4, it was shown that a consistent connective system generated by nilpotent

operators is not necessarily isomorphic to the  Lukasiewicz system. Using more than

one generator function, consistent nilpotent connective systems can be obtained in a

significantly different way with three naturally derived negation operators. As the class

of nilpotent t-norms has preferable properties that make them useful in constructing

logical structures, the advantages of such systems are obvious (see Klement and Navara,

[50]). Due to the fact that all continuous Archimedean (i.e. representable) nilpotent t-

norms are isomorphic to the  Lukasiewicz t-norm (see Grabisch et al., [43]), the nilpotent

systems studied earlier were all isomorphic to the well-known  Lukasiewicz logic. Those

consistent connective systems which are not isomorphic to  Lukasiewicz logic are called

bounded systems (see Dombi and Csiszár, [27]). Based on the results of Section 4 and

5, my focus is now on equivalences in bounded systems.

This section is organized as follows. After some preliminaries in Section 6.2, I define and

examine the implication-based equivalences in bounded systems in Section 6.3. Next,

the so-called dual equivalences are introduced and examined in Section 6.4. Using the

arithmetic mean operator examined in Section 6.5, the aggregated equivalences are intro-

duced and studied in Section 6.6. I show that unlike the other two types, the aggregated

equivalences are threshold transitive and associative as well. In Section 6.7, for further

applications as in image processing, the overall equivalence of two grey level images was

defined, and an important semantic meaning of the aggregated equivalences was given.

Finally, in Section 6.8, I summerize my key results.

The results of this chapter can be found in [28].
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6.2 Preliminaries

There exist several approaches to the definition of equivalences. Equivalences can be

considered as binary relations [12, 15, 16, 17, 60, 61]. Given a non-empty set X, a subset

σ of X × X is called a binary relation on X. A binary relation σ on X is reflexive if

(x, x) ∈ σ, ∀x ∈ X; σ is symmetric if (x, y) ∈ σ implies (y, x) ∈ σ, ∀x, y ∈ X; σ is

transitive if (x, y) ∈ σ and (y, z) ∈ σ imply (x, z) ∈ σ, ∀x, y, z ∈ X. A binary relation is

called an equivalence relation if it is reflexive, symmetric and transitive. Recall that a

fuzzy subset µ of X is a mapping µ : X → [0, 1].

Definition 6.1. (Murali, [60]) A fuzzy binary relation on X and Y is a fuzzy subset

µ of X × Y . A fuzzy binary relation on a set X is a fuzzy subset µ of X × X, i.e. a

function µ : X ×X → [0, 1].

Definition 6.2. (Murali, [60]) A fuzzy relation µ on a set X is said to be reflexive if

µ(x, x) = 1, ∀x ∈ X, and symmetric if µ(x, y) = µ(y, x), ∀x, y ∈ X.

Definition 6.3. (Zadeh, [83]) A fuzzy relation µ on a set X is said to be fuzzy transitive

if

µ(x, z) ≥ sup
y∈X
{min(µ(x, y), µ(y, z))} ∀(x, y), (y, z) ∈ X ×X.

Definition 6.4. (Ali et al.)[3] A fuzzy relation µ on X is a fuzzy equivalence relation if

it is a reflexive, symmetric and fuzzy transitive relation on X.

Now I consider an equivalence as a connective. I give the definition of an equivalence as

a binary operation on the unit interval according to Fodor and Roubens.

Definition 6.5. (Fodor and Roubens, [38]) A function e : [0, 1]2 → [0, 1] is called

equivalence if it satisfies the following conditions:

1. Symmetry, i.e. e(x, y) = e(y, x) for ∀x, y ∈ [0, 1],

2. Compatibility, i.e. e(0, 1) = e(1, 0) = 0 and e(0, 0) = e(1, 1) = 1,

3. Reflexivity, i.e. e(x, x) = 1 for ∀x ∈ [0, 1],

4. Monotonicity, i.e. x ≤ x′ ≤ y′ ≤ y ⇒ e(x, y) ≤ e(x′, y′).

Definition 6.6. An operator e(x, y) : [0, 1]2 → [0, 1] is said to be

1. T-transitive with respect to a t-norm T , if ∀x, y, z ∈ [0, 1] : T (e(x, y), e(y, z)) ≤
e(x, z),
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2. threshold transitive with respect to a threshold ν (0 < ν < 1), if e(x, y) ≥ ν and

e(y, z) ≥ ν together imply e(x, z) ≥ ν for ∀x, y, z ∈ [0, 1],

3. invariant with respect to a negation n, if e(x, y) = e(n(x), n(y)) for ∀x, y ∈ [0, 1],

4. associative, if e(x, e(y, z)) = e(e(x, y), z)) holds for ∀x, y, z ∈ [0, 1].

6.3 Equivalences in bounded systems

Let us now consider a nilpotent connective system (c, d, n) (see Section 4.3) and let us

denote the normalized generator functions of c and d by fc and fd, respectively. Using the

above-defined implications ic and id, we can define two different types of equivalences.

Definition 6.7. The conjunctive and disjunctive equivalence operators are defined as

follows.

ec(x, y) = c (ic(x, y), ic(y, x))

ed(x, y) = nd (d (nd (id(x, y)) , nd (id(y, x))))

Proposition 6.8. In a bounded system,

ec(x, y) = f−1c [|fc(x)− fc(y)|]

and similarly,

ed(x, y) = f−1d [1− |fd(x)− fd(y)|] .

Proof.

ec(x, y) = f−1c [[fc(y)− fc(x)] + [fc(x)− fc(y)]] .

If x < y, then fc(x) ≥ fc(y), which means that we have f−1c [fc(x)− fc(y)] . Similarly,

if y > x, then fc(x) ≤ fc(y) and we get f−1c [fc(y)− fc(x)] . Similarly for ed, by using

nd (id(y, x)) = f−1d [fd(y)− fd(x)] , we obtain

nd(ed(x, y)) = f−1d [[fd(x)− fd(y)] + [fd(y)− fd(x)]] = f−1d [|fd(x)− fd(y)|] .

