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Abstract 

High Performance Image Sensor Processing using Field 

Programmable Gate Arrays 

 

Image sensors are ubiquitous parts of everyday life, present in mobile phones, laptops, 

tablets, cars, Internet of Things (IoT) and security devices. Most camera products are 

prototyped using programmable logic. Low volume special cameras, such as Infrared (IR) 

imaging Focal Plane Arrays (FPAs) and high frame-rate industrial, scientific cameras use 

Field Programmable Gate Arrays (FPGAs) in the released version of the product as well. 

Meanwhile FPGAs transformed from a uniform sea-of-gates architecture to a 

heterogenous multiprocessing System-on-a-Chip (SoC) platform, capable of 

implementing not only glue-logic but complex signal-, and image processing algorithms. 

In Chapter 1, this dissertation first reviews recent progress in FPGA architecture and 

technology. Similarly, Chapter 2 introduces the function and architecture of Image Signal 

Processor (ISP) modules. The following chapters detail my contributions to new 

algorithms, architectures or methods on the field of ISP implementation on FPGAs, 

organized by topic matching thesis points.  

Chapter 3 is devoted to uniformity correction of CMOS image sensors. I present my 

analysis of fixed-pattern noise and compare multiple practical approaches to reduce noise.  

Chapter 4 describes a method to dynamically detect and interpolate pixel defects without 

access to a frame buffer. 

Chapter 5 concentrates on image quality improvements, with focus on noise reduction. 

Median filters, a subclass of rank order filters, are widely used for noise reduction while 

preserving edges is signals and images. Optimizations of 1D/2D rank order filter 

structures for FPGA implementation are explored. 

Chapter 6 describes my work on Automatic White Balance adjustment. Low-latency 

algorithms are provided for simple, robust control of sensor parameters based on image 

statistics collected on the fly. 

Chapter 7 focuses on frequency domain filtering and efficient implementation of widely 

used image-, and signal processing functions: one, and Two-dimensional Fast Fourier 

Transforms. I propose optimizations in the storage and access sequencing of intermediate 

results, which reduces local BRAM allocation by 50%.  

In Chapter 8 I propose a resonator based Direct Digital Synthesis (DDS) module, which 

allows further reduction in memory allocation.  
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Kivonat 

Nagy teljesítményű szenzor képfeldolgozás FPGA 

áramkörökkel 
A képfelvevő szenzorok mára szinte mindenütt jelen vannak. Mobiltelefonokban, 

laptopokban, gépjárművekben, biztonsági és IoT rendszerekben egyre több szenzor 

szolgáltat képeket, videókat. Ezen rendszerek többségét programozható logikai 

áramkörökkel fejlesztik. A kis-szériás, nagyfelbontású, ultra gyors kamerák, és speciális 

(pl. infravörös) kamerák kereskedelmi forgalomba került változatai is a Field 

Programmable Gate Array (FPGA) áramkörökre épülnek. Az elmúlt évtizedekben az 

FPGA áramkörök kezdeti homogén, sea-of-gates architektúráját kiegészítették lokális 

memóriákkal, jelfeldolgozó, és általános célú processzorokkal, számítástechnikai 

rendszereket (SoC) valósítva meg egyetlen chipen. 

A disszertáció első fejezetében bemutatom az FPGA áramkörök alkotóelemeit, és a 

digitális jel-, és kép-feldolgozás szempontjából kritikus alapmodulok implementációját. A 

második fejezet a kamera előfeldolgozó (ISP) áramkörök moduljainak funkcióit, és ezek 

FPGA-n belüli megvalósítását mutatja be. A harmadik fejezet a CMOS szenzorok fix-

mintázatú zaját, ennek hőmérséklet és paraméter függőségét elemzi, illetve vizsgálja a 

különböző kompenzációs stratégiák komplexitását és teljesítményét. A negyedik 

fejezetben kitérek a pixel hibák osztályozására, és megoldást mutatok a hibák dinamikus 

feltérképezésére és interpolációjára külső memória hozzáférés nélkül. 

Az ötödik fejezet a zajelnyomást, ezen belül a nem-lineáris szűrők FPGA alapú optimális 

megvalósítását taglalja. A medián-, és rank-szűrők eredményesen használhatók kiugró 

minták szűrésére, élességromlás nélkül. A gyakorlatban jól alkalmazható, és FPGA 

megvalósításra optimalizált algoritmust adok egy-, és kétdimenziós rank szűrők 

megvalósítására.  

A hatodik fejezet a fehéregyensúly valós idejű automatikus beállítására mutat algoritmust. 

Az ISP áramkör statisztikai moduljának jeleit egy kompakt, FPGA áramkörökön belül 

megvalósítható neurális hálózattal értékelve, gyors és a jelenlegi beágyazott 

megoldásoknál pontosabb megoldást mutatok be. 

A hetedik fejezet a frekvencia tartományban végzett jel-, és képfeldolgozó algoritmusok 

alapját képező diszkrét gyors Fourier Transzformáció (FFT) FPGA optimalizációját 

vizsgálja. A javasolt megoldásokkal a transzformáció elvégzéséhez szükséges lokális 

memória felére csökkenthető, illetve a szükséges konstans faktorok valós idejű 

számításával a megvalósításhoz szükséges szilícium terület jelentősen csökkenthető.  

A nyolcadik fejezet az FFT számításhoz szükséges komplex egységvektorok számítására 

mutat optimális megoldásokat FPGA áramkörökön belül. 
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Abbreviations & notations 

In this study the following notations and abbreviations were used: 

 

AE Automatic Exposure adjustment 

ASIC Application Specific Integrated Circuit 

ASSP Application Specific Standard Parts 

AWB Automatic White Balance adjustment 

BRAM 18-, or 36 kbit dual ported Block RAM primitive in FPGA devices 

CCM  Color Correction Matrix 

CFA Color Filter Array 

CMOS Complementary Metal Oxide Semiconductor 

CNN Convolutional Neural Network  

DCT Discrete Cosine Transform 

DDS Direct Digital Synthesis 

DIF Decimation In Frequency 

DIT Decimation In Time 

DPC Defective Pixel Correction 

DSNU Dark Signal Non-Uniformity 

DSP Digital Signal Processing 

FFC Flat-Field Correction 

FFT Fast Fourier Transform 

FPGA Field Programmable Gate Array 

FPR Fixed-Point Representation 

GPU Graphical Processing Unit 

HDL Hardware Description Language 

ISP Image Signal Processor 

IoT Internet of Things 

LUT Look Up Table 

MANR Motion Adaptive Noise Reduction 

MIMO Multiple Input, Multiple Output 

PCC Pearson Correlation Coefficient  

PRNU Photon Response Non-Uniformity 

QDDFS Quadrature Direct Digital Frequency Synthesizer 

SFDR Spurious Free Dynamic Range 

SISD  Single Instruction Single Data 

SIMD  Single Instruction Multiple Data 

SoC System on a Chip 

SNR Signal to Noise Ratio 
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1 Introduction 

 Logic will get you from A to B.  

 Imagination will take you anywhere. 

— Albert Einstein 

1.1 Field Programmable Gate Arrays  

A Field Programmable Gate Array (FPGA) is an array of configurable logic blocks (CLB) connected 

by programmable routing on a single silicon device [1]. The logic blocks contain a combinatorial 

unit, usually implemented as a small Static Random Access Memory (SRAM) component, a set of 

registers, logic gates and multiplexers to support typical computation tasks such as carry logic.  

 

Figure 1: Simple Sea of Gates FPGA architecture. 

Configuration of CLBs allow implementation of basic logic gates as well as more complex logic 

functions such as arithmetic operators, multiplexers, decoders, or state machines. Programmable, 

hierarchical routing via switch matrixes allows cells to communicate with each other and the 

Input/Output blocks which connect the programmable network to external components, 

memories, processors, etc. All operations take place simultaneously across the whole array, 

synchronized by dedicated, low-skew, high fanout clock routing to all cells. The architecture of a 

simple, Sea-of-Gates FPGA is illustrated on Figure 1. 
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1.1.1 Evolution and Structure 

In the early 2000s, CLBs were combined to slices, and devices were segmented into an array of tiles. 

More complex blocks, such as 18kbit RAM blocks (BRAM), and 18x18 multipliers were embedded 

between the tiles. Next 18x18 block multipliers were augmented with wide accumulators to reduce 

the implementation footprint of typical DSP operations. In the past decade, processor cores, 

external memory interfaces, and hardened peripherals (I2C, SPI, UART) were embedded into the 

configurable array leading to the latest heterogenous multiprocessing System-on-a-Chip (SoC) 

platform [2],[3].  

 

Figure 2: Example block diagram of a modern FPGA device1. 

The latest generation of FPGA devices, such as the Xilinx Zynq Ultrascale+ MPSoC (Figure 2), 

include multicore, heterogenous processing system (PS), GPUs, and various hardened functions, 

such as Memory and Network controllers, peripherals, such as I2C, SPI controllers, DMA and 

watchdog timers. Thousands of DSP engines with single precision floating point units with 

integrated hierarchical cache memories can implement complex, high performance video 

processing solutions. Beyond implementing SIMD or MIMD architectures, fine grain 

 

1 Source: adapted from https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html  

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html


 

3 

configurability enables FPGAs to implement custom DSP and image processing blocks, allowing 

multiple trade-offs between area, performance, and numerical precision. 

Early use of FPGAs as a derivative of Complex Programmable Logic Devices (CPLD) was glue-

logic between system components. With relentless miniaturization and specialization, modern 

devices have the capacity and features to implement complex machine vision algorithms [4],[5]. 

FPGAs are increasingly used in high performance computing applications either as the sole central 

computing element or as a coprocessor. As a dedicated peripheral, or custom, reconfigurable 

accelerator, FPGAs can execute digital signal processing (DSP) operations such as convolutions, 

pixel level image processing such as edge detection, or perform Convolutional Neural Network 

(CNN) inference. The latest generation of FPGAs can implement thousands of single precision 

floating point units, which can compute a result every single clock cycle. This flexibility allows 

trading numeric precision for an increased number of parallel arithmetic units. 

Segments of a physical part can work at different clock rates matched to source synchronous data 

rates. The inherent parallelism of logic resources on an FPGA enables the implementation of high 

throughput custom hardware accelerators, high-bandwidth custom DSP or video processing 

equipment.  

1.1.2 Design Entry and Configuration 

CLBs and routing are configured by programmable switches. Several technologies are used to 

implement these programmable switches, which is one of the technological factors determining the 

density and versatility of the resulting network. Fuse or anti-fuse based programming technology 

allocates minimal footprint for switches, but the resulting structure is one-time programmable. 

SRAM based configuration switches allocate more silicon area but are reprogrammable. Flash 

based devices are reprogrammable and retain configuration content during power-down.  

Programmable routing, slice, and hard macro configuration, as well as memory initialization for 

the PS, is carried out via configuration files. Configuration files are generated by vendor specific 

back-end tools. On the front-end of the toolchain the user specifies the design in the form of 

schematics, Hardware Description Language (HDL) description, or using higher level 

programming languages such as of C++ or MATLAB code. Synthesis translates the design to a 

netlist of logical operators, which subsequently got mapped to the logic resources offered by the 

target FPGA. Finally, the mapped design needs to be placed and routed in such that the resulting 

network of interconnected components meet timing specifications. 

1.2 Signal and Video Processing  

One application area of FPGAs is rapid prototyping of integrated circuits. With the FPGA 

manufacturer taking the costs, risks, and complexities of silicon design and fabrication, users can 

take advantage of novel process nodes and transistor densities while paying a higher price for each 

device. FPGAs are the final implementation solution for high-cost, low-volume products requiring 

custom high speed signal processing. Prime examples are airborne and maritime radar, high 

security IP networks and early deployments of cell phone base stations. In these application areas 

FPGAs perform Digital Signal Processing (DSP) operations such as 

- baseband signal processing: filtering, enhancement, reconstruction, 

- compression, decompression, encryption, decryption, error detection and correction, 

- modulation, demodulation, up-, and down conversion, 

- Multiple Input Multiple Output (MIMO) beamforming, 

- channel equalization 
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Another area of widespread FPGA adoption is custom video equipment. Professional video 

capturing-, recording-, and processing equipment, airborne and military camera systems, high 

resolution, and high frame scientific cameras can carry the cost and power requirements of FPGA 

based computing.  

Most high level signal and video processing algorithms use a few basic building blocks, such as: 

- 1D and 2D correlations and convolutions, 

- array thresholding, minimum-, and maximum calculation, normalization, 

- Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, 

- Fast Fourier, Discrete Cosine and Wavelet transforms, 

- Data interleaving, indexing and reorganization. 

An FPGA SoC may be the sole processing module in a system, but often FPGAs are used in 

conjunction with higher density, specialized processing modules. Based on the nature and 

complexity of the signal processing problem, architects have several options to balance cost, power, 

and complexity. Problems with low to moderate computational complexity can be addressed by 

single processor systems. Computationally intensive applications may need multi-core systems, or 

a General Purpose CPU extended with GPUs, Neural Network inference engines, or specialized 

hardware accelerators. One particularly attractive, low cost way to increase performance is the use 

of FPGA based hardware accelerators. This paradigm is in the focus of major processor 

manufacturers, underscored by a string of acquisitions by large processor manufacturers, such as 

Altera (now part of Intel)2, Xilinx (now part of AMD)3 and Atmel (now part of Microchip)4. 

Appendix A.1 reviews concepts and limitations of GP/GPU systems collocated in modern FPGA 

based SoCs, as well as the basic DSP operations and their optimizations in FPGAs. 

 

2https://www.intel.com/content/dam/www/central-libraries/us/en/documents/agilex-fpgas-game-changing-white-paper.pdf 

3 https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf  

4 https://www.microchip.com/en-us/products/fpgas-and-plds/system-on-chip-fpgas/polarfire-soc-fpgas 

 

https://www.intel.com/content/dam/www/central-libraries/us/en/documents/agilex-fpgas-game-changing-white-paper.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.microchip.com/en-us/products/fpgas-and-plds/system-on-chip-fpgas/polarfire-soc-fpgas
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2 Image Signal Processing 

FPGAs are ideal for implementing demanding image and signal processing algorithms due to the 

inherent parallelism of logic resources. Recognition, registration, and reconstruction all need 

consistent, high-quality images [6]. The purpose of Image Signal Processing (ISP) is to condition 

images for higher level processing functions. As opposed to other machine vision platforms, such 

as GPGPU SoCs, like the Nvidia Xavier AGX5, specialized ASICs, like the Intel Movidius Myriad6, 

or mobile platforms, like the Qualcomm Snapdragon 865 7, FPGAs do not currently have hardened 

ISP units. While embedded ASSPs have dedicated, proprietary image sensor processing pipelines, 

FPGAs offer PL resources, tightly integrated with a system processor (PS). 
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Figure 3: Example implementation of a machine vision platform 

Figure 3 presents a typical machine vision platform, with one-, or multiple image sensors providing 

input to processing algorithms executed on an array of GPU and CPU cores. Image sensors 

typically connect to the platform via MIPI CSI2.0 DPHY or CPHY, sLVDS, SLVS-EC, or parallel 

CMOS interfaces. FPGAs provide high-speed I/O features to receive, de-serialize, and deinterleave 

streams, performed by the PHY blocks on Figure 3. 

Spatial ISP functions can be performed directly on the image streams, without having access to 

previous frames. A Streaming ISP pipeline block can perform: 

- Flat-field and pixel defect correction, 

- Lens shading correction, 

- Bayer Color Filter Array (CFA) interpolation,  

- Spatial edge enhancement and noise removal, 

- Color correction and Tone mapping,  

- Video format conversion (chroma resampling, video scaling) 

 

5  https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier  

6  https://www.intel.com/content/www/us/en/products/sku/204770 

7  https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-865-5g-mobile-platform-product-brief.pdf 

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier
https://www.intel.com/content/www/us/en/products/sku/204770
https://www.qualcomm.com/media/documents/files/qualcomm-snapdragon-865-5g-mobile-platform-product-brief.pdf


6 

Received frames are subsequently stored in video frame buffers, and are made available to a second 

set of ISP functions, performing functions using the frame buffer such as: 

- Motion adaptive temporal noise reduction, 

- Image composition, 

- Geometry correction, de-warping, rotation and/or translation  

- Frame rate changes or High-dynamic-range (HDR) processing, 

which are dependent on accessing multiple video frames at a time. 
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Figure 4: Streaming ISP pipeline HW and FW components 

Figure 4 illustrates a typical streaming ISP pipeline, with blue functional units implemented in 

FPGA PL as custom accelerators, with corresponding drivers and low-level ISP functions (pink 

blocks) implemented as Firmware (FW), executed by the SoC PS. The camera-side interface of the 

image sensor processor receives the sensor pixel stream via Physical (PHY) interface module, 

which de-serializes high speed transmission formats to parallel video data.  

2.1 Flat-Field Correction  

Flat-field Correction (FFC) aims to remove fixed-pattern image artifacts introduced by the non-

uniformities of the sensor and/or the optical system. FFC allows correction of: 

- Dark Signal Non-Uniformity (DSNU), pixel-to-pixel differences in dark current, 

- Photo Response Non-Uniformity (PRNU), pixel to pixel sensitivity differences, 

- vignetting or lens shading, 

- other optical defects, such as scratches or contamination of the optical system. 

For assessing DSNU, a set of reference images are collected with no exposure – often with the 

sensor covered [7]. For PRNU, a large set of reference images with uniform illumination are 

captured and combined into a single frame referred as the flat frame [8].  

Due to the characteristic, row/column separable nature of DSNU and PRNU, for high-resolution 

cameras high-frequency pixel to pixel correction is often performed by row and column projections 

of calibration images [9]. In this case, lens-shading correction is performed by a separate ISP 

module based on a parametric vignetting model of the optical system. For systems where access to 

a compressed, or uncompressed calibration frame is feasible, pixel to pixel compensation can be 

applied. The flat-field corrected image can be given formally as: 

𝐼𝐹𝐹𝐶 =
𝐼 − 𝐼𝐷
𝐼𝐹 − 𝐼𝐷

𝑚 − 𝑐, (1) 
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where 𝐼 is the input image to be corrected, 𝐼𝐷  is the dark calibration image, 𝐼𝐹  is the flat calibration 

image, and m and c are constants to adjust the output brightness and black level, respectively. My 

work on the field of Flat-Field correction is detailed in Chapter 3. 

2.2 Defective Pixel Correction 

An image sensor may have defects by the linear correction capabilities of the FFC module, affecting 

individual pixels, or clusters. Affected pixels may have significantly altered dark currents (hot 

pixels), sensitivities (dead pixels), or excessive noise load (flickers)8. Sensors failing image quality 

checks are discarded by manufacturers. Most defects affecting machine vision systems arise during 

use by high energy particles impacting photodiodes. The purpose of defective pixel correction 

(DPC) is the identification and interpolation of these defective pixels.  

In static solutions, locations of defects outside the range correctable by FFC are identified during 

FFC calibration and are stored in a Look-Up-Table. During regular operation sensor images are not 

analyzed for defective pixels, but defective pixel locations are interpolated on the fly.  

Dynamic solutions analyze the sensor data stream for outlier pixels, which are apparently stuck or 

flicker independent of local motion and neighboring pixel values. While dynamic solutions are 

significantly more complex and often require access to frame buffers, they can keep up with the 

degradation of the sensor due to the detection of accumulating pixel defects. My work on the field 

of DPC is detailed in Chapter 4. 

2.3 Color Filter Array Interpolation 

Color image sensors use a color filter matrix, laid over the photodiode array, so adjacent, uniform 

photodiodes can have different spectral sensitivities. The Bayer Color Filter Array (CFA) is the 

most commonly used arrangement of color mosaic filters, using Red, Green, and Blue (RGB) or 

Cyan, Magenta and Yellow (CMY) dyes (Figure 5). The mosaic pattern is laid out in repeating lines. 

  

Figure 5. Examples of the Bayer RGB Color Filter Array pattern (left: RGB, right CMY) 

From one measured color component per pixel, the Bayer CFA interpolation module restores 3 

color components per pixel, using information from the neighboring pixels. The pigments used in 

the color filters absorb some spectral components of incident light, reducing pixel sensitivity and 

quantum efficiency. With the green filter most translucent and most similar to human perception 

of luminance, the array contains twice as many green pixels than red or blue pixels. The CFA sub-

samples the image digitized by the sensor, which may introduce color aliasing effects, if the region 

interpolated contains spectral components between the spatial sampling frequency of the pixel 

array 𝑓𝑀 = 1/𝐷, the sampling frequency of the color channels 𝑓𝑅,𝐵 = 2/𝐷, where 𝐷 is the pixel size. 

 

8  The International Standard on Ergonomic Image Quality Requirements, pp 2-3: 

  https://standards.iteh.ai/catalog/standards/cen/346aee7a-22c1-466a-9acf-622f79ee1937/en-iso-13406-2-2001  

https://standards.iteh.ai/catalog/standards/cen/346aee7a-22c1-466a-9acf-622f79ee1937/en-iso-13406-2-2001
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Simple bilinear interpolation with constant weights may introduce severe color artifacts, as 

illustrated by zoneplate image (Figure 6, left), which represents a 2D spatial frequency sweep from 

the corners (low frequencies) to the center (high frequencies).  

The right side image of Figure 6 shows an excerpt of the light house test image, demonstrating 

suppressed color artifacts on the natural horizontal frequency sweep of the picket fence. 

   

Figure 6. Examples of CFA interpolation color artifacts (left: Zoneplate, right: Lighthouse9) 

Details on my work on the field of FPGA optimized CFA interpolation and post-processing have 

been presented in section A.2 of the Appendix and were published in [S1]. 

2.4 Image Statistics 

The Image Statistics module implements the computation intensive metering functionality 

common in digital cameras and imaging devices. Collecting data on a per pixel basis is in many 

cases prohibitively expensive using ASSPs. Statistical data is consumed by Automatic Exposure 

(AE)-, Gain (AG), Focus (AF), and White Balance (AWB) control as well as tone curve correction 

algorithms. The module collects global statistical information over the entire image frame, such as 

a global histogram, which can be used for tone map correction. Automatic Exposure Control (AE), 

Automatic White Balancing (AWB), and Automatic Focus (AF) adjustment, often referred to as 

“3A”algorithms, often rely on local, zone based information, often referred to as zone based 

metering. High-, and low-frequency, or edge content in considered for adjusting focus, local mean, 

minimum, maximum, and histograms are used to control exposure and gain. The statistics module 

analyzes the pixel stream passing through the module, and deposits data either as in ancillary 

video lines, or metadata corresponding to the frame. 

2.5 Color Correction Matrix 

The color correction matrix (CCM) is a 3x3 programmable coefficient matrix multiplier with offset 

compensation that can be used to adjust color component gains, mix-, or decorrelate color channels, 

adjust zero offset, or convert between color spaces. The 9 coefficients for the 3x3 multiplier, and the 

3 coefficients for the output channel offsets can be re-programmed on a frame-by-frame basis. The 

CCM is the actuator for AWB, controlled by the SW component of the AWB algorithm.  

 

9 Source: Kodak Lossless True Color Image Suite, image#19 by Alan Fink, Eastman Kodak Company 
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The physical implementation of this module uses 9 DPS48 tiles, which can perform the matrix 

multiplication, offset compensation, and unbiased rounding using 24 bit coefficients on 8-18 bit 

color channels.  

2.6 Tone Curve Correction 

The tone mapping module can implement arbitrary one-dimensional functions specific for a color 

channel. Typical use cases include gamma correction, logarithmic encoding, or mapping from 10,12 

or higher input color-depth to 8-bit color representation, typical to consumer displays. Tone curves 

can be re-programmed on a frame-by-frame basis. The tone-curve module is the actuator for 

histogram equalization, and for the adaptive histogram equalization / CLAHE algorithm [10]. 

BRAM

Video_IN

Video_OUT1

Gamma LUT

PORT A

PORT B

MSBs

LSBs

1-x

 

Figure 7: 12 bit gamma correction module with interpolation 

BRAM primitives can store 1024x18 bits, and map 10 bit inputs to up to 18 bit outputs. For input 

color channels with more than 10 bit resolution, the interpolator illustrated on Figure 7 can be used. 

The desired mapping function 𝑓(𝑠) can be interpolated by 𝑓(𝑠) by splitting the bits of the input 

sample as 𝑠 = (𝑦 ≪ 𝑘) + 𝑥, where 𝑥 represents the 𝑘 LSBs:  

 𝑓(𝑠) ≈ 𝑓(𝑠) = 𝑓(𝑦)(1 − 𝑥) + 𝑓(𝑦 + 1)𝑥  (2) 

The 10 most significant bits of the input (𝑦) are used to address the dual-ported BRAM and fetch 

corresponding values 𝑓(𝑦) and 𝑓(𝑦 + 1). The lower 𝑘 LSBs are used to interpolate between the two 

nearest mapping function values 𝑓(𝑦) and 𝑓(𝑦 + 1). 

2.7 Color-Space Conversion 

A color space is a numerical representation of colors. The most popular color models are: 

- RGB, and gamma corrected R’G’B’, used in computer graphics,  

- YIQ, YUV, YCrCb used in video systems , 

- CMYK used in color printing, 

- CIELAB, CIEXYZ, designed to represent colors the average human can see, 

- HSV (Hue, Saturation, Value) and HSL (Hue, Saturation, Luminance). 

HSV and HSL are related to the intuitive notions of hue, saturation, and brightness. Representation 

in one color space can be transformed to another using appropriate mapping functions. Native 

input to the conversion is typically the RGB information supplied by devices such as cameras and 

scanners. Conversion from RGB to YUV/YCrCb (Figure 8) is a typical operation transforming 

sensor input pixels to industry standard video transport formats, such as YUV 422 and YUV420. 

The color-space conversion module simplifies the 3x3 linear transformation between input and 

output color channels and uses only 4 multipliers and 5 adders to carry out the computations.  
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Figure 8: Conceptual conversion between the RGB and YCrCb color-spaces10 

2.8 Noise Reduction 

Images in video-, or image sensor streams can be corrupted by noise. The three most common 

sources of noise are shot noise, thermal noise (analog electronic interference with Gaussian 

distribution can also be modeled as thermal noise), and salt-and-pepper noise, which is due to 

occasional bit-flips during serial transmission. According to the central limit theorem, the 

aggregate of statistically independent shot noise instances captured by pixels converge to a 

Gaussian distribution over the entire image. Salt-and-Pepper noise can be effectively combated by 

2D non-linear filtering. My work on the field of efficient FPGA implementation of 2D rank-, and 

median filters is expanded in Chapter 6. A brief summary of common methods to suppress 

Gaussian noise is provided in Appendix section A.2.4. 

2.9 Edge Enhancement 

Enhancement of features, such as edges and contours, is a typical image pre-processing operation, 

improving not only the visual appearance of captured images but the accuracy and performance 

of downstream recognition and classification tasks [11]. Simple approaches like Prewitt and Sobel 

edge detectors produce predictable results, but are sensitive to noise, distort texture and unlikely 

to connect broken edges. Robust algorithms often rely on context from image pyramids or 

persistence of features across multiple image frames. However, these pre-processing features are 

seldom available for streaming ISPs. I proposed an edge enhancement and spatial noise 

suppression solution suitable for FPGA / ASIC implementation [S1], [S2], based on approximation 

of local edge orientation and strength based on edge detection and morphological operations. The 

proposed architecture used steerable edge enhancement and blurring kernels. Blurring kernels 

were used on smooth image areas with low edge strength to reduce noise. Edge enhancement 

kernels were oriented perpendicular to detected edges. Edge enhancement halo artifacts were 

controlled by specific detection and suppression kernels. The enhancement of features in the 

presence of noisy input continues to remain an area of active research. 

2.10 Lens Shading Correction 

Lens shading, or vignetting, is the progressive darkening of image content from the center towards 

the corners of the image due to optical-, physical-, and pixel vignetting. Optical vignetting is caused 

by the lens entrance aperture, which limits the amount of light reaching the sensor. Optical 

 

10 Source: RGB to YCrCb Color-Space Converter v7.1, LogiCORE IP Product Guide, Xilinx Vivado Design 

Suite, PG013. https://docs.xilinx.com/v/u/en-US/pg013_v_rgb2ycrcb  

https://docs.xilinx.com/v/u/en-US/pg013_v_rgb2ycrcb
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vignetting is proportional to cos4𝛩, where 𝛩 is the incident angle relative to the optical axis of the 

lens system. Physical vignetting occurs when other mechanical components, such as the lens barrel, 

further clips peripheral light before or after the entrance pupil. 

Pixel vignetting is due to a mismatch between the Chief Ray Angle (CRA) of the lens system and 

the micro-lenses on top of the image sensor pixels. Micro-lenses over the sensor pixels at nadir are 

more efficient at focusing incident light to the buried photodiode than those closer to the edges of 

the sensor. 

 

Figure 9: Flat-field image demonstrating strong lens-shading 

The simple, low-cost solution to correct lens shading is to record a flat-field image (Figure 9) with 

the lens assembly attached, and record horizontal and vertical intensity profiles across the center 

of the image. The intensity profiles can be stored in BRAMs, and dedicated horizontal-, and vertical 

multipliers can correct for intensity drop, preferably on a single channel before CFA interpolation. 

For a color image, the two sets of multipliers would require a total of 6 DSP48 primitives. For a 

more optimal solution, the horizontal and vertical correction factors can be pre-combined, then the 

combined correction coefficient can be applied to all 3 color channels (4 DSP48 primitives). 

However, the 2D intensity drop function is rarely separable. A higher-quality, more precise 

approach is to store a down-sampled (32 x 32) version of the intensity map using a single BRAM 

primitive. Either bilinear-, or biquadratic interpolation can be used to compute correction factors 

for streaming pixels. As pixels are accessed in a scanline-continuous order (left to right, top to 

bottom), the quadratic differential-integrator structure introduced in section 8.4.1 can be used, to 

create a highly accurate low-cost interpolator. 

For cameras with variable lens-, and shutter assemblies the 2D intensity drop-off function is 

dependent on zoom and aperture settings, which need to be recorded during manufacturing. The 

optical de-center for each image in the resulting image stack is the same, which enables storing 

only a few representative samples along the axes (aperture and zoom) to interpolate. Since aperture 

and zoom is constant for a frame, and is varying relatively slowly due to mechanical actuators, in 

practical systems the aperture – zoom image stack is down-sampled (e.g., 32x32), and stored in 

external memory next to the system processor. Camera FW interpolates between sub-sampled 

(32x32) images using the current aperture and zoom settings and updates the correction 

coefficients in the ISP lens-shading correction module between frames. 
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2.11 Image de-warping 

Wide-angle, fish-eye lenses bend rays more near the edges of the lens than the rays near the center 

of the lens. Due to radial distortion straight lines in real world appear to be curved on the image. 

Image de-warping, or camera lens distortion correction compensates for deviation from rectilinear 

projection.  

       

Figure 10: positive radial distortion (a: calibration pattern, b:barrel distortion, c: model) 

The first step of distortion correction is characterizing the camera in a series of calibration steps. In 

a controlled laboratory-, or manufacturing environment the camera is exposed to checkerboard 

patterns (Figure 10.a) in different orientations. From the recorded images coordinates of 

checkerboard square corners are extracted. Using the method introduced in [12] extrinsic and 

intrinsic camera parameters are established. Using linear correction operations translation, 

clocking, skewing errors can be compensated, fitting the checkerboard pattern with residual non-

linear distortions into to output coordinate system (Figure 10.b).  

At this point FPGA-, and ASSP/GPU-based ISP algorithms bifurcate. ASSP/GPUs typically prefer 

a parametric definition of radial/tangential distortion parameters, which are established using the 

Brown–Conrady even-order polynomial model, or Fitzgibbon’s method [13]. For an FPGA 

implementation, storing a re-sampled distortion map (Figure 10.c) provides a simple way to avoid 

divisions and polynomial evaluation. 

