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INTRODUCTION 

Personal motivation and interest: Drawing from my personal experiences, I was 

motivated to conduct a study on "Prevention of MSD by Assessing Psychosocial Factors 

in Manual Handling Tasks in the Workplace." Additionally, my work as an instructor and 

researcher has reinforced my determination to tackle these significant workplace safety 

issues. 

At a higher technological institute, I served as both a professor and a researcher. In this 

role, I presented industrial automation lectures, worked on the research coordination 

team, and developed automation projects on my own. Additionally, I provided advisory 

services to regional businesses and sectors. I conducted a lecture on industrial safety, 

which was a key experience in my career. I began considering how stress impacts the 

safety and comfort of industrial automation workers. I recognised this as a unique 

opportunity to merge my research interests, professional experience, and passion for 

creating safe workplaces. This context highlights the pressing need to address the 

psychosocial factors contributing to MSD in industrial tasks. I was inspired by these 

experiences to investigate how psychological variables contribute to the development of 

musculoskeletal disorders (MSDs) and to suggest workable solutions for enhancing 

ergonomics and safety results in industrial settings. My research aims to identify these 

factors and propose solutions tailored to them. 

Security and safety are essential elements of every industrial setting. My goal is to 

improve workplace safety by promoting knowledge in this area and enhancing workplace 

design. I am driven by the desire to make a meaningful contribution to society through 

my work. This research aligns perfectly with my goals, offering the platform to explore 

and address critical occupational safety issues. 

Scientific motivation: Throughout my career, I have been involved in industrial 

automation projects where workers frequently handled large crates, rolls of wire, and 

electronic equipment, often experiencing back discomfort and psychological fatigue. As 

a result, they requested a rigorous study to link stress factors to healthy working practices. 

This study has far-reaching implications: improving worker comfort and managing hand 

fatigue has the potential to increase work performance, reduce absenteeism and reduce 

the risk of musculoskeletal disorders. 
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Actuality of the topic  

To earn a living. With the emergence of occupational health, the concept of work and our 

perception of the workplace have evolved in recent years and are now the subject of 

continuous research [1], [2]. From that point, and throughout history, the concept of 

"work" has evolved dramatically as a result of globalisation, a unique economic trend [3]. 

Approximately 1848, the Industrial Revolution's focus on industrial hygiene enabled the 

first steps towards what is now recognised as occupational health. [4]. 

The next step was to start ‘Working for a suitable life’. The realisation that just producing 

money without considering workers' health could harm not only the workers but also the 

owners of these businesses was the impetus that propelled the concept of occupational 

safety forward [5]. Work has evolved from "simply making money" to today, when the 

concept of decent work is recognised as a human right. [4], [6], [7]. 

As the ILO (International Labour Organisation) points out in its agenda, the main 

difficulty in making a comprehensive environment safe is a recurring case study [8]. The 

analysis and assessment of safety risks are specific, but the principle must be applied to 

all workplaces. Continuous research into safety issues has led to the emergence of new 

risk elements in the workplace [9], ranging from those that are obviously visible (physical 

factors) to those that are hidden but deeply present, and some of which can be more 

harmful (psychological factors) [10], [11]. Physical and psychological risk factors are 

both directly linked to the development of work-related disorders.  

Two categories define the conception of a safe climate or workplace. The initial category 

consists of individual-level analysis that describes departments or units within a firm. The 

second category operates at the group level and considers safety at the organisational 

level, referring to management attitudes and business rules [12]. In addition, the 

psychological safety environment is linked to employees' views of safety within the 

organisational structure of the company about specific policies and practices, such as 

employee training on safety and security measures [13], [14], [15]. 

In today's world, a wide variety of risk identification tools and processes are available, 

including record assessment, information gathering approaches, checklist analysis, 

assumption analysis, causal mapping and various other methods to reduce the impact of 

a hazardous workplace [16], [17], [18]. The importance of risk identification in the 
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workplace is a significant issue in industrial tendencies in the current setting, and the 

objective of the research is to bring value to the field. 

As a primary workplace hazard, poor ergonomics is the leading cause of work-related 

problems in industry. As shown in Figure 1, a cause-and-effect analysis is applied to 

prevent musculoskeletal disorders. As the primary intent, the understanding of safety 

science is the primary factor in the application to identify a solution [19].  

 

Figure 1 Overview of cause-and-effect relationships between healthy workplaces and biomechanics. 

 

Since workplace safety has a direct impact on workers' well-being, corporate 

productivity, and the sustainability of economic activity, its importance cannot be 

understated. Stress is a significant psychological hazard that heavy workloads, unrealistic 

deadlines, a lack of control over tasks, and poor relationships at work can cause. 

Therefore, workplaces must reduce stress because excessive stress has a negative impact 

on employees' well-being and overall organisational performance. 

A safe workplace must meet the parameters established to guarantee it in this definition. 

These specific parameters are divided into groups: i) Physical work environment. ii) 

Psychosocial work environment, as shown in Figure 2, which asserts that lowering 

biomechanical ergonomic risk factors at work is directly related to improving the physical 

work environment. [19]. In today's digitised workplaces, task performance relies heavily 

on cognitive capacity, which encompasses mental processes involved in information 

processing such as memory retention, attention, decision making and learning. The 
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cognitive demands of job-related tasks often exceed the intrinsic boundaries of human 

cognitive capacities, but working environments can also strain these capacities. As 

research on disruptions and interruptions has shown, many working conditions impede 

cognitive performance [20], [21]. 

 

 

Figure 2 Identified needs to achieve a healthy workplace 

Inadequate stress management can result in severe mental and physical health problems, 

such as anxiety, depression, burnout, heart disease, and musculoskeletal illnesses. This 

causes companies to lose a lot of money because it not only lowers production but also 

raises absenteeism and turnover rates [22]. 

The psychological demands of work are significant today and will remain so in the future. 

Although the cognitive load associated with work environments and work practices is 

widely recognised and actively debated as a substantial risk factor, little research has 

directly and systematically sought to develop situations that support people in performing 

cognitively demanding tasks [22].  

The cognitive demands of today's fast-paced, heavily technological workplaces have 

increased, making stress management even more crucial. Employees' cognitive capacity 

is frequently exceeded by workplace disturbances, multitasking, and information 

overload, which exacerbates stress levels. Stress reduction improves decision-making, 

creativity, and overall productivity, while also enhancing the health of employees. 

Businesses can create a more sustainable and healthy work environment, ensuring long-
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term success and employee retention, by managing stress at both the individual and 

organisational levels. 

Formulation of the scientific problem 

As the industry considers workplace safety and risk reduction, it is critical to assess the 

effects of different physical and psychological risk factors on employees' health and well-

being. This demonstrates that addressing the primary risk factors in the workplace is 

essential. 

The significant number of occupational accidents that occur each year, mainly resulting 

in days away from work, has become a substantial cause for concern. The main objective 

is to improve the organisational framework and prevent future occupational accidents.  

A key professional issue is integrating ergonomic concepts with safety criteria. To 

promote decent work as a human right and strike a healthy balance between workplace 

design and new strategies, new approaches are needed. The importance of occupational 

health is stressed, particularly regarding safety issues in the workplace. It highlights the 

importance of analysing and assessing safety hazards, which can be either overt (physical) 

or covert (psychological).  

Workstation engineering is a deliberate and scientific technique for measuring recurring 

and essential stresses in the workplace. The technical problem is to develop effective 

methods of using tools at workstations, considering individual variations in activities and 

applications, and satisfying the different needs of individuals while performing numerous 

tasks. 

Scope 

Cognitive load and psychological demands in the workplace are key elements that affect 

worker performance, and research is needed to design environments that support people 

in cognitively demanding activities. This reflects the complex nature of workplace safety, 

which includes physical and psychological risk concerns, organisational management, 

and the cognitive needs associated with modern digital workplaces. Identifying key 

workplace risk variables and providing key insights for occupational health and safety. 

The scope of this research focuses on understanding and mitigating psychosocial risk 

factors associated with manual handling tasks in the workplace. By examining the effects 

of psychosocial stressors on employees' physical tasks, including lifting and posture, the 



9 

 

study seeks to increase workplace safety. It emphasises how crucial it is to recognise and 

manage psychological as well as physiological dangers to establish a safer and healthier 

workplace. 

The research will systematically identify psychosocial stressors and distractions that 

influence the risk of musculoskeletal disorders (MSDs) during manual material handling. 

It will analyse how these factors affect workers' physical responses and susceptibility to 

injury. In addition, technological devices will be used to assess the impact of stressors on 

posture and muscle strain, integrating biofeedback to develop preventive strategies to 

reduce the risk of MSDs. 

Another critical aspect of the study is to understand the workers' perspective on 

psychological risk factors. Using decision-making techniques, the research will assess 

how workers perceive and prioritise psychosocial stressors in manual handling tasks, 

providing insight into their role in workplace safety. Finally, controlled laboratory 

experiments will be conducted to quantify the impact of these identified stressors on 

manual handling performance, fatigue accumulation, and movement efficiency, 

contributing to a comprehensive risk prevention framework. 

Objectives 

• Demonstrating that increasing workplace comfort can prevent and reduce the risk 

of work-related illnesses, such as musculoskeletal disorders (MSDs) in manual 

handling scenarios, by managing the factors related to the psychosocial aspects 

that directly influence cognitive ergonomics, improves security and safety in the 

workplace. 

• To analyse the influence of psychosocial factors on the risk of developing 

musculoskeletal disorders in manual handling activities, by the identification of 

the main psychosocial factors and their impact on physical effort and 

susceptibility to injury in the work environment. 

• To identify the cognitive ergonomic factors at the workplace that influence 

occupational health problems, particularly those that are directly related to the 

prevention of MSDs; using a systematic literature review and word cloud analysis; 

to define the most critical factors to consider in a manual handling task of lifting 

loads within the workplace. 
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Hypotheses of the research 

Hypothesis 1 (H1): Pushing comfort in the workplace by properly managing 

psychosocial ergonomic factors helps optimise conditions during manual handling tasks, 

mitigates stress-induced muscular activity reduction (SMAR), and enhances occupational 

safety, reducing the risk of musculoskeletal disorders (MSDs). 

 Hypothesis 2 (H2): Systematic categorisation and prioritisation of psychosocial factors 

based on worker perceptions can effectively identify the most impactful stressors and 

distractors in manual handling tasks and allow for effective targeted interventions. 

Hypothesis 3 (H3): The integration of psychosocial risk factors into manual handling has 

the potential to create distractions that can increase the risk of musculoskeletal disorders 

(MSDs) in the workplace. 

Hypothesis 4 (H4): The application of recognised ergonomic principles, in combination 

with observational analysis and advanced machine learning techniques, enables highly 

accurate detection of stress-related physiological responses induced by psychosocial 

stressors, which significantly influence muscular activity patterns and increase the risk of 

work-related musculoskeletal disorders (MSDs) during manual handling tasks. 

Research methods 

In preparing my thesis, I have divided my research into three parts as shown in Figure 3. 

In the first part, I conducted a systematic review to determine the neurocognitive factors 

in manual handling aimed to prevent MSDs in the workplace, identifying factors related 

to neuro-ergonomics. In the second part, I developed a survey and data analysis to 

determine workers' perceptions of different neuro-ergonomic factors, as distractors can 

affect manual handling. In the third part, the experimental study is applied to determine 

the stress produced by the inclusion of these neuro-ergonomic factors during manual 

handling tasks.  
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Figure 3 Structure of the dissertation 

Research limitations 

To investigate how the risk of musculoskeletal disorders (MSDs) is related to manual 

handling, psychosocial ergonomics and cognitive ergonomics. This research intends to 

carefully navigate the complexities of measuring psychosocial and cognitive factors and 

addressing potential ethical concerns associated with the proposed interventions.  

The practical application and measurement of psychosocial components can be 

challenging. Due to the complexity and interdependence of these variables, isolating the 

individual contribution of each factor to safety benefits in manual handling contexts can 

be challenging. Psychosocial and cognitive ergonomic factors are difficult to measure due 

to their subjective nature and difficulty in quantification. Using structured tools such as 

AHP and BWM to categorise worker perceptions, individual differences, and contextual 

variables may affect the accuracy and consistency of the results obtained in different 

industrial settings. 

Incorporating psychosocial risk factors as stressor distractors into manual handling tasks 

to demonstrate the effect of recommended weight limits on reducing the risk of MSDs is 

challenging because most body measures are invasive laboratory tests. In this context, the 

number of possibilities can be a difficulty during the experimental part. 
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The accuracy of physiological signals used to measure stress responses, such as heart rate 

variability (HRV) and galvanic skin response (GSR), may be affected by external factors 

such as sensor location, ambient temperature and individual physiology. 

The practical value of the controlled laboratory setting of the experimental phase is also 

limited because real-world workplaces are often dynamic and unpredictable, which can 

have different effects on stress and fatigue. 

Structure of the dissertation 

The research was divided into three main phases, each of which employed a different 

methodological process to examine the effect of psychosocial factors on the risk of 

musculoskeletal disorders (MSDs) during manual handling tasks. The first phase 

involved a systematic review of the existing scientific literature on psychosocial risk 

factors and MSDs, conducted using the PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) method. A meta-analysis was then performed 

using Comprehensive Meta-Analysis (CMA) software to calculate effect sizes and assess 

the correlation between psychosocial stressors and reduction in muscular activity 

(SMAR). This theoretical phase established the scientific basis and identified the key 

psychosocial stressors to be investigated further. 

In the second phase, a structured online survey was distributed to workers in industries 

involving manual handling tasks. The goal was to collect data on workers' perceptions of 

the impact of psychosocial stressors. The data were analysed using multicriteria decision-

making tools: the Analytic Hierarchy Process (AHP) and the Best Worst Method (BWM), 

to prioritise the most influential stressor categories and sub-factors, providing a 

classification of psychosocial risks based on worker perception and complementing the 

theoretical findings. 

The third phase consisted of controlled laboratory experiments involving the performance 

of standardised manual handling tasks. Wearable devices were used to collect real-time 

physiological signals in monitoring stress and fatigue levels. Machine learning algorithms 

were then used to classify the signals and recognise stress patterns for the identification 

of stress-induced physiological changes during the manual handling task. The rest of the 

research is in the structure of five chapters as follows:  

In Chapter 1, A systematic literature review is presented to identify the neurocognitive 

factors in manual handling aimed at preventing MSDs in the workplace, to identify factors 
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related to neuroergonomics, and to consider and provide a comprehensive overview of 

the incorporation of psychosocial factors as stressor distractors in lifting tasks. 

In Chapter 2, the worker's perception categorises the psychosocial components found in 

the PRISMA literature review. The Analytic Hierarchy Process (AHP), together with the 

Best Worst Method (BWM), determines the influence of this classification to identify the 

primary distractions and the secondary psychosocial risk factors to determine the 

importance of their impact on the tasks.  

 In Chapter 3, Experimental observation is used to determine the influence of 

psychosocial factors categorised as most important in workers' perceptions (Chapter 2) 

and how these factors affect manual handling tasks.   

In Chapter 4, A comparative analysis of machine learning methods for stress 

identification and pattern recognition using the Chapter 3 dataset to support the 

prevention of musculoskeletal disorders. 

 In Chapter 5, Conclusions explain the notable findings in the research and establish how 

psychosocial factors significantly influence manual handling performance by 

characterising and identifying stress patterns related to MSD risk. 

Finally, the inclusion of references and supplementary materials in this research serves to 

substantiate and enrich the proposed comprehensive model. It also strengthens its 

foundation in existing scientific work. 
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1 PRISMA-BASED LITERATURE REVIEW OF MANUAL 

HANDLING AND STRESSOR IDENTIFICATION FOR 

THE PREVENTION OF MSDS 

In the manual handling field, a detailed exploration of ergonomic interventions, injury 

prevention strategies, and biomechanical implications provides information about the 

involved factors. The structured approach is composed of an introductory part, PRISMA 

methodology, result presentation, and discussion. 

1.1 Manual Handling 

Any action involving the use of force to lift, lower, push, pull, carry, move, hold or 

restrain a person, animal or object is referred to as manual handling [23]. There is a risk 

of harm if these tasks are performed incorrectly, and research shows a clear link between 

manual handling and musculoskeletal problems [24]. 

The Recommended Weight Limit (RWL) is used in manual handling to reduce the risk 

of injury by determining the maximum safe weight a person should lift based on real-

world conditions. It is calculated using the revised NIOSH lifting equation, which is based 

on a multi-factor model that assigns a weight to each of the six work factors. The weights 

are represented by coefficients that act to reduce the load constant, i.e. the maximum load 

weight that should be lifted in perfect circumstances [25]. Equation 1 defines the RWL: 

𝑹 𝑾 𝑳 =  𝑳 𝑪 ∗  𝑯 𝑴 ∗  𝑽 𝑴 ∗  𝑫 𝑴 ∗  𝑨 𝑴 ∗  𝑭 𝑴 ∗  𝑪 𝑴  (1) 

Where the Recommended Weight Limit (RWL) includes the Load Constant (LC), which 

serves as the starting weight; the Horizontal Multiplier (HM), which takes into account 

the distance of the load from the body; the Vertical Multiplier (VM), which takes into 

account the height of the lift; the Distance Multiplier (DM), which calculates the vertical 

travel of the load; the Asymmetric Multiplier (AM), which determines the angle at which 

the torso twists; the Frequency Multiplier (FM), which takes into account the Distance 

Multiplier (DM), which calculates the vertical travel of the load; the Asymmetry 

Multiplier (AM), which determines the angle at which the torso twists; the Frequency 

Multiplier (FM), which examines the frequency and duration of the lift; and the Coupling 

Multiplier (CM), which assesses the quality of the hand-to-object grip [25]. 

To reduce the risk of injury, the Manual Handling Regulations provide a hierarchy of 

control methods. The first duty is to eliminate hazardous manual handling tasks wherever 
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possible. Where this isn't possible, consideration should be given to task/workplace 

organisation and the accessibility of lifting equipment. Employers must provide health 

and safety training and information to their employees; where necessary, this should be 

supplemented by additional guidance on the hazards of manual handling errors and how 

to prevent them [26]. 