Therefore,

ed(x, y) = f−1d [1− |fd(x)− fd(y)|] .

Remark 6.9. Since 0 ≤ |fc(x) − fc(y)| ≤ 1 and 0 ≤ 1 − |fd(x) − fd(y)| ≤ 1, the cutting

function can be omitted here. For conceptual reasons, I prefer to leave it in all of the

formulae.
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(a) ec with νc = 0.3 (b) ed with νd = 0.3

Figure 6.1: ec(x, y) and ed(x, y) for rational generators

6.3.1 Properties of ec(x, y) and ed(x, y)

Next, I will examine the chief properties of ec(x, y) and ed(x, y) and show that they

coincide if and only if the connective system is a  Lukasiewicz system.

Proposition 6.10. Let νc and νd be the fixpoints of nc and nd respectively. The opera-

tors, ec(x, y) and ed(x, y) have the following properties:

1. Compatibility (see Definition 6.5).

2. Symmetry (see Definition 6.5).

3. Reflexivity (see Definition 6.5).

4. Monotonicity (see Definition 6.5).

5. ec is T-transitive with respect to the conjunction c (see Definition 6.6) and simi-

larly, ed is T-transitive with respect to the t-norm generated by 1− fd(x).

6. ec and ed are not threshold transitive (see Definition 6.6) with respect to νc and

νd.

7. Invariance (see Definition 6.6) with respect to nc and nd.

8. ec(1, x) = ec(1, x) = x, ed(0, x) = nd(x), and similarly, ec(0, x) = nc(x).

9. ec(x, y) = 0 if and only if x, y ∈ 0, 1 and x 6= y. Similarly, ed(x, y) = 0 if and only

if x, y ∈ 0, 1 and x 6= y.
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10. nd(ed(x, y)) = ed(nd(x), y)) if and only if x ∈ {0, 1} or y ∈ {0, 1} and nc(ec(x, y)) =

ec(nc(x), y)) if and only if x ∈ {0, 1} or y ∈ {0, 1}.

11. ec(x, νc) ≥ νc and similarly, ed(x, νd) ≥ νd.

Proof. 1. From f−1c (0) = 1, it follows that ec(1, 1) = ec(0, 0) = 1. From fc(1) = 0,

fc(0) = 1 and f−1c (1) = 0, we get that ec(0, 1) = ec(1, 0) = 0. Similarly, from

f−1d (1) = 1, it follows that ed(1, 1) = ed(0, 0) = 1. From fd(1) = 1, fd(0) = 0 and

f−1d (0) = 0, we get that ed(0, 1) = ed(1, 0) = 0.

2. Trivial.

3. ec(x, x) = f−1c (0) = 1 and ed(x, x) = f−1d (1) = 1.

4. We have to show that from x ≤ x′ ≤ y′ ≤ y it follows that ec(x, y) ≤ ec(x′, y′). Us-

ing the monotonicity of fc(x) and f−1c (x), the statement follows immediately. For

ed, we have to show that from x ≤ x′ ≤ y′ ≤ y it follows that ed(x, y) ≤ ed(x′, y′).
Using the monotonicity of fd(x) and f−1d (x) the statement follows immediately.

5. By using the decreasing property of f−1c and the triangle inequality, we obtain

c(e(x, y), e(y, z)) = f−1c (|fc(x)−fc(y)|+|fc(y)−fc(z)|) ≤ f−1c (|fc(x)−fc(z)|) = e(x, z).

The proof is similar for ed as well.

6. ec(x, y) ≥ νc iff |fc(x)−fc(y)| ≤ 1
2 and similarly, ec(y, z) ≥ νc iff |fc(y)−fc(z)| ≤ 1

2 .

Obviously, these conditions are not sufficient for |fc(x) − fc(z)| ≤ 1
2 . Similarly,

ed(x, y) ≥ νd iff 1 − |fd(x) − fd(y)| ≥ 1
2 and similarly, ed(y, z) ≥ νd iff |fd(y) −

fd(z)| ≥ 1
2 . Obviously, these conditions are not sufficient for 1−|fd(x)−fd(z)| ≥ 1

2 .

7. ec (nc(x), nc(y)) = f−1c [|fc(nc(x))− fc(nc(y))|] = f−1c [|1− fc(x)− (1− fc(y))|] =

f−1c [|fc(y)− fc(x)|] = ec(x, y). Similarly, ed (nd(x), nd(y)) = f−1d [|fd(nd(x))− fd(nd(y))|] =

f−1d [|1− fd(x)− (1− fd(y))|] = f−1d [|fd(y)− fd(x)|] = ed(x, y).

8. Using the fact that fc(1) = 0, we get ec(1, x) = f−1c [|fc(1)− fc(x)|] = x.

Similarly, using the fact that fc(0) = 1 and that 0 ≤ fc(x) ≤ 1 for ∀x ∈ [0, 1], we get

ec(0, x) = f−1c [|fc(0)− fc(x)|] = nc(x). For ed, using the fact that fd(1) = 1 and

that 0 ≤ fd(x) ≤ 1 for ∀x ∈ [0, 1] we get ed(1, x) = f−1d [1− |fd(1)− fd(x)|] = x.

From fd(0) = 0 , we get ed(0, x) = f−1d [1− |fd(0)− fd(x)|] = nd(x).

9. If ec(x, y) = 0, then |fc(x) − fc(y)| = 1, from which x, y ∈ 0, 1 and x 6= y. Going

in the opposite direction is trivial.
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10. nc(ec(x, y)) = f−1c (1− |fc(x)− fc(y)|) and ec(nc(x), y)) = f−1c (|1− fc(x)− fc(y)|).
Considering the four cases and using the monotonicity of fc(x), we get that x ∈
{0, 1} or y ∈ {0, 1}. The proof is similar for ed(x, y) as well.