In order to generate a corrected, rectilinear output frame, the exact (sub-pixel) location of each 

output pixel (x,y) needs to be located in the input frame (x’,y’), an operation referred to as backward 

mapping (Figure 11). Considering that output pixels are generated in a scanline continuous order, 

the x’, and y’ coordinates of the distortion grid can be continuously interpolated using the quadratic 

differential-integrator structure introduced in section 8.4.1, as in the case of lens-shading 

correction, assuming resampled grid coordinates are stored in respective BRAMs. 

 

Figure 11: Backward mapping of output pixel positions into the input sampling grid 
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The backward-mapped coordinates typically do not align with the input sampling grid, therefore 

output pixels have to be interpolated. Considering that no significant downscaling is performed 

during distortion correction, bilinear interpolation (Figure 12) delivers adequate results with no 

perceivable aliasing effects.  

 

Figure 12: Bilinear interpolation using 4 nearest neighbors 

To perform bilinear interpolation, the backward mapped pixel coordinates (x’, y’) are quantized to 
⌊𝑥′⌋, ⌊𝑦′⌋, where ⌊ ⌋ denotes the integer part of the coordinates, and the four pixels 𝑝 =

{𝑝(⌊𝑥′⌋, ⌊𝑦′⌋), 𝑝(⌊𝑥′⌋ + 1, ⌊𝑦′⌋), 𝑝(⌊𝑥′⌋, ⌊𝑦′⌋ + 1), 𝑝(⌊𝑥′⌋ + 1, ⌊𝑦′⌋ + 1)} are retrieved from memory. 

Note that for each output pixel four input pixels have to be retrieved, which demands considerable 

bandwidth from the frame buffer, typically in external memory (DDR). Additionally, DDR, shared 

with other processes, is accessed in arbitrated bursts. Reading a set of horizontally adjacent pixels 

in a read burst is orders of magnitude faster than randomly accessing single pixels in the frame 

buffer. Therefore, the local neighborhood around ⌊𝑥′⌋, ⌊𝑦′⌋, needs to be cached using BRAMs. 

Efficient four-way cache design, using dual ported BRAMs, predictively populating the cache 

before pixels in 𝑝 are accessed, is the key to high performance de-warping. 

The remainders, 𝑢 = 𝑥′ − ⌊𝑥′⌋, 𝑣 = 𝑦′ − ⌊𝑦′⌋ are used as coefficients for bilinear interpolation. 

Coefficient vector 𝑐 = {(1 − 𝑢)(1 − 𝑣), 𝑢(1 − 𝑣), (1 − 𝑢)𝑣, 𝑢𝑣} are used by the bilinear interpolator 

module, which performs 

𝑜(𝑥, 𝑦) = 𝑐𝑇𝑝 = ∑ 𝑐𝑖𝑝𝑖

4

𝑖=1

. (3) 

For color image processing with deep colors (10-, or more bits per channel) each color channel may 

require a bilinear interpolator, allocating 12 DSP48 primitives. For 8 bit color channels, the number 

of DSP48s can be reduced if the R,G,B components are combined into a single 24 bit logic vector 

with guard bits between the components {R[7:0], 8’b0, G[7:0]}, and using a single 24x18 multiplier 

in the DSP48Ex primitive to perform two eight-bit multiplications simultaneously, reducing the 

number of DSP48 primitives used to 8. Another option, for high-performance FPGA devices is to 

run the interpolation kernel at 3x the pixel clock rate, processing color channels sequentially.  

Figure 13 presents the top-level block diagram of lens distortion correction module example for 

color video streams using dual-ported BRAMs and DSP48 primitives. 
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Figure 13: Block diagram of a lens-distortion correction module for Xilinx FPGAs 

2.12 Video Scaling 

Image sensor output formats may differ from typical streaming video formats, such as 720p, 1080p, 

or 2160p. Modern image sensors also support binning and windowing / Region of Interest (ROI) 

operations. In binning mode, the sensor aggregates photons captured by adjacent pixels and 

outputs a lower resolution image with higher SNR. In ROI mode only a rectangular region of the 

pixel array is read out, enabling faster frame rates. ROI mode is particularly attractive for wide-

angle security camera applications implementing digital Pan-Tilt-Zoom (PTZ) features. In order to 

support a continuously changing input resolution due to ROI zooming, a configurable video-

scaling unit is necessary to convert the input to the selected standard output format. 

Video scaling is the process by which an input color image 𝑊𝑖𝑛 pixels wide with 𝐻𝑖𝑛 scanlines is 

converted to an output color image of dimensions 𝑊𝑜𝑢𝑡 , 𝐻𝑜𝑢𝑡 . Similar to de-warping described 

above, output pixels are backward mapped. To avoid aliasing, instead of a simple bilinear kernel, 

a 2D filter kernel of size 𝑊𝑡𝑎𝑝𝑠 × 𝐻𝑡𝑎𝑝𝑠 , 𝑊𝑡𝑎𝑝𝑠 = 2𝑤 + 1, 𝐻𝑡𝑎𝑝𝑠 = 2ℎ + 1   (ℎ, 𝑤 ∈ ℤ) is often used: 

𝑜(𝑥, 𝑦) = ∑ ∑ 𝑐𝑖+ℎ,𝑗+𝑤𝑝(𝑥 + 𝑗, 𝑦 + 𝑖)

𝑤

𝑗=−𝑤

ℎ

𝑖=−ℎ

, (4) 

where x and y are discrete locations on the output sampling grid, and 𝑐𝑖,𝑗  are the 2D filter 

coefficients. The difference between the bilinear, bicubic, and Lanczos interpolation filters are 

differences in kernel size and coefficients only. For up-scaling applications, a bilinear, or bicubic 

kernel is usually adequate. However, for down-scaling properly designed low-pass kernels are 

necessary to avoid aliasing (Moire) artifacts. The size of the filter kernel is proportional to the 

downscaling ratio, e.g., to downscale 𝑊𝑜𝑢𝑡 = 0.25𝑊𝑖𝑛the horizontal size of the kernel needs to span 

across at least 4 pixels both directions, for 𝑤 ≥ 𝑊𝑖𝑛/𝑊𝑜𝑢𝑡 . 

For most practical up-sampling/down-sampling kernels a separable low-pass filter is designed 

simplifying equation (4) to  

𝑜(𝑥, 𝑦) = ∑ 𝜇𝑖+ℎ ∑ 𝜈𝑗+𝑤𝑝(𝑥 + 𝑗, 𝑦 + 𝑖)

𝑤

𝑗=−𝑤

ℎ

𝑖=−ℎ

, (5) 

where 𝜇𝑖 are coefficients for the vertical-, and 𝜈𝑗  are coefficients for the horizontal filters. 
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Polyphase implementation of one-dimensional FIR filters greatly reduces the number of taps 

necessary for high-quality resampling. Conceptually, the space between 2 consecutive input pixels 

is partitioned into a number of phases. Since the resampling ratio is a rational fraction, the location 

of any arbitrary output pixel between two input pixels in the sampling grid maps onto a discrete 

grid, exemplified on Figure 14. 

 

Figure 14: One dimensional resampling from 6 input to 5 output pixels 

The 5 output pixels shown from left to right can be interpolated with a two-tap polyphase FIR filter 

using phases 0..4. In phase 0, the output pixel is co-located with an input pixel, therefore the 

coefficients for phase 0, 𝜈[0] = {1.0, 0.0}. Coefficients for phase 1 are 𝜈[1] = {0.2, 0.8}.  

To create a configurable 2D scaler implementing a separable low-pass filter, the vertical (Figure 15) 

and horizontal (Figure 16) resampling stages need to be cascaded. The vertical filtering stage needs 

to have access to 2h+1 lines, for which 2h image lines need to be buffered. The horizontal stage 

consumes the output of the vertical stage via an intermediate buffer, providing parallel access to 

all pixels in the buffer.  

The line buffer macro, implemented using BRAMs, is typically driving the footprint of the video 

scaler module. Even though the module uses several DSP48 primitives, for high resolution sensors, 

buffering each video line may consume multiple BRAM primitives. 

 

Figure 15: Example of a vertical scaling FIR filter stage, implemented using DSP48 primitives 

For up-scaling (zoom-in) operation, it is beneficial to perform vertical scaling first, then horizontal 

scaling, while for down-scaling the reverse order is optimal to minimize the line-buffer BRAM 

allocations. 

To complete the scaler design, control logic initialized with the scaling ratio tracks x,y position in 

the frame, and generates horizontal-, and vertical phase accumulator and shift enable signals. 

Control logic and filter coefficient initialization typically happens in FW, with coefficients pertinent 

to actual scaling ratios either precomputed and stored in a filter-bank or computed on the fly. 



16 

The polyphase concept, polyphase re-sampling low-pass filter design, and coefficient generation is 

described in detail in [4] pp. 799-806. 

 

Figure 16: Example of a horizontal scaling FIR filter stage, implemented using DSP48 primitives 

2.13 Chroma resampling 

For transmission and processing often time camera output is converted to the YUV or YCbCr 

color-spaces, where Y is Luminance information, and U(Cb) and V(Cr) are derived color 

difference signals. Acuity of human vision for chrominance is less than half of that for 

luminance, which allows down sampling the chrominance components without perceivable 

loss of fidelity. Besides reducing transmission and storage loads, storing two pixels with 8 bit 

color components in a single 32 bit word (Y0U0Y1V0) greatly simplifies addressing and aligning 

pixels with DDR bursts and 32/64 bit memory operations. For video transmission this format 

is referred to as 422, implying that for 4 adjacent pixels in a 2x2 square over two scanlines 2 

chroma components are transmitted in each scanline. On Figure 17, white squares represent 

luminance (Y) samples, blue circles represent the blue chroma components, and red circles 

represent the red chroma components. 

 

Figure 17: YUV 444, 422, and 420 transmission and storage formats 

For the 444 and 422 formats, chrominance samples are co-sited with luminance samples. 

However, even for 422, chrominance needs to be horizontally low-pass filtered before down-

sampling to avoid chrominance aliasing. The 420 format down-samples by two in the vertical 

direction as well, transmitting / storing one red, and one blue chrominance components for 

2x2 adjacent luminance pixels. For MPEG-2, MPEG-4, and H.264 the 420 standard specifies 

chrominance sampled between the scanlines [14]. In order to re-sample chrominance, and 

avoid vertical color aliasing, the chrominance components need to be low-pass filtered with a 

two-, or four tap vertical anti-aliasing filter. Usually, the chroma samples are generated for 

every output pixel row, but they are valid only for the even pixel rows. Besides streaming 

video synchronization signals, a typical chroma down-sampling module provides an 

additional signal marking valid chroma samples. 
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Higher level algorithms in machine vision platforms may expect RGB, or Luma and Chroma 

components stored in different planes / arrays, such as for the NV12 format (Figure 18). In 

machine vision platforms the output of the ISP is often fed to an image compositor layer, 

which sorts the streaming components into planes. On an FPGA this may be performed by 

the last stage of the chroma re-sampler, optionally collecting luminance and chrominance 

samples in different line-buffers. Line buffer outputs in turn can feed separate video DMA 

write engines, set up such that write transfers are deposited into adjacent memory arrays. 

 

Figure 18: NV12 component planes 

2.14 ISP Sensor Control 

Besides conditioning image streams, ISPs initialize image sensors and adjust processing 

parameters, such as exposure time and analog gain, to maintain optimal imaging conditions. 

[15]The ISP needs to perform 3A functions with minimal latency during video acquisition [15]. 

Namely, after each exposure, while the frame is being read out from the sensor, image statistics 

need to be gathered and evaluated. Based on the statistical data, the 3A processing engine needs to 

set new exposure parameters and control the voice coils of the lens assembly to maintain focus. 

Similar to the effects of latency introduced to a fed-back control loop, if frames were first committed 

to a frame buffer, then read back out and analyzed for statistics, the latency introduced would 

create a system with slow response to changing photographic conditions. Chapter 5, White 

Balance dives deep into real time algorithmic solutions for optimizing color correction settings 

based on statistical data. 

2.15 Chapter Summary 

Sections in this chapter defined the ISP sensor interface and introduced major ISP functional 

components. Some of these modules, like color-space conversion and gamma correction are 

simple and well established, others, like CFA interpolation and noise reduction are still 

actively researched. The goal of FPGA optimization is to maximize performance while 

minimizing resource footprint and external memory bandwidth. The ISP modules presented, 

with the exception of Flat-Field correction, Lens Distortion Correction and Motion Adaptive 

Noise Reduction (MANR) can be implemented without access to an external frame buffer, 

enabling a basic ISP with reasonable image quality without using external memory.  
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3 Image Sensor Uniformity Correction 

As introduced in section 2.1, digital images captured by image sensors are contaminated with 

noise, which deteriorate performance and reduce sensitivity. Image noise can be characterized as 

temporal, or Fixed Pattern Noise (FPN). Temporal noise changes from frame to frame, while FPN 

is mostly constant, but may depend on temperature or sensor configuration. 

3.1.1 FPN Noise Reduction In CMOS Sensors 

Figure 19 shows the typical structure of a CMOS image sensor. A matrix of pixels can collect 

electrons, generated by the photoelectric effect, on the cathodes of photodiodes. A row of pinned 

photodiodes can be reset, exposed, and read out by corresponding row reset, row transfer, and 

select drivers. Multiple pixels of a row can be read out simultaneously via a set of programmable 

gain amplifiers (PGAs) and analog to digital converters (ADCs).  

 

Figure 19. Typical CMOS image sensor block diagram 

Modern CMOS sensors use Correlated Double Sampling (CDS) [16] or Correlated Multiple 

Sampling (CMS) [17]. Analog or digital hardware solutions eliminate dark charge (𝑄𝑅), by 

sampling and holding the output of a pixel after reset, then sampling the same output during 

readout. Both samples are stored temporarily in column specific capacitors. The column amplifier 

outputs the difference between the two samples, which effectively removes any common mode 

bias, such as reset noise.  

Differential Delta Sampling (DDS) was introduced to remove fixed pattern noise introduced by 

small differences between the Sample and Hold (SH) capacitors, and the differential biases of the 

programmable gain amplifiers by introducing a crowbar operation [18]. The column-wise readout 

of pixels via PGAs and ADCs, and row wise addressing, before the introduction on CDS and DDS, 

DSNU and PRNU had a characteristic striated, row-column oriented structure, shown on the left-

side image of Figure 20. The right-side image shows a magnified, contrast enhanced sample from 

the Sony IMX265LLR-C image sensor at 60C, using 12 dB of analog gain, with the striated structure 

of the image barely noticeable. 
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Figure 20. FPN enhanced for visibility 

Another often used digital technique to remove DSNU is to surround the active pixel area with 

rows and columns of optically masked pixels. These pixels are affected by the same conditions 

(temperature, electronic noise, analog gain) as the active pixels, and their values could be digitally 

subtracted from the corresponding rows and columns, further reducing systemic, row-column 

structured noise. 

3.2 A Linear model of Spatial Non-Uniformity  

The mathematical framework for analysis was introduced by Mooney et al. [19] and later simplified 

by Perry [20] for the linear model of FPN for Infrared Focal Plane Arrays. Though the Non-

Uniformity Correction (NUC) was expanded by multi-point analysis to account for non-linearities 

of IR FPNs (Takayanagi [16] pp. 147-161), linearity of CMOS image sensor photo-response allows 

generalization of Mooney’s framework for CMOS imagers. The luminous flux received by a small 

surface element with A, exposed to irradiance L, with incident angle  is  

𝑃 = 𝐿𝐴Θ. (6) 

Without considering the effect of temporal noise sources, such as electronic, thermal, and shot 

noise, the number of electrons present on the cathode of a reverse biased photodiode illuminated 

by a narrow-band light source can be modelled by:  

𝑁 = 𝑇𝑖𝑛𝑡(𝜂𝑃 + 𝐷) + 𝑄𝑅 , (7) 

where 𝑇𝑖𝑛𝑡  is the integration time, 𝜂 is the quantum efficiency, assumed constant for the narrow 

spectrum of the illuminator, D is the dark current, a 𝑄𝑅 is the residual charge present on the cathode 

after reset. Contemporary CMOS image sensors use correlated double sampling (CDS) which 

effectively cancels out the 𝑄𝑅 term [21]. For a pixel with area A, at position x, y in the pixel array, 

illuminated via a lens by a wide-band illuminator, the number of electrons collected by the pixel is 

𝑁𝑥,𝑦 = 𝑇𝑖𝑛𝑡 [𝜏𝑥,𝑦 ∫ 𝐿𝑥,𝑦(𝜆)𝜂𝑥,𝑦(𝜆)𝑑𝜆
𝜆2

𝜆1

𝐴Ω𝑥,𝑦 + 𝐷𝑥,𝑦], (8) 

Where 𝜏𝑥,𝑦 , 𝐿𝑥,𝑦, 𝜂𝑥,𝑦, and 𝐷𝑥,𝑦  respectively are the optical efficacy, spectral radiance density in the 

𝜆1 to 𝜆2 band, the quantum efficiency, and the integrated dark current, specific for pixel x,y, while 
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Ω𝑥,𝑦 = [
𝜋𝑐𝑜𝑠4Θ𝑥,𝑦

4𝐹2 + 1
], (9) 

is the projected solid angle subtended by the exit pupil of the optical system, as viewed from the 

sensor pixel x,y, where Θ𝑥,𝑦  is the off-axis angle of pixel x,y, and F is the F-number of the lens.  

The transmittance of the optical system is assumed to be homogenic in Mooney’s model, however, 

for many CMOS cameras optical efficiency tends to drop towards the corner of the image due to 

Chief Ray Angle (CRA) mismatch between the last lens element and the micro-lens array focusing 

light onto the photodiodes. Hence the optical efficacy, 𝜏𝑥,𝑦 , is dependent on pixel position and is 

an important source of fixed pattern non-uniformity. 

With the introduction of a response coefficient,  

𝑅𝑥,𝑦 = 𝐴𝜏𝑥,𝑦 [
𝜋𝑐𝑜𝑠4Θ𝑥,𝑦

4𝐹2 + 1
], (10) 

Equation (8) can be simplified to  

𝑁𝑥,𝑦 = 𝑇𝑖𝑛𝑡 [𝑅𝑥,𝑦 ∫ 𝐿𝑥,𝑦(𝜆)𝜂𝑥,𝑦(𝜆)𝑑𝜆
𝜆2

𝜆1

+ 𝐷𝑥,𝑦]. (11) 

To analyze the impact of pixel-to-pixel variation of parameters, parameters can be expressed as: 

𝐷𝑥,𝑦 = 〈𝐷〉 + 𝑑𝑥,𝑦 ,  (12) 

𝑅𝑥,𝑦 = 〈𝑅〉 + 𝑟𝑥,𝑦, and (13) 

𝜂𝑥,𝑦(𝜆) = 〈𝜂(𝜆)〉 + κ𝑥,𝑦(𝜆), (14) 

where the bracketed variables/functions denote the mean value of the corresponding parameter 

across the entire image, and the additive quantities capture pixel-to-pixel variations. Namely, 𝑑𝑥,𝑦 , 

𝑟𝑥,𝑦 , and 𝜅𝑥,𝑦(𝜆) are the pixel-to-pixel variation in dark-current, response coefficient, and quantum 

efficiency, respectively. When capturing an image with zero illumination, referred as the dark 

image, 𝐿𝑥,𝑦(𝜆) = 0, and 𝑁𝑥,𝑦 = D𝑥,𝑦 =  〈𝐷〉 + 𝑑𝑥,𝑦. 

The time invariant pixel-to-pixel non-uniformity 𝑇𝑖𝑛𝑡𝑑𝑥,𝑦, is referred as the Dark Signal Non-

Uniformity (DSNU), with variance 𝑇2
𝑖𝑛𝑡𝜎𝑑, where 𝜎𝑑 is the dark current variance. When looking 

at a uniform gray field, often referred to as Flat-Field (FF), with 𝐿𝑥,𝑦(𝜆) = 𝐿, equation (8) yields: 

𝑁𝑥,𝑦 = 𝑇𝑖𝑛𝑡 [R𝑥,𝑦𝐿 ∫ 𝜂𝑥,𝑦(𝜆)𝑑𝜆
𝜆2

𝜆1

] + D𝑥,𝑦 . (15) 

By substituting equations (12) – (14) into (15):  

𝑁𝑥,𝑦 = 𝑇𝑖𝑛𝑡 [(〈𝑅〉 + r𝑥,𝑦)𝐿 ∫ 〈𝜂(𝜆)〉 + κ𝑥,𝑦(𝜆) 𝑑𝜆
𝜆2

𝜆1

] + 〈𝐷〉 + d𝑥,𝑦 , (16) 

which in turn can be separated to a spatially uniform part, the perfectly reproduced, constant, FF: 

𝑁(𝐿) = 𝑇𝑖𝑛𝑡 [〈𝑅〉𝐿 ∫ 〈𝜂(𝜆)〉 𝑑𝜆
𝜆2

𝜆1

] + 〈𝐷〉, (17) 
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and another term constituting the fixed-pattern noise: 

𝑛𝑥,𝑦(𝐿) = 𝑇𝑖𝑛𝑡 [𝐿𝑟𝑥,𝑦 ∫ 〈𝜂(𝜆)〉 + 𝜅𝑥,𝑦(𝜆) 𝑑𝜆
𝜆2

𝜆1

] + 𝑑𝑥,𝑦 , (18) 

the first term of which is referred to as the Photo Response Non-Uniformity (PRNU). The variance 

of PRNU, following the derivation in [22], assuming 𝜅𝑥,𝑦(𝜆), 𝑑𝑥,𝑦 and 𝑟𝑥,𝑦  are statistically 

independent, can be expressed as: 

𝜎𝑛
2  = 𝜎𝐷

2 +
𝜎𝑅

2

〈𝑅〉2
(𝑁(𝐿) − 〈𝐷〉) + 〈𝑅〉𝐿 ∫ κ𝑥,𝑦(𝜆) 𝑑𝜆

𝜆2

𝜆1

 (19) 

3.2.1 Temperature Dependence 

The temperature dependence of dark current in silicon photodiodes (Nakamura [16], p. 71) can be 

expressed as: 

I𝐷(𝑇) = A𝑑𝑔𝑒𝑛𝑇1.5𝑒−
E𝑔

2𝑘𝑇 + B𝑑𝑑𝑖𝑓𝑓𝑇3𝑒−
E𝑔

𝑘𝑇 , (20) 

where E𝑔 is the activation energy, k is the Boltzmann constant, and A𝑑𝑔𝑒𝑛  and B𝑑𝑔𝑒𝑛  are technology 

dependent coefficients. 

The shape of the aggregate temperature dependence function has two exponential regions, one 

dominated by the diffusion current and one by the spontaneous generation current. The 

magnitudes of A𝑑𝑔𝑒𝑛  and B𝑑𝑔𝑒𝑛  control blending of the current sources. 

3.3 Motivation 

While my analysis focused on large pixel, high quality, low noise, global shutter sensors, many 

CMOS sensors are small, low-cost modules in cell phones, laptops, tablets, and web cameras. 

Smaller pixels often lead to reduced full well capacity, which in turn translates to reduced dynamic 

range. Video recorded from sensors contains temporal-, and fixed pattern noise superimposed on 

the signal. The human visual system is excellent at disregarding the temporal, Gaussian noise, but 

notices patterned FPN deeply buried in temporal noise. FPN is particularly disturbing when it is 

superimposed on human faces during video conferencing. In this scenario viewers track facial 

features. Small movements of the face relative to the image sensor cause an apparent shift of FPN 

over the subject, which most viewers find noticeable and objectionable. 

On the other end of the sensor price/quality spectrum, large, stabilized focal plane arrays are used 

in staring cameras. High end staring cameras typically track their targets and use extended 

exposure intervals or collect many exposures then register the images stacks to form output images. 

Image stacking may amplify DSNU if motion between constituent frames is negligible relative to 

the spatial frequencies of the DSNU. Scheimpflug Lidars using CMOS sensors [23]also depend on 

FFC to improve SNR.  

In machine vision camera applications, the consumer of video streams are algorithms, which may 

be less effective at canceling noise than the human visual system. Especially for high frame rate 

imaging tasks with short integration time, the relatively low signal to noise ratio calls for digital 

post-processing of images to reduce FPN. A prime example of this use case is disparity mapping 

for visual odometry. In this case two image sensors, with different FPN profiles are looking at the 

scene, and the processing algorithm looks at the difference, or disparity between the images to infer 
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depth, or z-axis distance from the sensor pair. Disparity mapping attempts to find correspondence 

between an image pair, and often the algorithms amplify sub-pixel differences in x-y plane 

disparities to z-axis depth. Analysis of stereo image pairs collected using a low-cost sensor 

(EV76C661 [24]) showed that matching density improved from 10.2% to 13.1% with FFC enabled, 

a 28% improvement. Matching performance can also be simulated without the actual image sensor 

in hand. If detailed FPN information is available, like the EMVA1288 [7] analysis of a sensor, 

synthetic image pairs with ground truth depth information like the Middlebury benchmark dataset 

[25], can be analyzed with and without FPN (Figure 21). 

   

Figure 21. Cone dataset original (left) and with FPN (right) 

Similar to lab results with actual image sensors, matching densities without lens shading, DSNU, 

and PRNU were 28% better for both the cone and teddy datasets (Figure 22).  

  

Figure 22. Matching Density with (right) and without (left) FPN 

To extract DSNU and PRNU from live video or image frames using non-uniform illumination 

different algorithmic solutions had been proposed, based on regularization [26], or CNNs [27]. 

DSNU and PRNU can be recovered using large frame sets with large, flat image areas, such as 

images of the sky.  

Similar techniques can be used to identify the source of a video, by matching FPN as a watermark, 

embedded in the sources. One application of FFC is to promote data privacy by reducing FPN to a 

level below the capabilities of forensic algorithms [28]. 
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3.4 Uniformity Calibration Method 

At least two exposures, one with no illumination, and one with flat uniform illumination are 

necessary to capture the sensor specific correction images. For low noise, CMOS, visible light 

sensors with improved image sensor circuitry (7 transistor pixel, CDS, DDS), thermal, electrical, 

and shot noise can be several orders of magnitude larger than FPN. In order to cancel temporal 

noise and to measure DSNU and PRNU, thousands of images need to be captured and averaged.  

To analyze the temperature and analog gain level dependency of DSNU and PRNU, capture 

sequences were repeated in a temperature controlled environment, with different gain settings. 

Specifically, images were captured  

- for two 2nd generation, global shutter, monochrome, Sony Pregius machine vision sensor 

candidates, the IMX265LLR-C, and the IMX273LLR-C. 

- across the entire analog gain range supported by the two sensor candidates, at 0.0, 6.0, 12.0, 

18.0 and 24.0 dB. 

- for the above datasets, for both sensors, for 5 gain settings, via temperature range supported 

by the sensors, at 0.0, 15.0, 30.0, 45.0 and 60 Celsius degrees. 

The above dataset was collected for the Sony IMX265LLR-C, with the lens, and lens housing 

removed. A smaller dataset, with two temperatures (10C and 50C) and two analog gain settings 

(2.0 and 24.0 dB), was collected for both the IMX265 and IMX273, with two different lens assemblies 

attached to the sensor PCBA. The motivation for this is detailed in section 3.9, Lens Shading. For 

each sensor, gain, and temperature setting, the mean of the collected image stack is: 

𝜇𝑥,𝑦(𝑝̅) =
1

𝑁
∑ 𝐹𝑥,𝑦(𝑝̅),

𝑁

1

 (21) 

and the standard deviation of the stack was computed: 

𝜎𝑥,𝑦(𝑝̅) =
1

𝑁 − 1
√∑ 𝐹𝑥,𝑦

2 (𝑝̅) −

𝑁

1

 𝑁𝜇𝑥,𝑦
2 (𝑝̅), (22) 

where 𝑝̅ = [𝑇, 𝛼, 𝑠𝐼𝐷 , 𝑡] is a parameter vector of the capture temperature (T), analog gain (𝛼), sensor 

ID (𝑠𝐼𝐷), and exposure time (𝑡). 𝐹𝑥,𝑦
2 (𝑝̅) and 𝜇𝑥,𝑦

2  designates elementwise squaring of pixel values 

for Flat-field frame 𝐹𝑥,𝑦(𝑝̅), and image stack mean frame 𝜇𝑥,𝑦(𝑝̅). To reduce standard deviation of 

the temporal noise below 1 LSB, N = 4000 images for each parameter combination needed to be 

averaged, based on temporal noise measurements discussed in detail in section 3.8.1 and 3.8.2. 

In order to precisely control the temperature of the sensor, the sensor PCBA was mounted on a 

Thermoelectric (TEC) heating/cooling plate, connected to a USB controllable power supply 

(Keysight E3634A). To control sensor temperature, a software defined PID controller was 

employed, using the built-in thermometer function of the sensor. Data collection took place in a 

temperature chamber (No Door α LST365W-PF), which could cool the sensor down to 0 C. For 

flat-field light source, an LED panel (Imaging Tech Innovation model ITLB-ST-V1-100K) was used.  

The thermoelectric heating/cooling plate and the sensor module were housed in a custom 

designed, 3D printed enclosure, which attached the sensor assembly to a flexible, collaborative 

robot arm (Universal Robot UR5e), programmed to move the sensor assembly on a closed, circular 

trajectory (Figure 23). 
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Figure 23 Sensor assembly positioned by articulated robot arm in temperature chamber 

Introduction of motion while the image stack was recorded was necessary to blur any non-

uniformity attributable to the light source. This was essential for the dataset with properly focused 

lens assemblies attached to the sensor. While many other results published [29] were based on 

measurements with integrating spheres, the experiments with the lens assembly attached and 

properly focused revealed both the low frequency (shading), and the high frequency 

(contamination) characteristics of the integrating sphere. Wang [30] also documented and 

addressed this issue. 

The uniformity specifications of laboratory integrating spheres, typically in the 40dB range11, are 

indeed well below the dynamic range of 12-bit sensors. With lens shading corrected and the image 

normalized for viewing, high frequency content of the integrating sphere images is revealed 

(Figure 24). If the image sensor is repositioned in the viewport, the PRNU component remains 

fixed, but smudges and other artifacts are shifted. 

 

11 Image Engineering CAL3, “CAL3 V2 data sheet”:  
https://www.image-engineering.de/content/products/equipment/illumination_devices/cal3/downloads/CAL3_data_sheet.pdf 

https://www.image-engineering.de/content/products/equipment/illumination_devices/cal3/downloads/CAL3_data_sheet.pdf
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Figure 24. Static integrating sphere image artifacts 

3.5 Hardware Implementation of Flat-Field Correction  

In the pixel stream 𝑁𝑥,𝑦 of equation (16), the signal is coupled with DSNU terms 𝑑𝑥,𝑦  and PRNU 

term 𝑟𝑥,𝑦 . In order to correct frames, the additive DSNU and the multiplicative PRNU needs to be 

removed by performing the following correction: 

𝑂𝑥,𝑦(𝑝̅) = 𝐺𝑔[𝑁𝑥,𝑦(𝑝̅) − 𝑍𝑖𝑛 − 𝐺𝑑(𝑝̅)𝑑𝑥,𝑦(𝑝̅)][𝑔𝑥,𝑦(𝑪, 𝑇)𝑟𝑥,𝑦(𝑝̅)] + 𝑍𝑜𝑢𝑡 , (23) 

where 𝑍𝑖𝑛 = 〈𝐷〉 is the black level of the sensor input frame, 𝑍𝑜𝑢𝑡  is the expected output black level, 

𝐺𝑑(𝑝̅) is a temperature, gain, and sensor (𝑝̅) dependent coefficient, which may need to be re-

evaluated every time parameters, such as temperature or analog gain, change. During DSNU 

measurement, and consequently during regular use, the input black level, 𝑍𝑖𝑛, is typically set in the 

sensor to several times the expected standard deviation of DSNU to avoid clipping the measured 

FPN. Coefficients 𝐺𝑔 and 𝑍𝑜𝑢𝑡  perform a linear transformation of the output pixel range, mapping 

values to the expected output range, 8 -16 bit per pixel data. 

