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Abstract

The usage of modeling and control on the field of biomedical engineering has essential
importance in these days. The phenomena dates back to the occurrence of first high
capacity computers with which the online monitoring, modeling and control became
possible. Currently, several physiological processes can be handled by internal (eg.
pacemakers and other implants, etc.) and external (eg. heart-lung monitors, insulin
pumps, etc.) controllers which provide accurate control signals with good quality – it
can be stated that the modern medicine is unimaginable without these improvements.

One of the most widespread disease the diabetes mellitus and accompanying diseases,
which mostly the side-effects of the main problem. Due to unknown autoimmune processes,
civilizational reasons and most common genetic failures the diabetes mellitus threads
significant part of the global population. The last decades have presented that via
the biomedical engineering approaches and developments the diabetes mellitus can be
sufficiently handled and the occurrence of side-effects can be decreased – thankfully the
achievements on the field of physiological related modeling and control.

This dissertation presented modeling and control solutions which can be applied in
case of physiological processes including diabetes mellitus.

The first thesis group investigated the usability of RFPT theorems in conjunction with
T1DM control. I have examined three cases, which were different from the applied T1DM
model, absorption submodel point of view, however, I used almost the same control
strategies in each cases, namely, PID-kind control laws in the control block. I followed
the general RFPT controller design steps, what I summarized at the beginning of the
given chapter. The results showed that the RFPT-based controllers can be used in case
of T1DM models with low and high complexity beside unfavorable disturbances (glucose
loads). The developed controller were able to keep the BG level in the normal glycemic
range; totally avoid hypoglycemia; however, short hyperglycemic periods occurred during
the simulations. With this research I can be proven that the RFPT-based controller
design method can be used for controller design in case of T1DM models with high
nonlinearities.

The second thesis group introduce a two novel achievements on the field of LPV-based
control. I have developed a norm based tool in which the norm (2-norm) is defined on
the abstract parameter space of LPV systems and can be used as a metric between LTI
systems. This tool can be used as error or difference metric and via quality requirements
can be defined with it. The second achievement can be divided into two parts: I have



developed a novel LPV completed controller scheme which can be used for control of
LPV (and trough nonlinear) systems with given properties; moreover, I have developed a
completed LPV controller-observer scheme in order to control given LPV systems. The
novel controller design tools are a mixture of linear state-feedback theorem and matrix
similarity theorems and exploiting the properties of the LPV parameter space. I have
proven the usability of the methods via nonlinear physiological examples including DM
control. I provided deep analysis of the methods.

The third thesis group investigates the TP modeling possibilities of different DM models
– due to I want to use the developed TP models as subjects for TP-based controller design
in the future. The first step of this direction was made during my research, namely, I
have introduced control oriented LPV models via mathematical transformation from the
existing DM models and I successfully developed the TP model form of them. I showed
three possible direction during this part: it is possible to use TP model transformation
and realize TP model in case of simple ICU kind DM model with high nonlinearities;
it is possible to use TP model transformation and realize TP model in case of highly
complex T1DM model with high nonlinearities and coupling; and I showed that how is it
possible to increase the robustness of the TP model (from parameter point of view).
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Absztrakt

A modellezés és szabályozás használata az egészségügyi mérnöki területen alapvető
fontossággal b́ır napjainkban. A jelenség visszadatálható az első nagy teljesitmenyű
szamitógépek megjelenésére, amelyekkel az online monitorozás, modellezés és szabályozás
tervezés megvalóśıthatóvá vált. Manapság számos élettani folyamat szabályozható belső
(pl. pacemaker és egyéb implantátumok, stb.) vagy külső (pl. sźıv-tüdő monitor, inzulin
pumpa, stb.) szabályozókkal, amelyek pontos és jó minőségű szabályozást tesznek lehetőve
– kijenelthetjük, hogy a modern medićına elképzelhetetlen lenne ezen fejlesztések nelkül.

Az egyik legelterjedtebb kór a cukorbetegség és ennek mellékhatásaként kialakuló
társult betegségek. Az ismeretlen autoimmun folyamatok, civilizációs hatások és genetikai
betegségek következtében kialakuló cukorbetegség a globális populáció jelentős részét
fenyegeti. Az elmúlt évtizedekben bebizonyosodott, hogy az egészségügyi mérnöki
megoldásokkal a cukorbetegség hatékonyan kezelhető és a társult betegségek előfordulásának
gyakorisága is redukálható – köszönhetően a számos új eredménynek a fiziológiai rendsz-
erek modellezésével és szabályozásával kapcsolatban.

Ez a disszertáció olyan modellezési és szabályozási megoldásokat mutat be, amelyek
használhatóak az élattani folyamatokkal kapcsolatosan, beleértve a cukorbetegséget is.

Az első tézis csoportban megvizsgáltam a Robusztus Fix-Pont Transzformáció (RFPT)-
alapú szabályozás tervezési lehetőségeket egyes t́ıpusú DM (T1DM) szabályozásával
kapcsolatban. Három esetet vettem vizsgálat alá, amelyek az alkalmazott T1DM modell
és felsźıvódási modell tekintetében különbözők voltak, azonban a használt szabályozasi
stratégia, vagyis a Proporcionális-Integráló-Deriváló (PID)-alapú szabályozási törvény a
szabályozó blokkban ugyanazon elven alapult. Az általános RFPT tervezési lépéseket
követtem, amelyeket összefoglalóan megadtam fiziológiai rendszerek esetére a fejezet elején.
Az eredmények memutatták, hogy az RFPT-alapú szabályozók használhátóak alacsony
és magasrendű T1DM modellek szabályozásához nagymertekű zavarás (nagymértekű
szénhidrát (CHO) terhelés) mellett. A kifejlesztett szabályozások a szimulációs idő alatt
képesek voltak a vércukor szintet normál glikémiás tartományban tartani; teljesen elkerülni
a hypoglikémiás epizódokat; habár rövid idejű hyperglikémiás epizódók előfordultak. Ezzel
a kutatással sikerült bizonýıtanom, hogy az RFPT-alapú szabályozó tervezési eljárások
használhatóak szabályozók tervezésére nagymertekű nemlinearitásokkal rendelkező T1DM
modellekhez.

A második téziscsoportban két új, eredeti eredményemet mutatom be a lineáris pa-
rameterváltozós rendszer (LPV)-alapú szabalyozások területéről. Kifejlesztettem egy



norma alapú eszközt, ahol a norma (2-es norma) az LPV rendszerek absztrakt paraméter
terén értelmezve metrikaként hasznalható LTI rendszerek között. Ez az eszköz alkalmas
hiba- vagy különbség-metrikaként való használatra is és általa minőségi követelmények is
megfogalmazhatóak. A második fejlesztés két részre osztható: kifejlesztettem egy új LPV
kiegesźıtett szabályozó sémát, amely LPV rendszerek szabályozásához használható fel;
továbbá, egy új, kiegésźıtett LPV szabályozó-megfigyelő struktúrát is fejlesztettem LPV
rendszerek szabályozásához. Az új eszközök egy keverékét alkotják a lineáris állapot-
visszacsatolás alapú szabályozásnak és a mátrix hasonlósági tételeknek és kihasználják
az LPV paraméter tér tulajdonságait. Bebizonýıtottam a használhatóságukat nem-
lineáris fiziológiai példákon keresztül, beleértve a diabetes mellitusz (DM) szabályozást is.
Elvégeztem az eszközök teljeskörű anaĺızisét is.

A harmadik téziscsoportban a tenzor szorzat (TP)-alapú modellezési lehetőségeket
vizsgáltam meg különböző DM modellek esetén – mivel ezeket a realizált TP modelleket
akarom felhasználni a további TP-alapú szabályozástervezési kutatásokhoz. Ennek az első
lépése került kidolgozásra a kutatásomban, azaz bevezettem letező DM modellek kontroll-
orientált LPV változatait matematikai transzformációkon keresztül, majd ezeken sikeresen
alkalmaztam a TP model transzformaciót előálĺıtva TP-alapú modelljeiket. Három
lehetséges irányt vázoltam fel: bemutattam, hogy lehetséges a TP-model transzformáció
használata TP modellek realizálásához egyszerű, intenźıv őrzőkre szabott (ICU) DM
modell esetén, amely nagymértékű nemlinearitásokkal rendelkezik; lehetséges a TP-model
transzformáció használata TP modellek realizálásához komplex T1DM modell esetén,
amely nagymértékű nemlinearitásokkal es csatolásokkal rendelkezik; és megmutattam,
hogy lehetséges a TP modell robusztizálása modell paraméterek szempontjából.
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1. Introduction

1.1. Research focus

The aim of this theses is to introduce such kind of modeling and controller design solutions
which can be used in case of nonlinear biological systems. Each proposed methods are
universal ones and can be used in case of arbitrary nonlinear processes, however, the
application of them is unique in the current research field.

My main motivating goal was the use of the developments and applications in the
research of DM from engineering point of view - in this spirit I always kept in the focus
how the reached results will be useful to reach this goal. Namely, how can the proposed
techniques be applied in case of DM.

Modeling and control is extremely important in the artificial regulation of physiological
processes, especially where the good quality of external control is a must [1]. However,
the given field is loaded by several challenges. Most of them are highly nonlinear,
poorly described in full aspects due to the multiple and diverse connections between the
physiological systems, deep investigations and measurements cannot be done or possible
but with hard constraints, etc. [2]. Although these facts, the evolution and process of
different types of DM became well described in the recent decades [3].

DM is a serious, chronic disease connected to the metabolic system of the human
body. The disease occurs either when the amount of insulin produced by the pancreas is
insufficient or when the body cannot effectively use the insulin it produces [4].

Insulin is the key hormone of the blood glucose regulation produced by the β-cells in
the Langerhans-islets in the pancreas [5]. It makes possible the entering of the glucose
into the glucose consuming body cells. Most of the cells feast glucose which is the major
energy source in living organisms [6].

DM researches are hot topics on the biomedical engineering field due to the dramatically
increasing number of diabetic patients. According to the newest estimations of the
International Diabetes Federation (IDF) for the number of people who live with such
form of diagnosed and undiagnosed DM is about 415 million worldwide in 2015 [3].
Furthermore, the short term prospects suggest that this number can be reached the 642
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million, around 6.8% of the expected global population by 2040 [3, 4]. Figure 1.1. shows
the estimated distribution of diabetic population worldwide.

Figure 1.1.: Estimated number of people with diabetes worldwide and per region in 2015
and 2040 (20-79 years) [3]

DM is classified into Type 1 DM (T1DM), Type 2 DM (T2DM), Gestational DM,
Double DM, Genetic DM, Secondary DM, etc. [3, 7]. Despite the several different types
of DM, the T1DM and T2DM are the most widespread.

The T1DM is related to the insulin hormone, since during the emergence of the disorder,
the insulin producer β-cells are burned out due to intense autoimmune reaction in which
the patient’s own immune cells destroy them. The occurrence of T1DM is around 10% in
the diabetic population [7].

The most common type of DM is T2DM [3]. The incidence of it is around 90% in
the diabetic population. The disease evolves over longer period in the patients body.
However, the body is able to produce insulin internally, the body cells become resistant
to the hormone and the effect of it becomes insufficient. Over long period persistent
hyperglycemia and increasing insulin resistance can be observed [5, 8].
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A frequently occurred DM type is the Gestational DM, which appears in women during
pregnancy. Most of the time it disappear after childbirth, however, the state can become
permanent in case of genetic flair for DM [4].

The other types are rarely occurred in the population [3].
Important that the DM state can leads to several secondary disease in the absence of

appropriate therapy, which means not just proper medication, but the change of lifestyle,
as well.

The required therapies to handle the diabetic state are different in accordance the
given type of DM. In case of T1DM the patients need exogenous administered insulin
due to the lack of internally produced insulin. In case of T2DM, the regular therapy
starts with drug administration. These can be gluconeogenesis inhibitors which obstruct
the daily glucose production of the liver and decrease the insulin resistance [6]. Although,
over time externally administered insulin can be required in order to keep the blood
glucose level in a healthy range.

The common therapy - beside prescription about the lifestyle (physical activities and
diet) - is the external insulin administration. Insulin is delivered via subcutaneous
injections. There are different devices with which the diabetic patients can manage the
insulin delivery. Usually, it is done by insulin pen which is a small pen shape mechanical
device which consists of dispenser, insulin reservoir, injection mechanics and thin needle
parts. In this way with this device the patients are able to manage their blood glucose
level. The dosage is manual and leaves the insulin delivery to the patients based on
preliminary rules laid down, the feed intake, physical activities and the prescription of
the clinicians. During the self-administered therapy, the patients can use rapid acting
insulin (bolus insulin to handle the feed intake) and slowly acting insulin (for keep the
basal insulin rate), as well [7, 9].

An other solution for insulin administration is the semi-automatic or automatic insulin
pump or Continuous Subcutaneous Insulin Infusion (CSII) devices, which can be used
both DM cases as well, however, the indications of usage are different [10–14]. The pump
or injection system contains insulin reservoir which connects to the subcutaneous regions
via thin catheter. This electromechanical devices are able to delivery insulin boluses
automatically based on predefined rules. The pumps using rapid acting insulin and the
delivery protocols are varying as demands the patients need.

The long term goal of the research of DM from engineering point of view is to develop
the so-called Artificial Pancreas (AP) concept (Fig. 1.2). This development consist of
three major part [15–21]:

1. An insulin pump or insulin pump completed with external insulin injection system,
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which stores and injects the rapid acting insulin;

2. A Continuous Glucose Monitoring System (CGMS) for continuous blood sugar
level measurement and transmit;

3. Appropriate software components including control algorithms, user interfaces,
drivers.

The CGMS system is used in parallel with the insulin pump. The operation of CGMS
are based on various principles. In practice, the most widely used systems are external
devices fixed on the abdominal skin surface and connected to the subcutaneous level
through a thin catheter. The most frequent measuring principle are enzymatic based
(Glucose Oxidase (GOx)). Beside its several benefits CGMS has also some disadvantages
mostly from control engineering point of view: sensors measurements are done only every
5 minutes. Implantable CGMS have been also appeared, but these are not available on
the market, yet [22].

Figure 1.2.: The AP concept [23]

The newest concepts calculate with the benefits of the available smart devices, like
smartphones [18]. In this way the control algorithms which may need high computational
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capacity can be exported to the smart device instead of the compact insulin pumps.
Figure 1.2. shows the schematic representation of the latest AP concept.

As mentioned above, the third necessary component to realize the AP is the appropriate
software elements, including the control algorithms, the ”soul” of this approach.

Due to the fact that insulin pump therapies are used mostly in case of T1DM, the
advanced control algorithms developed inside AP researches focus on this DM form. The
main expectation from an AP control algorithm is the automatic glucose regulation in
order to keep the blood glucose concentration in the normal glycemic range, i.e. 70-110
mg/dL (3.9-6 mmol/L) and relying if possible on the compliance of the patient. The
ultimate goal is to avoid the dangerously low blood glucose levels (massive hypoglycemia)
that could directly endanger the patients’ life.

1.2. Relevant control engineering methods from this theses
point of view

In this section I introduce the most important control design techniques from the DM
and more specifically from the AP concept point of view – correspondingly to the
aforementioned aims of the theses.

The soul of the AP concept is the usage of appropriate control algorithms. Over the
last decades, most of the available control concepts have tested on this field. Figure 1.3
shows the AP concept completed with the most frequently used control algorithms.

The most important directions focus on model predictive control (MPC), fuzzy rule-
based and other soft computing techniques, classical, robust and fractional PID control
techniques; however, without having yet a general solution on the problem [15–17, 20, 21,
24].

Simplistically, every control algorithm considers similar principles; namely, the ful-
fillment of prescribed quality and quantity properties. The first attempts on this area
were related to ”Proportional-Integral-Derivative (PID)” control being still the most
widely used classical control technique in the industry. Although the basic concept of
PID control is not too sophisticated, highly advanced solutions like robust PID [20, 25] or
switching PID [26, 27] have been applied for the AP concept. Fractional PID control is in
the mainframe of the physiological related control tasks [28]. There is example regarding
to the application of fractional PID in the research field, like [29], but the usage as a
common technique is not usual in the research field, however.
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Figure 1.3.: AP taxonomy - ”Solid lines demonstrate connections that are always present
and dashed lines represent connections that may only be present in some
configurations. The tuning, model, and desired glucose concentration are
all part of the controller, as signified by the black arrows. Green color
distinguishes physiological states or properties from measured or digital signals.
Black lines are used to indicate predetermined features of a block, and blue
lines indicate signals or actions conducted during closed-loop operation” [20]
; Controller: MPC - Model Predictive Control, SC - Soft-Computing, PID -
Proportional-Integral-Derivative Control, RB - Robust Control, FL - Fuzzy-
rule based Control

The MPC based solutions are widely used successfully since almost thirty years ago
in the control engineering [30–33] and in physiological related context as well [34–36].
MPC techniques represent probably the mostly used advanced control method in the
AP concept, but they suffers from intra- and inter-patient variabilities and external
noises. MPC is a model based solution meaning that the controller tuning is based on
the properties of a mathematical model (called nominal model). Nonetheless, MPC
algorithms produce the best results in individual therapy with considering closely ideal
conditions. Several, highly developed MPC based control solutions appeared in the
recent years like Robust MPC (RMPC), Nonlinear MPC (NMPC), Robust, Nonlinear
MPC (RNMPC), MPC with moving horizon [37–40]. One of the most straightforward
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direction is the MPC design by using soft computing tuning tools [41]. The latter
technique was successfully implemented on embedded systems which is a part of an
artificial implementable AP [42].

Soft computing methodologies have been applied also several times in the AP concept,
but only in the recent years have been investigated in clinical trials [43–45].

Modern robust control methods like L2- or H∞-based ones were introduced in the AP
researches in order to stave off the determinative uncertainties coming from inter- and
intra-patient variability. Supplemented by LPV methodology (providing the opportunity
to handle the original nonlinear system/model as a linear one; hence, to give access using
the original nonlinear model for linear control methods enumerated above), modern robust
control successfully deals with the quality and quantity requirements [46–49]. Another
useful direction in this domain proved to be the combination of LPV methodologies with
LMI-based one [49–51].

Dual hormone controllers consider beside the insulin the glucagon hormone as well;
hence, it represents another conceptual control approach in AP researches [52]. Clinical
trials also stared in this direction with encouraging results [53].

1.3. Outline of this theses

In Chapter 2., I introduce the latest results on the field of adaptive robust control of
T1DM via RFPT framework. Beside the introduction, I demonstrate the developments
applying on sophisticated T1DM models.

Chapter 3. presents the development of a new quality marker (”metric”) for LPV
modeling and control based on a given norm interpreted on the LPV parameter space.
Further, a novel completed LPV controller and observer scheme for nonlinear systems
is proposed, which can be used in control of biomedical systems. The applicability of
them are demonstrated on nonlinear compartmental and different DM models. Most of
the widely used DM models are based on compartmental modeling due to an applied
nonlinear physiological compartmental model is used for demonstration.

Chapter 4 details the TP modeling possibilities regarding to DM in order to realize
control oriented LPV-TP models, which will be the subjects of the controller design later.

In Chapter 5., I conclude my presented results.
Four Appendix encloses the theses. Appendix A. is a summary of the thesis points;

Appendix B. summarizes the description and parameters of the DM model which were
used; Appendix C. summarizes of the DM and the current state-of-the art of the research
of it; and Appendix D. introduces the types of the LPV systems which were applied in
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the thesis.
The simplified structure and the interconnections between the Chapters and Appendices

are presented by Fig. 1.4.

Ch. 1. Introduction

Ch. 2. RFPT-based control

Ch. 3. LPV-based tools 

Ch. 4. TP-based modeling 

App. 1. Summary of the thesis points 

App. 2. Used DM models 

App. 3. DM summary  

App. 4. LPV systems  

Ch. 5. Conclusion

RFPT theorem
Design procedure of physiology related RFPT controller
Control examples

Physology related LPV models
Norm-based metric for LPV systems
Completed LPV controller design and examples
Completed LPV observer design and example

Theorem of the TP model transformation
TP modeling examples

Figure 1.4.: Structure of the thesis
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2. Opportunities of using Robust Fixed
Point Transformation-based controller
design in control of Diabetes Mellitus

In this Chapter, I have detailed my results concerning the application possibilities of the
RFPT-based control theorem for control of T1DM.

First, I present the main ideas behind the RFPT-based control theorem.
Second, I describe the general method which can be used to realize the RFPT-based

controllers which are able to deal with control of physiological models.
After, I have presented three case studies regarding the control of T1DM for models

that are diverse from complexity, nonlinearity, structure and other points of view.
Finally, it should be noted that I have used ExcelTM for some calculations and

SCILABTM for the simulation part, however, the figures were made by MATLABTM.

2.1. Ideas which brought the RFPT-based control into life

In control engineering the use of high complexity models have significant practical
disadvantages. Typical problem is the reliability of the model parameters for the particular
person under control. Furthermore, such models are difficult to handle. The traditional
design methodologies formulate the feedback by the use of the actual system state in the
given moment. In practice it is often impossible to obtain satisfactory information on the
system’s actual state variable as a whole, only its certain components can be measured,
either directly or indirectly. In the latter case, complicated model-based state estimation
processes should be applied for the computation of the control signal. However, we are
often lacking the necessary sensors.

A possible choice to handle these circumstances is the usage of Lyapunov’s methods.
Before the famous work of Lyapunov in the end of the 19th century, the scientist who
was investigating the stability of nonlinear systems had to face with many challenges.
Lyapunov’s work provided a universal mathematical tool which let the researchers to
decide whether a nonlinear system is stable or not [54, 55]. Lyapunov’s second or direct
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method provides a way to determine the stability of a nonlinear system without solving
the equations of motion. Due to the fact that most of the real life problems do not
have analytical solutions in closed form and the validity of numerical solutions is limited,
Lyapunov’s method is extremely useful and most of the controller design methods are
based on that even today.

The heart of the method is the evolution of the properties of the so-called Lyapunov
function V (t, x) over time. Consider a general nonlinear dynamic system, where ξ = 0 is
an equilibrium point:

ẋ(t) = f(t, x) f(t, 0) = 0 f(t, x) ∈ C(0,1)
t,x . (2.1)

If, ∃V (t, x) ∈ C(1,1)
t,x ([a,∞)×Dx) positive definite Lyapunov function that alongside

∀x(t) trajectories

V̇ (t, x) =
dV (t, x)

dt < 0 (V̇ negative definite) (2.2)

then ξ = 0 solution (equilibrium) is asymptotically stable in Lyapunov sense [56].
Nevertheless, the use of this method has several drawbacks. Although Lyapunov’s

method makes it possible to guarantee the asymptotic stability of various nonlinear
systems, it does not provide information on the subtle details of the stabilization process.
The transients in the motion of the controlled systems normally remain obscure and
may contain practically intolerable sessions. Mathematically it is hard to handle, and it
has strict limitations. There are only a few rules of thumb and examples, therefore its
application or adaptation to a given problem requires the highly creative thinking of an
expert designer. Each nonlinear problem needs unique approach. Moreover, often direct
measurements or state estimations are needed for the feedback which is not possible in
the given circumstances.

In classical control theorems, for example PID or state feedback based controls, the
control rule and action is based on the expected-observed control scheme. That means,
we have a predefined or ”desired” system behavior rd and the purpose of the control
action via the control signal u is to enforce the system ϕ to reach the desired behavior. If
the observed behavior differs from the desired one, error signals emerge in the trajectory
tracking. The classical Model Predictive Controllers try to compensate them by error
feedback terms on the basis of the assumption that they are in the possession of ”exact
system models”. In other words, instead of directly concentrating on the response error,
they rather observe only their consequences, and try to eliminate them on the basis of a
not completely correct hypotheses. However, real physiological and physical systems can
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be modeled only approximately [57]. In classical control theorems, the control goal can
be formulated as:

rr = ϕ(u) , (2.3)

where rr is the actual (realized) system response after u affected on it. In this case, the
control signal calculation via exact inverse model can be described as:

ud = ϕ−1(rr) , (2.4)

where ud is the desired control signal to be applied in order to reach the rr system
response.

In contrast to the Lyapunov method or classical control, the RFPT-based controller
design has many advantages. It focuses on the kinematics of the motion which may have
more importance than the global asymptotic stability; it does not require precise model of
the controlled process, just an approximate one may do well (may be as highly approximate
that the state feedback may become unimportant); the parameter uncertainties are well
tolerated; and finally, the realization of the method is easier alongside certain given steps.

The main importance is that the RFPT theorem calculates with the high approximation
of the given process and turns this property to a benefit. In the absence of exact models,
approximate model can be used to describe the approximate control signal:

ud
appr = ϕ−1

appr(rd) , (2.5)

where ud
appr is the approximate control signal which is necessary to reach the rd desired

system response.
Hence, the connection between the realized response rr and the desired response rd of

the system can be described as:

rr ≡ ϕ(ϕ−1
appr(rd)) ≡ f(rd) 6= rd . (2.6)

The RFPT-based adaptive control is just a possible alternative to the traditional
approaches. This approach sharply distinguishes between the ”kinematic” and the
”dynamic” aspects.

It starts with a purely kinematically formulated trajectory tracking error relaxation
strategy. This results a given order time-derivative of certain variables as desired system
response rd that instantaneously can be realized by the available control signal. This
control signal is estimated by the use of the available approximate system model ϕ−1

appr
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and it is exerted on the controlled system ϕ. The realized response rr of the controlled
system that is obtained for a kinematic prescription r can be considered as a response
function as f(r, . . .) in which the symbol ”. . .” refers to the parameters of the exact and
the approximate system models. Evidently r and f(r) have the same dimensions and
they need not comprise all the components of the state variable. In practical cases the
complexity of the approximate model may be much lower than the exact model.

The basic idea is that instead of tuning the parameters of the approximate model,
the kinematically prescribed rd value is adaptively deformed to r? so that rd = f(r?).
The necessary deformation is constructed in the following manner: in the first step the
control problem is transformed into a fixed point problem so that the solution of the
control task is its fixed point. After that, an iterative sequence of control signals is
generated by the digital controller as {r0

def= rd, r1 = G(r0) . . . , rn+1 = G(rn), . . .}. If the
parameters of the transformation function G are well set then this sequence converges to
the solution of the control task, i.e. rn → r?. Normally rd depends only on the lower
order time-derivatives of the considered state variables while r can be abruptly modified.
Therefore, although during one digital cycle only one step of iteration can be done, in
the practice acceptable convergence can be achieved.

The idea of transforming various problems into fixed point problems is not a novel
one. It goes back to the 17th century e.g. in the Newton-Raphson method [58–60]. Such
kind of methods often occur in adaptive control as well [61, 62]. In 1922 Stefan Banach
generalized the method for linear, normed, complete metric spaces [63] via the application
of contractive maps. In this case, in which the response function is a single-variable real
function, the transformation is made by the function [64]:

rn+1 = G(rn; rd) def= (rn +Kc)×
{

1 +Bc

[
tanh(Ac(f(rn)− rd))

]}
−Kc , (2.7)

where Kc, Ac, and Bc (Bc = ±1) are the adaptive control parameters. Clearly we have
two fixed points as r = −Kc (that is trivial and useless for the controller), and r? for

which f(r?) = rd, that is the solution of the control task. If

∣∣∣∣∣∣dGdr
∣∣∣∣∣∣ < 1 during the iteration

then the appropriate sequence converges to the solution of the control task. In general it
is not difficult to satisfy this condition within a bounded region of the response values by
manipulating the two parameters Kc and Ac. (Further details regarding the appropriate
setting of the control parameters was given in [64, 65]).

The general RFPT controller structure can be seen on Fig. 2.1.
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Figure 2.1.: General RFPT controller scheme: the controller learns from the recent model
inputs and observed responses [qN (t) – Nominal trajectory; rd(t) – Desired
system response; rdef (t) – Deformed system response; rr(t) – Realized system
response; τ – Time shift]

2.2. RFPT-based controller design in case of physiological
processes

In this Section, I analyze the main steps of the controller design procedure starting with
the general properties of the mathematical model of the phenomenon that I wish to use
in the control. By revealing the more specific model properties an effect chain can be
deduced that determines the relative order of the control tasks. By the use of a simple
approximate model, the need for the information on the components of certain state
variables can be evaded. The adaptivity of the designed controller can compensate the
consequences of this modeling imprecision.

2.2.1. Considered modeling difficulties in general

In diabetes research, mathematical modeling of the physiological processes and the in-
vitro investigations have absolute relevance due to the fact that the in-vivo experimenting
possibility is limited since the subjects of the examinations are human beings. In such
investigations, the real patients are substituted with models of various complexity called
”patient models”. These can be completed with other sub-models (e.g.: absorption
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model, sensor model, noise model, etc.) in order to simulate the behavior of the
human metabolic system regarding the glucose-insulin household. However, when the
available mathematical models are used during the controller design, several unfavorable
model properties come to light such as strong non-linearities and time delay effects
that are essential parts of the reality [1]. Efficient handling of the intra- and inter-
patient variabilities is also challenging, since a virtual patient can be described with
a given parameter set of the mathematical model. Identification of the models is also
crucial. Because of the inputs have impulse nature (food boluses, insulin injections),
the aforementioned variabilities cannot be determined a priori. The output values
are provided by real physiological measurements, therefore they are available only in
given time moments. Furthermore, an identified individualized virtual patient model
belongs only to a given real patient. That means that the model-based controller design
solutions based on a virtual patient model as ”exact model” may be seriously affected
by these problems: they can handle only a particular group of patients who have the
same metabolic attitudes. Further limitation is that these attitudes are assumed to be
permanent in time, that does not seem to be a realistic hypothesis. However, in spite of
these unfavorable circumstances, maintaining the generality of the controller and in the
same time providing ”personalized” control would be most beneficial. In general, adaptive
controllers can provide such solutions. Specifically the RFPT-based adaptive controller
design methodology can be a possible solution due to that fact that it requires only a
roughly approximate mathematical model of the controlled phenomenon. The realization
of such approximate models is detailed in the next section. Beside the approximate
model, the appropriate control task will be provided by the prescribed control law (type
of control).

2.2.2. Investigation of the effect chain of the control action

In order to realize the RFPT-based controller, an approximate inverse model is needed
which effectively captures the approximate dynamics of the connection between the
control signal (the injected insulin) and the controlled variable (the BG level). The most
simple way is using a virtual patient model at this point instead of a real patient, however,
models can be created based on measurements, as well. Three possible cases can arise:

• Real patient data is used: a model can be created that describes the relationship
between the insulin signal and the BG level;

• Simple virtual patient model is used: usually, the insulin affects higher derivatives
of the BG level via simple interconnections that determine the necessary order
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of the control law; the model structure can be considered and transformed to an
approximate model to capture this dynamics;

• Complex virtual patient model is used: insulin affects higher derivatives of the BG
level via complex interconnections; the model structure cannot be used during the
approximate model design.

2.2.3. Designing the approximate model

If a real patient’s BG measurements and insulin injection data are available, a general
mathematical model can be created and the well known identification procedures can
also be used at this point. The main restrictions are that the CHO intake can be
considered only with a random disturbance input and, while the insulin injections are
known, still same as the CHO intake these have impulse attitude. Moreover, the sensor
noise influences the BG measurements. Beside these unfavorable circumstances, the goal
is to create such a mathematical model, which can approximately catch the dynamics of
the process. For example, a nonlinear discrete autoregressive-type NARMAX model can
be a reasonable choice because its simplicity and general usability [8].

The rough approximation model can be also generated from the given patient model if
its structure is simple, namely, in case of a few state variables. This does not correspond
to ”model-based” process in the classical meaning of the expression, although the model
structure is utilized during the procedure. The parameters of the model can be arbitrarily
determined or randomized within reasonable limits. For instance, assume that the original
first order non-linear system is described as

Ġ(t) = f(t, G(t), u(t), d(t)) , (2.8)

where variable G(t) denotes the BG level. Via restructuring the equation, the dynamic
connection among the insulin input and the first derivative of the BG level will be:

u(t) = h(t, Ġ(t), G(t), u(t), d(t)) . (2.9)

In the case of more complex models it can happen that the insulin input influences
directly the higher order derivatives of the BG level. If the insulin input affects directly
only a very high order derivative of G(t) the use of this model in its original form is not
reasonable. Although certain parts of the original models can be considered during the
approximate model design (e.g. the connections between the subsystems), the complex
model can be handled as a virtual patient and similar techniques can be used as in the
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first case when the patient measurements are available. That means that measurements
can be generated based on in-silico trials and identification can be applied. However,
another opportunity also exists. Since the macro-scaled physiological processes are slowly
varying, the Quasi Stationary Theorem (QST) from Classical Thermodynamics ([66]) can
be used in approximate model design. In this approach, if the solution of the equations
of motion is stable stationary, little modification of the stationary outputs generated by
that of the inputs can be mapped for stationary inputs.