In manufacturing, distribution, mining, construction and agriculture, manual handling is 

often used for specialised tasks such as setting up scaffolding on building sites, laying 

bricks on uneven surfaces and operating power equipment above shoulder height [27]. 

1.1.1 Manual handling position  

Reducing the load on the spine by improving lifting techniques can help reduce the risk 

of low back pain. For this reason, instruction in lifting technique is usually part of the 

primary and secondary prevention of back pain. However, the effectiveness of such 

instruction depends on whether or not it reduces spinal loading. The idea that squatting, 

which involves bending the knees rather than the back, reduces spinal loading has been 

around for some time and is still widely accepted [28]. The stoop, squat and weightlifting 

techniques for lifting the box established are illustrated in Figure 4 [27]. 

Lifting techniques, particularly for the L5/S1 joint, indicate strength requirements for low 

back ligament strain and L5/S1 disc compression.  The techniques focus on four main 

factors: hand placement, back posture, knee alignment and foot placement. 

 

Figure 4 The stoop, squat and weightlifter techniques for lifting the box. 
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There are two primary foot placement positions: The straddle position, with one foot in 

front and one behind the weight, provides more stability due to its larger base. An 

alternative is the parallel position, where the feet are placed side by side. 

The recommended positions for the knees are squatting or bending the knees, which 

transfers the weight to the stronger leg muscles, reduces the moment arm and reduces the 

load on the lower back ligaments. On the other hand, if the load is too heavy to fit between 

the knees, you can still use a squatting position, although this is considered more 

dangerous. Recommendations for back posture vary; some encourage a flat back to 

minimise ligament strain and improve muscular control by keeping the spine in its normal 

shape when standing.  Because it activates the ligaments to take some of the load off the 

muscles, a curved back can be beneficial. The hand placement technique covered is the 

opposite hand hold, which increases the load on the lower hand while providing stability 

by placing one hand on the upper outer corner of the load and the other on the lower inner 

corner. The parallel grip is an alternative position where the hands are placed on opposite 

sides of the object [29].  

1.1.2 Improper manual handling consequences 

As low back pain (LBP) is usually considered to be mechanical in nature, any mechanical 

stress on the supporting tissues, muscles, ligaments and bones of the spine can exacerbate 

symptoms. The specific nature of the disease processes or trauma that cause mechanical 

LBP is rarely known. Symptoms of LBP include pain, stiffness, muscle tension, weakness 

in the legs or feet, and a tingling or burning sensation running down the legs [30]. 

During their working lives, 85% of people will experience some form of LBP; 60% of 

these people will still report symptoms five years later. LBP has a significant social and 

economic impact on people of working age. LBP is the reported number three reason for 

surgery, number five for hospitalisations, and the number two reason for consulting a 

physician [31]. 

Stress is reported by individuals, representing 28.17% of the cases, which places it in the 

lower third of the causes listed. Among the listed causes are sciatica (52.11%) and nerve 

injury (50.70%). These causes have to do with stress and continue to be an essential 

contributor to back pain incidence. It highlights how both physical and psychological 

factors are involved [32]. 
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In a cross-sectional and retrospective epidemiological study, one thousand nine hundred 

and fifty people were asked about the most severe episode of LBP they had experienced 

[33].  The prevalence of sciatica, especially below the knee, is higher in men who perform 

manual handling (9.5%) and vibration-related occupations (10.1%). The prevalence of 

sciatica below the knee is higher among women who perform manual handling 

occupations (14.7%) and tasks involving posture (13.3%). Interestingly, women 

experience more sciatica above the knee (20.7% in manual handling and 20.2% in the 

reference group) than males (7.7%–7.3%). Nerve pain radiating along the path of the 

sciatic nerve, which runs from the lower back through the hips and buttocks and down 

each leg, is common after poor manual handling. Workers in manual handling 

occupations have higher rates of sciatica, especially sciatica below the knee. For women, 

the incidence and severity of sciatica are significantly higher in manual handling jobs 

than in other populations [33]. 

1.1.3 Stressors and the Effects of Stress 

In the industrial sector, there is ample evidence of workplace stress.  Stress affects 

estimators' ability to do their jobs and their interpersonal relationships. Perceived stress 

is a state that people experience psychologically when they perceive an imbalance 

between the demands placed on them and the resources available to meet those demands 

[34]. 

Job (or workplace) stress is the unpleasant physical and emotional strain reactions that 

occur when job demands do not match the needs, resources or capabilities of the worker. 

Stress is caused by any situation at work that an individual perceives as dangerous and 

beyond their ability to cope with. Workplace stress has a significant correlation with low 

performance, high absenteeism and underperformance [35]. 

Long-term exposure to stress at work usually results in physiological and psychological 

effects. The Office of Health and Safety states that long-term stress is associated with 

adverse health effects, such as (1) injuries; (2) mental ill health, including depression; (3) 

musculoskeletal disorders; and (4) cardiovascular disease. Workplace stress is negatively 

correlated with job satisfaction and is associated with high rates of employee turnover 

[36]. Low job performance in manufacturing is related to the experience of job stress. In 

an industrial setting, job stress is associated with an increased risk of accidents at work 
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and occupational injuries. In an industrial setting, work stress is associated with an 

increased risk of occupational accidents and injuries [35]. 

The causes of low back pain study [32], proposes a questionnaire to identify the most 

common causes of low back injuries; 71 participants identified the leading causes. 

According to the results, stress is a significant factor in developing low back pain, 

affecting 28.17% of cases, if compared to other common causes like walking. While disc 

problems (59.15%), lifting (56.34%), and sciatica (52.11%) are more prevalent, the fact 

that sciatica is a nerve inflammation also related to stress remains a notable contributor 

to muscular weakness. This indicates that mental stress plays a substantial role in 

exacerbating low back pain, potentially through mechanisms like increased muscle 

tension, a reduced pain threshold, and inflammation. 

Increased muscle soreness and tension caused by perceived stress eventually lead to 

physical weakness. Life stressors, such as work pressure and personal relationships, cause 

long-term stress reactions that maintain muscle tension and worsen musculoskeletal 

problems. Chronic musculoskeletal pain problems are promoted by prolonged stress. The 

hypothalamic-pituitary-adrenal (HPA) axis is activated, resulting in the release of cortisol 

and other stress hormones that lead to chronic muscle tension and impaired muscle 

performance [37].  Table 1 summarises how different aspects of mental stress (causes) 

lead to various physiological and psychological changes (effects) that contribute to 

muscular weakness. 

Table 1 Effects of Stress on Musculoskeletal Health 

Cause Effect 

Perceived Stress Increased muscle tension and pain, leading to muscular weakness 

Life Stressors Trigger chronic stress responses, leading to sustained muscle tension and 

musculoskeletal issues. 

Chronic Exposure to 

Stress 

Development of chronic musculoskeletal pain disorders 

Activation of the HPA 

Axis 

Release of cortisol and stress hormones causes persistent muscle tension and 

impaired muscle function. 

Increased Production 

of Pro-inflammatory 

Cytokines 

Leads to inflammation in muscles and joints, contributing to muscular weakness 

and pain 

Changes in Muscle 

Metabolism 

Reduced muscle strength and endurance due to chronic stress 

Altered Neuromuscular 

Control 

Resulting in muscle fatigue and weakness 

Comorbid Psychosocial 

Factors (e.g., anxiety, 

depression) 

Exacerbate the perception of pain and contribute to a cycle of pain and muscle 

weakness 

Need for High-Quality 

Research 

More studies are required to clarify mechanisms and identify interventions for 

stress-induced muscular weakness. 
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1.1.4 Sources of stressors in industry 

Most companies need to improve production. This creates high expectations for workers, 

which in turn leads to increased demands and stress. Workers should maintain a high level 

of task activity to achieve the company's goals [38]. The degree to which a person 

experiences stress can be influenced by their ability to respond appropriately to stressful 

situations and events. 

Compared to workers in other sectors, industrial workers operate in a very different 

environment. Industrial workers are under intense pressure to maintain efficiency and 

meet output targets. They often handle heavy machinery and materials while working in 

physically demanding environments that can lead to physical strain and injury. 

Additionally, industrial workers must adhere to strict safety protocols to prevent 

accidents, adding to their stress levels [39]. 

1.1.5 Stressors 

Organisational pressures and personal risk factors interact to cause stress and burnout. 

Employees' mental and physical health suffers as a result of the interaction between 

organisational pressures, such as work overload, role conflict, under-promotion and 

participation levels, and personal factors, such as personality and family issues. An 

imbalance between an employee's efforts and the benefits they receive, or between the 

demands placed on them and their ability to cope, is often at the root of job stress. Five 

categories are used to conceptualise organisational stressors presented in Table 2. 

Table 2 Categories of Job-Related Stressors 

 Level Stressor Factor 

Type 

Meaning Related 

Category 

Category Description 

Top 

Level 

Psychosocial 

Stressor Factors 

Stressors arise from 

organisational structures, work 

settings, and social 

interactions. Psychological, 

psychophysical. 

Relationships 

at Work 

Describes the interactions 

between employees and 

their subordinates, 

colleagues, and superiors. 

Organisation

al Structure 

and Climate 

Describes how the 

organisation’s structure 

affects employees. 

Second 

Level  

Psychological 

Stressor Factors 

Internal stressors related to 

emotions, cognition, and 

mental well-being. 

Career 

Development 

Includes factors that affect 

the future of an employee 

within the organisation. 

Psychophysical 

Stressor Factors 

Stressors resulting from 

psychological and physical 

demands. 

Job-Intrinsic 

Stressors 

Factors that increase the 

difficulty and complexity 

of tasks, making the 

workload too heavy. 

Psychology 

Stressor Factors 

Mental processes and stressors 

that affect how an individual 

perceives, acts and thinks. 

Role within 

the 

Organisation 

Reflects role ambiguity and 

role conflict when job tasks 

and expectations are unclear. 
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1.1.6 Reactions to stressors 

When excessive or perceived negatively, stress can negatively impact a person's 

performance of tasks and their overall health. Employees often try to manage and reduce 

their stress levels through a variety of techniques, including avoidance, social and 

religious support, and positive reinforcement. Stress patterns associated with workers' 

personal and professional responsibilities. Depending on the type of stressor, its intensity, 

importance, and the worker's emotional and physical status, there are several ways in 

which workers react to it. Stress can cause a variety of responses, including behavioural, 

emotional, physiological, and cognitive [40]. 

Prolonged and excessive stress can hurt a person's performance and overall health. 

Employees who believe they are under a lot of stress can often become depressed and are 

vulnerable to psychiatric disturbances such as mental distress, burnout and suicidal 

thoughts. In addition to sadness, stress can lead to other mental health problems, such as 

binge drinking or reckless drug use [41].  

1.2 Methodology 

In manual handling, the primary objective is to develop practical solutions that minimise 

risks, reduce injuries, and enhance worker safety and productivity in manual handling 

tasks. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

method was used to conduct the Systematic reviews. Focusing on these stressor factors 

to provide reliable evidence of their effects, the methodology is composed of: (I) Data 

Sources and Search Strategy; (II) Eligibility Criteria; (III) Data Extraction; (IV) Quality 

Assessment; (V) Analysis Procedures. 

1.2.1 Data Sources and Search Strategy 

The following multidisciplinary electronic databases provided the scientific publications 

in English that were part of this investigation. Scopus, PsycINFO, PubMed, Web of 

Science, Cochrane Library, Excerpta Medica Database (EMBASE), NIOSH, and World 

Health Organisation, International Labour Office ILO database, European Agency for 

Safety and Health at Work EU-OSHA database and Occupational Safety and Health 

Administration OSHA database. Keywords were then used to identify relevant 

publications from the databases: (manual AND handling OR lifting AND loads ) AND ( 

stress OR job AND stress OR worker AND stress ) OR ( security AND factors OR work 

AND risk OR ergonomics AND risk ). Keywords were identified based on previous 
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systematic reviews in the field of workplace risk factors for musculoskeletal disorders 

and ergonomics [26], [42] [43].   

 

Figure 5 Flowchart of the selection and inclusion procedure 

The occupational health and Health field has been extensively studied over the past 

decades; therefore, articles published after the 1980s have been included in this review. 

The references of the scientific papers used in the research were added manually, verified 

and located in the list of references of this dissertation. This systematic review was 

concluded around the end of 2024. The search and selection process for the current meta-

analytic study is shown in Figure 5. 12879 records were initially identified through 

manual searches and online resources. 6080 records were retrieved from the databases 
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after 6799 duplicates were removed using Mendeley software. After reviewing the 

abstract content and title, 5802 records were deemed inapplicable to the topic or primarily 

concerned with scale validation. After full-text screening, 223 articles were excluded 

according to the exclusion criteria. After the eligibility assessment, 55 full-text 

publications were eliminated. In the end, 40 journal articles were included in this meta-

analysis for quantitative synthesis. The title and abstract of each article were 

independently assessed. In addition, full-text publications were obtained and examined 

according to the qualifying standards. 

1.2.2 Eligibility Criteria 

Studies were eligible for inclusion if they met the following criteria: (a) they were 

empirical studies; (b) they primarily addressed workplace risk factors associated with 

MSDs and ergonomics in manual handling or lifting; and (c) their sample size included 

at least thirty individuals. Quantitative studies with longitudinal or cross-sectional designs 

were included. The journals included were published in English only. Studies with a 

larger sample size were selected for this meta-analysis if they were published in the same 

database. 

The following criteria were used to exclude publications from this meta-analysis: (a) the 

full article could not be found online, in university libraries or by emailing the researchers; 

(b) the papers had not been peer-reviewed; (c) the study dealt with a muscle characteristic 

other than stress; (d) the study analysed causes other than repetitive task movements; (e) 

the studies compared different hand conditions; (f) the studies examined cross-cultural 

issues or different geographical regions; (g) the studies were not empirical studies, such 

as literature reviews, commentaries, letters to the editor or case studies; or (h) the studies 

were of low quality. 

1.2.3 Data Extraction 

From the selected studies, the most critical elements were extracted and summarised in a 

single report. Fifty per cent of the 40 studies were chosen randomly for independent data 

extraction. (a) Author(s) and year of publication; (b) Sample size; (c) Study design 

(measurement technique and body location); (d) Effect size; and (i) Identify among the 

elements that were extracted and coded the attributes of data evaluation applied principles 

in studies using multiple devices to assess different aspects of the body response, using 

data from the device with the most favourable characteristics. The methodology outlined 
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in a previous study was used to select the initial dataset for the study [44]. Using the 

Newcastle-Ottawa Scale (NOS) criteria, the quality of the selected studies was assessed 

[44]. 

1.2.4 Analysis Procedures 

Meta-analyses were conducted with CMA software (CMA, v. 3.0). To account for the 

heterogeneity of the trials, we first pooled the effect size estimates using random effects 

models. The total effect size was determined by an overall analysis based on prior 

research. The majority of the studies in our review presented effect size using convertible 

statistics, such as Pearson's correlation coefficient (r) for correlational data, log odds 

ratios for binary data, or normalised mean difference for continuous data [45]. 

1.3 Results 

This section presents the results of the Correlation test, which assesses the influence of 

publications on the collected data related to Workplace risk assessment. 

1.3.1 Correlation test 

The next step in this process was to assess publication bias in the selected studies using 

Egger's correlation test and Begg-Mazumdar rank correlation test. 

The mental stress and muscular activity reduction (SMAR) evaluation method and the 

sample effect are correlated with studies that aim to avoid work-associated disorders 

related to body muscles (r = 0,480, Q = 23.04, p < 0.001), according to the results of this 

meta-analysis.  The 95% confidence interval for the mean effect size is between 0,825 

and 0,902. Within this range, the mean effect size of all similar studies might fall 

anywhere. With an I-squared statistic of 99%, it can be concluded that sampling error 

does not account for 99% of the variance in reported effects. Instead, it represents 

variance in genuine effects.  The effect sizes of the chosen studies for the SMAR 

evaluation variables sizes varied from -0.399 to 0.751.  

The mean impact size being zero is the null hypothesis that the Z-value tests. Z-value is 

8,470, p < 0.0001. The null hypothesis is rejected using a criterion alpha of 0.050, and it 

is concluded that the results are significant in the universe of populations similar to those 

in the analysis. 
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1.3.2 Workplace risk assessment 

The main risk identification models are methodical approaches used to identify and assess 

potential risks. These models help to proactively identify, analyse and prioritise risks to 

implement effective risk management strategies. These are summarised in Table 3. 

Table 3 Risk Identification 

Risk 

identification 
Tittle  Author  Explanation method 

Cumulative risk 

“Implications of applying 

cumulative risk assessment to the 

workplace” [46]. 

Mary Fox, 

Kristen Spicer 

et al. 

Cumulative risk assessment (CRA) 

applied in phases: i) Hazard 

identification. ii) dose-response 

assessment iii) exposure assessment. 

iv) risk characterisation 

“The Future of Risk Identification 

in a Rapidly Changing 

Sociotechnical Work Environment” 

[47]. 

Joann Kirby et 

al.  

A risk frame created using a mixed 

methodology of theoretical 

knowledge and a survey  

“Workplace interventions for 

common mental disorders: a 

systematic meta-review” [48]. 

Joyce Sadhbh,  

Modini 

Matthew, Helen 

Christensen et 

al. 

Evaluate the workplace interventions 

that may facilitate the prevention, 

treatment, or rehabilitation of a 

worker with a diagnosis of depression 

or anxiety. 

“Health problems and psychosocial 

work environment as predictors of 

long-term sickness absence in 

employees who visited the 

occupational physician and/or 

general practitioner about work: a 

prospective study” [49]. 

Helene Andrea, 

Anna Beurskens 

et al. 

Determine the relationship between 

the psychosocial work environment, 

health problems and incidence of 

long-term sickness. 

“A systematic review on workplace 

interventions to manage chronic 

musculoskeletal conditions” [50]. 

Glykeria 

Skamagki, 

Andrew King et 

al.  

Determine whether there are practical 

actions inside the workplace that 

reduce chronic musculoskeletal 

disorders. 