 

Figure 25. Flat-Field Correction module block diagram 

Figure 25 shows a block diagram of a single channel FFC module. Input to the module are the 

sensor input pixels 𝑖𝑥,𝑦 = [𝛼𝜌𝑁𝑥,𝑦], where 𝛼 is the analog gain applied, 𝜌 is a charge to voltage 

coefficient, and [] denotes quantization, clipping and clamping of the sensor output. 
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Internal to the FFC module is an optional, parametric lens-shading correction (LSC) block, which 

can be configured with a 32x32 set of coefficient matrix (𝑪). Parameters 𝐺𝑑 , 𝐺𝐺 , C, 𝑍𝑖𝑛 and 𝑍𝑜𝑢𝑡 , 

which only change between frames, are provided by ISP FW.  

In the FPGA ISP implementations of stereo machine vision cameras, the proposed module maps 

efficiently to the DSP48 resources of novel Xilinx or Lattice FPGAs. Generic parameters controlling 

the instantiation of the DSNU, Lens Shading, and PRNU correction sections allow balancing FPGA 

logic resources with the performance requirement of the target application. For example, if 

temperature compensated lens shading correction (section 3.9) is not a requirement, lens shading 

correction can be performed by the PRNU correction multiplier if the frame buffer providing 𝑟𝑥,𝑦  

is initialized with the combined PRNU and Lens Shading correction image. 

ISP
FFC

FFC

DPC

DPC

VDMA VDMA

Embedded 
Processor

Multiport Memory Controller
FPGA

System Bus

DDR

VDMA VDMA

 

Figure 26. Uniformity correction solution for stereo cameras  

All coefficients of the FFC hardware component need to be initialized before use, and coefficients 

𝐺𝑑(𝑝̅), 𝑪, 𝑑𝑥,𝑦  and 𝑟𝑥,𝑦  may need to be regularly updated to match sensor operating parameters. 

Initialization, and subsequent parameter updates are carried out by Firmware (FW), which in the 

proposed implementation is executed by an embedded processor co-located in the same 

Multiprocessor System on a Chip (MPSoC) FPGA as the ISP HW (Figure 26). Besides configuring 

FFC parameters, FW also configures the sensor(s), which includes programming the black level to 

the same 𝑍𝑖𝑛 value provided to the FFC module corresponding to the sensor.  

Per-pixel DSNU and PRNU correction reference frames 𝑑𝑥,𝑦 and 𝑟𝑥,𝑦 are provided to the HW FFC 

modules from external memory (DDR). The Video Direct Memory Access (VDMA) modules in the 

system transfer video frames between the memory controller and other system components. The 

memory controller provides shared access to external memory, by arbitrating and prioritizing 

requests. The VDMAs are also configured by the system processor, and cyclically write, or read 

frames from predetermined memory address ranges. During initialization, one-, or many DSNU 

and PRNU calibration images, pertinent to different temperature and analog gain settings, can be 

loaded to DDR. During operation, FW programs exposure and analog gain settings into the image 

sensors for every frame (auto-exposure), and periodically reads sensor temperatures. Based on 

temperature and gain settings, it may also reconfigure the VDMAs to select PRNU and DSNU 

images best matched to the operating conditions and update parametric lens shading model 

coefficients (𝑪) based on temperature. 
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DDR bandwidth is a scarce resource, shared by the VDMA modules, the system processor, and 

other ISP modules and HW accelerators implemented in the MPSoC. Also, the high-speed 

components of the external memory interface subsystem are primary drivers of dissipation and 

power consumption. A secondary goal of an efficient FFC solution is to minimize DDR bandwidth.  

Another design objective is to minimize manufacturing and calibration time. Even with proper 

automation, capturing thousands of images for PRNU calibration is time consuming. Capturing 

DSNU and PRNU images for large sets of gain-temperature combinations for each individual 

sensor can be prohibitively costly for mass manufacturing practical machine vision systems. 

The subsequent analysis and summary focuses on how much DSNU and PRNU can be reduced 

over the entire gain and temperature range served by the ISP, while simultaneously minimizing 

access to DDR and the number of calibration images used. 

3.6 Related Work 

Generalized linear correction architectures similar to equation (23) were proposed in the seminal 

works of Seibert [22] and Snyder [31]. Based on application area, cost, and performance 

requirements, many solutions were proposed for FFC implementation and calibration methods.  

As for implementation of FFC in an FPGA, Vasiliev [32] describe an FPGA based ISP for a VGA 

CMOS image sensor, including column based DSNU correction. For a basic FFC of the OmniVision 

OV5647 and Sony IMX219 sensors, Bowman [33] proposed a simple apparatus to counter lens-

shading and establish color-correction coefficients.  

To correct lens shading and sensor non-uniformity, many documented solutions propose static, 

single reference solutions. This is suitable for applications like microscopy, where at least 

temperature is expected to be relatively stable. Zhang [34] presents DSNU and PRNU reduction 

results, for back-illuminated scientific CMOS cameras (iXon 89, Dhyana 95 and Prime95B). 

However, temperature and gain dependence of DSNU and PRNU reduction efficiency, as well as 

the exact FFC method used is not discussed in their article. Our results corroborate theirs on the 

magnitude of DSNU and PRNU reduction achievable with single DSNU/PRNU reference images. 

The static approach is also viable for IR FPAs, used by many consumer-grade (Teledyne-FLIR12), 

and aerospace (Hercules13) IR cameras, which perform NUC periodically during operation using a 

cold-plate mechanical shutter [35]. However, closing the shutter during use for a short period to 

capture FPN reference images may not be acceptable for defense or real-time process control 

applications. Another class of FFC solutions compensate for temperature but disregards the 

dependency of DSNU and PRNU on analog gain [36].  

3.7 DSNU Analysis 

DSNU measurements without the lens holder and lens assembly were conducted with a cover over 

the sensor. DSNU measurements with the lens assembly attached were conducted with the lens 

cap covering the lens.  

 

12  Teledyne-FLIR, “160x120 High-resolution Micro Thermal Camera: Lepton 3 & 3.5”, 2022, 

https://flir.netx.net/file/asset/15529/original/attachment  
13  Silicon Devices, ”Hercules 1280 X 1024, 15 µm pitch, digital InSb MWIR”, 2021,  

https://scdusa-ir.com/wp-content/uploads/2021/11/Hercules-1280.pdf  

 

https://flir.netx.net/file/asset/15529/original/attachment
https://scdusa-ir.com/wp-content/uploads/2021/11/Hercules-1280.pdf
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3.7.1 DSNU vs Exposure Time 

In the first dataset DSNU images for the IMX265LLR-C and IMX273LLR-C sensors were captured 

with 0.5ms and 2ms exposure times, while holding temperature and gain constant. Table 1 

demonstrates almost perfect correlation between frames captured with different exposure times, 

with almost identical Standard Deviation (SD). SD is expressed in LSBs of 12 bit sensor data. 

Dark current (thermal noise) is attenuated, but not fully cancelled by averaging. Note that the lower 

correlation values pertain to parameter sets with low SD, which amplifies the relative effect of 

quantization noise, as well as the residual temporal noise. Likely these sensors already contain 

advanced silicon process features to reduce dark current, as well as CMS, DDS, and automatic 

black level adjustment. These findings are consistent with the findings of Changmiao et al. [37]. 

Based on these results, for the rest of this analysis DSNU is treated invariant of exposure time.  

Sensor  

Type 

Temperature 

 ['C] 

Analog  

gain [dB] 

Std. Dev. 

Tint=0.5us 

Std. Dev. 

Tint=2.0us 

Pearson 

Correlation 

IMX265 10 2.0 1.423 1.416 0.974 

IMX265 10 24.0 26.164 26.047 0.997 

IMX265 50 2.0 3.275 4.982 0.983 

IMX265 50 24.0 60.294 60.428 0.997 

IMX273 10 2.0 4.430 4.416 0.988 

IMX273 10 24.0 52.864 52.880 0.995 

IMX273 50 2.0 4.799 5.376 0.962 

IMX273 50 24.0 64.950 65.802 0.982 

Table 1: DSNU Standard Deviation and Pearson correlation  

3.7.2 Standard Deviation of Uncorrected DSNU 

 

Figure 27. Standard deviation of uncorrected DSNU  
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Figure 27 presents the SD of uncorrected DSNU as a function of temperature and analog gain. 

Matching expectations and existing results, the magnitude of DSNU scales exponentially with both 

temperature and analog gain.  

Equation (20) establishes the theoretical background for the exponential relation with temperature, 

while the definition, 𝛼 = 20𝑙𝑜𝑔10𝐴𝑔 [dB] of analog gain consequently results to the 𝐴𝑔 factor used 

by the programmable gain amplifiers in the sensor to scale exponentially with 𝛼. 

 

Figure 28. SD of DSNU at 30°C (left), and at 24.0dB gain (right) 

Fitting exponentials along the axes (Figure 28), and modeling DSNU as a product of an FPN 

template, with magnitude approximated with a separable surface: 

𝑑𝑥,𝑦(𝑇, 𝛼) ≈ 𝑑̂𝑥,𝑦𝐷(𝑇, 𝛼), (24) 

where 𝑑̂𝑥,𝑦 is a reference DSNU capture, normalized to 𝜎 = 1.0. For the IMX265,  

𝐷(𝑇, 𝛼) = 𝑐0(𝑐1𝑒
𝑐2𝛼 + 𝑐3)(𝑐4𝑒

𝑐5𝑇 + 𝑐6), (25) 

with 𝑐0= 0.0196, 𝑐1,2,3= {3.1605, 0.1156, 0.2679} and 𝑐4,5,6= {1.547, 0.0449, 45.5775}. 

For optimal results 𝑑̂𝑥,𝑦 should be captured at a temperature and analog gain setting resulting to 

maximum correlation with DSNU images captured for the rest of the parameter space. 

3.7.3 Single point correction 

As a first approximation, a single prior, 𝑑̂𝑥,𝑦, was used without adjusting magnitude (𝐺𝑑) to cancel 

DSNU across the entire temperature and analog gain range. Figure 29 presents the SD of residual 

DSNU when corrected with a static reference image captured at 45 C and 18.0 dB. At these 

parameter values, SD of DSNU is 28.64 (Table 2), about half of the worst-case SD. As expected, due 

to the strong correlation between DSNU across temperatures and gain ranges, DSNU is almost 

perfectly cancelled at the parameter values where the reference image was captured. The non-zero 

residual noise is due to the fact that two sets of 2000 images for each parameter setting were 

collected, to correct one stack using the other as reference. This method also helps to quantify 

leftover temporal noise in the data. Worst-case DSNU is reduced considerably, by 37%, but DSNU 

is significantly increased in the range of the parameter space where SD of DSNU was lower than that 

of the reference image. 
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Figure 29. SD of DSNU corrected with a single, static image 

Pearson correlation was chosen as a similarity metric between FPN captures due to its invariance 

to signal magnitude. Pearson correlation between a scaled reference frame and an actual dark input 

frame remains unaffected by scaling with (𝐺𝑑).  

 

Temp. 

[‘C] 

Analog  

gain [dB] 
Tint [ms] 

Original  

SD 

Residual  

SD 

Pearson 

Correlation 

0 0 0.53 3.16 26.44 0.726 

0 24 0.02 47.17 31.43 0.761 

15 0 0.51 3.23 25.99 0.840 

15 24 0.02 48.82 27.94 0.867 

30 0 0.49 3.43 25.49 0.929 

30 24 0.01 50.99 26.01 0.939 

45 0 0.46 3.76 24.98 0.977 

45 6 0.23 7.34 21.39 0.991 

45 12 0.10 14.44 14.36 0.995 

45 18 0.05 28.64 2.80 0.995 

45 24 0.01 57.63 29.28 0.995 

60 0 0.45 4.64 24.44 0.920 

60 6 0.21 8.69 20.75 0.948 

60 12 0.10 17.71 13.62 0.939 

60 18 0.04 34.43 12.23 0.941 

60 24 0.01 68.42 42.62 0.940 

Table 2: SD and Pearson correlation with static reference 
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Figure 30. Residual SD of DSNU with a single, scaled image 

Figure 30 presents the standard deviation of the residual DSNU after correction with a single 

reference that was scaled by 

𝐺𝑑(𝑇, 𝛼) =
𝐷(𝑇, 𝛼)

𝜎(𝑑̂𝑥,𝑦)
, (26) 

where 𝐷(𝑇, 𝛼) is the approximation introduced in equation (25), and 𝜎(𝑑̂𝑥,𝑦) is the standard 

deviation of the reference frame. This method reduced DSNU across the entire temperature and 

gain parameter space. The best DSNU reduction performance, 91.39% (21.3 dB), coincided with the 

temperature and gain identical to the reference frame parameters, alas the highest Pearson 

correlation between frame and reference, and the worst reduction performance, 25.1% (2.51dB) was 

measured at the parameter combination with the least Pearson correlation with the reference 

frame. 

Establishing 𝐷(𝑇,𝛼) for each sensor instance may be prohibitively costly for mass manufacturing. 

While 𝐷(𝑇,𝛼) is fairly uniform for the same batch of sensors, a more accurate method is to read out 

the Optically Blanked Pixels (OBP) around the active region of the sensor image frame, then 

calculate the standard deviation of the OBP region. OBPs are affected by temperature and gain 

settings identical to regular pixels and provide an accurate value for in-situ assessment of SD 

magnitude. This method can be considered a digital post-processing step after the analog 

correction proposed by Zhu [9]. Reading out the OBP presents a small (~1%) overhead during 

regular operation, which is a trade to be considered with the manufacturing overhead of 

establishing 𝐷(𝑇, 𝛼).  

3.7.4 Multi-point correction 

Results from correction with a single reference frame confirm that the key to improved FPN 

reduction performance is to use reference frames better correlated with the FPN characteristic to 

the temperature and gain parameters of the image frames to be corrected. For this purpose, many 

IR thermal imaging sensors and staring cameras use multiple sets of FPN reference images and 

apply the one best suited to actual operating parameters. 
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3.7.5 Correction via Linear Interpolation  

A straightforward way to improve correlation is to calibrate at multiple gain and temperature 

settings, then interpolate the reference frame used by the FFC HW based on current temperature 

and gain settings (𝑇, 𝛼). Suppose n ≥ 3 reference points, {𝑝1, 𝑝2. . 𝑝𝑛}, in parameter space 𝑝̅ are 

selected for calibration, for which corresponding DSNU reference images 𝑑̂𝑖 ∈ {𝑑̂1, 𝑑̂2. . 𝑑̂𝑛} have 

been captured. 

To find the estimated 𝑑̂ pertinent to 𝑝 = {𝑎, 𝑇}, the first step is to find 𝑝𝐴, 𝑝𝐵 , 𝑝𝐶  the three closest 

neighbors to 𝑝, preferably defining a triangle that contains p. The simplest way to do this is to 

define a distance operator ‖𝑝 − 𝑝𝑖‖, based on which all candidate reference points can be rank 

ordered by proximity. A practical measure could be 𝑐(𝛼 − 𝛼𝑖)
2 + (𝑇 − 𝑇𝑖)

2, where 𝛼 and 𝑇 are the 

analog gain and temperature for 𝑝, and 𝛼𝑖  and 𝑇𝑖 are the analog gain and temperature for reference 

point 𝑝𝑖, and 𝑐 is a constant weight. Note that the perfect distance metric would be the inverse of 

correlation between DSNU of the particular frame, and of the reference frame. However, the DSNU 

of the current frame is unknown. Based on Table 2 analog gain only scales DSNU, therefore DSNU 

along the gain axis is highly correlated, suggesting a low value for c.  

The resulting reference frame to be used for FFC will be interpolated, using 

𝑑̂ = ∑ 𝜆𝑖

𝑖∈{𝐴,𝐵,𝐶}

𝑑̂𝑖 , (27) 

where 𝜆𝑖 are the barycentric coordinates of 𝑝, as defined by the triangle 𝑝𝐴, 𝑝𝐵 , 𝑝𝐶  in the analog gain 

and temperature parameter space 𝑝̅ = {𝑎, 𝑇}. Coordinates 𝜆𝑖 can be found by solving 

𝑃𝜆̅ = 𝑝′̅, (28) 

[
1 1 1
𝑎𝐴 𝑎𝐵 𝑎𝐶

𝑇𝐴 𝑇𝐵 𝑇𝐶

] [

𝜆𝐴

𝜆𝐵

𝜆𝐶

] = [
1
𝑎
𝑇
] (29) 

for 𝜆̅, which yields 

[

𝜆𝐴

𝜆𝐵

𝜆𝐶

] = [

((𝛼𝐵 − 𝛼𝐶)(𝑇 − 𝑇𝐶) + (𝛼 − 𝛼𝐶)(𝑇𝐶 − 𝑇𝐵))/𝐷

((𝛼𝐶 − 𝛼𝐴)(𝑇 − 𝑇𝐶) + (𝛼 − 𝛼𝐶)(𝑇𝐶 − 𝑇𝐴))/𝐷
1 − 𝜆𝐴 − 𝜆𝐵

], (30) 

where 

𝐷 = (𝛼𝐶 − 𝛼𝐵)(𝑇𝐴 − 𝑇𝐶) + (𝛼𝐴 − 𝛼𝐶)(𝑇𝐵 − 𝑇𝐶). (31) 

The magnitude of D can be thought of as the oriented area of a parallelogram defined by the 

𝑝𝐴𝐵⃗⃗ ⃗⃗  ⃗  and 𝑝𝐴𝐶⃗⃗⃗⃗  ⃗  vectors. If 𝑝𝐴 , 𝑝𝐵 , 𝑝𝐶  are on a line, D = 0, and the larger |𝐷| is the more orthogonal 𝑝𝐴𝐵⃗⃗ ⃗⃗  ⃗ 

and 𝑝𝐴𝐵⃗⃗ ⃗⃗  ⃗ are, thus the better for interpolating 𝑝̅. Another consideration besides having D ≠ 0 for 

selecting 3 candidates from the rank ordered list of reference candidates is to have positive 

barycentric coordinates (𝜆𝑖 > 0), ∀ 𝑖 ∈ {𝐴, 𝐵, 𝐶}, which ensures the 𝑑̂ is not extrapolated in equation 

(27). 

The SD of the resulting blended reference 𝑑̂ can be calculated during evaluation of (27), or can be 

estimated using the precomputed SDs of the constituent references: 

𝜎(𝑑̂) ≅ √ ∑ 𝜆𝑖

𝑖∈{𝐴,𝐵,𝐶}

𝜎2(𝑑̂𝑖), (32) 
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Figure 31. SD of DSNU corrected with interpolated reference, using 4 reference captures 

Similar to the method introduced in section 3.7.3, the estimated SD can be used to scale interpolated 

reference frame 𝑑̂ according to equation (26). 

To evaluate the linear interpolation method, 4 reference DSNU images were captured at the 4 

corners of the parameter space, using both extremes of temperature and gain. This intuitive 

selection ensures that for any parameter combination p in parameter space 𝑝̅, a set of 3 references 

can be selected such that p is inside the triangle defined by the references.  

As demonstrated by Figure 31, interpolating the reference image produced very good results, 

significantly reducing worst-case DSNU.  

3.7.6 Optimizing reference selection 

In order to interpolate between references, at least 3 reference DSNU captures are necessary. By 

each additional reference image captured, DSNU can be further attenuated around the parameter 

combination of the reference image, at the cost of additional calibration time, DDR allocation, and 

boot time. 

 

Figure 32. SD of DSNU corrected with interpolation between 5 reference captures 
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DSNU suppression quality can be also improved by optimizing the reference parameters for a 

given number of reference frames. Figure 32 presents the residual SD after correction with 5 

reference images, captured at {(0C, 0dB), (60C, 0dB), (0C, 24dB), (30C, 24dB) and (60C, 24dB)}. 

Corresponding Table 3 lists Pearson correlation values between the actual frames and the 

interpolated references. Besides improved DSNU suppression measurements, notice the 

improvement in correlation with respect to correlation values in Table 2.  

Every time analog gain, or measured die temperature deltas exceed a predefined threshold, the 

embedded processor controlling the ISP (Figure 26) needs to re-compute the interpolated reference 

image 𝑑̂. Selecting the 3 closest candidates around the current 𝑝 = {𝛼, 𝑇} from a set of {𝑝1, 𝑝2. . 𝑝𝑛}, 

reference parameters is trivial. 

Temperature 

['C] 

Analog 

gain 

[dB] 

Frame  

SD 

Residual 

SD 

Pearson 

Correlation 

DSNU  

Reduction [%] 

DSNU 

Reduction [dB] 

0 12 11.90 1.28 0.994 89.3% 19.39 

0 24 47.17 3.82 0.997 91.9% 21.84 

0 18 23.61 2.89 0.993 87.8% 18.24 

0 6 6.05 0.87 0.990 85.7% 16.88 

0 0 3.16 1.06 0.944 66.6% 9.52 

15 24 48.82 5.33 0.994 89.1% 19.24 

15 18 24.40 2.73 0.994 88.8% 19.01 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

45 12 14.44 2.28 0.987 84.2% 16.02 

45 6 7.34 2.12 0.958 71.1% 10.80 

45 0 3.76 0.65 0.985 82.8% 15.30 

60 24 68.42 7.10 0.995 89.6% 19.69 

60 18 34.43 5.17 0.989 85.0% 16.47 

60 12 17.71 3.21 0.984 81.9% 14.84 

60 6 8.69 1.56 0.984 82.0% 14.90 

60 0 4.64 1.55 0.944 66.6% 9.52 

Table 3: Residual SD, Pearson correlation, DSNU reduction using interpolation with 5 references 

The majority of the FFC related workload for the embedded ISP processor is to perform the actual 

interpolation on millions of pixels, which is dependent on the frame size, but invariant of the 

number of reference images, n. 

At startup the embedded processor needs to load reference DSNU frames from non-volatile 

memory (NVME) to the system memory (DDR), which, depending on the NVME used may present 

a small penalty in terms of boot time, for each additional reference image. DDR or NVME size / 

cost typically is not a concern considering image sizes relative to current package capacities.  

In order to optimize the locations of reference captures {𝑝1, 𝑝2. . 𝑝𝑛} in parameter space 𝑝̅ = {𝛼, 𝑇}, 

the following quantities need to be introduced. 

- Let 𝜓𝜀̅(𝛼′, 𝑇′) denote the probability that during regular operation sensor temperature (T) 

and analog gain (𝛼) is within a predefined range |𝑇 − 𝑇′| < 𝜀𝑇  and |𝛼 − 𝛼′| < 𝜀𝑎, such that  

∑ ∫ 𝜓𝜀̅

𝑇𝑚𝑎𝑥

𝑇𝑚𝑖𝑛

(𝛼, 𝑇)𝑑𝑇

𝑎𝑚𝑎𝑥

𝑎𝑚𝑖𝑛

= 1.0 (33) 

𝜓𝜀̅  is essentially the 2D probability density function based on discrete parameter 𝛼, which 

is a register setting, and continuous parameter T, derived from camera usage statistics.  
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- Let 𝜔(𝛼, 𝑇) denote the weight, or relative importance the user application, e.g., disparity 

mapping, associates with parameter combination (𝛼, 𝑇). For high-gain scenarios increased 

temporal noise may reduce the importance of DSNU. 

With these quantities, the optimum set of reference parameters, 𝑝̂, can be selected as  

𝑝̂ = argmin
𝑝𝜖𝑝̅

∑ ∫ 𝜎𝑝(𝛼, 𝑇) 𝜔(𝛼, 𝑇) 
𝑇𝑚𝑎𝑥

𝑇𝑚𝑖𝑛

𝜓𝜀̅(𝛼, 𝑇)𝑑𝑇

𝛼𝑚𝑎𝑥

𝛼𝑚𝑖𝑛

, (34) 

where 𝑝 = {𝑝1, 𝑝2. . 𝑝𝑛} is set of (𝛼, 𝑇) parameters, at which reference images were captured. 

𝜎𝑝𝑛
(𝛼, 𝑇) is the SD of the residual DSNU on images corrected with reference set p. 

The argmin operation can be implemented with simulated annealing (SA) [38], starting the pn from 

a constellation of parameters distributed along the edges of the parameter space. This offline 

operation may be lengthy even on a powerful computer, but it only has to be performed once per 

reference set p during system design, assuming 𝜔(𝑎, 𝑇) and 𝜓𝜀̅(𝑎, 𝑇) are stable.  

3.7.7 Correction VIA Logarithmic Interpolation  

Since DSNU is an exponential function of both 𝛼 and T, interpolating in logarithmic space 

intuitively would suggest improved results: 

𝑑′̂ = exp ( ∑ 𝜆𝑖

𝑖∈{𝐴,𝐵,𝐶}

𝑑̂′𝑖), (35) 

where 𝑑̂′𝑖 = ln (𝑑̂𝑖) are the reference DSNU images stored in logarithmic format.  

My results unfortunately did not confirm this hypothesis. With the same set of reference 

parameters, the resulting DSNU residuals were slightly higher than that of linear interpolation. 

3.8 PRNU Analysis 

Noise patterns on the sensor output image depend on imaging conditions: illumination, exposure 

time, analog gain, as well as temperature, conducted, capacitive and inductive electronic 

interferences. FF images were captured for multiple IMX265LLR-C and IMX273LLR-C sensor 

instances at 0.5ms and 2ms exposure times, while holding temperature and gain constant.  

PRNU VS Exposure Time 

Analog gain and temperature were measured while holding the other two parameters constant. 

Measurements were performed with the lens assembly present over the sensor. Table 4 

demonstrates almost perfect correlation between FF image stacks captured with different exposure 

times. For the IMX265, SD displays a slight dependence on exposure time and temperature, with 

almost no dependence (0.1%) at 0C, and 2.1% increase at 60C, while exposure time increased 

fourfold from 0.5ms to 2.0ms. These increases are under the residual noise floor after averaging 

temporal noise over 2000 images. The IMX273 did not display any measurable dependence on 

exposure time. These results confirm the expectation that PRNU in CMOS sensors is independent 

of exposure timing. The timing of digital control signals (e.g., SEL, TX, RST on Figure 19) signals is 

uniform across the imaging array, as well as the switching characteristics of the transistors 

involved. On/Off transition times (ns range) of the MOSFETs are also at least 4 orders of magnitude 

smaller than the exposure period (ms range).  
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Sensor  

Type 

Temperature 

[C] 

Analog  

gain [dB] 

Std. Dev. 

Tint=0.5ms 

Std. Dev. 

Tint=2.0ms 

Pearson 

Correlation 

IMX265 0 2.0 175.69 176.00 0.999141 

IMX265 20 2.0 174.47 176.33 0.999050 

IMX265 60 2.0 171.03 174.16 0.998582 

IMX273 35 0.2 182.69 183.31 0.996231 

IMX273 35 12.0 180.74 183.32 0.995280 

IMX273 60 0.2 177.80 181.75 0.999082 

IMX273 60 12.0 154.77 155.31 0.996216 

Table 4: FF Standard Deviation and Pearson correlation  

Based on these results, for the rest of this analysis, just like DSNU, PRNU is treated invariant of 

exposure time. 

In comparison with Table 1, SD of PRNU is up to two orders of magnitude larger than that of 

DSNU, and initially seems a lot less dependent on analog gain or temperature. A second set of 

measurements were performed with focus on temperature and gain dependence for the 

IMX265LLR-C, capturing PRNU at analog gain levels {0, 6, 12, 18 and 24} dB levels, at {0, 15, 30, 45, 

and 60} C° temperatures. For each sensor, gain, and temperature combination two sets of 

measurement data were recorded, based on 𝑁 = 2000 frame captures in each set. Both sets 

contained mean images, 𝜇1(𝑇, 𝛼) and 𝜇2(𝑇, 𝛼), which were generated by averaging the captured 

images, as well as standard deviation 𝜎1(𝑇, 𝛼) and 𝜎2(𝑇, 𝛼) images, by calculating SD for each pixel 

across the stack of N images. Per-pixel SD allowed estimation of residual temporal noise present 

in the data. 

3.8.1 Temporal VS FPN noise 

Before continuing with the analysis of noise on image stacks captured with FF illumination, it is 

important to characterize noise sources. At higher illumination levels, temporal noise is dominated 

by shot noise, the collective effect of the quantum nature of light. The actual number of photons 

captured during the exposure period follows a Poisson distribution. If the mean number of photons 

captured is ν, then the SD of shot noise is √𝜈. The maximum number of photons converted to 

electrons is limited by the full well capacity, 𝜈𝑚𝑎𝑥  of the sensor, as well as the saturation level of 

the ADCs following the PGAs. Thus, to get to an expected digital output level, such as 70% white 

level, with higher analog gains, fewer photons need to be captured. When using analog gain α, SD 

of the shot noise associated with the photon flux with be reduced by √𝛼 at the photodiode, but this 

noise, superimposed on the signal, is then also amplified by the PGA: 

𝜎(𝛼) = 𝛼√
𝜈

𝛼
=  √𝛼𝜈. (36) 

Effectively, when comparing FF images captured with different analog gain settings resulting to 

similar output white levels, SD is expected to scale with the square root of gain applied. Figure 33, 

plotting the measured standard deviations 𝐸[𝜎1(𝑇, 𝛼)] on a lin-log scale confirms this expectation. 
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Figure 33. SD of Shot noise as a function of analog gain (𝛼) 

The 24.0dB (maximum gain for the IMX265 and IMX273) applies a factor of 16 amplification, for 

which a 4x increase in shot noise amplitude is expected. 

Averaging over N images reduces the SD of shot noise by a factor of √𝑁. Based on SD 

measurements, SD of temporal noise present on image stack means 𝜇1(𝛼, 𝑇) and 𝜇2(𝛼, 𝑇) is expected 

to range from 11.2 LSBs (𝑇 = 0 °C, 𝛼 = 0.0 dB) to 44.72 LSBs (𝑇 = 60 °C, 𝛼 = 24.0 dB), due to 

averaging. 

It is also worth noting that the distribution of per-pixel standard deviation 𝜎1(𝛼, 𝑇) is not 

necessarily Gaussian (Figure 34). Per the central limit theorem, the effects of multiple, uncorrelated 

noise sources (such as shot noise, thermal noise, and electronic noise) with different means and 

standard deviations superimposed on pixel outputs present as a single Gaussian even if the 

distributions of the individual noise sources were not Gaussians. However, if a color image sensor 

with Bayer Color Filter Array present over the pixel array was tested, a multi-modal distribution, 

with three distinct Gaussians pertinent to pixels with red, green, blue pigments is expected. Due to 

the differential spectral absorption of the dies, different sensitivities translate to different photon 

counts, in turn different means and standard deviations for shot-noise distributions. For a 

monochrome sensor, Figure 34 is proof of a continuum of different sensitivities, which effectively 

is the definition of PRNU present. 

 

Figure 34. Distribution of per-pixel SD at T=30°C, α=0.0dB 
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To analyze noise variance on the pixel output, all temporal noise dependent on illumination and 

gain, like shot noise, is combined into 𝑛𝑠(𝐿, 𝛼) and all other temporal noise sources, such as 

thermal-, reset-, and electronic noise is factored into 𝑛𝑇(𝛼, 𝑇). Substituting this into equation (16), 

with 𝑁′𝑥,𝑦(𝛼, 𝑇) representing the output pixel value, assuming uniform gray illumination (L): 

𝑁′𝑥,𝑦(𝛼, 𝑇) = 𝑇𝑖𝑛𝑡𝑅𝑥,𝑦𝐿𝛼 + 𝐷𝑥,𝑦(𝛼, 𝑇) + 𝑛𝑠(𝐿, 𝛼) + 𝑛𝑇(𝛼, 𝑇). (37) 

For FF measurements exposure time 𝑇𝑖𝑛𝑡  is set such that the expected output value remains 

constant (70% of the white value, Nmax) for the chosen illumination intensity (L) and analog gain α. 