2.2.4. Selection of the control law

Since the design of the RFPT-based adaptive controller is commenced with determining
a purely kinematic prescription of the tracking error, various possibilities can be chosen
for this purpose. For instance, if it is known that the 3rd derivative of G(t) can be
instantaneously controlled with a Λ > 0 time-constant PID-type tracking that can be
prescribed as (

d
dt + Λ

)4 t∫
t0

(
GN (ξ)−G(ξ)

)
dξ = 0, (2.10)

where GN (t) is the ”nominal’ BG concentration to be tracked, G(t) is the realized BG
concentration, and the error signal is the e(t) = GN (t) − G(t) ought to exponentially
converge to zero in infinity, namely e→ 0 as t→∞. Evidently, due to the integration
of the tracking error in (2.10)

...
G(t) has to appear. This value can be considered as the

desired response (in this case 3rd derivative)
...
G

Des(t). However, other control laws can
be used, too. Depending on the given application, P-, PD- and PID-kind control laws
also can be used.

2.2.5. Finalization of the control environment

Using the aforementioned considerations, a general RFPT-based physiological related
control environment can be finalized as it is shown in Fig. 2.2. It also depends on the
approximate model applied.
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Figure 2.2.: The scheme of the RFPT-based controller: the two delay blocks correspond
to the cycle time of the digital controller.

2.2.6. Considerations and restrictions regarding the controller design in case
of T1DM

Modeling and control of T1DM is affected by several unfavorable practical and physio-
logical constraints. These include the lack of information on the internal state variables
of the patient model (as it is in the case of a real patient), the inputs having impulse
nature, the output (the BG level) being quantized and not available in every time instant,
the controller unable to administer arbitrarily big insulin ingress, etc. Every mentioned
impact can be handled with sub-models or restrictions that increase the complexity of
the model. Naturally, simplifications can be done in order to reduce the complexity.
During my investigations I applied simplifications in modeling the feed intake. Since
the absorption sub-models well characterize the rate of appearance of glucose in blood
in a general way (they provide satisfying approximations), I assumed that the outputs
of the applied absorption models are known. Furthermore, the total amount of insulin
consumed up in the control of glycemia is also important: practically this value is limited.
I have experimented with such kind of ”strong” restrictions as well, where the maximum
amount of injectable insulin was limited.
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2.3. Control of T1DM via RFPT-based control framework

In order to demonstrate and prove the usability of the RFPT-based design methodology,
I show realized control strategies on different T1DM models later on which are frequently
used in the scientific research [15, 17, 67]. However, I did not apply parameter identifica-
tion: I used the models with the given parameters. Since my goal was the introduction
of a new physiological related controller design method, and as I did not wish to develop
an industrial application, this was a reasonable choice.

During my investigations I mostly applied unfavorable circumstances, namely, high
glucose amounts and long simulation times in order to prove the long term usability of the
developed controllers. The direct comparison between the obtained results is not possible
because of the differences in the used models. However, the indirect comparison of the
used control laws, and parameters of controllers can be done, as it was demonstrated
during the design procedures in the different cases.

In general, I applied PID-kind control laws in every case, the outputs of the absorption
models were considered as known, however, the details of controller design methodologies
were different.

2.3.1. Control of the Minimal model

The first selected model was the so-called Minimal model in its form that occurred in [15].
It consists of only three state variables as (B.1a),(B.1b) and (B.1d) show. The Minimal
model does not have embedded absorption submodel. Thus, to reach realistic simulation
environment, instead of the peak-kind feed intake, a smoother glucose rate of appearance
can be achieved, if the Minimal model is complemented with an external absorption
submodel. For the sake of comparability, I have used the absorption submodel of the
Hovorka model, which are given in (B.3a) and (B.3b). The complete model equations
and their descriptions can be found in the Appendix B.

The effect chain

In order to develop an approximate model which describes the connection between the
control signal u(t) (injected insulin) and the controlled variable G(t) (BG level), the
effect chain of the control action (through the state variables) should be mapped. In this
case, the original model was used to generate the approximate model. Thus, the effect
chain could be derived by using the equations of the original model. In the followings
this route was mapped. The word Desired represents the control action (via the input
and the states) which is necessary to reach the desired control goal.
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The injected insulin u(t), which appears in the third equation of (B.1d) directly affects
the insulin level in the plasma I(t). The plasma insulin level is connected to the BG level
(G(t)) via a coupling variable, X(t). That means that the insulin input directly reaches
the third derivative of G(t). The thread is straightforward from this point, namely, this
direct route have to be created. The quantity İ(t) occurs in Ẍ(t) as

Ẍ(t) = −p2Ẋ(t) + p3İ(t) . (2.11)

Ẍ(t) occurs in the third derivative of G(t):

...
G(t) = −(p2 +X(t))G̈(t)− Ẍ(t)G(t)− 2Ẋ(t)Ġ(t) + p̈(t) . (2.12)

Equation (2.12) determines the relative order of the effect chain: u(t) affects only
...
G(t).

This fact should be considered during the control law selection. Trough step-by-step
substitutions this relation can be expressed as

ẌDesired(t) = −
...
G(t)
G(t) −

(p2 +X(t))G̈(t)− 2Ẋ(t)Ġ(t) + p̈(t)
G(t)

, (2.13)

A = −
(p2 +X(t))G̈(t)− 2Ẋ(t)Ġ(t) + p̈(t)

G(t)
, (2.14)

ẌDesired(t) = −
...
G(t)
G(t) + A , (2.15)

İDesired(t) =
ẌDesired(t) + p2Ẋ(t)

p3
, (2.16)

İDesired(t) =
−

...
G(t)
G(t) + A + p2Ẋ(t)

p3
, (2.17)

B =
A + p2Ẋ(t)

p3
, (2.18)

İDesired(t) = −
...
G(t)
p3G(t) + B , (2.19)

uDesired(t) = İDesired(t) + n(I(t)− IB) , (2.20)

19



uDesired(t) = −
...
G(t)
p3G(t) + B + n(I(t)− IB) , (2.21)

Additive term = B + n(I(t)− IB) , (2.22)

uDesired(t) = −
...
G(t)
p3G(t) +Additive term . (2.23)

Equation (2.23) shows the direct connection between u(t) and
...
G(t).

Design of approximate model

Equation (2.23) can be directly used in the approximate model design. The appropriate
control signal will be provided by the adaptivity block. Thus, more simplification is
possible as the big advantage of the RFPT-based controller is that it can tolerate highly
imprecise approximations. The equation has an Additive term part as well, but the
effects of this term are insignificant from the RFPT-based control law viewpoint, therefore
it can be selected as constant. Furthermore, in the present case, G(t) can be substituted
with a constant value in the denominator of (2.23) as follows:

uDesired(t) = −
...
G

Desired(t)
p3Gb

+Additive term . (2.24)

The control action in this given case depends on only the realized
...
G(t). However, this

simplification requires the estimation of the
...
G(t), that is a constraint of usability.

Control block

As previously mentioned, PID-kind control law was used in the control block. This can
be formalized with kinematic requirements. Moreover, a third order law has to be used
since the control signal u(t) affects the third derivative of the G(t) BG level in plasma.
The applied form was the same as that in (2.10). Transforming this specific case, the
short form of the control law is given as follows:

...
G

Desired(t) =
...
G

N (t) +
3∑

s=0

(
4
s

)
Λ4−s

(
d
dt

)s t∫
t0

(
GN (ξ)−G(ξ)

)
dξ . (2.25)

A significant difficulty should be mentioned regarding the use of PID-type laws. Since
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the controller can only decrease the BG level with the control signal and the feed intake
is a disturbance from this point of view, dead periods may occur in the control after the
insulin injections. If too much insulin is injected, and it causes dangerous decrease in
the BG level, the controller has to wait for the depletion of the insulin via the natural
channels, because there is no practical means to extract insulin from the human body.
(The desired control action in this case should cause instant decrease in the insulin level
that is impossible. The best realizable control signal in this case is the zero insulin
ingress rate.) Furthermore, the integrated error can considerably increase during the
”dead” periods. There are several solutions to handle this problem, namely the use of a
”forgetting integrator”, or the application of other (e.g. PD-type) control laws, or cutting
the error signal at zero if the prescribed nominal BG level GN is higher than the actual
G(t). In this case the PID-kind control law was appropriate without modification.

Simulation results - Minimal model

I tried to simulate as realistic circumstances as possible. For this purpose, I used realistic
feed intake protocol based on the recommendations of the World Health Organization
(WHO) [68]. In order to apply this protocol, I have considered the treatment for a 27
years old female patient of 70 kg weight with ”little” physical activity. Based on the
WHO recommendations, the required calorie intake for a day is described by Eq. (2.26)
[68]:

CHOreq/day = 15.3BW + 679 = 1750
kcal
day . (2.26)

Since the applied absorption model allows the CHO as the only input parameter, I
assumed that the total calorie intake was made up only from CHO, namely glucose.
Generally, the carbohydrates and complex meals have lower glycemic index and needs
longer absorption, therefore this simplification can be considered as a ”worst case scenario”,
because of the fast increment of the glucose concentration in the blood. Because the
exactly accurate coordination of the feed intakes cannot be provided (it depends on the
lifestyle), I designed a randomization in the amounts and time frames of the glucose
intakes. Further, since 1 g CHO is equivalent with 4.2 kcal [5], the total calculated CHO
intake should be equal with 416.667 g. I divided this amount into 5 parts, 3 bigger meals
(breakfast, lunch, dinner) and 2 smaller meals (snacks). Randomization were made in
the amounts and time frames of different intakes, as follows:
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Table 2.1.: The randomized feed intake protocol
Notation Amount [g] Duration [min] Time frame of intake [min]

CHObreakfast
20 − 25% of
CHOreq/day

15± 5% 210± 5%

CHOsnack1
10 − 15% of
CHOreq/day

10± 5% 390± 5%

CHOlunch
25 − 30% of
CHOreq/day

20± 5% 510± 5%

CHOsnack2
10 − 15% of
CHOreq/day

10± 5% 780± 5%

CHOdinner
20 − 25% of
CHOreq/day

20± 5% 900± 5%

Furthermore, I have applied a strict constraint on the total calorie intake, namely:

CHObreakfast + CHOlunch + CHOdinner = 75% of CHOreq/day

CHOsnack1 + CHOsnack2 = 25% of CHOreq/day .
(2.27)

PID-based control law was used during the simulations. I transformed the units of the
output in order to unify them.

The simulations were made in SCILABTM and the figure plots were created with
MATLABTM.

Figure 2.3. shows a representative 48 hours long simulation of the Minimal model, with
the designed controller’s insulin injections and the glucose rate of appearance. It can be
seen that the absorbed glucose appeared around at 210 min. Before this time-instant
the model did not get any input, since the controller was activated only when the model
”behavior” required the control action. The simulation started with the reduction of
the initial glucose contents (the initial states were x(0) = [GB, 0, IB]>). After that,
the model’s BG level reached the equilibrium (85 mg/dL in this case) (that is a model
specificity). Without external inputs, the model holds this BG level. It is clearly visible
that after the appearence of the absorbed glucose, the controller reacted by changing
the BG level with external insulin injections and reached good performance, since it
was able to hold the BG level inside a tight range. After the glucose rate of appearance
achieved zero, the controller did not need to act, since the model was in its equilibrum.
Consequently, the controller was able to deal with the unfavorable external glucose
disturbances.
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Figure 2.3.: Results of the 48 hours long simulation with the Minimal model [GN = 85
mg/dL (4.675 mmol/L), Λ = 0.08, Ac = 1/10|Kc|, Kc = −200 and Bc = 1]

Figure 2.4. shows a Control Variability Grid Analysis (CVGA) plot [69] that was
developed for the analysis of the performances of different control algorithms. The CVGA
plot contains red dots, which belong to a one week long simulations with the Minimal
model. Each dot represents a 24 hours time frame from the simulations. The position of
a dot is determined by the minimum and maximum BG levels of the given time frame.
The settings of the controller values were exactly the same as previously.

It can be concluded that the controller performed well, since none of the red dots was
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Figure 2.4.: Results of the one week long simulations

situated in the critical D or E regions. Five of the red dots are situated in the Lower B
region and one in the A region. The red dots did not change their position drastically
alongside of the Maximum BG axis (the daily maximum BG values are low) which is
a straightforward consequence that the control target was chosen to be equal to the
model equilibrium, namely GN = 85 mg/dL (4.675 mmol/L). Because the controller
produced efficient and fast reaction to the changes of the BG level and kept it in a narrow
range, the maximum values of the BG level were close (or under) to the 110 mg/dL (6.05
mmol/L). However, the daily minimum values (vertical positions of the red dots) show a
wider deviation. One red dot was in region C, however this belonged to the first day,
which started with the natural reduction of the initial trajectories. Without external
inputs, due to the applied initial conditions, the BG level reached a low value, however,
this is a model specificity. This effect can be seen on Fig. 2.3. from 0− 100 min and this
causes that this red dot in the C region.
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Summary

It can be concluded that the designed controller can handle the nonlinear Minimal model.
Moreover, it is able to deal with the unfavorable varying and unfavorable disturbance
(CHO intake) and it can keep the BG level in a narrow range. The CVGA-plot shows that
the controller keeps tight the BG variability as well and it does not let high variabilities.

2.3.2. Control of the Cambridge (Hovorka) model

The next discussed complex T1DM model, namely, the Hovorka model is determined
by (B.3a)-(B.3j). It originally occurred in [70]. In this Theses, I used this model in its
form that was presented in [71]. The model has ten state variables that describe not just
the glucose-insulin dynamics as the Minimal model does, but also capture the externally
injected insulin’s absorption and distribution, the insulin effects, the insulin independent
BG changes, and the internal glucose production too. Furthermore, it also contains an
embedded glucose absorption model. The model equations and the descriptions of the
parameters can be found in the Appendix B.

The effect chain and the approximate model

The relative order of possible kinematic type control is five, since the ”pure” control
signal reflects in the 5th derivative of the controlled state Q1(t). That means that high
order derivative will appear from (B.3e) in the approximate model. This circumstance
entails that high abandonment is necessary against the elements of the exact model.
Thus, the relative order of the control is 5th, the 5th derivative of the state Q1(t) to be
controlled should be determined. Two kind of approximation can be used: parameter
approximation instead of exact parameters and neglecting of model elements. I applied
both of these here.

First, I investigated the 5th derivative of the Q1(t) state, which can be derived from
(B.3e):

Q
(5)
1 (t) =

D
(4)
2 (t)
VGτD

− F (4)
01,c(t)− F

(4)
R (t)− x(4)

1 (t)Q1(t)− 4x(3)
1 (t)Q̇1(t)−

−5ẍ1(t)Q̈1(t)− 4ẋ1(t)Q(3)
1 (t)x1(t)Q(4)

1 (t) + k12Q
(4)
2 (t)− EGP0x

(4)
3 (t)

. (2.28)

The (2.28) can be rearranged and completed with a new term, the Affine term,
which represents each neglected elements. Thus, the control signal directly appears in
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x
(4)
1 (t) and x

(4)
3 (t) states derivatives, the approximate model is:

Q
(5)
1 (t) = −x(4)

1 (t)Q1(t)− EGP0x
(4)
3 (t) +Affine term . (2.29)

The 4th derivative of x(4)
1 (t) and x(4)

3 (t) can be derived from the model equation (B.3e).
However, first the route of the control signal has to be explored. Through the following
equations, this can be done.

Ṡ1(t) = u(t)−
S1(t)
τS

. (2.30)

S̈2(t) =
Ṡ1(t)
τS
−
Ṡ2(t)
τS

=
u(t)
τS
−
S1(t)
τ2

S

−
Ṡ2(t)
τS

. (2.31)

I(3)(t) =
S̈2(t)
VIτS

− keÏ(t) =
u(t)
VIτ2

S

−
S1(t)
VIτ3

S

−
Ṡ2(t)
VIτ2

S

− keÏ(t) . (2.32)

x
(4)
1 (t) = −ka1x

(3)
1 (t) + kb1I

(3)(t) =

= −ka1x
(3)
1 (t) + kb1

(
u(t)
VIτ2

S

−
S1(t)
VIτ3

S

−
Ṡ2(t)
VIτ2

S

− keÏ(t)
)
. (2.33)

x
(4)
3 (t) = −ka3x

(3)
1 (t) + kb3I

(3)(t) =

= −ka3x
(3)
3 (t) + kb3

(
u(t)
VIτ2

S

−
S1(t)
VIτ3

S

−
Ṡ2(t)
VIτ2

S

− keÏ(t)
)
. (2.34)

Equations (2.33) and (2.34) can be substituted to (2.29). Further, the neglected
subparts can be incorporated to the Affine term, as follows:

Q
(5)
1 (t) = −kb1

u(t)
VIτ2

S

Q1(t)− EGP0kb3
u(t)
VIτ2

S

+Affine term . (2.35)

From (2.35) via rearranging the equation the connection between the control signal
and the 5th derivative of Q1(t):

u(t) =
Q

(5)
1 (t)−Affine term
−kb1Q1(t)− EGP0kb3

VIτ
2
S =

−Q(5)
1 (t) +Affine term

kb1Q1(t) + EGP0kb3
VIτ

2
S
. (2.36)

The (2.36) is eligible to use as approximate model. I applied further approximation,
since the exact model parameters are not available in every cases. The finalized and used
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approximate model, what I applied in this study was the following:

u(t) ≈
−Q(5)

1 (t) +Affine termconst

kb1appQ1(t) + EGP0appkb3app

VIappτ
2
Sapp

, (2.37)

where I used 10% random deviation in the approximated parameters, moreover, I
replaced the Affine term with a constant, Affine termconst.

Control block

I assumed that the glucose distribution volume is known at this point as well which means
I could write the kinematic type PID control law to Q1(t), which was the following:

Q
(5),Des
1 (t) = Q

(5),N
1 +

5∑
s=0

(
6
s

)
Λ6−s

(
d
dt

)s t∫
t0

(
QN

1 (ξ)−Q1(ξ)
)

dξ (2.38)

Simulation results – Hovorka model

The Hovorka model is much more complex than the Minimal model which requires not
just different controller design approach, but also the evaluation of the results is different.
The Hovorka-model has several nonlinearities, attenuations and cross actions between
the states.

It should be noted that I applied exactly the same feed intake during the present
investigations that I used in the case of the Minimal model in 2.3.1 in Table 2.1. Thus the
glucose rate of appearance in blood were the same in both cases beside this randomized
glucose load.

I have used PID-based control law.
The simulations were made in ScilabTM and the figure plots were created with

MATLABTM.
The initial states of the 48 hours long simulation were xini = [D1,ini, D2,ini, S1,ini, S2,ini,

Iini, x1,ini, x2,ini, x3,ini, Q1,ini, Q2,ini]> = [0, 0, 687.5, 687.5, 10.783, 5.521e − 2, 8.842e −
3, 0.5607e− 1, 86.3, 63.66]>.

The Hovorka model behaves differently than the Minimal model as it can be seen on
Fig. 2.5. Without external glucose intake, the BG level is increasing due to the glucose
secretion of the liver, which is an embedded part of the model. The applied controller
starts the insulin injection when the BG level is increasing, however, it turns off, when
the BG level is decreasing. This switching attitude can be derived from the applied
control strategy and this is a consequence that the controller cannot affect with ”negative”
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control input. It can be seen that despite the continuously absorbing external glucose,
the controller can manage the glycemia, namely, it is able to avoid the hypoglycemia
beside minimizing hyperglycemia. The latter cannot be totally avoided because of the
high and random glucose intakes.

Time [min]
0 500 1000 1500 2000 2500

B
G

 le
ve

l [
m

m
ol

/L
]

5

10

15

Blood glucose level

Time [min]
0 500 1000 1500 2000 2500

In
su

lin
 [m

U
]

0

50

100

150
Injected insulin

Time [min]
0 500 1000 1500 2000 2500

A
bs

or
be

d 
gl

uc
os

e 
[m

m
ol

/L
]

0

5

10
Blood glucose level

Figure 2.5.: Results of the 48 hours long simulation of the Hovorka model [QN
1 = 90

mmol/L (GN = QN
1 /VG ≈ 8.036 mmol/L), Λ = 1e − 4, Ac = 1/10|Kc|,

Kc = 5e− 1 and Bc = −1]

On the CVGA plot (Fig. 2.6.), each of the white dots represent a 24 hours long
simulation period of the Hovorka model.

The vertical movement alongside with the maximum BG axis comes from that the
minimum BG levels of this 24 hours periods were higher than 110 mg/dL (6.05 mmol/L).
However, three points are in the B regions, which assumes a higher BG level variability
– moreover, one point belongs to day 6 is totally overlapped with the point belongs to
day 1. Nevertheless, the results showed that this controller configuration successfully
deals with the randomized, unfavorable feed intakes and can keep the BG level among
an appropriate range.
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Figure 2.6.: Results of the one week long simulations

Summary

In this Section, I have successfully demonstrated the usability of RFPT-based controller
design method in case of highly complex T1DM model step-by-step. The controller was
capable to avoid hypoglycemic periods, however, soft hyperglycemia occurred due to
the internal attenuations and highlighted liver effects (high internal glucose load) of the
model. As the text reflects, it is possible to follow the demonstrated straightforward path
to use in order to realize RFPT-based controllers in complex cases as well.
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2.3.3. Control of the UVA-Padova (Magni) model

Specifics of the Model

During the development, quite a few general control, physiological and phenomenological
constraints have to be considered, as listed below:

• As each of the state variables denotes the concentration of certain chemical compo-
nent, they must have either positive value, or – after the depletion of the appropiate
component – it must remain zero. These ”truncation-type” nonlinearities make
the application of any ”linearization” dubious, whenever a given component is
depleted. This fact seriously affects any considerations related to the frequency
domain analysis that is widely used in the case of linear more or less linearizable
systems. In the sequel, a qualitative analysis of present model is given.

• Each time-constant model parameter should be positive.

• Each state variable has its own exponential decay constant.

• Any coupling between the coupled pairs of state variables is of exponential nature:
the decrease in the concentration of given state variable generates increase in that
of the coupled one and vice-versa.

• Without finite input or extraction terms all the state variables should converge to
zero.

• The state propagation quantities as Ẋ, İd, İ1, İp, İL, Ṡ2 and Ṡ1 are completely inde-
pendent of the state variables GM , Gp and Gt.

• Each element of the state propagation group ĠM , Ġp and Ġt directly is concerned
by the input Ṙa and the state variables Ẋ and İd belonging to the other group.

• To sum up, u > 0 makes X increase. Increasing X decrease Ġt and Gt. Decreasing
Gt decreases Ġp due to which (B.6) gives possibility for decreasing GM by properly
big insulin input u. It is important to note that depletion of X – since Ẋ = 0 if
X = 0 – makes any possibility for controlling GM via u cease. This introduces a
strong nonlinear asymmetry into the system: drastic glucose Ra drastically increase
GM , via drastic insulin input u its effect can be contained.

• u is directly related to a high order time-derivative of the directly measureable
state variable GM .
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The effect chain of control action

In order to design the approximate model, which provides the control signal, the effect
chain of injected insulin (which is the control signal) needs to be mapped.

Figure 2.7.: Effect chain of insulin

Fig. 2.7. shows the particular effect chain of injected insulin u(t). The physiological
model specialties determine how the injected insulin affects on the GM (t), namely,
through the insulin-dependent glucose utilization (Uid), which is the glucose uptake by
insulin-dependent tissues and the endogenous glucose production of the liver (EGP ),
thus, the inhibition of gluconeogenesis.

Design of approximate model

It can be concluded based on the Sec. 2.3.3 that a kinematic prescription (which is used
by the RFPT-method) are not expedient in this case, since the relative order of the
control chain is at least 8. That means, the kinematic prescription should contain the 8th
time derivative of the GM . At the same time, the required order of the control law should
be 8 as well, in order to handle this high derivative. To avoid this unpleasant effect, other
approaches should be used. A possible solution, if the exact model is hided as a black
box, and only the input and output are investigated. Naturally, this step is reducing
the accuracy of the control, nevertheless, it can be used because of the adaptivity of the
method. If the steady state of the system can be approached over one cycle and the
GM is available at the end of this cycle, the necessary insulin input which is need to be
injected at the next cycle can be calculated by the controller. However, this condition
is not usable itself, because of the glucose input dynamics is faster then the system’s
settling characteristics. Therefore, a simple dynamic scheme has to be developed, which
can describe not only the ∆ũ determined by the actual glucose input, but also takes
the affect of the past control actions on the actual condition into account, beside the
appropriate time delays, determined by the system’s dynamics. During the approximate
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model design, I supposed that the Ra is known, since the glucose input is can be settled.
In this way, based on the model equations the G̃M (ũ, R̃a) can be calculated. The selected
equation to describe the connection between the insulin input u(t) and regulated output
GM (t) is a quite simple one:

GM (t) ≈ au(t) + b . (2.39)

Let ũ ∈ [250, 600] and G̃M be calculated, where R̃a = 60n, where n ∈ {0 . . . 15} integer.
Based on (2.39), with numerical approximation, the a and b are calculable. To reduce
complexity, a second order polynomials can be fitted on the a(Ra) and b(Ra) which
occurred with the calculation of a and b.

Figure 2.8.: Results of curve fittings based on (2.39) (for example, beside n = 0, R̃a = 0,
ũmin = 250 and ũmax = 600), then G̃M,stac(umin) ≈ 200 and G̃M,stac(umax) ≈
40, the numerical calculation gives aest = −0.46 and best = 314.29).

Due to the fact that the polynomials are known, ∆ũ can be estimated by:

∆GDesired
M (t) ≈

da(Ra)
dRa

∆Raũ+ a(Ra)∆ũ+
db(Ra)

dRa
∆Ra, (2.40)

where ∆G̃Desired
M (t) denotes the changing of the desired subcutaneous glucose level
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determined by the measurements. The prescribed approximation for ∆G̃Desired
M (t) is

”purely” kinematic and contains several simplification from the control point of view.
These simplifications are occurring as strong constraints during the control and the
inaccuracies should be controlled by the adaptivity law.

The rough approximate model can be constructed by using the second order polynomials
and combine with (B.6), (2.38) and (2.40):

u̇Desired =
GM + ĠDesired

M − a(Ra)u− b(Ra)
a(Ra) −

da(Ra)
dRa

u−
db(Ra)

dRa

a(Ra)
(2.41)

The rough approximate model, according to the (2.41) gives an estimation about
the GM and u and provides the control signal as well. The tuning parameters are the
specifics of the polynomials, a(Ra) and b(Ra). These approximations include the physical
constraint at the same time that the control signal, namely, the injected insulin cannot
be negative. It can be seen, that finally, the changing of the desired insulin level is
determined by the followings:

• Actual BG measurements (GM ), which are available at every 5 min (accordingly
the available CGMS systems).

• The changing of the desired BG level (ĠM ), affected by the control law.

• The used polynomials and the changing of them, affected by the u. Furthermore,
the polynomials are determined by the glucose input, which is a good approximation
of the reality, where the insulin dosing is determined by the ingested food, namely,
the glucose input.

Control law

The control law can be formalized with the kinematic requirements. Due to the approxi-
mate model (2.41) is a second order model, the control law should be a second order one
as well. From simplicity reasons I have implemented a ”Fixed Set-Point type of Control”
with GN as set-point parameter. The tracking error is taken as a prescription and such a
PID kind feedback with a proportional term Λ > 0 could be suitable:

(
d
dt+ Λ)3

t1∫
t0

(
GN (ξ)−G(ξ)

)
dξ = 0 (2.42)
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where GN (t) is the nominal blood glucose concentration of the nominal model, G(t) is the
realized blood glucose concentration and the exact requirement is that the error signal,
GN (t)−G(t), should converge to zero as t→∞. Naturally, the fixed-set point control
determines that the derivatives of GN will be zero. With mathematical transformations
of (2.42), the desired GM derivate is equal to

G̈Desired
M (t) =

(
d
dt

)2

GN (t) +
2∑

s=0

(
3
s

)
Λ3−s

(
d
dt

)s t1∫
t0

(
GN (ξ)−G(ξ)

)
dξ . (2.43)

where GN (t) is the BG concentration of the nominal model, G(t) is the realized blood
glucose concentration and the exact requirement is that the error signal, GN (t)−G(t),
should converge to zero as t→∞. Naturally, the fixed-set point control determines that
the derivatives of GN will be zero. I have implemented a forgetting integral also, because
the former tracking errors were considered with lower weight to dismiss the overload of
the integrated error. The changing of ĠDesired

M is reflecting in the rough approximate
model and affects the injected insulin level at every cycle.

Adaptivity law

In order to increase the speed of the adaptivity other adaptivity laws can be selected
instead of (2.7), which also satisfies the mathematical requirements of the RFPT-based
method. In this case I selected the following adaptivity law [64, 65]:

rn+1 = G(rn; rd) def= (rn +Kc)×
{

1 +Bc

[
Ψ(Ac(f(rn)− rd))

]}
−Kc , (2.44)

where, beside the Kc, Ac, and B (Bc = ±1) adaptive control parameters instead of the
tanh function and other Ψ sigmoid function was used (similar properties as the hyperbolic

tangent), namely Ψ(x) =
x

1 + |x|.

Results – Magni model

I have tested this solution with two glucose intake protocols – different than the previously
detailed one – in the developed in-silico simulation environment with different length.
The first glucose intake protocol was the following: 8 am, 50 g; 13 pm, 70 g; 20 pm, 70 g.
This sequence is repeating over a week, the total simulation time was 168 hours. The
result can be seen on Fig. 2.9.

Fig. 2.9. shows that the controller can handle the appearing glucose (Ra(t)) and
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Figure 2.9.: Result of a one week simulation with first feeding protocol [Control param-
eters: Λ = 0.015, Ac = 110−4, Kc = −1000, Bc = 1, Set-point (GN )=100
mg/dL ]

adapted to the requirements of the system with injecting insulin to reach the prescribed
set-point value. The variables started from the steady-state condition and after the initial
transient relaxation, because of the recurring input the system showed the expected
recurring, oscillating behavior.

The second glucose intake protocol was a randomized one with various intake amounts
and time-points. On Fig. 2.10. it can be seen that after the initial transients, the
controller adapting to the systems needs, however, because of the randomized intake,
this adoption is changing all the time, as expected. The initial values of the simulation
were calculated based on B.6, beside 36 µU/mL (≈ 250 pmol/L).

It is clearly visible, that the controller can handle the uncertainties like this.
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Figure 2.10.: Result of a 255 hours simulation with second feeding protocol [Control
parameters: Λ = 0.0125, Ac = 110−3, Kc = −1000, Bc = −1, Set-point
(GN )=95 mg/dL ]

The last figure shows a CVGA result of a 53 days long simulation with the following
control parameters: Λ = 0.0125, Ac = 110−3, Kc = −1000, Bc = −1. The randomized
intake parameters were: 3 glucose intake at every 24 hours with taking into account
that the virtual patient feeding happens during the first 16 hours with minimum 4 hours
between the each intakes; the amounts are changing between 40 g and 70 g, randomly.
The results is shown by Fig. 2.11.

The Fig. 2.11. shows that the controller can handle this varying variable, however, the
unfavorable randomized intakes degrade the adaptivity and produce higher deviation in
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Figure 2.11.: Result of a 255 hours simulation with second feeding protocol [Control
parameters: Λ = 0.0125, Ac = 110−3, Kc = −1000, Bc = −1, Set-point
(GN )=95 mg/dL ]

the daily maximum and minimum of BG levels.

Summary

In this Section, my goal was to proove the usability of the RFPT-based control design
method in case of highly complex T1DM model. I have investigated several situations and
the simulations demonstrated the the developed RFPT-based controller can deal with
managing the blood glucose level of the T1DM model. Moreover, I have used different
adaptivity law than the control of Hovorka-model in order to increase the speed of the
adaptivity. The controller successfully kept the blood glucose level in the selected ranges
without any hypoglycemic effect, beside soft hyperglycemia in a few cases.

Thesis Group 1

Thesis group 1: T1DM control via RFPT framework
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Thesis 1
I have developed an RFPT-based controller design framework for
physiological systems. The provided solutions allows the using of
highly approximating (rough) model of the physiological system to
be controlled.

Thesis 1.1
I have proven the usability of the developed framework in case of the
low complexity T1DM model, the Minimal Model. The designed
controller keeps the BG level in a narrow range and it is able to
suppress high glucose variability as well.

Thesis 1.2
I have proven the usability of the RFPT-based controller design
framework in case of highly complex T1DM models: the Cambridge
model (so called Hovorva-model) and the Pavia-Padova model (so
called Magni-model). The developed RFPT-based controllers
provide fast adaptivity and they are able to keep the blood glucose
level of the complex T1DM models inside a given selected range
even under unfavorable glucose loads or soft blood sugar variability.

Relevant own publications pertaining to this thesis group: [22, 72, 73, 74, 75].
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3. Novel perspective in the Control of
Nonlinear Systems via a Linear
Parameter Varying method

This Chapter covers three major topics: short summary about the investigated LPV
system class; presentation of the developed LPV based tool which aims to compare and
qualify different systems and control approaches; and a novel control and observer scheme
developed during the research, which is appropriate to handle nonlinear systems that
belong to the investigated LPV system class.