11. Using the monotonicity property of fc(x) and the fact that fc(νc) = 1
2 , we get

ec(x, νc) = f−1c [|fc(x)− fc(νc)|] = f−1c
[
|fc(x)− 1

2 |
]
≥ νc, since 0 ≤

[
|fc(x)− 1

2 |
]
≤

1
2 . Similarly, using the monotonicity property of fd(x) and the fact that fd(νd) = 1

2 ,

we get

ed(x, νd) = f−1d [1− |fd(x)− fd(νd)|] = f−1d

[
1− |fd(x)− 1

2
|
]
≥ νd,

since 1
2 ≤ 1− |fd(x)− 1

2 | ≤ 1.

Proposition 6.11. If x, y > νc or x, y < νc, then ec(x, y) > νc. Similarly, if x, y > νd

or x, y < νd, then ed(x, y) > νd.

Proof. If x, y > νc, then fc(x), fc(y) < 1
2 , so |fc(x) − fc(y)| < 1

2 , which means that

ec(x, y) > νc. Similarly, if x, y < νc, then fc(x), fc(y) > 1
2 , so |fc(x)− fc(y)| < 1

2 , which

means that ec(x, y) > νc. For ed, if x, y > νd, then fd(x), fd(y) > 1
2 , so |fd(x)− fd(y)| <

1
2 , which means that ed(x, y) > νd. Similarly, if x, y < νd, then fd(x), fd(y) < 1

2 , so

|fd(x)− fd(y)| < 1
2 , which means that ed(x, y) > νd.

Remark 6.12. ec and ed are not associative.

Proof. A possible counterexample might be the case of rational generators with νc = 0.6

and νd = 0.3, x = 0.3, y = 0.4 and y = 0.5. In this case we get ec(x, ec(y, z)) ≈ 0.39,

ec(ec(x, y), z) ≈ 0.62, while for ed(x, ed(y, z)) ≈ 0.38 and ed(ed(x, y), z) ≈ 0.64.

Proposition 6.13. In a connective system the above-defined equivalences ec(x, y) and

ed(x, y) coincide if and only if fc(x) + fd(x) = 1 (or equivalently nc = nd, i.e. in

a  Lukasiewicz system), where fc and fd are the normalized generation function of the

conjunction and disjunction operators, respectively.

Proof. 1. If fc(x) + fd(x) = 1, then fc(x) = 1− fd(x) and f−1c (x) = f−1d (1−x), from

which we get ec(x, y) = f−1c [|fc(x)− fc(y)|] = f−1d [1− |fd(x)− fd(y)|] = ed(x, y).
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2. If ec(x, y) = ed(x, y), then in particular ec(0, x) = ed(x, 0), which means that

nc(x) = nd(x) must hold for all x ∈ [0, 1].

6.4 Dual equivalences

In classical logic, the equivalence operator has the following important property as well:

e(x, n(x)) = 0. As it is well known, demanding e(x, x) = 1 and e(x, n(x)) = 0 at the

same time gives rise to a paradox.

Lemma 6.14. There is no equivalence relation which fulfils both e(x, x) = 1 and

e(x, n(x)) = 0.

Proof. Let ν be the fix point of the negation n(x). Then 1 = e(ν, ν) = e(ν, n(ν)) = 0,

which is a contradiction.

However, in practical applications the property e(x, n(x)) = 0 might be of even greater

importance than reflexivity (see Dombi, [26]). Motivated by this demand, I define new

types of operators below.

First, the so-called dual equivalence is defined, denoted by ē. Let us now consider a

nilpotent connective system (c, d, n) and let us denote the normalized generator functions

of c and d by fc and fd, respectively.

Definition 6.15. The dual equivalence operations are defined as follows.

ēc(x, y) = nc (ec(x, nc(y)) and

ēd(x, y) = nd (ed(x, nd(y)) .

Proposition 6.16. In a bounded system the equivalence operators have the form

ēc(x, y) = f−1c [1− |fc(x) + fc(y)− 1|] and

ēd(x, y) = f−1d [|fd(x) + fd(y)− 1|] .

Proof. The formulae can be derived from direct calculation.

Remark 6.17. Since 0 ≤ |fc(x) + fc(y) − 1| ≤ 1 and 0 ≤ |fd(x) + fd(y) − 1| ≤ 1, the

cutting function can be omitted here. For conceptual reasons, I prefer to leave it in all

of the formulae.
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(a) ēc with νc = 0.6 (b) ēd with νd = 0.6

Figure 6.2: ēc(x, y) and ēd with rational generators

6.4.1 Properties of ēd and ēc

Next, the main properties of the dual equivalences are studied.

Proposition 6.18. Let νc and νd, be the fixpoints of nc and nd, respectively. Then the

operators ēc(x, y) and ēd(x, y) have the following properties:

1. Compatibility (see Definition 6.5).

2. Symmetry (see Definition 6.5).

3. ēc(x, y) and ēd(x, y) are not reflexive, but ēc(x, nc(x)) = ēd(x, nd(x)) = 0.

4. ēc(x, y) and ēd(x, y) are not monotonic.

5. ēc is T-transitive with respect to the conjunction c (see Definition 6.6) and simi-

larly, ēd is T-transitive with respect to the t-norm generated by 1− fd(x).

6. ēc(x, y) and ēd(x, y) are not threshold transitive with respect to νc and νd (see

Definition 6.6).

7. Invariance with respect to nc and nd (see Definition 6.6).

8. ēc(1, x) = ēc(1, x) = x

ēd(0, x) = nd(x), and similarly, ēc(0, x) = nc(x).

9. ēc(x, y) = 0 if and only if x = nc(y) and similarly, ēd(x, y) = 0 if and obly if

x = nd(y).
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10. nd(ēd(x, y)) = ēd(nd(x), y)) if and only if x ∈ {0, 1} or y ∈ {0, 1} and nc(ēc(x, y)) =

ēc(nc(x), y)) if and only if x ∈ {0, 1} or y ∈ {0, 1}.