Hence 𝐿𝑇𝑖𝑛𝑡𝛼= 0.7 Nmax is a constant factored into the PRNU: 𝑟𝑥,𝑦 = 𝑇𝑖𝑛𝑡𝑅𝑥,𝑦𝐿𝛼 = 0.7𝑁𝑚𝑎𝑥𝑅𝑥,𝑦 .  

Since DSNU for all temperature and analog gain combinations used in the PRNU analysis was also 

recorded, captured pixel values can be corrected with the DSNU: 

𝑛𝑥,𝑦(𝛼, 𝑇) = 𝑁′𝑥,𝑦(𝛼, 𝑇) − 𝐷𝑥,𝑦(𝛼, 𝑇), (38) 

𝑛𝑥,𝑦(𝛼, 𝑇) = 𝑟𝑥,𝑦 + 𝑛𝑠(𝐿, 𝛼) + 𝑛𝑇(𝛼, 𝑇). (39) 

Assuming statistical independence between the noise sources, noise variance on the output is: 

𝜎𝑛
2 = 𝜎𝑟

2 + 𝜎𝑠
2 + 𝜎𝑇

2 =  𝜎𝑟
2 + 𝜎𝑡

2. (40) 

The first noise term, 𝜎𝑟  is pertinent to the fixed pattern PRNU, which is to be minimized. 

Suppression of temporal noise term 𝜎𝑡 is discussed in section A.2.2.  

3.8.2 Analysis of Flat-Field image Stacks 

SD of the flat-field image stack (𝜎𝑛) and of temporal noise (𝜎𝑡) are directly observable. When the 

two sets of mean images, 𝜇1(𝛼, 𝑇) and 𝜇2(𝛼, 𝑇), of the image stacks are combined, in the sum 

𝑠(𝑇, 𝛼) =
𝜇1(𝛼, 𝑇) + 𝜇2(𝛼, 𝑇)

2
, (41) 

the SD of temporal noise is suppressed by a factor of √2𝑁 ≈ 63.24, but the averaging does not affect 

the fixed-noise component: 

𝜎𝑠
2 = 𝜎𝑟

2 +
𝜎𝑡

2

2𝑁
. (42) 

In the per-pixel differences of the two sets of mean images, the FPN term is eliminated, 

𝑑(𝑇, 𝛼) =
𝜇1(𝛼, 𝑇) − 𝜇2(𝛼, 𝑇)

2
, (43) 

with the difference image the residual temporal noise after averaging: 

𝜎𝑑
2 =

𝜎𝑡
2

2𝑁
. (44) 

Figure 35 illustrates the SD of temporal noise as a function of temperature and analog gain used. 

As expected, thermal noise 𝑛𝑇(𝛼, 𝑇) increases with temperature, and shot noise, 𝑛𝑠(𝐿, 𝛼) increases 

with analog gain 𝛼. 
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Figure 35. Standard deviation of temporal noise 𝜎𝑡(𝛼, 𝑇) 

3.8.3 Standard Deviation of Uncorrected PRNU 

From variance measurements of the averaged means 𝜎𝑠(𝛼, 𝑇) and 𝜎𝑑(𝛼, 𝑇) the SD of the fixed 

pattern PRNU component can be computed:  

𝜎𝑟 = √𝜎𝑠
2 − 𝜎𝑑

2 . (45) 

Figure 36 illustrates the dependence of PRNU over analog gain and temperature. While the shape 

of the function may suggest that analog or digital processing techniques are used inside the sensor 

to improve uniformity at medium gains, the drop around 10dB is relatively insignificant in 

comparison to the average PRNU levels. 

It is also worth noting that non-uniformity is only visible, though subtle, at very low gains where 

shot noise is at minimum. Above 0.5 dB gain a human observer could not perceive FPN on video 

as it was deeply buried in temporal noise. 

 

Figure 36. Projections and averages of 𝜎𝑟(𝛼, 𝑇) 

3.8.4 Single point correction 

Selecting a single correction image is the simplest way to calibrate non-uniformity and has 

demonstrated good results [36]. For suppression of visible PRNU artifact, selecting a calibration 

frame in the middle of the temperature range, and at analog gain = 0.0dB removed all visible 
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artifacts (Figure 37). Analysis of PRNU recorded at different temperatures and analog gains  

(Table 5) reveal very high correlation across the entire temperature range. This finding augments 

the findings of Figure 36, suggesting that PRNU is stable across the operating temperature range. 

Analog  

gain [dB] 

Temperature  

[°C] 

SD FF  

stack 

SD  

temporal 

SD  

PRNU 

Pearson  

corr. 

SD  

Residual 

Residual  

PRNU 

24 0 333.00 31.78 331.48 0.6533 255.42 253.44 

18 0 281.70 23.36 280.72 0.7972 176.40 174.85 

12 0 260.08 16.29 259.57 0.8630 139.52 138.56 

6 0 258.91 11.78 258.64 0.9416 91.46 90.70 

0 0 273.06 8.19 272.93 0.9967 22.06 20.48 

24 15 341.27 31.94 339.77 0.6540 261.63 259.67 

6 15 258.00 11.60 257.74 0.9403 92.46 91.73 

0 15 271.51 8.68 271.37 0.9979 17.66 15.38 

24 30 342.40 31.56 340.94 0.6369 267.24 265.37 

6 45 255.11 12.37 254.81 0.9358 95.37 94.56 

0 45 271.25 10.64 271.04 0.9982 16.06 12.03 

24 60 351.97 34.39 350.29 0.6313 276.44 274.29 

18 60 283.38 23.16 282.43 0.7790 184.00 182.54 

12 60 259.39 16.55 258.86 0.8598 140.57 139.60 

6 60 256.88 11.78 256.61 0.9343 97.19 96.48 

0 60 257.24 13.03 256.91 0.9973 19.33 14.28 

Table 5: SD of PRNU and residual, single reference correction  

 

Figure 37. Residual SD of PRNU, single reference correction 

3.8.5 Multi-point correction 

High correlation along the temperature axis suggests that using multiple reference frames along 

the gain axis can minimize SD over the entire parameter range. Even though multi-point correction 

can reduce worst-case PRNU by a factor of 4 (Figure 38), a practical implementation of this method 

requires capturing multiple PRNU reference images in a temperature-controlled environment. The 

large number of images to capture for each image stack and reference image may be prohibitively 

expensive in a production environment. 
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Figure 38. Residual SD of PRNU, multi-reference correction 

Single point correction reduces PRNU related noise an order of magnitude under temporal noise 

under the same imaging conditions, which for most practical applications may be sufficient to 

achieve required fixed pattern noise performance. 

3.9 Lens Shading 

As mentioned in section 2.10, pixel vignetting is due to a mismatch between the Chief Ray Angle 

(CRA) of the lens system to the micro-lenses on top of the image sensor pixels. Micro-lenses over 

the sensor pixels at nadir are more efficient at focusing incident light to the buried photodiode than 

those closer to the edges of the sensor. 

3.9.1 Temperature dependence 

Lens spacers, the barrel, and lens elements undergo material expansion. The refractive indices of 

lens elements are also temperature dependent. Lenses made from materials with low Coefficient 

of Thermal Expansion (CTE), e.g., glass and metal, are more stable across the operating 

temperature range. For mobile consumer-, or airborne applications, to reduce cost and weight, 

plastic lens elements, with higher CTE are used. 

 

Figure 39. Hybrid lens at 0C corrected with 60C image 
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When a PRNU image captured with the lens assembly at one temperature is used to correct for 

lens shading at another temperature, the difference can introduce artifacts. Figure 39 demonstrates 

this problem on a hybrid (glass + plastic) lens assembly.  

Figure 39, scaled to improve visibility, was captured by attempting to correct lens-shading of a FF 

image collected at 0C, by using a lens-shading correction image collected at 60C. 

 

Figure 40. HIP of hybrid lens, 0C corrected with 60C  

Figure 40 shows the Horizontal Intensity Profile (HIP) of the corrected image. The slight 

asymmetry of the profile is indicative of temperature dependent warping of the lens-sensor 

assembly. The ideal intensity profile would be perfectly flat at 1.0. While a 1.5% divergence may 

not seem much, the SD of the noise equivalent of this artifact of a 16-bit sensor image is 269 LSBs, 

which at low analog gains is significantly above uncorrected DSNU, and at par with uncorrected 

PRNU. Notably, DSNU and PRNU are distributed over the entire image area, and on single 

captures blend with temporal noise, but lens shading artifacts are concentrated and are discernable 

even on single captures.  

This finding emphasizes the point that to suppress both high-, and low-frequency noise 

temperature compensated PRNU correction is necessary. As mentioned in section 3.5, the proposed 

Flat-Field Correction module can correct lens shading via 𝑟𝑥,𝑦 , with a combined LSC and PRNU 

correction image stored either in a frame buffer or generated by the dedicated LSC module.  

PRNU is dependent mostly on analog gain, while LSC is a function of temperature only. For a 

solution that corrects both PRNU and LSC via 𝑟𝑥,𝑦(𝛼, 𝑇) an exhaustive set of FF image stacks may 

need to be recorded, which is often not practical for mass-manufacturing.  

3.9.2 Complex Lens assemblies 

For variable focus or zoom lens assemblies, where lens shading is dependent on temperature and 

the position of lens elements or groups, parametric characterization of the lens assembly may be 

necessary. To perform characterization, FF images for a single, module specific lens assembly, or a 

set of 𝑁𝐿 sensor module samples are captured at combinations of different temperature (𝑇), lens focus 

(𝑓) and zoom (𝑧) settings. The recorded images are low pass filtered, and if multiple samples were 

used, averaged over the sensors in the sample set: 
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𝑙𝑠𝑥,𝑦(𝑇, 𝑓, 𝑧) =
1

𝑁𝐿
∑ 𝐺̂(𝐹𝑥,𝑦(𝑠𝐼𝐷 , 𝑇, 𝑓, 𝑧), 𝜎)

𝑁𝐿

𝑠𝐼𝐷

, (46) 

Where 𝐺̂(𝐹, 𝜎) is a two-dimensional Gaussian Filter with SD 𝜎, and 𝐹𝑥,𝑦(𝑠𝐼𝐷 , 𝑇, 𝑓, 𝑧) is a FF image of 

sensor module 𝑠𝐼𝐷 , captured at temperature 𝑇, with the lens assembly present with focus and zoom 

settings 𝑓, 𝑧. FF images are to be captured using minimum analog gain, and exposure time adjusted 

so the center of the resulting images are at 70% full-scale gray values.  

The parametric LSC module takes a 32x32 set of coefficients 𝑪(𝑇, 𝑓, 𝑧), derived from the scaled 

inverse of 𝑙𝑠𝑥,𝑦(𝑇, 𝑓, 𝑧), sampled at a spatially uniform sampling grid spanning the entire image. 𝜎, 

and the size of the Gaussian filtering kernel 𝐺̂ is set to equal the sampling grid size, to provide 

maximum suppression of temporal noise or contamination artifacts without interfering with the 

sampling intensity drop-off profile. The memory footprint of the resulting set of 32x32 LSC 

coefficients 𝑪(𝑇, 𝑓, 𝑧) is small enough for FW to update between frames when temperature, or lens 

parameters change. 

3.9.3 Use of Population Images 

In order to expedite the manufacturing process, one option is to reuse a population image set, 

captured with multiple sensor samples, on all image sensor modules manufactured in a batch. 

However, due to manufacturing tolerances and temperature dependence in both the lens and 

sensor, unit to unit variations in lens shading and temperature dependence are introduced. 

 

Figure 41. HIP of LSC without de-center correction 

Figure 41 presents the Horizontal Intensity Profile of an FF image from one image sensor 

compensated for Lens Shading with a population image. While dozens of manufacturing 

parameters may vary module-to-module during manufacturing, optical de-center is the primary 

parameter to be controlled to enable use of population images. 

The best way to control de-center is the use of Active Alignment (AA) during manufacturing, 

which bounds the tolerated de-center and angular alignment error of image sensor modules 

produced. 

Another option, in lieu-, or on top of AA, is to measure optical de-center (𝑐𝑥,𝑦) as part of Image 

Quality Control (IQC) and adjust coefficients 𝑪(𝑇, 𝑓, 𝑧) to compensate for 𝑐𝑥,𝑦  before committing it 

to NVME storage on the image sensor module. 
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3.10 Chapter Summary 

I provided an efficient FPGA implementation to suppress dark signal and photo-response non-

uniformity that improved stereo matching results for machine vision cameras.  

In the chapter introduction sources of non-uniformity in imaging systems were reviewed, defining 

DSNU, PRNU and Lens Shading. The dependency of DSNU and PRNU of two modern Sony 

CMOS machine vision sensors on exposure time, die temperature, and analog gain (Figure 27 and 

Figure 36) were analyzed. 

In section 3.5 I proposed FFC and ISP architectures, optimized for FPGA or ASIC 

implementation supporting different noise suppression performance and resource trades. 

I performed in-depth analysis of temperature and analog gain dependence of fixed pattern noise 

of modern CMOS image sensors. Noise suppression performance of four different algorithms 

were quantified to suppress DSNU (sections 3.7.3-3.7.7), along with the analysis of embedded 

software-, and calibration complexity of the different approaches. An algorithm was provided for 

optimizing the capture parameters of calibration images (section 3.6.6). Performance of two 

different options were explored to suppress PRNU (sections 3.8.3-3.8.5). Temperature dependence 

and correction options for lens shading were analyzed in section 3.9. 

Based on different use case scenarios, the proposed FFC and ISP architecture can be configured for 

different performance tiers. For all performance tiers the proposed architecture introduces minimal 

latency as images are read out from attached image sensors.  

For consumer products with inexpensive CMOS sensors and optics, such as webcams, a minimal 

ISP solution can use population images, and no correction for DSNU or PRNU. The most egregious 

non-uniformity problem is uncorrected lens-shading. Objectionable to human observers, and 

detrimental to machine vision and processing algorithms, lens shading can be compensated using 

just the parametric LSC module in the proposed FFC solution. This performance tier does not 

require an external frame buffer, VDMAs, or FW initialization of buffers 𝑑𝑥,𝑦 and 𝑟𝑥,𝑦 . 

For video applications where visible FPN is not acceptable, such as DSLR cameras, PRNU and 

DSNU has to be suppressed. This performance tier requires an external frame buffer to provide 

𝑑𝑥,𝑦 and 𝑟𝑥,𝑦 . If fixed focus optics is used, and temperature compensation of the lens is not a 

requirement, LSC can be performed by convolving intensity and PRNU correction in 𝑟𝑥,𝑦 .  

As described in section 3.7.3 using a single, static image does not correct DSNU sufficiently. The 

top performance tier is suitable for high end machine vision cameras, studio equipment, or 

computational photography where motion compensated image stacks are registered to suppress 

temporal noise. For these demanding applications gain and temperature compensated DSNU, 

PRNU and LSC are all utilized. Parametric LSC is suggested with module specific, temperature 

compensated lens-shading parameters accounting for zoom and focus settings. For this tier, FW 

needs to either calculate 𝐷(𝑇, 𝛼), or gather image statistics from the OBP region of the sensor and 

calculate 𝜎(𝑇, 𝛼) (section 3.7.4). Also, FW may dynamically adjust frame buffer contents to 

interpolate between DSNU and PRNU frames stored in DDR.  

As demonstrated in sections 3.7.3 and 3.8.5, DSNU correction can be significantly improved by 

using the global DNSU amplifier (𝐺𝑑) feature of the FFC. PRNU suppression can be improved by 

using gain dependent calibration images (𝑟𝑥,𝑦). For this performance tier, at initialization multiple 

𝑟𝑥,𝑦  images need to be deposited into DDR by FW. During use, FW also needs to read out sensor 

temperature 𝑇, and based on the current analog gain setting 𝛼 update 𝐺𝑑(𝛼, 𝑇) and reprogram the 

VDMA read controller to point to the 𝑟𝑥,𝑦(𝛼) best matched to operating conditions. 
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4 Defective Pixel Correction 

To improve image quality raw sensor images are typically processed by FFC and DPC modules as 

the first stages of the ISP pipeline. FFC, described in detailed in the previous chapter corrects slight 

differences in pixel sensitivity and offset. As introduced in section 2.2, some sensor pixels are 

defective beyond correction. DPC replaces defective pixels with interpolated values using 

information from neighboring pixels. 

Modern CMOS image sensors comprise a light sensitive array of pixels, analog amplifiers, ADCs, 

digital back end and timing circuitry (Figure 19). The pixel array is inherently monochrome and is 

sensitive to a broad spectrum of light. Color imaging systems may employ different color filters 

with multiple sensors, use a single sensor with a Color Filter Array (CFA) laid over the sensor 

pixels, or a single sensor with a three layer photodiode structure [39]. Most current color imaging 

devices use a single sensor overlaid with the Bayer CFA [40]. 

With improvements in process technology and novel architectures such as back-side illuminated 

pixels, pixel sizes and full-well capacities have been shrinking [16]. While defect densities are 

reduced, the expected number of pixel defects per sensor is rising, and the yield of defect-free 

imagers is deteriorating. Sensor manufacturers discard focal point arrays with cluster defects, 

defective rows, or columns, but tolerate a growing number of single pixel defects towards the 

periphery of the image.  

The human visual system is highly sensitive to outlier pixels especially in flat areas of images. 

Furthermore, the CFA interpolation process [41],[42] may spread the effects of singular pixel 

defects to surrounding pixels by introducing color artifacts. 

Some computer vision algorithms, such as mid-air collision warning and avoidance, are especially 

sensitive to pixel defects. This class of algorithms tracks small objects in a high frame-rate video 

stream. Objects in the ‘sky’ region of images which persistently observed at a constant angle (fixed 

x, y position on an imager) relative to a moving aerial vehicle (aircraft, drone, or missile) are on a 

crash trajectory. Defective Pixels (DPs), present stationary outliers which can cause false alarms or 

course corrections.  

For every frame produced by the sensor, DP values have to be dynamically replaced with values 

derived from surrounding pixels. Which surrounding pixels can be used depends on the defect 

type and the sensor configuration; monochrome sensors can use the nearest neighbors, while 

sensors with Bayer CFA can use either a quincunx (green pixels) or rectangular (red, blue) grid of 

same color pixels.  

4.1 Pixel Defect Types 

In terms of spatial configuration, defects in image sensors may affect single pixels, pixel clusters, 

complete rows, or columns. Cluster defects are usually caused by doping contaminants, or particles 

shading the micro-lens array affecting multiple neighboring pixels. Defective rows or columns may 

be attributed to faulty row drivers, column amplifiers, shorted metallization, or a faulty element in 

the chain of charge coupled transistors in a CCD. Sensors exhibiting severe defects introduced 

during manufacturing can be discarded by quality checks performed by the vendor.  
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Single pixel defects arise over time due to high energy ionizing particles impacting photodiodes 

[43]. Generation rate of defects is a function of altitude and is especially a concern for aerospace 

camera applications.  

 

Figure 42. Example of a dead pixel in a sensor with Bayer 

Pixel defects (Figure 42) may be characterized as dead (always dark), hot (always light, 

characterized by very high dark current), or flickers (excessively noisy). Using a linear model of 

photoconversion, pixels may be considered defective based on dark signal non-uniformity 

(DSNU), or photo-response non-uniformity (PRNU). FFC characterizes the DSNU and PRNU of 

each pixel in the array and establishes coefficient matrices correcting dark levels and photon-

responses. When the photon-response correction coefficient larger than 1.0 is applied, shot and 

thermal noise is also amplified for the pixel.  

A practical metric to determine if a pixel is defective or not is to estimate additional noise 

introduced by extrapolating the pixel value using FFC versus interpolating the pixel using 

neighboring pixel values (DPC). This criterium is usually a static rule manifested as a PRNU 

threshold established off-line. 

Pixels defects may be permanent, or temporal, based on current ambient conditions, such as 

dependence of DSNU and PRNU values on temperature and sensor settings.  

DPC is a two-step process: DPs need to be identified, then interpolated using information from 

surrounding pixels. Identification of DPs can be performed statically, or dynamically. 

4.2 Static Identification 

Static solutions take advantage of a calibration step, often performed as part of the FFC calibration, 

either during sensor-, or camera device manufacturing. In calibration mode the sensor is typically 

exposed to a dark, then a flat medium gray visual field. The dark field image is collected with the 

sensor covered. The flat-field is captured either in an integrating sphere or facing a light panel, 

with-, or without the optical assembly present. Exposure time and analog gain is usually set such 

that pixels are neither over nor underexposed. A global histogram of pixels is computed to quantify 

sensor quality, outliers (hot and dead pixels) are identified as DPs, and their coordinates are stored 

in a defective pixel table.  

Figure 43 presents a simple DPC solution using a static defective pixel table and linear 

interpolation. As video pixels are streaming in scanline order, row-, and column counters keep 

track of the current pixel position of the frame. If the x, y coordinates of the pixel are flagged in the 

defective pixel table, the input pixel is replaced by a horizontally interpolated pixel in the output 

stream. For monochrome sensors, the immediate neighbors can be used. For color sensors, due to 

the structure of the Bayer pattern, same color values from two pixels over need to be used for the 

interpolation. For the sake of simplicity Figure 43 omits provisions for exception handling, e.g., 

interpolation of edge pixels, or cluster defects, when one of the neighbors should be excluded from 

interpolation. 
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Although simple in construction and robust in identification, static DPC solutions require an extra 

manufacturing step, and cannot account for temporary DPs. Most notably, static solutions cannot 

identify defects introduced during use, after the calibration step was performed. 
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Figure 43. Static solution for Stuck Pixel Correction 

4.3 Dynamic Identification 

 Dynamic identification of DPs is by far the harder problem and the primary focus of this paper. 

Dynamic solutions analyze the sensor data stream and look for outlier pixels, which are apparently 

stuck or flicker independent of neighboring pixel values and local motion. 

4.4 Related Work 

Early approaches for CCD DPC by Meynants [44] and Reinhant [45] used only a single line of 

pixels, with no frame or line buffers to reference against. These methods are computationally 

efficient but often produce visually poor results, particularly in regions with high horizontal 

frequencies. 

More advanced methods utilize a two-dimensional interpolation kernel [46], calculate inter-frame 

differences, and cumulative variances. For all pixels, an external frame buffer is used to store 

previous values and accumulated variance. Pixel variance under a threshold indicates that the pixel 

is stuck (low or high). High variance above a threshold over local average indicate a flickering 

pixel. In both cases the pixel is concealed by 2D or 3D interpolation. In order to calculate and store 

inter-frame differences the frame buffer need to be accessed 4 times (Read/Write previous value, 

Read/Write variance). On-chip frame buffers are typically very costly in FPGAs. Access to an 

external frame buffer reduces memory bandwidth available for higher level processing algorithms. 

In  [S4] I proposed a solution to this problem without addressing flickering pixels. 

An edge-dependent adaptive filtering based solution has been proposed by Tanbakuchi et. al [47], 

identifying a predefined number of DPs. The intensities of possible DPs were compared with 

intensities of the same locations in a subsequent frame after a scene-change was detected. Possible 

DPs which did not change intensities over the scene-change were stored in a separate permanent 

memory.  

Interpolation has extensive literature, with many trades offered between complexity and quality 

of results. Linear methods use bilinear, or higher order kernels using nearest neighbors. Non-linear 

methods employ median or rank-order filtering as proposed by Li [48]. A comparison between the 

efficacy of these methods is presented by Tchendjou in [49]. Complex interpolation methods, such 

as motion-compensated, three-dimensional interpolation described by Adil et. al in [50]. This 
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approach can suppress large cluster artifacts, using information from previous frames. However, 

a frame buffer, and sufficient computational resources are necessary to calculate optical flow.  

Baharav et. al [51] introduced a dynamic detection solution without a frame buffer by detecting 

outliers first, but the solution lacks temporal tracking of DP candidates and immediately 

interpolates outliers if their nearest neighbors are not outliers. In video streams this may lead to 

flickering artifacts. 

4.5 Proposed Solution 

The typical spatio-temporal filtering method described identifies non-changing pixels first 

(temporal), then distinguishes between large stationary areas, which are likely to be non-changing 

parts of the image, and singular outliers, which are likely to be DPs. Memory requirements can be 

significantly reduced by performing spatial filtering first. Spatial filtering reduces the number of DP 

candidates, along with the amount of information needed for temporal filtering, therefore 

facilitates spatio-temporal filtering in embedded systems with limited-, or no access to external 

memory. 

4.5.1 Algorithm 

Two-dimensional spatial filtering first identifies potential DPs, and at the same time eliminates 

pixels which blend into their local neighborhoods, therefore may not need to be substituted even 

if they are defective.  

At the core of the solution is a list of DP candidates, stored in scanline order. Each candidate entry 

in the list contains the:  

- pixel scan-line index (de facto x, y coordinates),  

- previous value of the pixel,  

- age of the entry expressed as the number of frames since the pixel was entered into the list , 

an optional flag (keep), to force retaining the entry. 

If the input pixel is already in the candidate list, verify whether the current pixel value is within a 

predefined (𝜀1) range of the previous value stored for the pixel. If the value is within range, increase 

the age of the entry, otherwise remove the pixel from the list unless the ‘keep’ flag is set. This flag 

enables using static identification results. Statically identified DPs are typically stored in non-

volatile memory (NVM) next to the sensor and can be uploaded to the DPC module by the module 

FW driver. 
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Figure 44. Nearest neighbors for Bayer CFA, and monochrome sensors 

For each input pixel, two dimensional spatial filters evaluate the minimum distance between the 

pixel and its immediate neighbors, normalized by the standard deviation: 
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 (48) 

where 𝑃𝑘 are the 8 nearest, same-color neighbors. Based on sensor configuration, the locations of 

the nearest, same-color neighbors may vary (Figure 44).  

Figure 45 illustrates the algorithm for handling input pixels. 
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Figure 45. Simplified flow-chart of the proposed algorithm 

4.6 Constrained Randomization 

The number of DP candidates (spatial outliers) per frame could far exceed the number of actual 

DPs. As the proposed algorithm identifies outliers in a scan-line continuous fashion, pixels closer 

to the top of the image would be represented in the candidate list with higher probabilities than 

pixels closer to the bottom of the sensor image. If memory depth limitations of a hardware 

implementation prohibit monitoring all false positive candidates identified in an image, true DPs 

on the bottom of the image may never be added to the candidate list. Therefore, new DP candidates 

should only be added to the list after a random hold-off period if all memory available for list 

storage is consumed. This randomization de-correlates start of DP candidate insertion from frame 

coordinates, and results to a uniform distribution of candidates across all image regions. As false 

candidates are eventually removed from the list and actual DPs are located, the algorithm 

converges to identifying all true DPs, provided that the memory allocated can store the total 

number of DPs defined by parameters 𝜀1, 𝜀2 and 𝜀3. 
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The randomized hold-off period should be constrained as follows. If the period is less than one 

frame, then false positives on the list are likely not yet cleared. The longer the hold-off, the longer 

it takes for true positives to be added to the list, and interpolation to begin. Therefore, hold-off, 

expressed as pixel counts, should be randomized between one full-frame to tens of frames, 

dependent on video content. For relatively static content (e.g., security cameras) more frames may 

be necessary to remove false positives from the candidate list. For mobile sensors, such as sensors 

in autonomous vehicles, fewer frames with dynamic content may suffice to rid the list from false 

positives. 

Outlier

Pixel

List

Video_IN

Video_out

Delay-match

2D

Same-color 

Difference

2D

Local 

Variance 

2D Interpolation 

Filter

|x|

_

Old

value

H_SYNC V_SYNC

outlier

interpolate

changed

Threshold 

comparison

Threshold 

comparison

 

Figure 46. Block Diagram of an FPGA implementation 

4.7 Flicker defects 

As presented, the algorithm can detect stuck (dead, or hot) pixels, but not flickering pixels. If flicker 

detection is required, candidate list entries can be appended with a cumulative variance term, 

summing the squared differences between current and previous pixel values. A fourth 

thresholding operation, comparing the cumulated squared differences with a constant (𝜀4) 

multiplied by the number of frames the candidate pixel had been tracked (age), can identify 

flickers. 

4.8 Hardware Implementation 

With some optimizations the proposed algorithm lends itself well for FPGA or ASIC 

implementation. The architecture defined in Figure 46 takes sensor stream video pixels (Video_In), 

as well as horizontal-, and vertical synchronization signals (H_SYNC, V_SYNC) as inputs. With a 

fixed delay it generates an output pixel synchronous to input synchronization signals. Output 

latency is a function of the 2D interpolation method used, described in detail in the next section. 
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The output pixel is either interpolated, using a 2D interpolation kernel, or fed forward from the 

input matching the delay of the interpolation kernel. The interpolation decision is based on 

whether the current input pixel is marked for replacement in the candidate list.  

4.9 DP candidate list implementation 

The candidate list is implemented as a dual-ported Block RAM based first word fall-through FIFO. 
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Figure 47. Block Diagram of an FPGA implementation 

The output of the FIFO presents the row and column coordinates of the next pixel on the list. If the 

current row and column coordinates match the presented coordinates, the entry is read out 

(removed) from the FIFO. If based on absolute pixel value change the candidate pixel needs to 

remain on the list, the entry is written back to the FIFO. A multiplexer can either feed the FIFO 

output back into the input or insert a new pixel value into the FIFO based on the pixel qualifier 

control signals generated by the arithmetic and thresholding logic. If 2D local variance and color-

difference indicates that the current pixel is an outlier which is not on the list, the pixel is written 

into the FIFO as a new entry if hold-off requirements are met. In each frame, all values from the 

FIFO are read out, with only those outlier candidates written back into the FIFO whose pixel values 

stayed in the range defined by 1. Also, new outlier candidates can be inserted into the appropriate 

positions between the existing FIFO elements, such that the scan-line continuous order of the pixels 

stored within the FIFO is maintained. 

Software simulations confirmed that without a visible degradation in performance in (47) the 

minimum of squared differences operation can be effectively replaced by the minimum of absolute 

differences, while the standard deviation in (47) can be replaced by the sum of absolute differences 

(SAD) operator: 

𝑑 =
𝑚𝑖𝑛

𝑘
|𝑃0 − 𝑃𝑘|

𝑆𝐴𝐷(𝑃𝑘 − 𝜇)
, 𝑘 = 1. .8 (49) 

where 𝜇 is the mean of the surrounding same color pixel values 𝑃𝑘 . In FPGA and ASIC 

implementations the above changes reduce the arithmetic footprint considerably, replacing 

multipliers with adders. Combined with the thresholding operation d < ε2, the condition can be 

rewritten as: 



52 

 𝑚𝑖𝑛
𝑘

|𝑃0 − 𝑃𝑘| < 𝜀2𝑆𝐴𝐷(𝑃𝑘 − 𝜇), (50) 

replacing a block divider with a multiplier, which is available next to the Block RAM resources 

used for implementing the FIFO and the line buffers in current FPGAs. 

Randomization is implemented in hardware with an LFSR based pseudo-random generator, which 

initializes a counter with a value between the frame-size and a constant multiple of the frame size. 

If and only if the candidate FIFO gets full the counter stars counting down by every input pixel. 

Irrespective of frame boundaries, new DP candidates are not written into the FIFO until the counter 

reaches its terminal value, however existing DP candidates are evaluated and may be removed 

from the FIFO. 