In detail, I first present a summary about those LPV system classes in which the
developed tools can be used in a nutshell.

Thereafter, I introduce the novel approach on how can we use the regular L2 norm
defined in the parameter space of the LPV system in order to realize a quality marker
tool for modeling and control purposes.

Afterwards, I present the novel completed controller and observer scheme, which is a
general controller design method for particular class of nonlinear system via LPV theorem,
but also can be used in control of DM. Moreover, I demonstrate the applicability of these
tools in concrete examples.

The theoretical background regard to the LPV modeling can be found in Appendix D.
Finally, it should be noted that I have used MATLABTM in order to realize the

theoretical achievements.

3.1. Specificities of physiological LPV models

Most of the mathematical models which describe physiological processes have nonlinear
attitude, where the nonlinearity comes from several sources (e.g. type of connections,
communication between parts, enzyme kinetics, etc.) [1]. These models can be described
with the LPV theorem without exception. It is generally true that in most of the cases,
the nonlinearities are connected to the central model structure, which means that these
nonlinearities occur in the state matrix A and the inputs and outputs of the models are
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not affected by them [76, 77]. Therefore, when the LPV form of them are constructed,
only the state matrix will be parameter dependent: A(p(t)). However, there are models,
where nonlinearities occur in connection with the input or output. A typical example
when enzyme of drug kinetics are considered during the input construction [78].

In the followings I detail the main considerations according to the complex physiological
models investigated in the thesis:

• Inputs are not affected by nonlinearities; they have impulse attitude (injections);
do not directly affect the outputs (in state space representation this means that
the D matrix contains only zero elements and it does not depend on the parameter
vector p);

• Output(s) are connected a few states which can be directly or indirectly measured;
not affected by nonlinearities;

• Since the nonlinearities do not affect the inputs and the outputs, it is not necessary
to select their elements as scheduling parameters, which means that B and C are
independent from the parameter vector p; moreover, these usually do not depend
on time;

• The nonlinearities occur in the state matrix (A) regarding to nonlinear dynamic
connection between parts of the system, drug absorption and/or kinetics; the intra-
and inter-patient variabilities are represented in the elements of A and usually
these are time dependent; scheduling variables should be selected from the elements
of A in order to hide the nonlinearities and make the handling of A convenient
from control point of view.

The aforementioned properties are true in case of DM as well:

• Inputs have impulse nature (insulin injection, nutrient bolus), however, they do
have linear attitude; D is zero (no direct input-output connection);

• Output(s) are connected to the blood glucose level (or the blood glucose level is
the output itself); not affected by nonlinearities;

• B and C are independent from the parameter vector p; these do not depend on
time;

• The nonlinearities occur in the state matrix (A) regarding to glucose-insulin
dynamics, glucose and/or insulin absorption, effect and dynamics of insulin; the
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intra- and inter-patient variabilities are represented in the elements of A and usually
these are time dependent; scheduling variables should be selected from the elements
of A.

From the aforementioned consideration it can be derived that the LPV-type diabetes
models have the following form which can be observed in several studies [49, 50, 79]:

ẋ(t) = A(p(t))x(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(3.1)

where the system matrix S is the following:

S(p(t)) =

A(p(t)) B

C D

 (3.2)

and the state space representation in compact form is:ẋ(t)

y(t)

 = S(p(t))

x(t)

u(t)

 . (3.3)

Equation (3.1) shows that in this form the LPV-type diabetes models only contain
dependency from the parameter vector p in the state matrix A and all time dependent
components are selected as scheduling variable.

It has to be noted that the aforementioned system class is the typical in most nonlinear
biomedical model cases [76, 77].

In this Chapter, I focus not only on DM models, but on other simple models too, given
that they have these properties (only the A(p(t)) is parameter dependent).

3.2. Different interpretations of quality based on LPV
configurations

In this Section, I introduce a unique norm interpretation regarding the PS of the LPV
systems. I used the well-known matrix L2 norm, since the properties of the PS allow us
to declare such constructs.
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3.2.1. Norm-based ”difference” definition in the parameter space

Each dimension of the PS correspond to an element of the parameter vector (p ∈ Rq).
Inside this abstract space each point can be determined by the corresponding parameter
vector p(t). Furthermore, this abstract PS can be handled as an Euclidean vector space
and vector Lp norms can be interpreted inside the PS. Assume two parameter vectors
pa,pb ∈ Rq in the PS. The L2 norm based distance between the vectors can be described
as follows:

‖pa − pb‖2 = e. (3.4)

Naturally, the e(t) of (3.4) becomes time dependent if one of the parameter vectors are
varying in time (pa(t) or pb(t)). The defined e(t) can be used in various ways depending
on the interpretation of the PS which are presented in the next section.

3.2.2. Possible interpretations of the defined norm-based difference in the
Parameter Space

The points of the PS which are determined by the parameter vector can be interpreted
on their own as vectors, whose elements consist of the parts of the system. However,
the parameter vectors can unequivocally determine an underlying LTI system in the
affine LPV case and a well-characterized LTI system in the polytopic case. The following
statements are general LPV model properties regardless of whether it is the affine or
polytopic type LPV model.

When the goal is to emphasize particular properties of a system, each of the parts
representing these properties have to be selected as scheduling variables. For example,
investigate the nonlinear system from (D.12) and complete it with another term:

ẋ1(t) =
√
x1(t)x2(t) + u(t)

ẋ2(t) = −k1x2(t) + k2
x1(t)
x2(t)

y(t) = x1(t)

. (3.5)

Assume another scheduling variable p2(t) =
1

x2(t) and {p2(t) ∈ p(t) : p2(t) =

[p2,min , ... , p2,max : x2(t) 6= 0]}.
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Hence, according to (D.13):

ẋ(t)

y(t)

 =


0 p1(t) 1

k2p2(t) −k1 0

1 0 0


x(t)

u(t)

 , (3.6)

where p(t) = [p1(t), p2(t)]> and the PS is 2 dimensional. Assume a permanent and
a time varying vector in the PS, where the fixed vector pA(ta) belongs to a given time
moment ta, i.e. pA(ta) = [p1,a, p2,a]> and pB(t) is time varying. In this case, the
introduced e(t) is appropriate to define a ”difference” between the pA(ta) and pB(t).
Consider a case where pA(ta) is determined as permanent reference vector and pref =
pA(ta) and pB(t) is the actual parameter vector varying over time (pactual(t) = pB(t)).
In this case e(t) = ‖pref − pactual(t)‖2 determines the 2-norm based difference of them
and this can be interpreted as an ”error” or ”quality” signal, if pref and pactual(t) are
different during operation. Generally, this interpretation can be extended for any q

dimensional p(t) parameter vector.
If the question is to design a controller, the key point is what the selected scheduling

variables are. At this point several approaches and interpretations can be distinguished.
The main ones are the following:

1. The selected scheduling variables are those properties which have to be monitored
during the operation. In this case, the 2-norm based difference can be used as
”quality” signal and the performance of different controllers can be compared with
this quality signal in the PS.

2. The selected scheduling variables are those properties which have to be controlled
and monitored during operation. In this case, we can interpret the 2-norm based
signal as ”error” signal. This type of error can be used during the controller design
and the control signal will be depend on it.

3. The selected scheduling variables are those components which are time dependent
in LTV case. The parameter vector unequivocally determines the underlying LTI
systems which can occur from the general LTV system during operation at given
time moments. In this case, the defined 2-norm difference can be used as ”metric”
in order to compare LTI systems in the PS.

4. The selected scheduling variables are those components which are causing nonlin-
earities in NLTV case. The general purpose of this approach is that the linear
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controller design techniques become usable. If all nonlinearity causing and time
dependent parameters are selected as scheduling variables, the parameter vector
unequivocally (general and affine LPV case) or satisfactorily (polytopic LPV case)
determines an LTI system during operation at given time moments. In this case the
defined 2-norm difference can be used as metric in order to compare LTI systems
in the PS.

In the following sections, I detailed the key aspects from the above mentioned points.

The 2-norm based difference as quality and error signal

The most important issue in these cases is the way how the parameters are selected from
the original model and the interpretation of them.

If the scheduling parameters are selected one-by-one and are not grouped, then each
dimension of the PS will be an individual variable with physical or physiological meaning

(e.g. the p1(t) =
√
x1(t) and p2(t) =

1
x2(t) parameter from (3.5)).

However, the scheduling variables can be grouped as well. For example, one can

imagine a situation, where p2(t) =
k2

x2(t) from (3.5). In this case the p2(t) scheduling
variable can loose its original meaning and cannot be interpreted individually, if the k2 is
not a unitless scalar but rather a meaningful scalar, which describes a property of the
system.

Nevertheless, the grouped scheduling parameters allow to interpret the 2-norm based
difference in a more sophisticated manner.

If the goal is to monitor how the specific properties of the system vary over time and
compare this variation with predefined requirements, the 2-norm based difference can be
interpreted as quality signal. This approach can be important in such applications where
the different parts of the system cannot change too drastically relative to each other.
Naturally, in this case, these specific parts have to be selected as scheduling variables.

It has to be noted that the observability should be considered in this case, since the
selected parts have to be observable or estimable. Fig. 3.1(a). shows a 2 dimensional
parameter space. For example, a possible goal (beside other goals) of the applied controller
can be to hold permanently two system properties during operation. If these properties
(which are represented with different parts of the system) are selected as scheduling
variables, the performance of the controller can be assessed based on the e(t) signal.

During controller design the 2-norm based difference can be used as an ”error” signal
in the classical meaning. The appropriate selection and interpretation of the scheduling
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variables are necessary. The observability and controllability of the scheduling variables
are important issues as well.

The first step is the selection of parts of the models as scheduling variables which have

to be controlled. However, in case of grouped factor out (e.g. p2(t) =
k2

x2(t)) should be
reasonable. The error signal ought to be known at every time moment as the basis of
control.

If the elements of the parameter vector are not observable, they have to be estimated
or approximated. The control signal affects the scheduling variables directly or through
coupling. Without connection, the scheduling variables cannot be influenced by the
control signal.

In general, the recently developed Robust Fixed Point Transformation (RFPT)-based
controller design methodology can be used [65] as well. The first stage is the investigation
of the effect chain of the control action, namely, how the control signal affects the controlled
variables which are here the scheduling variables p(t) = f(p(t)−,u(t)), where p(t)− is
the a-priori knowledge about the p(t) and u(t) is the control signal. With approximate
inverse kinematic description (ũ(t) = f(p(t),p(t)−)) and appropriate control laws, an
RFPT-based controller can be designed. In this case the error signal can be the developed
by 2-norm based difference (e(t)), which arises when the nominal prescriptions of the
controlled variables (the scheduling variables) are not equal with the actual values of them.
Geometrically, the nominal prescriptions of the controlled variables can be a permanent
point of the PS (pref ) and the actual values pact(t) are varying in time during operation.
Based on the arised error signal e(t) an RFPT-based controller can be designed [65].

In Fig. 3.1(a). a 2D example can be seen, where e(t) can be interpreted as the
mentioned error signal. The comparability of the order of magnitudes of the scheduling
variables represents a significant point. The nature of the Euclidean norms determine
that particular difference signals affect the 2-norm based difference the most which have
the highest magnitudes (e.g. the preference,1 − pactual,1 � preference,k − pactual,k, p ∈ Rk,
k 6= 1 determines that the 2-norm based difference will have strong connection with
the variation of preference,1 − pactual,1). If the scheduling variables have to be considered
with the same ”weight” (they have the same importance), different normalization and
weighting techniques can be used [80].

The 2-norm based difference as comparison of systems

Generally, LPV techniques are used in order to embed the uncertainties into a system
model or hide the system model nonlinearities by making the application of linear
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controller design techniques possible. Classical control design solutions can be used
regard to LPV models, however, the use of such models according to LMI based controller
design methodologies are possible as well.

Almost each control design method can be formulated as an LMI problem and can
be solved via iterative numerical processes [81]. In recent years, parallel with numerical
computational evolution, a wide range of LMI applications were discovered and used in
control engineering [82–84].

However, the basic concept behind the LPV-LMI based modeling and control approaches
consist in guaranteeing and exploiting the convexity properties. Basically, this means
that it is enough to design such sub-controllers which can deal with the LTI systems
in the vertices of the convex polytope, and the convex combination of such controllers
can handle each occurring LTI system during operation, if the basic LPV model was
appropriate.

In order to use the developed 2-norm based difference as a ”metric” on the underlying
systems which are determined by parameter vectors inside the PS, several control and
mathematical constraints have to be considered. Particular parameter vectors belong to
each of the points inside the PS. Since the parameter vector p(t) consists of elements
which were multiplied out from the SS model, a parameter vector can determine an
underlying system. The key questions are the type of the underlying systems with respect
to the parameter vector and how the parameter vector can be used to describe differences
among the underlying systems. A few scenarios can be considered depending on the type
of the original and the describing LPV systems.

The reasonable original system can be NLTV, LTV and LTI beside the describing LPV
system (affine or polytopic).

• In LTI-LPV case, each of the points inside the PS is an LTI system and is fully
determined by the parameter vector;

• In LTV case, a parameter vector determines the underlying system only if each
time-dependent element is selected as scheduling variable;

• In NLTV case, if each time-dependent and nonlinearity causing element is selected
as scheduling variable, the parameter vector determines the underlying system.

In all three cases, the parameter vectors p(t) determine an underlying LTI system.
In NLTV-LTV-LPV case, the original models become simpler. Furthermore, during
operation these get around a path inside the PS. The most typical application is when
the nonlinearity causing elements are selected as scheduling variables from the NLTV
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system and the obtained LPV model is used in a LPV-LMI control application. However,
in this case, a parameter vector does not determine equivocally the underlying system,
since the time-dependent components can cause hidden differences, which cannot be seen
through the parameter vector.

Assume that the selection of the scheduling variables was appropriate and each param-
eter vector determines an underlying LTI system equivocally. That means the parameter
vector-based differences can be interpreted as a ”metric’ on the occurring LTI systems
to which these vectors belong. Namely, instead of the Frobenius-norm based difference
in the systems’ space, the Euclidean-norm based difference in the PS can be used to
determine the ”difference” between the occurring LTI systems.

‖S(pa)− S(pb)‖F → ‖pa − pb‖2 = e. (3.7)

In the convex polytope, every LTI system is uniquely specified with their parameter
vectors as a consequence of the aforementioned statements. However, the LTI systems in
the convex polytope can be calculated as the convex combination of the vertices of the
convex polytope. The key question then is the determination of barycentric coordinates
(αj ∈ Rj) via the uniqueness of the vertices of the given polytope.

Inside the convex polytope each occurring LTI system is overdefined, since in a q

dimensional parameter space j coordinates are used to define them, where j > q. That
means, if the barycentric coordinates are arbitrarily defined, the occurring LTI system
description will not be unequivocal, since with the same set of coordinates describes more
than one system. In other words, because of the null space problem (differences could
occur in the null spaces of the given LTI system) the parameter vector based metric
cannot be used as a classic ”metric” and cannot be unequivocally interpreted on the LTI
systems behind.

Nevertheless, the calculation of the barycentric coordinates (S =
j∑

i=1
αiSi) is connected

to the selected vertices of the convex polytope and equivocally defined by (D.20-D.23).
With this condition, the defined metrics can be valid on the occurring LTI systems in
case of polytopic LPV systems as well.

The developed parameter vector based metric can be used in modeling and control
as a ”quality marker”. For example, if a given LPV model is used during identification,
the identified model S(pident) can be compared to a reference model S(pref ) in order to
estimate the efficiency of the identification procedure. Furthermore, this can be an on-line
estimation as well, when the system under identification is described with S(pactual(tp)).
This procedure can be characterized by the developed e(t) instead of the Frobenius-norm
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based difference. If the goal is to monitor the variation of the system during operation
compared to a reference system, the previous solution can be used here as well.
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Figure 3.1.: Examples of the possible interpretations of the 2-norm based difference

Fig. 3.1(b). shows a 2D example for the aforementioned interpretations. The PB is
the rectangle which is determined by the pmin,1,2 and pmax,1,2 in the PS. Furthermore,
this is the validity border of the affine LPV model. At the same time, the rectangle forms
a convex polytope. Inside the polytope each occurring LTI system can be calculated as
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the convex combination of the vertices of the convex polytope.
In the light of the detailed description from above the consequences regard to Fig.

3.1. can be summed-up as follows: Fig. 3.1(a). presents how the parameter vector
p(t) varies over time. In this case, the pref is the selected reference parameter vector,
pact(t0), pact(tn) and pact(tp) are the initial-, final- and actual-values of the varying
parameter vectors, respectively. The 2-norm based difference is interpreted as e(tp) :=
‖pref − pact(tp)‖2. At the same time Fig. 3.1(b). demonstrates how the underlying LTI
system (S(p(tact))) varies over time accordingly the belonging pact(tp).

Each aforementioned interpretations and issues are demonstrated on biomedical engi-
neering examples concerning diabetes in Sec. 3.2.3.

3.2.3. Usability of the development approach

Selected diabetes model and LPV form of it

I have selected a simple DM patient model developed by Wong et al. in [85, 86] for the
Intensive Care Unit (ICU) treatment. The selection was plausible, since it has several
benefits to use as a test model. It is a 3rd order model and contains saturation type
nonlinearities. The model is described by (B.2). The model equations can be handled
as in (3.1)-(3.2), which means only the state matrix depends on the parameter vector
(A(p(t))).

The main goal of the model is to describe the glucose-insulin dynamics of an inpatient
who suffers from T1DM and is nurtured on the ICU [85, 86]. It is expected that this
simple model – after preliminary identification – can provide the current and the future
blood glucose level of the patient with a precision that is good enough for the realization
of the tight glycemic control (TGC). Detailed description and used parameters of the
model can be found in Subsection B.2.1.
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qLPV model of the original Wong model

I have selected the following scheduling parameters as the elements of the parameter
vector based on [87]:

p(t) =


p1(t)

p2(t)

p3(t)

 =



SIQ(t)
1 + αGQ(t)
SIGE

1 + αGQ(t)
1

1 + αII(t)


. (3.8)

These selection reduces the model complexity, however, the p(t) contains grouped
variables. p1(t) and p2(t) have Michaelis-Menten attitude and they keep their original
physiological meaning, namely, the nonlinear kinetic effect of the appearing insulin on
the blood glucose level. Each nonlinearity causing element was selected as scheduling
variable.

Based on (B.2) and (D.16), the affine qLPV model of the matrix terms of the system
matrix of the original Wong model can be described as follows:

A(p(t)) = A0 + A1p1(t) + A2p2(t) + A3p3(t) =


−pG 0 0

0 −k k

0 0 0

+


0 −1 0

0 0 0

0 0 0

 p1(t) +


0 −1 0

0 0 0

0 0 0

 p2(t) +


0 0 0

0 0 0

0 0 −n

 p3(t)

B =


1 0 0

0 0 0

0
1
VL

−p4Ib

 C =
[
1 0 0

]
D =

[
0 0 0

]
. (3.9)

After defining the border of the parameter box, i.e. the vertices of the convex polytopic
space, the polytopic model form of the qLPV model can be easily obtained based on the
affine qLPV form of (3.9). I have selected tight ranges in every dimension in order to
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catch the dynamics as precisely as possible:

p(t) =


p1(t)

p2(t)

p3(t)

 =


[p−1 . . . p

+
1 ]

[p−2 . . . p
+
2 ]

[p−3 . . . p
+
3 ]

 =


[0 . . . 0.3]

[0.0095 . . . 0.0106]

[0.9 . . . 1.1]

 . (3.10)

Results

The main goal was to test the usability of the developed ”metric” without physiological
constraints. In this demonstration, I did not seek the physiological validity, just to
introduce the developed approach. Therefore, I have used randomized input signals
and not physiologically valid ones. However, the physiologically valid input signals are
much favorable (less time period, less amplitude) then the used ones. In the given
circumstances, the output of the nonlinear original system and the LPV version of it
can be found on Fig. 3.2. below, where it can be seen that the nonlinear original model
provides the same output as the LPV version.
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Figure 3.2.: The outputs of the models
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Figure 3.3. shows the varying of the elements of the parameter vector p(t) and the
developed 2-norm based difference. On every diagram, the dashed line represents the
fixed value, which belongs to the pref = [0.2, 0.01025, 0.98]T . The input is selected to
be a symmetrical repeating impulse (P (t) = 40 at every 140 min for 7 min long and
uex(t) = 100 at every 130 min for 6.5 min long) and it can be seen that after the first
period’s decay, the parameter vector have taken the same values in each cycle, which
means the same LTI systems occurs over time in each cycle.
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Figure 3.3.: Varying of the scheduling variables and the norm-based error signal

Fig. 3.4. shows the same signals as Fig. 3.3. on one diagram in order to compare the
orders of magnitudes. It can be seen that those signals that reflect mostly in the ‖e(t)‖2
have the highest amplitude. Since in this case the p1(t) has the highest amplitude, the
‖e(t)‖2 correlated mostly with p1(t). If each scheduling variables have to be considered
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with the same weight, normalization procedures can be done [80]. However, I did not
apply such methods as the goal was only demonstration.
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Figure 3.4.: Comparison of the magnitudes of the scheduling variables and the norm-based
error signal

In order to make this demonstration complete, Fig. 3.5. shows the scheduling
parameters and the 3D parameter space too. It can be seen that the parameter vector
starts from a given point and ends at another. During the simulation time the parameter
vector runs through a trajectory in the PS. Naturally, that means that the system
matrices belonging to the different parameter vectors are varying in time, as well.
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Figure 3.5.: Evolution of the scheduling variables in the parameter space during operation

If the parameter vectors fully determine the underlying LTI systems during operation,
the parameter vector based metric can be used to compare the ”difference” between
these systems. Figure 3.6. shows this issue in case of the selected model and parameter
vector, namely, instead of the Frobenius-norm based ”difference” the developed metric can
approximately provide similar results. Naturally, the signals are not the same, since the
numerical computations are different. The upper diagram presents that the signals are
covering each other. The lower diagram shows the difference between these – furthermore,
the generated maximum root mean square error (RMSE) of the was 5.8352 10−4 based
on the difference between the given signals.
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Figure 3.6.: Different norm-based differences

Summary

In this section, I have introduced a norm based ”difference” interpretation that can be
applied to LPV systems, based on the properties of the LPV parameter space. I have
defined how to use these interpretations as error and quality criteria during modeling and
control and demonstrated my theoretical findings by a particular example in diabetes
modeling and control of ICU patients.
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3.3. Novel completed controller scheme for LPV systems

In this Section, I introduce the developed completed controller and observer scheme for
a particular class of LPV systems. This approach is based on the classical linear state
feedback theorems and the matrix similarity theorems.

I will demonstrate the developed tools in case of nonlinear systems, including DM as
well.

3.3.1. State feedback and gain-scheduling control

The idea of optimal state feedback control for LTI systems originates from the sixties
of 20th century, when the cost function based optimization first appeared in modern
control engineering. Over decades, different cost functions and feedback gain calculation
techniques appeared customized to the specifics of the control problem, like quadratic
regulation, energy minimization, time minimization or tracking error minimization, etc.
[88]. As far as LPV systems are concerned, the first generation of gain scheduling control
techniques were developed in the late nineties of the previous century [89, 90].

In case of state feedback control, the control signal occurs in the following form:

u(t) = −Kx(t) , (3.11)

where the control input u(t) is the linear combination of the feedback gain matrix
K ∈ Rm×n and the state vector x(t). The K can be designed via different iteration-based
methods. For example, in case of Linear-Quadratic (LQ) control, the control input of
(3.11) is minimizing the following cost function [80]:

J(u) =
∫ ∞

0

(
x>Qx + u>Ru + 2x>Nu

)
dt , (3.12)

and the optimal gain K can be designed by solving the following control Ricatti equation
[80]:

A>X + XA− (XB + N)R−1(B>X + N>) + Q = 0

K = R−1(B>S + N>)
. (3.13)

The optimal K gain ensures that LTI systems which are non-stable or stable but do
not have eligible properties become stable, with better control performances through
pole-placement. In general, this configuration modifies the open-loop Aopen state matrix
into Aclosed = Aopen −BK. The poles of the characteristic equation can be calculated
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as follows:

λ(A + BK) =| Iλ−A + BK |= 0 . (3.14)

In gain-scheduling control, which is a natural choice for an affine LPV system, the
optimal gain becomes parameter dependent [89]:

u(t) = −K(p(t))x(t) . (3.15)

The class of p(t) dependent controller of (3.15) is able to deal with the class of p(t)
dependent system of (3.3). Since, the continuous controller design is impossible, the
reasonable choice is to divide the q dimensional parameter space into different slices.
Then, different controllers have to be designed for each slice and these controllers can
handle the occurring LTI systems inside these slices. The drawback is high computational
capacity, complex switching schedule (regarding to the variation of p(t) over time) and
the necessary advanced methods, which provides global stability.

Instead of this natural, however sometimes unmanageable configuration, the polytopic
model configuration and polytopic controller design spread out in control engineering [81,
82, 91].

In polytopic case, the number of necessary controllers are reduced. If, the parameter
space is handled as a vector space and the occurring LTI systems (”system trajectory”)
are inside a given region of the vector space, a convex hull can be design, which wraps
the system trajectory. Finally, it is enough to design specified number of controllers to
the determining point of the p-space. Thus, if the convexity properties are fulfilled, the
resulting controller, as the convex combination of the designed controllers can handle
each occurring LTI systems inside the polytope [91, 92]. The benefits of the methods
are the drawbacks at the same time: the necessary deep mathematical knowledge and
understanding, high computational capacity and the global stability is only particularly
true, if the system trajectory does not exit from the convex hull (the value of p(t) exits
from among the predefined limits) [93].

3.3.2. Important properties of the investigated LPV system class

In the previous Section, I investigated the opportunities of using the mathematical
properties of the parameter space in order to define norm-based performance markers for
LPV systems. Moreover, I examined the general properties of such models, which are
usually used in physiological and in particular, DM researches.

Hence, these observations are strongly presumed in the following, so I shortly sum-up
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these again below:

• Input(s) are not affected by nonlinearities and do not have direct connection between
the inputs and outputs (the consequence being that D is persistent in time and is
zero matrix);

• Output(s) are not affected by nonlinearities;

• Since the nonlinearities do not affect the inputs and the outputs, it is not necessary
to select their elements as scheduling parameters, which means that B and C are
independent from the parameter vector p; moreover, these usually do not depend
on time;

• The nonlinearities only appear in the state matrix A(p(t)) regarding to the nonlin-
ear system dynamics, nonlinear cross effects and nonlinear coupling; the patient
variabilities are mostly occur in the elements of A.

If the parameter vector is persistent in time, the belonging parameter dependent LPV
system simplifies to an LTI system. Moreover, the variation of p(t) realizes the system
trajectory, which consists of infinite number of LTI systems. In this case, each points in
the parameter space equivocally determines an underlying LTI system. (This property
allows us to define different norms in the parameter space on the parameter vectors,
however, most of them can be interpreted on the underlying LTI system.)

Preliminarily, I showed that every parameter dependent LPV system is equivocally
determined by the belonging parameter vector, if the conditions above are fulfilled. In
other words, each p parameter vector (a point in the parameter space) belongs to an
underlying LTI system S(p), furthermore, each S(p) is equivocally determined by its
corresponding p parameter vector.

The necessity, which originally brought the LPV methods and theories to life was to
handle the nonlinear systems as linear ones with each benefits of this fact. Thus, each
elements of A, which are time dependent or causing nonlinearities should be selected as
scheduling variables.

3.3.3. Differences between the investigated LPV systems

The previously developed 2-norm based tool (e(t)) can be used for various reasons as
it was discussed in the previous sections. Although, it should be highlighted that the
”pure” deviation between the LPV systems, more specifically, between the parameter
dependent parts (A(p)i −A(p)j) of the LPV systems also can be used.
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By using the e(t) as quality marker we can get sophisticated information about the
quality and goodness of the used controllers. However, from the controller and observer
design point of view – where the aim is to realize specific matrix structures in order to
complete a given reference controller and observer as it can be seen later – it is enough
to use the (A(p)i −A(p)j) difference.

What is important to see that the e(t) = ‖pi − pj‖2 quality marker (or error signal),
the pi − pj , the S(p)i − S(p)j and the A(p)i −A(p)j structures carry the same infor-
mation, namely, the dissimilarity of LPV systems based on their parameter vectors. The
discrepancy among these structures occur in the interpretation and the mathematical
description. e(t) is a real time function, pi − pj is a real vector function, S(p)i − S(p)j

and A(p)i −A(p)j are real matrix functions.
As it can be seen later, from the practical usage point of view the e(t) is the most

convenient to measure the quality of the control action, but use of A(p)i −A(p)j is the
easiest to design completed controller and observer structures – which are the basis for
the novel controller and observer schemes.

3.3.4. Mathematical background

Here, I define the necessary mathematical tools, which will be used during this section
later.

Consider that the A,B and C matrices used now to define the mathematical tools
are not the same as previously used ones in control theory, rather, I keep the original
notations from the cited literature.

The first and most important property is the matrix similarity [94]:

Definition 3.3.1. Similarity of matrices: A quadratic, n× n matrix A is similar to a
matrix B, if it is exist an invertible C matrix that is A = C−1BC. Notation: A ∼ B. �

This definition has wide ranging applications. Two of them are the following theorems,
whose proof can be found in various sources, among others, in [94, 95]:

Theorem 3.3.1. Similarity invariance of the determinants of matrices: If A ∼ B, then
|A| = |B|.

Proof 3.3.1.1. Let A ∼ B, namely, A = C−1BC. Then |A| = |C−1BC| = |C−1||B||C| =
|B|, since |C||C−1| = 1 [94].

Theorem 3.3.2. If A ∼ B, then the characteristic polynomials of the matrices and thus,
the eigenvalues and the geometric and algebraic multiplicities of the eigenvalues of the
matrices are the same.
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Proof 3.3.2.1. Let A ∼ B, namely, A = C−1BC. Then A−λI = C−1BC−λC−1IC =
C−1(BC− λIC) = C−1(B− λI)C, namely, A− λI ∼ B− λI [94].

These mathematical tools can be used to define eigenvalues equality rules for state
feedback systems and allow us to complete the state feedback structures.

3.3.5. The completed feedback gain matrix

Consider the LPV system descriptions of (3.1-3.2). For convenience, I provide here the
equations from above:

ẋ(t)

y(t)

 =

A(p(t)) B E

C D D2




x(t)

u(t)

d(t)

 = S(p(t))


x(t)

u(t)

d(t)

 , (3.16)

where S(p(t)) ∈ R(n+p)×(n+m+l).
When p is persistent in time, (3.16) simplifies to a LTI system, which is represented

by S of (3.17):

ẋ(t)

y(t)

 = S


x(t)

u(t)

d(t)

 . (3.17)

Each LPV system is dependent from the parameter vector p(t), which may vary in
time. As I mentioned earlier, this variation realizes a system trajectory S(p(t)) in the
parameter space, which consist of an infinite number of LTI system. These LTI systems
appear over time, during the variation of p(t). The only difference between the occurring
LTI system are the different parameter vectors that belong to them, if the aforementioned
requirements – each nonlinearity causing and time variant terms and variables have to
be selected as scheduling parameter in order to avoid underlying differences, nullspace
problem, etc. [91] – are fulfilled.

From the state feedback design point of view, without gain scheduling or other advanced
techniques that would mean that we need infinite number of optimal gains to handle the
occurring LTI systems (in continuous time), which is obviously impossible. However, if
we want to apply the linear state feedback controller design techniques to the given LPV
system, we can utilize this favorable property, namely, that the difference between the
occurring LTI systems only appear in the values of the defined p(t). In the followings
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I investigate how can be this favorable property exploited via the introduced matrix
similarity theorems.

Define a reference point in the parameter space pref , which serves as the reference
parameter vector. The associated underlying LTI system would call as reference system
S(pref ).

For the sake of simplicity, hereinafter I use the Sref or S(pref ) to indicate the reference
LTI system and Kref or K(pref ) to indicate the reference optimal feedback gain.

Since Sref is a LTI system, classical state feedback design can be applied to it. Generally,
the goal of the controller design in such methodologies is to provide optimal feedback
gains as a result of an integral optimization process. The appearing optimal feedback
gain has to stabilize the system, if it is unstable and/or reach better properties for the
system to be controlled in a particular environment of the system. From the characteristic
equation of the closed-loop system point of view that means the new poles – which are
determined by the feedback – have to provide the stability of the LTI system.

Consider that Kref is an eligible and optimal gain for the Sref LTI system. In this
case, the modified state matrix of the state-feedback reference system is A(pref )−BKref

and the eigenvalues λref can be calculated via solving the characteristic equation:

| Iλref − (Aref −BKref ) |=| Iλref −Aref + BKref |= 0 . (3.18)

In the parameter space, each underlying parameter dependent LTI system S(p) is
unequivocally determined by its belonging parameter vector p. Since the dissimilarity
between the parameter dependent LTI systems can be described by the parameter vectors,
it is possible to use this connection to define a unique, completed state feedback controller
K(t), which is designed for a reference LTI system S(pref ), but also dealing with each
occurring LTI system S(p(t)) during operation. Moreover, if this completed controller
can provide the stability and good performance criteria for the reference system S(pref ),
it can provide the same properties for each occurring S(p) (and the LPV system S(p(t))).