11. ēc(x, νc) ≤ νc and ēd(x, νd) ≤ νd.

Proof. 1. Using the formulae given in Proposition 6.16, compatibility is trivial.

2. Using the formulae given in Proposition 6.16, symmetry is trivial as well.

3. Follows from direct calculation. Since ēc(x, nc(x)) = 0 holds for the fixpoint νc of

the nc as well, reflexivity cannot hold. Similarly for ēd.

4. A counterexample might be the case of rational generators with νc = 0.3. ēc(0.1, 0.6) ≈
0.75, while ēc(0.4, 0.5) ≈ 0.68, and similarly for ēd(0.4, 0.6) ≈ 0.21, while ēd(0.45, 0.5) ≈
0.19.

5. By using the decreasing property of f−1c and the fact that |a+b−1|+|b+c−1|−1 ≤
|a+ c− 1| holds for all a, b, c ∈ [0, 1], we obtain

c(ēc(x, y), ēc(y, z)) = f−1c (2− |fc(x) + fc(y)− 1| − |fc(y) + fc(z)− 1|) ≤

≤ f−1c (1− |fc(x) + fc(z)− 1|) = ēc(x, z).

The proof is similar for ēd as well.

6. A possible counterexample might be for rational generators with νc = 0.3, x =

0.85, y = 0.9 and z = 0.87, or for νd = 0.3, x = 0.7, y = 0.9 and z = 0.6.

7. ēc(nc(x), nc(y)) = 1 − f−1c [|1− fc(x) + 1− fc(y)− 1|] = ēc(x, y) and similarly,

ēd(nd(x), nd(y)) = f−1d [|1− fd(x) + 1− fd(y)− 1|] = ēd(x, y).

8. Using the fact that fc(1) = 0, we get ēc(1, x) = f−1c [1− |fc(1) + fc(x)− 1|] = x.

Similarly, using the fact that fc(0) = 1 and that 0 ≤ fc(x) ≤ 1 for ∀x ∈
[0, 1], we get ēc(0, x) = f−1c [1− |fc(0) + fc(x)− 1|] = nc(x). For ed, using the

fact that fd(1) = 1 and that 0 ≤ fd(x) ≤ 1 for ∀x ∈ [0, 1] we get ēd(1, x) =

f−1d [|fd(1) + fd(x)− 1|] = x. Using the fact that fd(0) = 0 , we get ēd(0, x) =

f−1d [|fd(0)− fd(x)− 1|] = nd(x).

9. Using the fact that fc(nc(x)) = 1 − fc(x) and fd(nd(x)) = 1 − fd(x), we get

ēc(x, nc(x)) = 1−f−1c (0) = 0 and similarly ēd(x, nd(x)) = f−1d (0) = 0. If ēc(x, y) =

0, then fc(x) + fc(y) = 1, from which fc(x) = 1− fc(y), i.e. x = f−1c [1− fc(y)] =

nc(y). Similarly, if ēd(x, y) = 0, then fd(x) + fd(y) = 1, from which fd(x) =

1− fd(y), i.e. x = f−1d [1− fd(y)] = nd(y).
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10. nc(ēc(x, y)) = f−1c (1−|fc(x)+fc(y)−1|) and ēc(nc(x), y)) = f−1c (1−|fc(x)−fc(y)|).
Considering the four cases and using the monotonicity of fc(x), we get that x ∈
{0, 1} or y ∈ {0, 1}. The proof for ed(x, y) follows in a similar way.

11. Using the strict monotonicity of fc, fd and their inverse functions, and the fact

that fc(νc) = fd(νd) = 1
2 , the proof can be found by direct calculation.

Remark 6.19. ēc(x, y) and ēd(x, y) are not associative.

Proof. It is easy to find a counterexample, e.g. for rational generators with νc = 0.3,

ēc(0.3, ēc(0.4, 0.5)) ≈ 0.58, while ēc(ēc(0.3, 0.4), 0.5) ≈ 0.16.

Similarly, ēd(0.1, ēd(0.5, 0.7)) ≈ 0.12, while ēd(ēc(0.1, 0.5), 0.7) ≈ 0.03.

Proposition 6.20. In a connective system the above-defined equivalences ēc(x, y) and

ēd(x, y) coincide if and only if fc(x) + fd(x) = 1 (or equivalently nc = nd, i.e. in

a  Lukasiewicz system), where fc and fd are the normalized generation function of the

conjunction and disjunction operators, respectively.

Proof. 1. If fc(x) + fd(x) = 1, then fc(x) = 1− fd(x) and f−1c (x) = f−1d (1−x), from

which we get ēc(x, y) = f−1c [1− |fc(x) + fc(y)− 1|] = f−1d [|1− fd(x)− fd(y)|] =

ed(x, y).

2. If ec(x, y) = ed(x, y), then in particular ēc(0, x) = ēd(x, 0), which means that

nc(x) = nd(x) must hold for all x ∈ [0, 1].

6.5 Arithmetic mean operators in bounded systems

Let us define the so-called arithmetic mean operators in a bounded system.

Definition 6.21. In a connective system (c, d, n)

m(α)
c (x, y) := f−1c [α · fc(x) + (1− α) · fc(y)]

and similarly,

m
(α)
d (x, y) := f−1d [α · fd(x) + (1− α) · fd(y)] ,
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where fc and fd are the normalized generator functions of the conjunction and disjunc-

tion operators, respectively, 0 < α < 1. mc and md are called weighted arithmetic mean

operators.

Proposition 6.22. m
(α)
c (x, y) and m

(α)
d (x, y) satisfy the self-De Morgan property with

respect to nc and nd respectively, i.e.

nc

(
m(α)
c (x, y)

)
= m(α)

c (nc(x), nc(y))

and similarly,

nd

(
m

(α),
d (x, y)

)
= m

(α),
d (nd(x), nd(y)) .