4.10 Interpolation 

The interpolation method chosen for DPC need to consider that nearest, same-color neighbors may 

be defective as well. Also, DPC interpolation artifacts may introduce false colors during subsequent 

CFA interpolation in the image processing pipeline. Nonlinear filters, such as 2D median filters, 

typically preserve edges well, but may introduce flickering to video streams when noisy samples 

in the ordered list are close to each other in value. Linear interpolation filters may introduce 

blurring when applied to regions with high spatial frequencies but considering the relatively small 

area (DPs) where the filters are applied the introduced artifacts are less visible than the flickering 

introduced by non-linear filtering. Two interpolation approaches, using similar hardware 

architecture can provide trade-off between performance and resource usage: 

- Interpolation including only valid same-color neighbors 

- Edge adaptive interpolation of valid, same-color neighbors 

Both methods fit FPGA or ASIC implementation well, interpolate flat-, or gradient fields with at 

most two LSB error, and produces predictable results (no flickers based on low variance additive 

noise).  

 

Figure 48. Input pixel matrix for the 2D interpolation kernel 

The first part of the interpolator is the pixel-matrix presenting the input pixels around the DP 

candidate (Figure 48). Besides providing grayscale values, an additional input bit, indicating the 

validity of the corresponding pixel is provided with video_in. A pixel is considered valid if it is not 

on the list of actively interpolated pixels. If one of the 8 nearest neighbors is invalid, the diagonally 

opposite neighbor is considered invalid as well. This method results to symmetrical interpolation 

kernels, which in turn guarantee the flat-, or smooth gradient fields are interpolated within 
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rounding error. Pixel values and valid flags of the 8 nearest neighbors are passed to an adder tree, 

which combines pixel values. Each registered adder in the tree takes two pixels with a bit 

corresponding to the validity of the pixel and generates a summed output and a bit corresponding 

to the validity of that sum. Each adder node in the tree performs the following operation, based on 

the validity of input pixels: 

A valid B valid output output valid 

true true A+B true 

true false 2A true 

false True 2B true 

false False don't care false 

Table 6: Output of adder stages based on input validity 

Diametrically opposite nearest neighbors are paired for the first adder stage. The second adder 

stage combines averages from perpendicular directions, e.g., the horizontal average is combined 

with the vertical one. Method (B) optionally calculates not only the sum, but also the absolute 

difference between the pixel pair of stage one. If 𝑠𝐻  and 𝑠𝑉  are the horizontal and vertical sums, 

calculated by the first adder stage, and 𝑑𝐻 and 𝑑𝑉  are the absolute differences incremented by one 

to avoid division by zero, not only the validity, but differences can be factored in on stage two: 

𝑠𝐻𝑑𝑉 + 𝑠𝑉𝑑𝐻

𝑑𝐻 + 𝑑𝑉
 (51) 

This method prefers the average across more similar pixel values, leading to edge adaptive 

interpolation. Equation (51) can be implemented in hardware without a division operator as 

described in [S6]. Similar to combining horizonal and vertical averages, diagonal averages can be 

combined weighing the corresponding absolutes differences. 

The resulting weighed sum effectively implement edge adaptive interpolation, steering the filter 

to combine pixel values along edges, as opposed to across edges. This in turn reduces color artifacts 

introduced by CFA interpolation. 

4.11 Parameterization 

The robustness of an image processing algorithm or system often depends on how easily threshold 

values can be matched to the particular stimuli received. Parameters 𝜀1, 𝜀2, 𝜀3  can be set adaptively 

by firmware irrespective of the scene content, with little a-priori information of the sensor and its 

application.  

Threshold value ε1 defines how stable a pixel value needs to be in order to be classified as stuck. 

The lower the value, the lower the chance that slowly varying pixels get characterized as stuck 

(false positives). However, in high noise scenarios, or when blooming may modify readout values 

of dead pixels, 𝜀1 may need to be increased to identify all stuck pixels. Based on simulation results, 

as a practical value for ε1, the square root of the maximum pixel value produces optimal results. 

Threshold value ε2 defines how different a pixel needs to be from the surrounding pixels in order 

to be classified as an outlier. A higher threshold value for 𝜀2 results to a lower number of outlier 

candidates and slower convergence time for identifying all DPs, but at the same time returns fewer 

false positives. If heuristics for the total number of DPs (N) are known, a feedback mechanism, 
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implemented in FW, may effectively adapt the filter, and dynamically tune ε2 such that the number 

of DPs in the list approximates N.  

Threshold value 𝜀3 defines the number of frames presumed outliers have to hold their values 

within the 𝜀1 range before replacement (interpolation) begins. The higher the value of ε3, the less 

flickering due to DPC the algorithm produces, but also the longer it takes for the algorithm to 

converge and start replacing the pixels. A constant value in the range of 100-10000 allows virtually 

no flickering while identifying outliers within minutes. If fast convergence is more important than 

eliminating temporary DPs, 𝜀3 is suggested to track the total number of frames (T) since the sensor 

was turned on. In simulations a value of T/5 produced optimal results. 

4.12 Results 

Actual resource counts and maximum frequencies vary depending on the input frame size, the 

expected number of DPs (N) and the target FPGA family. For color sensor processing (5x5 kernel), 

12 bit color representation, 4 line buffers take 3 BRAM36 primitives. The DP list, supporting up to 

1024 DP candidates, can be stored in 4 Block-RAMs.  

FPGA part BRAM36s DSP48s FFs Fmax 

XC7V585T-1 3 2 2065 280 MHz 

XC7K70T-1 3 2 2065 258 MHz 

XC7A100T-1 3 2 2065 180 MHz 

Table 7: Performance and resource use for Xilinx FPGAs, method (A) 

In [49] Tchendjou proposes an algorithm with a similar structure (spatial detection-, and spatial 

interpolation filter, with a circular verification buffer). Their approach can detect 3x3 cluster defects 

(which in practice are rare due to manufacturer screening of image sensors) but cannot detect 

flicker defects. Compared to their implementation results obtained post synthesis targeting a Xilinx 

Zynq ZC702 part, my proposed algorithm and implementation uses the same number of BRAM 

primitives and registers, but 50% fewer DSP slices than their DPD_M implementation, and less 

than 25% of BRAM and registers than their higher quality DMD_R approach. In terms of operating 

frequencies my proposed algorithm is 2.5 times more performant (258MHz vs 106MHz) than 

DPD_M, their simpler approach. 

4.13 Chapter Summary 

An adaptive spatio-temporal filter algorithm and architecture for FPGA or ASIC implementation 

was proposed to identify and correct defective pixels in the video stream of an image sensor.  

I provided an algorithm and architecture for automatic detection of single-pixel and cluster 

defects on focal-plane array images, optimized for FPGA implementation. 

In comparison with existing methods, the proposed architecture requires no external frame-buffer 

access, therefore lends itself well for FPGA and VLSI implementation of streaming ISPs. The 

solution can effectively identify slowly varying temporarily defective pixels, with excellent 

convergence speed and accuracy, can also detect flickering pixels, and supports monochrome or 

color (Bayer CFA) sensors. Results pertinent to this thesis were published in [S5]. 
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5 White Balance Correction 

In photography and image processing, color-, or white-balance adjustment is the correction of color 

intensities to render specific colors, particularly neutral colors, correctly. White balancing corrects 

the colors of a scene to appear as if the scene was imaged with natural lighting, irrespective of the 

illumination source used. Real-time color-balancing is becoming increasingly challenging as 

resolutions and frame-rates of industrial, consumer and automotive video applications increase. 

The method I developed illustrates how a custom hardware accelerator gathering image statistics, 

a pixel-level color correction module, and an algortihm with 𝜊(1) algorithmic complexity 

implemented on an embedded processor can achieve excellent results. The algorithm has no 

dependencies on any particular library, or HW features, and can be ported to a soft processor like 

MicroBlaze, or an advanced ARM core to control custom image / video processing logic.  

The measured color and intensity of reflections from a small, uniform surface element with no 

inherent light emission or opacity depend on the following functions:  

• The spectral power distribution of the illuminant 𝐼(λ) 

• The spectral reflective properties of the surface material 𝑆(𝑥, λ) 

• The spectral photo-sensitivities of the imager 𝑃(λ) 

where 𝑥 denotes location expressed in camera coordinate space, such as an angle subtended by a 

Lambertian patch of a scene object to the imager, and λ denotes wavelength of light. The signal 

power measured by a pixel can be expressed as 

𝑝 = ∫ 𝐼(λ

λ𝑀

λ𝑚

)𝑃(λ)𝑆(𝑥, λ)dλ, (52) 

where λ𝑀and λ𝑚 are the maximum and minimum wavelength sensitivity limits of the imaging 

system. The trichromatic aggregate spectral power measured by image sensor pixels inherently 

mixes the native color of objects with the spectral content of the illuminator. Illuminant estimation 

is inherently under-constrained [52], and the identification of illuminant spectrum is based on 

heuristics about the color content of the scene. Color correction subsequent to illumination 

estimation aims to restore colors that appear correct regardless the illuminant, such as incandescent 

or fluorescent lighting. 

In order to get a color image, human vision, photographic and video equipment uses multiple, 

adjacent sensors with different spectral responses. Human vision utilizes 3 different types of light 

sensitive cone cells, to formulate color perception. CIE has defined a set of three color-matching 

functions, 𝑥̅(λ), 𝑦̅(λ) and 𝑧(̅λ) which can be thought of as the spectral sensitivity curves of three 

linear light detectors that yield the CIE XYZ tristimulus values 𝑃𝑥, 𝑃𝑦 , and 𝑃𝑧. The tabulated 

numerical values of these functions are known collectively as the CIE standard observer [53]. 

Digital image sensors predominantly measure tristimulus values either by a Color Filter Array [40] 

overlay above inherently monochromatic photodiodes, or by stacked photodiodes [39] measuring 

the absorption depth of photons, which is proportional to the wavelength 𝜆. Neither method 

creates spectral responses similar to the human eye, which leads to different color measurements 

between human observers and image sensors, as well as image reproduction equipment when 

photographing the same scene. 
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The purpose of camera color calibration is to transform / correct the tristimulus values measured 

by a camera or image sensor such that the spectral responses match those of the CIE standard 

observer (Figure 49, left). 

  

Figure 49. Normalized spectral responses of the CIE Standard Observer, and silicon photodiode 

With {𝑅(λ), 𝐺(λ), 𝐵(λ)}  > 0,  λ𝑚 < λ <  λ𝑀 representing the sensor specific spectral transmittance 

properties of the red, green, and blue pigments used in the Bayer CFA of a color image sensor, and 

𝑝(λ) denoting the sensitivity of a silicone photodiode (Figure 49, right), the actual spectral 

sensitivities of the R,G,B channels can be defined. 

The camera correction factors pertinent to color channels, given uniform white illumination 𝐼(λ) =

𝑖, , and uniform Lambertian reflectance 𝑆(𝑥, λ) = 𝑠, are expressed as 

𝑐𝑥 = ∫
𝑥̅(λ)

𝑝(λ)𝑅(λ)
dλ

λ𝑀

λ𝑚

,       𝑐𝑦 = ∫
𝑦̅(λ)

𝑝(λ)𝐺(λ)
dλ

λ𝑀

λ𝑚

,        𝑐𝑧 = ∫
𝑧(̅λ)

𝑝(λ)𝐵(λ)
dλ

λ𝑀

λ𝑚

 (53) 

5.1 White Balance 

Regardless lighting conditions, and the type of illumination used, human vision aims to perceive 

the objects with their respective colors (object permanence). This feature of the visual system is 

called chromatic adaptation. Color constancy has been modeled by the Retinex theory [54].  

A camera with no adjustment or automatic compensation for illuminant spectrum may register 

objects with different colors if illumination spectra changes. White balance correction refers to the 

adjustment of colors within the ISP such that a scene object with surface reflectance independent 

of wavelength 

𝑆(λ) = 𝑠,         λ𝑚 < λ < λ𝑀, (54) 

where λ𝑚=380nm and λ𝑀=750nm are the minimum and maximum wavelengths pertinent to the 

sensitivity of the human eye. 

According to equation (52), the spectra of the illuminant(s), the reflective properties of scene 

object(s), and the spectral sensitivity of the detector all contribute to the resulting color 

measurement. Therefore, even with the same image sensor measurement results will mix 

information from innate object colors and the spectrum of the illuminant. White balancing 

therefore is a two-phase operation: illuminant estimation, and color correction. Illuminant 

estimation, the separation of innate reflective properties 𝑆(λ) from the spectrum of the illuminant 

𝐼(λ), is possible only if: 
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- Some heuristics about the spectrum of the illuminant, such as the colors of reference objects, 

are known.  

- Illumination within a scene, or image is assumed uniform. In the related work examined a 

common assumption is that changes across the image in illuminant spectral composition 

are negligible in comparison with changes of object reflectance properties within the scene. 

For example, when photographing a scene with natural sunlight, the spectra of the 

illuminant remain constant over the entire image. Conversely, when a cinematic image is 

projected onto a white screen, sharp changes in illuminant spectra are observed, while the 

reflective properties of the scene (the canvas) remain constant. When both illuminant and 

reflective properties change abruptly isolation of the scene objects and illuminants is very 

difficult. 

- Detector sensitivity 𝑆(λ) and the illuminant spectrum 𝐼(λ) do not have zeros in the range 

of spectrum observed. No information can be gained about the reflective properties of 

objects outside the illuminant and detector sensitivity spectrum. For example, when a scene 

is illuminated by a monochromatic red source, a blue object will look just as black as a 

green one. 

5.2 Related Work 

5.2.1 Color Constancy  

In digital imaging systems the problem of camera calibration for a known illuminant can be 

represented as a discrete, 3 dimensional vector function: 

𝑥′ = 𝐹(𝑥), (55) 

where F() is the mapping vector function, 𝑥 is the discrete (typically 8, 10 or 12 bit) vector of R,G,B 

principal color components. Based on whether mapping is performed linearly, and whether color-

components are corrected independently, the mapping function can be categorized into four 

quadrants (Table 8). 

Color Correction Method Linear Non-linear 

Independent Von-Kries Component Correction 

Dependent Color-Correction Matrix Full Look-Up Table 

Table 8. Characterization of color correction methods 

5.2.2 The Von Kries Hypothesis 

The simplest, and most widely used method is based on the Von Kries Hypothesis [55], which 

transforms colors to the LMS color space, then performs correction using only 3 multipliers on a 

per channel basis. The hypothesis rests on the assumption that color constancy in the human visual 

system can be achieved by individually adapting the gains of the three cone responses. Cone 

responses are to be adapted based on the spatio-temporal sensory context, that is, the color history 

and perceived colors of surrounding objects. Cone responses corresponding to two radiant spectra, 

𝛼(𝜆) and 𝛽(𝜆), can be matched by appropriate choices of diagonal adaptation matrices 𝑨 and 𝑩 

such that 



58 

𝑨𝑆𝛼(𝜆) = 𝑩𝑆𝛽(𝜆) (56) 

where S is the cone sensitivity matrix.  

In the LMS (Long-, Medium-, Short-wave sensitive cone-response space), 

𝐷 = 𝑨−𝟏𝑩 = [

𝐿𝑏/𝐿𝑎 0 0
0 𝑀𝑏/𝑀𝑎 0
0 0 𝑆𝑏/𝑆𝑎

] (57) 

is a diagonal matrix, enabling independent adjustment of color channel gains. The advantage of 

this method is its simplicity and compact implementation with 3 multipliers either as part of the 

image sensor, or the ISP: 

[
𝐿′
𝑀′
𝑆′

] = [

𝑘𝐿 0 0
0 𝑘𝑀 0
0 0 𝑘𝑆

] [
𝐿
𝑀
𝑆

] (58) 

In a practical implementation, instead of using the LMS space, the RGB color-space is often used 

to adjust channel gains such that one color, typically a light gray tone, is represented by equal R,G,B 

values. However, adjusting the perceived cone responses or R,G,B values for one color does not 

guarantee that other colors are represented faithfully. 

5.2.3 Independent Component Correction 

For any particular color component, the Von-Kries Hypothesis using independent channel gains 

can only represent linear relationships between input and output. Assuming similar data 

representation (e.g. 8, 10, or 12 bits per component), unless 𝑘𝐿 = 𝑘𝑀 = 𝑘𝑆 = 1.0, some of the output 

dynamic range is unused, or some of the input values correspond to values that need to be clipped 

/ clamped, resulting in piecewise linear transfer functions with abrupt changes. 

Instead of multipliers, use channel specific look-up tables can capture arbitrary transfer functions 

defining smooth input-output mappings. This way logarithmic compression or gamma correction 

as well as color correction can be addressed in one block. In the example FPGA ISP implementation 

of Figure 4, the tone curve correction block can be used to perform this operation. 

5.2.4 Color-Correction Matrix 

Considering the differences between the cone sensitivities of the human visual system, and the 

spectral absorption properties of the pigments used in the image sensor Bayer CFA [40], obviously 

some spectral components reflected back to the image sensor are captured by different from that 

of human cone cells. This wavelength dependent cross-contamination between color channels can 

be compensated by using a 3x3 matrix multiplier. The advantage of this method over the Von-Kries 

approach is that all 3 color channels are involved in the calibration process, e.g., information from 

the red and blue channels can be incorporated when adjusting green channel gains. For camera 

calibration, color responses of calibrated red, green, and blue light sources are captured, and a 

coordinate transformation aiming to orthogonalize measured red, green, and blue components is 

established by inverting the matrix of recorded responses. 

This solution lends itself well for simultaneous camera calibration and white balance correction 

using the same CCM (Figure 4), updating matrix coefficients dynamically to match changing 

illuminants on a frame-by-frame basis. 
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5.2.5 3D Look-Up Table 

Camera calibration assigns an expected value to all possible camera input tristimulus values. A 

brute-force approach to represent this mapping could be a large look-up-table, containing expected 

values for all possible input RGB values. This solution raises two practical problems: 

- Memory size. For 10 bit input color components mapped to 10 bit output components, the 

correction table would be 230 words  deep, and 30 bits wide, allocating 4 GBytes 

- Initialization values. Typically, only tens-, or hundreds of camera input / expected value 

pairs are established via calibration measurements. The rest of the sparse look-up-table 

values have to be interpolated. This interpolation task is not trivial, as the heterogeneous 

component input to output functions are neither monotonous nor smooth.  

 

       

Figure 50. RGB measured vs expected values (left: cartesian plot, right: R channel interpolation) 

The left side of Figure 50 presents the measured vs the expected color component values, for R,G 

and B channels. The right side figure visualizes the 3D mapping function or the Red channel color 

output based on R,G,B inputs, using a 3D interpolation volume smoothly fitted over the measured 

input-output data captured. 

While this method may not be feasible for FPGA implementation, offline simulation of the results 

is certainly possible. However, visual evaluation of empirical results using 3D interpolation did 

not show significant quality improvements in contrast with a properly tuned Color Correction 

Matrix and Tone Curve Correction based solution. 

5.3 Dynamic illuminant colorimetry 

Camera calibration focused on accurate color representation with a known illuminant. Dynamic 

illuminant colorimetry aims to identify the spectral properties of the illuminant using measured 

pixel values and priors about scene composition. 

5.3.1 RGB methods 

The two simplest algorithms for illuminant color estimation and corresponding white balance 

correction operate in the RGB color-space.  

The Gray World [56] algorithm is based on the heuristics that the average of all scene colors, the 

average of red, green, and blue values should result to a neutral, gray color. Consequently, the 

differences in average red, green and blue values provide information about the illuminant color 
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and independent color channel gain correction should transform colors such that the resulting 

color averages are identical.  

In a random, dynamic scene, however, there is no guaranty that the scene with different, distinctly 

colored objects will be balanced. While this solution is simple to implement in conjunction with 

independent channel specific integrators, normalization [S6], and multipliers, visually 

objectionable errors can be introduced, or inherent scene colors removed in the presence of large, 

vivid objects. 

The White Point / White Patch [56] algorithm is based on the assumption that the lightest pixels in 

an image must be associated with the illuminant or are reflections from white objects. The ratios of 

red, green, and blue channel averages of pixels with maximal brightness provide information about 

the illuminant color, and correction should transform colors such that the resulting color R,G,B 

maxima are equal. However, to find the white point, ranking of pixels by luminance values is 

necessary, and spatio-temporal filtering of the ordered list may be necessary to suppress noise 

artifacts and aggregate ranked results into a single, white color triplet. More importantly, in most 

cameras auto-exposure aims to balance the ratio of saturated and underexposed image areas. 

Therefore, even on well-balanced images a small portion of pixels are saturated. Saturation of 

individual color channels distorts the perceived (measured) ratios of maximal channel values, 

leading to incorrect or insufficient channel gains. 

5.3.2 LUV, YCC methods 

More complex methods take advantage of color-space conversions, where hue can be easily 

isolated from color saturation and luminance, which reduces 3 dimensional color correction to a 1 

dimensional problem. 

Color Gamut mapping methods [56] build a two dimensional histogram in the YCC, YUV, L*a*b* 

or LUV/YUV color-spaces, and fits a convex hull around the base of the histogram. The UV or (Cr, 

Cb) averages are calculated and used to correct colors, such that the resulting color UV or CbCr 

histograms are centered on the neutral, or gray point in the YUV, YCC, Luv or Lab space.  

The advantage of operating in a color-space with explicit chrominance channels is better color 

performance. All methods described above may suffer from artifacts due to incorrect exposure 

settings, or extreme dynamic ranges in scene illumination. Saturated pixels in an image illuminated 

by a bright light source with inherent hue, such as a candlelit picture with the flame in focus, may 

result to fully saturated, white pixels present on the image. 

5.4 Heuristics for color constancy 

5.4.1 Foreground-background separation 

Auto-focus (AF) coupled with multi-zone metering allows spatial distinction of pixels in focus 

around the center and the background around the edges. The assumption that background is more 

likely to contain the illuminant, and a larger variety of distant objects may improve be closer to the 

conditions where the gray world or white point hypotheses hold. 

5.4.2 Face or object detection 

Face, or skin color detection helps cameras identify image content with expected hues. In this case 

illuminant detection can be limited to pixels with known expected hues. Color correction will take 

place to move the colors of these pixels closer to the expected colors. In a practical ISP 
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implementation this is only feasible if downstream processing blocks, such as face detection and 

image segmentation, extract regions of interest which are provided to the ISP. 

5.4.3 Complex methods 

Most commercial applications combine multiple methods using a strategy adapting to image 

contents and photographic environment [57],[58]. 

5.5 Proposed Algorithm 

The proposed algorithm has the following distinct phases: 

1. Camera calibration. Performed in a laboratory setting with controlled illumination, 

calibration of image sensors and optical assemblies to establish color correction coefficients 

and offsets (𝐶𝐶𝑀𝑘), for all known illuminators (𝑁𝑖), 𝑘 = {1. . 𝑁𝑖}.  

2. Illuminator gamut mapping. Identify color gamuts representative of illumination sources. 

3. White Balancing. Real-time illuminant estimation and application of color correction with 

the embedded camera system. 

5.5.1 Experimental Setup 

For my research the ISP was implemented using the Xilinx Zynq Video and Imaging Kit, based on 

the XC7Z020 CLG484-1 AP SoC, the Agile Mixed Signal (AMS) camera interface board, and the 

On-Semi VITA 2000 Color Image Sensor module14. The 10-bit global shutter sensor, targeting 

machine vision applications, can provide an image stream up to 92 frames per second at 1920x1080 

(1080p) resolution. The ISP modules (Figure 4) relevant to white balance correction include: 

- the Image Statistics HW module, which gathers zone based statistical data on a frame-by-

frame basis,  

- the CCM HW module, which performs color transformations on a pixel-by-pixel basis, 

- the application software, which analyzes statistical information and programs the CCM on 

a frame-by-frame basis. 

To calibrate the colors of the sensor using standard illuminants and uniform, isotropic illuminator, 

I used an off-the-shelf color-viewing booth (X-Rite Macbeth Judge II). This light-box has 4 standard 

illuminants with known spectra:  

- An illuminant with simulated Daylight spectrum, 

- Cool White Fluorescent illuminant, 

- Warm Fluorescent illuminant, 

- Incandescent illuminant. 

As typical for color constancy quality measurements [59], I used the X-Rite ColorChecker 24 Patch 

Classic target, with color patches of known reflective properties, and expected RGB and sRGB 

values.  

 

14 VITA 2000 2.3 MP Global Shutter CMOS Image Sensor https://www.onsemi.com/pdf/datasheet/noiv1sn2000a-d.pdf  

https://www.onsemi.com/pdf/datasheet/noiv1sn2000a-d.pdf
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5.5.2 Camera calibration 

Camera (image sensor with the optical assembly attached) calibration can be performed on each 

camera unit, or, during mass manufacturing, a batch specific set of correction matrices can be 

established and used on all units. The X-Rite color target is placed in the lightbox against the gray 

background of the light box, such that illumination from all light sources is as even as possible. 

Test images are captured by the sensor with all illuminants, using the ISP, with no color correction 

(identity matrix loaded to the color-correction matrix). Figure 51 illustrates the captured images 

without geometric lens distortion and  

Image parameters for geometric distortion correction (barrel distortion) and lens shading 

correction (vignetting) can be extracted from this image set, and the images can be post-processed 

on the workstation performing calibration, or alternatively the distortion parameters can be 

programmed into the ISP, and a new set of regularized images can be captured for color calibration 

(Figure 52). 

Using the regularized images, the calibration script identifies the patches by edge detection in the 

HSV color-space. In order to attenuate noise, rectangular regions within each color patch are 

averaged to represent each color patch with an 𝒙𝑖
𝑇 = {𝑅𝑖 , 𝐺𝑖 , 𝐵𝑖} triplet. The expected RGB values of 

each color patch 𝒙̂𝑖
𝑇 = {𝑅̂𝑖 , 𝐺̂𝑖 , 𝐵̂𝑖} are available from X-Rite.  

The next step of the algorithm is to establish an optimal mapping for each illuminator k,  

𝑪𝑘 = argmin
𝑪

∑ 𝒂𝑖(𝑪𝒙𝑖 − 𝒙̂𝑖)(𝑪𝒙𝑖 − 𝒙̂𝑖)
𝑇

𝑛

𝑖=0

, (59) 

 

Daylight 

 

Cool White Fluorescent 

 

Warm Fluorescent 

 

Incandescent 

Figure 51: Sensor images with different illuminants before lens correction 
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which minimizes squared error between the transformed 𝑥𝑖  values to the expected values 𝑥̂𝑖  for all 

patches 𝑖 ∈ ℤ < 𝑛, where n represents the number of color patches. For the X-Rite ColorChecker 24 

Patch Classic, n = 24. Coefficient vector 𝒂𝑖 allows application specific weighting the importance of 

color patches. For n = 24 patches, and three color components per patch the generic problem is 

over-defined. The optimization error can be distributed if certain patches, e.g., gray patches or the 

ones close to human skin tones, are prioritized over others by setting the corresponding 𝒂𝑖 values 

accordingly.  

 

Daylight 

 

Cool White Fluorescent 

 

Warm Fluorescent 

 

Incandescent 

Figure 52: Lens corrected sensor images with different illuminants before color calibration 

To perform the argmin optimization, the Simulated Annealing (SA) method was used [38], which 

can minimize a scalar valued error function defined in (59). To accurately model quantization 

effects inside the CCM, color correction coefficients and offsets were represented in fixed point 

format, and results were quantized back to the 10 bits/color channel native format of the image 

sensor data stream: 

 𝒙′𝑖 = ⌊[

𝑘11 𝑘12 𝑘13

𝑘21 𝑘22 𝑘23

𝑘31 𝑘32 𝑘33

] 𝒙𝑖 + [

𝑅𝑜𝑓𝑓𝑠

𝐺𝑜𝑓𝑓𝑠

𝐵𝑜𝑓𝑓𝑠

] + 0.5⌋,  (60) 

where ⌊ ⌋ denotes truncation to the nearest integer. The argmin optimization algorithm was 

performed in 4 different homologous setups: 

1. sum of squared error (59), with 𝒙𝑖  and 𝒙̂𝑖  in the RGB domain, 

2. sum of absolute error, in the RGB domain, 

3. sum of squared error (59), in the YUV domain, Y (luminance) ignored in optimization, 

4. sum of squared error (59), in the L*a*b* domain, L (lightness) ignored in optimization. 
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No significant difference was observable between the quality of optimization results, except, as 

expected, for the YUV and L*a*b* domain higher lightness value error variances were traded for 

lower variances in chrominance/hue. Along with selecting the patches of interest with coefficient 

vector 𝒂𝑖, ISP designers can tune the CCM correction matrices 𝑪𝑘  for each illuminant k to results 

perceived optimal for the application area. 

 

Daylight 

 

Cool White Fluorescent 

 

Warm Fluorescent 

 

Incandescent 

Figure 53: Color Calibrated, lens corrected sensor images with different illuminants 

Figure 53 illustrates colors calibrated with the illuminant specific correction matrices 𝑪𝑘 . 

5.5.3 Illumination estimation by gamut mapping 

The next step of the algorithm is to identify color gamuts characteristic to each illuminator to be 

used later for illumination estimation. To perform this step, for all illuminants  

𝑘 = {1,2,3,4}, I recorded the two-dimensional chrominance histograms using pixel values from the 

gray colored patches of Figure 52. As opposed to the more perceptually uniform CIELUV or 

CIELAB spaces, YUV or YCbCr can be used as these color spaces also capture the area around the 

white/gray/D65 point, and are significantly simpler to compute in HW.  

5.5.4 FGPA Hardware accelerator 

In order to support illuminator estimation, the image statistics (section 2.4) module of the ISP 

contains specific hardware components to construct a two-dimensional U-V histogram (Figure 54). 
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Figure 54: Illuminator estimation specific hardware components in the Image Statistics ISP Module 

YUV (YCbCr, L*u*v* or L*a*b*) histograms of the scenes by binning pixel values by chrominance 

(UV, or CbCr, or a*b* components). In the physical implementation  

(Figure 54) the RGB pixel values are first transformed to the YUV domain by a module introduced 

in section 2.7. For pixels with saturated R, G, or B channels, the output luminance (Y) value is set 

to zero. Chrominance (U and V) values are transformed by  

𝑢𝑥,𝑦 = [𝑧𝑈𝑥,𝑦 + 𝑜𝑈], 
𝑣𝑥,𝑦 = [𝑧𝑉𝑥,𝑦 + 𝑜𝑉], 

(61) 

which for (𝑧 > 1) effectively zooms into a square area of the chrominance plane (Figure 55). The 

2D histogram is stored in a BRAM36 in 1024x36 bit configuration. Read and write address to the 

BRAM are formulated by concatenating the transformed (𝑢𝑥,𝑦, 𝑣𝑥,𝑦) chrominance values quantized 

to 5 bits, resulting to a 10 bit address. For 𝑢𝑥,𝑦  and 𝑣𝑥,𝑦values outside the 0-31 range, the 

corresponding Y value is set to 0, effectively excluding the pixel from the 2D histogram integration. 

For included pixels, instead of simply counting the number of pixels with chrominance values 

within bin boundaries, bin values are incremented by the luminance value. This results to a 

luminance weighed chrominance histogram 𝐻(𝑢, 𝑣), which de-prioritizes dark pixels, where small 

 

Figure 55: U,V chrominance plane (left), zooming on the center region (right) 
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differences in R,G,B values result to more noise in the chrominance domain. For a perfectly flat 

image with a single color, all pixels contribute their quantized luminance (𝑌) value. To avoid 

overflows, each bin, or BRAM memory location, should be able to accumulate 24, or 32 bit wide 

histogram data.  