“How We Prevent Prevention of 

Musculoskeletal Disorders in the 

Workplace” [51] 

Kim Tae. 

Examine the knowledge about the 

prevention of work-related 

musculoskeletal pain and 

musculoskeletal disorders. 

“Long-Term Sickness Absence Due 

to Mental Disorders Is Associated 

with Individual Features and 

Psychosocial Work Conditions” 

[52] 

João Silvestre 

da Silva-Junior. 

Evaluating workers on sick leave for 

more than 15 days due to disabling 

psychiatric illnesses. 

Latent risk 

“Workplace hazard identification 

and management: The case of an 

underground mining operation “ 

[53]. 

Susanne Bahn. 

The study utilises findings from two 

workshops conducted with 77 

employees, applying research 

methodology. 

“Workplace Safety: A Strategy for 

Enterprise Risk Management” [54]. 
Janet Jule. 

Utilise leadership to enhance 

accountability and minimise injury 

risks. This involves planning to 

improve workplace safety by 

preventing injuries such as 

overexertion and contact with objects. 

“A Multidimensional Approach to 

Modelling for Workplace Risk 

Assessment” [55] 

Antonis 

Targoutzidis et 

al. 

Use tags for accident, human error 

and risk perception models. 
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Risk 

identification 
Tittle  Author  Explanation method 

“Workplace hazard identification: 

What do people know and how is it 

done?” [56] 

Maciej Serda et 

al. 

Based on two hazard identification 

and hazard management training 

workshops to teach workers 

“A comparative outline for 

quantifying risk ratings in 

occupational health and safety risk 

assessment” [57] 

Muhammet Gul. 

PFAHP is used in weighting risk 

parameters of the 5 × 5 matrix 

method. 

“Determination of the risk at the 

workplace, assessment 

And its rank calculation, in mining 

activities” [58] 

Zeqiri, Kemajl 

Kortnik, Joze 

Mijalkovski. 

Evaluate the risk in the workplace 

caused by a particular agent through 

rank through empirical formulas. 

“Hazard Identification, Risk 

Assessment, and Control Measures 

as an Effective Tool of 

Occupational Health Assessment of 

Hazardous Process in an Iron Ore 

Pelletizing Industry” [59] 

B. Rout and B. 

Sikdar. 

Identify all possible hazards in the 

workplaces of an iron ore pelletizing 

industry to conduct a health risk 

assessment. 

“Investigating Wearable 

Technology for Fatigue 

Identification in the Workplace” 

[60]. 

Griffiths, 

Christopher 

Bowen, Judy 

Hinze, Annika. 

Compilation of psychological data 

collected from wearable systems to 

determine how an individual 

performs tasks in the workplace. 

“The Consequences Of 

Psychosocial Risks In The 

Workplace In Legal Context” [61]. 

Seilerová 

Monika. 

Determine the need for the legal 

regulation of mental workload and 

the increasing effects of its 

shortcomings. 

“Musculoskeletal health in the 

workplace” [62] 

Joanne 

Crawford. 

Determine the changes produced by 

chronic MSK conditions from 2000, 

and how we can help people with 

these conditions recover after 

suffering from them. 

“Need for a new workplace safety 

and health (WSH) strategy for the 

fourth Industrial Revolution” [63] 

Gabriel Chia et 

al. 

To promote a total Worker Health 

responsive approach in the face of 

rapid technological advancements 

“Exposure to Environmental and 

Occupational Particulate Air 

Pollution as a Potential Contributor 

to Neurodegeneration and Diabetes: 

A Systematic Review of 

Epidemiological Research” [64] 

Eirini 

Dimakakou et 

al. 

Identify the link and mechanisms 

associated with particulate exposure 

and disease pathogenesis. 

“Artificial Intelligence-enabled 

Wearable Medical Devices, Clinical 

and Diagnostic Decision Support 

Systems, and Internet of Things-

based Healthcare Applications in 

COVID-19 Prevention, Screening, 

and Treatment” [65] 

Barnes Robin, 

Zvarikova, 

Katarina. 

Utilise machine learning algorithms 

to optimise diagnostic speed and 

precision, thereby identifying the 

most vulnerable individuals. 

 

Table 4 lists the primary risk factors for musculoskeletal illnesses based on the 

International Organisation for Safety and Health at Work and related research that takes 

ergonomic risks into account [66]. These groups fall into the following categories: 

Mechanical Risks (RM), Physical (RP), Chemical (RC), Ergonomic (RE), and 

Psychosocial (RPY) [67], [68].  
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Table 4 Main factors contributing to musculoskeletal disorders 

LEADING RISK FACTORS RELATED TO MUSCULOSKELETAL DISORDERS 

Clasification 

/Code 
Cause Effect Example 

RP1 Application of big efforts Critical overloading 

Carrying, pushing or 

pulling, lifting heavy 

objects 

RP2 and RE1 
Moving weighty loads 

during long periods. 

Degenerative diseases, particularly 

in the lumbar spine 

Manual materials 

manipulation 

RM1 and RP3 

Repeated movements 

during the handling of 

objects 

Fatigue and Overload in Specific 

Muscles 

Assembly work, check-

out work, and a long time 

typing 

RE3 
Working in unergonomic 

posture 

Overload of the skeletal and 

muscular system 

Working with the trunk, 

or hands or arms, heavily 

bent or twisted 

RE4 Load by static muscular 

Long-lasting muscular activity 

[keeping the static position] and 

possible overload in specific 

muscles 

Working in a limited 

space  

RE5 Muscular inactivity 
Decrease in the functional capacity 

of tendons, muscles and bones 

Long-term sitting work 

with short muscular 

demands 

RM1 RE6 
Monotonous repetitive 

movement 

Unspecific complaints in the 

extremities 

Repeated activity of the 

same muscles with pauses 

without relaxation 

RM2 Constantly vibration 

Dysfunction of nerves, reduced 

blood flow, degenerative disorders, 

and psychological disorders caused 

by stress. 

Manipulating a machine 

with annoying vibration 

or using vibrating hand 

tools. 

RE7 

Physical environmental 

aspects: light, sounds, 

temperature, etc 

Damage to the sensory organs of 

the worker, diseases in the sensory 

nervous system, and psychological 

disorders caused by stress. 

Work in an environment 

that is improperly lit, 

noisy, and has an 

uncomfortable 

temperature, among other 

issues. 

RCH1 

Exposure to chemical 

products or factors in the 

workplace. 

Burn, injury or permanent illness. 

Direct contact with a 

specific chemical product 

can produce injury or 

illness. 

RPS1 

Physical and social 

outcomes such as work-

related stress, burnout or 

depression. 

Stress, Depression. 

Poor communication 

between the manager and 

workers 

Muscle, bone and joint problems, known as musculoskeletal disorders (MSDs), are 

caused by a combination of physical (biomechanical) and psychological/social 

(biopsychosocial) factors. People are now more aware of these issues as a result of efforts 

by health and safety managers to improve working conditions. Table 5 presents the 

compilation for each risk category derived from the literature processing, as shown in  

Table 4. 

Table 5 Risk identification results 

Identified Risk 
Number of 

appearances 
Cited researches  

Mechanical risk 7 [49], [50], [51], [53], [56], [58], [59] 
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Physical risk 13 
[46], [47], [50], [51], [53], [54], [55], 

[57], [59], [60], [62], [64], [65] 

Chemical risk 3 [53], [57], [59] 

Ergonomic risk 18 

[46], [47], [48], [49], [50], [51], [52], 

[54], [55], [57], [58], [59], [60], [61], 

[62], [63], [64], [65] 

Psychosocial risk 3 [49], [52], [61] 

 

Once the risk has been identified and categorised, the next step is to determine how the 

risk relates to the main topic and which risk is more prevalent throughout the work 

activities. The result is shown in Figure 6 [66]. 

 

Figure 6 Risk relation and definition  

According to risk relations, MSDs include work-related ailments like bursitis, 

tenosynovitis, epicondylitis, and tendon discomfort, as well as diseases like sciatica and 

carpal tunnel syndrome. These disorders can also cause back pain and other regional pain 

syndromes without a specific pathology. The discomfort and trauma that can arise from 

poorly constructed workplaces are one of the primary causes of MSDs. Therefore, 
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analysing work-related MSDs involves identifying potential workplace hazards and 

ensuring that the environment is safe and healthy. The analysis of risk identification and 

the creation of a theoretical framework from Table 5, Risk Identification Results and 

Their Relationships, as shown in Figure 6, Risk Relationship and Definition, constitute 

the typology phase of this study. All potential risk types are generated and named by 

identifying the different combinations. Procedures are then developed to assess the 

workplace to reduce risk and improve working conditions. The process is shown in Figure 

7 [66].  

 

Figure 7 Workplace evaluation method.  

Stress is also significantly increased by unfavourable organisational traits, subpar 

management techniques, and interpersonal disputes. Every day, various stressors, 

including multiple times and sectors, are presented in Table 6. High workplace demands, 

unclear roles, an overwhelming workload, insufficient resources, a lack of task 

management, and the effects of irregular work schedules and non-traditional work hours 

are some of the main stressors. 
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Table 6 Occupational Stress Factors Across Various Studies and Reports 

LIST OF GROUPS OF FACTORS 

PAPERS TITLE GROUP OF FACTORS REFERENCE 

Quality of 

Employment 

Survey 

task complexity/job demand/stressful 

job/hazardous job 
Public Law 91-596 (1970) [69] 

role ambiguity 

underutilization 

quantitative workload/overload 

Margolis, Kroes and Quinn 

(1974) [70]. 

resource inadequacy 

insecurity 

non-participation 

 

Job Demands and 

Worker Health 

Study 

quantitative workload/overload 

Cobb and Kasl (1980) [71] 

 inadequate social support 

role ambiguity 

conflict resolution/bad interpersonal 

interaction 

worker control/control over 

tasks/supervision 

 

Control/demand 

research 

  

Colligan, Smith and Hurrell 

(1977) [72] 

 

Tasto, Colligan, Skjei and Polly 

(1978) 

worker control/control over 

tasks/supervision 

Smith, M.J., Colligan, Fro&t and 

Tasto (1979) 

machine-paced/pacing 

Chadwick, Chesney, Black, 

Rosenman, and Sevelius (1979) 

[73] 

scheduling/shiftwork Colligan and Murphy (1979) [74]; 

physical environment 

Colligan, Pemtebaker and 

Murphy (1982) [75] 

decision making Cobb and Kasl (1977) [75] 

conflict/bad interpersonal interaction Hurrell (1985) [76] 
 

  

Work in America 

Scheduling/shiftwork/night working 

Machine-paced/pacing 

Worker control/ over control 

tasks/supervision 

Work in America (1973) [77] 

  

  

 
 

Work Schedules 

and Fatigue 

scheduling/shiftwork/night working 
Work Schedules and Fatigue 

(Rosa & Colligan, 1988) [78] 

 

Stress perspective 

1990s 

task complexity/job demand/stressful 

job/hazardous job 

HIV/AIDS from a stress 

perspective (1993) [79] 

scheduling/shiftwork/night working Agriculture Initiative 1996[80] 

insecurities concerning career  

Bad management style 
 National Occupational Research 

Agenda (NORA) 1996 [81] 
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Healthy Work 

Organisations 

inadequate management style/inadequate 

management practices   

Perceived stress was continuous 

improvement at work/pressure to improve 

your skills. 

  

conflict resolution/bad interpersonal 

interaction Lim & Murphy,( 1997) [82] 

diversity   

no sense of belonging   

negative values (technology, employee 

growth) 
  

The factors that lead to occupational stress are highlighted, along with the frequency with 

which these factors are mentioned in studies. Table 7 shows how these stressors have a 

significant impact on employees' stress levels and highlights the importance of addressing 

these stressors through improved communication, better management practices and a 

supportive work environment to reduce stress and promote employee well-being. 

Table 7 Stressors and their impact on employees' stress levels 

TOTAL OF DIFFERENT GROUPS OF FACTORS FOUNDED 

No GROUP OF FACTORS TOTAL 

MENTIONS 

1 inadequate social support  1 

2 Bad management style  1 

3 bad organisational characteristics (such as climate, culture, and communication  1 

4 conflict resolution/bad interpersonal interaction 3 

5 decision making  1 

6 diversity  1 

7 inadequate management style/inadequate management practices  1 

8 insecurities concerning career  1 

9 insecurity  1 

10 job mobility  1 

11 machine-paced/pacing 2 

12 negative values (technology, employee growth/development, and valuing the 

individual 

 1 

13 no sense of belonging  1 

14 non-participation  1 

15 organizational effectiveness  1 

16 Perceived stress was continuous improvement at work/pressure to improve your 

skills. 

 1 

17 physical environment  1 

18 quantitative workload/overload 2 

19 resource inadequacy  1 

20 role ambiguity 2 

21 scheduling/shiftwork/night working 4 

22 task complexity/job demand/stressful job/hazardous job/concentration demand 2 

23 underutilization  1 

24 worker control/control over tasks/supervision 3 
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In addition, it presents factors that contribute to stress and dissatisfaction at work, 

organised into groups such as management practices, physical work environment, and 

interpersonal interactions. These factors include intrinsic characteristics such as 

inadequate social support, poor management style, physical demands and job insecurity. 

It classifies and categorises the problems faced by employees in the workplace, focusing 

primarily on management practices, the physical work environment and interpersonal 

interactions. Three critical factors that affect stress in the workplace are "worker control", 

"conflict resolution" and "scheduling". "Worker control describes how much authority 

workers have over their tasks, procedures and environment. "Conflict resolution is 

essential to maintaining a good working environment, as unresolved conflicts can cause 

tense relationships. Finally, "scheduling" hurts workers' wellbeing by determining 

working hours, shifts and deadlines [83], [84], [85]. 

1.3.3 Classes of psychosocial stressors factors 

Workers today face a variety of psychosocial stresses at work that have a significant 

influence on their general job satisfaction, well-being, and productivity. 

Worker control refers to the degree of autonomy employees have over their tasks, work 

pace, and decision-making processes. High levels of stress, resentment and burnout can 

result from a lack of control over one's workplace. Employees often feel helpless and 

demotivated when they are micromanaged or have little control over their work, which 

can have a detrimental effect on their emotional and physical well-being. Worker control 

is considered a stressor in the workplace. It affects millions of workers every year and is 

a significant cause of a range of health problems across Europe [85]. 

Conflict resolution in the workplace can be caused by differing viewpoints, different ways 

of working, poor communication or conflicting interests. Poorly managed conflict creates 

a toxic work environment that leads to stress, reduced performance and emotional 

exhaustion. Good conflict resolution techniques, such as systematic problem solving, 

mediation and open communication, are crucial to creating a productive workplace [81]. 

Scheduling plays a fundamental role in managing workplace stress, as poorly structured 

work schedules can lead to burnout, fatigue, and work-life imbalance. 64% of employees 

who had their shifts modified reported experiencing moderate psychological discomfort, 
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75% of employees said their sleep was terrible, and 82% of those whose shifts were 

changed said the same [81], [86]. 

Work-related stress is directly responsible for around 16% of depression cases in the EU. 

In addition to its impact on mental health, work-related stress is a major contributor to the 

development of cardiovascular disease, with estimates suggesting that work-related stress 

accounts for 16% of cases among men and 22% among women in Spain [61]. 

1.3.4 Stress identification methods 

Stressful situations activate the hypothalamic-pituitary-adrenal (HPA) axis. This causes 

neurons in the hypothalamus, a part of the brain known as the 'master gland', to release a 

hormone called corticotropin-releasing hormone (CRH). Another hormone called 

adrenocorticotropin (ACTH) is secreted and released by the pituitary gland, also located 

in the brain, in response to the production of CRH. Once released from the pituitary gland, 

ACTH travels through the bloodstream to the adrenal glands, located above the kidneys, 

where it causes the release of so-called stress hormones. The glucocorticoids, known as 

cortisol in humans, and the catecholamine norepinephrine are the two primary stress 

hormones [87]. 

When a scenario is perceived as stressful, the hypothalamic-pituitary-adrenal (HPA) axis 

is activated, ultimately leading to the release of catecholamines and cortisol in humans. 

Human physiological indicators of stress that have been proven to work include cortisol 

and proxy indicators of sympathetic activity. 

Saliva can be used to measure cortisol, which is a non-invasive method. In addition, when 

collecting saliva, there is no need for trained professionals to insert catheters, as is the 

case with blood samples. In that context, other human biological markers of stress 

hormones are currently being evaluated [79], [88]. 

Blood pressure is an essential indicator of stress. The force that pressure applies to the 

walls of blood vessels is measured by blood pressure.  Direct neuronal conduction and 

the neuroendocrine effects of adrenaline and noradrenaline are the causes of the increase 

in heart rate activity as a result of the stress response. When epinephrine is in the 

bloodstream, the ventricles of the heart respond by contracting faster and harder. Heart 

rate variability, or HRV, has become a practical and affordable way to measure 

cardiovascular stress. HRV is the variance in beat-to-beat heart rate interval, or the 

measured interval between heartbeats. Due to the presence of catecholamine cascades, a 
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decrease in variability is typically a sign of increased stress. When faced with physical or 

psychological problems, these cascades often overwhelm regular variability [88] . 

Eccrine sweat is the physiological basis for the electrodermal assessment of the stress 

response. These sweat glands, most commonly found in the palms and soles of the hands, 

are derived from the terminal efferent ends of sympathetic neurons and respond to 

psychological stimuli rather than heat. Although Ach, rather than NE, is the 

neurotransmitter at the sweat gland itself, measuring this activity provides valuable 

information about the activity of the sympathetic nervous system. Passive methods, such 

as skin potential (SP) or active GSR techniques, can be used to measure electrodermal 

activity [88].  

There has been evidence that skin conductance can be an indicator of the level or intensity 

of emotional arousal. This signal applies to various aspects of health, as well as being a 

robust and reliable indicator of emotional state. The activity of the skin's sweat glands 

determines skin conductance, which is not affected in the slightest by sweaty hands. A 

minimal current flows through the skin when the two electrodes of the Skin Response 

apply a very small, completely safe and undetectable electrical voltage [88]. 