On the other hand, this also means that if we have a nonlinear system, we can transform
it to an LPV system and with this approach, we can design a controller, which is able to
handle this LPV and, ultimately, the nonlinear system itself.

First, I consider that the LPV system is in the form of (3.1). Thus, only the state
matrix A(p(t)) is parameter dependent. In order to solve the problem, I proposed here a
novel, parameter dependent state feedback control scheme.

Let the closed-loop system matrix be the following:

A(p(t))−B(Kref + K(t)) , (3.19)
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Km×n is a continuously calculable gain.
At this point, two main consideration is needed:

• First, this configuration has to provide the stability, namely, the state matrix of the
newly defined closed-loop system does have eigenvalues with negative real parts,
which are appropriate from the control loop point of view.

• Second, this criteria can be satisfied if we apply a specific form of the above
mentioned Theorems (3.3.1)-(3.3.2).

Let Aref − BKref ∼ A(p(t)) − B(Kref + K(t)), which means that the eigenvalues
of the closed loop reference matrix λ(pref ) and the closed loop varying parameter
dependent matrix λ(p(t)) become equal during operation. Namely, λ(pref ) = λ(p(t))
for ∀p(t), if λ(p(t)) means the eigenvalues of (A(p(t)) − B(Kref + K(t))). This is
only possible if the similarity transformation matrix is the In×n unity matrix. Namely,
Aref −BKref = I−1(A(p(t)) −B(Kref + K(t)))I, i.e. the introduced completed gain
has to provide the ”smoother” similarity, but also the ”strict” equality criteria as well.
Shortly, the proposed completed feedback gain Kref + K(t) has to provide the equality of
not just the eigenvalues λ(pref ) = λ(p(t)), but also the equality of the matrices as well:

Aref −BKref = A(p(t))−B(Kref + K(t)) . (3.20)

3.3.6. Controller design, consequences and limitations

Controller design

Let me now assume that p(t) can be measured or estimated. In this case, the only
unknown in (3.20) is K(t). By rearranging (3.20), the K(t) can be calculated at every
p(t):

K(t) = −B−1(Aref −BKref −A(p(t)) + BKref ) = −B−1(Aref −A(p(t))) (3.21)

In this way by substituting (3.21) into (3.22):

A(p(t))−B(Kref + K(t)) =

A(p(t))−B

Kref −B−1(Aref −A(p(t)))

 =

Aref −BKref

, (3.22)
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such controller structure appears which can ensure that the LPV system S(p(t)) is going
to behave as the feedback controlled LTI reference system S(pref ) itself, regardless of
the actual value of p(t). In short, the LPV system and via the original nonlinear system
will mimics the feedback controlled reference LTI system.

Figure 3.7. demonstrates the general completed control loop in compact form.

Controller

Kref + K(t)

LPV system

S(p(t))

r(t)

x(t)

y(t)u(t)

Figure 3.7.: General feedback control loop with completed gain

The basic property of classical state feedback control is to enforce the states to reach
zero over time. Therefore, in practical applications the state feedback control in the
detailed form can be only used if the states have to reach zero over time. Nevertheless,
in most of the physiological related applications the aim of the control is different. In
this manner the developed controller scheme should be completed with the so-called
feed forward compensator or control oriented (”transformed”) model form also can be a
solution. These are detailed in the followings.

Parameter dependent feed forward compensator

The practical application requires an other configuration than Fig. 3.7. Based on [56,
80, 88], the rearrangement of the completed controller structure is needed – as it can be
seen on Fig. 3.8. The general structure has to be completed with a parameter dependent
reference compensator term N(p(t)), which becomes also a parameter dependent part of
the control structure.

Because of the A(p(t)) is parameter dependent and varies in time, the necessary
compensator has to follow this changes and it should be parameter dependent, as well
(through the A(p(t))). The parameter dependent compensator matrices can be calculated
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as follows [56, 80]: A(p(t)) B

In 0n×m


Nx

Nu

 =

0n×m

Im


Nx

Nu

 =

A(p(t)) B

In 0n×m


−1 0n×m

Im



N(p(t)) =

Nx

Nu



, (3.23)

where In is the feedback ”selector” matrix (here is a unity matrix), On×m is zero matrix
and Im is unity matrix.

By using the N(p(t)) compensator, the reference signal and control signal will be
compensated and through the states approach given predefined values and not the zero
over time.

N(p(t))
Controller

Kref + K(t)

LPV system

S(p(t))
r(t)

x(t)

y(t)u(t)

Figure 3.8.: General feedback control loop with completed gain with feed forward com-
pensator

Control oriented model form

In control engineering, the control oriented model form a popular tool which is widely
used regarding the different versions of state feedback based control [80]. The main
advantage that it models the error dynamics, namely, the deviation of the controlled
parameters or states from prescribed values or equilibrium. The method requires the
redefinition of the state variables. The new state variables will be the difference state
variables which should be equal to zero over time. That means, that the goal of the
control is to make these states equal to zero via the control. During operation, each load
or disturbance are dodging the difference based states from the equilibrium (or from zero)
and the controller enforces the reduction and finally elimination of this effect. Usage
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of these modified models can be seen in classical state feedback control, fuzzy control
and gain scheduling methods too [96]. This tool is a convenient method in case of TP
transformation based modeling and control as well.

Consider the x(t) ∈ Rn state vector. We can find a model equilibrium (a permanent
value of each states), which is beneficial from the given application point of view. Assume
that this equilibrium is described by the permanent xd ∈ Rn. In this case, the difference
based state variables become:

∆x(t) = x(t)− xd , (3.24)

where ∆x(t) ∈ Rn and the goal of the control becomes ∆x(t)→ 0.
Figure 3.9. shows the finalized completed control environment in control oriented

model form.
In this case, reference compensation is not needed, although, the reference signal is

also transformed: r(t) is the time dependent reference signal and rd is the applied ”shift”
which belongs to the given equilibrium. Therefore, ∆r(t) = r(t) − rd. In most of the
cases we apply constant shifted reference, namely ∆r = 0. This means that the control
goal becomes to eliminate the deviation of the value of the states from a given reference
determined by rd.

The completed controller design has to be done on that SS matrices which belong
to the ∆x(t) states (∆A(pref )). Consequently, the control signal provided by the
controller will be a shifted control signal ∆u(t) and ensures that ∆x(t)→ 0, namely, the
r(t)− x(t) = 0, t→∞. In order to apply the generated shifted control signal ∆u(t) on
the given LPV system (or on the original nonlinear system) a transformation is needed:
u(t) = ∆u(t) + ud, where ud belongs to the given equilibrium.

Controller

Kref + K(t)

�r(t)

�x(t)

y(t)

ud

�x(t)

�u(t)

xd

u(t) LPV system

S(p(t))

x(t)

Figure 3.9.: General feedback control loop with completed gain in control oriented form
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Consequences and limitations

At this point, the main steps which are needed in order to realize the proposed scheduling
parameter selection and controller design method can be summarized as follows:

1. If the nonlinear model contains input and/or output nonlinearities transform the
model in order to embed these into the state matrix. (Eg. add extra dynamics
or handle the input and/or output as a state variable). If the nonlinearities only
occurs in the state matrix, jump to step two;

2. Select the nonlinearity causing terms as scheduling variables (pi(t)) and add to the
parameter vector (p(t)). Determine the reasonable limits of the p(t) based on the
requirements of the physical/physiological applications.

3. Realization and validation of LPV models in appropriate form as in (3.16) (from
the original nonlinear model);

4. Selection the reference point in the parameter space, namely the reference parameter
vector pref , which determines S(pref ) reference LTI system in accordance with the
needs of reality. The selection of such a reference LTI S(pref ) system is needed,
which can provide the best operating results from the given application point of
view;

5. State feedback controller design via linear controller design methods in order to
realize the optimal reference feedback gain Kref for the reference LTI system
S(pref );

6. Design of the eligible controller scheme, including the appropriate form of (3.21)-
(3.22);

7. Realization of the control environment;

8. Validation.

Through the above mentioned points, the controller design is possible and easy to
handle.

This novel method may provide an alternative controller design possibility beside the
gain scheduling, or LPV-LMI based ideas, or else, although has its own limitations. I
collected the main limitations and their possible solutions in the following:
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1. First, I summarize the considerations so far, which are needed in order to use
this controller design approach. The LPV system should be given in form of
(3.16) or has to be transformed to this term; only the A(p(t)) can be parameter
dependent in (3.16); p(t) should be measurable or estimable; the reference LTI
system (S(pref )) should be a well selected from the given application point of view.
Each nonlinear system which is state space represented, can be transformed to the
form of (S(pref )), if the nonlinearities are connected to the selected state variables
– or each nonlinear term can be linked to a selected state variable via mathematical
transformations (e.g. multiplication with 1, or addition of 0, where the 1 consists
of the division of given reasonable state variable (e.g. ·xi(t)/xi(t) = 1) and the 0
is consist of addition and subtraction of given state variable (+xi − xi = 0); in
this way non-connected state can be involved to different permanent terms and
these can be dependent from the given states. Through this method, almost every
nonlinear systems can be transformed in a way of (3.16)).

2. The invertibility of the input matrix B is a key point (later during the observer
design, this point is complemented with the invertibility of C, as well). Generally,
Bn×m is not a square matrix and occasionally contains linearly dependent columns
as well.

I have investigated three cases here: B is square matrix and invertible; B is not a
square matrix, but does not contain linearly dependent columns; B is not square
matrix and does contain linearly dependent columns.

In the first case, B is invertible and (3.21) can be used to calculate K(t).

In the second case, if B is not a square matrix, but its columns are linearly
independent, pre-multiplying B with B> can be a solution. In this manner, the
extension of (3.21)-(3.22) is necessary, as follows:

Aref −BKref = A(p(t))−B(Kref + K(t))

(Aref −BKref −A(p(t)) + BKref ) = −BK

(Aref −A(p(t))) = −BK(t)

B>(Aref −A(p(t))) = −B>BK(t)

K(t) = −(B>B)−1B>(Aref −A(p(t))

, (3.25)

where the B>B term is now a square matrix and without linear dependency among
the columns of B, it is invertible.
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In the most unfavorable case, B is not a square matrix and does have linear
dependency. In this case, B>B may singular. However, with other techniques,
for example via singular value decomposition [95] B>B can be approximated or
through Gram-Schmidt orthogonalization method [97] the B>B can be transformed
in such a way that the linear dependency can be eliminated. However, if these
techniques are not usable, only the joint term BK(t) can be calculated, the K(t)
in form of (3.21) not.

Furthermore, if, B is not a square matrix and B>B is singular, the input virtual-
ization can be the solution. This is an algebraic equivalent transformation of the
model of the system by adding zero to the equations, where zero consists of the
addition and subtraction of the same input signal and makes B invertible. With
this technique, the input signals will be involved into each equations, however, it
does not change the model behavior. I will introduce this latter technique later in
3.4.2.

In the following section, I demonstrate how this new controller design methodology
can be used in case of different nonlinear models between various circumstances.

3.4. Control of nonlinear physiological systems via competed
LPV controller

In this chapter I introduce two different control examples, where the subjects were
nonlinear systems. I made the examinations alongside the aforementioned main steps in
each cases:

1. Realization of valid LPV models in appropriate form

2. Design of the eligible controller scheme

3. Realization of the control environment

4. Assessment of the performance of the developed controllers

It should be noted that I have used the general considerations and assumptions of
the state feedback theorem. My focus was the introduction of the developed control
structure and not the completely precise presentation of the state feedback design or
other used complementer technique. In that spirit, I mostly used arbitrary selections
of the reference LTI systems and rules of thumb during the reference controller design.
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For example, my main goal was to design a reference controller, which provides stability,
low transients and appropriate eigenvalues for the closed system – however, I did not
analyzed what can be the best eigenvalues for the given system.

3.4.1. Control of nonlinear compartment model

In this example, I demonstrate the developed controller solution in case of a physiological
compartmental model with high nonlinearities. Compartmental modeling is extremely
useful and widely used in modeling of physiological systems [1]. Moreover, it is generally
used in modeling of DM [98]. Since this example system can be handled as a physiological
system, I tried the operation of the controller beside saturations, as well.

Let an arbitrary compartmental model given by the following equations:

ẋ1(t) = −k
x1(t)

1 + ax1(t) + bx2(t)− c(x2(t) + z)x1(t) +
u1(t)
V1

ẋ2(t) = −k
x2(t)

(1 + dx2(t))− bx2(t) +
u2(t)
V2

y(t) = x1(t) + x2(t)

, (3.26)

where a = 0.4 L/mmol, b = 0.1 1/min, c = 0.5 1/min, d = 0.005 L/mmol, k = 0.8 1/min,
z = 0.1 mmol/L, V1=2 L and V2=1 L. The x1(t) and x2(t) are the states and u1 and u2

mmol/min are the inputs. The model has three nonlinearities: the natural degradations
of the compartments are loaded with Michaelis-Menten-type saturations and x2 has a
coupling to an output of x1. Figure 3.10. shows the graphical representation of the
model.

The selected scheduling variables were p(t) =

 k

1 + ax1(t), x2(t) + z,
k

1 + dx2(t)

>,

which means we have a 3D parameter space.
Assume that the model is valid, the states (x1(t) and x2(t)) and through the p(t) can

be measured (if the states are measurable and the model is valid then we can calculate
the p(t) directly from the states).

The state space representation and the state matrices of the LPV system can be written
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as follows:ẋ1(t)

ẋ2(t)

 = A(p(t))

x1(t)

x2(t)

+ B

u1(t)

u2(t)



A(p(t)) =

0 b

0 −b

+

−1 0

0 0

 p1(t) +

 0 0

−c 0

 p2(t) +

0 0

0 −1

 p3(t)

B =

1/V1 0

0 1/V2

 C =
[
1 1

]
D =

[
0 0

]

. (3.27)

x1 x2
b

k

1 + ax1(t)
k

1 + dx2(t)b

c x2(t) + z

1/V1

u1(t)

1/V2

u2(t)

Figure 3.10.: Nonlinear compartmental model

Let me assume that the reference parameter vector is pref = [0.6667, 0.6, 0.64]> (where
[x1,d, x2,d]> = [0.5, 0.5]>). At the reference point, the A(pref ) is equal to:

A(pref ) =

−0.6697 0.1

0 −0.74

 . (3.28)

and the eigenvalues of the A(pref ) are λ = [−0.6697,−0.74]>, i.e. the reference LTI
system is stable, however, the poles are close to zero.

The next step was the design of the reference controller Kref . The rank of the
controllability matrix was equal to 2, i.e. the reference LTI system is controllable (n = 2).

In this case, I decided to use the MATLABTM care order to design the Kref gain
beside Q = I2 (unity matrix) and R = 0.01I2.

The embedded care order calculates the unique solution for X in continuous-time
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control algebraic Ricatti equation [99]:

A>XE + E>XA− (E>XB + S)R−1(B>XE + S>) + Q = O (3.29)

and returns with an optimal gain G = R−1(B>XE + S>). I have applied the following
parameters: Q = I2, R = 0.01I2, S = 0 and E = I.

As a result, the optimal gain turned out to be

Kref =

8.7493 0.058

0.1161 9.2883

 . (3.30)

This Kref means that the eigenvalues of the closed-loop reference state matrix A(pref )−
BKref are λref,closed = [−5.046,−10.0267]> – which is a substantial improvement since
the eigenvalues are much farther from zero without any imaginary component.

The completed controller structure will ensure that the parameter dependent LPV
system’s closed-loop state matrix will be equal to λref,closed regardless of the actual value
of p(t). From here, K(t) can be calculated at each iterations by using (3.21).

Since the control goal was different than ensuring zero states, the use of reference
compensation was needed. In order to realize this, I have used (3.23) to calculate the
compensator matrices at each iteration during operation. The selected reference levels
were r = [8, 7]>, the initial states x0 = [20, 10]>.

The achieved results can be seen on Fig. 3.11. The upper left diagram shows the
changing of the state variables of the reference LTI system S(pref ) in time, while the
upper right diagram is the changing of the state variables of the parameter dependent
LPV system S(p(t)) over time. The difference (error) between them is represented by
the lower left diagram. However, the p(t) varies over time (as the lower right diagram
shows), there is only numerical difference between the states of S(pref ) and S(p(t)). That
means, the LPV system and indirectly the original nonlinear system precisely mimics the
behavior of the reference LTI system over time.
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Figure 3.11.: Results of the simulation without control input saturations

Since the given example is a physiological one, I investigated the accuracy of the
proposed controller structure if there is saturation on the control input, which does not
allow the occurrence of physiologically irrelevant control inputs. Control inputs only can
be positive. I found that the results are different than the previous case, which mostly
comes from that fact that the selected scheduling variables are dependent from the actual
values of the states. Namely, the state variables are coupled to the S(p(t)) through the
p(t). However, I did not use any saturation on the values of the state variables, which
could compensate for the effect of the control input saturation.

Figure 3.12. represents this latter scenario when saturation is applied. Each parameter
were the same during the simulation, except that I consider that the input signal cannot
be negative at all. The results show that there is a difference between the states of
S(pref ) and S(p(t)) over time. However, the controller can handle this situation and can
provide stable control for S(p(t)). Finally, the difference is slowly decreasing and the
state variables reached the predefined reference levels.

In both cases (saturation free and loaded) the varying system did not get close to
the reference system, namely, the trajectory of the p(t) was not closing pref and the
‖pref − p(t)‖ = 0 did not appear during operation.
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Figure 3.12.: Results of the simulation with control input saturations

3.4.2. Control of T1DM

In this Subsection, I provide an example which demonstrates the application of the
developed control design method for DM. In this case, several challenging issues occur
which have to be solved during the controller design. The main issues are summarized in
the followings:

1. Nonlinearity of the model: the applied model contains nonlinear part;

2. Disturbance input: the feed intake should be handled as disturbance and not as
control input. From this reason such controller has to be designed which can
compensate the effect of the disturbance beside it provides stability;

3. Control input: we have only one control input, the insulin intake. Thus, the
controller can effect only via this control input. Moreover, this means that the B is
not directly invertible.

4. Reachability: only the BG level is measurable, but the other states are not available.
Thus, the states have to be observed or estimated.

5. Reference compensation: the feed forward compensation is not available, because the
disturbance is unknown. Therefore, we cannot prepare our controller to compensate
it. Consequently, we have to apply other complementer solution regard to the state
feedback based controller.
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In the light of the aforesaid issues the application of the control oriented model form
and control (Sec. 3.3.6) and the input virtualization (Sec. 3.3.6) can be used to bypass
these problems.

The general control oriented model form with disturbance input is represented by
Fig. 3.13). This realization will be used in this case as well. Nevertheless, to solve the
reachability of the states the closed loop should be completed by an observer or estimator.

Controller

Kref + K(t)

�r(t)

�x(t)

y(t)

ud

�x(t)

�u(t)

xd

u(t) LPV system

S(p(t))

x(t)

d(t)

Figure 3.13.: General difference based completed controller structure with external dis-
turbance

In this example, I used the same Minimal Model as in Chapter 2. The model is
described by (B.1a)-(B.1d). I considered a T1DM patient in this Subsection, which
means, the (B.1a)-(B.1b) and (B.1d) were used here. The description of the model and
the used parameters are available in the Appendix B.1.

The first step was the transformation of the system equation to realize the control
oriented model form in an LPV sense. The ∆G(t) can be reached via rearrangement of
(B.1a), where the model equilibria concerning to Ġd ≡ 0:

Ġ(t)− 0 = −(p1 +X(t))G(t) + p1GB + d(t)− (−(p1 +Xd)Gd + p1GB + dd) =

∆Ġ(t) = −p1G(t)−X(t)G(t) + p1GB + d(t) + p1Gd +XdGd − p1GB − dd =

∆Ġ(t) = −p1(G(t)−Gd)−X(t)G(t) + (d(t)− dd) +XdGd + 0 =

∆Ġ(t) = −p1∆G(t)−X(t)G(t) +XdGd + ∆d(t) +G(t)Xd −G(t)Xd =

∆Ġ(t) = −p1∆G(t)−G(t)∆X(t)−Xd∆G(t) + ∆d(t) =

∆Ġ(t) = −(p1 +Xd)∆G(t)−G(t)∆X(t) + ∆d(t)

.

(3.31)
The ∆X(t) and ∆I(t) states can be calculated similar to (3.31) from (B.1b) and (B.1d)
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by using the Ẋd ≡ 0 and İd ≡ 0 equilibriums:

Ẋ(t)− 0 = −p2X(t) + p3(I(t)− IB)− (−p2Xd + p3(Id − IB)) =

∆Ẋ(t) = −p2(X(t)−Xd) + p3(I(t)− Id)− p3IB + p3IB =

∆Ẋ(t) = −p2∆X(t) + p3∆I(t)

(3.32)

and
İ(t)− 0 = −n(I(t)− IB) + u(t)− (−n(Id − IB) + ud) =

∆İ(t) = −n∆I(t) + ∆u(t)
. (3.33)

From (3.31) - (3.33) it is clear that the G(t) has to be selected as scheduling variable
in order to realize the difference based control oriented model form in LPV sense, namely
p(t) = p(t) = G(t). The SS representation based on (3.31)-(3.33) can be written as:

∆Ġ(t)

∆Ẋ(t)

∆İ(t)

 = A(p(t))


∆G(t)

∆X(t)

∆I(t)

+ B∆u(t) + E∆d(t)

A(p(t)) =


−(p1 +Xd) 0 0

0 −p2 p3

0 0 −n

+


0 −1 0

0 0 0

0 0 0

 p1(t)

B =


0

0

1

 E =


1

0

0

 C =
[
1 0 0

]
D =

[
0 0 0 0

]

. (3.34)

The key point is the invertibility of B. However, in this case this criteria is not satisfied,
since B is a rectangular matrix and not invertible. To bridge this problem, I have applied
another tool, the input virtualization. That means, I have added zero to the (3.31) and
(3.32) equations, which consists of the addition and subtraction of the control signal:
+∆u(t) − ∆u(t) = 0. In this way, the dimension of the B matrix can be arbitrarily
extended to Bextended. In order to avoid the unit incompatibility problem, the extended
Bextended has to contain ”unit compensator” scalars, but the value of these can be 1.

To realize the input virtualization the following modifications were applied on (3.31)
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and (3.32):

∆Ġ(t) = −(p1 +Xd)∆G(t)−G(t)∆X(t) + ∆d(t) + φ1∆u(t)− φ1∆u(t) , (3.35)

where φ1 unit compensator is φ1 = 1
mgmL

µUdL
, namely φ1∆u(t) = [mg/dL/min]).

∆Ẋ(t) = −p2∆X(t) + p3∆I(t) + φ2∆u(t)− φ2∆u(t) , (3.36)

where φ2 unit compensator is φ2 = 1
mL

µU
, namely φ2∆u(t) = [min−1]).

These modifications reflects in the extended input matrix:

Bextended =


φ1 0 −φ1

0 φ2 −φ2

1 0 0

 =


1 0 −1

0 1 −1

1 0 0

 , (3.37)

where Bextended now is invertible.
From control engineering point of view, that means we apply the same ∆u(t) control sig-

nal on each state. Namely the new input vector becomes ∆u(t) = [∆u(t),∆u(t),∆u(t)]>.
Nevertheless, the control signal did not affect the G(t) and X(t) states directly, because
of the special form of Bextended. From mathematical point of view, the realization of
this structure is only possible if the Kref + K(t) completed controller gain has exactly
the same rows. This requirement is a direct consequence of the definition of the control
signal.

To provide the full picture about this property, let me now assume A(p(t)) from (3.34)
and Bextended from the (3.37) and realize the closed completed control equation based on
(3.21) and (3.22):

∆ẋ(t) = A(p(t))∆x(t) + Bextended∆u(t) + E∆d(t) =

∆ẋ(t) =
(
A(p(t))−Bextended(Kref + K(t))

)
∆x(t) + E∆d(t)

(3.38)
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and

Bextended(Kref + K(t)) =
1 0 −1

0 1 −1

1 0 0



kr,1 + k(t)1 kr,2 + k(t)2 kr,3 + k(t)3

kr,1 + k(t)1 kr,2 + k(t)2 kr,3 + k(t)3

kr,1 + k(t)1 kr,2 + k(t)2 kr,3 + k(t)3

 =


0 0 0

0 0 0

kr,1 + k(t)1 kr,2 + k(t)2 kr,3 + k(t)3



. (3.39)

What is important to notice is that the rows of the Kref + K(t) complex have to be
the same to fulfill the requirement of realizability. That means that individually both
the Kref and the K(t) can have different rows. This property becomes very useful in the
followings. The structure of Kref and K(t) is known, thus we can manipulate them – in
this way the realizability can be reached.

The state feedback can be applied only if we have information about the states via
measurement, observation or estimation. The output of the system is the G(t) BG
level which is the only measurable state. In this case, the presence of disturbance and
the incomplete observability criteria make the observation (observer design) insufficient.
Therefore, the solution can be to estimate the X(t) and I(t) states. Although, estimation
is possible, but challenging because the nonlinearity and the mixed effects: the disturbance
has to be handled as non-additive effect and an organic part of the model; the sensor
noise is an additive effect coming from external source. I have taken into account these
requirements and decided to apply a discrete mixed non-additive/additive Extended
Kalman Filter (EKF) to estimate the states.

In the followings I present the design of the used EKF based on [100, 101] and by using
the experiences from [102]. The formulation of the mixed non-additive/additive EKF
can be described as follows.

Consider the general system model (non-additive disturbance) and observation model
(additive noise):

xk+1 = f(xk,uk,wk)

zk = h(x) + vk

, (3.40)

where xk+1 is the output of f system model (represents the next state), xk is the
actual state, uk is the actual control signal, wk is the actual disturbance. x, u and w is
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non-additive parts of f . vk is the actual noise. x is the non-additive and vk is additive
part of the h observation model which has z output (estimation).

In this given case the vk is additive white noise with zero mean and 5 mg/dL variance,
thus vk ∼ N (0,Rk) with Rk covariance matrix. wk ∼ N (0,Qk) is non-additive distur-
bance affecting the states with assumingly zero mean Gaussian distribution and nw × nw

real positive semidefinite Qk covariance matrix. Naturally, because of the dimension of
disturbance nw = 1→ Qk,1×1.

In the light of the afore mentioned considerations, the prediction and update algorithm
of the EKF can be described as follows.

Predict

Predicted state estimate : x̂k+1|k = f(x̂k|k,uk,wk)

Predicted covariance estimate : Pk+1|k = FkPk|kF>k + LkQkL>k

Udpate

Innovation residual : ỹk+1 = zk+1 − h(x̂k+1|k)

Innovation covariance : Sk+1 = Hk+1Pk+1|kH>k+1 + Rk+1

Kalman gain : Kk+1 = Pk+1|kH>k+1S
−1
k+1

Updated state estimate : x̂k+1|k+1 = x̂k+1|k + Kk+1ỹk+1

Updated covariance estimate : Pk+1|k+1 = (I−Kk+1Hk+1)Pk+1|k

, (3.41)

where I is the unit matrix, Fk =
∂f

∂x

∣∣∣∣
x̂k|k,uk

and Hk+1 =
∂h

∂x

∣∣∣∣
x̂k+1|k

are the state

transition and observation matrices defined by their Jacobians, respectively [100, 101].
It should be stated that my primary goal was to demonstrate the usability of the

developed completed LPV based controller design method. Hence, I have considered
simplifications regard to the realization of the system, controller and EKF which were
the following: (i) I decided to use the continuous original nonlinear system; (ii) I applied
the developed continuous completed LPV controller; (iii) I applied the introduced mixed
non-additive/additive EKF. Consequently, I had to apply a small sampling time (in the
given case 0.1 min) at the EKF to preserve the convergence of the filter. In real life
applications all sub-parts have to be discrete and the sampling time of the system and
controller has to be comparable magnitude with the EKF’s sampling time. For example,
Ts = 1 min for the system and controller and Ts = 5 min for the EKF (5 min is a usual
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value coming from the limitations of continuous glucose measurement systems).
The final control environment can be seen on Fig. 3.14.

Controller

Kref + K(t)

Original 

system

�r(t)

�x(t)

y(t)

ud

Extended Kalman Filter

�ynoisy(t)

n(t)yd

u(t)

D/A A/D

d(t)

�u(t)

Figure 3.14.: Finalized control environment with the original system, differnce based
completed LPV controller with input virtualization and the mixed non-
additive/additive EKF

From this point the design procedure is straightforward. By calculating the Gd, Xd,
Id, dd and ud values the (3.31) - (3.33) equations can be finalized and the SS structure
from (3.34) appears. I used the model equilibrium which means (B.1a)-(B.1d) can be
used to calculate them. I applied the model own equilibrium determined by GB and IB,
which means Gd = GB and Id = IB. In order to reach this the Xd, dd and ud have to be
equal to zero according to the model equations.

0 = −(p1 +Xd)Gd + p1GB + dd → dd = 0→ Gd = GB

0 = −p2Xd + p3(Id − IB)→ Id = IB → Xd = 0

0 = −n(Id − IB) + ud → ud = 0→ Id = IB

. (3.42)

The next step is the design of the completed LPV controller structure.
I selected the reference parameter vector as pref = 85 mg/dL which is the – as

aforesaid – model equilibria. The eigenvalues of the difference based reference LTI system
are λ = [−0.0280,−0.0250,−0.2300]>, which means that the selected LTI system is
stable.

The rank of the controllability matrix of the reference state matrix A(pref ) (concerning
to the difference based states) was equal to 3, the system is controllable.

In this case, the glucose intake has to be handled as an external disturbance and
the previous state feedback design proceedings cannot be used. In order to bridge this
problem, I have selected the MATLABTM care order to design a H∞ type controller. In
this case, the care order provides stabilizing robust feedback gain Kref via the solution
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of the following H∞ like Ricatti equation [99]:

A>K + KA−
[
B E

]
R−1

B>

E>

K + C>C = 0 , (3.43)

where R =

−γ2I 0

0 I


−1

, beside γ = 5 and Q = C>C.

It is important to notice that the reference controller design has to be done by using
the original B and from the two calculated gain what are provided by the care command
only that can be used which belongs to the insulin input. The obtained robust stabilizing
gain was:

Kref =
[
0.9724 −80.6320 −0.0085

]
. (3.44)

The closed loop eigenvalues λref,closed = [−1.0004,−0.2302,−0.0231]> are provided by
the designed Kref – which means a smaller improvement, however, the closed system
will be able to deal with the disturbances in H∞ sense.

Now by applying the (3.21), (3.22), (3.38), (3.39) and (3.40) the completed controller
structure can be realized. First, the investigation of the K(t) is necessary. By using the
Bextended in (3.21) we get:

K(t) =


0 0 −1

1 −1 −1

1 0 −1




0 ∆p(t) 0

0 0 0

0 0 0

 =


0 0 0

0 ∆p(t) 0

0 ∆p(t) 0

 , (3.45)

which means that the structure of the Kref,extended should be created to compensate
the Kref,extended + K(t) complex. The rows of the Kref,extended + K(t) will be equal in
that case if Kref,extended is set as:

Kref,extended =


0.9724 −80.6320 + ∆p(t) −0.0085

0.9724 −80.6320 −0.0085

0.9724 −80.6320 −0.0085

 , (3.46)

which is possible because all information are available. Now, the rows of the Kref,extended+
K(t) complex become equal and the realization of the control environment is possible. By
replacing the B with Bextended and using the (3.39) for the feedback, the virtual inputs
do not affect at all to the ∆G(t) and ∆X(t).
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Now I introduce the initial conditions were applied during the simulations. The initial
values of the states of the original nonlinear system were x(0) = [100, 0, 0]>. We assumed
T1DM, thus the X(0) and I(0) can be considered as 0, which is equivalent with the
zero insulin intake – which is a known information. Therefore, the initial values of the
states of the EKF were x(0)EKF = [90, 0, 0]>, represents an estimation error at the first
state (BG level). The initial covariance matrix was set to zero, namely Pk|k = 0 in the
first predict step. The applied difference based reference signal was selected as constant,
namely ∆r = [0, 0, 0]>. The latter means that the states should reach the equilibrium
over time, ie. the Gd, Xd and Id levels.

Control input saturation has been applied as well to avoid the physiologically irrelevant
input signals: the injected insulin cannot be lower than zero (lower limit). Upper limit
was not used.

I used an extreme external glucose load during the simulations. In order to make
the in silico tests more realistic, the absorption sub-model from the Hovorka model
(B.3a)-(B.3b) was used – since the applied Minimal-model does not have embedded
absorption sub-model. I assumed 100 g CHO at every 180 min. The doses were 20 g over
5 min. The simulation time was 720 min – a half day.