It is worth noting that typical latency of BRAMs is 2 CLK cycles (using the internal output registers 

of the primitive), and adder stage cumulating the +V values requires at least one additional pipeline 

stage, considering the width of the adder. In order to accommodate latency of k clock cycles, a 

predictive, k stage deep pipeline is performing additions in the histogram module. Without the 

predictive pipeline, if 3 pixels with the same quantized 𝑢𝑥,𝑦  and 𝑣𝑥,𝑦 values, and corresponding 𝑌1, 

𝑌2and 𝑌3 are input to the sub-module, the BRAM output 𝑄({𝑢𝑥,𝑦 , 𝑣𝑥,𝑦}) read value would not reflect 

the increments by 𝑌1 before incrementing 𝑄 by 𝑌2 and then 𝑌3, resulting to an erroneous cumulative 

value of only 𝑄 + 𝑌3. In contrast, the predictive pipeline evaluates the next k pixels in parallel. If 

corresponding addresses (based on 𝑢𝑥,𝑦  and 𝑣𝑥,𝑦  values) are identical, only a single read-modify-

write cycle is executed, with memory contents updated by 𝑌1 + 𝑌2 + 𝑌3. If the addresses are all 

different, the operation is safe, and 3 pipelined read-modify-write operations are performed in 

sequence. In my implementation k=4, and the predictive pipeline handles all five possible address 

relations: all identical, 3 identical but 1 different, 2 pairs of identical, 2 identical and 2 different, or 

all different addresses. 

 

Figure 56: x and y coordinates of illuminants with different temperatures in CIE color-space  

The center portion of the Y,U plane contains neutral, gray colors. Similar to the CIE color-spaces, 

radiant black body illuminants with different color temperatures (Figure 56) are located in the 

central, neutral region. The periphery contains vivid, vibrant colors, which are more representative 

of the innate spectral absorption and reflection properties of scene objects. Therefore, for illuminant 

identification, focusing on the central, neutral region of the color-space improves the likelihood of 

correct illuminant identification as this region is more likely to reflect the perceived color of the 

illuminant.  
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In the final phase of color calibration, a set of reference images were recorded, with four different 

illuminators. Some of the images were captured in the lightbox, the same scene imaged with each 

illumination source. Some of the images were captured with the central region of the UV histogram 

with different scene contents e.g., the top-left image of Figure 57 captured with incandescent 

lighting. The rest of the reference images were captured in settings typical for the illuminators 

(natural sunlight, warm or cool fluorescent lighting), making sure that neutral, or white color 

objects were present in the scenes. 

  

  

Figure 57: Reference images with four different illuminators 

top-left: Incandescent, top-right: warm fluorescent, bottom left: cool fluorescent, bottom-right: daylight 

The reference images were captured with the target camera system, without any color, geometric, 

or lens shading correction, matching how the target systems statistical module receives input 

images.  

The UV chrominance histograms of reference images pertinent to each illuminator were averaged, 

smoothed with a 2D Gaussian kernel of 𝜎 = 1.4, then normalized such that 𝜎2(𝐻𝑘(𝑢, 𝑣)) = 1. 

Focusing on just the center of the UV plane, with 𝑧 = 4, 𝑜𝑈 = 4, 𝑜𝑉 = 12, the center regions of the 

UV chrominance histograms show loci characteristic to different illuminators (Figure 58). Each 

locus carries information on how the illuminator was reflected from a variety of materials, by the 

R,G, and B channels of the image sensors, also a function of the spectral filtering properties of the 

color-filters used by the sensor manufacturer. 
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Figure 58: averaged 2D UV histograms, H𝑘(𝑢, 𝑣), with 4 different illuminants 

5.5.5 White Balance Correction Algorithm 

The white balancing algorithm, implemented in software running on an embedded processor, 

performs the following operations on a frame-by-frame basis: 

1. Using statistical information, estimate the illuminant probabilities (𝑝𝑘,𝑓)  

2. Adaptive filtering of illuminant probabilities to establish weights (𝑤𝑘,𝑓),  

3. Combine 𝑪𝑘  values according to 𝑤𝑘,𝑓 , into a scene specific correction matrix 𝑪𝑓 , and program 

the Color-Correction Matrix module with 𝑪𝑓  

One advantage of this method is that a linear combination of calibration 𝑪𝑘  values will implicitly 

bound color artifacts in the presence of significant illuminant estimation errors. For example, in 

case of underwater photography, where a strong blue tinge is present, a simple approach, such as 

Gray World would compensate to remove all blue, severely distorting innate scene colors.  

The masked two-dimensional histogram values 𝐻𝑘(𝑢, 𝑣), as well as color-correction matrix 𝑪𝑘  

coefficients corresponding to illuminant k are compiled to the FW of the embedded processor as 

coefficient files established during static calibration.  
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1. During real-time operation, the statistical module of the ISP collects two-dimensional, 

luminance weighed chrominance histograms of the scene. The statistical module collecting 

2D histograms is configured identical to the parameterization used during reference image 

collection (𝑧 = 4, 𝑜𝑈 = 4, 𝑜𝑉 = 12), focusing on the central region of the UV histogram. The 

resulting 32x32 histogram is low pass filtered, and normalized by the firmware, resulting 

to signature 𝐻𝑓(𝑢, 𝑣) specific to frame f. The first step of the white balancing algorithm is 

classification of this signature, to one of the k illuminant classes. Sum of squared differences 

is calculated between the four stored histograms and the measured two-dimensional 

histogram: 

𝐷𝑘,𝑓 = ∑ ∑ (𝐻𝑘(𝑢, 𝑣) − 𝐻𝑓(𝑢, 𝑣))
2

31

𝑣=0

31

𝑢=0

, (62) 

where the resulting 𝐷𝑘  is proportional to how dissimilar the signature specific to frame 𝑓 is 

to the pre-calculated references pertaining to known illuminants. Based on the measured 

histogram differences 𝐷𝑘 , normalized similarity measures are calculated using: 

𝑝𝑘,𝑓 =
1

𝑠(𝐷𝑘,𝑓 + 𝜀)
  ,   𝑠 = ∑

1

(𝐷𝑖,𝑓 + 𝜀)

4

𝑖=1

 (63) 

where 𝜀 is a small constant to avoid division by zero. Normalized similarity measures 

𝑝𝑘[𝑓] can be interpreted as probabilities representing the likelihood that the scene of the 

last image frame f was illuminated with illuminant k. 

2. To avoid abrupt frame-by-frame tone changes, objectionable to viewers, an adaptive, 

temporal low-pass filter is applied to the illuminant probabilities. During scene changes, 

used a simple IIR filter, implementing 

 𝑤𝑘,𝑓 = 𝑐𝑝𝑘,𝑓 + (1 − 𝑐)𝑤𝑘,𝑓−1 (64) 

where 0 < c < 1 controls the impulse response of the IIR filter. Lower c values result to 

smoother transitions. The larger the value of c, the quicker the filter responds to changes in 

lighting conditions. Values of c can be controlled dynamically by the ISP based on changes 

in global luminance (Y) and chrominance (U,V) of the entire image frame, which are 

calculated by the image statistics module. Large, sudden changes in global values typically 

indicate either a scene change, or a change in illumination such as turning on lights in a 

room to complement fading natural sunlight. Explicit treatment of chrominance allows 

detection of large, colorful objects entering, or exiting a scene, even if the concurrent 

autoexposure algorithm minimizes luminance changes.  

𝑐 = 𝑐𝑚 + (1 − 𝑐𝑚 − 𝑐𝑀) erf (
|Δ𝑌|

𝑌𝑇𝐻
+

|Δ𝑈| + |Δ𝑉|

𝐶𝑇𝐻
), (65) 

where 𝑐𝑚 and 𝑐𝑀 are lower and upper bounds for the convergence constant driving the IIR 

filter (64), Δ𝑌, Δ𝑈, Δ𝑉 are the frame-to-frame differences in global (average) YUV values, 

𝑌𝑇𝐻  is threshold value controlling sensitivity to luminance changes, and 𝐶𝑇𝐻  is a threshold 

value controlling sensitivity to chrominance changes. 
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Based on the illuminator specific weights 𝑤𝑘,𝑓  computed (64), the color correction 

coefficients best suited to a mixed illuminant can be found as the linear combination of the 

pre-calculated color-correction coefficients and offsets (𝑪𝑘): 

𝑪𝑓 = ∑ 𝑤𝑘,𝑓𝑪𝑘

4

𝑘=1

. (66) 

Finally, FW programs the CCM of the ISP (Figure 4) with the aggregated, frame specific 

color correction coefficients (𝑪𝑓). 

As an additional feature, suitable for applications where the resulting video stream is intended for 

human consumption, the coefficients of 𝑪𝑓  pertinent to the chrominance channel outputs can be 

multiplied with a constant. Setting this constant to a value less than 1.0 reduces tonality, with zero 

resulting to grayscale images, while setting the constant to values above 1.0 increases color 

brightness.  

5.6 Results 

The proposed algorithm was tested indoors and outdoors, at two illumination levels ~1000 Lux 

and ~65000 Lux. Real-time white-balance implementation results, even from scenes illuminated by 

both natural daylight and fluorescent light (Figure 59) demonstrated significant improvement in 

perceived image quality and color representation. 

 

Figure 59: Conference room image with dual illumination with AWB disabled (left), enabled (right) 

Algorithms for illuminant estimation are often evaluated by quantifying the estimation error in 

terms of an angular error [52]. Using a benchmark dataset with a gray reference image (masked 

during scene illuminant estimation), the color of the light source is estimated for every image of 

the image set and compared to the ground truth established from the gray reference object. The 

result is expressed then as an angular error: 

𝑑𝑎𝑛𝑔𝑙𝑒(𝒗𝑒 , 𝒗𝑔)  = cos−1 (
𝒗𝑒 ∙ 𝒗𝑔

‖𝒗𝑒‖ ∙ ‖𝒗𝑔‖
), (67) 

where 𝒗𝑒 ∙ 𝒗𝑔 is the dot product of the estimated illuminant 𝒗𝑒, and the ground truth 𝒗𝑔 and‖ ‖ ∙

‖ ‖ denotes the Euclidean norm of a vector. Unfortunately, to evaluate end-to-end results of the 

proposed approach against the benchmark sets, the camera calibration coefficients for known 

illuminants (𝑪𝑘) is necessary, which is not available at this time. 
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5.7 Chapter Summary 

At the beginning of this chapter, I reviewed the background of colorimetry and image sensor color 

formation, as well as existing basic approaches to illuminant detection and automatic white balance 

correction. The purpose of my research to this application area of the ISP was to provide 

methodology and FPGA circuitry that allows the FPGA user community to implement an ISP with 

white-balance functionality [S7], minimizing FW complexity and HW footprint, while maximizing 

quality of results. 

I provided a method for color calibration, an algorithm suitable for low-power embedded 

processors and its efficient implementation on FPGAs for robust white balancing of image 

streams. The proposed algorithm leverages a hardware accelerator module, implemented in FPGA 

logic fabric, which calculates focused, luminance weighted 2D Chrominance histograms. 

Illuminant estimation is performed by real-time classification of 2D chrominance histograms of 

image frames, comparing against illumination specific signature patterns established offline. 

Classifier output probabilities are filtered using temporal, adaptive IIR filters, which in turn control 

the mixing of color-calibration matrixes specific to illuminants. Besides efficient use of FPGA 

resources and low embedded processor load, one advantage of the proposed method is that 

correction errors due to illuminant misclassifications are bound, preventing gross distortion of 

image colors. 
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6 Non-linear filter optimizations 

6.1 Median and Rank order Filtering 

Rank order filtering is a non-linear filtering technique, which selects an element from an ordered 

list of samples. Median filters are examples of rank order filters where the element in the middle 

of the ordered list is selected. Compared to Finite-, or infinite Impulse Response (FIR, IIR) linear 

filters, rank order filters can effectively remove impulse-like noises while preserving high 

frequency content of the original stream. For image and video processing, rank order filters can be 

extended to two-dimensional (2D) filters, which remove “salt-and-pepper” noise while preserving 

edges in the original image. This can be useful for removing transmission (bit-flip) artifacts, 

especially as pre-processing for edge detection. The median of a set of samples is the sample in the 

middle of the rank ordered list of the samples: 

𝑦 = med(𝑥0, 𝑥1 … 𝑥2𝑁) = 𝑥̂𝑁 , (68) 

where 𝑥̂𝑘 , 𝑘 ∈ {0, 2𝑁}, 𝑁 ∈ 𝐙 , is the magnitude (rank) ordered list of input samples, when the filter 

size (2N+1) is odd. For even sized kernels, median is defined as: 

𝑦 = med(𝑥0, 𝑥1 … 𝑥2𝑁−1) =
𝑥̂𝑁 + 𝑥̂𝑁−1

2
, 

(69) 

To perform median filtering on a set of n input samples, resulting to a set of n output samples, the 

input set is typically padded on both ends with N samples by repeating the first and last samples. 

To perform the non-recursive median filtering operation, the sampling window is shifted along 

the sample set, with the least recent sample removed from the kernel, and a new sample entering 

the kernel. For a kernel size 2*N+1, the actual input sample values in the kernel are 𝑥𝑘−𝑁, 𝑥𝑘−𝑁+1,.., 
𝑥𝑘−1,𝑥𝑘 , 𝑥𝑘+1,.., 𝑥𝑘+𝑁−1, 𝑥𝑘+𝑁. For any 𝑖 < 0, 𝑥𝑖 = 𝑥0 and any 𝑖 ≥ 𝑛, 𝑥𝑖 = 𝑥𝑛−1. The filter output is 

defined as: 

𝑦𝑘 = med(𝑥𝑘−𝑁 , . . , 𝑥𝑘+𝑁), (70) 

In case of recursive median filters half of the median sorting kernel contains N recent output 

samples, and N+1 input samples, so the non-ranked kernel contents are: 𝑦𝑘−𝑁, 𝑦𝑘−𝑁+1,.., 𝑦𝑘−1, 𝑥𝑘 , 
𝑥𝑘+1,.., 𝑥𝑘+𝑁−1, 𝑥𝑘+𝑁 . As opposed to IIR linear filters, in response to a step function the output of 

the recursive median filter converges to a stable signal in finite number of steps [60]. These stable 

signals extracted from the input signal are called the roots. The advantage of recursive median 

filters is the ability of abstracting the roots from input signals in one run. As shown below the 

hardware realization of the standard and recursive filters are almost identical.  

Outputting a sample other than the center of the rank ordered kernel can be useful if the input 

signal is contaminated with non-zero mean noise. In case of image filtering, rank order filtering 

may change the brightness of the image. Hardware implementation of rank order filters is almost 

identical to median filters [S8], with median filter being a sub-class of rank order filters with 

constant indexing of the rank ordered list.  

Two-dimensional median-, and rank order filters are commonly used in image processing, where 

occasional transmission noise spikes, such as Inter-Symbol Interference (ISI) affecting the MSB of 

samples should be removed from an image, while sharp edges should be retained.  
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The complexity of the ordering operation is strongly affected by the size of the kernel size N, with 

complexity scaling with 𝜃(𝑁log(𝑁)). General purpose DSP processors exhibit sharply decreasing 

performance with increasing N due to inefficient pipelining and prediction misses caused by data 

dependent jumps in sorting algorithms. Due to predominance of comparison operators and 

subsequent branch misprediction median filtering is not efficiently carried out by GP processors 

or ALUs either. 

6.1.1 Related Work 

Bit serial approaches [61],[62] provide the most compact FPGA / ASIC solutions, but do not lend 

themselves well for high-dynamic range (10/12/14 bit per color channel) CMOS sensor processing 

as filtering performance is proportional to the precision of the input data. However, the processing 

rate typically does not depend on the number of new samples the filter can handle in a single clock 

cycle.  

A large number of word parallel architectures implement sorting networks, which may employ 

bubble sorting [63], odd-even merge sorting [64], or other architectures optimized for resource 

efficacy [65]. Insert-delete architectures store the samples ordered, as proposed in the 1D rank filter 

core introduced in section 6.1.1, the least recent sample is discarded, and the most recent input is 

inserted into the magnitude sorting structure at the appropriate location. This architecture does 

not natively support inserting multiple samples per clock cycle. A cumulative histogram-based 

architecture is proposed in [66]. This architecture exploits the relatively large on-chip memories in 

modern FPGAs, however synthesis results showed significant speed burdens which renders this 

class of filters less applicable for filtering high sample rate videos with large kernels.  

6.1.2 Efficient FPGA Implementation of a One dimensional Rank Filter 

FPGAs can implement real-time median or rank order filters in high speed video processing 

applications efficiently with dedicated HW that scales with N, processing each input sample in a 

single clock cycle. Because arithmetic operations and data transfers can be constrained to local, 

neighbor-to-neighbor operations, FPGA or ASIC implementation is compact, efficient, with easily 

predictable performance.  

My proposed implementation (Figure 60) for a 1D filter with T=2N+1 taps is a systolic array of T 

simple Processing Elements (PE) [S9],[S10], [S11]. Each PE contains data registers 𝑑𝑘  to hold an 

input sample value and its corresponding index 𝑖𝑘 , with the most recent, and least recent samples 

having indexes 0, and T-1 respectively. The pipelined architecture is similar to a doubly linked list 

 

Figure 60: Block Diagram of a 1D rank-ordering architecture 
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implemented in HW. During operation the linked PEs maintained an ordered list of the input 

samples. For non-recursive mode of operation, for each clock cycle, the least recent sample is 

discarded, and the new input sample (𝑥𝑛) is inserted to the appropriate PE. The index of each 

sample in the list is incremented, while the index pertinent to the new sample is initialized with 

zero. The filter output is derived directly from one of the PEs, selected by input signal rank. For 

median filtering rank = N, the output sample (𝑥𝑛) is selected from PE in the center of the linked PE 

pipeline. 

Each PE has access to the new input sample (𝑥𝑛), and the sample values it stores (𝑑𝑘) and performs 

the comparison 𝑔𝑘 = (𝑑𝑘 < 𝑥𝑛). Each PE shares the one bit comparison result 𝑔𝑘  with its neighbors. 

Using a control table based on the 3 bits {𝑔𝑘−1, 𝑔𝑘 , 𝑔𝑘+1} nodes can uniquely identify where the 

new sample needs to be inserted.  

Besides the comparison output bit, all PEs receive from, and provide to their respective neighbors 

a bit indicating whether the insertion point is to the left or to the right. Once the insertion point is 

identified, the one bit location asynchronously ripples through the list in both directions. 

Similarly, the PE holding the least recent sample can identify itself as the one discarding a sample, 

and this information is broadcasted left and right to both neighbors, in turn to the list of PEs in 

both directions. 

Let 0 ≤ 𝑘 ≤ 𝑇 − 1 denote the position of the PE storing the least recent sample, with index T-1. Let 

0 ≤ 𝑙 ≤ 𝑇 − 1 denote the position of the PE where the new sample needs to be inserted. Four cases 

are possible: 

- 𝑘 = 𝑙. The new sample just replaces the least recent one, no other samples are moved. 

- 𝑘 > 𝑙. PEs l+1 to k load values from their left neighbors, PE 𝑙 loads the new sample.  

- 𝑘 < 𝑙. PEs k to l+1 load values from their right neighbors, PE 𝑙 loads the new sample.  

- The insertion point can’t be determined. In case all PEs contain the same value, and 𝑥𝑛 =

𝑥𝑘 , the filter output remains the same and no operation takes place.  

 

Figure 61: Inserting a new sample to the magnitude ordered list 

Figure 61 illustrates this concept for T=7 (N=3), 𝑘 > 𝑙, with the shade of the rectangles representing 

the magnitude of the stored sample (𝑑𝑘) and the number inside each rectangle reflecting the index 

(𝑖𝑘) corresponding to 𝑑𝑘 . The new sample, with index = 0 is first compared to all samples in the 

ordered list in parallel. Based on the one-bit signals from neighbors conveying information on the 

comparisons each PE can determine whether it needs to perform deletion and the insertion, or if 

the location of the deletion and the insertion is left or right. In the example above, based on sample 
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index values, PE#5 will discard the least recent sample, and based on comparison results PE#2 will 

load the new sample. Based on this information each PE can determine whether shifting left, 

shifting right, or no loading is necessary for each clock cycle, so PE#2 loads the new sample, PEs 

#3,#4,#5 will load samples from their left side neighbors, PE#2, PE#3, PE#4. At the end of the cycle 

all indexes are incremented, and for median operation, the output of the center PE, PE#3, is 

selected. Using synchronous sequential logic, all operations take place in a single clock cycle. 

This architecture can also implement recursive median filters in two clock cycles to process an 

input sample. For recursive operation, bit 0 of the index (𝑖𝑘) is designated to indicate whether the 

corresponding sample (𝑥𝑘) is new input (0), or recurrent output (1). In phase 1, the least recent 

input sample is discarded, and the current input sample is inserted into the list. A new output 

sample is identified. In Phase 2 the least recent output sample is discarded, and the recently 

identified output sample is inserted into the list.  

A limitation of the proposed 1D architecture is that daisy-chained control signals form a deep 

combinatorial network with many logic and routing stages, which is difficult to pipeline. As the 

number of PEs increases, the critical path through the control signals severely limits the operating 

frequency and throughput of the filter. 

6.2 2D Rank Order Filtering 

2D filtering takes place on the contents of a rectangular window, which slides across the image. 

Every time the h pixel high by 𝑤 pixel wide window is moved by one pixel, h obsolete pixels are 

discarded, and h new pixels are inserted to the kernel. The filter has to sort hw pixels to generate 

an output pixel. 

A 2D median filter can be evaluated using a 1D median filter with a ℎ ∙ 𝑤 size kernel [S12], [S13]. 

When the 2D kernel is shifted by one pixel, h new samples (pixels) are entering the filter, and the h 

least recent elements are discarded respectively. Only after h processing steps can the output 

selected from the ordered list. If pixel clock frequencies are prohibitively high to run the 1D filter 

at a multiple of the pixel clock frequency, a more parallel approach can be used. Using multiple, 

parallel instances of certain key components of the filter, the filter may accept h number of new 

input samples every clock cycle, allowing operation at the pixel frequency. If the pixel rates of 

image sensor, video stream clock is relatively low compared to the operating frequency achievable 

in novel FPGAs, a fully parallel implementation may be sub-optimal due to inefficient resource 

utilization. 

A solution capable of ingesting a configurable number of input pixels (S) spanning between fully 

parallel (𝑆 = ℎ) and word serial (𝑆 = 1) allows tuning the filter core to the maximum clock 

frequency allowed by the target chip while minimizing resource counts. From the vertical size of 

the filter window (h), the sampling (pixel) frequency of the input (𝑓𝑠), and the number of input 

samples (𝑆) the filter can process in parallel the necessary operating frequency of the filter core 

(𝑓𝑚𝑎𝑥) can be determined:  

𝑓𝑚𝑎𝑥 = 𝑓𝑠
ℎ

𝑁𝑖
 (71) 

The next section describes a word serial approach, similar to the architecture introduced in section 

6.1.1, which can process one input sample in every clock cycle. Section 6.2.3 presents an extension 

which allows processing a configurable number of new input samples between in one clock cycle. 
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6.2.1 Word-serial rank filter core 

To improve timing of the systolic 1D architecture introduced above, samples are stored in the order 

they were received. The word-serial filter core architecture is presented on Figure 62.  

A new sample (𝑥𝑛) is entered into a set of data registers holding samples in the kernel (𝑑0 − 𝑑𝑇−1). 

While the samples are stored unordered, index 𝑖𝑘  pertinent to sample 𝑑𝑘  in the filter core indicates 

the index of 𝑑 in the magnitude ordered list of (𝑑0 − 𝑑𝑇−1). As in case of the systolic 1D architecture, 

𝑥𝑛  is compared with all samples already in the kernel. The 1 bit result of each comparison (𝐶𝑀𝑃𝑘) 

is entered into a T-1 bit wide register 𝑆𝐻𝑅𝑘 . For all new samples 𝑥𝑛 , 𝑆𝐻𝑅0 captures inverted bits of 

all comparisons. The rest of the registers (𝑆𝐻𝑅𝑘 , 𝑘 > 0) load bits 0 to T-2 of output of 𝑆𝐻𝑅𝑘−1, so 

shift register contents stay aligned with data registers, shift contents left by 1 bit, and add 𝐶𝑀𝑃𝑘 . 

E.g., if the new sample is greater than all samples in the kernel, then all bits of 𝑆𝐻𝑅0are initialized 

by 1s, while all 𝑆𝐻𝑅𝑘 , 𝑘 > 0 latch in a zero bit.  

𝑆𝐻𝑅𝑘 = ⌊(𝑆𝐻𝑅𝑘−1 ≪ 1) + 𝐶𝑀𝑃𝑘⌋𝑇 , (72) 

where ⌊ ⌋𝑇  denotes truncation to T bits.  

Index 𝑖𝑘  is derived from 𝑆𝐻𝑅𝑘  by summing the bits of 𝑆𝐻𝑅𝑘  

𝑖𝑘 = ∑ 𝑆𝐻𝑅𝑘[𝑏]

𝑇−1

𝑏=0

, (73) 

where 𝑆𝐻𝑅𝑘[𝑏] denotes bit 𝑏 of 𝑆𝐻𝑅𝑘 . Index 𝑖𝑘 , pertinent to sample 𝑑𝑘 , indicates the number of 

samples in the kernel smaller than 𝑑𝑘 . 

 

Figure 62: Word-serial filter core architecture 
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Finally, indexes are compared with input integer 𝑟𝑎𝑛𝑘, resulting to a 𝑇 bits wide  

one-hot encoded bit vector, which can be encoded to a binary index 𝑖𝑛. This output index can be 

used as an address to select a sample from the list of input samples stored in a shift register or 

circular buffer. 

6.2.2 Color image processing 

When processing a color video stream, filtering the color channels independently may introduce 

color artifacts, generate new color values which were not present in the input image. Also, filtering 

components independently increases computational requirements, therefore the preferred solution 

is to use a single indexable aggregate value per pixel. For most practical applications this value is 

brightness, or luminosity (Y). If the input format already has a luminosity component, as for YUV 

or YCbCr, it can be used directly, otherwise the indexable value can generated within the 2D filter.  

The 2D color processing architecture illustrated on Figure 63 implements a 2D kernel with h=3 pixel 

rows, and the word-parallel filter core processing 𝑁𝑖 = 3 samples per clock cycles. The line buffers 

store all color channels (R,G,B or Y,Cb,Cr) per pixel. The RGB Pixel Buffer holds all T pixels 

currently processed by the core, and is outputting 𝑦𝑛 a color pixel addressed by the filter core 

output index, 𝑖𝑛. 

If required, the RGB to Y modules compute magnitude values (such as luminance) for filtering. For 

RGB input, luminance, a typical magnitude value can be calculated by  

𝑥𝑛 = 0.299 𝑅𝑛  +  0.587 𝐺𝑛  +  0.114 𝐵𝑛 ≈  0.25 𝑅𝑛  +  0.625 𝐺𝑛  +  0.125 𝐵𝑛 . (74) 

The first method requires 3 DSP48 tiles per filter core input, while the approximation only requires 

4 fabric based adders. The RGB line buffers are implemented using BRAM based FIFO primitives.  

 

Figure 63: Word parallel rank-filter architecture for RGB color image processing  

If the FPGA design is not constrained by BRAM availability, a single RGB to Y module can be used 

directly on the input RGB components, and all 4 components can be stored in the line buffers, 

trading DSP48s for extra BRAM storage. 

The complexity and latency of the RGB to Y module does not change the filter architecture, but the 

additional latency of the module need to be considered when synchronizing 𝑖𝑛 with the buffered 

RGB pixels. 
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6.2.3 Word-parallel extension of the rank filter core 

The word-serial filter core architecture can be easily extended to ingest multiple input samples in 

one clock cycle. Instead shifting by one, data registers (𝑥0. . . 𝑥𝑇−1), and comparator results registers 

(𝑆𝐻𝑅0. . . 𝑆𝐻𝑅𝑇−1) can shift by 𝑆 positions to process 𝑆 samples per clock cycles (word parallel 

architecture). In order to compare each new sample (𝑥𝑛 . . . 𝑥𝑛+𝑆−1) with all previous samples in the 

kernel, as well as the new samples with each other, the number of comparators necessary are: 

𝑆(𝑇 − 𝑆) +
1

2
𝑆(𝑆 − 1) = 𝑆(𝑇 − 0.5𝑆 − 0.5). (75) 

Similarly, recursive rank filters can be implemented by feeding back the filter output along with 

the filter input, as two new samples, and configuring the filter core for 𝑆 = 2. One way to easily 

visualize extension of the word-serial architecture to word-parallel is replicate all functional 

modules 𝑆 times as processing layers (Figure 64). Processing columns in each layer pass samples 

along the delay pipeline one sample per clock cycle. Shift register (SHR) inputs in each layer accept 

𝑆(𝑇 − 𝑆) inputs, combining information from all layers.  

 

Figure 64: Word-parallel filter core architecture 

For simple two-dimensional filtering (𝑆 = ℎ and 𝑇 = 𝑤), ℎ new samples are provided from the line 

buffer in every clock cycle. However, considering the high operating frequency (350+ MHz for 

Ultrascale devices) of the filter core in comparison to typical streaming video pixel clock 

frequencies (𝑓𝑠), logic resources may be conserved by running the parallel architecture at a multiple 

of 𝑓𝑠. As shown in equation (71), to filter streams with pixel frequency 𝑓𝑠 using a 2D kernel  with 

vertical size ℎ, processing one pixel per clock cycle, a minimum operating frequency of 𝑓𝑚𝑖𝑛 = ℎ𝑓𝑠 

is necessary. Conversely, if the target FPGA can implement the word parallel filter core at 𝑓𝑚𝑎𝑥(𝑆), 

𝑆 ≥  ⌈
ℎ𝑓

𝑠

𝑓
𝑚𝑎𝑥

⌉ (76) 

samples need to be processed per clock cycle, where ⌈ ⌉ denotes rounding up to the nearest integer. 
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6.3 Virtual and non-rectangular kernels 

To support vertical kernel sizes (h) not an integer multiple of 𝑆, the filter can be enhanced to process 

a dynamically changing number of new samples, by inserting multiplexers into the appropriate 

data paths, in front of the data (𝑑𝑘) and comparator result shift registers (𝑆𝐻𝑅𝑘). Two-to-one 

multiplexers are always sufficient, as there are only two different scenarios while h input samples 

are entered to the filter with 𝑆 inputs in subsequent clock cycles. Either all 𝑆 filter inputs are valid, 

or there are only ℎ mod 𝑆 valid samples available. Even though the size of multiplexers is limited 

to 2:1, numerous multiplexers are required to facilitate dynamic shifting. 

Another, simpler solution to enable arbitrary vertical kernel sizes (h) is to pad with pixels, so for 

all clock cycles 𝑆 new samples are entered [S14], [S15]. All registers may contain valid or padding 

samples during operation. Comparisons are performed using all data registers 𝑑𝑘 , irrespective 

sample validity, therefore the number of comparators required scales with the size of the virtual 

filter window (ℎ𝑣). Padding samples are tracked and masked in the shift registers before summing 

to generate 𝑖𝑘 . Mask values are periodic with h and can be generated by a circular shift register.  

Figure 65 illustrates such virtual window for the 𝑇 = 𝑤 = 3,  𝑆 = 2 case. Valid and padding 

samples in the window are marked with light blue and light grey respectively. As the window is 

sliding across the input image, samples 𝑥15, 𝑥16, and 𝑥17 need to be entered to calculate 𝑦11. In the 

first clock cycle 𝑥15 and 𝑥16, and in the second clock cycle 𝑥17 and 𝑥18 are latched in.  

 

Figure 65: Virtual filter window with padding pixels  

Building on the idea of a virtual filter kernel, pixels other than one on the bottom of a kernel can 

be masked, extending applications to circular-, or elliptical filter kernels [S16], [S17]. To support 

arbitrary kernel shapes, circular shift registers generating masking bits for each 𝑆𝐻𝑅𝑘  stage need 

to be expanded to 𝑤ℎ𝑣  bits and need to be pre-initialized according to the desired window shape. 