1.4 Discussions 

Manual handling is any activity that involves the use of physical force to lift, lower, push, 

pull, carry, move, hold or confine a person, animal or object. Although many 

organisations rely on these activities, there is a significant risk of musculoskeletal 

problems if they are not carried out correctly. The research shows the link between 

manual handling and these types of injuries, highlighting the importance of using the 

proper procedures and taking preventative measures. This is consistent with studies on 

back injuries. 

The association between mental stress, muscle activity reduction (SMAR) and work-

related musculoskeletal disorders was found to be significantly influenced by the results 

of the Egger correlation test and the Begg-Mazumdar rank correlation test. A strong 

correlation was found (r = 0.480, Q = 23.04, p < 0.001), with a 95% confidence interval 

ranging from -0.399 to 0.751 and a mean effect size of 0.834.  

This suggests a strong correlation between SMAR assessment techniques and a reduction 

in work-related muscular complaints. 
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This research encompasses risk identification, which covers several areas, including 

chronic musculoskeletal disorders, the psychosocial work environment and cumulative 

risk. Mechanical, physical, chemical, ergonomic and psychosocial hazards are the main 

risk factors for MSDs. The meta-analysis showed that ergonomic risks are more common 

than physical risks. Mechanical, chemical and psychological risks were also reported, 

although to a lesser extent. When these risk factors are analysed, it is clear that poor 

management techniques and poorly designed workplaces are major contributors to 

occupational stress and MSDs. Integrating information from different studies emphasises 

the need for a comprehensive workplace safety plan that addresses both psychological 

and physical factors. 

Ergonomic workplace design can significantly reduce the repetitive movements and 

physical strain that lead to musculoskeletal disorders (MSDs). This can be achieved by 

providing adjustable workstations and chairs and encouraging frequent breaks to reduce 

physical stress. Improving management procedures is a priority. Appropriate workload 

distribution, clear role descriptions and effective communication can reduce the risk of 

psychosocial problems. It's also essential to have support systems in place and to promote 

a happy. 

In addition, potential hazards can be easily identified and addressed through routine 

monitoring and evaluation using risk assessments. Wearable technology can be used to 

track stress and fatigue in real time, providing data for informed treatment. Finally, 

education and training are essential. By educating employees about mental health and 

safe working practices, they can take proactive steps to reduce risks. Offering workshops 

on stress management and hazard identification can further improve worker safety. 

This research, in line with previous studies, classifies a wide range of conditions as 

musculoskeletal disorders (MSDs), including sciatica, carpal tunnel syndrome, bursitis, 

tenosynovitis, epicondylitis and tendon disorders. These conditions can lead to back pain 

and other regional pain syndromes, often without a specific disease. One of the main 

causes of the discomfort and suffering that leads to MSDs is poorly designed workplaces. 

Identifying potential workplace hazards and ensuring a safe and healthy environment are 

therefore essential to research into work-related MSDs. 

By examining a variety of workplace conditions, this study established a theoretical 

framework of risk relationships and definitions to classify all possible types of risk. As a 
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result of this analysis, protocols are developed to assess and reduce risks and improve 

working conditions. In addition, unfavourable organisational characteristics, inadequate 

management techniques and interpersonal disputes exacerbate stress in the workplace. 

Everyday stressors include excessive demands, unclear responsibilities, excessive 

workloads, lack of resources and erratic work schedules. The significant impact of 

stressors on employee stress levels highlights the need for improved management 

techniques, supportive workplaces and communication. 

The study findings show that increasing employee happiness, decreasing turnover, and 

creating a healthy work environment are all critical to lowering the percentage of 

employees who quit their jobs. In line with research showing that 35% of employees 

between the ages of 18 and 25 leave their jobs due to chaotic schedules reported by 

previous studies [89]. 

1.5 Literature Review Conclusions  

Physical stress reduces a worker's ability to lift the maximum allowable weight properly. 

This includes fatigue, muscle strain and prolonged discomfort. Fatigue caused by stress 

reduces muscle strength, posture and stability. 

The study identified stressors from organisational structures that contribute to creating an 

uncomfortable psychosocial workplace. Within this category, worker control plays a 

significant role, as it determines the level of autonomy of employees. Additionally, 

conflict resolution is essential to maintaining a positive work atmosphere. Another critical 

factor is scheduling, which affects employees’ well-being by regulating work hours, 

shifts, and deadlines. In addition, psychosocial stress has been found to reduce RWL by 

weakening muscle control, increasing risk-taking behaviour and decreasing 

concentration, which increases the likelihood of using the wrong lifting technique and 

exposure to stress-related environmental factors. For this reason, workplace lifting 

assessments must include a thorough evaluation of the worker's susceptibility to stress 

and stress reduction protocols. 

According to the study, job dissatisfaction is primarily caused by inconsistent work 

schedules. Reducing stress and preventing over-control can be achieved by giving 

employees more authority over their work and allowing them to participate in decision-

making. In addition, effective conflict resolution techniques can reduce workplace 

tensions and create a more cooperative and encouraging atmosphere. 
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The study also found a strong correlation between work-related MSDs, mental stress and 

muscle activity reduction (SMAR), highlighting the importance of SMAR assessment 

methods in reducing muscle complaints. Chronic MSDs, the psychosocial work 

environment and cumulative risk were all included in the risk identification process, with 

ergonomic risks being more common than physical risks. 

The meta-analysis revealed a significant correlation between psychosocial stress and 

SMAR, indicating that inadequate workplace design, poor management practices, and 

unfavourable organisational environments have a negative impact. However, it did not 

establish a clear hierarchy of the most critical factors in manual handling contexts. This 

limitation underlines the necessity of moving from a broad identification of risks toward 

a more systematic categorisation.  

- Thesis (T1): With a systematic PRISMA literature review and using a correlation 

analysis of the studies (which presented an index r = 0.480 and p < 0.001), I proved 

that psychosocial distractor factors, mainly worker control, conflict resolution, 

and scheduling, induce mental stress causing muscular activity reduction 

(SMAR), which has a direct impact on the risk of musculoskeletal disorders 

(MSDs) in manual handling.  

Own publications related to this chapter: [66], [90], [91] 
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2 CATEGORISATION OF STRESS FACTORS IN 

MANUAL HANDLING TASKS 

In the field of manual handling, a multicriteria categorisation of stressors is essential for 

understanding the risk in the workplace. A structured methodology for categorising 

stressors is presented, including an introduction, a detailed explanation of the methods, a 

presentation of the results and a discussion of their implications. 

2.1 Introduction 

Psychosocial stressors have often been shown to be associated with psychological 

dysfunction, depressive symptoms and health-related behaviours such as medication use, 

doctor visits and sickness absenteeism. Workplace psychosocial stressors have been 

linked to immunological disorders, cardiovascular disease and musculoskeletal problems 

[92]. Psychosocial stressors have the potential to alter pain perception or cause 

physiological alterations that could lead to musculoskeletal issues. These factors are most 

closely associated with musculoskeletal problems, whether acute or chronic, and are the 

cause of back pain or other musculoskeletal problems [93]. 

Instances of psychosomatic complaints and musculoskeletal issues, such as back pain, 

joint and muscle disorders, and more persistent back problems, have been linked to 

intense work speed. A sense of generalised poor health, as well as many indications of 

(ill-)health behaviour, were related to poor intellectual judgment, particularly monotony 

in the workplace [92]. 

Linking psychosocial stressors to a range of other health outcomes, including 

psychosomatic symptoms and health-related behaviours, is significant and similar in 

strength to those between psychosocial stressors and musculoskeletal problems [92]. 

Workplace psychosocial stressors have been linked to a higher likelihood of going off 

sick with a confirmed mental health condition. The risk was up to 76% higher for workers 

who were exposed to these work-related stressors than for those who were not. 

One of the additional risk factors for WRMSDs has been identified as workplace 

psychosocial stressors. For example, job dissatisfaction, lack of autonomy and social 

support, and high workload are factors that have been associated with an increased risk 

of WRMSD. Similarly, the risk of WRMSD has been increased by high levels of mental 

demand or pressure, particularly when combined with low levels of reward. Perceived 
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safety and the perceived danger of WRMSD have also been shown to be negatively 

affected by a lack of social support [94]. While these findings establish the critical role 

of psychosocial factors, they also demonstrate how complicated their interactions are, as 

not all stressors contribute equally to the development of MSDs. It evidences a need for 

a multi-criteria approach to classify and prioritise stressors, focusing on how workers and 

experts perceive their influence on manual handling tasks. By applying the theoretical 

framework developed in Chapter 1 to a decision-making model, practical classifications 

can be ensured, which serve as the basis for developing targeted preventive strategies. 

Multicriteria methods 

To identify ergonomic elements that can lead to MSDs and enhance individuals' quality 

of life through prevention initiatives, professionals in ergonomics have started utilising 

multicriteria decision-making (MCDM) methods. These models have helped address 

numerous issues related to work illness prevention, and the models that have been created 

have also helped resolve a significant number of issues with job scheduling in the sector. 

By connecting the mobility components with the MCDM models, researchers from all 

over the world have begun to examine this model in depth [95]. 

The Analytic Hierarchy Process (AHP) technique is an applicable multi-criteria model 

that depends on the judgment and experience of a manager to determine the best course 

of action for solving a complex problem according to predetermined criteria. In other 

words, it helps decision-makers determine which course of action best meets their needs 

and evaluates the situation.  

The respondent's decision criteria, however, are one of the weaknesses of the AHP 

method, as the answer can be seen as a personal argument at some point. The preference 

of the decision maker, which has a strong influence on the results, determines the criteria 

of perception, evaluation, correction and selection, which makes the AHP process 

somewhat blurred. Besides, the dependencies between the AHP variables frequently 

cause inconsistent weighting of the criteria and results that do not reflect reality [96]. To 

overcome these limitations, AHP weight vectors were subjected to Pareto optimisation. 

By using pairwise comparison matrices in an actual case study, the authors were able to 

change the weighting of the AHP vectors [97]. 

The AHP provides an organised, methodical and quantitative approach to decision-

making, making it an essential tool for risk classification in the workplace. Workplace 

hazards often involve numerous factors, each with varying degrees of severity and 
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frequency, including safety hazards, ergonomic risks, chemical exposures and 

psychological stressors. By organising complex issues into hierarchical levels, assigning 

weights to each criterion through paired comparisons, and ensuring consistency of 

judgments, AHP enables decision-makers to prioritise risks [98], [99]. 

The Best-Worst Method (BWM) is a professional multi-criteria decision-making 

(MCDM) technique that is particularly useful for classifying risks in the workplace 

because it can improve the accuracy and consistency of decisions. Workplace risks 

include a variety of elements, each with a different degree of impact and probability, such 

as mechanical failure, chemical exposure, ergonomic hazards and psychological stress. 

By asking experts to identify the most important (best) and least important (worst) 

criteria, BWM helps decision-makers prioritise these risks and minimise the 

discrepancies that often occur in paired comparisons. For workplace risk assessment, 

BWM is more effective than more conventional techniques, such as AHP, because it 

requires fewer comparisons while maintaining a higher degree of consistency [100], 

[101]. 

2.2 Methodology 

This section describes the tools and materials used in the research, including an 

explanation of the survey methodology. Microsoft Excel algorithms developed in Office 

365 were used to solve the Best Worst Method (BWM) and Analytic Hierarchy Process 

(AHP) models. The methodology used in this study follows the approach presented by 

previous researchers [102], providing a structured, Excel-based algorithmic tool 

framework for solving multi-criteria decision problems. A cross-check analysis was 

carried out by two researchers (V.C.E-C and R.P.A-R) from Obuda University 

individually, and the results were finally verified. 

This is followed by a detailed presentation of the study and an explanation of the approach 

taken. 

2.2.1 Survey 

Meetings and discussions were conducted with safety and health professionals to identify 

the key factors influencing manual handling stress. An initial criteria sample was 

presented at the Engineering Symposium at Bánki 2022 and was used to determine, 

condense, and validate the survey instrument. This pilot involved ergonomics experts 

drawn from multiple related disciplines, including occupational health, psychology, 

rehabilitation, medicine, and academia [103]. In October 2024, the survey was carried out 
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using the snowball sampling method with the help of Google Forms (ANNEX C). The 

participants were selected from industries where manual handling activities and material 

storage take place and included 185 men and 98 women of different age groups, which 

represents a sample with a 95% confidence level and less than 6% margin of error. The 

survey was completed online in 15 to 20 minutes per person. Based on the criteria or 

groups identified in section 1.3.2 and shown in Table 5, each worker identified the degree 

of influence of the stressors during the activity. 

2.2.2 Criteria for the design and description of the Saaty scale 

One of the most critical aspects of the study is the organisation and selection of the criteria 

to be applied or considered to find out how psychosocial factors affect manual handling 

tasks. This is necessary so that the criteria can be arranged according to the requirements 

of the multi-criteria approach used. Developing criteria and sub-criteria enables the 

examination of the hierarchy of importance chosen by the study participants, both 

separately and together. Based on the literature review on the impact of stressors on 

lifting, our project study identified three primary criteria and nine supporting criteria. An 

explanation of each criterion relating to the first level is also given in Table 8, together 

with the coding for each main criterion. The criteria are coded from C1 to C3. As a result, 

these criteria are easy to identify in Figure 8. Conversely, Table 9 provides an explanation 

of the nine sub-criteria selected that relate to the second level. To help the reader identify 

them with the main criteria (C1-C3), they have been coded.  

Table 8  Main criteria and description of the criteria 

Code Criteria Description 

C1 Worker Control / Control Over Tasks / Supervision The level of managerial control and the 

degree of autonomy employees have 

over their work. Productivity, job 

satisfaction and decision making are 

all affected. 

C2 Conflict resolution / bad interpersonal interaction Managing disputes and addressing 

negative interactions between workers 

reduces tension and improves 

collaboration, productivity, and team 

dynamics. 

C3 Scheduling/shiftwork/night working Organisation of working hours, 

rotating shifts and night work. 

Thus, C 1.2 indicates the second criterion falling under the first main criterion (C1) 

(shown in Figure 8). 
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Figure 8 The hierarchical structure 

Comprising 9 sub-criteria from the first level, the second level is the focus of the second 

section of the Saaty scale.  For example, the first sub-criterion relating to Criterion 1 is 

labelled C1.1. Table 9 lists each criterion along with a code indicating which primary 

criterion it falls under. This means that the second level of Figure 8 is the place where 

you can find them. 

Table 9 Sub-criteria and description 

Code Explanation  Description 

C1.1 Timing control alarms Used a tool to monitor and manage 

the time spent on tasks to maintain 

focus, improve productivity, and 

ensure deadlines are met. 

C1.2 Remote Supervision Managing and overseeing employees 

from a distance, typically through 

digital tools. It enables monitoring, 

feedback, and guidance without in-

person interaction. 

C1.3 Over control The supervisor gives excessively 

bossy or micromanaging instructions 

during tasks, limiting employee 

autonomy at all times. 

C2.1 Wrong conflict resolution way Ineffective methods of addressing 

disputes can escalate tensions, harm 

relationships, and negatively impact 

the workplace. 

C2.2 Not a balance between instructions vs punishment Excessive punishment compared to 

guidance leads to a negative work 

environment and decreased 

motivation. 

C2.3 Not clear instructions Poorly communicated directions for 

tasks, leading to confusion, mistakes, 
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Code Explanation  Description 

reduced productivity, and employee 

frustration. 

C3.1 Early morning task Work is scheduled during the early 

hours of the day, which can impact 

employee alertness, productivity, and 

work-life balance. 

C3.2 Midday task Work is scheduled around midday, 

often when employees are most alert 

and productive. 

C3.3 Late-night task Work scheduled during nighttime 

hours, which can disrupt sleep 

patterns and affect focus, health 

2.2.3 Analytic hierarchy process (AHP) 

A methodical multi-criteria decision-making technique is the Analytical Hierarchy 

Process (AHP). The main advantage of AHP is its ability to verify and minimise 

discrepancies in expert opinions. This approach streamlines group decision-making and 

reduces bias in the process by using the geometric mean of individual scores to reach a 

consensus. Using a variety of options, AHP can be applied to multi-objective, multi-

criteria and multi-actor decisions. It generates scores by combining ranks and paired 

comparisons. Analytic Hierarchy Process (AHP) can be used to model situations where 

there are no precisely measurable variables, such as risk and uncertainty, because it 

assesses scales rather than measures. AHP is based on three fundamental ideas: 

comparing values, deconstructing structure, and creating hierarchical priorities. By 

breaking down a decision problem into its component parts, it is possible to create 

hierarchies of criteria to determine the relative importance of each criterion [104]. 

The Occupational Health and Safety Department used AHP to create a decision support 

tool that ranked the risk variables associated with the development of musculoskeletal 

problems in the shoulder and neck [105], [106]. 

In AHP, the decision problem is usually divided into a hierarchy of distinct subproblems 

that can be studied separately. Each component in the hierarchy can be related to any 

aspect of the decision problem. Once the hierarchy has been constructed, respondents 

assign a numerical scale to each pair of alternatives (𝐴𝑖, 𝐴𝑗), as shown in Table 10 [95]. 

By contrasting the pairs of choices according to how they affect a higher-ranking element 

in the hierarchy, numerical scales are assigned. 
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Table 10 AHP scale for combinations. 