Proof.

nc

(
m(α)
c (x, y)

)
= f−1c [1− (α · fc(x) + (1− α) · fc(y))] =

= f−1c [α · (1− fc(x)) + (1− α) · (1− fc(y)))] = m(α)
c (nc(x), nc(y)) .

For md, the proof is similar.

6.6 Aggregated equivalences

Next, I define a new type of operator derived from the equivalences defined above. This

new operator is a compromise between the normal and the dual equivalences, i.e. it fulfils

neither e(x, x) = 1 nor e(x, n(x)) = 0, but it has a nice property, namely e(ν, ν) = ν. If

we recall that the values represent uncertainities and ν, as the fix point of the negation

means that we hesitate whether the objects A and B have the particular property or not,

it is also sensible to remain unsure about their equivalence value. This new operator

will be called the aggregated equivalence operator.

Definition 6.23. The aggregated equivalence operators are defined as follows.

e∗c(x, y) = m
1
2
c (ec(x, y), ēc(x, y)) ,

e∗d(x, y) = m
1
2
d (ed(x, y), ēd(x, y)) .

Proposition 6.24. The aggregated equivalence operator in a bounded system

e∗c(x, y) = f−1c

[
1

2
|fc(x)− fc(y)|+ 1

2
(1− |fc(x) + fc(y)− 1|)

]
and

e∗d(x, y) = f−1d

[
1

2
(1− |fd(x)− fd(y)|) +

1

2
|fd(x) + fd(y)− 1|

]
.
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Proof. Follows from direct calculation.

Proposition 6.25. The conjunctive aggregated equivalence operator has the following

property.

e∗c(x, y) =


nc(y), if x ≤ y ≤ nc(x)

x, if nc(y) ≤ x ≤ y
nc(x), if y ≤ x and y ≤ nc(x)

y, if y ≤ x and y ≥ nc(x).

Proof. 1. If x ≤ y ≤ nc(x), then using the monotonicity of fc and the fact that

nc(x) = f−1c (1− fc(x)), we get fc(x) ≥ fc(y) and fc(x) + fc(y) ≥ 1. In this case it

means that e∗c(x, y) = n(y).

2. If nc(y) ≤ x ≤ y, then using the monotonicity of fc and the fact that nc(x) =

f−1c (1 − fc(x)) we get fc(x) ≥ fc(y) and fc(x) + fc(y) ≤ 1. In this case it means

that e∗c(x, y) = x.

3. If y ≤ x and y ≤ nc(x), then we get fc(x) ≤ fc(y) and fc(x) + fc(y) ≥ 1. In this

case e∗c(x, y) = nc(x) follows.

4. If y ≤ x and y ≥ nc(x), then fc(x) ≤ fc(y) and fc(x) + fc(y) ≤ 1. In this case it

means that e∗c(x, y) = y.

Proposition 6.26. The disjunctive aggregated equivalence operator has the following

property.

e∗d(x, y) =


nd(y), if x ≤ y and x ≤ nd(y)

x, if nd(y) ≤ x ≤ y
nd(x), if y ≤ x and x ≤ nd(y)

y, if y ≤ x and nd(y) ≤ x.

Proof. 1. If x ≤ y and x ≤ nd(y), then using the monotonicity of fd and the fact that

nd(x) = f−1d (1 − fd(x)) we get fd(x) ≤ fd(y) and fd(x) + fd(y) ≤ 1. In this case

it follows that e∗d(x, y) = nd(y).

2. If nd(y) ≤ x ≤ y, then we get fd(x) ≤ fd(y) and fd(x) + fd(y) ≥ 1. In this case it

follows that e∗d(x, y) = x.

3. If y ≤ x and x ≤ nd(y), then we get fd(x) ≥ fd(y) and fd(x) + fd(y) ≤ 1. In this

case it follows that e∗d(x, y) = nd(x).
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Figure 6.3: The domain of aggregated equivalences

(a) e∗c (b) e∗d

Figure 6.4: Aggregated equivalences with rational generators with ν = 0.3

4. If y ≤ x and nd(y) ≤ x, then fd(x) ≥ fd(y) and fd(x) + fd(y) ≥ 1. In this case it

follows that e∗d(x, y) = y.

6.6.1 Properties of the aggregated equivalence operator

Next, the main properties of the aggregated equivalences are examined. In Propositions

6.27 and 6.31, I will show that unlike the above-mentioned equivalences, the aggregated
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equivalences are threshold transitive and associative as well.

Proposition 6.27. Let νc and νd be the fixpoints of nc and nd, respectively. The aggre-

gated equivalences have the following properties:

1. Compatibility (see Definition 6.5).

2. Symmetry (see Definition 6.5).

3. The aggregated equivalences are not reflexive, but e∗c(νc, νc) = νc and e∗d(νd, νd) = νd

hold. In addition,

e∗c(x, x) =

{
nc(x), if x ≤ νc
x, if x ≥ νc.

and similarly,

e∗d(x, x) =

{
nd(x), if x ≤ νd
x, if x ≥ νd.

4. Monotonicity (see Definition 6.5).

5. e∗c is T-transitive with respect to the conjunction c (see Definition 6.6) and simi-

larly, e∗d is T-transitive with respect to the t-norm generated by 1− fd(x).

6. The aggregated equivalences are threshold transitive with respect to νc and νd (see

Definition 6.6).

7. Invariance with respect to nc and nd (see Definition 6.6).

8. e∗c(1, x) = e∗d(1, x) = x, e∗d(0, x) = nd(x), and similarly, e∗c(0, x) = nc(x).

9. e∗c(x, y) = 0 if and only if x, y ∈ 0, 1 and x 6= y. Similarly for e∗d.

10. nc(e
∗
c(x, y)) = e∗c(nc(x), y)) if and only if x ∈ {0, 1} or y ∈ {0, 1} and nd(e

∗
d(x, y)) =

e∗d(nd(x), y)) if and only if x ∈ {0, 1} or y ∈ {0, 1}.

11. e∗c(x, νc) = νc and similarly, e∗d(x, νd) = νd.