6.4 Results 

The 2D architecture proposed in section 6.2.3 stores samples in the order of arrival and selects the 

appropriate output sample by calculating the location of the output sample dynamically. This 

architecture is easy to pipeline and to adapt to multiple samples per clock cycles. Implementation 

results were obtained using 24-bit RGB input, targeting Xilinx devices. The filter was configured 

to calculate luminance using the approximation (74) and output a 10-bit result. Table 9 summarizes 

achievable maximum processing frequencies (𝑓𝑚𝑎𝑥). 
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Target Device 
 𝒇𝒎𝒂𝒙 per kernel configuration 

3x3 5x5 7x7 

XC5VSX50T-4 480 MHz 480 MHz 480 MHz 

XC4VSX35-10 400 MHz 400 MHz 350 MHz 

XC2V1000-4 235 MHz 225 MHz 215 MHz 

Table 9. Maximum word-serial processing frequencies, 24bit RGB processing 

Based on the pixel clock frequency of the video stream to be processed, the number of samples to 

be processed in parallel can be inferred. E.g. for 1080p60, the video clock rate is 148.5 MHz, 

allowing fully serial (𝑆 = 1) implementation of the 3x3 filter kernel on 7 series, Ultrascale, or 

Ultrascale+ devices. For the least recent, XC2V-5 part, only the fully parallel 𝑆 = ℎ path is viable, 

resulting to a larger footprint and increased routing complexity. 

For characterization purposes, implementations were tested with comparators in general purpose 

logic-fabric with the output register forced to be placed into the CLB where the carry chain ends.  

Since the design uses considerable slice-based arithmetic, Table 10 presents approximate LUT 

counts for different kernel and filter configurations. 

kernel 𝑺 = 𝟏 𝑺 = 𝟐 𝑺 = 𝟑 𝑺 = 𝟒 𝑺 = 𝟓 𝑺 = 𝟔 𝑺 =7 

3x3 190 442 345 N/A N/A N/A N/A 

5x5 630 1320 1770 3270 2100 N/A N/A 

7x7 1370 2630 4150 4400 7500 10500 6000 

Table 10. Approximate LUT usage for 3x3, 5x5, and 7x7 configurations 

Adder trees for the new samples were pipelined dynamically. The number of pipeline stages used 

is a function of T. At the first stage 4 bit sets of the SHR register are masked and summed, while 

every other stage summarizes two elements of the previous stage. Accordingly, the number of 

stages is 𝑙𝑜𝑔2𝑇 − 1. The N:1 decoder at the end of the filter consists of two pipeline stages. The first 

stage processes 8 bit parts, while the second stage is simply a wide OR gate. 

6.5 Chapter Summary 

In section 6.1.1 I demonstrated that FPGAs are ideal implementation platforms for 1D median 

filters, and I proposed an architecture that resulted in a compact, high-performance solution. 

In sections 6.2.1 and 6.2.3 the 1D architecture is extended to 2D by allowing ingestion of a vector of 

samples instead of a single scalar. I proposed an efficient, generalized structure for 2D rank order 

filtering, capable of processing a configurable number of pixels in a single clock cycle.  

Rank order filtering color channels separately may introduce color artifacts along edges. In section 

6.2.2 the rank order filter architecture was extended to operate on indexed data, enabling efficient 

color image processing without introduction of color artifacts. Also, with the introduction of virtual 

or padding samples, non-rectangular, e.g., circular kernels can be processed efficiently. 
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7 Efficient Implementations of Fast 

Fourier Transform processors  

The Fast Fourier transform (FFT) is a computationally efficient algorithm for computing a Discrete 

Fourier Transform (DFT) [67]. Appendix section A.3 reviews definition of the one-dimensional 

DFT, the derivation of FFT, decimation in frequency and time, compares the benefits of higher 

radix algorithms. Appendix section A.3.7 discusses efficient hardware implementations of the FFT 

on FPGAs and explores different pipelining and numerical representation options.  

7.1 Design considerations 

General requirements on HW FFT accelerators usually aim to minimize resource allocation, power 

and transform time. Numerous architectural solutions represent trade-offs between design goals.  

For most FPGA users the goal is to meet certain performance requirements while fitting the design 

into the smallest (cheapest) FPGA possible. Historically, FFT architectures that included fewer 

multipliers were better suited to ASIC/FPGA implementation, however, multiplier count is no 

longer a good benchmark for FFTs. Instead, the total envelope of the implementation, slice count, 

BRAM count, and DSP slice count should be compared with the I/O rate attainable with different 

architectural options. 

As transfer size grows, the number of operations per I/O sample scales logarithmically. For large 

transfer sizes, where FPGAs can outcompete DSP processors due to inherent data parallelism, FFT 

solution sizes are dominated by memory footprint. Any improvements in memory management 

that can reduce memory allocation in turn reduces the overall footprint, which can translate to cost 

and power saving in the overall design. 

Practical implementations can be characterized on how the algorithm, multipliers, butterflies or 

dragonflies, twiddle sources and scaling logic, collectively referred as Processing Elements (PEs), 

map to FPGA resources. Design balance come into focus as columns of BRAMs and DSP48s were 

weaved into the logic fabric of FPGAs (Figure 66). 

 

 

Figure 66. Dedicated resources inserted into the logic fabric  

The two most widespread implementations are the loop engine (Figure 67.) and the pipeline. 

In the loop engine implementation, one or more PE(s) are working concurrently on the same FFT 

stage. Only when a stage is complete, work on the next stage commences, so the FFT is signal flow 

is traversed horizontally, on a stage-by-stage basis. 
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Figure 67. Loop-engine implementation 

In the pipeline implementation (Figure 68) the PEs are working concurrently on different stages, 

with buffers between the stages, so the signal flow graph is traversed vertically.  

 

Figure 68. Pipeline implementation 

7.2 Memory Segmentation 

A loop engine with a parallel radix-r PE processes the r points simultaneously. To supply and store 

data to/from the PE at least r dual-ported, or 2r single-ported memory blocks are necessary (Figure 

67). To enable single ported memories, ping–pong buffering can be used.  

In this scheme, a PE reads data (operands) from one buffer and writes results back to the other 

buffer, and after each rank the read and write buffers are swapped. On the PE input side, the N 

point frame has to be segmented into r memories, each N/r samples deep. The segmentation 

problem is illustrated through a 16-point, radix-4 example (Figure 69). 

This FFT has 2 ranks and the radix-4 FFT engine performs four radix-4 FFTs (dragonflies) per rank. 

Data points are accessed in the following order: 

 pass 1 pass 2 pass 3 pass 4 

rank 1 x0, x1, x2, x3 x4, x5, x6, x7 x8, x9, x10, x11 x12, x13, x14, x15 

rank 2 w0, w4, w8, w12 w1, w5, w9, w13 w2, w6, w10, w14 w3, w7, w11, w15 

Table 11. Data accesses, radix-4 FFT engine, N=16 
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Figure 69. 16 point, radix-4 FFT 

Suppose in a radix-4 loop engine implementation four buffers, buffers B0-B3 store input frames (x) 

and temporary results (w), with buffers B0..B3 feeding inputs 0..3 of the single radix-4 PE. Initially, 

B0 stores input sample x0, x4, x8 and x12, buffer B1 stores sample x1, x5, x9 and x13, etc., facilitating 

simultaneous access of the samples for the first rank. If during the evaluation of the first rank, 

results w0..w3 were written back to the original addresses and buffers of operands x0..x3, and so on 

for all passes, then w0, w4, w8 and w12 would all end up in the same buffer, preventing simultaneous 

access to these operands for the second rank. 

If the results were written back to locations of x0, x4, x8 and x12, then yet unprocessed x4, x8 and x12 

would be overwritten before use. Data allocation/segmentation to buffers without contention in 

any of the ranks is a non-trivial problem. Successive ranks of the FFT access memory locations in 

different order, causing segmentation to change from rank to rank. Existing FFT solutions solved 

this issue by doubling the size of the buffers and alternated using the lower/upper banks for each 

successive rank. In an FPGA implementation this may effectively double BRAM allocations, which 

for large transform sizes is the bottleneck for implementation. 

In [S18], [S19] I propose a static memory segmentation scheme which allows the FFT to use single 

buffering, saving 50% of BRAM resources (Figure 70). The solution assumes a radix-r FFT engine, 

performing an FFT/IFFT on a frame of N data points, where 𝑟 = 2𝑡 , 𝑁 = 𝑟𝑐 , c and t being positive 

integers, which fits the majority of practical hardware FFT implementations. 

The problem of segmenting the data frame to r memory blocks, is analogous to storing the frame 

of N data points in a matrix (A) with r rows and n columns, n = N/r. Rows of A correspond to 

different DPMs in Figure 70. By introducing the base r representation of index k:   

𝑘 = ∑ 𝑟𝑖𝑑𝑖 ,

𝑐−1

𝑖=0

 (77) 

the constraints of simultaneous access of samples can be expressed simply as follows. If in the base 

r representation of any two indices all corresponding digits except for 𝑑𝑞 are the same, then the 

samples have to reside in different rows of A. Simplifying further, no two indices p and q can reside 

in the same row if any c-1 digits in the base r representation of p and q are the same. 
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Figure 70. Single buffer Radix-4 FFT loop engine 

 Although there could be numerous solutions to satisfy this set of constraints, I proposed a 

straightforward systematic solution, which also minimizes complexity of the addressing logic. 

Within matrix A, input sample 𝑥𝑘  should be in row 𝑎𝑟 and column 𝑎𝑐 : 

𝑎𝑟 = {∑ 𝑑𝑖

𝑐−1

𝑖=0

} mod 𝑟 (78) 

𝑎𝑐 = 𝑘 mod 𝑛 (79) 

When designing the addressing and segmentation scheme for a HW implementation, 𝑎𝑐 is the 

static address of input sample 𝑥𝑘  in BRAM 𝑎𝑟(𝑘). With slight modifications, the findings can be 

applied to cases where N is not an integer power of r. 

Table 12 shows an example of the static memory segmentation for an N = 64, r = 4. 

 DPM0:  0 49 34 19 52 37 22 7 40 25 10 59 28 13 62 47 

DPM1: 16 1 50 35 4 53 38 23 56 41 26 11 44 29 14 63 

DPM2:  32 17 2 51 20 5 54 39 8 57 42 27 60 45 30 15 

DPM3: 48 33 18 3 36 21 6 55 24 9 58 43 12 61 46 31 

Table 12. Static memory segmentation for N = 64, r = 4 

In rank 0, the radix-4 PE accesses data points 0,16,32,48. In rank 1, the radix-4 PE accesses data 

points 0,4,8,12. In rank 2, the radix-4 PE accesses data points 0,1,2,3.  

As all these points are in different rows of the table, they physically reside in different memories, 

so it is possible to construct a system that accesses the data points simultaneously. 

The solution can be extended to cases where r = 2t, p = 2s, N =prc, s < t, enabling run-time configurable 

transform lengths using the bypass option introduced in section A.3.11A.3.7. For example, a 128 

point FFT can be calculated using a radix-4 PE (N=128, r=4, s=1). 

Before defining row and column addresses, sample index k needs to be decomposed by 

𝑙 =
𝑁

𝑝 ⋅ 𝑟
  , (80) 
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𝑘 = 𝑝 {∑ 𝑟𝑖𝑑𝑖

𝑐−1

𝑖=0

} + 𝑏, (81) 

and the proposed segmentation for the run-time configurable cases becomes: 

𝑎𝑟 = {𝑏 + ∑ 𝑑𝑖

𝑐−1

𝑖=0

} mod 𝑟 (82) 

𝑎𝑐 = (𝑘 mod 𝑙) + 𝑙(𝑘 mod 𝑝) (83) 

To illustrate the segmentation, Table 13 shows an example for N=32, k=4, p=2, implemented with a 

radix-4 dragonfly, with an option to bypass a butterfly stage. 

DPM0: 0 26 20 14 25 19 13 7 

DPM1: 8 2 28 22 1 27 21 15 

DPM2: 16 10 4 30 9 3 29 23 

DPM3: 24 18 12 6 17 11 5 31 

Table 13. Static memory segmentation for N = 32, k = 4, k’=2 

In this scenario, two radix-4 ranks are followed by a radix-2 rank. The first radix-4 rank accesses 

samples {0,8,16,24}, {1,9,17,25}, etc. The second radix-4 rank accesses samples {0,2,4,6}, {1,3,5,7}, etc. 

The final radix-2 rank, with bypass active, accesses {{0,1} and {2,3}}, {{4,5} and{6,7}}, etc. 

7.3 Natural to Digit-reversed reordering 

An N=rm point, radix-r streaming FFT with r parallel inputs and outputs produces a continuous 

flow of data frames, each frame processed in N/r cycles. In most applications, FFT and IFFT blocks 

access data in natural order. Hence, either at the input (DIT) or at the output (DIF) is digit-reversed, 

and conversion to natural order may be necessary (Figure 71).  

 

Figure 71: Radix r DIF FFT with data reorganizer 

For example, a radix-2 DIF FFT consumes inputs in natural order, such as {x0, xN/2} in the first clock 

cycle, and {x1, x1+N/2} to {xN/2-1, xN-1} in subsequent clock cycles. At the end of the pipeline the output 

spectra are presented in {y0, yN/2}, {yN/4, y3N/4}, etc. order.  

To reorganize the output, N samples have to be stored in r memories to enable parallel access to 

data without contention or data loss. Following the radix-2 example, reading out of spectra y can 

start after outputs {y1, yN/2+1} had been generated, effectively when half of the frame was processed. 

The first half of the spectra frame therefore had to be buffered. Once the pipeline is full, r samples 

are written, and r samples are read from the reorganizer, such that both {y0, yN/2} and {y0, y1} need 
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to be written to separate BRAM modules to facilitate parallel read/write access. In earlier FFT 

pipeline implementations data-reorganization employed double buffering: one buffer being 

written in digit-reversed order, while the other read out in natural order. In [S20] I proposed a 

method that eliminates the need for double buffering, therefore reduces memory allocation by 50%.  

Data reordering (Figure 72) takes place by employing two radix-r commutators, switches with r 

inputs and r outputs, before and after the frame buffer. The commutator performs a circular shift 

on the input data-set, so output sample received on input i is assigned to commutator output (i-sel) 

mod r, where input sel is driven by the bit-reversed, most significant digit of address addr.  

When 𝑟 = 2𝑡 , in a practical HW implementation addr can be generated by an N-r+1 bit wide counter, 

with the MSB tracking even/odd data frames. For each subsequent frame, based on the MSB, BRAM 

addresses alternate between natural and digit-reversed order. 

 

Figure 72: Example of a r input, r-output, data reorganizer for radix-r FFTs 

Following the nomenclature introduced in the Memory Segmentation section above, similar to (78) 

and (79), sel for the input commutator, and address for BRAM k for sample n is defined as 

𝑠𝑒𝑙 = {∑ 𝑑𝑖

𝑐−1

𝑖=0

} mod 𝑟, (84) 

𝑎𝑑𝑑𝑟𝑘 = 𝑎𝑑𝑑𝑟 mod (
𝑁

𝑟
), (85) 

where addr alternates between natural and digit reverse order per frame.  

The sel input of the output commutator is the modulo r inverse of sel driving the input commutator. 

Like in the Memory Segmentation section above, the reorganizer solution can be extended to cases 

where r = 2t, p = 2s, N =prc, s < t, matching the input (DIT) / output (DIF) ordering of FFTs with run-

time configurable transform length. For these cases, a cascade of binary counters may be used 

effectively implementing the addressing scheme defined in (82),(83). 
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7.4 Implementation Results 

Tables 6-8 summarize resource usage for implementations in Xilinx 7 series devices. 

Architecture / N 64 128 256 512 1024 2048 4096 8192 16384 

Radix-2 pipeline 8 10 12 14 16 18 20 22 24 

Radix-4 pipeline 6 9 9 12 12 15 15 18 18 

Radix-2 loop, 1 PE 3 3 3 3 3 - - - - 

Radix-4 loop, 1 PE 9 9 9 9 9 9 9 9 9 

Radix-4 loop, 2 PEs 9 9 9 9 9 18 18 18 18 

Table 14. Multiplier usage by point-size and FFT implementation type (16 bit precision) 

Architecture / N 64 128 256 512 1024 2048 4096 8192 16384 

Radix-2 pipeline 4 6 9 101 11 161 25 43 79 

Radix-4 pipeline 0 3 3 4 6 9 18 26 65 

Radix-2 loop, 1 PE 0/315 0/3 3 3 3 - - - - 

Radix-4 loop, 1 PE 7 7 7 7 7 7 11 22 44 

Radix-4 loop, 2 PEs 19 19 19 19 19 22 38 76 152 

Table 15. BRAM usage by point-size and FFT implementation type (16 bit precision) 

Architecture / N 64 128 256 512 1024 2048 4096 8192 16384 

Radix-2 pipeline 1225 1425 1545 1851 1995 2151 2435 2700 2945 

Radix-4 pipeline 1735 1855 1927 2111 2197 2351 2461 2620 2767 

Radix-2 loop, 1 PE 978 1138 818 818 818 - - - - 

Radix-4 loop, 1 PE 2016 2036 2056 2076 2096 2116 2136 2156 2176 

Radix-4 loop, 2 PEs 3072 3092 3112 3132 3152 3812 3832 3852 3872 

Table 16. Slice usage by point-size and FFT implementation type (16 bit precision) 

Table 17 presents transform times for 16 bit precision in Xilinx Virtex Ultrascale Plus devices [3] 

targeting 571 MHz clock speeds, as characterized by the vendor with the latest speedfiles16. 

Architecture / N 64 128 256 512 1024 2048 4096 8192 16384 

Radix-2 pipeline 0.06 0.11 0.22 0.45 0.90 1.79 3.59 7.17 14.35 

Radix-4 pipeline 0.03 0.06 0.11 0.22 0.45 0.90 1.79 3.59 7.17 

Radix-2 loop, 1 PE 0.34 0.78 1.79 4.04 8.97 19.73 43.04 93.25 200.85 

Radix-4 loop, 1 PE 0.08 0.20 0.45 1.01 2.24 4.93 10.76 23.31 50.21 

Radix-4 loop, 2 PEs 0.04 0.10 0.22 0.50 1.12 2.47 5.38 11.66 25.11 

Table 17. Transform times [us] as a function of architecture and point-size[N] 

Table 18 demonstrates savings of BRAM allocation attributable to single buffering enabled by the 

proposed memory addressing schemes, using one processing engine and BRAMs for data 

buffering. In order to quantify savings, the BRAM configurations should be considered. The 18 kbit 

 

15 Distributed RAM / Block – RAM Implementation 

16 https://www.xilinx.com/html_docs/ip_docs/pru_files/xfft.html#virtexuplus  

https://www.xilinx.com/html_docs/ip_docs/pru_files/xfft.html#virtexuplus
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Xilinx and Lattice BRAM primitives can be configured as 512 x 36bit, which can store 512 16bit 

complex samples. For a radix-k FFT samples are stored in k dual-ported memories (Figure 67).  E.g., 

a radix-2 loop-engine or pipeline stage uses at least two BRAM primitives. For 16 bit samples and 

𝑁 ≤ 512, the radix-2 pipeline can support double-buffering with single BRAM primitives. 

Architecture 
Point size (N)  / Data representation [bits] 

512 / 16 512 / 32 1024 / 16 1024 / 32 2048/16 2048/32 4096/16 4096/32 

Radix-2 17 0% 50% 50% 50% 50% 50% 50% 50% 

Radix-4 15 N/A N/A 0% 50% N/A N/A 50% 50% 

Radix-2 18  0% 50% 50% 50% 50% 50% 50% 50% 

Radix-4 16 N/A N/A 0% 50% N/A N/A 50% 50% 

Table 18. Reduction in BRAM allocation compared to naïve double-buffered implementation. 

7.5 Chapter summary  

Section A.3.1 introduces the DFT and the FFT along with well documented implementation 

optimizations to reduce the complexity of the signal flow graph and the corresponding serial, or 

parallel implementations. 2D FFT and IFFT operations are important preprocessing steps for image 

classification [S21], [S22]. Section A.3.7 discusses mapping FFT signal flow graphs to FPGA 

resources and identifies complex multipliers as well as local memories for sample and twiddle 

factor storage as critical resources to be optimized for FPGA implementations. I have shown that 

with a large number of parallel multipliers and adjacent local memories, FPGAs can implement 

FFT/IFFT operations with configurable transform lengths efficiently, providing trade-offs between 

resource allocation and transform time [S23]. Silicon area in HW implementations with N > 4096 

points are dominated by memory. In previous implementations data frames were double buffered 

both in pipelined and loop-engine configurations to facilitate random access to samples without 

output samples overwriting input samples. In section 7.2 I proposed methods and architectures 

to reduce the depth of memory buffers by 50% for in-place FFT implementations by eliminating 

double buffering [S18]. 

Section 7.3 discusses accessing input and output samples. DIT processing structures expect the 

input data frame in bit/digit reversed order and generate an output frame in natural order. 

Conversely, a DIF FFT expects the input frame in natural order, but the output frame is in bit/digit 

reversed order. To access input and output samples in natural order, a reorganizer stage is 

necessary, which previously double-buffered the frame. I proposed a method to reorganize input 

data to an FFT from natural to digit-reversed order, or results of an FFT from digit-reversed order 

to natural order without double-buffering frames.[S20]. 

 

 

17 Pipeline or loop-engine architecture, no sample reordering, no block floating point 

18 Pipeline architecture, with natural sample reorder stage, parallel multi-channel load/unload 
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8 Direct Digital Synthesis 

8.1 Introduction 

The typical DDS block introduced by Tierney et al. in [68] consists of a phase accumulator and a 

phase to sinusoid converter. In its simplest form, the phase accumulator is an unsigned, registered 

adder, and the phase-to-amplitude converter is a Look-Up-Table (LUT). The DDS takes a clock 

reference and a phase increment (𝜑) or frequency control word input and generates samples of a 

sine with frequency: 

𝑓 = 𝑓𝑟𝑒𝑓
𝛥𝜙

2𝑀, (86) 

where 𝜑 is the phase increment, M is the width of the phase accumulator and 𝑓𝑟𝑒𝑓is the frequency 

of the reference clock. The DDS maintains the frequency stability of the reference signal, has 

unparalleled frequency switching rates, ensures phase continuity on switching, and has frequency 

resolution typically in the sub-Hertz range [68], which makes it an ideal building block in radar 

and communication systems such as transceivers, modems, and up/down converters. 

Requirements of DDS designs are small size, low power consumption, and high level of spectral 

purity. Apart from timing (jitter) issues, noise on the output can be attributed to phase accumulator 

quantization error, and phase-to-amplitude quantization error. The phase accumulator 

quantization error can be easily combated by widening the accumulator. However, the LUT size 

grows exponentially by M and linearly by the width of the output. 

With trivial operations typically referred as coarse rotation, the symmetries of the sine function can 

be exploited by storing one quadrant of the complex plane only. However, stringent memory 

limitations may not allow a fully look-up-table (LUT) based solution even when only one quadrant 

has to be stored.   

 

Figure 73. Typical DDS block diagram 

Consequently, for low-noise and high period length DDS applications, where a fully LUT based 

solution would be prohibitively large, a B bits wide, 2𝐿 deep LUT, addressed by L bits (𝐿 < 𝑀 − 2) 

can be used with extra circuitry (Figure 73) to generate samples missing from the LUT. Output 

values are refined using the less significant bits of the phase accumulator (𝜑). The arithmetic 

operations used during this operation significantly contribute to output noise. To measure output 

phase and amplitude noise, define the output of the DDS as  

 𝑓(𝑛) = 𝑎 𝑠𝑖𝑛(
2𝜋𝑓𝑜𝑢𝑡

𝑓𝑟𝑒𝑓
𝑛 + 𝜑) − 𝜀(𝑛), (87) 

Sine LUT Refine
 Output

Coarse
Rotation

Phase Accumulator

Phase
Increment

 sin() L



−L−

 B
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where 𝑎 is the amplitude and 𝜑 is the initial phase of the expected output signal, and 𝜀(𝑛) is the 

error. To find the phase and amplitude of a sinusoid which fits best an arbitrary discrete set of N 

values, 𝑦(𝑛), minimizing error 𝜀(𝑛): 

 

[
 
 
 
 

𝑦(0)
𝑦(1)
𝑦(2)

⋮
𝑦(𝑁 − 1)]

 
 
 
 

=

[
 
 
 
 

1 0
cos 𝜔 sin 𝜔
cos 2𝜔 sin 2𝜔

⋮ ⋮
cos(𝑁 − 1)𝜔 sin(𝑁 − 1)𝜔]

 
 
 
 

𝑥 +

[
 
 
 
 

𝜀(0)
𝜀(1)
𝜀(2)

⋮
𝜀(𝑁 − 1)]

 
 
 
 

, (88) 

where  𝑥 = [0,1, . .2]𝑇 , and 𝜔 =
2π

𝑁
 (89) 

or 𝑦 = 𝑨𝑥 + 𝜀, for which the solution can be found as 

 𝑥 = (𝑨𝑇𝑨)−1𝑨𝑇𝑦, (90) 

 𝜑 = tan−1 𝑥1

𝑥0
, 𝑎 = √𝑥0

2 + 𝑥1
2 (91) 

The least squares method minimizes noise by associating phase and amplitude errors with the 

signal, thereby revealing the effect of time domain noise to the phase and amplitude of the 

quadrature signals if said noisy sinusoidal was used for Fourier analysis.  

A simpler way to assess the quality of the DDS output is using the DFT. The N point, complex 

valued DFT of the output series was defined in (117). Since f(n) values are real,  

 𝐹 (𝑘 +
𝑁

2
) = 𝐹 (

𝑁

2
− 𝑘) ,         𝑘 = 0, … ,

𝑁

2
− 1, (92) 

and the power spectral density (PSD) is 

 𝑃(𝑘) = 𝐹(𝑘)𝐹(𝑘),    (93) 

The energy of the signal is concentrated to one bin P(0). The rest of the bins contain the PSD of the 

noise (n). The benchmarks used to measure DDS output quality and noise are the Signal to Noise 

Ratio (SNR),  

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑃(0)

∑ P(𝑖)
𝑁
2
−1

𝑖=1

), (94) 

and the Spurious Free Dynamic Range (SFDR), defined as: 

𝑆𝐹𝐷𝑅 = 10 log10 (
𝑃(0)

max(𝑃𝑘)|𝑘 > 0
), (95) 

An upper bound on the SFDR based on the number of bits in the sine LUT representation (B) can 

be shown to be  

 𝑆𝐹𝐷𝑅 ≤ 6.02𝐵 − 3.92dB (96) 
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8.1.1 FFT specific application 

The twiddle factors used during the DFT/FFT computation are: 

 𝑊𝑁
𝑛𝑘 = cos (

2𝜋𝑛𝑘

𝑁
) − j sin (

2𝜋𝑛𝑘

𝑁
) = 𝑒j

2𝜋𝑛𝑘

𝑁  (97) 

The twiddle factor access sequence is always monotonous but depends on the actual FFT structure 

used. In pipelined FFT processors, multipliers in each PE have designated twiddle factor 

generators. In the in-place (loop-engine) structure the PE needs different twiddle factors for each 

rank. However, all 𝑊𝑁
𝑛𝑘  (k>1, 0  n < N/r ) series are sub-sets of 𝑊𝑁

𝑛. Therefore, the ultimate challenge 

is to generate high-quality twiddle factors pertinent to 𝑊𝑁
𝑛. 

Although the FFT algorithm reorders the computation of (119), fundamentally each X(k) is a 

convolution of the data x(n) and the twiddle factor series 𝑊𝑁
𝑛𝑘 , therefore noise present in the 

twiddle factor series has similar effects as noise in the data series. For this reason, high point-size, 

low-noise FFTs need high quality, spurious-free twiddle factors. The purpose of this analysis is to 

compare current DDS algorithms and propose an efficient and compact solution for twiddle factor 

generation for FFT and IFFT implementations. The comparison criteria are precision, maximum 

operating frequency and resource usage in FPGAs.  

8.1.2 Research Goals 

My goal was to design a twiddle factor generator for FFTs optimized in the following terms: 

• Support for 212 ≤ N ≤ 220 samples period length, 

• SFDR >150 dB, 

• capable of high-speed implementation in FPGAs or ASICs, 

• minimal footprint in FPGA implementation. 

In addition, because twiddle factors are quadrature signals, both cos(φ) and sin(φ) should be 

available at the same time. The ideal Quadrature Direct Digital Frequency Synthesizer (QDDFS) 

twiddle factor generator must support accessing samples (twiddle factors) in both forward and 

reverse direction, to calculate FFTs and IFFTs. 

SFDR and SNR measure the quality of results. A widely used target function to measure the success 

of compressing the DDS design is compression ratio [69]. Compression ratio measures the 

reduction in size of a particular DDS structure compared to the direct implementation (with coarse-

rotation) for the same SFDR/SNR performance. Historically transistor-, or equivalent gate counts 

had been used to compare the footprint of different architectures [70],[71]. For FPGAs, the concept 

of compression can be generalized if besides memory allocation, the footprints of all arithmetic 

components are considered. In many FPGAs [2][3],0[73] CLBs, BRAMs and DSP slices/multiplier 

blocks constitute a tile (Figure 74). Vertically connected tiles form a bank, and horizontal regions 

in the chip form a local CLK region. 

 

Figure 74: Xilinx Ultrascale BRAM, CLB and DSP48 slice tile 
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For a particular target device, the number of CLBs (slices, registers, LUTs), BRAMs and DSP 

slices/multiplier blocks can establish the exact conversion ratios between resources. While in Xilinx 

FPGAs the exact ratio of registers/BRAMs/DSP slices is family and package dependent, based on 

Virtex-7 averages19 in this analysis a 18kbit BRAM is treated equivalent to 400 registers, and 1 DSP 

slice or 18 bit multiplier. The compression ratio thus can be redefined as the quotient of the 

aggregated equivalent register count allocated by a particular DDS structure, versus the direct 

memory implementation with coarse rotation, designed for the same numerical performance. For 

N=216 and B=24 bits, a LUT of 214 ×24 bits = 384 kbit is required, which uses 24 BRAMs, plus the 

coarse rotation logic, having an equivalent register count of 9648.  

Since twiddle factors have a fixed order in the FFT algorithm, the phase increment is constant. This 

allows recursive calculation of samples, which can lead to significant savings in logic complexity. 

Also, the DDS can exploit that phase-increment is always a power of 2 for twiddle factor 

generation.  

8.2 Current Solutions 

The numerous approaches currently available for phase to amplitude mapping (sine generation) 

can be classified into the following categories:  

− piecewise-linear interpolations [71], [74], [75] 

− Taylor-series approximations [76], [77] 

− Chebyshev approximation [70], 

− trigonometric decomposition [68], [78][77], [79] 

− recursive solutions, [80] 

− coordinate rotations [81], [82] 

The piecewise-linear, Taylor-series, Chebyshev, and trigonometric decomposition algorithms all 

fit under the umbrella of polynomial approximations. The difference is only in the method of 

coefficient computations. 

Recursive solutions are based either on a resonator, or a complex multiplier in a feed-back loop, 

which has the added benefit of generating quadrature signals without extra cost. 

Some solutions [69] are combinations of the above techniques. For 12 bit precision (SNR ~ 85 dB), 

Table 19, modified from [74], summarizes results of different implementations. The 

implementation details of the solutions above are discussed further in Appendix section A.4.1. 

8.3 Digital Resonators  

An intuitive solution for the twiddle generation problem is using an IIR filter / oscillator [79] with 

poles very close to the unit circle, so the impulse response approximates the desired sinusoid 

function. The z-transform of sin (𝑛𝜔0) is: 

 𝑦(𝑧) =
𝑧−1sin 𝜔0

1−2𝑧−1 cos 𝜔0+𝑧−2, (98) 

which can be realized as 

 

19 7 Series FPGAs Data Sheet, Xilinx Inc, DS180 (v2.6.1) September 8, 2020, Table 8: Virtex-7 FPGA Feature Summary. 

https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds180_7Series_Overview.pdf  

https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds180_7Series_Overview.pdf
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 𝑦(𝑧) = 𝑥(𝑧)𝐻(𝑧), where (99) 

 𝑥(𝑧) = 𝛿(𝑧) 𝑠𝑖𝑛 𝜔0 and 

 𝐻(𝑧) =
𝑧−1

1−2𝑧−1 𝑐𝑜𝑠 𝜔0+𝑧−2, (100) 

 

Figure 75. Two-pole resonator 

Direct form II, second order IIR stages [83] lend themselves well to low-cost FPGA implementation. 