Numerical 

Scale 

Definition Verbal Explanation 

1 Both elements hold equal importance The two elements contribute equally to the 

given characteristic 

3 One element has slightly less 

importance than the other 

Experience and judgment slightly favour 

one element over the other 

5 One element is significantly more 

important than the other 

Assessments and experience strongly 

favour one aspect over the other 

7 One element is clearly dominant over 

the other 

Practical evidence confirms the strong 

preference for one element 

9 One element is overwhelmingly 

dominant 

Irrefutable evidence supports the 

superiority of one element 

2, 4, 6, 8 Intermediate values between adjacent 

levels 

The assessment lies between two defined 

levels 

Reciprocals 

(1/x) 

Assigned value when comparing 

activity i to activity j 

When comparing j to i, the reciprocal value 

is used 

In 1990, Saaty suggested determining the consistency of judgments using the following 

equation[104]:  

Consistency ratio =  𝐶𝑅 =
𝐶𝐼

𝑅𝐶
 

(2) 

And,  

Consistency index =  𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

(3) 

Where λmax denotes the largest eigenvalue, it's crucial to remember that for a comparison 

to be deemed credible, the comparison must be consistent, meaning that fewer than 10% 

of the values are different.  Saaty (1990) illustrates how the following equation can also 

be used to assess the consistency of judgments. In addition to measuring the degree of 

inconsistency observed in the pairwise comparisons, the Consistency Ratio (CR) predicts 

the degree of inconsistency for random judgments of the same size. It shows how 

consistent the decisions made in the pairwise comparisons are. 

2.2.4 Best Worst Method 

The weights of the criteria and sub-criteria have been generated using the Best Worst 

Method (BWM), which increases the reliability of the comparison process and decreases 

the quantity of pairwise comparisons. The largest or most significant criterion or 

alternative is the one that is most crucial when making decisions. In contrast, the least 

important or poorest criterion or option has the opposite effect.  

Using a simple optimisation model, the goal is to ascertain the optimal weights and 

consistency ratio. The model is built using the comparison system. The BWM involves 

five steps. Step 1: Choose a set of standards by which to judge decisions. Identifying 
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criteria is necessary before making a decision (C1, C2,..., Cn). The alternatives' 

performance is evaluated using these standards. 

Step 2: Identify which criteria are most and least suitable for the decision setting. The 

best criterion could be the most desirable, and the worst the least desirable or least 

essential. In this case, only the criteria are considered, not the values of the criteria. 

Step 3: Decide which of the criteria is most crucial. The representation of this value will 

be a number between 1 and 9. The resulting Best criterion denotes the preference of the 

criterion selected over all other criteria. 

Step 4: Find out which of the other criteria is preferable to the least favourable. The worst 

criterion would be compared with the preference of the above criteria. 

Step 5: Determine the ideal weights. To determine the optimal criterion weights, the most 

significant absolute discrepancies are considered. 

Following the calculation of the optimal weight scores, the consistency is examined by 

calculating the consistency ratio using the following formula: 

𝐶𝑅 =
𝜉∗

Consistency index
 

(4) 

 

2.3 Results  

The first part of the research presents the demographic data of the participants, which 

gives an insight into the categorisation of psychosocial stressors in the workplace. 

Analysis of the age distribution of the 285 respondents, shown in Figure 9, shows that the 

largest group consists of employees aged 46-54 (39.3%), followed by those aged 19-26 

(26.3%), 36-46 (12.6%), 27-35 (11.9%), 15-18 (7%) and over 55 (7%). These findings 

provide the basis to assess how different workplace stressors affect the well-being and 

job stability of employees across various age groups. 
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Figure 9 Analysis of the age distribution of the 285 respondents 

The distribution of the continents from which the respondents came provides a valuable 

context for analysing perceptions of workplace-related psychosocial stressors, as shown 

in Figure 10. The majority of the 285 participants were from the Americas (56.1%), 

followed by Europe (33.7%), Asia (6%) and Africa (4.2%). 

 

Figure 10 Distribution of respondents' birth continents 

The gender distribution of respondents shown in Figure 11 provides an insight into how 

psychosocial stressors are perceived. Most respondents are male (65.4%), while 34.6% 

are female. The data shows how psychosocial stressors affect employees differently 

depending on the gender dynamics in the workplace. 

 

Figure 11 Gender distribution of respondents 
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The educational background of the 285 respondents shown in Figure 12 provides essential 

information about how psychosocial stressors affect workers based on their academic and 

technical training, particularly in industrial roles. The largest group, 'Other' (46%), 

represents individuals with technical training and training in industrial tasks, followed by 

those with a BSc. holders (41.1%), MSc. holders (10.5%) and a small percentage of Ph.D. 

holders. 

 

Figure 12 Educational background 

Statistics from a survey with 285 respondents who classified various psychosocial 

pressures using 18 different questions (Q1–Q18) are displayed in  ANNEX D.  According 

to the mean scores, Q12 (5.88), Q16 (5.88), Q15 (5.77), Q17 (5.76) and Q9 (5.72) have 

the highest scores.  From the opposite direction, Q10 (3.58), Q5 (3.78), Q3 (4.40) and Q8 

(4.41) have the lowest values. The standard deviation and range are used to examine the 

variability in perception, and Q5, Q10, Q3 and Q8 show considerable variability (SD > 

1.2). The distribution of responses is also demonstrated by skewness and kurtosis values; 

Q9, Q12, Q15 and Q16 have negative skewness. Positive skewness was observed for Q3, 

Q5, Q8 and Q13. The reliability of the responses is confirmed by the confidence interval 

(CI ~0.11 to 0.17), which reinforces the consistency of stressor identification. 

After analysing the demographics of the participants, the AHP technique and the Best-

Worst method are the two multi-criteria methods used to split the results, as described in 

the methodology. 

Best-Worst method 

The respondents were asked to compare the primary requirements for Workplace 

Dynamics and Task Management at level one, such as "Worker control / Control Over 

Tasks / Supervision" (C1) and "Conflict resolution / bad interpersonal interaction" (C2). 
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Table 11 Determine the benchmarks used to initiate the BWM comparison by following 

the steps outlined in the methodology. 

Table 11 benchmarks criteria 

Criteria Number = 3 Criterion 1 Criterion 2 Criterion 3 

Names of Criteria Worker Control  Conflict resolution Scheduling 

The benchmarks for the best and worst criteria in this analysis were found by analysing 

the data provided by the experts. The best and worst selected criteria must be entered in 

the following step, and the identified criteria are shown in Table 12. 

Table 12 The best and worst criteria identified 

Select the Best Worker Control  

Select the Worst Scheduling 

Pairwise comparisons (PCs) for each branch of the decision system must be constructed 

after obtaining all of the aggregated weights of the 285 evaluators, as indicated below, in 

accordance with the BWM approach. The process compares the best criteria, as shown in 

Table 13, against the other criteria with weighted values. 

Table 13 Best criteria comparison 

Best to Others Worker Control  Conflict resolution Scheduling 

Worker Control  1 4 5 

Continuing with the comparison, Table 14 demonstrates the worst criteria comparison 

against the other criteria using the provided scale from evaluators. 

Table 14 Worst criteria comparison 

Others to the Worst Worker Control  Conflict resolution Scheduling 

Scheduling 5 3 1 

Step 5 of the methodology provides the resulting weighting of the criteria according to 

the BWM. Table 15 shows this data. 

Table 15 resulting weight 

Weights 
Worker Control  Conflict resolution Scheduling 

0.685 0.203 0.111 

The 𝑘𝑠𝑖
∗
shows to what extent the results are reliable. The reliability of the results is 

further determined, and the 𝑘𝑠𝑖
∗
=0.13 indicates the degree of dependability. The resulting 

numbers show proper consistency, usually falling between 0 and 0.2. 

The criteria are significantly different as seen in Figure 13, where “Worker Control” 

accounts for over 68% of the entire value. At the same time, the other two categories are 

less, making up nearly 20% and 11% of the total, respectively. This is an illustration of 

how risks are distributed when employees develop their activities. 
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Figure 13 Criteria Weights 

2.3.1 Worker control sub-criteria 

The identified man criterion "Worker control" has intrinsic divisions of sub-criteria. The 

respondents were asked to compare these divisions at the secondary level, such as 

"Timing control alarms" (C1.1) and "Remote control" (C1.2). Table 16 Determine the 

benchmarks used to initiate the BWM comparison by following the steps outlined in the 

methodology. 

Table 16 Benchmark criteria 

Criteria Number = 3 Criterion 1 Criterion 2 Criterion 3 

Names of Criteria Timing control alarms Remote Supervision Over control 

By examining the data that the respondents submitted, the benchmarks for the best and 

worst sub-criteria in this study were discovered. The best and worst selected criteria must 

be entered in the following step, and the identified criteria are shown in Table 17. 

Table 17 The best and worst sub-criteria identified 

Select the Best Over control 

Select the Worst Remote Supervision 

According to the BWM technique, pairwise comparisons (PCs) for every branch of the 

decision system must be created for every sub-criteria assessment. The process is 

comparing the best sub-criteria, as indicated in Table 18, with all the others. 

Table 18 Best sub-criteria comparison 

Best to Others Timing control alarms Remote Supervision Over control 

Over control 5 6 1 

Using the scale provided by the evaluators, Table 19 presents the comparison of the 

worst sub-criterion against the other sub-criteria. 
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Table 19 Worst sub-criteria comparison 

Others to the Worst Timing control alarms Remote Supervision Over control 

Remote Supervision 3 1 5 

The methodology's fifth step gives the sub-criteria's final weighting in accordance with 

the BWM. This data is displayed in Table 20. 

Table 20 resulting sub-criteria weight 

Weights 

Timing control 

alarms Remote Supervision 

Over 

control 

0.1746 0.1111 0.7143 

The degree of reliability of the results is indicated by the 𝑘𝑠𝑖
∗ = 0.159, and the reliability 

of the results is demonstrated by the ksi with a result lower than 0.2. 

Figure 14 illustrates how the sub-criteria differ significantly from one another. 

Specifically, over control accounts for over 71% of the overall value, whilst the other two 

categories contribute less, accounting for around 17% and 11% of the total, respectively. 

This serves as an example of how risks are allocated as workers expand their scope of 

work. 

 

Figure 14 Sub-criteria Weights 

2.3.2 AHP Method analysis 

Using the method's guided scale, the experts graded the risk, including its immediate 

impact on the worker's health as well as the possibility of future sickness. The method 

created by Thomas L. Saaty (AHP) is used in paired comparison to determine the degree 

of risk importance when evaluating the stressors' importance. This approach makes it 

possible to assess and classify risk thoroughly [107], [108].  
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Table 21 Matrix A= Risk evaluation ratio 
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Wi Ci LAMDAi 1 2 5 

Worker Control  1 1.00 4.00 5.00 2.71 0.67 0.98 

Conflict 

resolution 
2 

0.25 1.00 3.00 0.91 0.23 1.19 

Scheduling 3 0.20 0.33 1.00 0.41 0.10 0.89 

To compare and determine the next steps required to complete the computation, Table 21 

displays matrix A, which illustrates the relationship between each stressor and the scale. 

To ensure that the priority values (weights) allocated to criteria or alternatives are on a 

comparable scale, the reported data are normalised after the matrix comparison has been 

established. Table 22 shows the normalisation for matrix A. 

Table 22 Normalized matrix 

𝐴𝑁 = [
0.74 0.79 0.64
0.15 0.16 0.27
0.11 0.05 0.09

] 

The Consistency Index (CI) and Random Consistency Index (RCI) are calculated using 

equations 2 and 3, respectively. Therefore, if the value is less than 0.1, it determines the 

consistency of the expert opinion. Table 23 shows the results. The RCI indicates how 

inconsistent random judgments of the same size should be, the consistency ratio (CR) 

indicates how consistent the judgments were, and the CI measures how inconsistent the 

paired comparisons were. 

Table 23 Consistency ratio 

 

 

The stressors level S* was finally determined with the consensus indicator and measures 

the overall level of agreement between the decision criteria. The average group 

judgements are compared with the individual judgements to assess the presence of each 

criterion. The primary stressors in the workplace, highlight that 67.42% of Worker 

Control. Following this, 22.60% identify Conflict Resolution as a source of stress. 

Finally, Scheduling is the least reported stressor, with 10.10%. Figure 15 shows the 

Ci= 0.04288335  

Rci= 0.66  

CR= 0.0650 Consistent 
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critical impact of control over work on stress levels, with conflict management and 

scheduling being less prominent but still relevant. 

 

Figure 15 Risk evaluation results 

2.3.3 Worker control sub-criteria AHP analysis 

The identified main criterion, "Worker control", has intrinsic divisions of sub-criteria. 

These divisions were compared using AHP at a secondary level, such as "Timing control 

alarms" (C1.1) and "Remote control" (C1.2).  Table 24 Determine the benchmarks used 

to initiate the AHP comparison by following the steps outlined in the methodology. 

Table 24 Sub-criteria Matrix A= Risk evaluation ratio 

Matrix O
v

er
 

co
n

tr
o

l 

T
im

in
g

 

co
n

tr
o

l 

al
ar

m
s 

R
em

o
te

 

S
u

p
er

v
is

io
n
 

Wi Ci LAMDAi 1 2 3 

Over control 1 1     5     6     3.11 0.72 0.98 

Timing control 

alarms 
2  1/5 1     3     

0.84 0.19 1.23 

Remote 

Supervision 
3  1/6  1/3 1     

0.38 0.09 0.88 

Equation 5, which calculates the validity consistency ratio (CI) and random consistency 

ratio (RCI), indicates the consistency of the specialist evaluation if the value is less than 

0.1. Table 25 presents the findings. The consistency ratio (CR) shows the level of 

consistency in the assessments. 
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Table 25 Sub-criteria Consistency Ratio 

Ci= 0.04700755  

Rci= 0.66  

CR= 0.0712 Consistent 

 

The results of the Row Geometric Mean Method (RGMM) using Shannon A and B are 

used to calculate the AHP consensus. The highest value shown is associated with 

overcontrol. Managers must therefore take these considerations into account when 

assessing the stresses associated with lifting loads. Figure 16 shows that a significant 

factor related to workplace stress is Over Control, with 71.72%, identified as the primary 

source of stress, implying that excessive oversight or micromanagement is a significant 

issue. Timing Control Alarms are a stressor measured as 19.47%.  Lastly, Remote 

Supervision causes stress for 8.81%. 

 

Figure 16 Sub-criteria Risk evaluation results 

2.4 Discussions 

The process of classifying stressors in the context of occupational health examines how 

different elements, particularly psychosocial stressors, affect an individual's physical and 

mental health. This highlights the value of ergonomics and decision-making models such 

as Best Worst Method (BWM) and Analytic Hierarchy Process (AHP) in identifying risks 

and improving worker safety [109]. 
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Psychosocial stressors are strongly associated with a range of adverse health effects, 

including depressive symptoms, psychological dysfunction and physical illnesses such as 

musculoskeletal disorders (MSDs). In the workplace, psychosocial stressors like intense 

workloads, lack of autonomy, and insufficient social support are particularly significant 

in the development of WRMSDs [110]. 

A methodology was used in this study to investigate into the leading causes of manual 

handling stress in different sectors. The methodology was created with two primary 

objectives in mind: first, determining the psychosocial elements that impact manual 

handling activities, and second, evaluating the impact of these factors using multi-criteria 

decision-making procedures like the Best-Worst Method (BWM) and Analytic Hierarchy 

Process (AHP). This approach is in line with previous researchers ' analysis of the 

influence of the risk on the workplace [109], [111], [112]. 

Identifying the ergonomic elements that lead to WRMSDs is a significant management 

concern. Multi-criteria decision-making (MCDM) models have become popular among 

ergonomists as a means of addressing these issues. These models help to assess different 

stressors and their effects on workers' health, enabling companies to take more effective 

preventive measures. The Analytic Hierarchy Process (AHP) is one such method that 

rates ergonomic elements based on variables, including the dangers to workers' health 

and safety. 

The survey was conducted in targeted industries that engage in manual handling and 

material storage, allowing participants to rank stressors they encountered using criteria 

established in a prior chapter's research to determine the primary and secondary criteria 

that are central to the study’s analysis. 

The snowball sampling approach used for the survey could have introduced bias, as 

respondents may have recommended individuals within their professional networks. To 

mitigate this, the initial participants were selected from a range of industries and 

occupations to increase diversity, and demographic data was examined to track 

participation. The overall ranking of psychosocial stressors was also less affected by 

sampling bias due to the application of established, validated criteria and decision-making 

techniques (AHP and BWM), which also helped to ensure consistent responses. 

The integration of the BWM and AHP approaches yielded a thorough and multifaceted 

comprehension of the psychosocial stressors associated with manual handling jobs. In all 
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approaches, "Worker Control" emerged as the most critical component, while "Over 

Control" was identified as a significant stressor within this criterion. These results are 

helpful for sectors looking to optimise work environments through the modification of 

management techniques to lower stress levels, increase autonomy, and increase job 

efficiency. A repeatable foundation for future research on the manual handling of stress 

and psychosocial risk factors is also provided by the study's methodology. The criteria 

were derived from a systematic, PRISMA-based literature review to ensure scientific 

relevance. Using structured, multicriteria decision-making methods (AHP and BWM) 

added analytical rigour by quantifying subjective inputs within a consistent framework.  

The sample size was sufficiently large and demographically diverse to enhance the 

reliability of the results and support a more comprehensive interpretation. 

2.5 Main contributions 

The study provided an in-depth analysis of the stress factors affecting manual handling, 

particularly the psychosocial elements. By using a survey and multi-criteria decision-

making techniques such as the Best Worst Method (BWM) and the Analytic Hierarchy 

Process (AHP), key criteria affecting manual handling stress were identified. "Worker 

control was recognised as the most critical factor in level 1.  "Scheduling was recognised 

as the least significant factor. 

AHP, applied to the overall criteria, emphasised the importance of "Worker Control" in 

manual handling stress, assigning it a weight of 67.42%, closely aligning with the BWM 

result of 68.52%. "Timing Control Alarms" and "Remote Supervision" were ranked 

significantly lower at 21% and 10%, respectively. 

In line with Worker Control, the BWM technique identified Over Control as the dominant 

sub-criterion with a weight of 71.43%. This suggests that the two most stressful aspects 

for workers performing manual handling tasks are having excessive control over their 

work and insufficient autonomy. AHP revealed that "Over Control" by supervisors was 

the most prominent sub-criterion, accounting for nearly 71% of the stress. 

The robustness and reliability of the results were demonstrated by the consistency ratios 

obtained using the two approaches. With a Consistency Ratio (CR) of 0.065, the experts' 

conclusions in the AHP analysis were reliable and consistent. Similarly, BWM shows a 

consistency ratio (𝑘𝑠𝑖
∗
= 0.159), indicating that the results are trustworthy. 
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The application of both BWM and AHP enabled cross-validation of the findings. 