It has to be mentioned that the BG levels are transformed from mg/dL to mmol/L –
in this way the comparison to the other results becomes easier.

The achieved results can be seen on Fig. 3.15. and Fig. 3.16. The signals on the
figures are not the difference based signals, but the original ones in order to make the
understanding easier.

On Fig. 3.15, the upper diagram represents the noisy output of the system which
is measured (blue line). The EKF provided a filtered signal which is smoother than
the measurable one (red line). The ”true” G(t), namely the BG level belongs to the
original model can be seen with yellow. The lower left diagram shows the estimated X(t)
provided by the EKF (red) and the original X(t). The lower right diagram represents
the estimated I(t) provided by the EKF (red) and the I(t) belongs to the original model.
The results agrees with the preliminary expectations. Both of the non-additive and
additive disturbances are directly affect to the BG level. The non-additive disturbance
affects to the G(t) accordingly (B.1a). The additive noise affects to the output of the
model, namely the G(t). The disturbance effect reaches the X(t) and I(t) via coupling.
This attenuates the effect of the disturbance in the remaining states. Consequently, the
estimation and the original states are almost overlapping (in case of X(t) and I(t)).
The EKF works well, namely, it provides a smoother G(t); and X(t) and I(t) with high
accuracy.
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Figure 3.15.: Comparison of the original system’s states and the estimated states (pro-
vided by the EKF)

Figure 3.16. shows the vary of the states of the original model (upper diagram), the
insulin intake (middle diagram) and the glucose rate of appearance (lower diagram). The
controller was able to keep the BG level in a tight and healthy range: the BG level varied
between 4.7022 and 6.85 mmol/L. It is visible that after the first cycle the signals are
repeating, which behavior is coming from the applied, symmetric pulse kind disturbance
input. In order to present the signals on the same diagram, I modified their order of
magnitude: 10 ·X(t) and I(t)/100 appear on the diagram as it was noted in the caption.
From the middle diagram can be seen that the control signal is affected by the filtered
sensor noise through the EKF. This property can be avoided if we apply additional
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smoothers. Because the aim was here only the demonstration of the LPV based controller
design method, I did not apply any smoothers.
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Figure 3.16.: Results of the simulation of T1DM control, OoM: Order of Magnitude

Although, it is not visible on the figures (because of the repeating disturbance input),
but the control goal was reached by the controller’s structure. I made other examination,
when I applied only one bigger impulse as disturbance. After the decay, the states
approached the prescribed Gd, Xd and Id values. However, they did not reach perfectly -
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which is caused by the additional noise through the EKF. The deviation was small with
10−1 magnitude in all states, which is acceptable considering the high additional noise.

It should be noted, that the states of the reference original system and the LPV
system are varying fast. The explanation of this phenomenon is that glucose and insulin
absorption sub-model is not included in this simple Minimal Model. Probably, the
dynamics of the systems would be slower in case of an embedded glucose and insulin
absorption sub-model – however, the investigation of this possibility is beyond this theses
and will be a part of my future work.

3.4.3. Summary

In this Section, I have introduced a novel, LPV-based controller design approach. This
method provides a mixture of classical optimal state-feedback control and a kind of
supplementary control which is based on the parameter vectors of the LPV parameter
space. The main advantage of the proposed controller structure is the fact that it
is enough to design a reference controller for a reference LTI system and the actual,
necessary control action over time will be determined by comparison to this reference
controller through algebraic manipulations.

I presented the properties, key points and usability of the developed completed controller
scheme.

I have investigated different scenarios in order to exemplify the usability of the developed
tools: two nonlinear sample systems with and without saturations and disturbance.

Without disturbance and saturations, the LPV system perfectly mimics the behavior
of the reference system over time.

In case of saturation, the dynamics of the reference LTI and the LPV systems will
be different, however, the completed controller structure provides stability and good
reference tracking.

In the case when disturbance occurs, the completed controller structure provide stability
and good control action.

To sum up, in both cases, the developed completed controller structure works finely
and provides the expected results. The completed controller can guarantee the stability
of the LPV system. Moreover, it is enough to determine performance specifications only
to the reference LTI system – because the completed controller forces the LPV system to
reach these specifications as well.
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3.5. Observer based control for LPV systems

In this section, I will investigate a completed observer structure, which is based on
the same consideration as the previous Sections. This method uses the classical state
observer theorem, however, the completed observers are parameter dependent and fit to
the developed completed controller structure.

I demonstrate the usability of the completed observer structure on the model of Sections
3.4.1.

3.5.1. Classical linear observer design

It may happen that the states of a given system are directly not available. In such
situations, a state observer or state estimator can be used. Although other possibilities
are available, e.g. family of Kalman filters, I only focused on the classical observer design.

A linear observer can be designed, if the main criteria, the observability is satisfied.
That means, that the rank of the observability matrix has to be equal to n, the number of
the states. This property refers to the structure of the A and C matrices. If observability
is satisfied, linear observer design is possible.

In case of full order linear observer, the linear observer is a dynamic system whose
output is the x̂(t) estimated state vector. In case of asymptotic observer, the estimation
error, namely x̃(t) := x(t)− x̂(t) has to converge to zero over time [56].

The general form of the full order linear observer can be described as follows:

˙̂x(t) = Fx̂(t) + Gy(t) + Hu(t) , (3.47)

where F ∈ Rn×n is the observer state matrix, G ∈ Rk×n is the observer gain matrix and
H ∈ Rn×m is the observer input matrix.

The velocity of the disappearance of the observation error can be prescribed by
the eigenvalues of the F, which is traceable to the determination of the characteristic
polynomial of F [56, 88]:

|sI− F| = |sI−A−GC| = |sI−A> −C>G>| . (3.48)

In this way an asymptotic state observer design leads to a state feedback design task,
where the G observer gain provide that the closed loop poles of the observer become
equal to the predefined observer poles.

In order to design a full order observer, the following criteria have to be satisfied by

85



which the observer’s parameter can be calculated at the same time [56, 88]:

F = A−GC,

H = B,
˙̃x(t) = Fx̃ stable and fast

. (3.49)

The selected observer poles have to be higher negative values than the LTI system has
in order to provide fast operation, namely, fast error disappearance.

3.5.2. Completed parameter dependent observer design

In this case, I demonstrate that Theorems 3.3.1 and 3.3.2 can be used in the same way
as in (3.19) and (3.20) to design state observer, based on similar principles.

Let Fref = Aref −GrefC ∼ F(t) = A(p(t)) − (Gref + G(t))C, which means that
the eigenvalues of Fref , the λ(Fref ) and λ(F(t)) become equal during operation. So,
λ(Fref ) = λ(F(t)) at ∀p(t), if λ(F(t)) are the eigenvalues of F(t) = A(p(t))− (Gref +
G(t))C. This is only possible if the similarity transformation matrix is the In×n unity
matrix, namely, Fref = I−1F(t)I. As previously, that means that the introduced observer
gain has to provide the ”smoother” similarity, but also the ”strict” equality criteria as well.
Shortly, the proposed completed observer gain Gref + G(t) has to provide the equality
of not just the eigenvalues λ(Fref ) = λ(F(t)), but also the equality of the matrices, as
well:

Fref = F(t)

Aref −GrefC = A(p(t))− (Gref + G(t))C
. (3.50)

3.5.3. Consequences, observer design and limitations

Consider the case when p(t) can be measured or estimated. In this case, G(t) can be
calculated via rearranging the (3.50) at every p(t):

Aref −GrefC = A(p(t))−GrefC−G(t)C

(Aref −GrefC−A(p(t)) + GrefC)C−1 = −G(t)CC−1

G(t) = −(Aref −GrefC−A(p(t)) + GrefC)C−1

G(t) = −(Aref −A(p(t)))C−1

(3.51)
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By rearranging (3.51):

A(p(t))− (Gref + G(t))C =

A(p(t))−

Gref − (Aref −A(p(t)))C−1

C =

Aref −GrefC

, (3.52)

an observer structure appears, which can ensure that the parameter dependent observer
is going to behave as the reference observer itself, regardless of the actual value of p(t).

Similar to the previous Section, I have assumed that the parameter vector p(t) can be
measured or estimated, which is an important limitation. However, most of the cases
if the parts of p(t) cannot be measured, it can be estimated by the observer itself, or
external estimator also can be used.

The control structure with the completed observer can be seen on Fig. 3.17.

N(p(t))
Controller

Kref + K(t)

LPV system

S(p(t))
r(t)

x(t)

y(t)u(t)

Observer
F(t)x(t) + (Gref + G(t))y(t)+ Hu(t)

u(t)

y(t)

Figure 3.17.: General feedback control loop with completed observer and gain

The key points which are needed in order to realize the proposed completed observer
design method can be summarized as follows – which should follow the afore mentioned
realization steps of the completed controller:

1. Realization of the completed LPV controller structure;

2. State observer design via linear controller design methods in order to realize the
observer gain Gref for the reference LTI system S(pref );

3. Design of the eligible observer scheme, including the appropriate form of (3.51);

4. Realization of the control environment.

I present the main limitations and their possible solutions below.

1. The first step is the same as the completed controller design.
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2. The invertibility of the output matix C is the key point. The structure of a
system’s output and the output equation is structurally different than the input.
That means, we have to face strict limitations. Two bottleneck has to be investigated,
the mathematical and the control one. Mathematically, the C matrix has to be a
square matrix and has to be invertible. The control interpretation of this restriction
is that the number of the output (and thus the number of the output equations)
has to be equal to the number of the states, namely, each state has to be an output,
or should has direct affect on the output. This prescription makes the columns of
the C matrix linearly independent and thus invertible.

There is a chance that this property can be handled through mathematical transfor-
mations, which transforms the completed equation of (3.51) into an other abstract
space (by using basis transformations), however, I did not investigated this possi-
bility yet.

In the following section, I demonstrate how the completed controller and observer
design works in practice on given nonlinear physiological system.

3.6. Illustrative example for the completed observer structure

In this Section, I demonstrate the usability of the developed completed observer structure
in practice.

Two remarkable considerations has to be emphasized:

1. I only investigated such kind of structure where the prescribed requirements against
the model structure were satisfied, namely, each states are outputs and C is
invertible.

2. I have used a modified model of Subsection 3.4.1; the considerations, circumstances,
completed controller design were exactly the same and these processes were not
affected by the modification of the system equations. The same controller structure
were used, however, completed with an observer.

3.6.1. Control of nonlinear compartmental model beside observer

In this example I demonstrate the developed completed observer solution on the same
system as Subsection 3.4.2. The only difference is the modification of the outputs in
order to satisfy the requirement against the invertibility of C.
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Consider the compartmental system of (3.26) with modified y1,2(t) outputs:

ẋ1(t) = −k
x1(t)

1 + ax1(t) + bx2(t)− c(x2(t) + z)x1(t) +
u1(t)
V1

ẋ2(t) = −k
x2(t)

(1 + dx2(t))− bx2(t) +
u2(t)
V2

y1(t) = x1(t)

y2(t) = x2(t)

. (3.53)

The modified output matrix C becomes different than (3.27):

C =

1 0

0 1

 . (3.54)

The selected scheduling variables were p(t) =

 k

1 + ax1(t), x2(t) + z,
k

1 + dx2(t)

>,

which means we have a 3D parameter space. As previously, these ”state based” scheduling
variables are not directly measurable and in the given case they will provided by the
observer.

Assume that the reference parameter vector is pref = [0.6667, 0.6, 0.64]>.
I have applied the same reference controller Kref for the same reference LTI system

S(pref ) as in Subsection 3.4.1.
The next step was the inspection of observability. The rank of the observability matrix

was 2, meaning that the reference LTI system was observable.
I have designed the reference observer gain Gref by using the MATLABTM place

command [99]. The obtained Gref was the following:

Gref =

 110.47 −0.3041

−1.3758 207.3741

 . (3.55)

Afterwards, the realization of the completed observer structure is possible (as in Fig.
3.17).

I have used the same protocol during my investigations: I compared the controlled
LPV system (without observer) to the controlled and observed LPV system.

In this case, I applied a lower bound saturation on the control input signal, namely,
the control signal cannot be lower than zero in both cases.
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The results can be seen on Fig. 3.18. The upper left figure shows the varying of
the state variables of the controlled LPV system, while the top right figure shows the
changing of the estimated state variables provided by the completed observer. The lower
left diagram shows the outputs of the controlled LPV system, while the lower right
diagram represents the output of the controlled and observed LPV system. It can be
seen that both systems reach their desired steady state values without static error and
there is no difference between the outputs and states of the given LPV systems. However,
as Fig. 3.19. shows, a small, oscillating error occurred between the states and outputs of
the systems. The order of the error is around 10−3 – 10−4.
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Figure 3.18.: States and outputs of the controlled LPV and controlled and observed LPV
system

Figure 3.20. shows the PS of the simple LPV system and the PS, which is realized by
the observer. The order of the error between the scheduling variables are very low: 10−2,
which means the completed observer approximates the scheduling variables, however,
with high accuracy.

3.6.2. Summary

In the Section above, I have introduced an LPV-based completed observer design ap-
proach. This method provides a mixture of classical state observer design and a kind
of supplementary observer which is based on the parameter vectors (and belonging
parameter dependent LTI systems) of the LPV parameter space.
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Figure 3.19.: Result of the simulations

I presented the properties, key points and usability of the developed completed observer
scheme.

The developed LPV based completed observer structure is able to estimate the actual
values of the states in case the states are directly not measurable. I presented the usability
of the developed tools in case of nonlinear physiological system.

I found that the completed observer can accurately estimate the states of the given
specific LPV system.

Finally, a crucial point should be noted at this point: the key issue in this Subsection
is the invertibility of C. I demonstrated the usability of the completed observer method
in a favorable case. However, the method is able to deal with such situations, when C
is invertible, but not a diagonal matrix. That means, the states do not occur by their
own on the output, or the order of the output equations are different. In that situations,
when there is a coupling, eg. y1(t) = x1(t) + x3(t), y2(t) = x3(t) and y3(t) = x2(t) the
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Figure 3.20.: Parameter space and parameter errors. Upper row: PS of LPV system;
middle row: PS of the observer; lower row: parameter error

C =


1 0 1

0 0 1

0 1 0

 and the inverse is C =


1 −1 0

0 0 1

0 1 0

. The completed observer structure

can deal with such situations – however, the complex investigation of these circumstances
will be a part of my future work.

Thesis Group 2

Thesis group 2: Completed LPV controller and observer scheme for LPV systems.
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Thesis 2
I have introduced mathematical tools for LPV related control tasks
which successfully exploit the possibilities lied in the specific prop-
erties of the parameter space of LPV systems. By using these tools
different quality markers can be defined and specific complementary
LPV controller and observer structures can be designed.

Thesis 2.1
I have introduced a norm based ”difference” interpretation regard-
ing the LPV systems, based on the properties of the LPV parameter
space. I have defined how to use these interpretations as error and
quality criteria during modeling and control and demonstrated my
theoretical findings on a concrete example in diabetes modeling.

Thesis 2.2
I have developed an LPV based complementary controller struc-
ture in order to control nonlinear systems. The developed method
requires the knowledge of classical state feedback theorems and
less complex than the LMI-based methods, moreover it requires
less computational capacity than the LMI-based techniques. I have
demonstrated the usability of the developed tool in case of different
nonlinear systems, with unfavorable circumstances demonstrating
that the developed method provides stability and appropriate con-
trol action.

Thesis 2.3
I have developed an LPV based complementary observer structure
which can estimate the actual values of the states in case of directly
not measurable ones. I demonstrated the usability of the developed
tools in case of a nonlinear system. I have proven that the com-
plementary observer can accurately estimate the states of the given
specific LPV systems.

Relevant own publications pertaining to this thesis group: [91, 103, 104, 105].
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4. Tensor-Product model transformation
based modeling

This Chapter consists of three main parts: motivation of using TP related tools, theoretical
background, and different case studies, where I used the TP model transformation in
order to realize TP models. The Chapter is organized as follows.

First, I collected the main motivation of using the TP related framework.
Secondly, I present the theoretical material including the mathematics of TP model

transformation and the control oriented modeling technique.
Thereafter, an investigation of the TP-based modeling possibilities for known ICU DM

model follows.
After it, I present the results of the robustization possibilities with TP-modeling in

case of a Minimal DM model.
Afterwards, I demonstrate the investigation of a complex T1DM model via TP model

transformation.
It should be noted that I have used MATLABTM in order to realize the theoretical

achievements.
Finally, in the practical example I used the control oriented model form from Sec. 3.3.6

when I realized the qLPV models.

4.1. Motivation behind the usage of TP model transformation

In nonlinear physiological systems one crucial point is the effective handling of the
nonlinearity. This is challenging even now, when several methods are available, because
all of the processes and systems require unique approach. There is no general solution,
yet. Although, the recently appeared TP transformation based modeling and controller
design provide a general way regard to the issues concerning the control of such systems.
The TP model transformation can be effectively combined with LPV techniques and LMI
or Bilinear Matrix Inequality (BMI) based design methods.

The basis is a well defined qLPV model as in Chapter D. However, in contrast to
the previous chapter our aim is not to use the whole parameter space and exploit its
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properties concerning to the p(t) parameter vector. Now, our goal is to determine the
most tight bounding simplex (Ω) in the parameter space which contains the all possibly
occurring LTI systems depends on the actual value of the p(t). By realizing a dense
sampling on the parameter space and mapping the possible values of p(t), a minimal
volume simplex (Ω) can be realized (Fig. 4.1).

S1
S2

S3

S4

S5

S6

S7

S8
S(pstart)

S(pstop)

S(p(t))

p1

p2

p3

S10

Figure 4.1.: Parameter space of a LPV system with defined parameter box (cube) and Ω
bounding simplex

Since, we know the vertices of this simplex (consist of Si LTI systems), we are able
to use different LMIs (or BMIs) to design Ki controllers which fulfill the prescribed
requirements defined in the LMIs. The final system and controller (and observer) can
be described as a convex combination of the Ki controller (Gi observers) as I present
later. The main benefits compared to other LMI based methods is the less computational
capacity, deeper understanding of the processes behind, more sophisticated or strict
requirements can be embedded into the LMIs – moreover, the occurred core tensor
structure via the TP model transformation can be used in the controller as well and
other manipulations are not needed. The appropriate control action will be guaranteed
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via this method.
The first step of this path is to realize appropriate TP models through the TP model

transformation which can be used later for controller design purposes. In this Chapter I
present this ”first step” and realize the TP models which will be the part of my later
research in this regard.

4.2. Theoretical background

4.2.1. TP related mathematical tools

The TP model transformation based approaches originate from the parameter dependent
fuzzy system techniques [96]. The TP method was originally described in [106, 107].
The approach was summarized in [92] in case of qLPV based systems and controller
design. Concisely summarized, the TP model transformation is able to transforms a
given function into a determined TP function form regardless of the type of the original
function, if the exact transformation is possible; otherwise, the TP model transformation
provides a TP function form approximation with given accuracy.

The TP form complexity can be settled by sampling frequency on the given parameter
domain which allows to determine the approximation accuracy of the original function by
the TP function. Since most of the qLPV models can be described by qLPV functions,
TP model based transformation can be used on them. Through this process, a TP
transformation based TP model can be created which can approximate the original qLPV
model. In other words, the resulting TP model can approximate the original qLPV model.
This approximation can be a ”close-to-original” approximation (lower accuracy) or maybe
a ”mimicry” (high accuracy) of the original model depending on the used simplifications
(regarding to HOSVD and convex hull) during the transformation. TP transformation is
an effective way for convex hull manipulation of polytopic structures and can be well
combined with LMI-based techniques. These properties allow to reach less conservative,
more optimal LMI-based controller design possibilities than the usual LMI-methods [92].

For reasons of convenience, I repeat here the SS form of a qLPV model from (D.9),
(D.10) and (D.14), since this will be the base whereon we build the further definitions:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t) + E(p(t))r(t)

y(t) = C(p(t))x(t) + D(p(t))u(t) + D2(p(t))u(t)
(4.1)
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S(p(t)) =

A(p(t)) B(p(t)) E(p(t))

C(p(t)) D(p(t)) D2(p(t))

 . (4.2)

At this point, I have to repeat the definition of the PB from the TP point of view,
because their interpretation is different, although they are basically equivalent. In this
Chapter, the notations of the dimensions will be different than the previous Chapter due
to I strove to use the TP related nomenclature.

Let the p(t) ∈ Ω ∈ RH be the time dependent parameter vector.

Definition 4.2.1. Transformational Space (TS) Ω: the bounded (closed) H dimensional
hyperspace (hypercube), which is determined by the minimum and maximum values of the
scheduling parameters, as the elements of the parameter vector p(t): Ω = [p1,min, p1,max]×
[p2,min, p2,max]× . . .× [pH,min, pH,max] ∈ RH . �

Remark 4.2.1.1. The TS practically equivalent to the PB.

Definition 4.2.2. Finite element convex polytopic model [108]: it describes the actual
model S(t) as the convex combination of the Sr ∈ R(n+k)×(n+m+p) LTI vertex systems
and the wr(p(t)) weighting function inside the TS Ω (p(t) ∈ Ω):

S(p(t)) =
R∑

r=1
wr(p(t))Sr . (4.3)

The convexity conditions requires that

∀r,p(t) : wr(p(t)) ∈ [0, 1] and ∀p(t) :
R∑

r=1
wr(p(t)) = 1. �

Definition 4.2.3. Finite element TP-type convex polytopic model [109]: in case S(p(t))
is given by (4.3) for any p(t) as the parameter varying combination of the LTI vertex
system Sr ∈ R(n+k)×(n+m+p)

S(p(t)) =
I1∑

i1=1

I2∑
i2=1

. . .
IH∑

iH=1

H∏
h=1

wh,ih
(ph(t))Si1,i2,...,iH (4.4)

and the compact notation of (4.4) based on [92]:

S(p(t)) = S
H
�

h=1
wh(ph(t)) , (4.5)

where the coefficient tensor S ∈ RI1×I2×...×IH×(n+k)×(n+m+p) is derived from the Si1,i2,...,iH
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LTI vertex system and the row vector wh(ph(t)) consists of wh,ih
(ph(t)) (ih = 1, . . . , IH)

univariate continuous weighting functions. �

Remark 4.2.3.1. The TP models according to (4.5) belong to a particular, special class
of the polytopic models as (4.3). In this case, the weighting functions are decomposed to
a tensor product of univariate functions [110].

Definition 4.2.4. TP model transformation: the TP model transformation provides an
effective numerical method that transforms a given qLPV model of (4.1) into the TP
model form of (4.5). In this way, several LMI based controller design methodology can be
applied directly to the provided TP model. The TP model transformation does allow the
utilization of convex hull manipulation during the transformation. The accuracy of the
resulting TP model depends on the number of used LTI vertices, the properties of the
applied HOSVD process and the used TP function. Detailed description with examples
can be found in [92]. �

Definition 4.2.5. Canonical form of qLPV models based on HOSVD method: without
complexity reduction and convex hull manipulation, the result of the TP model transfor-
mation is the numerical reconstruction of the HOSVD of the given qLPV model. Here,
because of the HOSVD is used on qLPV models (matrix functions), the resulting HOSVD
canonical form consists of a singular function in orthonormal structure and a core tensor,
which contains system vertices assigned to the higher order singular values. For further
details see [92]. �

Definition 4.2.6. Convex TP model: a resulting TP model is convex if the following
criteria about the weighting functions are satisfied:

∀h, i,ph(t) : wh,ih
(ph(t)) ∈ [0, 1]

∀h,ph(t) :
Ih∑

i=1
wh,ih

(ph(t)) = 1
. (4.6)

Several convex hulls can be applied in the parameter space depending on the type of
application (qLPV model) and the required properties [92]. A tight convex hull is the
MVS type hull, which is applied in this Theses. �

Definition 4.2.7. MVS-type convex TP model: the following TP model

S(p) = S
H
�

h=1
w(h)(ph) , (4.7)
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is an MVS-type convex model if the (S)jh=j h-mode sub-tensors evolve a minimal volume
bounding simplex for S ×h w(h)

jh (ph) trajectory over h = 1..H for the S ∈ SJ1×···×JH core
tensor, which is realized from the Sj1,...,jH matrices.

�

Further derivations, explanations and case studies can be found in [92, 93, 108, 109,
111, 112]. I have utilized the TP ToolboxTM in this study. The toolbox is a MATLABTM

based tool and means a convenient and effective possibility to realize the TP based
approached. The TP toolbox is available under [113].

It should be noted that the TP model transformation requires the LPV model in
general form as Sec. D.1.2.

4.3. Investigation of the TP-based modeling possibility of a
nonlinear ICU diabetes model

In this Subsection, I have used the same ICU model with same model parameters as
in Sec. 3.2.3. from Wong et al. [85, 86]. The model is an appropriate sample model,
because it unifies each drawbacks of the DM models: high nonlinearities, impulse kind
inputs and internal coupling between the states.

4.3.1. Derivation of the LPV and TP models

Steady state analysis

The steady state of the model can be calculated in different ways. One of these is when
the steady Gd state and pd input are given. Qd, Id and uex,d can be calculated by using
the (B.2) equations. An important question is the relation of Gd to GE . The qLPV
model should approximate the system dynamics around the equilibrium points; hence,
Gd can be a ”desired” equilibria and can be different from GE . The equality of Gd and
GE becomes important during a TP based controller design, because the Gd will that
desired blood glucose level, what the controller has to provide.

In the first case, I assumed that Gd = GE . As a result, the dynamics of the plasma
glucose concentration at the equilibrium point becomes:

Ġ(t) = 0 = −pGGd − SI2Gd

Qd

1 + αGQd
+ pd

. (4.8)
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With reformulation of (4.8), Qd can be calculated, as follows:

Qd =
− pGGd + pd

SI2Gd
(1 + αGQd) = A(1 + αGQd) (4.9)

Qd =
A

1− αGA
. (4.10)

Id appears by using the rearranged (4.11) equation, if Q(t) state is at the equilibrium
point:

Q̇(t) = 0 = −kQd + kId (4.11)

Id = Qd . (4.12)

As a result, the dynamics of I(t) at the equilibria can be described as follows:

İ(t) = 0 = −
nId

1 + αIId
+
uex,d

V
, (4.13)

from which the necessary uex,d can be calculated to hold the equilibrium of the states
beside the predefined Gd and pd:

uex,d =
nId

1 + αIId
V . (4.14)

The other investigated case is when Gd 6= GE . Only the (4.8), (4.11) and (4.12)
equations will be different in this case. Naturally, the numerical values of Id, Qd and
uex,d will change accordingly:

Ġ(t) = 0 = −pGGd − SI(Gd +GE)
Qd

1 + αGQd
+ pd

. (4.15)

By rearranging (4.8), Qd can be calculated as follows:

Qd =
− pGGd + pd

SI(Gd +GE)(1 + αGQd) = B(1 + αGQd) (4.16a)

Qd =
B

1− αGB
. (4.16b)
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Investigated qLPV models

In this Subsection I investigated different approaches as more than one realizable control
oriented qLPV form can be derived.

Consider the two above-mentioned cases: Gd = GE and Gd 6= GE . Many options can
be selected as aim of TP-based control. One of them is when the aim of the controller is
to prevent the system’s deviation from the selected equilibrium point; or if the deviation
leads to provide fast action leading the system back to the equilibrium. A natural way
to describe this evasive error dynamics is to take the difference of the actual states and
the steady states.

First, I consider the Gd = GE case. The error dynamics becomes as follows (subtracting

SIG(t)
Qd

1 + αGQd
from the last two parts of (4.17)):

∆Ġ(t) = Ġ(t)− 0 = −pGG(t)− SI(G(t) +Gd)
Q(t)

1 + αGQ(t) + p(t)

−

− pGGd − SI2Gd

Qd

1 + αGQd
+ pd

 = −pGG(t) + pGGd + p(t)− pd−

SIG(t)
Q(t)

1 + αGQ(t)− SIGd

Q(t)
1 + αGQ(t) + SIGd

Qd

1 + αGQd
+ SIGd

Qd

1 + αGQd
=

−pG(G(t)−Gd) + (p(t)− pd)− SIGd

 Q(t)
1 + αGQ(t)−

Qd

1 + αGQd)

−
SIG(t)

Q(t)
1 + αGQ(t) + SIGd

Qd

1 + αGQd
=

−pG∆G(t) + ∆p(t)− SIGd

1
(1 + αGQ(t))(1 + αGQd)∆Q(t)

−SIG(t)
Q(t)

1 + αGQ(t) + SIGd

Qd

1 + αGQd

, (4.17)

−SIG(t)
Q(t)

1 + αGQ(t) + SIGd

Qd

1 + αGQd
+ SIG(t)

Qd

1 + αGQd
− SIG(t)

Qd

1 + αGQd
=

−SIG(t)

 Q(t)
1 + αGQ(t)−

Qd

1 + αGQd)

−−SI

Qd

1 + αGQd
(G(t)−Gd) =

−SIG(t)
1

(1 + αGQ(t))(1 + αGQd)∆Q(t)−−SI

Qd

1 + αGQd
∆G(t)

.

(4.18)
From here, the error dynamics of G state at the equilibrium point can be described as:
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∆Ġ(t) = −(pG + SI

Qd

1 + αGQd
)∆G(t)−

SI(G(t) +Gd)
1

(1 + αGQ(t))(1 + αGQd)∆Q(t) + ∆p(t)
(4.19)

The second case is when Gd 6= GE . In this case, the error dynamics ∆G(t) becomes as
follows:

∆Ġ(t) = −(pG + SI

Qd

1 + αGQd
)∆G(t)−

SI(G(t) +GE)
1

(1 + αGQ(t))(1 + αGQd)∆Q(t) + ∆p(t)
(4.20)

As a result, the error dynamics of the Q(t) and I(t) can be easily derived as in (4.21):

∆Q̇(t) = Q̇(t)− 0− kQ(t) + kI(t)− [−kQd + kId] =

−k(Q(t)−Qd) + k(I(t)− Id) = ∆Q̇(t) = −k∆Q(t) + k∆I(t)
(4.21)

∆İ(t) = İ(t)− 0 = −n
I(t)

1 + αII(t) +
uex

V
−

− n Id

1 + αIId
+
uex,d

V

 =

−n

 I(t)
1 + αII(t)−

Id

1 + αIId)

+
1
V

(uex − uex,d) =

∆İ(t) = −n
1

(1 + αII(t))(1 + αIId)∆I(t) +
1
V

∆uex(t)

(4.22)

A convenient way is to represent the error dynamics-based qLPV models with their
SS form. In this way the inputs can be separated: the control input becomes the
external insulin intake uex(t), while the disturbance is the p(t) external CHO intake.
I have switched the order of the inputs for the sake of clarity, namely, the first input
in the state-space representation is the insulin intake uex(t), while the second is the
CHO disturbance p(t). As the goal is to describe the error dynamics, the difference
between the actual input and steady inputs should be considered. In this way, the
inputs are: ∆u(t) = [∆uex(t),∆p(t)]>. The states of the qLPV models are based on
the error dynamics, namely ∆x(t) = [∆G(t),∆Q(t),∆I(t)]>. From these considerations
and the (4.19)-(4.22) equations, the SS representations of the derived qLPV models are
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represented by (4.23) considering Gd = GE and (4.24) considering Gd 6= GE .

∆ẋ(t) =
−(pG +

SIQd

1 + αGQd
)

− SI(G(t) +Gd)
(1 + αGQ(t))(1 + αGQd) 0

0 −k k

0 0
− n

(1 + αII(t))(1 + αIId)


∆x(t)

+


0 1

0 0
1
V

0

∆u(t)

(4.23)

∆ẋ(t) =
−(pG +

SIQd

1 + αGQd
)

− SI(G(t) +GE)
(1 + αGQ(t))(1 + αGQd) 0

0 −k k

0 0
− n

(1 + αII(t))(1 + αIId)


∆x(t)

+


0 1

0 0
1
V

0

∆u(t)

(4.24)

4.3.2. TP models

The TP model transformation can be applied on the S{(G(t), Q(t), I(t))|Gd=GE
} of

(4.23) and S{(G(t), Q(t), I(t))|Gd 6=GE
} of (4.24) qLPV system matrices, respectively. The

transformation provides the following TP model structure:

S{(G(t), Q(t), I(t))|Gd=GE
} = S

3
�

h=1
wh(ph(t)) =

S ×1 w1(G(t))×2 w2(Q(t))×3 w3(I(t))
(4.25)
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S{(G(t), Q(t), I(t))|Gd 6=GE
} = S

3
�

h=1
wh(ph(t)) =

S ×1 w1(G(t))×2 w2(Q(t))×3 w3(I(t))
. (4.26)

Figure 4.2 shows the MVS-type weighting functions with dense sampling (left column
belongs to (4.23) and the right column belongs to (4.24)). There are no evaluable
difference between the given weighting functions; however, small numerical differences
appeared.
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Figure 4.2.: Weighting functions of the TP polytopic model. Left column: wn(p(t))Gd=GE
,

right column: wn(p(t))Gd 6=GE
.