Proof. 1. Follows from direct calculation.

2. Trivial.

3. The statement follows from Proposition 6.25 and 6.26.

4. I show monotonicity for e∗c . For e∗d the proof is similar. If x ≤ x′ ≤ y′ ≤ y, then

by Proposition 6.25 we have to consider two cases.

(a) y ≤ nc(x). In this case e∗c(x, y) = nc(y).
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i. If y′ ≤ nc(x
′), then e∗c(x

′, y′) = nc(y
′), which means that e∗c(x, y) ≤

e∗c(x
′, y′).

ii. If y′ ≥ nc(x
′), then e∗c(x

′, y′) = x′ and nc(y) ≤ nc(y
′) ≤ x′, so e∗c(x, y) ≤

e∗c(x
′, y′).

(b) y ≥ nc(x). In this case e∗c(x, y) = x.

i. If y′ ≥ nc(x′), then e∗c(x
′, y′) = x′, which means that e∗c(x, y) ≤ e∗c(x′, y′).

ii. If y′ ≤ nc(x
′), then e∗c(x

′, y′) = nc(y
′) and nc(y

′) ≥ x′ ≥ x, so e∗c(x, y) ≤
e∗c(x

′, y′).

5. By using the decreasing property of f−1c and the fact that |a− b|− |a+ b−1|+ |b−
c| − |b+ c− 1|+ 1 ≥ |a− c| − |a+ c− 1| holds for all a, b, c ∈ [0, 1], the statement

follows from direct calculation. The proof is similar for e∗d as well.

6. I show the threshold transitivity for e∗c . For e∗d, the proof is similar.

The condition e∗c(x, y) ≥ νc is equivalent to the following inequality.

f−1c

[
1

2
|fc(x)− fc(y)|+ 1

2
(1− |fc(x) + fc(y)− 1|)

]
≥ νc,

which means that

|fc(x)− fc(y)| ≤ |fc(x) + fc(y)− 1|.

This means that either fc(x), fc(y) ≤ 1
2 , or fc(x), fc(y) ≥ 1

2 must hold, i.e. either

x, y ≥ νc, or x, y ≤ νc.

Together with the condition e∗c(y, z) ≥ νc, we also have that y, z ≥ νc, or y, z ≤
νc, from which we easily get that either x, z ≥ νc, or x, z ≤ νc must hold, i.e.

e∗c(x, z) ≥ νc.

7. Follows from direct calculation.

8. Follows from the properties of ec, ēc, ed, and ēd.

9. The statement follows from propositions 6.25 and 6.26.

10. Follows from direct calculation.

11. e∗c(x, νc) = f−1c
[
1
2 |fc(x)− 1

2 |+
1
2

(
1− |fc(x)− 1

2 |
)]

= f−1c
(
1
2

)
= νc. Similarly for

e∗d as well.

Remark 6.28. Note that from Proposition 3, it follows immediately that e∗c(x, x) ≥ νc

and similarly for e∗d as well.
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Proposition 6.29. e∗c(x, y) > νc if and only if x, y > νc or x, y < νc, e
∗
c(x, y) = νc if

and only if x = νc or y = νc, and e∗c(x, y) < νc otherwise. Similarly for e∗d(x, y).

Proof. The statement readily follows from propositions 6.25 and 6.26.

Remark 6.30. Note that e∗c and e∗d considered as fuzzy binary relations on [0,1], are both

c-transitive (see page 53, Fodor and Roubens, [38]).

Proposition 6.31. e∗c and e∗d are associative.

Proof. Let us consider e∗d(x, y). First, I will show that associativity holds in the case

where fd(x) = 1 − x. Let us use the following notation for the disjunctive aggregated

equivalence for fd(x) = 1− x.

L(x, y) := e∗d(x, y) =
1

2
(|x+ y − 1| − |x− y|+ 1) .

It can be shown that

L(x, y) = min(max(1− x, y),max(x, 1− y)).

From this, we get

L(x, L(y, z)) = min(max(x, y, z),max(x, 1−y, 1−z),max(1−x, y, 1−z),max(1−x, 1−y, z)) =

= L(L(x, y), z),

which means that L(x, y) is associative. In particular, for an arbitrary generator function

fd,

f−1d (L(fd(x), L(fd(y), fd(z)))) = f−1d (L(L(fd(x), fd(y)), fd(z)))

also holds. Since

e∗d(x, y) = f−1d

[
1

2
(1− |fd(x)− fd(y)|) +

1

2
|fd(x) + fd(y)− 1|

]
= f−1d (L(fd(x), fd(y))) ,

associativity of e∗d(x, y) is proved. The proof for e∗c is similar as well.

Proposition 6.32. In a connective system, the above-defined equivalences e∗c(x, y) and

e∗d(x, y) coincide if and only if fc(x) + fd(x) = 1 (or equivalently nc = nd, i.e. in

a  Lukasiewicz system), where fc and fd are the normalized generation function of the

conjunction and disjunction operators, respectively.



Chapter 6. Equivalence Operators in Bounded Systems 81

Proof. 1. If fc(x)+fd(x) = 1, then using the fact that fc(x) = 1−fd(x) and f−1c (x) =

f−1d (1− x), we get e∗c(x, y) = e∗d(x, y).

2. If e∗c(x, y) = e∗d(x, y), then in particular e∗c(0, x) = e∗d(x, 0), which means that

nc(x) = nd(x) must hold for all x ∈ [0, 1].

6.7 Applications

In signal and image processing, the equivalence of two signals or two images is always

of great importance.

Let us assume that two grey level images, i.e. two integer-valued function f and g defined

on a subinterval I of Z2, are given. After normalizing f and g, the equivalence of the

images can be calculated in each picture element x of I (pixel) by using the equivalence

operators considered above. For simplicity, let us assume that I = {0, ..., n}2, and let us

use the following notations: xi,j := f(i, j) and yi,j := g(i, j). The overall equivalence of

the two images (which measures the overlap) can be calculated by an arithmetic mean

in the following way.