Although they took different approaches, BWM focused on best and worst comparisons, 

while AHP relied on pairwise comparisons; both techniques yielded nearly identical 

results, which strengthened the findings. 

- Thesis (T2): By applying MCDM to categorize the psychosocial factors in a 

sample of 283 participants (185 men and 98 women), with a 95% confidence level 

and 5.83% margin of error, I proved that 'Worker control' is the main psychosocial 

category affecting manual handling tasks, when compared to the other two 

categories (conflict resolution and scheduling), since its weight of importance is 

67.42% in the AHP method (CI: 0.065), and cross-validated by the BWM at 

68.52% (𝑘𝑠𝑖
∗
: 0.13). And inside the 'Worker control' class, 'Overcontrol' is the 

most important factor, when compared to the other two (Timing control alarms 

and Remote Supervision), with 71.72% in the AHP method (CI: 0.071), cross-

validated by 71.43% in the BWM method (𝑘𝑠𝑖
∗
: 0.159). 

 

Own publications related to this chapter:[90], [103] 
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3 STRESS SKIN RESPONSE IN MANUAL HANDLING 

ANALYSIS FOR THE PREVENTION OF MSD 

In the field of manual handling, a detailed study of galvanic skin response provides 

information about the stress level during this task. The structured approach to 

biofeedback-based skin response detection consists of an introduction, methodology, 

presentation of results, and discussion. 

3.1 Introduction 

Galvanic skin response (GSR) or electrodermal activity (EDA) is the physiological 

perspective used to understand how the body reacts to stimuli. A phasic or low-frequency 

response [electrodermal response (EDR)] and a tonic or extremely low-frequency 

response [electrodermal level (EDL)] make up the GSR. It has an obvious connection to 

an external stimulus. This makes the EDA signal highly useful for a variety of study 

domains, including emotion identification and computing [113]. 

Skin conductance has been shown to convey information about the arousal or intensity of 

an emotional state. As well as being established as a strong and reliable indicator of 

emotional state, this signal has also been shown to apply to other areas of health [114], 

[115], [116]. 

Sweaty hands are not the slightest change that affects skin conductance, which depends 

on the activity of the skin's sweat glands. The two electrodes of the Skin Response apply 

a very small, completely safe and undetectable electrical voltage to the skin, through 

which a tiny current passes. The skin becomes wetter and the current conducts better 

when the sweat glands are more active. As a result, the skin's conductivity increases [117]. 

In micro-Siemens (µS, where µ stands for 'millionth' and 'Siemens' is the unit of 

conductivity), the Skin Response measures the conductance of the skin. Skin resistance, 

which is the reciprocal of skin conductance (1S = 1/Ω), is another term often used to refer 

to the same phenomenon [117]. 

The autonomic nervous system regulates the sweat glands of the skin. Both the 

parasympathetic and sympathetic nervous systems are part of the autonomic nervous 

system. Sweat glands on the skin are a good way of detecting 'internal tension' as they are 

only innervated by the sympathetic nervous system, meaning that the parasympathetic 

nervous system has no effect. When stressors are encountered, the sympathetic nervous 
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system triggers all of the body's emergency responses, putting it in a more alert state of 

readiness for action: blood pressure and pulse increase, blood glucose levels rise to access 

a readily available source of energy, and alertness increases. Under the influence of a 

stressful stimulus, the sweat glands become more active, which in turn causes an increase 

in skin conductance. Mental activity, emotional arousal, deep breathing, or even being 

startled - for example, by an unexpected clap of the hand or a loud drop of an object on 

the floor - can all be considered stimuli [117], [118]. 

Electrode Recording Sites 

Two electrodes are often used for electrodermal recording. Endosomatic recording 

requires one active and one inactive site, but exosomatic methods often use two active 

sites. To eliminate the possibility of an electrode making direct electrical contact with the 

other, the two electrodes can be placed on the thenar or hypothenar eminence. Figure 17 

illustrates the preferred location for electrode placement [117], [118]. 

 

Figure 17. Preferred palmar or volar electrode sites.  

  

The disc electrodes used in EDA have their electrode surface on the underside of a 

cylindrical plastic chamber. The electrolyte-containing electrode cream is poured into the 

gap between the electrode surface and the bottom of the ring. The electrode in cross-

section is shown in Figure  18. A sintered silver/silver chloride (Ag/AgCl) layer has been 

applied to a spherical silver plate approximately 6 mm in diameter. The electrodes are 
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typically attached to the skin using double-sided adhesive sleeves of the appropriate size 

[117], [118]..  

 

Figure  18. Electrode 

3.2 Methodology 

This section describes the tools and materials used in the research, including an 

explanation of the experiment methodology. This is followed by a detailed presentation 

of the study and an explanation of the approach taken. 

3.2.1 Sample 

For this study, a total of 13 people (12 men and 1 woman) who had no prior history of 

MSDs affecting the upper extremities volunteered. Each participant received an informed 

permission form and a synopsis of the experiment's objectives and methods at the start of 

the study, as shown in ANNEX E. Conventional methods such as K-Nearest Neighbours 

(KNN) and Convolutional Neural Network (CNN) typically achieve accurate 

identification and classification with several thousand samples per class, according to 

established criteria [119]. To guarantee model stability and generalisation in deep 

learning, it is frequently advised to include at least 10,000–50,000 labelled samples, 

particularly in architectures with several layers [120]. 

.  The reference measurement was the signal that was recorded at the hand. For every 

subject, the palm of the hand serves as the measurement location. Attached to the Thenar 

and Hypothenar eminences were the electrodes. Figure 19 shows the sensors and 

locations used during the research. The data collected from the electrodes is used by the 

eSense Skin Response / Skin Conductance Sensor Biofeedback, a compact and highly 
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effective sensor designed to measure your skin conductance through the microphone 

input of a smartphone. A smartwatch is also used to track HRM in real time. 

 

Figure 19. Sensor devices for tracking biodata in the stress detection experiment 

 

3.2.2 Procedure 

Before the experiments, participants completed a questionnaire about upper extremity 

MSDs. All participants were then given a brief explanation of the experimental protocol 

and given a practice test to acquaint them with the gripping task before the trials began. 

For this study, participants were asked to lift a load from the floor to a height of 75 cm 4 

times per minute for 5 minutes. The activity is repeated twice, as shown in Figure 20. 

Stage 1 consists of the activity without stressors, avoiding disturbance for the worker 

(Figure 20A). This stage requires the participant to complete four kettlebell squats in one 

minute. At this stage, the participant is allowed to look at the timer and divide the activity 

into 4 similar periods (e.g. one repetition every 15 seconds). To begin, place your feet 

shoulder-width apart and stand straight. Then, bend your legs into a squat. Using both 

hands, pick up the kettlebell and hold it near your body. Place the kettlebell on the floor 

and raise your body to a standing posture before bending your legs into a squat. Return 

to the starting position. 

In the second stage (Figure 20B), the more ranked stressor selected in Chapter 3 is 

included to record the data. This stage requires the participant to perform four kettlebell 

squats in one minute. At this stage, in contrast to the previous stage, the participant is not 

allowed to look at the timer and must wait for the instruction to squat to collect the 

kettlebell. As a second difference, the psychosocial factors are incorporated by a second 
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participant, called the activity boss, who consistently gives different guidelines and 

instructions. 

 

Figure 20. Experimental Methodology for Detecting the Influence of Psychosocial Stressors. 

 

For the purpose of reaching and maintaining the same signal level from the start point, 

each participant was instructed to exert a consistent effort by keeping a steady pace 

throughout the squats (same pace during the squats). They were asked to unwind after 

taking part. Skin conductance was measured during all activities and constantly 

monitored, recording the time of each squat repetition. Participants were allowed five 

minutes of rest between each trial to minimise muscle fatigue. The lifting task was 

repeated twice for each participant, who completed 5 trials. After completing the task, 

each participant was asked to provide a subjective rating of discomfort and stress level 

using the modified Borg CR10 scale presented in Table  26 [121]. 

Table  26. Modified Borg CR10 scale 

Level Description of Perceived Stress Interpretation 

0 No stress Completely relaxed 

0.5 Barely noticeable stress Mild mental or emotional discomfort 

1 Very low stress Slightly uneasy 



61 

 

Level Description of Perceived Stress Interpretation 

2 Low stress Moderate tension, but manageable 

3 Moderate stress Feeling pressure, but still under control 

4 Somewhat intense stress High tension, affecting concentration 

5 Intense stress Significant worry, noticeable discomfort 

7 Very intense stress Emotional overload, hard to ignore 

9 Extreme stress At the limit, almost unbearable 

10 Maximum stress Overwhelming stress cannot be sustained for long 

 

3.2.3 Data classification Labelling 

Stress detection using physiological indicators like heart rate monitoring and galvanic 

skin conductance (GSC) has become an effective means to evaluate stress conditions. 

GSC measures the electrical conductivity of the skin, and it rises with sweat gland 

activity, which is usually brought on by stress.  

The instrument uses µS to express stress level data. It provides time stamps to determine 

the exact times at which measurements were taken. The stress variable indicates the 

presence of stress when its value is 2, and the absence of stress when it is 1. Analysis of 

cases where stress = 2 is used to track variations in µS levels during these periods to 

identify when stress occurs.  

3.3 Results  

The autonomic nervous system's reaction to stress, as reflected in GSC, is frequently 

associated with varying degrees of stress. This section presents the data from a non-

invasive way to detect stress. 

3.3.1 Galvanic Skin response 

The mean conductivity value during stress is 6.98 µS. Values range from a low of 0.96 

µS to a high of 13.11 µS. The 50% of the measurements during stress are between 4.01 

µS and 9.98 µS. There is considerable variability in the measurements (standard deviation 

of 2.77). The trend lines for the stress and no-stress data are identified, and the index of 

the filtered Data Frames is reset to ensure proper alignment, allowing valid indices to be 

used to identify points. 

In the next step, to evaluate the statistical significance of the trends, descriptive statistics 

for both stress and no-stress data were performed, and a linear regression analysis was 

performed to determine the p-value for the trends. These data results are presented in 

Table 27. 
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Table 27. Descriptive statistics for the trends in both stress and no-stress data 

Condition Count Mean SD Variance Min Median Max Skewness Kurtosis Slope 

All Data 35350 6.49 2.52 6.36 0.75 7.10 13.11 -0.03 -0.85  

Non-

Stress 
18230 6.02 2.16 4.68 0.75 6.18 9.76 -0.34 -1.08 

6.43e-05 

Stress 17120 6.98 2.77 7.67 0.96 7.65 13.11 -0.08 -1.08 2.4 e-04 

 

Table 27 provides descriptive statistics and trend analysis for both stress and no-stress 

data. The p-value of less than 0.05 confirms that the observed increase is statistically 

significant, meaning it is unlikely to be due to chance.  

In the first 60 seconds shown in Figure 21, the differences in skin conductance between 

the stress and non-stress conditions are reflected in the initial difference in body activity 

time. The mean skin conductance under stress is 7.28 µS, and in the non-stressed state, it 

is a lower mean of 5.63 µS. 

 
Figure 21. Stress and Non-stress conditions in the initial periods 

Figure 22 shows the parasympathetic response during the last 60 seconds of the 

experiment; the differences between the stress and no-stress conditions became much 

more pronounced. The mean skin conductance in the stress condition increased 

significantly to 7.25 µS, with a standard deviation of 0.17, maximum peak 7.44 and 

minimum peak 6.5µS. In contrast, the no-stress condition showed a smaller increase with 

a mean of 6.24 µS, a standard deviation of 0.48 Max maximum peak 6.42 and minimum 

peak 6 µS.  
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Figure 22. Stress and Non-stress conditions in the final periods 

The p-values show highly significant differences between the stress and no stress 

conditions. In the first 60 seconds, the p-value was p<0.005, indicating that these 

differences did not occur by coincidence. In the last 60 seconds, the p-value was even 

smaller, meaning that there is virtually no chance that these differences are due to 

coincidence. 

The patterns of the data for all participants' skin responses under stress are represented in 

Figure 23. 

 

Figure 23 Raw data stress response for all participants 

The detection zone of the patterns of the data for all participants' skin responses in non-

stress is represented in Figure 24. 
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Figure 24 Raw data non-stress skin response for all participants 

 Figure 25. The slope for the no stress condition is 0.000026 µS/second (slightly positive 

trend), showing a slow increase. From an initial value of 5.69 µS, there is a total increase 

of 1.45 µS over 300 seconds. A lower linear relationship is shown by the R-squared value 

of 0.004983. In the stress situation, the slope is 0.001156 µS/second (positive trend), 

indicating a higher increase; there is a total increase of 5.67% over 300 seconds. 

Compared to the no-stress scenario, the R-squared value of 0.000792 indicates a stronger 

linear relationship. 

 

Figure 25. Trend detection of mean stress over 5 minutes 
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During the test, an external problem was detected in two participants. To reduce 

interferences and missing data caused by external variables, such as excessive dryness of 

the participant's skin, a data filtering process was applied with a threshold of data ± 2SD.  

After applying the filter, Figure 26 shows the data patterns for each participant's skin 

response to the no-stress condition. 

 

Figure 26 Non-stress skin response after data filtering 

Figure 27 shows data patterns for all participants' skin reactions under stress following 

the filter's application. 

 

Figure 27 Stress skin response after data filtering 
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The new mean data set after filtering is shown in Figure 28. Where the "stress" condition 

shows values around 6.5-8 µS, the "non-stress" condition shows lower values, around 6 

µS. 

 

Figure 28Average skin response after data filtering 

3.3.2 Heart rate stress detection 

Heart rate is a direct physiological indicator of the body's reaction to stress, providing 

information about how the cardiovascular system responds to pressure, making it an 

essential tool for stress detection. A valuable technique for tracking both acute and 

chronic stress levels, heart rate variability, when combined with metrics such as mean 

beats per minute, aids in identifying patterns linked to stress. Under stress, the mean heart 

rate is higher (96 beats per minute) than it is under non-stress (92.15beats per minute). 

Measurement variability is higher under stress (standard deviation of 14.15). Stress 

causes a broader range of values, up to 98.9 beats per minute. The distribution of heart 

rates under stress and non-stress settings differs, as visualised in Figure 29. 

Stress significantly affects cardiovascular responses, according to a statistical analysis of 

heart rate data. Under stress, the mean heart rate increases from 92.8 to 97.6, an increase 

of 5.72%. There is a moderate to high correlation (0.719) between stress-free and stress-

induced heart rate readings. These results show that stress not only increases heart rate 

but also makes it more variable, suggesting increased physiological reactivity. 
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Figure 29. Heart rate stress detection 

Without stress, the peaks are less perceptible and more widely distributed, with a mean 

of 88.7 beats per minute and a maximum of 96.15 beats per minute, based on trends in 

the behaviour of heart rate in both stressful and non-stressful environments. In this case, 

the trend line's slope (0.783) shows that the heart rate has been gradually declining over 

time. With a mean of 32.90 beats per minute and a maximum of 37.22 beats per minute, 

the peaks are more frequent and a bit higher during stressful situations. Given that the 

trend line is positive (1.1308), the heart rate appears to be gradually rising over time. In 

general, heart rate tends to increase during stressful situations and fall considerably during 

non-stressful ones. Furthermore, a more dynamic physiological reaction is shown in the 

stressed data's increased variability. 

The t-test was used to compare heart rate data under stress and non-stress conditions, and 

the descriptive statistics explain the results, where t-statistic: -1,727 and p-value: 0,044. 

The p-value indicates a statistically significant difference between heart rate under stress 

and no stress conditions, which suggests that stress has a measurable effect on heart rate. 

These statistical summaries are presented in Table 28. 

Table 28. Descriptive Statistics 

 MEASURES NO STRESS (1) STRESS (2) 

COUNT 65.0 65.0 

MEAN 92.15 96.0 

STD 13.39 14.15 

MIN 74.0 76.0 

25% 81.0 86.0 

50% 88.0 92.0 

75% 103.0 111.0 
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 MEASURES NO STRESS (1) STRESS (2) 

MAX 132.0 126.0 

RANGE 58.0 50.0 

DEGREES OF FREEDOM 64  

T-STATISTIC -1,727  

P(T<=T) ONE-TAILED 0,044  

CRITICAL VALUE OF T (ONE-TAILED) 1,669  

To demonstrate the heart rate behaviour, the information from Participant 5, shown in 

Figure 30, provides insight into how stress affects their heart rate in a specific way, 

allowing for personalised monitoring. It shows how changes over time can be accurately 

tracked and trends assessed, which can be used as early warning signs of health problems 

or poor stress management.  

 

Figure 30. Statistical Analysis for Participant 5 

There are noticeable differences between the heart rate readings taken under stressful and 

non-stressful conditions. A statistically significant difference between the two groups is 

indicated by a t-statistic of -13.364 and a p-value <0.05. Under stress, the median heart 

rate was 79.0 bpm and 117.0 bpm, while the mean heart rate increased by 37.8 bpm (from 

79.8 bpm to 117.6 bpm). With a standard deviation of 4.8 bpm (compared to 2.99 bpm at 

rest) and a range of 15.0 bpm (compared to 8.0 bpm), the standard deviation and range 

show increased variability with exercise. These findings are supported by the variance 

and standard error, which show greater dispersion and reliable mean estimates. The effect 

of stress is clearly visible in the minimum and maximum values, where even the lowest 

stressed heart rate exceeds the highest non-stressed value. The presented descriptive 

statistical data are illustrated in Table 29. 
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Table 29.Descriptive  Statistical Analysis for Participant 5 

STATISTIC NO STRESS STRESS 

T-STATISTIC -13.3643 
 

P-VALUE 0.0000009400   

MEAN (BPM) 79.8 117.6 

MEDIAN (BPM) 79.0 117.0 

STANDARD DEVIATION (BPM) 2.99 4.8 

MINIMUM (BPM) 77.0 111.0 

MAXIMUM (BPM) 85.0 126.0 

RANGE (BPM) 8.0 15.0 

VARIANCE 8.96 23.04 

STANDARD ERROR 1.5 2.4 

 

3.3.3 Physiological signal comparison on Stage 2 

Heart rate is a versatile tool for monitoring and evaluating recuperation, and over time, 

while skin conductance response offers information about the effects of stress on the skin. 