4.3.3. Validation of the generated models

To validate the generated models, I have built a validation environment in MATLAB
which is able to make the comparisons between the original and realized qLPV and TP
models automatically.

The main considerations during the validation were the following:

1. Investigated parameter domain: G = 3.5 . . . 25, Q = 0 . . . 100 and I = 0 . . . 100;
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2. Comparison was done between every state of every model;

3. Dense (considered number of samples (NoS): NoSG = 31, NoSQ = 101, NoSI =
101) and less dense (NoSG = 17, NoSQ = 81, NoSI = 81) parameter sampling in
the parameter domain;

4. Comparison only in case of initial state decay and in case of given inputs;

5. Usage of Root-Mean Square Error (RMSE) as basis of comparison.

The results of the validation are summarized in Table 4.1-4.2. In every subtable, the
upper triangular partition belongs to the dense sampling, namely, the number of samples
(NoS) was higher on the investigated parameter domain. The model notation is the
following:

• original nonlinear model: Original (B.2);

• qLPV model of (4.23): qLPV1;

• qLPV model of (4.24): qLPV2;

• TP model of (4.25): TP1;

• TP model of (4.26): TP2.

For Table 4.1a., a less than 100 minutes decay was investigated for the initial values of
the state variables. The difference between dense and less dense sampling is negligible.
However, both TP models had small RMSE under the given circumstances, but the TP1

model where Gd = GE had the best performance.
Table 4.2b. shows a scenario where external CHO and insulin inputs were impulse

functions (similar to reality), as follows:

• CHO intake: Height: 4 g, Width: 5 min, Period: 50 min

• Insulin intake: Height: 1 U, Width: 2 min, Period: 50 min

I transformed the inputs from g to mmol/L (CHO) and U to mU/L (insulin) based
on the model parameters in Table B.3. The density of sampling did not cause evaluable
difference in the resulting RMSE of the states based on the data. In this case, TP2 model
produced the smallest RMSE under 300 minutes.

During the investigations, the following parameter set was used: GE = 10.5 mmol/L,
pG = 0.01 1/min, SI = 0.001 L/mU/min, V = 12 L, k = 0.0198 1/min, n = 0.16 1/min,
αI = 0.0017 L/mU and αG = 0.0154 L/mU.
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Table 4.1.: Results of the RMSE-based investigations: RMSE-based comparison of the
states of the realized models on the given parameter domain under 100 minutes.
Initial conditions: G0 = 15, Q0 = 3 and I0 = 5.

G [mmol/L]

NoS=31

Original qLPV1 qLPV2 TP1 TP2

N
oS

=
17

Original - 1.4295 0.0982 0.0469 0.1273

qLPV1 1.4295 - 1.3278 1.3826 1.5568

qLPV2 0.0982 1.5278 - 0.1452 0.0290

TP1 0.0469 1.3826 0.1452 - 0.1743

TP2 0.1273 1.5569 0.0291 0.1742 -

Q [mU/L]

NoS=101

Original qLPV1 qLPV2 TP1 TP2

N
oS

=
81

Original - 0.0051 0.0051 0.0022 0.0051

qLPV1 0.0051 - 0 0.0073 0

qLPV2 0.0051 0 - 0.0073 0

TP1 0.0022 0.0073 0.0073 - 0.0073

TP2 0.0051 0 0 0.0073 -

I [mU/L]

NoS=101

Original qLPV1 qLPV2 TP1 TP2

N
oS

=
81

Original - 0.0031 0.0031 0.0052 0.0030

qLPV1 0.0031 - 0 0.0083 0

qLPV2 0.0031 0 - 0.0083 0

TP1 0.0052 0.0083 0.0083 - 0.0083

TP2 0.0030 0 0 0.0083 -
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Table 4.2.: Results of the RMSE-based investigations: RMSE-based comparison of the
states of the realized models on the given parameter domain under 300 minutes
beside given impulse-kind inputs. Initial conditions: G0 = 15, Q0 = 3 and
I0 = 5

G [mmol/L]

NoS=31

Original qLPV1 qLPV2 TP1 TP2

N
oS

=
17

Original - 2.3666 0.0339 1.3614 0.0244

qLPV1 2.3666 - 2.4005 1.0052 2.391

qLPV2 0.0339 2.4005 - 1.3953 0.0095

TP1 1.3611 1.0055 1.3950 - 1.3858

TP2 0.0246 1.0055 0.0093 1.3857 -

Q [mU/L]

NoS=101

Original qLPV1 qLPV2 TP1 TP2

N
oS

=
81

Original - 0.0127 0.0127 0.0254 0.0125

qLPV1 0.0127 - 0 0.0127 0.0002

qLPV2 0.0127 0 - 0.0127 0.0002

TP1 0.0254 0.0127 0.0127 - 0.0129

TP2 0.0125 0.0002 0.0002 0.0129 -

I [mU/L]

NoS=101

Original qLPV1 qLPV2 TP1 TP2

N
oS

=
81

Original - 0.0088 0.0088 0.0005 0.0089

qLPV1 0.0088 - 0 0.0083 0.0001

qLPV2 0.0088 0 - 0.0083 0.0001

TP1 0.0005 0.0083 0.0083 - 0.0084

TP2 0.0089 0.0001 0.001 0.0084 -
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Figure 4.3. shows the results of the second investigation (as in Table 4.2b). in case of
dense sampling. It can be seen that the variation of Q(t) and I(t) are almost the same.
However, the TP2 model proved to be much more accurate than the TP1 in the G(t)
state, as the GOrig(t) and GT P2(t) states overlap each other.

On Figure 4.4 the error of the states was highlighted in such a way that the state
variation of the realized TP models were subtracted from the original states. The results
confirmed the numerical RMSE-based evaluation in Table 4.2b. and one can see that
TP1 is more suitable to substitute the original nonlinear model.
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Figure 4.3.: 300 minutes long simulation in case of realistic inputs.
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Figure 4.4.: State error evolution over 300 minutes long simulation in case of realistic
inputs.

4.3.4. Summary

In this Section, I investigated the applicability of TP model transformation in case of a
well-known ICU diabetes model in order to realize different TP models. I have examined
two cases: the TP model, when the ”operating equilibrium of glycemia (Gd)” of the
model was considered equal to the model equilibrium of glycemia (GE) and were it was
not. Based on numerical validation I found that in case of realistic simulations I can
reach better performance, namely, smaller difference between the realized TP model and
the original model, when the operating equilibrium is not equal to the model equilibrium.
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4.4. Robustization possibilities via TP model framework

I used a modified version of the Minimal Model in this Section, which is appropriate to
describe the T1DM and T2DM cases, respectively [15]. The model equations (B.1a)-(B.1d)
and the parameter descriptions can be found in the Appendix B.

The T1DM version of this model in control oriented form was been used in Sec. 3.4.2.
Nevertheless, to provide the full picture I presented here the transformation again. In
this way the difference between the T1DM and T2DM is more understandable.

In this study, I have used the following parameter set: Gb = 110 mg/dL, Ib = 1.5
µU/mL, p1 = 0.028 1/min, p2 = 0.025 1/min, p3 = 0.00013 min−2/(µU/mL), n = 0.23
1/min, h = 130 mg/dL, γ = 0.01 (µU/mL)/(mg/dL)/min. These parameters belong to a
real patient based on [15]. As the goal is to demonstrate the applicability of TP-model
approach I did not distinguish the different cases on the parameter level; hence, the
method works regardless of the used parameter sets.

4.4.1. Possible deviation-based qLPV and TP models

First, I investigated the steady-state conditions in a possible equilibrium. I have selected
Gd = 90 and ud = 0 as steady-state values (the blood glucose concentration is 90 mg/dL
and there is no external insulin intake). Moreover, I assumed that Gd 6= GB. From here,
the other necessary steady-state values can be calculated by rearranging (B.1a)-(B.1d).
It should be noted that h > Gd, so (B.1c) and (B.1d) has the same Id:

Id =
nIb + ud

n
. (4.27)

Xd =
p3

p2
Id

. (4.28)

dd = (p1 +Xd)Gd − p1GB . (4.29)

With the calculated steady-state values, the deviation based model can be derived
from the model equations, as follows. First, the ∆G(t) has been determined. Note that
since the G(t) is measurable in real life, I tried to realize a form where only G(t) appears
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in the state matrix of the deviation based model:

∆Ġ(t) = Ġ(t)− 0 = −(p1 +X(t))G(t) + p1GB + d(t)−[
− (p1 +Xd)Gd + p1GB + dd

]
=

−p1(G(t)−Gd) + (d(t)− dd)−X(t)G(t) +XdGd =

−p1∆G(t) + ∆d(t)−X(t)G(t) +XdGd +XdG(t)−XdG(t) |

∆Ġ(t) = −(p1 +Xd)∆G(t) + ∆d(t)−G(t)∆X(t)

. (4.30)

The same tools as in case of (4.30) resulting for ∆X as follows:

∆Ẋ(t) = −p2∆X(t) + p3∆I(t) . (4.31)

In case of ∆I, I had to separate the deviation based forms for T1DM (IT 1DM ) and
T2DM (IT 2DM ):

∆İT 1DM (t) = −n∆I(t) + ∆u(t) (4.32)

and

∆İT 2DM (t) =



γ
(G(t)− h)

∆G(t) ∆G(t)− n∆I(t) + ∆u(t)

for G(t) > h

−n∆I(t) + ∆u(t)

for G(t) ≤ h

. (4.33)

A convenient solution results if we use the derived deviation based model in state-space
form. In this case, the states should be ∆x(t) = [∆G(t),∆X(t),∆I(t)]>. Thus, the
investigated qLPV models become as described in (4.34)-(4.35):

∆ẋT 1DM (t) =


−(p1 +Xd) −G(t) 0

0 −p2 p3

0 0 −n

∆x(t) +


0

0

1

∆u(t) +


1

0

0

∆d(t) . (4.34)
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∆ẋT 2DM (t) =


−(p1 +Xd) −G(t) 0

0 −p2 p3

γ
(G(t)− h)

∆G(t) t 0 −n

∆x(t) +


0

0

1

∆u(t) +


1

0

0

∆d(t) . (4.35)

Applying the TP model transformation on these (having only one parameter), the
general TP model structure becomes S(G(t)) = S ×w(G(t)).

As a result, the variation of the obtained MVS type weighting functions are presented
on Fig. 4.5. In case of T1DM, the weighting function is linear, however, in T2DM case
the weighting function is nonlinear because of the fraction in (4.34).
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Figure 4.5.: Weighting functions of the TP polytopic model; simple model case. Upper
diagram: T1DM case; Lower diagram: T2DM case.

It should be noted that, ∆G(t) cannot be zero until the Gd is lower than h.
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4.4.2. Robustness of the models

In order to increase the robustness of the model (and the realizable controller based
on the TP models) the most determinant model parameters should be investigated
from the model output point of view. Special property of the TP transformation based
modeling and control is that the modeling and controller design can be coupled directly
to LMI-based controller design methods. This coupling provides a unique way to increase
the robustness through the elements of the parameter vector increasing the control
performance. If the parameter vector contains several parameters and the borders of
them are given then the controller will be prepared for the variation of these parameters
between the given limits.

The output of the model is the blood glucose level G(t), the only measurable variable
in real life circumstances. Thus, it is reasonable to investigate how model parameter
variation affects G(t). I applied simple perturbation analysis based investigation to
identify the most determining model parameter. I used the non-normalized Root Mean
Square Error (RMSE) to evaluate the results.

The same investigation process was used both for T1DM and T2DM cases:

• Compare the output of the nominal model Gorig(ti) to the output of the perturbed

model Gpert(ti), RMSEparam =
T∑

ti=0

√
Gorig(ti)−Gpert(ti).

• Use a ±35% perturbation for each parameter.

• Apply impulse input signals both for CHO and insulin inputs (Parameters: CHO:
d(t) = 10 mg/dL over 6 minutes; insulin: u(t) = 20 uU/mL over 6 minutes ;
injection time: beginning of simulation (minute 0)). The simulation length was set
to be T = 100 min.

Table 4.3. summarizes the results.
Through this investigation it turned out that the most determining parameters to G(t)

are the p1, p2 and n. As the model is quite simple, each parameter variation may induce
high perturbations that should be handled separately (our goal was finding a method
appropriately providing the most important parameters).

Hence, we have selected p1, p2 and n as time varying parameters (besideG(t)) resulting a
4D parameter space determined by the parameter vector p4(t) = [G(t), p1(t), p2(t), n(t)]>.
The new elements are slowly changing in time, which allows handling them as constants.
Naturally, the accurate values of them have to be updated after the identifications (done
automatically).
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Table 4.3.: Results of the RMSE-based investigations.
Type

Parameter Perturbation RMSET 1DM RMSET 2DM

p1
−35% 8.2385 9.2256
+35% 5.5199 6.0665

p2
−35% 11.0671 11.3595
+35% 7.5582 7.842

p3
−35% 7.6965 7.5272
+35% 6.0048 5.8129

n
−35% 9.832 9.8148
+35% 5.832 5.834

h
−35% - 3.0358
+35% - 1.4574

γ
−35% - 0.5817
+35% - 0.5605

The biggest advantage of this scenario lies in increasing the robustness of the controller
in a special way. The S core tensor provided by the TP model transformation can be
used directly in LMI-based controller design. If the model parameters are handled as
scheduling parameters, the controller will be prepared for the changing of these. In other
words, as the core tensor is used during controller design and the core tensor contains
the parameter dependencies, the controller could be even a simple state feedback one
being handled inside the complex polytope.

Naturally, the TP model form is different in this case (having four scheduling parame-
ters):

S(G(t), p1, p2, n) = S
4
�

n=1
wn(pn(t)) =

S ×1 w1(G(t))×2 w2(p1)×3 w3(p2)×4 w4(n)
. (4.36)

The MVS type weighting functions of the robustified TP models can be seen on Fig.
4.6. The main difference occurred again in the upper row: in case of T1DM, the weighting
function is linear, however, in T2DM case the weighting function is nonlinear because of
the fraction in (4.34). The weighting functions belong to other parameters are linear in
both models.
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Figure 4.6.: Weighting functions of the TP polytopic model; robust model case.

4.4.3. Validation

During the validation, we investigated the discrepancy between the original nonlinear
models and their TP versions via the changing of their state variable over time during
simulations. For evaluation we have used again the RMSE-based method.

We have applied symmetric impulse functions during the simulations both for the CHO
and insulin inputs using the following protocol:

• CHO (d) 4g over 5 min at every 50 min with Vg = 11.2 dL distribution volume, Ag =
0.8 utilization and molar weight Mw = 180.12 g/mol (CHO=d ·Ag · 1000/Mw/Vg;
here: 28.2326 mg/dL over 5 min at every 50 min);

• insulin (u) 0.5 U over 2 min at every 50 min with Vi = 8.4 dL distribution volume
(insulin=u · 1000/Vi; here 59.5238µU/mL over 2 min at every 50 min).

Conforming to the reality, the input functions have impulse nature. However, they are
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unfavorable because of the higher amplitude and shorter time period occurring through
real input signals. This is the reason why the above mentioned protocol was used ensuring
that the TP model works under all circumstances.

Table 4.4. shows the results of the RMSE-based comparison between the state variables
of the original nonlinear model and the realized TP models in the simple model case
where only the G(t) was the scheduling parameter. The first row describes the comparison
between the original T1DM model and the TP version of it, while the second row presents
the comparison between the original T2DM model and the TP version of the given model.
We used high sampling density in the parameter domain. The borders of the domain
were 70− 300 mg/dL (as it can see on the horizontal axis of Fig. 4.6).

In both cases, beside the given inputs and initial values the TP models ”mimic”
the original nonlinear models with high precision (only numerical errors occurred, i.e.
magnitude lower than 10−8). Fig. 4.7. illustrates the obtained results. Negligible
difference can be observed between the original model and the TP ones.

Table 4.4.: Results of the RMSE-based investigations; simple model case. Initial values:
G0 = 100, X0 = 0, I0 = 11.5; simulation length: 150 min; Sampling density
in the parameter domain: 301.

Original model
G X I

TPT 1DM 2.984e-13 7.372e-17 2.22e-16
TPT 2DM 1.477e-8 8.566e-12 3.329e-12
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Figure 4.7.: Comparison of the original nonlinear models and the TP versions of them;
simple model case. Upper row: T1DM models; Lower row: T2DM models.

Table 4.5. shows the results of the RMSE-based comparison between the state variables
of the original nonlinear model and the realized TP models in robust model case (the
parameter vector contains four scheduling variables p(t) = [G(t), p1, p2, n]>). I applied
again a high sampling density in the parameter domain (301 for G and 11 for p1, p2 and
n). The borders of the domains were set again 70− 300 mg/dL for G, and ±25% of the
nominal p1,p2 and n values (Fig. 4.6.). Similar to the previously presented case, the
same inputs have been used for initial values.

With simple randomization, I investigated several parameter configurations for p1, p2

and n inside the parameter ranges. Three specific cases (where I have found the highest
errors) are highlighted here. The given p1, p2 and n parameters and the belonging data
can be found in Table 4.5. The comparisons have similar meanings as previously: the
first row describes the RMSE between the original nonlinear T1DM model and the TP
models, while the second row represents the RMSE between the original nonlinear T2DM
model and the TP models. The highest errors in each case occur in the G state as a
natural consequence of the nonlinear attitude of the given weighting function (see the
second column in the first row on Fig. 4.6). However, we found that the error can be
tolerated being lower than 1 over the 300min long simulation. The results in Table 4.5.
are connected to the simulations of Fig. 4.8. One can see that the small deviation that

117



occurred did not cause significant error in the dynamics of the models. The upper row
describes the state variable of the T1DM models (original nonlinear and TP version)
with the occurring error in time. The lower row presents the same comparison, however,
for the T2DM models. It can be seen that the error has a ”saturation” and the dynamics
follow the dynamics of the state variables.

Table 4.5.: Results of the RMSE-based investigations; robust model case. Initial values:
G0 = 100, X0 = 0, I0 = 11.5; simulation length: 300 min; Sampling density
in the parameter domain: G− 301, p1 − 11,p2 − 11 and p3 − 11.

Original model
p1 = 0.0266, p2 = 0.0258, n = 0.2231

G X I
TPT 1DM 0.877 5.898e-16 0
TPT 2DM 0.877 1.9646e-16 2.442e-15

p1 = 0.0280, p2 = 0.025, n = 0.23
G X I

TPT 1DM 1.165e-12 5.8417e-16 0
TPT 2DM 7.1e-13 2.688e-16 2.44e-15

p1 = 0.0293, p2 = 0.0248, n = 0.2266
G X I

TPT 1DM 0.728 6.059e-16 0
TPT 2DM 0.728 2.923e-16 1.776e-15
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Figure 4.8.: Comparison of the original nonlinear models and the TP versions of them;
robust model case. Upper row: T1DM models; Lower row: T2DM models.
Parameters: p1 = 0.0266, p2 = 0.0258, n = 0.2231.

4.4.4. Summary

The Section examined the utilization of the TP model transformation for T1DM and
T2DM models. I demonstrated that TP models can perfectly mimic the original nonlinear
systems behavior over time beside given initial values and inputs. Moreover, I investigated
the robustness of the realized TP models from parameter variation point of view. Since
the TP model transformation can be easily used for LMI-based controller design, this
property can be useful in guaranteeing the controller’s robustness by the created robust
TP model.

4.5. TP-modeling possibility for a complex T1DM model

In this Section I have used a modified version of the Hovorka-model, which is a well
known and widely used higher order T1DM model originally developed by Hovorka
et al in [70] and modified by Naerum in [71]. The model equations (B.3a)-(B.3j) and
parameters can be found in the Appendix B.

I derived each of the possible qLPV models from the original Hovorka model, which
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can serve as basis for the later investigations regarding to controller design. Since there
are several possible model equilibria and the mathematical tools allow several algebraic
transformations, more than one possible qLPV model exists. It should be noted that only
the nonlinearity containing state equations (B.3e)-(B.3f) have more than one possible
transformed form and each of the other equations has only one possible transformation.

According to the previous general considerations, the investigation of possible steady
states is required first.

4.5.1. Steady state calculations

I started from this consideration: if the Q1,d and ud are considered as known, each steady
state value of the states can be determined by the rearrangement of the model equations.
In practice, if Q1d and ud are given, the steady states (equilibria) are:

S1d = udτS

S2d = S1d

, (4.37a)

Id =
1

τSVIke
S2d

, (4.37b)

x1d = kb1/ka1Id , (4.37c)

x2d = kb2/ka2Id , (4.37d)

x3d = kb3/ka3Id , (4.37e)

Q2d = x1dQ1d/(k12 + x2d) , (4.37f)

D2d = (F01,c,d + FRd + x1dQ1d − k12Q2d − EGP0(1 + x3d))

D1d = D2d

, (4.37g)

dd = D1dMwG/(1000AGτD) . (4.37h)
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4.5.2. qLPV Model derivation

In the following, I follow these steps: i – demonstration of the transformation on one
state; ii – description of each transformed state, which only have one possible transformed
form; iii – investigation of the ”critical states”.

For the algebraic transformation of (B.3a), I used the direct substitution of (B.4a) as
well:

∆Ḋ1(t) = Ḋ1(t)− 0 =

=
1000AG

MwG
d(t)−

1
τD
D1(t)−

1000AG

MwG
∆dd −

1
τD
D1d

 =

1000AG

MwG
(d(t)− dd)−

1
τD

(D1(t)−D1d) =

1000AG

MwG
∆d(t)−

1
τD

∆D1(t)

. (4.38)

I derived the resulting state variables, except Q1 and Q2:

∆Ḋ2(t) =
1
τD

∆D1(t)−
1
τD

∆D2(t) . (4.39)

∆Ṡ1(t) = ∆u(t)−
1
τS

∆S1(t) . (4.40)

∆Ṡ2(t) =
1
τS

∆S1(t)−
1
τS

∆S2(t) . (4.41)

∆İ(t) =
1

τSVI
∆S2(t)− ke∆I(t) . (4.42)

∆ẋ1(t) = −ka1∆x1(t) + kb1∆I(t) . (4.43)

∆ẋ2(t) = −ka2∆x2(t) + kb2∆I(t) . (4.44)

∆ẋ3(t) = −ka3∆x3(t) + kb3∆I(t) . (4.45)

In case of Q1 and Q2, more than one nonlinearity causing effects have to be considered:
the multiplications of time functions and the ramp type saturations belong to F01,c

and FR. The two saturations can be merged into one term, if we use directly the term
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G(t) = Q1(t)/VG from (B.4b), as follows:

∆F (Q1) = F (Q1)− F (Q1,d) =



0.003

Q1

VG
− 9

VG if 9 ≤
Q1(t)
VG

0 if 4.5 ≤
Q1(t)
VG

< 9

F01

 Q1

4.5VG
− 1

 if
Q1(t)
VG

< 4.5

. (4.46)

Practically, ∆Q1(t) will not be zero at any time. Hence, the limits of the saturation
guarantees that the involvement of ∆Q1(t) term into the (4.45) as a multiplication by 1
cannot causes critical singularity at any time, so:

∆F (Q1)
∆Q1(t) ∆Q1(t) =



0.003
(
Q1

VG
− 9
)
VG

∆Q1(t) ∆Q1(t) if 9 ≤
Q1(t)
VG

0
∆Q1(t)∆Q1(t) if 4.5 ≤

Q1(t)
VG

< 9

F01

(
Q1

4.5VG
− 1
)

∆Q1(t) ∆Q1(t) if
Q1(t)
VG

< 4.5

, (4.47)

term can be used in order to connect the saturation to the ∆Q1(t) state, which makes
the accurate mathematical transformation possible.

It should be noted that more than one possible transformed form can be derived from
(B.3e) and (B.3f). However, that one is the most useful, where the parameter vector is
p = [Q1(t), Q2(t)]>, which means that only the Q1(t) and Q2(t) states are the scheduling
variables. In practice, only the blood glucose related state variables can be measured
(measurement from body fluid) or estimated. Hence, in the following, we only investigate
the following modified equations:

∆Q̇1(t) =
∆D2(t)
τDVG

−
∆F (Q1)
∆Q1(t) ∆Q1(t) + k12∆Q2(t)

−EGP0∆x3(t)− x1d∆Q1(t)−Q1(t)∆x1(t)
(4.48a)

∆Q̇2(t) = −k12∆Q2(t) + x1d∆Q1(t)+

Q1(t)∆x1(t)− x2d∆Q2(t)−Q2(t)∆x2(t)
. (4.48b)
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Since, each modified state equation is available, the unified state space equation can
be described by (4.20). The derived equations (4.38)-(4.47) and (4.48a)-(4.48b), if the
state variables are ∆x = [∆D1,∆D2,∆Q1,∆Q2,∆S1,∆S2,∆I,∆x1,∆x2,∆x3]>:

∆ẋ(t)

∆y(t)

 = S


∆x(t)

∆u(t)

∆d(t)

 =



− 1
τD

0 0 0 0

1
τD

− 1
τD

0 0 0

0
1

τDVG
−

(
x1d +

∆F (Q1)
∆Q1(t)

)
k12 0

0 0 x1d −(k12 + x2d) 0

0 0 0 0
− 1
τS

0 0 0 0
1
τS

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0
1
VG

0 0

0 0 0 0 0 0
1000AG

MwG
0 0 0 0 0 0 0

0 0 −Q1(t) 0 −EGP0 0 0

0 0 Q1(t) −Q2(t) 0 0 0

0 0 0 0 0 1 0
− 1
τS

0 0 0 0 0 0

1
τSVI

−ke 0 0 0 0 0

0 kb1 −ka1 0 0 0 0

0 kb2 0 −ka2 0 0 0

0 kb3 0 0 −ka3 0 0

0 0 0 0 0 0 0




∆x(t)

∆u(t)

∆d(t)



.

(4.49)
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4.5.3. TP model form

After the derivation of the appropriate qLPV model in convenient state space form
(4.49), TP model transformation can be executed on it. Broadly, the p(t) dependent
qLPV model of 4.49 were sampled over the domains of Q1(t) = 34 . . . 185 mmol and
Q2(t) = 34 . . . 185 mmol with 151 grid points at each dimensions. The application of the
compact HOSVD algorithm [92] provided the compact S core tensor and the MVS-type
weighting functions – which can be seen on Fig. 4.9 – were used to realize the TP model
in the form of (4.7). In this way, the obtained TP model was the following:

S(Q1(t), Q2(t)) = S
2
�

n=1
w(n)(pn) =

= S ×1 w1(Q1(t))×2 w2(Q2(t))
. (4.50)
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Figure 4.9.: Weighting functions regarding the Hovorka TP model

4.5.4. Validation

I compared the ”performance” of the new TP model to the original nonlinear model.
The applied CHO and insulin intakes were dense impulse functions. The physiological
validity of these are not relevant at this point since I aimed as worse (impulse kind and
with high frequency) external excitations as possible to demonstrate that the realized
TP model can approximate the original model even under these circumstances. This
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comparison is based on simple subtractions, namely, we subtracted each TP state from
the corresponding original state. Since my goal was to realize such a TP model which
can appropriately mimic the original model, the results are satisfying.

The simple error based comparison can be seen on Fig. 4.10. On the figure, each block
represents the subtraction of the time vectors or the corresponding states, except the last
two, which are the external CHO and insulin excitations. As it can be seen, the eQ1(t)
and eQ2(t) produces the highest errors, however, the order of this error is around 10−4.
In other cases, only numerical error occurred. The reason for these ”higher” errors are
the saturation, the high nonlinearities and the multiple coupling between the states. Base
on the results it can be stated that the TP model is able to approximate the original
nonlinear model with very low approximation error – despite the applied high external
excitation signals.
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Figure 4.10.: Validation of the TP model

4.5.5. Summary

The Section summarized the realization of a TP kind convex polytopic T1DM model
via the utilization of the recently developed TP model transformation tool. The main
considered steps were the transformation of the original nonlinear complex Hovorka
model into a control oriented, deviation based qLPV model. The main challenges were
the handling of the nonlinearity causing parts of the ”core patient submodel” of the
selected Hovorka model. This part is loaded with unfavorable saturations, coupled states
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and other nonlinearities. However, more than one mathematically precise qLPV model
can be derived from the original model, and we developed such a model, where the
scheduling parameters (the elements of the parameter vector of the qLPV model) were
the blood glucose related state variables, since only these can be measured or estimated
in real life. The TP model transformation was executed on this specific qLPV model.
The resulting TP model were compared with the original numerical model. In most of the
states only numerical errors appeared. However, the ”core patient model” part contains
higher error, which refers rougher approximation. Nevertheless, the order of these errors
is 10−4. Hence, the developed TP model appropriately mimics the original model.

Thesis Group 3

Thesis group 3: Usability of the TP model transformation for DM

Thesis 3.1
I have realized a TP-based ICU model with small approximation
error. I proved that in case of the given nonlinear ICU model better
approximation error can be reached, if the operating equilibrium of
glycemia (Gd) of the model was not equal to the model equilibrium
of glycemia (GE).

Thesis 3.2
I have investigated the robustization possibility of the blood glucose
Minimal Model via TP framework. I have realized robust T1DM
and T2DM TP-models, robust from parameter variation point of
view. Regarding the LMI-based controller design, this property can
be useful in guaranteeing the controller’s robustness by the created
robust TP models.

Thesis 3.3
I have proven the usability of TP-model transformation in case of
highly complex T1DM model. I have demonstrated that several con-
trol oriented qLPV models can be derived from the original model
approximating it with high accuracy.

Relevant own publications pertaining to this thesis group: [114, 115, 116].
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5. Conclusion

This dissertation presented three control engineering solutions which can be applied in
case of physiological controls. Each of them can be divided smaller developments which
are strengthen by case studies.

The first thesis group investigated the usability of RFPT theorems in conjunction with
T1DM control. I have examined three cases, which were different from the applied T1DM
model, absorption submodel point of view, however, I used almost the same control
strategies in each cases, namely, PID-kind control laws in the control block. I followed
the general RFPT controller design steps, what I summarized at the beginning of the
given chapter. The results showed that the RFPT-based controllers can be used in case
of T1DM models with low and high complexity beside unfavorable disturbances (glucose
loads). The developed controller were able to keep the BG level in the normal glycemic
range; totally avoid hypoglycemia; however, short hyperglycemic periods occurred during
the simulations. With this research I have proven that the RFPT-based controller design
method can be used for controller design in case of T1DM models with high nonlinearities.

Although, the reached results were appropriate, I have found several opportunities for
further improvements which are beyond this research. First, the velocity of convergence
of the Cauchy-series – which is the key point of the RFPT method – depends on
the measurements update. The currently used technology is capable to provide BG
measurements at every 5 min, which makes the convergence slower and through the
reaching of the desired BG levels become later. This can be faster, if an interim Kalman
estimator or equivalent is used and the measurements can be completed by estimation.
Since the estimation horizon is small (5 min) precise estimations can be done and via the
convergence can be faster. Investigation of usability of pure input-output models based
on real measurements can be done, as well. In this work, I have used the model equations
to realize approximating inverse models. However, I used rough approximations this
can be the next step, since the patient data reflects the glucose-insulin dynamics of the
patient and more robust solutions can be reached by using this fact.

The second thesis group introduces a two novel achievements in the field of LPV-based
control. I have developed a norm based tool in which the norm (2-norm) is defined on
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the abstract parameter space of LPV systems and can be used as a metric between LTI
systems. This tool can be used as error or difference metric and via quality requirements
can be defined with it. The second achievement can be divided into two parts: I have
developed a novel LPV completed controller scheme which can be used for control of
LPV (and trough nonlinear) systems with given properties; moreover, I have developed
a completed LPV controller-observer scheme in order to control given LPV systems.
The novel controller design tools are a mixture of linear state-feedback theorem and the
matrix similarity theorems. I have proven the usability of the methods via nonlinear
physiological examples including DM control. I provided deep analysis of the methods.

This novel development has several further improvement possibilities. The first is
the generalization - in order to use it in case of arbitrary nonlinear systems further
research is needed. Moreover, it should be investigated how can be decreased the
conservatism regarding the structures of the input/output matrices, which is currently
a strict restriction. Furthermore, an interesting question can be the extension of the
method for those cases, where the elements of the parameter vector cannot be directly
measured and the only possibility is the model-based estimation. The examination of
these questions are beyond this dissertation.

The third thesis group investigates the TP modeling possibilities of different DM models
– due to I want to use the developed TP models as subjects for TP-based controller design
in the future. The first step of this direction was made during my research, namely, I
have introduced control oriented LPV models via mathematical transformation from the
existing DM models and I successfully developed the TP model form of them. I showed
three possible direction during this part: it is possible to use TP model transformation
and realize TP model in case of simple ICU kind DM model with high nonlinearities;
it is possible to use TP model transformation and realize TP model in case of highly
complex T1DM model with high nonlinearities and coupling; and I showed that how is it
possible to increase the robustness of the TP model (from parameter point of view).