Definition 6.33. Let us consider two normalized grey level images, f, g : I → [0, 1],

where I = {0, ..., n}2. Their overall equivalence E is defined the following way:

E(f, g) :=
1

n2

n∑
i,j=1

e(xi,j , yi,j),

where xi,j = f(i, j) and yi,j = g(i, j), and e stands for one of the equivalences considered

so far.

The overall equivalence can be defined for one dimensional signals similarly.

Note that for values around the middle grey level, the aggregated equivalences, e∗c and

e∗d, give the maximal level of uncertainty, which fact gives them an important seman-

tic meaning. Therefore, when studying the equivalence of two grey level images, the

aggregated equivalences are of great importance.

6.8 Overview

The main properties of all the three types of the above mentioned equivalence operators

are summarized in Table A.8.
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Figure 6.5: Pointwise equivalence of fuzzy numbers with rational generators
(νc = νd = 0.3)

In figures 6.5, 6.6 and 6.7, examples of the pointwise equivalence of two fuzzy numbers

are illustrated by means of all the above mentioned equivalences.

Thesis 2.4.

A detailed discussion of equivalence operators in bounded systems are given. Three

different types of operators are studied. After taking a closer look at the implication-

based equivalences, the properties of the so-called dual equivalences are studied.

Using these two types of equivalence operators, a new concept of aggregated equiva-

lences is introduced. The paradox of the equivalence relation is solved by aggregating

the implication-based equivalence and its dual operator. It is shown that the aggre-

gated equivalence possesses nice properties like threshold transitivity, T-transitivity

and associativity. For applications in image processing, the overall equivalence of two

grey level images was defined, and an important semantic meaning of the aggregated

equivalences is given.
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Figure 6.6: Pointwise dual equivalence of fuzzy numbers with rational generators
(νc = νd = 0.3)
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Figure 6.7: Pointwise aggregated equivalence of triangular fuzzy numbers with ratio-
nal generators (ν = 0.6)



Chapter 7

Main Results and Further Work

In this final chapter, I will conclude by outlining the progress made towards the goal

described in the introduction. I will also suggest some future research directions that

could provide the next steps along the path to a practical and widely applicable system.

In the first part of the thesis (sections 2 and 3), results on new constructions of continuous

aggregation functions were presented.

In Section 2, a generation method of aggregation functions from two given ones was

examined. The so-called threshold construction method is based on an adequate scaling

on the second variable of the initial operators. This construction can be usuful in

fuzzy applications where the inputs have different semantic contents. The new type of

aggregation function turned out to be monotone and continuous, having a right-neutral

and idempotent element. Three possible ways of symmetrizations were studied, two of

them using min-max operators and the third using uninorms. After proving the lack of

associativity in all cases, the bisymmetry and all the other associativity-like equations

known from the literature were studied. Relevant own publication pertaining to this

section: [19].

In Section 3, new construction methods of uninorms with fixed values along the borders

were discussed, and sufficient and necessary conditions were presented. Relevant own

publication pertaining to this section: [20].

In the second part of the thesis, logical systems, more specifically, nilpotent logical

systems were deeply studied. The class of nilpotent t-norms and t-conorms has preferable

properties which make them more usable in building up logical structures. Among these

properties are the fulfillment of the law of contradiction and the excluded middle, or the

coincidence of the residual and the S-implication. Due to the fact that all continuous

Archimedean (i.e. representable) nilpotent t-norms are isomorphic to the  Lukasiewicz

85
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t-norm, the previously studied nilpotent systems were all isomorphic to the well-known

 Lukasiewicz-logic.

In Section 4, it was shown that a consistent logical system generated by nilpotent oper-

ators is not necessarily isomorphic to  Lukasiewicz-logic. After giving a characterization

and a wide range of examples for negation operators, connective systems were studied, in

which the conjunction, the disjunction and the negation are generated by bounded and

normalized functions. Three negations can be naturally associated with the normalized

generator functions, nc, nd and n. Necessary and sufficient conditions of the classifica-

tion property (the excluded middle and the law of contradiction), the De Morgan law

and consistency have been given. The question whether the three negations can differ

from one another in a consistent system was thoroughly examined. The positive answer

means that a consistent system generated by nilpotent operators is not necessarily iso-

morphic to  Lukasiewicz logic. A system can be built up in a significantly different way,

using more than one generator functions. This new type of nilpotent logical systems is

called a bounded system, which has the advantage of three naturally derived negations.

The fixpoints of these natural negations can be used for determining thresholds for dif-

ferent modifying words. It was shown that we get a system isomorphic to  Lukasiewicz

logic if and only if the three negations coincide. Relevant own publications pertaining

to this section: [27].

In Section 5, implication operators in bounded systems were deeply examined and a

wide range of examples was also presented. The concept of a weak ordering property

was defined. Two different implications, ic and id were introduced, both of which fulfill

all the basic features generally required for implications. Relevant own publication

pertaining to this section: [28].

In Section 6, three different types of equivalence operators in bounded systems were

studied. After taking a closer look at the implication-based equivalences, the properties

of the so-called dual equivalences were studied. Using these two types of equivalence

operators, a new concept of aggregated equivalences was introduced, which proved to

possess nice properties like threshold transitivity, T-transitivity and associativity. For

applications in image processing, the overall equivalence of two grey level images was

defined, and an important semantic meaning of the aggregated equivalences was given.

Relevant own publication pertaining to this section: [29].

The main disadvantage of the  Lukasiewicz operator family is the lack of differentiability,

which would be necessary for numerous practical applications. Although most fuzzy

applications (e.g. embedded fuzzy control) use piecewise linear membership functions

due to their easy handling, there are significant areas, where the parameters are learned

by a gradient based optimization method. In this case, the lack of continuous derivatives
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makes the application impossible. For example, the membership functions have to be

differentiable for every input in order to fine tune a fuzzy control system by a simple

gradient based technique.