These assessments provide valuable insights into how the body reacts to stress, which can 

be utilised to detect possible health hazards, enhance productivity, and foster mental 

health. The analysis contrasts heart rate with µS for stress detection. The statistical tests 

for both measurements confirm significant differences between stress and non-stress 

situations. The results during the task under stress are presented in Table 30. 

Table 30. Descriptive Statistical variables under stress 

  Stress(2) 

Sample 10905 

Med 7.71 

SD 3.559 

Min 0.96 

Q1 4.01 

Median 7.81 

Q3 9.98 

Max 18.83 

Stress and non-stress states differ significantly, according to statistical analysis, especially 

in skin conductance (measured in µS). Stress causes a 21.55% increase in the mean µS 

level, a higher standard deviation of variability, and noticeably higher maximum values. 

With a moderate effect size (Cohen's d = 0.44) and a highly significant difference (p < 

0.001), statistical tests support this. 14 distinct state transitions are revealed by temporal 

analysis, with a mean of 1608.69 samples per state (minimum 1498, maximum 1980). In 

Figure 31, the zones, which have more variability and prominent peaks under stress, 

indicate tension. According to these results, µS are a strong and trustworthy stress 

detection indication that exhibits distinct statistical and temporal distinctions. 

Additionally, heart rate is higher during stress (96 vs. 92.15 beats/min on mean) with 
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greater variability (standard deviation 14.1 vs. 13.3), further supporting the physiological 

distinction between stress and non-stress conditions. 

 

Figure 31. Stress detection µS vs Heart rate 

 

3.3.4 Influence of Biophysical Data in the Manual Handling Predictions Model 

The new biophysical data for manual handling prediction models, in this case, Garg 

created in 1978, is to increase the models' precision to evaluate worker safety and 

productivity. Garg's model was designed to measure metabolic energy expenditure and 

assess the physical demands of manual handling jobs [122]. The data from the original 

model went from 3.23 kcal/min to 8.7 kcal/min. 

To calculate the energy consumed, used the method of Keytel et al. (2005) formula [123]. 

Calculation of kilocalories per minute (kcal/min) is based on heart rate in beats per minute 

(BPM), which correlates with metabolic equivalents and oxygen consumption. Weight is 

expressed in kilograms, age in years, and HR is the heart rate expressed in beats per 

minute in these calculations. These values are all multiplied by certain constants, then 

summed and corrected by subtracting a base value. Finally, the measurement is converted 

from kilojoules to kilocalories per minute by dividing the total by 4.184.  The new 

biophysical data used to detect the stress influence are presented in Table 31, showing the 

descriptive statistical variables for comparison with the kcal values from the Garg model.  
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Table 31. Comparison of the New biophysical data to the Garg model 

 

 

The data from Garg's model was used as the basis for the NIOSH equation to analyse the 

recommended weight limit. These data were compared with the newly obtained 

biophysical data introducing stress to understand the influence of psychosocial factors. 

The t-test results indicate a statistically significant difference between Variable from Garg 

model (mean: 6.002) and New biophysical data (mean: 19.6). The t-statistic of -3.68 

exceeds the critical values for both one-tailed (2.13) and two-tailed (2.78) tests, with 

corresponding p-values of 0.011 and 0.021, respectively, both below the 0.05 significance 

threshold. This confirms that the difference in means is unlikely due to random chance. 

New biophysical data show much greater variability (variance: 108.65) compared to the 

Variable from the Garg model (variance: 4.69), and the Pearson correlation coefficient of 

0.998 highlights a powerful positive relationship between the paired observations.  

New biophysical data exhibit significantly higher values with greater variability, 

suggesting a meaningful difference between the two conditions or groups represented by 

the variables. These results are shown in Table 32. 

Table 32. T-test results comparing original data from the Gangs model and new biophysical data. 

  

Variable from the 
Garg model 

New biophysical 
data 

Media 6,002 19,6 

Variance 4,68657 108,646939 

Observations 5 5 

Pearson Correlation Coefficient 0,99838024  
Hypothetical Mean Difference 0  
Degrees of Freedom 4  
t-Statistic -3,67980145  
P(T<=t) One-Tail 0,01060383  
Critical t Value (One-Tail) 2,13184679  
P(T ≤ t) Two-Tail 0,02120766  

Critical t Value (Two-Tail) 2,77644511   

 

Minutes New under Stress 
Kcal/min   

Garg Predicted Metabolic 
Rate (Kcal/min) 

1 6,57142857 3,23 

2 13 4,65 

3 19,7142857 6,03 

4 25,4285714 7,4 

5 33,2857143 8,7 
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3.4 Discussions  

Heart rate variability (HRV) and galvanic skin response (GSR) are two biological 

indicators that are being used in stress detection. This method of detection is becoming 

more and more dependable and non-invasive. These physiological measures are valuable 

tools for industrial applications because they show quantifiable changes in response to 

stress as the autonomic nervous system's reaction. 

Stress detection by GSR involves the analysis of micro-Siemens values, with the mean 

micro-Siemens value being 8.13, ranging from 0.96 to 18.83 µS. The variability of these 

measurements, reflected in a standard deviation of 3.56, underlines the diversity of 

individual stress responses. Statistical trends, such as a linear regression slope of 

0.000244587 and a highly significant p-value of 2.009096241e-68, confirm a consistent 

increase in skin conductance under stress, which increases with sweat gland activity, a 

response typically triggered in this condition. Clusters for stress and no-stress 

circumstances can be distinguished by pattern recognition in GSR data. Under stress, 

these clusters exhibit more variable behaviour and more observable peaks. The 

statistically significant differences between stress and no-stress states (p < 0.001) validate 

GSR as a robust and non-invasive tool for stress detection. The assessments of µS values 

demonstrate the method's sensitivity and reliability in identifying stress. 

Significant changes in heart rate patterns during stress are indicative of the cardiovascular 

system's response to stress and the body's increased physiological sensitivity. In response 

to stress, the mean heart rate increases from 76 to 126 beats per minute, while the standard 

deviation is higher, 14.15. In addition, stress causes more frequent and pronounced peaks 

in heart rate compared to the smoother, more stable patterns seen in non-stressful 

situations. Statistical analysis confirms the significance of these differences. A t-test 

comparing heart rate data under stress and no-stress conditions yields a p-value of 0,044, 

indicating a statistically significant difference. This finding supports the validity of heart 

rate as a reliable indication of physiological stress by demonstrating the quantifiable 

effect of stress on heart rate. Heart rate trends further support this conclusion. When under 

stress, the heart rate gradually rises (a positive slope of 1.13), but when not under stress, 

it grows more slowly (a slope of 0.7). These patterns highlight how stress affects the 

body's autonomic functions and show how it dynamically affects cardiovascular activity. 

The 5-minute duration considered in the test captures body changes before the heart rate 

stabilises during warm-up. This emphasises that under stress conditions, the stabilised 
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heart rate after warm-up time for the body for long-period tasks will be higher than in 

non-stress conditions. This time and BPM factor is consistent with the factors identified 

in studies of body stabilisation time during exercise [124], [125]. 

Data from galvanic skin conductance (GSC) and heart rate are used to provide a 

comprehensive view of stress responses. This combination of signals enhances the 

precision and reliability of stress detection by capturing distinct aspects of physiological 

reactivity. The body's increased autonomic nervous system activity during stress is 

reflected in both measurements' increased variability. With clear transitions observed in 

visual representations, such as the red zones for stress in Figure 31, the temporal patterns 

additionally show the clear differences between stress and no-stress states. 

This study offers a nuanced understanding of how stress affects metabolic rates and 

overall worker efficiency by integrating biophysical data from manual handling under 

stress into established models, such as Garg's manual handling framework, thereby 

enhancing our comprehension of stress's impact on physical performance. 

With a mean of 19.6 kcal/min under stress as opposed to the model's projected mean of 

6.002 kcal/min, a comparison with Garg's original model shows that stress dramatically 

increases metabolic rates. Despite greater variability under stress, the high Pearson 

correlation coefficient (0.998) shows a tight alignment between the observed and 

projected data, and the t-test findings suggest that this difference is statistically 

significant. These results highlight the significant effects that stress can have on energy 

consumption and physical exertion. 

The use of the eSense skin conductance device for GSR monitoring and a consumer-grade 

smartwatch for heart rate tracking introduces certain limitations in measurement accuracy 

compared to medical-grade equipment because they are designed for ease of use, 

portability, and non-invasive real-time monitoring, which makes them suitable for 

repeated manual handling tasks, considering it has shown acceptable reliability in 

previous research on stress detection [126]. To address this, the experimental design 

emphasised consistent sensor placement and signal preprocessing or data filtering. 

GSC, heart rate monitoring and metabolic rates together provide a robust and efficient 

basis for stress analysis and detection. In addition to advancing the study of stress-related 

outcomes, these technologies open the door to targeted therapies that reduce the adverse 

effects of stress on performance and health. This study combines GSR and HR 
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monitoring, which are based on physiological signals, to offer a more concrete and 

objective method of identifying psychosocial stressors during manual handling tasks. The 

results consistently show increased heart rate (HR) and galvanic skin response (GSR) 

activity under high-stress conditions. As earlier research focused on the impact of 

psychosocial factors, such as workload and job control, on the development of 

musculoskeletal diseases, the accuracy of stress detection was limited as it mainly 

depended on self-report questionnaires and observational correlations [127], [128]. 

Additionally, the impact of work-related stress on musculoskeletal disorders (MSDs) was 

examined; however, physiological data were not employed to verify stress in real time 

[129]. Earlier ergonomic evaluations of manual handling activities have relied on 

subjective techniques like the NASA Task Load Index and the Job Content Questionnaire, 

which collect self-reported information on stress, control, and perceived workload [130], 

[131]. These methods have helped establish a correlation between work-related stress and 

psychosocial elements, but they are unable to measure physiological reactions in real 

time. Studies have shown, for example, how job pressures affect musculoskeletal health, 

but their methods lacked real-time biological data, which prevented them from directly 

capturing physiological changes as they occur. 

This study, on the contrary, presents a novel empirical technique that uses wearable 

technology to record GSR and HR while individuals conduct regulated manual handling 

tasks in stressful situations. This configuration allows for the measurement of stress-

related autonomic nervous system reactions, providing insights that are time-

synchronised with tasks. Similar physiological monitoring research used biofeedback to 

detect driver stress, but they weren't used in the context of manual handling or workplace 

ergonomics [132]. Additionally, they recommended integrating biomechanical and 

psychosocial elements, but they failed to create an experimental model as 

multidisciplinary and robust as the one this chapter suggests [133]. 

3.5 Main contributions 

The study demonstrated the efficacy of Heart Rate Variability (HRV) and Galvanic Skin 

Conductance (GSC) as physiological indicators for non-invasive stress detection. The 

study showed the sensitivity and reliability of these measures in discriminating between 

stressful and non-stressful situations by measuring responses using heart rate variability 

and µS levels. Significant changes were validated by statistical analysis, confirming their 

viability for use in industrial settings. 
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- Thesis (T3): Applying a bio data (GSR and BPM) system in a controlled 

laboratory setting with 13 participants. I proved that the 'Overcontrol' 

psychosocial risk factors introduced during manual handling tasks produce a 

variation in the autonomous nervous system response, generating a heart rate 

mean increase from 76 to 126 beats per minute, thus a higher mean of GSR under 

a stressful environment with a p < 0.01. The Skin response represented by the peak 

impedance mean significantly different under stress and non-stress conditions 

with impedance values of 8.13 µS and 6.62 µS, respectively.  

Own publications related to this chapter:[134], [135]. 
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4 MACHINE LEARNING METHODS FOR STRESS 

DETECTION DURING MANUAL HANDLING TASKS 

In manual handling, the sites and types of injury vary from the knee, lower back, shoulder 

and biceps. Muscle strains from lifting loads and cartilage and tendon injuries from higher 

repetitive movements are common, highlighting the fatigue, stress and conditioning risk 

factors in this industrial activity [136]. 

4.1 Stress detection 

Sensors are now crucial to medical research and related fields. These are typically used 

to measure and identify different diseases and their severity. Wearable sensors are gadgets 

that use one or more sensors, such as GSR sensors. Scientists accept stress as a significant 

contributor to several health issues, some of which can be fatal if undetected [137].  

Depending on the time, stress can be classified into three categories: acute stress, episodic 

acute stress, and chronic stress. Acute stress goes away fast, while chronic stress persists 

for a long time [138]. 

The analysis of medical signals is typically complex, especially when long-term signal 

recordings are involved. To identify relevant signal features, a variety of signal processing 

techniques are employed. A supervised classifier, or cluster analysis, is directly fed the 

values of the collected features. By categorising these bio signals, medical professionals 

can read the signals more effectively and provide the proper care [139]. 

Computers learn from previous work in the field of machine learning, using 

computational techniques to extract knowledge from data without explicit programming 

or reliance on a pre-defined formula. The system uses both supervised and unsupervised 

learning methods to acquire knowledge. Unsupervised learning involves the machine 

identifying a pattern in unlabelled input data.  Choosing the best machine learning 

algorithm for model training can be challenging; therefore, the experimental method is 

commonly used to identify the most effective algorithm. The first step in building a 

machine learning algorithm is to clean the data and apply various preprocessing 

techniques to improve the data. This stage ensures better algorithm performance. The next 

stage is feature extraction, where the machine learning algorithm is given the descriptive 

features that have been extracted from the data [137]. 
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Skin conductivity (electrodermal activity or EDA) data is categorised using the K-Nearest 

Neighbours (KNN) method based on its similarity to labelled samples to identify stress. 

EDA signals have characteristics such as signal entropy, mean conductivity and derived 

peaks. By calculating distances (such as Euclidean) between a fresh sample and stored 

data points, the technique places the sample in the majority class of its k nearest 

neighbours. Although KNN is efficient and straightforward for stress detection, it can be 

computationally expensive on large datasets and sensitive to unimportant factors. To 

achieve accurate classification, k-value tuning and feature selection must be done 

correctly. 

To identify stress, the Convolutional Neural Network (CNN) technique automatically 

learns patterns in skin conductance (also known as electrodermal activity, or EDA) 

signals by using convolutional layers to identify spatial and temporal patterns, in contrast 

to traditional techniques that require manual feature extraction. CNNs process raw EDA 

signals. These layers use filters to extract essential features, which are then sent through 

pooling layers to increase computational efficiency and reduce dimensionality. The 

extracted features are categorised into weighted and unweighted groups by fully 

connected layers. 

Artificial neural networks with numerous layers are used in deep learning, a form of 

machine learning, to automatically identify patterns in massive data sets. It excels at 

analysing complex, high-dimensional data, such as physiological signals. 

4.2 Methods 

A wearable is used to collect the stress data from the subjects during squatting to assess 

the biodata metrics involved in manual handling tasks. The wearable has two electrodes 

to measure undetectable electrical voltage from the skin, which are connected to a 

dedicated smartphone. Researchers then collect the data to train several machine learning 

(ML) models. These models were then tested to identify the best option based on 

computational parameters such as execution time and memory usage. 

The wearable used in the Obuda University laboratories is described in section 3.2. A 

total of 13 people (12 men and 1 woman) with no history of upper extremity MSDs 

volunteered for this study. 

The specialist then evaluated the data annotation. The specialists identify the tests and the 

data of each exercise sequence according to their intrinsic properties, labelling the 
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exercise without stress as 1 and the exercise under stress conditions as 2. Thus, the 

presence of stress when its value is 2 and the absence of stress when it is 1. 

4.2.1 Wearable Design 

The design of the wearable experiment is a detailed representation of all its systems and 

the steps to determine the presence of stress. The created design utilises several phases, 

as shown in Figure 32. 

 

Figure 32 Developed experiment to determine the presence of stress 

4.2.2 Preparing Data 

The squat session begins when the electronic device detects skin conductance. Machine 

learning models can be affected by outliers, which are samples that show errors and drift, 

even with calibrated sensors. We therefore adopted two different strategies to identify and 

remove outliers [140]. Condensed Nearest Neighbour (CNN) is an algorithm that keeps 

the points closest to the edge points of the decision boundary in the first method, known 

as the prototype selection technique [141]. The use of models for the detection of outliers 

is the second method. These models can identify data that differs from the rest in terms 

of distribution. In this approach, unsupervised analysis is performed, and the model 

determines which samples should be removed. An approach called One-Class SVM 

(OSVM) detects the density of the majority class and labels instances at the extremes of 

the density function as outliers [142]. 
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4.2.3 Classification Algorithms 

The methods have embraced the following classification: (i) A new instance's distance 

from a training base is calculated using the k-nearest Neighbour (k-NN) algorithm, which 

then allocates it to the closest group according to its association. (ii) The following models 

use the Convolutional Neural Network (CNN) algorithm, which finds patterns in images 

to recognise objects, classes, and categories. This means that any data can be used with 

it. (iii) Deep learning to detect pattern data using fully connected neural network designs. 

4.3 Results 

The wearable should have a memory to store participants' data, export it and apply 

appropriate machine learning models that can test, identify and classify stress. To 

differentiate between stress and non-stress conditions, models have been developed using 

supervised learning. 

4.3.1 K-Nearest Neighbours (KNN)  

The K-Nearest Neighbours (KNN) technique was used to discriminate between stress and 

non-stress conditions using the µS variable. Cross-validation, performed after scaling the 

data, yielded accuracy scores ranging from 41.37% to 73.56%, with a mean accuracy of 

56.06% and a standard deviation of 11.44%. The results presented in Table 33 suggest 

that the accuracy of the model was moderate, although it was able to discriminate between 

different levels of stress to some extent. To facilitate understanding of the categorisation 

results, a confusion matrix and a decision boundary visualisation were also produced. 