Further step regarding this thesis will be the usage of the developed TP models for
TP-based controller design. Moreover, I would like to investigate the opportunity of
robustization possibilities not just from model but controller design point of views, as
well.
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[5] A. Fonyó and E. Ligeti. Physiology (in Hungarian). 3rd. Budapest, Hungary:
Medicina, 2008.

[6] V. Adam. Medical Biochemistry (in Hungarian). 4th. Budapest, Hungary: Medicina
Press, 2006.

[7] R. Bilous and R. Donnelly. Handbook of Diabetes. 4th. Chichester, UK: Wiley-
Blackwell, 2010.

[8] S.A. Billings. Nonlinear System Identification. 1st. Chichester, UK: John Wiley
& Sons, 2013.

[9] M. Pisano. “Overview of Insulin and Non-Insulin Delivery Devices In the Treatment
of Diabetes”. In: Pharmacy and Therapeutics 39.12 (2014), pp. 866–873.

[10] J.L. Selam. “Evolution of Diabetes Insulin Delivery Devices”. In: J Diabetes Sci
Technol 4.3 (2010), pp. 505–513.

[11] D.M. Maahs, L.A. Horton, and H.P. Chase. “The Use of Insulin Pumps in Youth
with Type 1 Diabetes”. In: Diabetes Technol Ther Suppl1 (2010), S59–S65.

[12] Y. Reznik and O. Cohen. “Insulin Pump for Type 2 Diabetes”. In: Diabetes Care
36.Suppl2 (2013), S219–S225.

129



[13] B.H. McAdams and A. Ali. “An Overview of Insulin Pumps and Glucose Sensors
for the Generalist”. In: J Clin Med 5.1 (2016), p. 5.

[15] F. Chee and T. Fernando. Closed-Loop Control of Blood Glucose. Heidelberg,
Germany: Springer, 2007.

[16] C. Cobelli, E. Renard, and B. Kovatchev. “Artificial Pancreas: Past, present and
future”. In: Diabetes 60.11 (2011), pp. 2672–2682.

[17] V.N. Shah, A. Shoskes, B. Tawfik, and S.K. Garg. “Closed-Loop System in the
Management of Diabetes: Past, Present, and Future”. In: Diabetes Technol The
16.8 (2014), pp. 477–490.

[18] S. Trevitt, S. Simpson, and A. Wood. “Artificial Pancreas Device Systems for the
Closed-Loop Control of Type 1 Diabetes: What Systems Are in Development?”
In: J Diabetes Sci Technol Preprint version, 2015 (2015), pp. 1–10.

[19] T. Peyser, E. Dassau, and J.S. Skyler. “The artificial pancreas: current status and
future prospects in the management of diabetes”. In: Ann N Y Acad Sci 1311
(2014), pp. 102–123.

[20] F.J. Doyle, L.M. Huyett, J.B. Lee, H.C. Zisser, and E. Dassau. “Closed-Loop
Artificial Pancreas Systems: Engineering the Algorithms”. In: Diab Care 37.5
(2014), pp. 1191–1197.

[24] H. Thabit and R. Hovorka. “Coming of age: the artificial pancreas for type 1
diabetes”. In: Diabetologia 59.9 (2016), pp. 1795–1805.

[25] S. Kamath. “Model based simulation for Type 1 Diabetes Patients”. In: Asian
Am J Chem 1.1 (2013), pp. 11–19.

[26] G. Marchetti, M. Barolo, L. Jovanovic, H. Zisser, and D.E. Seborg. “An Improved
PID Switching Control Strategy for Type 1 Diabetes”. In: IEEE T Bio-Mde Eng
55 (3 2004), pp. 857–865.

[27] Y. Ramprasad, G.P. Rangaiah, and S. Lakshminarayanan. “Robust PID Controller
for Blood Glucose Regulation in Type I Diabetics”. In: Ind Eng Chem Res 43 (26
2004), pp. 8257–8268.

[28] C. Ionescu, Y. Zhou, and J.A.T. Machado. “Special Issue: Advances in Fractional
Dynamics and Control”. In: J Vib Control 22.8 (2016), pp. 1969–1971.

[29] M. Goharimanesh, A. Lashkaripour, and A. Abouei Mehrizi. “Fractional Order
PID Controller for Diabetes Patients”. In: J Comp Appl Mech 46.1 (2015), pp. 69–
76.

130



[30] C. E. Garcia, D. M. Prett, and M. Morari. “Model Predictive Control: Theory
and Practice&Mdash;a Survey”. In: Automatica 25.3 (1989), pp. 335–348.

[31] M. Morari and J.H. Lee. “Model Predictive Control: Past, Present and Future”.
In: Comp Chem Eng 23 (1997), pp. 667–682.

[32] J.H. Lee. “Model predictive control: Review of the three decades of development”.
In: International Journal of Control, Automation and Systems 9.3 (2011), p. 415.

[33] M. E. Villanueva, R. Quirynen, M. Diehl, B. Chachuat, and B. Houska. “Ro-
bust MPC via min-max differential inequalities”. In: Automatica 77 (Mar. 2017),
pp. 311–321.

[34] A. Gentilini, C. Frei, A.H. Glattfelder, M. Morari, T.J. Sieber, R. Wymann, T.
Schnider, and A.M. Zbinden. Closed loop control in Anesthesia. Tech. rep. July
2000.

[35] N. Cardoso and J. M. Lemos. “Model Predictive control of Depth of Anaesthesia:
Guidelines for controller configuration”. In: 2008 30th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society. (Vancouver,
Aug. 20–25, 2008). Vancouver, BC, Canada: ACM, 2008, pp. 5822–5825.

[36] I. Nascu, A. Krieger, C.M. Ionescu, and E.N. Pistikopoulos. “Advanced model-
based control studies for the induction and maintenance of intravenous anaesthe-
sia”. In: IEEE Tran Biomed Eng 62.3 (2015), pp. 832–841.

[37] P. Maxime, H. Gueguen, and A. Belmiloudi. “A Robust Receding Horizon Control
Approach to Artificial Glucose Control for Type 1 Diabetes”. In: Nonlin Contr
Sys 9.1 (2013), pp. 833–838.

[38] G. Schlotthauer, L.G. Gamero, M.E. Torres, and G.A. Nicolini. “Modeling, iden-
tification and nonlinear model predictive control of type I diabetic patient”. In:
Med Eng Phys 28 (3 2006), pp. 240–250.

[39] H. Kirchsteiger and L. del Re. “Nonlinear model predictive control with moving
horizon state and disturbance estimation - Application to the normalization of
blood glucose in the critically ill”. In: Proceedings of the 17th World Congress The
International Federation of Automatic Control. (Seoul, Korea, July 6–11, 2013).
Seoul: IFAC, 2013, pp. 9069–9074.

[40] R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-Benedetti, M.
Orsini-Federici, T.R. Pieber, H.C. Schaller, L. Schaupp, T. Vering, and Wilinska
M.E. “Nonlinear model predictive control of glucose concentration in subjects
with type 1 diabetes”. In: Physiol Meas 25.4 (2004), pp. 905–920.

131



[41] Y. Ho, B.P. Nguyen, and C-K. Chui. “Ant Colony Optimization for Model
Predictive Control for Blood Glucose Regulation”. In: Proceedings of the Third
Symposium on Information and Communication Technology. (Ha Long). SoICT
’12. Ha Long, Vietnam: ACM, 2012, pp. 214–217.

[42] C-K. Chui, B.P. Nguyen, Y. Ho, Z. Wu, M. Nguyen, G-S. Hong, D. Mok, S.
Sun, and S. Chang. “Embedded Real-Time Model Predictive Control for Glucose
Regulation”. In: World Congress on Medical Physics and Biomedical Engineering
May 26-31, 2012, Beijing, China. Ed. by M. Long. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 1437–1440.

[43] E. Atlas, R. Nimri, S. Miller, E.A. Grunberg, and M. Phillip. “MD-Logic Anrtificial
Pancreas System. A pilot study in adults with type 1 diabetes”. In: Diab Care 33
(2010), pp. 1072–1076.

[44] P. Herrero, P. Georgiou, N. Oliver, D.G. Johnston, and C. Toumazou. “A Bio-
Inspired Glucose Controller Based on Pancreatic β-Cell Physiology”. In: J Diabetes
Scien Technol 6.3 (2012), pp. 606–616.

[45] K.G. Osgouie and A. Azizi. “Optimizing fuzzy logic controller for diabetes type I
by genetic algorithm”. In: 2010 The 2nd International Conference on Computer
and Automation Engineering (ICCAE). (Singapore, Singapore, Feb. 26–28, 2010).
Singapore: ICCAE, 2010, pp. 4–8.
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[48] L. Kovács, B. Benyó, J. Bokor, and Z. Benyó. “Induced L2-norm Minimization
of Glucose-Insulin System for Type I Diabetic Patients”. In: Comp Meth Prog
Biomed 102.2 (2011), pp. 105–118.

[51] P. Latafat, P. Palumbo, P. Pepe, L. Kovács, S. Panunzi, and A. De Gaetano. “An
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[52] V. Bátora, M. Tŕnik, J. Murgas, S. Schmidt, K. Nogaard, N.K. Poulsen, H. Madsen,
and J.B. Jorgensen. “Bihormonal Control of Blood Glucose in People with Type 1
Diabetes”. In: 2015 European Control Conference (ECC). (Linz, Austria, July 15–
17, 2015). Linz: IFAC, 2015, pp. 25–30.

[53] V. Gingras, R. Rabasa-Lhoret, V. Messier, M. Ladouceur, L. Legault, and A.
Haidar. “Efficacy of dual-hormone artificial pancreas to alleviate the carbohydrate-
counting burden of type 1 diabetes: A randomized crossover trial”. In: Diabetes
Metab (2015), p. 3636.

[54] A.M. Lyapunov. “A General Task About the Stability of Motion (in Russian)”.
PhD thesis. Kharokov, Russia: University of Kharkov, 1892.

[55] A.M. Lyapunov. Stability of Motion. New York, USA: Academic Press, 1966.

[56] B. Lantos. Theory and design of control systems [in Hungarian]. 2nd. Budapest,
Hungary: Akademia Press, 2005.

[57] T. Várkonyi. “New adaptive methods for Robust Fixed Point Transformations-
based control of nonlinear systems”. PhD thesis. Budapest, Hungary: Applied
Informatics Doctoral School, Óbuda University, 2013.
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Smoothers a Manual for the Matlab toolbox EKF/UKF. English. Version Version
1.3. Aalto University. 2011. 131 pp. August 16, 2011.

[106] P. Baranyi, D. Tikk, Y. Yam, and R. Patton. “TP model transformation as a way
to LMI-based controller design”. In: Comput Ind 51.3 (2003), pp. 281–297.

[107] P. Baranyi. “TP model transformation as a way to LMI-based controller design”.
In: IEEE T Ind Electron 51.2 (2004), pp. 387–400.

[108] P. Galambos and P. Baranyi. “TP Model Transformation: A Systematic Modelling
Framework to handle Internal Time Delays in Control Systems”. In: Asian J
Control 17.2 (2015), pp. 1–11.

[109] J. Kuti, P. Galambos, and P. Baranyi. “Minimal Volume Simplex (MVS) approach
for convex hull generation in TP Model Transformation”. In: 2014 18th Inter-
national Conference on Intelligent Engineering Systems (INES 2014). (Tihany,
Hungary). IEEE Hungary Section, 2014, pp. 187–192.

136



[110] P. Galambos, J. Kuti, P. Baranyi, G. Szögi, and I.J Rudas. “Tensor Product
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A. Summary of the new scientific results

In this Chapter, I have collected to one place the new scientific results what I achieved
during my research by Thesis points.

Thesis Group 1

Thesis group 1: T1DM control via RFPT framework

Thesis 1
I have developed an RFPT-based controller design framework for
physiological systems. The provided solutions allows the using of
highly approximating (rough) model of the physiological system to
be controlled.

Thesis 1.1
I have proven the usability of the developed framework in case of the
low complexity T1DM model, the Minimal Model. The designed
controller keeps the BG level in a narrow range and it is able to
suppress high glucose variability as well.

Thesis 1.2
I have proven the usability of the RFPT-based controller design
framework in case of highly complex T1DM models: the Cambridge
model (so called Hovorva-model) and the Pavia-Padova model (so
called Magni-model). The developed RFPT-based controllers
provide fast adaptivity and they are able to keep the blood glucose
level of the complex T1DM models inside a given selected range
even under unfavorable glucose loads or soft blood sugar variability.
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Relevant own publications pertaining to this thesis group: [22, 72, 73, 74, 75].

Thesis Group 2

Thesis group 2: Completed LPV controller and observer scheme for LPV systems.

Thesis 2
I have introduced mathematical tools for LPV related control tasks
which successfully exploit the possibilities lied in the specific prop-
erties of the parameter space of LPV systems. By using these tools
different quality markers can be defined and specific complementary
LPV controller and observer structures can be designed.

Thesis 2.1
I have introduced a norm based ”difference” interpretation regard-
ing the LPV systems, based on the properties of the LPV parameter
space. I have defined how to use these interpretations as error and
quality criteria during modeling and control and demonstrated my
theoretical findings on a concrete example in diabetes modeling.

Thesis 2.2
I have developed an LPV based complementary controller struc-
ture in order to control nonlinear systems. The developed method
requires the knowledge of classical state feedback theorems and
less complex than the LMI-based methods, moreover it requires
less computational capacity than the LMI-based techniques. I have
demonstrated the usability of the developed tool in case of different
nonlinear systems, with unfavorable circumstances demonstrating
that the developed method provides stability and appropriate con-
trol action.
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Thesis 2.3
I have developed an LPV based complementary observer structure
which can estimate the actual values of the states in case of directly
not measurable ones. I demonstrated the usability of the developed
tools in case of a nonlinear system. I have proven that the com-
plementary observer can accurately estimate the states of the given
specific LPV systems.

Relevant own publications pertaining to this thesis group: [91, 103, 104, 105].

Thesis Group 3

Thesis group 3: Usability of the TP model transformation for DM

Thesis 3.1
I have realized a TP-based ICU model with small approximation
error. I proved that in case of the given nonlinear ICU model better
approximation error can be reached, if the operating equilibrium of
glycemia (Gd) of the model was not equal to the model equilibrium
of glycemia (GE).

Thesis 3.2
I have investigated the robustization possibility of the blood glucose
Minimal Model via TP framework. I have realized robust T1DM
and T2DM TP-models, robust from parameter variation point of
view. Regarding the LMI-based controller design, this property can
be useful in guaranteeing the controller’s robustness by the created
robust TP models.

Thesis 3.3
I have proven the usability of TP-model transformation in case of
highly complex T1DM model. I have demonstrated that several con-
trol oriented qLPV models can be derived from the original model
approximating it with high accuracy.

Relevant own publications pertaining to this thesis group: [114, 115, 116].
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B. Detailed description of the used DM
models

In this Chapter I have summarized the descriptions and used parameters sets of each
applied DM models during my research.

B.1. Minimal Model

The Minimal Model was originally developed by Bergman et al [132, 133]. Over years,
several form of it appears [16]. In this Theses I used a modified version of it which can
be found in [15]. This Minimal Model is appropriate to describe the T1DM and T2DM
cases, respectively [15]. The model equations are the following:

Ġ(t) = −(p1 +X(t))G(t) + p1GB + d(t) (B.1a)

Ẋ(t) = −p2X(t)) + p3(I(t)− IB) (B.1b)

İT 2DM (t) =

γ(G(t)− h)t− n(I(t)− IB) + u(t) for G(t)− h > 0

−n(I(t)− IB) + u(t) for G(t)− h ≤ 0
(B.1c)

İT 1DM (t) = −n(I(t)− IB) + u(t) (B.1d)

The model has three states: G(t) [mg/dL] the blood glucose concentration, which
represents at the same time the output of the model; X(t) [1/min] the insulin-excitable
tissue glucose uptake activity, and I(t) [µU/mL] the blood insulin concentration. The
model has two inputs: the external insulin intake u(t) [µU/mL/min] and the glucose
intake d(t) [mg/dL/min].
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The T2DM state is described by (B.1c), where the internal insulin production is only
possible when the G(t) is higher than a threshold h. The simplified T1DM case is
represented by (B.1d), where is no internal insulin production.

The symbols p1, p2, p3, GB, IB, and n denote model parameters.

Table B.1.: States, inputs and output of the used Minimal-model
Notation Unit Description

p mg/dL/min Amount of absorbed glucose
u µU/mL/min External insulin injection
G mg/dL Plasma glucose concentration
X min−1 Glucose uptake activity of the

insulin-dependent tissues
I µU/mL Plasma insulin concentration

Table B.2.: Parameters and their details in the used Minimal-model
Notation Unit Description Value
BW kg Body weight 70
MwG g/mol Molecular weight of glucose 180.15588
p1 min−1 Transfer rate 0.028
p2 min−1 Transfer rate 0.025
p3 min−1 Transfer rate 0.00013
n min−1 Time constant for insulin dis-

appearance
0.23

GB mg/dL Basal glucose level 85
IB µU/mL Basal insulin level 15
AG - CHO to glucose utilization 0.8
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B.2. Model for Intensive Care Unit

B.2.1. The Wong model

The Wong-model consist of the following equations [85, 86]:

Ġ(t) = −pGG(t)− SI(G(t) +GE)
Q(t)

1 + αGQ(t) + P (t)

Ẋ(t) = −kI(t)− kQ(t)

İ(t) = −
nI(t)

1 + αII(t) +
uex(t)
V

(B.2)

The main aspect of the model is to describe the glucose-insulin dynamics of an inpatient
who suffers from T1DM and is nurtured on ICU [85, 86]. It is expected that this simple
model -after preliminary identification-, can provide the current and the future Blood
Glucose (BG) level of the patient with a precision that is good enough for the realization
of the tight glycemic control.

The following table contains the parameters, their descriptions and their values which
were used in this thesis regarding to the Wong-model [85, 86].

B.3. Complex DM models

B.3.1. The Hovorka model

The equations of the model are the following [70, 71]:

Ḋ1(t) = AGD(t)−
D1(t)
τD

, (B.3a)

Ḋ2(t) =
D1(t)
τD
−
D2(t)
τD

, (B.3b)

Ṡ1(t) = u(t)−
S1(t)
τS

, (B.3c)

Ṡ2(t) =
S1(t)
τS
−
S2(t)
τS

, (B.3d)
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Table B.3.: Detailed desriptions and values of the parameters of the Wong-model
Notation Unit Description Value

G mmol/L Plasma glucose above equilib-
rium level

-

Q mU/L Concentration of insulin
bounded to interstitial sites

-

I mU/L Plasma insulin resulting from
external input

-

P mmol/L/min Total plasma glucose input -
uex mU/min External insulin input -
GE mmol/L Plasma equilibrium level 10.5
pG 1/min Endogenous glucose clearance 0.01
SI L/mU/min Insulin sensitivity 0.001
V L Insulin distribution volume 12
k 1/min Effective life of insulin in the

compartment
0.0198

n 1/min First order decay rate from
plasma

0.16

αI L/mU Plasma insulin disappearance 0.0017
αG L/mU Insulin effect 0.0154

Q̇1(t) =
D2(t)
τD
− F01,c − FR(t)− x1(t)Q1(t) + k12Q2(t) + EGP0(1− x3(t)) , (B.3e)

Q̇2(t) = x1(t)Q1(t)− (k12 + x2(t))Q2(t) , (B.3f)

İ(t) =
S2(t)
τSVI

− keI(t) , (B.3g)

ẋ1(t) = −ka1x1(t) + kb1I(t) , (B.3h)

ẋ2(t) = −ka2x2(t) + kb2I(t) , (B.3i)
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ẋ3(t) = −ka3x3(t) + kb3I(t) . (B.3j)

The model consist of four main submodel assigned to the state variables. The CHO
absorption submodel (D1, D2 states) represent the glucose absorption; the nonlinear
glucose-insulin core model (Q1, Q2 states) describes the glucose-insulin dynamics and
cross effects; the insulin absorption (S1, S2 states) realizes the subcutaneous insulin
absorption and the insulin kinematic submodel (I, x1−3 states) represents the insulinaemia
and insulin effects and d(t) g/min and u(t) mU/min are the CHO and insulin intakes,
respectively. The equations are completed with other functions, as well:

D(t) =
1000 · d(t)
MwG

, (B.4a)

G(t) =
Q1(t)
VG

, (B.4b)

FR =

 0.003(G(t)− 9)VG G(t) ≥ 9mmol/L

0 otherwise
, (B.4c)

F01,c =


F01 G(t) ≥ 4.5mmol/L
F01G(t)

4.5 otherwise
, (B.4d)

where D(t) is the CHO input in mmol/min, G(t) is the output of the model and F01,c, FR

are the output related saturations (nonlinearities). Table B.4-B.5 contains the detailed
descriptions of the state variables and the used parameters of the model in this study
based on [70, 71].
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Table B.4.: States, inputs and output of the used Hovorka-model
Notation Unit Description

d g/min CHO input in
g/min

D mmol/min CHO input in
mmol/min

D1 mmol Glucose masses in
the accessible com-
partment

D2 mmol Glucose masses in
the non-accessible
compartment

u mU/min External insulin in-
put

S1 mU Masses of insulin in
accessible compart-
ment

S2 mU Masses of insulin in
non-accessible com-
partment

Q1 mmol/min Masses of glucose
in the accessible
(where measure-
ments are made)
compartments

Q2 mmol/min Masses of glucose in
the non-accessible
compartments

G mmol/min/L Glucose concentra-
tion in the blood

x1 - Remote effect of in-
sulin on glucose dis-
tribution

x2 - Remote effect of in-
sulin on glucose dis-
posal

x3 - Remote effect of in-
sulin on endogenous
glucose production

I mU/L Insulin concentra-
tion in the blood

F01,c mmol/min Glucose consump-
tion of the central
nervous system

FR mmol/min Production of glu-
cose in the kidneys
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Table B.5.: Parameters and their details in the used Hovorka-model
Notation Unit Description Value

BW kg Body weight 70

MwG g/mol Molecular weight of glucose 180.15588

k12 min−1 Transfer rate 0.066

ka1 min−1 Deactivation rate 0.006

ka2 min−1 Deactivation rate 0.06

ka3 min−1 Deactivation rate 0.03

ke min−1 Insulin elimination rate 0.138

τD min CHO absorption constant 40

τS min Insulin absorption constant 55

AG - CHO to glucose utilization 0.8

VI/BW L·kg−1 Insulin distribution volume 0.12

VG/BW L·kg−1 Glucose distribution volume 0.16

EGP0/BW L·kg−1 min−1 Liver glucose production at zero
insulin

0.0161

F01/BW L· kg−1 min−1 Insulin independent CNS con-
sumption

0.00097

SIT L/mU
Insulin sensitivity of transport /
distribution

51.2 ·10−4

SID L/mU Insulin sensitivity of disposal 8.2 · 10−4

SIE L/mU Insulin sensitivity of EGP 520 · 10−4

B.3.2. The Magni model

During the investigations, we used a well-known, high order digestion (B.5) and T1DM
(B.6) models, presented by [134–136]. Also, these models are the base of the UVA/Padova
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simulator [137].

Q̇sto(t) = Qsto1(t) +Qsto2(t)

Q̇sto1(t) = −kgriQsto1(t) + d(t)

Q̇sto2(t) = −kgut(t, Qsto)Qsto2(t) + kgriQsto1(t)

Q̇gut(t) = −kabsQgut(t) + kgut(t, Qsto)Qsto2(t)

Ra(t) =
fkabsQgut(t)

BW
.

(B.5)

ĠM (t) = −kscGM (t) +
ksc

VG
Gp(t)

Ġp(t) = EGP (t) +Ra(t)− Uii − E(t)− k1Gp(t) + k2Gt(t)

Ġt(t) = −Uid + k1Gp(t)− k2Gt(t)

Ẋt(t) = −p2UX(t) + p2U [I(t)− Ib]

İd(t) = −kiId(t) + kiI1(t)

İ1(t) = −kiI1(t) + kiI(t)

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + ka2S2(t) + ka1S1(t)

İl(t) = m2Ip(t)− (m1 +m3)Il(t)

Ṡ2(t) = −ka2S2(t) + kdS1(t)

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t)

. (B.6)

The unified complex model has two inputs and one output, namely, u(t) is the
injected insulin, d is the amount of ingested glucose and the output GM (t) represents
the subcutaneous glucose level.

The model contains several additional equations:

kgut(t, Qsto) = kmin +
kmax − kmin

2

(
tanh[α(Qsto − bD̄(t))]− tanh[β(Qsto − dD̄(t))] + 2

)
,

(B.7a)

α =
5

2D̄(t)(1− b)
, (B.7b)

β =
5

2D̄(t)d
, (B.7c)
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D̄(t) = Qsto(t) +
∫ t̄f

t̄
d(τ̄)dτ , (B.7d)

E(t) =

ke1(G(t)− ke2) ifGp(t) > ke2

0 ifGp(t) ≤ ke2
, (B.7e)
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Table B.6.: States, inputs and output of the used Magni-model
Notation Unit Description

Qsto(t) mg Amount of glucose in the stomach

Qsto1(t) mg Solid phase of the amount of glucose in the stomach

Qsto2(t) mg Liquid phase of the amount of glucose in the stomach

Qgut(t) mg Glucose mass in the intestine

Ra(t) mg/kg/min Glucose rate of appearance in plasma

d(t) mg/min Rate of ingested glucose

Gp mg/kg Glucose masses in plasma and rapidly equilibrating
tissues

Gt mg/kg Glucose masses in slowly equilibrating tissues

GM (t) mg/dL Subcutaneous glucose level

I1(t) pmol/L Insulin transfer

Id(t) pmol/L Delayed insulin signal

Xt(t) pmol/L Remote insulin signal

S1(t) pmol/kg/min Amount of the monomeric insulin in the subcutaneous
space

S2(t) pmol/kg/min Amount of the nonmonomeric insulin in the subcuta-
neous space

Il(t) pmol/kg Insulin masses in liver

Ip(t) pmol/kg Insulin Masses in plasma

I(t) pmol/L Palsma insulin concentration

u(t) pmol/kg/min External insulin intake

E(t) mg/kg/min Renal excretion

EGP (t) mg/kg/min Endogenous glucose production

Uid(t) mg/kg/min Insulin-dependent glucose utilizations

Vm(t) mg/kg/min Insulin affected volume
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Table B.7.: Parameters and their details in the used Magni-model
Notation Unit Description Value

VG dL/kg
Body weight normalized glucose
volume

1.49

k1 min−1 Rate parameter 0.042

k2 min−1 Rate parameter 0.071

VI L/kg
Body weight normalized insulin
volume

0.04

m1 min−1 Model parameter 0.379

m2 min−1 Model parameter 0.673

m3 min−1 Model parameter 0.5685

m4 min−1 Model parameter 0.269

kmax min−1 Model parameter x

kmin min−1 Model parameter x

kabs min−1 Rate constant of intestinal ab-
sorption

x

kgri min−1 Rate of grinding x

f
Fraction of intestinal absorption
which actually appears in plasma

x

b Model parameter x

d Model parameter x

k1 min−1 Rate parameter x

k2 min−1 Rate parameter x

ka1 min−1 Rate constant of insulin absorp-
tion

0.1

ka2 min−1 Rate constant of monomeric in-
sulin

0.2

kd mg/kg/min
Rate constant of insulin absorp-
tion

0.3

kp1 mg/kg/min
Extrapolated EGP at zero glu-
cose and insulin

3.09

kp2 min−1 Liver glucose effectiveness 7e− 4

kp3
mg/kg/min

pmol/L
Parameter governing amplitude
of insulin action on the liver

0.005
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Table B.8.: Parameters and their details in the used Magni-model
Notation Unit Description Value

ki min−1
Rate parameter accounting for de-
lay between insulin signal and in-
sulin action

0.0066

Vm0 mg/kg/min
Model parameter for insulin-
dependent glucose utilization

4.65

Vmx
mg/kg/min

pmol/L
Model parameter for insulin-
dependent glucose utilization

0.034

Km0 mg/kg
Model parameter for insulin-
dependent glucose utilization

466.21

p2U min−1 Rate constant of insulin action on
the peripheral glucose utilization

0.084

α min−1 Model function x

β
pmol/kg/min

mg/dL
Model function x

ke1 min−1 Glomerular filtration rate 7e− 4

ke2 mg/kg Renal threshold of glucose 269

ksc mg/kg Rate constant 0.1

Ib pmol/L
Basal state plasma insulin con-
centration

102.3516

GMbasal mg/dL
Basal state plasma insulin con-
centration

90

BW kg Body weight 78

Uii mg/kg/min
Insulin-independent glucose uti-
lizations

1
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C. Physiological background and treatment

C.1. Utilization of glucose

The human body can utilize the CHOs with α−D structure (the cellulose (with β −D
structure cannot be utilized). The primary source of energy for the human body is the
glucose which is known as dextrose, monosaccharide, simple sugar, simple CHO, etc. The
chemical formula of it is C6H12O6. Other simple CHOs can be used by the body (eg.
fructose), but the amount of them compared to the glucose can be neglected.

The complex CHO entering the human body via nutrition. The food enters into the
gastrointestinal system which through the nutrients – including CHO – are absorbed.
First, the ingested polisaccharides (complex sugar) are broken down into smaller mono-
and di-saccharides (simple sugar) by the digestive enzymes, after the monosaccharides
are absorbed in the small intestine via sodium-dependent glucose cotransporters (SGLT1
protein channels; same proteins, the SGLT2 provide the renal reabsorbtion in the proximal
tubule of the nephron), which are driven by sodium gradient (created by Na-K energy
consumer primer pumps on the basolateral membrane of the enterocytes). Finally, the
monosaccharides (glucose, galactose, fructose) enter to the blood stream on the other
sides of the enterocytes via glucose transporters (GLUT) membrane proteins; the glucose
becomes absorbed via GLUT2 gate (the whole path can be seen on Fig. C.1). The
absorbed nutrients will be transported by the blood stream to the liver through the
portal vein [5, 6, 138].
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Figure C.1.: Process of digestion and absorption of glucose, Credit: dream10f (left),
Austin Community College (right) [139, 140]

The glucose is consumed by glucose consumer body cells – like muscle-, fatty-, brain-
cells and others –, these cells uptake the glucose via GLUT gates (this process will be
detailed later).

In the cells the energy stored by glucose will be freed via anaerobic and aerobic chemical
reactions. Also, this energy is used to restore the adenosine diphosphate (ADP) with a
phosphor atom (ATP); drive the different protein pumps; drive the electron transport
chain; etc. Figure C.2. shows these processes in case of eukaryotic cells (like the human
cells).

The first step of the catabolism of the glucose is the glycolisis. Through glycolisis one
molecule glucose is oxidised to two molecules of pyruvate (C6H12O6 + 2NAD+2ADP +
2Pi → 2C3H4O3 + 2NADH + 2H+ + 2ATP + 2H2O ) and energy (ATP) released
[138].
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Figure C.2.: Stoichiometry of aerobic respiration and most known fermentation types in
eucaryotic cell, Credit: Darekk2 [141]

The main energy producing cycle of the cells located in the mitochondria. The aerobic
respiration in the presence of oxygen is become here. The pyruvate enters into the
mitochondria and through the Szentgyörgyi-Krebs is oxidised – finally – to carbon dioxide
(CO2) and water (H2O) (Fig. C.3).

The simplified aerobic route is: C6H12O6 + 6O2 → 6CO2 +H2O + energy.
There is an other way for the usage of the energy of glucose. Via anaerobic (without

oxygen) reactions the pyruvate can be reduced to lactate (fermentation); or via enzymatic
reactions the pyruvate could become ethanol as well.

The lactate can be directly oxidised again to pyruvate and this can be used in the
citric acid cycle or can be used in gluconeogenesis in order to realize glucose.
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Figure C.3.: The citric acid (Szentgyörgyi-Krebs) cycle, Credit: Narayenese [142]

The main energy storing part of the body is the liver and the triglycerides (adipose or
fatty cells). The liver storing the energy in a special compressed polysaccharide known
as glycogen ((C6H12O6)2), which consists of glucose molecules and the compression is
made by weak bonds. The glycogen is mainly realized by the liver cells via an endergonic
chemical process. Adipose cells storing the energy as fatty acids. Through estherification
of fatty acids and glycerol, the adipose cells can storing the energy as adipose tissue and
reach high energy density. If the body needs energy, the glycogen (via glycogenolysis)
and glycerol (via oxygen bond) can be transformed into glucose again and can be used in
the citric acid cycle.

The physiological processes regarding the glucose, including utilization, clearance,
storage are mostly controlled by two pancreatic hormones – insulin and glucagon. The
regulation process can be seen on Fig. C.4.
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Figure C.4.: Regulation of the utilization of glucose, Credit: Benjamin Cummings [143]

In case of high blood sugar the pancreas releases insulin and the insulin level (insu-
linemia) in blood is increasing, which stimulates: the glycogen synthesis (the liver cells
utilizes the glucose and storing it as glycogen); the estherification (convert glucose to
glycerol); decrease the production of glucagon; and many influences many other processes.
In this way, the blood glucose level becomes low. Low blood glucose level increases the
production of glucagon. The increasing glucagon level stimulates: the glycogenolysis
(glycogen convert to glucose; glucose secretion by the liver cells); decrease the insulin
production (this connection is much weaker than the revers); and influences on other
processes [5, 144].