This problem could be easily solved by using the so-called squashing function (see Dombi

and Gera, [32]), which provides a solution to the above mentioned problem by a con-

tinuously differentiable approximation of the cut function. This approximation could

be the next step along the path to a practical and widely applicable system, with the

advantage of three naturally derived negation operators.
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Tables

Table A.1: Power functions as normalized generators

fn fc fd Classification De Morgan Remarks

4.2 x2
√

1− x
√
x X −

4.4 x (1− x)α xα X X 0 < α ≤ 1

4.29 x (1− x)α xα − X α > 1

4.5 x (1− x)
1

log0.5(1−νc) xlogνd0.5 iff νd ≤ 0.5 iff νc + νd = 1 4.4 and 4.29 in

terms of the neu-

tral value

4.6 xα 1− xα xα X X α > 0

4.7 xα (1− xα)
β
α xβ X X β ≤ α; α, β > 0

4.8 x 1− xα 1− (1− x)α X X α ≥ 1, fc+fd > 1

iff α > 1

Table A.2: Power functions as normalized generators – logical connectives

fn fc fd n(x) c(x, y) d(x, y)

4.2 x2
√

1− x
√
x

√
1− x2 1−

[√
(1− x) +

√
(1− y)

]2 [√
x+
√
y
]2

4.4 x (1− x)α xα 1− x 1− [(1− x)α + (1− y)α]
1
α [xα + yα]

1
α

4.29 x (1− x)α xα 1− x 1− [(1− x)α + (1− y)α]
1
α [xα + yα]

1
α

4.6 xα 1− xα xα α
√

1− xα (1− [2− xα − yα])
1
α [xα + yα]

1
α

4.7 xα (1− xα)
β
α xβ α

√
1− xα

(
1−

[
(1− xα)

β
α + (1− yα)

β
α

]α
β

) 1
α [

xβ + yβ
] 1
β

4.8 x 1− xα 1− (1− x)α 1− x (1− [2− xα − yα])
1
α 1− [(1− x)α + (1− y)α − 1]

1
α

88



Appendix A. Tables 89

Table A.3: Exponential functions as normalized generators

fn fc fd De Morgan law Consistency

ax−1
a−1

(a+1−ax)
logab−1

b−1
bx−1
b−1 X Consistent for e.g.

a = 0.5, b = 0.7 or

a = 0.7, b = 0.85

Table A.4: Rational functions as normalized generators

fn fc fd Classification De Morgan law

4.38 and

4.40

1

1 + ν
1−ν

1−x
x

1

1 + νc
1−νc

x
1−x

1

1 + νd
1−νd

1−x
x

νd < ν < νc
(
1−ν
ν

)2
= νc

1−νc
1−νd
νd

ν = 1

1+

√
νc

1−νc
1−νd
νd

4.2 ν = 0.5 νc = 0.7 νd = 0.3 X −
4.29 ν = 0.6 νc = 0.2 νd = 0.36 − X

4.9 ν = 0.25 νc = 0.5 νd = 0.1 X X

Table A.5: Rational functions as normalized generators – 3 negations

f(x) (normalized generator) f−1(x) 1− f(x) negation

negation
1

1 + ν
1−ν

1−x
x

1
1+ 1−ν

ν
1−x
x

1
1+ 1−ν

ν
x

1−x
n(x) =

1

1 +
(
1−ν
ν

)2 x
1−x

conjunction
1

1 + 1−νc
νc

x
1−x

1
1+ 1−νc

νc
x

1−x

1
1+ νc

1−νc
1−x
x

nc(x) =
1

1 +
(
1−νc
νc

)2
x

1−x

disjunction
1

1 + νd
1−νd

1−x
x

1

1+
1−νd
νd

1−x
x

1

1+
1−νd
νd

x
1−x

nd(x) =
1

1 +
(
1−νd
νd

)2
x

1−x
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Table A.6: Mixed types of normalized generator functions

fn fc fd De Morgan law Consistency

Rational

and power

1

1 + ν
1−ν

1−x
x

(
1

1 +
(
1−ν
ν

)2 x
1−x

)α
xα X Consistent for e.g.

α = 1, ν = 0.8 or

α = 2, ν = 0.9

Power and

exponential

xα a(1−x
α)

1
α −1

a−1
ax−1
a−1 X a > 0, a 6= 1,

α > 0.

Consistent for e.g.

α = 1, a = 0.5

Table A.7: Properties of implications in bounded systems

formula NP EP IP SN CP WOP OP

ic =
iR

f−1c [fc(y)− fc(x)] X X X X
nc(x)

X X X

id =
iSd

f−1d [1− fd(x) + fd(y)] X X X X
nd(x)

X X X

iSn f−1d [fc(x) + fd(y)] X X X X
n(x)

X X
τn,d(x)

−

iSc f−1d [fd(y) + fd(nc(x))] X X X X
nc(x)

X X
τc,d(x)

−
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Table A.8: The main properties of equivalence operators

Implication-based Dual Aggregated

ec, ed ēc, ēd e∗c , e
∗
d

Compatibility X X X

Symmetry X X X

Reflexivity X − −
e(x, n(x)) = 0 − X −
e(ν, ν) = ν − − X

Monotonicity X − X

Threshold transitivity − − X

Invariance X X X

e(1, x) = x X X X

e(0, x) = n(x) X X X

Associativity − − X

T-transitivity X X X
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vol. III., pp. 47–60, 1979.

[74] E. Trillas, L. Valverde, On some functionally expressible implications for fuzzy set

theory, Proc. of the 3rd International Seminar on Fuzzy Set Theory, Linz, Austria,

pp. 173–190, 1981.

[75] E. Trillas, L. Valverde, On implication and indistinguishability in the setting of

fuzzy logic, in: J. Kacprzyk, R. R. Yager (Eds.), Management Decision Support

Systems using Fuzzy Sets and Possibility Theory, TÜV-Rhineland, Köln, pp. 198–
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