Table 33KNN Classifier Results for Performance on Stress Detection 

Features k Test 

Accuracy 

CV Mean 

Accuracy 

Non-Stress 

Precision 

Stress 

Precision 

µS + relative 

seconds 

1 1.0000 1.0000 1.0000 1.0000 

µS only 10 0.6629 0.6549 0.6416 0.6994 

The model showed a slight bias towards more reliable detection of stress states when 

using µS alone. It was more accurate in detecting stress situations (69.94%) compared to 

non-stress conditions (64.16%). 

4.3.2 Convolutional Neural Network (CNN)  

The convolutional neural network (CNN) model demonstrated highly predictive 

characteristics, achieving 100% accuracy in identifying stress levels from skin 

conductance data and relative time. With 5,469 true negatives, 5,136 true positives, and 

zero false classifications, the confusion matrix verified flawless classification. The model 
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showed a good fit, converged rapidly, and the loss fell below 0.001 within fifty cycles, as 

shown in Table 34. To pre-process the data, participants 7 and 13 were eliminated, time 

was converted to relative seconds, features were standardised, and a 70/30 train-test split 

was applied while maintaining class balance. 

Table 34 Convolutional Neural Network accuracy on stress detection 

Metric Non-Stress Stress Note 

Precision 1.00 1.00 
 

Recall 1.00 1.00 
 

F1-Score 1.00 1.00 
 

Support 5,469 5,136 Number of test samples 

Overall Accuracy 1.00 
 

100% accuracy on test data 

4.3.3 Deep Learning  

The deep learning model achieves 100% classification accuracy by effectively 

differentiating between stress and non-stress conditions using skin conductance data. 

Following the exclusion of participants 7 and 13, the final dataset comprised 35,350 

samples, exhibiting a balanced distribution of 18,230 non-stress and 17,120 stress 

samples, a reduction from its original 13 participants. The absence of false positives and 

false negatives, coupled with the presence of 5,469 true negatives and 5,136 true 

positives, was further validated by a confusion matrix that demonstrated impeccable 

categorisation. A notable conclusion was that the µS measurement (importance: 0.2233) 

was less predictive than relative time (importance: 0.7058). This finding indicates that 

temporal patterns in skin conductance are significant for the detection of stress. The 

model attained an optimal ROC AUC score of 1.0, thereby demonstrating its remarkable 

capacity to differentiate between stress and non-stress conditions accurately. 

4.3.4 KNN and Deep Learning 

The Deep Learning model and the K-Nearest Neighbours (KNN) model with k = 1 both 

obtained 100% accuracy and a Receiver Operating Characteristic Area Under the Curve 

(ROC AUC) of 1.0, thereby demonstrating flawless classification of stress and non-stress 

states. Due to its superior simplicity, speed, and interpretability, the KNN model is a 

favourable option for simple applications. Furthermore, the evaluation of feature 

importance in the Deep Learning model revealed that relative time (0.7058 important) 

emerged as a superior predictive metric compared to the µS measurement (0.2233 
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importance). This finding underscores the critical role of temporal patterns in skin 

conductance data in the identification of stress, as shown in Table 35. 

Table 35  KNN and Deep Learning for stress detection 

Aspect Finding 

Model Accuracy Both KNN and Deep Learning achieved 100% accuracy (1.0000). 

ROC AUC Score Both models reached an AUC of 1.0000. 

Interpretability 

KNN: High interpretability and simplicity; Deep Learning: More 

complex, but provides feature importance insights. 

Feature Importance 

Deep Learning highlighted that relative_seconds (0.7058) is 

more influential than µS (0.2233). 

Overall Comparison 

Both models perform equally well, achieving perfect 

classification results on this dataset. 

4.3.5 Comparison Of Machine Learning Methods for Stress Detection 

After comparing machine learning models for stress detection, CNN and KNN + DL 

outperformed the others, achieving nearly perfect accuracy with an R2 score of 0.9996, 

mean square error (MSE) of 0.0031, and mean absolute error (MAE) of approximately 

0.035, as illustrated in Table 36. This suggests that these models are almost accurate in 

predicting stress levels. Although it had a slightly lower R2 (0.99993) and slightly larger 

errors (MSE = 0.0053, MAE = 0.0458), the KNN model also performed well. The SVR 

(Deep Learning) model, on the other hand, did not perform well on this dataset, as 

evidenced by its negative R2 score (-0.0397) and large prediction errors (MSE = 7.9388, 

MAE = 2.1218).  

Table 36 Comparison of Machine Learning Methods on Stress Detection 

Method Mean Squared Error 

(MSE) 

Mean Absolute Error 

(MAE) 

R² 

Score 

Rank 

KNN + DL 0.0031 0.0358 0.9996 1 

CNN 0.0031 0.0352 0.9996 2 

KNN 0.0053 0.0458 0.9993 3 

SVR (Deep 

Learning) 

7.9388 2.1218 -0.0397 4 

The 3D visualisation of stress classification data in Figure 33 shows the relationship 

between skin conductance measurements. Each layer corresponds to a different 

participant, while the z-axis shows the skin conductance response (SCR) as an indicator 

of physiological stress levels. Red areas represent stress, while blue areas represent non-

stress states. This structured pattern shows the models that achieve 100% classification 

accuracy. A highly significant link between the variables under analysis was indicated by 

the incredibly small p-value (6.847 × 10⁻¹⁰²⁶) obtained from the Chi-square test.  
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Figure 33 Stress classification 3D model  

 

4.4 Discussion 

Using skin conductance (µS) and relative temporal features, this study investigated how 

well different machine learning models classified stress and non-stress scenarios. K-

Nearest Neighbours (KNN), Convolutional Neural Networks (CNN) and Deep Learning 

models were all presented and compared[143], [144]. 

The KNN model showed reasonable classification accuracy, with cross-validation scores 

ranging from 41.37% to 73.56%, with a mean of 56.06% and a standard deviation of 

11.44%. There was a small bias in the confusion matrix to identify stress states (69.94%), 

as opposed to non-stress states (64.16%). On the other hand, KNN achieved 100% 

accuracy when both relative seconds and µS were used as functions. This suggests that 

the model works best when the data set is appropriately scaled and organised in 

accordance with the behaviour of the studies about accuracy [134], [143]. 

In comparison, the CNN and deep learning models performed better, classifying 

everything perfectly with 100% accuracy. There were no false positives or false negatives 

because of the CNN model's successful differentiation of stress levels. The fact that the 
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CNN converged quickly - the loss value fell below 0.001 in 50 cycles - was a key finding. 

The importance of relative time (0.7058) in stress classification was also shown by deep 

learning approaches to be greater than that of µS (0.2233). This emphasises the 

importance of temporal patterns in stress detection [137]. 

The best model, according to the comparison in the study, as indicated (Table 36), was 

KNN + deep learning, followed by CNN. The low prediction errors of these models (MSE 

= 0.0031, MAE = 0.035) allowed them to achieve an R2 value of 0.9996. The single KNN 

model had slightly larger errors (MSE = 0.0053, MAE = 0.0458), but still performed well. 

However, the SVR-based Deep Learning model fell short with a negative R2 score (-

0.0397) and significant prediction errors (MSE = 7.9388, MAE = 2.1218). 

The findings demonstrate the efficiency of machine learning in stress detection, mainly 

when temporal features are used. Additionally, supporting the robustness of the findings 

was the Chi-square test, which verified a very significant association between the 

variables under study (p=6.847e-1026). 

By integrating the machine learning models created in this study into wearable 

technology, they can be implemented in practice and used to assess stress in real time 

during manual handling tasks. When signs of excessive stress are detected, interventions 

such as task modification or rest periods can be initiated to minimise the risk of 

musculoskeletal disorders (MSDs) and reduce fatigue. The results of the combined model 

can also inform managerial decisions and long-term ergonomic improvements. 

4.5 Main contributions 

The study provided a comprehensive assessment of the advantages and disadvantages of 

KNN, CNN and Deep Learning models by methodically comparing their performance 

using skin conductance (µS) and relative time data. The study's findings highlighted the 

importance of temporal patterns in physiological stress detection, with relative time 

(0.7058) being a more significant predictor of stress than µS (0.2233), as revealed by 

feature importance analysis. The CNN and deep learning models demonstrated their 

applicability for high-fidelity stress classification by achieving 100% accuracy, no false 

positives and fast convergence (loss < 0.001 in 50 cycles). 

The study presented detailed performance metrics (MSE, MAE, and R2) that 

demonstrated the superior predictive performance of KNN + Deep Learning models (R2 
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= 0.9996). With a highly significant p-value of 6.847 × 10⁻¹⁰²⁶, the Chi-square test was 

used to validate the models' dependability. 

- Thesis (T4): In a controlled laboratory setting with 13 participants, comparing the 

4 most common machine learning models for stress data classification, I have 

proved that KNN+Deep Learning models have the highest level of accuracy of 

100%, showing 0.9996 as R² (coefficient of determination) and a p-value of   

3.66e-06 for stress detection. 

Own publications related to this chapter: [134], [135] 
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5 CONCLUSIONS 

The contributions and innovations presented in the thesis are presented in this section. It 

highlights the significance of the study and reinforces its impact on the advancement of 

occupational safety and health (OSH). This section focuses on summarising the research 

objectives, the novelty of the approach and how the results validate the hypotheses 

outlined at the beginning of the study. 

5.1 Novelty 

My thesis explores a novel approach to understanding and addressing muscle and bone 

problems that occur during physical activities (MSDs), focusing on the stressors 

associated with work. While previous studies have primarily focused on biomechanical 

or physical ergonomic factors, this research uniquely integrates psychosocial factors, such 

as worker control, conflict resolution and scheduling, into the evaluation of workplace 

safety risks. This complete approach to thinking about MSDs makes a new definition. It 

goes beyond thinking about physical strain to include thinking about stress that is 

cognitive and emotional. These factors have a significant impact on how well workers 

perform their jobs and how they feel. 

In my thesis, I have presented an analysis of distractions influenced by psychosocial 

factors in manual handling aimed at preventing MSD in the workplace. The approach is 

novel, as occupational safety and health (OSH) targets workplace risk issues that are both 

psychological and physical [145]. To prevent workplace accidents, organisational 

structures will be strengthened, and the integration of ergonomic concepts with safety 

standards will be highlighted. A comprehensive and integrative approach to occupational 

safety and health (OSH) focusing on physical and psychological risk factors is presented. 

This study examines the influence of cognitive and psychological factors, such as mental 

workload and stress, on the effectiveness of manual handling tasks. The psychosocial 

stressors can act as distractors, impairing workers' ability to maintain proper ergonomic 

techniques and increasing the risk of injury. By examining these elements, the research 

highlights a critical but often overlooked link between mental and physical well-being in 

the workplace. 

A significant contribution of my thesis is the development and application of a hybrid 

methodological approach that combines a PRISMA-based systematic review with meta-

analytic correlation analysis and multicriteria decision-making techniques (AHP and 
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BWM). This integration allows for the quantitative synthesis of data and the subjective 

prioritisation of risk factors as perceived by workers, providing a dual perspective that 

has not been used in this context before. Additionally, the use of wearable biophysical 

galvanic skin response and heart rate monitor sensors to assess real-time physiological 

responses during manual tasks is a novel, minimally invasive method of evaluating stress-

induced fatigue. 

To prevent musculoskeletal disorders (MSDs), in my thesis, I examined physical 

ergonomics, psychological demands, and cognitive load to improve worker performance 

and safety, particularly in manual handling. The research uses an evidence-based 

methodology and tools, including the NIOSH lifting equation and systematic literature 

reviews, to identify key ergonomic issues. This contribution to the body of occupational 

safety and health knowledge will enhance the ability to develop comprehensive, human-

centred safety measures that prioritise the physical and mental well-being of workers. In 

addition, I presented an analysis based on the lightweight machine-learning model to 

detect proper ergonomic squatting techniques during manual handling tasks. This 

application of machine learning is innovative because it provides real-time, data-driven 

insights into workers’ posture and movements to prevent injuries proactively by offering 

immediate feedback or corrective measures, a step beyond traditional observational 

ergonomics. 

To address occupational safety challenges, the systematic use of tools such as the Analytic 

Hierarchy Process (AHP) allows research to categorise and prioritise neurocognitive and 

psychosocial factors based on worker perceptions. The APH method provides a structured 

decision-making framework in line with the best-worst method, ensuring that the most 

impactful stressors and distractors in manual handling tasks are systematically identified 

and ranked, enabling targeted interventions. 

Finally, the integration of laboratory stress measurement during lifting tasks ensures that 

theoretical findings are consistent with industrial conditions, tasks that have been proven 

through validation in controlled, real-world simulations. This approach bridges the gap 

between theoretical research and practical application. By combining systematic reviews, 

worker-centred categorisation techniques and advanced computational tools, the study 

sets a new standard in occupational health research, emphasising precision and 

adaptability. 
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My thesis contributes to scientific knowledge by confirming the relationship between 

psychosocial stressors and muscle activity reduction (SMAR). Correlation analysis 

revealed a statistically significant association (r = 0.480, p < 0.001), providing robust 

evidence that psychosocial factors can directly affect physiological performance during 

repetitive lifting tasks. The study recorded an increase in heart rate of 65.79%, from 76 

to 126 beats per minute. This indicates that task demands have a significant impact on the 

autonomic nervous system. Skin response, as represented by peak impedance, showed a 

significant difference between stress and non-stress conditions, with mean values of 8.13 

µS and 6.62 µS, respectively. These results support the hypothesis that unmanaged stress 

contributes to the early onset of fatigue and increases the risk of musculoskeletal disorders 

(MSDs). In addition, the thesis illustrates the practical application of machine learning in 

occupational health, applying stress classification models (KNN, CNN, and deep learning 

algorithms) to collected physiological data. This innovative application of artificial 

intelligence facilitates the prediction of stress patterns and the detection of risk, 

establishing the basis for intelligent, technology-driven interventions in workplace design 

and management of workloads. These findings represent an advance for the field through 

the establishment of a measurable, physiological link between workplace stressors and 

musculoskeletal performance decline. 

5.2 New scientific results 

My research aimed to demonstrate the importance of making workplaces more 

comfortable in preventing and reducing work-related illnesses, such as musculoskeletal 

disorders (MSDs), particularly in situations involving manual handling. Additionally, it 

explored how psychosocial factors influence neurocognitive elements in the NIOSH 

(National Institute for Occupational Safety and Health) MSD prevention equation. 

Therefore, my new scientific results are as follows: 

- Thesis (T1): With a systematic PRISMA literature review and using a correlation 

analysis of the studies (which presented an index r = 0.480 and p < 0.001), I proved 

that psychosocial distractor factors, mainly worker control, conflict resolution, 

and scheduling, induce mental stress causing muscular activity reduction 

(SMAR), which has a direct impact on the risk of musculoskeletal disorders 

(MSDs) in manual handling.  
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- Thesis (T2): By applying MCDM to categorize the psychosocial factors in a 

sample of 283 participants (185 men and 98 women), with a 95% confidence level 

and 5.83% margin of error, I proved that 'Worker control' is the main psychosocial 

category affecting manual handling tasks since its weight of importance is 67.42% 

in the AHP method (CI: 0.065), and cross-validated by the BWM at 68.52% (𝑘𝑠𝑖
∗
: 

0.13). And inside the 'Worker control' class 'Overcontrol' is the most important 

factor with 71.72% in the AHP method (CI: 0.071), cross-validated by 71.43% in 

the BWM method (𝑘𝑠𝑖
∗
: 0.159). 

- Thesis (T3): Applying a bio data (GSR and BPM) system in a controlled 

laboratory setting with 13 participants. I proved that the 'Overcontrol' 

psychosocial risk factors introduced during manual handling tasks produce a 

variation in the autonomous nervous system response, generating a heart rate 

mean increase from 76 to 126 beats per minute, thus a higher mean of GSR under 

a stressful environment with a p < 0.01. The Skin response represented by the peak 

impedance mean significantly different under stress and non-stress conditions 

with impedance values of 8.13 µS and 6.62 micro µS, respectively.  

- Thesis (T4): In a controlled laboratory setting with 13 participants, comparing the 

4 most common machine learning models for stress data classification, I have 

proved that k-NN+Deep Learning models have the highest level of accuracy of 

100%, showing 0.9996 as R² (coefficient of determination) and a p-value of 3.66e-

06 for stress detection. 

5.3 Recommendations 

Industries need to take a methodical and structured approach to address the psychological 

and physical risk factors that affect the health and well-being of their employees. 

Prioritising the integration of ergonomic principles into workplace operations and design 

is essential. This involves reducing musculoskeletal disorders (MSDs) by using tools such 

as the NIOSH lifting equation and teaching employees safe manual handling practices.  

Additionally, industries should leverage technology, such as machine learning models, to 

monitor workplace ergonomics and ensure proper techniques are used during manual 

handling tasks. 

To mitigate the detrimental consequences of overcontrol on manual handling tasks, 

companies should concentrate on enhancing employee autonomy and modernising 

management procedures. This can be achieved through participatory decision-making, 
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which gives workers autonomy in task completion, and by educating managers on leading 

with cooperation rather than micromanagement or overcontrol. 

Future research should investigate how Psychosocial factors associated with manual 

handling tasks may be affected after prolonged exposure. It should also focus on the use 

of advanced technologies, such as wearable sensors, AI-based ergonomic assessments 

and augmented reality tools, to provide real-time feedback and improve workers' posture 

and movement during manual tasks. 

Future studies should use larger and more varied samples of participants to validate the 

machine learning models and apply them in real employment settings. This would involve 

incorporating the models into mobile or wearable platforms and assessing their 

performance in providing managers and employees with real-time feedback. Studies 

should also investigate the long-term effects of such systems on reducing psychosocial 

stress and preventing musculoskeletal disorders (MSDs), as well as issues with user 

acceptance, data privacy, and alert fatigue. 
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117 

 

 



118 

 

 



119 

 

 



120 

 

 



121 

 

 



122 

 

 



123 

 

 



124 

 

 



125 

 

 

 

 



 

126 

 

ANNEX D Descriptive statistics of the categorisation of the stressors in the manual handling tasks  
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