Glycogen is produced not just the liver cells, but the muscle cells as well. However, the
amount of glycogen in muscles is much lower than in the liver – muscles are using this
low amount of local glycogen as fast and immediate supply of glucose till the metabolic
processes reach the optimal energy producing state. The liver stores the glycogen in fully
mobilizable form. During the daily routine depends on the hormone control, the liver
producing and secretes even 500 g of glucose per day [138]. The liver is the central organ
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in the glucose homeostasis.
It should be noted that the adrenaline (epinephrine) can trigger the glucose secretion

of the liver as well – in case of stress reactions the adrenal glands secretes adrenalin which
increase the amount of secreted glucose by the liver in order to perform the requirements
of the body (eg. flight-or-fight reaction).

The primary energy source of the brain is the glucose – it requires continuous supply of
it in order to keep its normal functioning. The brain consumes significant part from the
daily glucose (around 25 %). The glycogen storing capacity of the brain is very limited –
this small amount can be used during hypoglycemic periods. However, the persistent low
blood sugar level causes several negative effect, such as poor decision making, dizziness,
fainting, metabolic collapse and finally coma or even death [144].

The kidney play massive role in the glucose homeostasis, since the the kidneys reabsorb
the nutrients and minerals from the primer filtrate. The kidneys consuming glucose as
energy source to keep up the cellular filtration. The tubular cells contain the similar
GLUT gates as the intestine’s cells. Through these the tubular cells reabsorb the glucose
(and avoid the excretion of it) and via the peritubular capillaries the reabsorbed glucose
enters the renal veins (as other nutrients). In that case, if the blood glucose level
persistently high, the tubular transporters can be saturated (over longer period they
can be even damaged due to the continuous load) and the glucose is excreted out in
the urine. The name of the disease came from this fact (”diabetes” ”pass trough” and
”mellitus” ”sweet as honey”), since it is an indicator of the malady – the ancient doctors
can diagnose it from the sweet urine [7, 144].

The usually used units for blood glucose concentration measurement is mg/dL and
mmol/L (1 mmol/L ≈ 18.018 mg/dL). I have used both units in this dissertation.

C.2. The Insulin

Insulin is a peptide hormone produced by the β-cells in the Langerhans islets of the
pancreas. The production and secretion of insulin is catalyzed by the amount of glucose
in the blood stream, nervous affections and the actual state of the hormone household –
however, the most significant effect is the blood sugar level [5, 8].

The secretion of insulin in the β-cells can be seen on Fig. C.5. Due to the increasing
blood glucose level in the blood, the glucose uptake of the GLUT2 gate increases. The
increased glucose level inside the cell via glycolytic phosphorylation of glucose causes
rises the ATP/ADP ratio – namely, the energetic level of the cells increasing. The higher
level of ATP blocking the the Na−K channel proteins which causes the increasing level
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of K. This rise indicates depolarization, which affects on the the Ca channels – via these
gates the Ca ions inflow the cells. The increasing calcium level causes exocytotic release
of insulin (the storage granule merged with the membrane of the cell) [6].

The production and secretion of insulin mostly depends on the blood glucose level,
however, other physiological signals, like nervous activity and adrenaline can increase
them. Basically, a negative feedback loop connects the frequency of the secretion and
the actual BG level. In that case of the BG level is low, the production and secretion
frequency is lower, but with increasing BG level this frequency increases too [7].

Figure C.5.: Insulin production and secretion, Credit: Beta Cell Biology Consortium
[145]

The secretion of insulin have impulse nature (Fig. C.6.) and oscillating with a period
of 3 – 6 minutes [146, 147]. The hormone enters the blood stream through the portal
vein.
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Figure C.6.: Pulsating nature of insulin secretion [148]

The insulin was discovered by Banting et al in 1922 [149, 150]. They firstly synthetized
the hormone from dogs, later they could extract it from ox-calf. Until the early 1960s
the available insulins were zoogenic. In the mid 1960s opens the road to realize human
insulin in quantities thankfully the recombinant DNA technology. This technique allows
to embed human DNA into bacterial DNA – in this way safe human insulin is produced
by bacteria. Today, most of the insulin come from this source, however, zoogenic insulins
are available for those elderly people, who have started their therapy before the invention
of recombinant insulins and their body adapted to zoogenic insulins. Famous recombinant
insulin are the Humulin, Novolin and Apidra. In the early 1990s the first insulin analogues
(insulin receptor ligands) were introduced. These medications mimic the effects of insulin,
however, the effect of them take longer time. The type of requested insulins depends on
the expected effect. Before and shortly after the meals, the rapid acting insulins have to
be used. In order to maintain the basal insulin level, mid and long acting insulin is the
general solution. It should be noted that during the treatment with insulin pump, the
rapid acting insulins are the usually used. Figure C.7 shows the available insulin types
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on the market, their effects and durations.

Figure C.7.: Different types of insulin and their effect [151]
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The last part what should be highlighted regarding the insulin is the actual effect of
them. Figure C.8 illuminate how the insulin works on cell size in case of a liver cell (but
the insulin works similarly in case of fatty acid and muscle cells as well). The insulin
binds to the receptor, which suffers spatial shape changes. Through chemical messenger
molecules different physiological processes become: the insulin dependent GLUT gates
let through the glucose, in the presence of glucose the glycogen production starts, the
glucose is burned via the cytric acid cycle, or in case of adipose tissues the production of
fatty acids begins.

Figure C.8.: Effect of insulin on hepatic cells. Insulin binds to its receptor (1), which
starts many protein activation cascades (2). These include translocation
of Glut-4 transporter to the plasma membrane and influx of glucose (3),
glycogen synthesis (4), glycolysis (5) and triglyceride synthesis (6)., Credit:
XcepticZP [152]

C.3. Types of the disease

C.3.1. Type 1 DM

The Type 1 DM is caused by an autoimmune reaction, in which the body’s own immune
system destroys the insulin producer β-cells in the pancreas. As a result, the internal
insulin production is ceased and the patients need external insulin intake in order to
being alive. Without insulin, the blood glucose will be high, however, the body cells are
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starving. The reasons are not fully understood yet. T1DM can occur in any age, but the
most affected age group is the older children and young adults. Most of the syndrome
appears suddenly, without any foreshadow. The usual symptoms are the following: thirst
and dry mouth, frequent urination, lack of energy, tiredness, constant hunger, sudden
weight loss, blurred vision, dizziness, confusion, blurred vision. If the current symptoms
appears the disease can be diagnosed based on blood test. Occurrence of T1DM is much
lower than T2DM, however, it’s around 10% in the global diabetic population. With well
controlled daily insulin administration and healthy lifestyle people with T1DM can be
expected to the long and healthy life [3].

C.3.2. Type 2 DM

Type 2 DM is the most common type of DMs. It usually occurs in mid-aged adults, but
the occurrence is dramatically increasing in case of children and adolescents as well. The
emergence of the disease is related to predisposing factors (eg. genetic susceptibility, age,
weight, gender, etc.) and life style. This type is also known as civilizational disease. In
T2DM the body can produce insulin, but because of the persistently high blood glucose
level over years the body cells become resistant to the hormone and insulin becomes
ineffective. Because of the insulin resistance, the blood glucose will be high, because the
cells cannot intake the glucose from the blood. The emergence if T2DM can be divided
into periods. In the first period, the high glucose level demands high insulin level in
blood. In order to keep the BG level in a normal range, the β-cells secrets increased
amount of insulin. Because of the high insulin level the cells intake lot of glucose from
the blood – over time, the cells saturates and cannot use the lot of glucose. In this case,
the cells begins chemical reactions in order to decrease this extreme glucose load and
the insulin receptors will be changed on molecular levels. Over time, more and more
insulin is needed to reach the same effect as in younger age. At the last stage, because of
the persistent load the β-cells are burning out and the T2DM become T1DM. The most
specific symptoms are the followings: frequent urination, excessive thirst, weight loss,
blurred vision. Many people with T2DM do not faces about their diabetic conditions until
the side effects of DM cause serious problems (eg. longer healing, diabetic foot, damaging
nervous system, etc.). As a result, many people already have evidence of complications
when they are diagnosed with T2DM. Although the exact causes for the emergence of
T2DM are still not known, there are well characterized risk factors which predispose
for the disease. The most important are excess body weight, lack of physical activity
and poor nutrition. Other occasional factors are the gender, ethnicity, genetics, family
history of diabetes, past history of gestational diabetes and advancing age. In contrast to
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people with T1DM, most people with T2DM do not require daily insulin intake in order
to survive. In the early stage the changed life-style, namely healthy diet and increased
physical activity can be enough to manage the diabetic state. Later, oral medications
help to decrease the internal glucose production (eg. Metformin), or increase insulin
sensitivity. The last solution – similarly to T1DM – is the external insulin administration
[3, 6, 7].

C.3.3. Gestational DM

This category includes the occurrence of hyperglycemia at any stage of pregnancy. Two
main categories can be distinguished into gestational DM and DM in pregnancy based
on slightly of substantially elevated BG level. Most of the cases, GDM disappears after
the pregnancy, however, in the rest of the cases the diabetic state become persistent and
transforms to T2DM [3].

C.3.4. Double DM

This type of DM is heavily increasing. Its characterized by increasing insulin resistance
and decreasing insulin production [4].

C.3.5. Rare types

These types affect infinitesimal slice of the diabetic population. Mostly caused by genetic
disorders. Frequent types are the monogenic diabetes and secondary diabetes [3].

C.4. General side-effects of DM

Diabetic people are at higher risk of developing several disabling and life-threatening
health problems. Persistently high BG level may causes heart-, brain-, nerve-, kidney-
and eye-diseases and damaging blood vessels. Moreover, diabetic patient have increased
risk of developing infections. Most of the developing countries DM is the leading cause
of cardiovascular disease, blindness, kidney failure and lower-limb amputation. The
life-style and civilizational behaviors is closing to the high income countries in the mi- and
low-income lands as well. However, the health care systems are much underdeveloped. In
this countries diabetic patients are in higher danger from the side effects of the disease.

Here I listed the most usual side effects of DM [3, 5]:
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• Retinopathy (eye disease): the network of the blood vessels which supplies the
retina with nutrients and oxygen become damaged which leads to partial or full
blindness.

• Cardiovascular disease: several cardiovascular problems can occur beside DM as
side effect, for example angina, myocardial infarction, stroke, arterial diseases, heart
failure.

• Pregnancy complications: hyperglycemia during pregnancy may cause problems
regarding the development of the fetus and long-term negative effects of the
adolescents and children; the birth size of the fetus could be high or extreme
high which leads to birth complications; there is higher risk that the fetus birth
with such kind of DM

• Diabetic foot: because of damaging blood vessels there will be poor circulation in
the feet which increase the possibility for ulceration, infections and amputation.
Moreover, because of the damaging nervous system diabetic people do not sense
the problems in time.

• Periodontitis (oral health problems): increased risk of inflammation of the tissue
surrounding the tooth which leads to inflammations, loss of tooth, etc.

• Nephropathy (kidney disease): chronic kidney disease which is caused by the
damage of the small blood vessels – due to this effect the kidney’s performance will
become lower.

• Neuropathy (nerve damage): includes the center and peripheral nerve damage,
however, the latter is more frequent. Peripheral nerve damage leads to pain, tingling,
loss of sensation, loss of motoric functions. Neuropathy may cause erectile dysfunc-
tions, problems with digestion, urination and other sympatic and parasympatic
functions.

C.5. Treatment possibilities

There are regular and rare therapies regarding the DM. Here, I only report from the
regular therapies, the rare ones (eg. Langerhans-islets transplantation, DNA techniques,
etc.) are beyond the topic of this Theses.
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C.5.1. Prevention

It’s a cliche, but the best way in order to avoid side effects is the prevention of them. In
general, non of the complications of DM are inevitable – all of them can be prevented by
tight (good) control of glycemia, blood pressure, cholesterol level, avoid the high blood
glucose variability, hold an appropriate physical activity and diet. However, this requires
a high educational level regarding the DM, adherence of the medical prescriptions and
appropriate medical equipments.

C.5.2. Medication by drugs

Luckily, several type of drugs are available for medication purposes. Frequently used tool
by the doctors is the well-known Biguanides, like Metformin, which is effectively inhibits
the internal glucose production of the liver. An other popular drug is α-glucosidase
inhibitors, like Acarbose, which help to the body to break down the starch and complex
sugars. Dopamin agonists help to prevent insulin resistance. DPP-4 inhibitors, like
Linagliptin, increasing the amount and frequency of insulin production. Incretin mimetics
(glucagon analogues), like Albiglutide, are slowing down the emptying of the stomach,
decrease the usage of natural glucagon in the body. Meglitinides, like Nateglinide,
helps the body to release insulin. Sodium glucose transporter (SGLT) 2 inhibitors, like
Dapaglifozin, prevents the kidneys and help the excretion of glucose to urine. The oldest
type of DM drugs are the Sulfonylureas, like Glimepirid, which increase the activity of
β-cells. Thiazolidinediones, like Rosiglitazone, decrease the glucose level in the liver and
help the effecty usage of insulin by the adipose tissue, however, they cause increased risk
for heart failures.

Beside the DM drugs other medication are frequently used: Aspirin, for the cardio-
vascular system protection; drugs in order to decrease cholesterol level; and drugs to
maintain the high blood pressure. [153]

C.5.3. Life-style therapies and diet

The physical activity is crucial part of the treatment, since, the muscle cells contain
such kind of GLUT gates, trough which the glucose can enter the muscle cells without
insulin – in this way the required amount of insulin can be lower. Moreover, active muscle
cells consumes more glucose which realize a demand against the body and decrease the
possibility of insulin resistance [5]. In general, the required activity (depends on the
gender, age and general health status of the patient) is: for beginners, the recommended
is a short intensive sport activity with total duration of 20 minutes 2-3 times on a week
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with 90 pulse (HRT) until sweating; for trained persons, the recommended is a longer
intensive sport activity with duration between 40 and 90 minutes 5-7 times on a week
with 120 pulse (HRT). The increased metabolic state after physical activities have to be
monitoring and the insulin therapy should follow the actual needs.

A corner stone of treatment is the diet. Usually, the diabetic patients are overweighted
so the goal is to reduce the total weight and reach a healthy level. In other cases, the
target is the steady glucose intake in order to avoid the high variability and keep the BG
level in normal ranges. Generally, the diet has to be individual, meets with the needs
and follow the prescriptions.

C.5.4. Intensive Conservative Therapy (ICT)

The most used type of treatment is the ICT. The main goal of it to keep the blood
glucose level in a narrow healthy range and avoid the variability. In order to reach these
goals it uses external insulin (more than one type) intake, intensive medication (combined
drug therapy), intensive physical activity and high education. The patients use different
mid- and long-term insulins to keep the appropriate basal insulin level and rapid- and
short-acting insulins before and/or after meals. ICT needs conscious meal schedule and
strong collaboration of the medical staff and the patient – its not recommended for
uncooperative patients.

C.5.5. Insulin intake by insulin pen

Most usual way for insulin intake is the injecting to the subcutaneous level by insulin
pen. Figure C.9. shows the general construction of a modern insulin pen which includes
the insulin reservoir, the thin needle and the dispenser as main units. The dispenser
allows the precise dosage. The best places for insulin injection on the body are the
thigh-abdomen-arm regions; however, usually the abdomen is used. It should be noted
that the best way to avoid inflammations and infections is the sequential toggling of the
area of injection [9, 10, 12].
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Figure C.9.: Insulin pen, Credit: UPMC [154]

C.5.6. Insulin intake by insulin pump

A relatively new option for insulin administration – which play the key role in the AP
concept as well – is the insulin pump. The main parts of the device were introduced in
the introduction.

Figure C.10.: Insulin pump, Credit: Mayo Clinic [155]
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D. Linear Parameter Varying Systems

D.1. Dynamical and LPV systems

D.1.1. State space representation of dynamic systems

A general NLTV system can be represented with the following functions [81, 82, 90]:

ẋ(t) = f(x(t),u(t),d(t))

y(t) = h(x(t),u(t),d(t))
, (D.1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rk is the output vector, u(t) ∈ Rm is the
output vector, d(t) ∈ Rp is the disturbance vector, f(x(t),u(t),d(t)) is a nonlinear state
function and h(x(t),u(t),d(t)) is the nonlinear output function. With reformulation this
can be described in SS form:

ẋ(t) = A(t)x(t) + B(t)u(t) + E(t)d(t)

y(t) = C(t)x(t) + D(t)u(t) + D2(t)d(t)
, (D.2)

where A(t) ∈ Rn×n is the state matrix, B(t) ∈ Rn×m is the control input matrix, E(t) ∈
Rn×p is the disturbance input matrix, C(t) ∈ Rk×n is the output matrix, D(t) ∈ Rk×m

is the control feed-forward matrix and D2(t) ∈ Rk×p is the disturbance feed-forward
matrix. In this case, the elements that give rise to the nonlinearity are included in the
given matrices. However, this is the general notation for such LTV systems, even where
the matrices do not contain nonlinearity causing elements. The state matrices in (D.2)
can be united into a single system matrix (or system function) S(t):

S(t) =

A(t) B(t) E(t)

C(t) D(t) D2(t)

 , (D.3)

where S(t) ∈ R(n+k)×(n+m+p).
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Thereby (D.2) in simpler form via (D.3) is:

ẋ(t)

y(t)

 = S(t)


x(t)

u(t)

d(t)

 . (D.4)

If the state matrices do not depend on time, LTI system occurs, described by the
following SS equation:

ẋ(t) = Ax(t) + Bu(t) + Ed(t)

y(t) = Cx(t) + Du(t) + D2d(t)
(D.5)

and can be written in the previous compact form as in (D.4), however, here S does not
depend on time:

ẋ(t)

y(t)

 = S


x(t)

u(t)

d(t)

 . (D.6)

In that case, where external disturbance does not not occur or can be neglected, the
SS description and compact form of a LTV system can be simplified:

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(D.7)

and ẋ(t)

y(t)

 = S(t)

x(t)

u(t)

 , (D.8)

where S(t) ∈ R(n+k)×(n+m). Hence, the disturbance free LTI systems can be described
with the same equations as in (D.7-D.8), where the matrices do not depend on time
(A,B,C and D) and S ∈ R(n+k)×(n+m). Basically, every LTV system can be described
with infinite number of LTI systems in continuous time domain and finite number of
LTI systems in discrete time domain, if only the elements of the state matrices vary
over time, but the structure of the SS representation is invariant. This concept appears
behind the gain scheduling theorem too. In other words, the LTV systems run through a
”trajectory” during operation over time – where the trajectory consists of infinite number
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of LTI systems. Fixing the elements of the SS representation of a LTV system at a given
moment means that the LTV system is simplified to a LTI structure. For example, S(t)
exactly at 10 minutes is equal to S(t10) = S10.

D.1.2. State space representation of LPV systems

The most important definitions regarding LPV theorem is the scheduling variable, the
parameter vector and the parameter space and box.

Definition D.1.1. Scheduling variable or parameter: real valued scalar or function,
which is a multiplied out term of a mathematical model and determines a particular
property of the model. Notations: scalar case: p = {p ∈ R, pmin ≤ p ≤ pmax} ; function
case: p(x) = {p(x) ∈ R, pmin ≤ p(x) ≤ pmax}. �

Remark D.1.1.1. In this Theses, I only discuss those cases, when the scheduling
parameter is a function of time: p(t) = {p(t) ∈ R, pmin ≤ p(t) ≤ pmax}

Remark D.1.1.2. The scheduling variables can be complex valued scalars or functions
and they may depend on the properties of the mathematical models too. This Theses does
not discuss this possibility, since the investigated systems do not have such properties.

The purpose of the selection of the scheduling variables are manyfold. If, the scheduling
variables are simple parameters, the LPV model becomes appropriate to describe multiple
model cases via the varying of the parameters. A more sophisticated reason is to select
those functions (mostly time functions) as scheduling variables which cause nonlinearities
in order to avoid this unfavorable property that I will present later on.

Definition D.1.2. Parameter vector: a real valued, bounded, permanent or time varying
vector, which consist of scheduling variables. The dimension of the parameter vector
is equal to the number of selected scheduling variables, q, Notations: permanent case:
p ∈ Rq; time varying case: p(t) ∈ Rq. �

The literature distinguishes between the LPV models according to the fact when the
selected scheduling variables are not state variables (LPV) and when state variables
are also selected as scheduling parameters (qLPV). Nevertheless, there is no difference
between them from notation point of view. However, the eligible interpretation of the
cases is important to be noticed.

Definition D.1.3. Parameter Space (PS): a q dimensional real vector space Rq, where
each dimension represents the possible values of a given scheduling variable. �
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Definition D.1.4. Parameter box (PB): a q dimensional simplex inside the Rq space,
which is determined by the minimum pi,min and maximum pi,max values of the scheduling
variables pi(t). Usually, the PB represents those space which is the meaningful region of
the parameters from the physical or physiological point of view. The size of the PB (the
minimum pi,min and maximum pi,max values of the scheduling variables) can be tighter
as that allowed by the reality – in this case the PB means the ”region of interest”. �

The general SS representation of LPV systems, where disturbance is not considered
can be described as follows:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t)

y(t) = C(p(t))x(t) + D(p(t))u(t)
. (D.9)

Unification can be made similarly as in (D.3) and from (D.7):

S(p(t)) =

A(p(t)) B(p(t))

C(p(t)) D(p(t))

 . (D.10)

The compact form of general LPV system from (D.8) becomes:ẋ(t)

y(t)

 = S(p(t))

x(t)

u(t)

 . (D.11)

The classical approaches that use LPV form in modeling apply general, affine and
polytopic LPV system models [81–83]. However, in the recent years a soft-computing
based LPV modeling approach gave rise to the TP transformation-based LPV mod-
eling possibility [156, 157]. Because the developed quality interpretation can be used
beside general, affine and polytopic configurations, as well, I shortly summarized these
representations below.

General LPV configuration

A general, parameter dependent, nonlinear model represented by its SS form (D.9)
can be handled as an LPV model, if each nonlinearity causing element is selected as
scheduling parameter and it is assumed that these terms only vary between strict limits
pi(t) ∈ [pi,min, .., pi,max].

For example, a simple nonlinear system (with two states x1(t) and x2(t), one input
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u(t) and one output y(t) = x1(t)) can be described with the following equations:

ẋ1(t) =
√
x1(t)x2(t) + u(t)

ẋ2(t) = −k1x2(t)

y(t) = x1(t)

. (D.12)

We can select p1(t) =
√
x1(t) as scheduling parameter, in this way the parameter vector

will be one dimensional: p(t) = p1(t) ∈ R1. If it is assumed that the scheduling parameter
can only vary between a minimum and maximum level (p1(t) ∈ [p1,min, .., p1,max]), the
general LPV description similar to (D.8) is the following:

ẋ(t)

y(t)

 =


0 p1(t) 1

0 −k1 0

1 0 0


x(t)

u(t)

 . (D.13)

It is clear that in this case the LPV means a unique approach and does not change
the basic SS structure of the system. Naturally, if the occurrence of disturbances is
considered to be known too, then the SS description of the system has to be completed
with the disturbance related matrices E(p)(t) and D2(p)(t) as follows:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t) + E(p(t))d(t)

y(t) = C(p(t))x(t) + D(p(t))u(t) + D2(p(t))d(t)
. (D.14)

Affine LPV configuration

In this type, the LPV systems are affine functions of the parameter vector. If the system
is given with its SS representation, then it consists of two main parts: a permanent, which
is independent from the parameter vector p(t) and a varying, where the dependency
appears. If we have preliminary information about the disturbance, it can be a part of
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the affine model description:

A(p(t)) = A0 +
q∑

i=1
pi(t)Ai

B(p(t)) = B0 +
q∑

i=1
pi(t)Bi

E(p(t)) = E0 +
q∑

i=1
pi(t)Ei

C(p(t)) = C0 +
q∑

i=1
pi(t)Ci

D(p(t)) = D0 +
q∑

i=1
pi(t)Di

D2(p(t)) = D20 +
q∑

i=1
pi(t)D2i

. (D.15)

The permanent matrices are the A0,B0,E0,C0,D0 and D2,0 which represent the
independent parts from the parameter vector. The permanent and varying parts can be
written in short form similar to (D.10):

S(p(t)) =


A0 +

q∑
i=1

pi(t)Ai B0 +
q∑

i=1
pi(t)Bi E0 +

q∑
i=1

pi(t)Ei

C0 +
q∑

i=1
pi(t)Ci D0 +

q∑
i=1

pi(t)Di D2,0 +
q∑

i=1
pi(t)D2,i

 . (D.16)

If the disturbance is not assumed to be known, or it is not modeled, the affine description
becomes:

S(p(t)) =


A0 +

q∑
i=1

pi(t)Ai B0 +
q∑

i=1
pi(t)Bi

C0 +
q∑

i=1
pi(t)Ci D0 +

q∑
i=1

pi(t)Di

 (D.17)

and in this way the complex system matrix can be simplified as:

S(p(t)) = S0 +
q∑

i=1
pi(t)Si . (D.18)

The affine LPV system can be written in compact form similar to (D.11).
The affine LPV models keep their validity only in inside the PB during operation. This
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configuration is very advantageous from control engineering points of view, since

• The PB represents the workspace where the LTV system can be found during
operation and each of the points can also represent an LTI system at a given
moment;

• The control design tasks may be easier, because these regions are usually small;

• In case of robust control, the borders of the PB can be the borders of parameter
uncertainties;

• With affine LPV representation, nonlinearities can be hidden. Moreover, a given
time stamp represents an LTI system, which can be selected as ”operating or
reference system”, if its properties are appropriate from control design point of
view.

In Fig. D.1, I highlighted a 3D PS, where p(t) ∈ R3 and the values of the scheduling
parameter are varying among the range which is determined by the minimum and
maximum values of the parameters. Mathematically, this can be obtained if the parameter
vector is:

p(t) =


p1(t)

p2(t)

p3(t)

 =


[p−1 ..p

+
1 ]

[p−2 ..p
+
2 ]

[p−3 ..p
+
3 ]

 . (D.19)

p−2

p+
2

p−1

p+
1

p−3

p+
3

Parameter box

S(p(t))

p1(t)
p3(t)

p
2(
t)

Figure D.1.: Affine LPV model example in the 3D parameter space
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Polytopic LPV configuration

Affine LPV configuration means a natural way to describe or highlight different properties
of a system, however, usually not directly used in controller design [80].

Nevertheless, the polytopic LPV configuration, which is directly derivable from affine
configuration (and gives a basis for the TP-transformation based design as well) is directly
usable in such design methods. Practically, the polytopic LPV theory is based on the
barycentric theorem of Möbius, describing the position of a point in a triangle with
using the vertices of the triangle as reference points [158, 159]. Further, Warren and his
colleagues have proved the possibility that in case of arbitrary convex sets it is also true
that by using the vertices of a convex set as reference points, the position of an arbitrary
internal point can be described [160]. This is the key property which can be used in
control engineering approaches [82].

As the affine LPV system is only operating inside the parameter box, the vertices of
the parameter box can be used as reference points to describe each system that can occur
during operation, namely, each such internal system will be the convex combination of
the vertices of the polytope, if the convexity criteria is satisfied. In the case of a control
system, the convexity depends on the following considerations. An internal system S can
be described with polytopic coordinates αi, if the system representation belonging to αi,
i.e. Si satisfies the following restrictions:

• The polytopic coordinates should be non-negative real values, αi ≥ 0;

• The sum of the polytopic coordinates should be equal to one,
j∑

i=1
αi = 1;

• The internal system is the convex combination of the vertices of the polytope,

S =
j∑

i=1
αiSi.

or shortly [90]: S =
j∑

i=1
αiSi : αi ≥ 0,

j∑
i=1

αi = 1

 . (D.20)

Normally, when j > q we have a redundant representation that generally allows the
satisfaction of the restrictions. The barycentric coordinate function can be given in the
following way [82].

The barycentric coordinate function belonging to a given a point inside the convex
polytope can be calculated as follows, where the Υi is the weight function belonging to
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the ith vertex of the given a point:

αi(a) =
Υi(a)∑
i Υi(a)

(D.21)

The Υi(a) weight function can be described with:

Υi(a) =
vol(Πi)∏

b∈ind(Πi)(nb · (Πi − a))
(D.22)

where vol(Πi) is the volume of the parallelepiped spanned by the normals to the facets
incident on vertex i, i.e., Πi, {nb} is the collection of normal vectors to the facets incident
on vertex i, and ind(Πi) denotes the set of indices j such that the facet normal to nb

contains the vertex Πi [82]. The volume of the given parallelepiped can be calculated as:

vol(Πi) = |det(nind)| (D.23)

where nind is a matrix whose rows are the vectors nb where b ∈ ind(Vi) [82].
Fig. D.2. shows an example where the aforementioned theories were taken into account

in case of 3 scheduling variables. In this case, the parameter space is 3 dimensional and it
is visible that the parameter box is determined by the minimum and maximum values of
the parameter vector. Furthermore, the vertices of this box, Si serve as reference points
and αi are the convex coordinates at the same time. The actual system inside can be
calculated with the barycentric calculus, namely, the actual system S(p(t)) will be the
convex combination of the vertices, i.e.:

S(p(t)) =
8∑

i=1
αi(p(t))Si . (D.24)

Obviously, if the actual system reaches a vertex that means the convex coordinate of
the particular vertex will be equal to one, however, the others will be equal to zero. For

example, if the system reaches the vertex S1, then α1 = 1, furthermore
8∑

i=2
αi(p(t))Si = 0

and the actual system is:

S(p(t)) = α1(p(t))S1 +
8∑

i=2
αi(p(t))Si = α1(p(t))S1 . (D.25)
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p
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Figure D.2.: Polytopic LPV model examples in the 3D parameter space

C-10


	Introduction
	Research focus
	Relevant control engineering methods from this theses point of view
	Outline of this theses

	Opportunities of using Robust Fixed Point Transformation-based controller design in control of Diabetes Mellitus
	Ideas which brought the RFPT-based control into life
	RFPT-based controller design in case of physiological processes
	Considered modeling difficulties in general
	Investigation of the effect chain of the control action
	Designing the approximate model
	Selection of the control law
	Finalization of the control environment
	Considerations and restrictions regarding the controller design in case of T1DM

	Control of T1DM via RFPT-based control framework
	Control of the Minimal model
	Control of the Cambridge (Hovorka) model
	Control of the UVA-Padova (Magni) model


	Novel perspective in the Control of Nonlinear Systems via a Linear Parameter Varying method
	Specificities of physiological LPV models
	Different interpretations of quality based on LPV configurations
	Norm-based ''difference'' definition in the parameter space
	Possible interpretations of the defined norm-based difference in the Parameter Space
	Usability of the development approach

	Novel completed controller scheme for LPV systems
	State feedback and gain-scheduling control
	Important properties of the investigated LPV system class
	Differences between the investigated LPV systems
	Mathematical background
	The completed feedback gain matrix
	Controller design, consequences and limitations

	Control of nonlinear physiological systems via competed LPV controller
	Control of nonlinear compartment model
	Control of T1DM
	Summary

	Observer based control for LPV systems
	Classical linear observer design
	Completed parameter dependent observer design
	Consequences, observer design and limitations

	Illustrative example for the completed observer structure
	Control of nonlinear compartmental model beside observer
	Summary


	Tensor-Product model transformation based modeling
	Motivation behind the usage of TP model transformation
	Theoretical background
	TP related mathematical tools

	Investigation of the TP-based modeling possibility of a nonlinear ICU diabetes model
	Derivation of the LPV and TP models
	TP models
	Validation of the generated models
	Summary

	Robustization possibilities via TP model framework
	Possible deviation-based qLPV and TP models
	Robustness of the models
	Validation
	Summary

	TP-modeling possibility for a complex T1DM model
	Steady state calculations
	qLPV Model derivation
	TP model form
	Validation
	Summary


	Conclusion
	Summary of the new scientific results
	Detailed description of the used DM models
	Minimal Model
	Model for Intensive Care Unit
	The Wong model

	Complex DM models
	The Hovorka model
	The Magni model


	Physiological background and treatment
	Utilization of glucose
	The Insulin
	Types of the disease
	Type 1 DM
	Type 2 DM
	Gestational DM
	Double DM
	Rare types

	General side-effects of DM
	Treatment possibilities
	Prevention
	Medication by drugs
	Life-style therapies and diet
	Intensive Conservative Therapy (ICT)
	Insulin intake by insulin pen
	Insulin intake by insulin pump


	Linear Parameter Varying Systems
	Dynamical and LPV systems
	State space representation of dynamic systems
	State space representation of LPV systems