Ideally the LUT could be removed from the design and a delta pulse can be incorporated into the 

initial conditions of the filter. 

Figure 75 shows the direct form II realization of the 2 pole filter defined by (100). The filter contains 

only one constant coefficient (𝑘 = 2 𝑐𝑜𝑠 𝜔0) multiplier, which makes it an appealing candidate for 

DDS implementation on FPGAs. Also, regardless quantization of k the poles are constrained to lie 

on the unit circle, given that -2<k<2. 

Quantization of k results only to deviation from the expected frequency. Having poles on the unit 

circle makes the filter prone to error accumulation. However, for twiddle factor generation, the 

circuit can be reset, or re-initialized periodically to suppress noise accumulation.  

8.4 Quadratic interpolation 

Quadratic interpolation drastically reduces the number of segments required to represent f(φ) with 

the required precision. If uniform quantization is used only 71 points are necessary to reduce 

spurious content under 150 dB, or 49 points if non-uniform quantization is used. However, similar 

to linear interpolation, for non-uniform quantization the reduction in coefficient memory depth is 

offset by increased arithmetic and control complexity as well as storage requirements for 4 

coefficients per segment. Reduction in memory is traded for arithmetic components: one BRAM is 

sufficient to store the 3x71x32 bits of information, but multiplier count is doubled (8 primitives), 

and at least two 32 bit adders are necessary to perform the 𝑦 = 𝑎𝑖𝑥
2 + 𝑏𝑖𝑥 + 𝑐 operation. In 

addition, quadratic constants and terms have larger dynamic ranges, which may further widen 

data-paths for storage and arithmetic components. In [S24] I provided a method to calculate the 

quadratic formula with 𝐵𝑑  precision by using only 𝐵𝑑  adders, if 𝑎𝑖 and 𝑏𝑖 were represented as 𝐵𝑑  

bits wide CSD coefficients. 

8.4.1 Differentiator-Integrator structures 

To introduce a simpler structure for second-order approximation, linear interpolation has to be 

examined in more detail. A discrete function 𝑓(𝜑) for 𝜑𝑖 ≤ 𝜑 ≤ 𝜑𝑖+1 can be interpolated by  

𝑓(𝜑) =
𝑓(𝜑𝑖+1) − 𝑓(𝜑𝑖)

𝜑𝑖+1 − 𝜑𝑖

(𝜑 − 𝜑𝑖) + 𝑓(𝜑𝑖) = 𝑎𝑖(𝜑 − 𝜑𝑖) + 𝑏𝑖 , 𝑖 ∈ ℤ, 𝑖 < 2𝐿  (101) 
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where 𝜑𝑖 is the down-sampled phase input to the quadrature LUT introduced in Figure 73, and 

𝑓(𝜑𝑖) is the LUT output.  

However, this definition of 𝑎𝑖 and 𝑏𝑖 forces the interpolant to the convex curvature side of 

𝑓(𝜑), resulting to sub-optimal interpolation errors. More advanced methods, such as least squares 

(90) can be used to determine 𝑎𝑖 and 𝑏𝑖 to distribute and minimize total error.  

If the domain of 𝑓(𝜑), 𝜋/2,  is sliced to 2𝐿 uniform sections, so 𝑆 =
𝑁

2𝐿 = 2𝑀−𝐿−2, 

1

𝑆
=

1

𝜑𝑖+1 − 𝜑𝑖
  (102) 

is constant, then successive samples from 𝑓(𝜑𝑖) to 𝑓(𝜑𝑖+1) can be obtained by preloading an 

integrator with 𝑏𝑖and then accumulating 𝑎𝑖 over S cycles (Figure 76).  

 

Figure 76. DI structure with preload 

This structure exploits that output samples are accessed in a continuous monotonously increasing 

order.  

If the sample-rate conversion between the input and the output is 𝑆 = 2𝑀−𝐿−2 = 2𝐵𝑠 , then the 

constant multiplication in 𝑎𝑖 =
1

𝑆
(𝑓(𝜑𝑖+1) − 𝑓(𝜑𝑖)) can be replaced by bit-shifting, or more 

precisely, by shifting the binary point. To generate the complex valued twiddle factor series 𝑊𝑁
𝑛 

(97), the two target functions are: 

 𝑓𝑠(𝑛) = sin (
2𝜋𝑛

𝑁
) and  (103) 

 𝑓𝑐(𝑛) = cos (
2𝜋𝑛

𝑁
) (104) 

Both 𝑓𝑠(𝑛)and 𝑓𝑐(𝑛)are periodic with a period length of N. If mid-period reinitialization is not a 

requirement, the multiplexer based pre-load logic can be replaced by synchronous set/reset. 

Retaining the pre-load logic to facilitate piece-wise interpolation offers a trade-off between the 

extra cost of the multiplexer and the coefficient memory but allows increased operating rates due 

to reduced accumulator width. Overall resource use vs operating speed and noise can be optimized 

by simulating interpolator noise accumulation. 
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8.4.2 Continuous Quadratic Interpolation 

The above steps to interpolate f(n) can be used to interpolate the first order derivative f’(n) as well. 

A second order interpolator can be built by nesting two DI stages (Figure 77).  

 

Figure 77. DDII structure 

Quadratic interpolation drastically reduces algorithmic error compared to linear interpolation, 

allowing interpolation through longer sections while keeping an upper bound on the interpolation 

error. Distributed memory may be sufficient to store samples since only S=N/M samples have to 

be pre-calculated and stored. As for linear interpolation, the first differentiator stage can be 

removed from the DDII structure if discrete differentials (first order derivative) of 𝑓(𝜑) are pre-

calculated and stored. Section A.4.3 provides additional information on optimization options and 

FPGA implementation results for continuous quadratic interpolators. 

To study the arithmetic error of the interpolator, data were represented using the same word-

length (B) through all arithmetic components. Noise plotted on the two-dimensional graphs 

(Figure 78) clearly show the two regions, one dominated by cumulated arithmetic noise (B < 40), 

and the one dominated by the interpolation error (B>48). 

 

Figure 78. SFDR (left) and SNR (right) as a function of N and B, M=128 

8.5 Cascaded Resonator Interpolator structure 

To generate 𝑊𝑁
𝑛, N>217, the BRAM based LUT providing samples for the interpolator structure can 

be replaced by a pipelined resonator. Generally, the resonator structure requires at least one 

multiplier, which has half the cost of a BRAM primitive in Xilinx FPGAs. However, continuous 

quadratic interpolation provides S output samples for every sample retrieved from or generated 

by the coarse LUT of Figure 73. Choosing S sufficiently large allows generating the input series 

using a resonator with a bit-serial multiplier.  
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Figure 79. Bit-serial multiplier 

The bit-serial multiplier maps to FPGAs efficiently as CLBs are typically designed to include XOR 

and multiplexer primitives to accelerate full adder and fast carry chain implementations. Also, the 

output register is present next to each LUT in slices. In Ultrascale parts each slice can implement 

an 8 bit adder. Shifting by one bit can be hard-wired, therefore the bit-serial structure allocates only 

𝐵𝑟/8 slices. In Xilinx FPGAs slices can be configured as 16 bit shift registers which can be cascaded 

to form the circular shift registers holding operand A.  

For wide operands, or low cost parts (e.g. Lattice MachX03), operating speed can be improved by 

breaking the carry chain and pipelining the adder (Figure 80).  

 

Figure 80. Pipelined bit-serial multiplier 

The structure illustrated on Figure 80 can perform multiplications 𝑘1𝑦1 and 𝑘2𝑦2  in 2𝐵𝑘  CLK cycles, 

where 𝐵𝑘  is the number of bits representing k. The circular shift-register holding k should store 

𝑘1and 𝑘2  in a bit-interlaced fashion, and operand y should be equal to 𝑦1  for even and 𝑦2for odd 

CLK cycles. 

 

Figure 81. Pipelined bit-serial resonator 
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If 𝑘1 = 𝑘2 = 𝑘, then bits of k at the output of the circular shift-register have to be available for two 

CLK cycles. Figure 81 presents a two-stage (p=2) pipelined resonator structure with a bit-serial 

multiplier. The structure works as follows. Assuming 𝐵𝑘 = 63, k being represented in a 63.61 bit 

fixed-point format, the pipelined bit-serial multiplier calculates 𝑘𝑦1and 𝑘𝑦2 in 2(𝐵𝑘+1)=128 CLK 

cycles. During multiplication, adders are accumulating y1 and y2, while the circular shift-register 

supplies subsequent bits of k (LSB to MSB) every second CLK cycle. At CLK cycle 126 and 127, ky1 

and ky2 are ready to be latched into the circulating registers when Clock Enable (CE) generated by 

the flow-control modules is set appropriately. These registers, along with the subtractor are 

responsible for forming the transfer function of the resonator (100). 

During the last two CLK cycles, the registers holding partial product results (grayed out on Figure 

81) must be re-initialized. Initialization to a non-zero value allows rounding of multiplier results. 

When the 𝐵𝑘 + 𝐵𝑟  bits wide result is fed back to the delay-registers, 𝐵𝑘  bits are dropped. Had the 

result been simply truncated, on average -½ LSB error would be accumulated with each resonator 

output sample. Due to the accumulating error the resonator output would quickly diverge. 

If 𝑦1(0) and 𝑦2(0) are chosen such that 𝑦1(0) = 0, and 𝑦2(0) = 1.0, the structure generates quadrature 

signals in every 128 CLK cycles and can replace the BRAM based LUT. The interpolators must use 

uniform domain quantization, which equals the sample rate conversion of the bit-serial resonator, 

due to the fact that the input sample rate is fixed by the representation of k in the resonator. Also, 

the resonator does not need any addressing, which allows merging control components for the 

interpolators and the resonator. Control logic for the structure can be implemented using a counter 

with decoders signaling CLK cycles 2Bk and 2Bk+1, which control the multiplexers in the resonator, 

loads the integrators, enables register loading in the resonator, and initializes partial products with 

½ LSB rounding constant. 

8.5.1 Results 

Noise in DDS / QDDFS is introduced by algorithmic approximation and arithmetic errors. The 

approximation error is a function of the sinusoid period length (N) and the uniform interpolation 

length (S). As S increases the polynomial approximation increasingly deviates, resulting to 

increased noise in the generated quadrature signals. If N is doubled, but section length S is kept 

constant, effective 𝜔 is halved. Since the omitted higher order derivates in the Taylor series 

decomposition of f(φ) are inversely proportional to powers of 𝜔, as 𝜔 is reduced the omitted series 

is less significant, resulting to a better fit, and in turn attenuated approximation noise, and 

increased SNR and SFDR. 

Arithmetic errors can be introduced by the resonator or the integrators in the interpolator, chiefly 

due to quantization errors after multiplication and data scaling. Simulation results for the cascaded 

resonator + quadratic interpolator (B=36, S=128) are illustrated on Figure 82. The 1/128 sample-rate 

sinusoid source for the quadratic interpolator was the digital resonator, with outputs quantized to 

36 bits. Noise introduced by the resonators can be controlled by proper quantization, the selection 

of 𝐵𝑘  and 𝐵𝑟 . For a resonator with pipelined bit-serial multipliers, which takes 2(𝐵𝑘 + 1) cycles to 

generate quadrature signals, selection of 𝐵𝑘  is bound by 2(𝐵𝑘 + 1) = 𝑆 = 2𝐵𝑠 . Increasing S is 

constrained by the quadratic interpolation error, decreasing 𝐵𝑘  is constrained by arithmetic error 

introduced by the resonator. The practical solutions are S={32, 64, 128, 256}, Bk = {15, 31, 63, 127}. 

Simulation results showed that Bk = 63 was optimal to maximize SFDR while minimizing 

implementation footprint. After Bk is assigned, Br can be estimated by 

 𝑆𝑁𝑅 ≈ 7.5𝐵 − 170dB (105) 
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given that Br  Bk. The resonator is designed to insert less noise than a LUT / BRAM with 36 bit 

quantization (SNR=218.7), therefore Br > 52.  

  

Figure 82. SFDR (left), and SNR (right) for the resonator + quadratic interpolator, as a function of N  

Selecting Br = Bk = 63 results to cumulated quantization noise of arithmetic components orders of 

magnitude smaller than the input quantization noise, which in turn allows generalization of noise 

characteristics of Figure 82 to the interpolated resonator. 

Existing results on the field used ROM compression ratio to compare architectures. For FPGA 

implementation, I generalized compression ratio to take into account all FPGA resources used 

(section 8.1.2). In order to compare the proposed solutions to existing solutions and meta-analysis 

results, this generalized compression ratio is calculated as the equivalent register count of a direct 

implementation yielding the posted SFDR. 

For FPGAs, the coordinate rotation (CORDIC) IP for (N=216, B=32) occupies 3620 registers20 in a 

XC7K70T. The DDS core currently available from Xilinx [76] employs Taylor-series approximation, 

and for SFDR=140 dB, implemented in a XC7K70T, N=225, B=25 the design occupies 372 registers, 3 

BRAM18s, 5 DSP slices primitives, resulting to an equivalent register count of 372+8*400=3572.  

Method ROM bits 
Equivalent 

Registers 
Compression Ratio SFDR [dB] 

Direct, ROM-based solution 16384x24 9648 1 144 

Xilinx CORDIC (32 stages, 32 bit) - 3620 2.67 160 

Xilinx DDS 512x32 3572 2.7 140 

Angular Decomposition [79] 832 1260 7.65 96 

Optimized Linear Interp. [74] 960 1370 7.04 96.2 

5th degree Taylor [70] - 2496 3.87 82.5 

Proposed resonator QDDFS 16384*1 1150 8.38 173 

Proposed Quadratic Interpolator 512*36 1100 8.77 412 

Proposed cascaded QDDFS - 550 17.54 370 

Table 19. Algorithmic Techniques (Memory Compression and SFDR). 

To generate N=217 data points with SFDR=150 dBs, a 215 deep by 26 bit (96) wide LUT is necessary, 

exploiting quarter wave symmetry, which would take 52 BRAM primitives in a Xilinx FPGAs. For 

 

20 https://www.xilinx.com/htmldocs/ip_docs/pru_files/cordic.html  
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this performance, the proposed resonator structure uses one BRAM primitive and a 18x18 

multiplier (one DSP slices), register banks, as well as several wide (32 to 53 bit) adders, some of 

which can be absorbed into the DSP slice, altogether accounting to 350 registers. The equivalent 

register count therefore is 1150, resulting to a compression ratio of 8.38.  

In comparison with the first order Taylor-series, or linear interpolation based DDS, the proposed 

quadratic interpolation architecture trades two 18x18 Block Multiplier primitives for 6 adders. This 

is definitely favorable for (N ≥ 214, or B ≥ 24) FFT designs already block-RAM and multiplier heavy. 

Moreover, the proposed architecture extends the point-size (N) range supported by the current 

solution, support dynamic adjustment of twiddle frequency, while the attainable SFDR > 400 dB. 

Equivalent register count for this architecture is 1100. 

8.6 Chapter Summary 

Pipeline FFT solutions require static twiddle factor sources for each rank, generating only one 

twiddle (quadrature) series, with k based on the rank and multiplier position within the processing 

element (Figure 92). In contrast, as introduced in section 8.1.1, compact, in-place (loop-engine) FFT 

implementations require twiddle factor sources which generate different sequences for each rank.  

Twiddle factors (𝑊𝑁
𝑛𝑘) for FFT computations are traditionally pre-computed and stored in a single 

LUT with coarse-rotation logic. For 36 bit coefficients, sufficient for most applications, this solution 

maps efficiently to Lattice and Xilinx FPGA BRAMs for N  211. For N > 211, however, block-RAM 

counts grow proportional to N. Targeting these applications, I adapted two existing twiddle factor 

generation QDDFS architectures for FFTs for optimal implementation in FPGAs, then analyzed 

and optimized their performance.  

I proposed a novel Quadrature Direct Digital Frequency Synthesizer architecture for sine / 

cosine synthesis optimized for twiddle factor generation (𝑾𝑵
𝒏𝒌) for FFTs, using a quadratic 

differentiator – integrator structure [S25]. This QDDFS can supply coefficients with SFDR>410 dB 

for 212  N  216, using only one BRAM primitive and six 36 bit adders. With configurable 

subsampling- and interpolation length (𝑆 = 2𝑝 , 1 ≤ 𝑝 ≤ 7), as well as configurable phase 

addressing of the BRAM based LUT, the solution can provide twiddle factors for in-place 

processing engines, dynamically configuring ranks for  N  216 FFTs. I proposed a cascaded 

architecture using a digital resonator as the primary, and a continuous quadratic interpolating 

secondary stage as a high-quality, compact twiddle-factor source for large (N>217) FFTs. [S26].  

The bit-serial digital resonator solution, which replaces the BRAM based LUT to provide samples 

to be interpolated to the quadratic interpolator stage, computes 63-bit complex twiddle factors in 

128 CLK cycles. For in-place FFTs, the angular frequency of the generated sequence can be selected 

by rank dependent selection of coefficient k. The solution demonstrated superior compression 

ratios and very low noise compared to other methods available, using slice based logic only: four 

32 bit adders, six 36 bit adders and 3 multiplexers allocating less than 550 registers. The cascaded 

architecture demonstrated SFDR>370 dB and SNR>160 dB for N ≥ 217 points. For comparable 

numerical performance, the CORDIC algorithm requires 2 banks of 32 x 32bit adders and control 

logic, allocating more than 2000 registers. The direct (LUT) + coarse rotation implementation for 

this performance level would require 72 BRAMs. 
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A.1 Processor and storage component granularity and binding 

This section reviews: 

- single-, and multi-processor systems,  

- multi-core and superscalar systems,  

- memory access hierarchy,  

- concepts of reconfigurable systems, 

- basic optimization concepts such as pipelining and predictive execution, 

- FPGA implementation optimizations of DSP primitives. 

A.1.1 Single Processor Systems 

Single, Application Specific Standard Parts (ASSPs) provide minimum cost solutions for low 

computational performance problems, such as audio processing and low resolution imaging. The 

simplest processors are scalar Single Instruction Single Data (SISD) processors, where instruction 

fetching, decoding, operand fetching, instruction execution and result storage are carried out 

sequentially. Modern processor architectures, such as the ARM or PowerPC cores in Xilinx FPGAs, 

are highly pipelined resulting to higher operating clock rates, but increasingly complex control 

units to guarantee data integrity.  

One way to increase throughput is operating on multiple data items simultaneously, fetching 128-

, or 256 Very Long Instruction Words (VLIW). VLIWs are typically processed on Single Instruction 

Multiple Data (SIMD) architectures, where each instruction may operate on multiple operands, an 

example of which is Intel’s SSE21. In a superscalar processor each instruction processes one data 

item in a pipelined fashion (MIMD), with multiple redundant functional units within the CPU so 

that multiple instructions can be processing separate data items concurrently. 

With VLIW, the task of dependency checking by dedicated hardware logic at run time is removed 

and delegated to the compiler. Also from the software side, simultaneous multithreading (SMT), 

is a technique which improves the overall efficiency of superscalar CPUs. SMT permits multiple 

independent threads of execution to better utilize the resources provided by modern processor 

architectures. Current FPGAs without a dedicated, hardened processor system have sufficient logic 

resources to include a “soft” processor22, customized to the needs of the application. For example, 

a control-heavy application may not need a Floating Point Processing Unit (FPU), which can be 

disabled during configuration. All 3 major FPGA vendors (Xilinx, Altera, and Lattice 

Semiconductor) offer soft processors, some providing multiple performance tiers. 

A.1.2 Multi-processor Systems 

To further increase performance, simultaneous threads / processes can be assigned to separate 

processor units which may execute instructions in parallel. This solution can be particularly 

attractive for certain configurable Signal Processing solutions, previously employing multiple 

processor cards[S19],[S22] to match the computational load. In terms of reliability, multi-processor 

systems are more exposed to failures if all processing nodes have to perform for system-level 

functionality. On the other hand, highly fault-tolerant multiprocessor systems can be designed 

when redundancy is provided by either hot-, warm-, or cold standby cores as backup. 

Superscalar processors offer finer grain redundancy with redundant functional units, not entire 

processors. A single processor is composed of functional units such as the ALU, integer multiplier, 

 

21 https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html  

22 https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf  

https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.xilinx.com/support/documentation/selection-guides/ultrascale-plus-fpga-product-selection-guide.pdf
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integer shifter, floating point unit, etc. On a superscalar design there may be multiple versions of 

each functional unit which can simultaneously be harnessed to process instructions concurrently. 

This differs from a multi-core CPU that concurrently processes instructions from multiple threads, 

one thread per core. A hybrid solution between multi and single processor systems is a multi-core 

system, where multiple processor cores are integrated onto the same silicon. Multicore systems can 

be homogenous, or heterogeneous such as the Xilinx Zynq Ultrascale+ processor [3]. 

A.1.3 Hierarchical Memory organization 

Very Large Scale Integrated (VLSI) Dynamic RAMs (DRAM) provide applications Gigabytes of 

storage at the cost of access latency to long bursts of data. Hierarchical memory organization 

utilizes progressively smaller but faster memories closely coupled to processing units to supply 

data for most transactions. In a processor core, the memory element closest to the ALU is the 

processor’s internal register array. Operands not found in the register array are still kept close to 

the processor, accessible from one, or multiple levels of cache memories (L1 and L2). Caches are 

integrated on the same silicon as the processor and provide fast and wide access to memory. 

External to the processor, system (DDR or QDR) memory stores data. To increase access efficiency, 

DDR memory is accessed in long bursts of continuous address ranges.  

Modern FPGAs also provide a diverse set of memory resources, from distributed small, but fast 

registers to fewer, but larger, memories in the same package. Specifically, each CLB or slice contains 

16 bit Look-Up-Tables (LUT), which are integrated together with the arithmetic components (gates, 

adders, multipliers, etc.). 18kb (Xilinx) to 20kb (Altera) BRAM resources, with up to 36bit wide, 

dual-ported access to primitives provide slightly deeper memories, suitable as line buffers for 

video processing. In package DRAMs, often on a separate silicon die, but in the same ceramic 

package, provide larger buffers suitable as frame buffers for video processing algorithms. 

A large FPGA device may have millions of registers and LUTs, thousands of BRAMs and dozens 

of eSRAM (Altera, 18Mb) UltraRAM (13.5Mb) units. Understanding bandwidth and access time 

limitations of these resources is key to successful implementation of high-performance ISP 

algorithms. 

A.1.4 Reconfigurable Computing Platforms 

Reconfigurable hardware devices enabled by FPGAs have opened a range of signal processing 

solutions between the extremes of ASSPs and ASICs. ASICs bind functions to silicon at fabrication 

time, resulting to chips with a single designated function. ASSPs bind functions to silicon only for 

the duration of a single processor cycle, limiting what the processor can accomplish in a single 

cycle. Reconfigurable hardware binds function to silicon dynamically within the final system, 

depending on the needs of the application [S27], [S28]. Binding flexibility improves resource 

utilization in reconfigurable hardware. 

Configuration may take place at deployment time, between execution phases, or during execution. 

In a typical reconfigurable system, a bit stream is used to program the device at deployment time. 

The more flexibility a configurable system offers the greater the configuration time as more 

elements needed to be addressed and programmed. Therefore, coarse-grain architectures gain 

from potential lower energy requirements with less silicon space allocated for configurable 

switches and routing. Partial reconfiguration allows part of the device to be reprogrammed while 

other parts are still performing active computation. Partial reconfiguration also requires smaller 

configuration bit streams. 

Modern FPGAs support partial reconfiguration of device areas, making them the enabling 

platform for configurable hardware acceleration [S29], [S30] 
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A.1.5 Basic DSP operations in FPGAs 

This section reviews some of the basic arithmetic and signal processing primitives used in 1D and 

2D filtering and image pre-processing functions. The optimized FFT, DDS, median-, rank-order 

filters are used in Chapters 6-8. 

The cost of programmable resources is that the silicon footprint of a functional module in an FPGA 

is larger than in an ASIC. Hence propagation delays are longer, which in turn makes timing closure 

more challenging.  

 

 

Figure 83. Pipelined adder / subtractor 

Specific routing, such as dedicated carry logic, is necessary to speed up additions and subtraction 

operations. Long carry chains in adders/subtractors wider than 18 bits have to be registered. Figure 

83 shows an example for such a pipelined structure. Modules cross-hatched left are used only if 

input pipelining is used. Modules cross-hatched right are used only if output pipelining is used. 

The delay components before and after the functional modules are configurable in depth using 

dedicated shift-register blocks common in most FPGA slices. In order to further accelerate wide 

additions and subtractions, carry-select, or carry look-ahead architectures are employed. Xtreme 

DSP slices also contain a configurable number of registers to facilitate pipelined daisy chaining of 

the modules to implement wide arithmetic operands, such as the ones used in Chapter 2. 

A.1.6 Optimized rounding 

In a DSP system – especially if the system contains feedback, such as the pipelined resonator 

described in Chapter 2 – the word length growth through arithmetic operands should be offset by 

quantizing the results. Quantization, or reduction in word-length, results in data loss, introduces 

quantization noise and may introduce bias. For best results it is favorable to select a quantization 

method which introduces zero mean noise and minimizes noise variance.  

For truncation, the probability density function (PDF) of the noise is: 

𝑝(𝑒) = {
1

𝛥
−𝛥 <  𝑒 < 0

0 otherwise

 (106) 
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Therefore, the mean and the variance of the noise introduced are: 

𝑚𝑒 = ∫ 𝑒𝑝(𝑒)𝑑𝑒 =
0

−𝛥

1

𝛥
∫ 𝑒𝑑𝑒 =

0

−𝛥

−
𝛥

2
 (107) 

𝜎𝑒
2 = ∫ 𝑒2𝑝(𝑒)𝑑𝑒 =

𝛥

0

1

𝛥
∫ 𝑒2𝑑𝑒 =

𝛥

0

𝛥2

3
 (108) 

For rounding the (PDF) of the noise is: 

𝑝(𝑒) = {
1

𝛥
−𝛥/2< 𝑒 < Δ/2

0 otherwise

 (109) 

the mean and the variance of the noise introduced are: 

𝑚𝑒 = ∫ 𝑒𝑝(𝑒)𝑑𝑒 =
𝛥/2

−𝛥/2

1

𝛥
∫ 𝑒𝑑𝑒 =

𝛥/2

−𝛥/2

0 (110) 

𝜎𝑒
2 = ∫ 𝑒2𝑝(𝑒)𝑑𝑒 =

𝛥/2

−𝛥/2

1

𝛥
∫ 𝑒2𝑑𝑒 =

𝛥/2

−𝛥/2

𝛥2

12
 (111) 

Truncation has no cost in hardware, but it introduces significant bias. The ideal rounder should 

introduce no DC bias to the signal flow. To implement rounding, 0.5 has to be added to the full 

product, which may introduce positive bias. Therefore, 0.5 should be rounded up/down with 50% 

probability dithering the exact rounding threshold. To mitigate accumulation of quantization 

errors Xilinx DSP slices support rounding towards infinity (based on the MSB of the input), 

towards 0 (based on the LSB), or can use any 50% duty-cycle signal statistically independent of the 

rounding operand. 

A.1.7 Parallel multiplication 

Modern FPGAs contain 18x18 and/or 25x18 block multipliers to accelerate and reduce the footprint 

of DSP implementations. However, for large FIR or IIR filter banks with fixed coefficients, 

Distributed Arithmetic (DA), [83] may be used to trade block multipliers with slice LUT based 

logic. A good use case example for this optimization is the Sobel operator, with powers of two 

coefficients. Slice based implementation of fixed coefficient multipliers can benefit from Canonic 

Signed Digit (CSD) code representation of the fixed coefficient. CSD code belongs to the family of 

Signed Binary Number Representation (SBNR), in which the coefficient value is given as a sum of 

signed power-of-two terms. Without loss of generality coefficient values are assumed to be integer 

as fractional coefficient values can be scaled to integer values, with the resulting product scaled 

back respectively. 

𝑥 = ∑ 𝑠(𝑟)2𝑟

𝐵−1

𝑟=0

 (112) 

where 𝑠(𝑟) ∈ {−1,0,1}. CSD code contains at most B/2 nonzero digits, and the average number of 

non-zero digits are B/3. For constant, inner product multipliers CSD offers significant logic resource 

savings [S24]. The algorithm exploits the available digit pattern coincidences between the CSD 

codes of the coefficients to further reduce footprint in FPGA or ASIC implementations. 

Many digital signal processing algorithms are based on calculations with complex numbers. 

Multiplication of complex numbers requires 4 real multiplications and two real 

additions/subtractions: 

 (𝑃 + 𝑗𝑄) = (𝑋 + 𝑗𝑌)(𝑥 + 𝑗𝑦) (113) 

Complex multiplication is an atomic operation in FFTs or resonator based filters. 
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A.1.8 Complex Multipliers 

The most straightforward way to implement Givens rotation is direct implementation with 

complex multipliers. There are two basic architectures to implement the complex multiplication. 

The 4-multiplier solution (Figure 84) computes the multiplication using only DSP slices, which 

results to very high performance.  

 

Figure 84: Complex multiplier with 4 real multipliers  

The 3-multiplier solution offers a trade of saving 1,2 or 4 DSP slices for 18x18, 18x35 and 35x35 

operand sizes respectively, requiring pre-combination of data. In earlier FPGA families with DSP48 

primitives (Figure 85), this required using logic-fabric based resources. In recent Xilinx FPGAs the 

pre-adder function of DSP48Ax and DSP48Ex primitives can be used for the pre-combining step. 

 

Figure 85: Complex multiplier with 3 real multipliers 
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A.2 Additional information on ISP module design 

The following two sections provide addition information on my work on ISP modules. 

A.2.1 Color Filter Array Interpolation 

The simplest way to avoid the introduced zipper artifacts is to use an optical low-pass (OLP) filter 

as part of the lens assembly. Gratings of the OLP remove spectral components above 𝑓𝑅,𝐵 , in the 

continuous signal (light) domain before sampling by the CFA. Consumer imaging devices (cell-

phones, laptops) often use small, high-resolution sensors with pixel pitches below the resolution 

capabilities of the compact lens assembly employed, which is another way to low-pass filter the 

image in the optical domain. Post-processing, aimed at the detection and suppression of the zipper 

artifacts can also be employed to improve image quality after the CFA interpolation module.  

If the input image has not been low-pass filtered, CFA algorithms need to use heuristics to recreate 

information lost in the sub-sampling process. When interpolating a color component using its 

neighbors, the interpolation kernel can weigh constituents based on their presumed similarity of 

the interpolated pixel. On the boundary between two regions, a pixel needs to be combined with 

like color components from the region it belongs to.  

Therefore, high quality Bayer CFA interpolation algorithms typically recover the green channel, or 

luminance image first, by spatially convolving the image with kernel  

 𝑨 = [
1 2 1
2 4 2
1 2 1

],  (114) 

which approximates luminance with  

 𝒀 = R + 2G + B (115) 

Note that the luminance image does not need to be segmented to avoid color artifacts. Most 

artifacts can be avoided if the color interpolation kernels are steered using edge orientation 

information derived from the luminance image. If the recovered edge map indicates that the local 

region: 

• is mostly flat: interpolate with all 4 neighbors to suppress noise, 

• is on a well-defined edge: steer the interpolation kernel along the edge, 

• contains high frequency components with ill-defined edges: chrominance should be 

suppressed. 

Figure 86 illustrates the typical block diagram of a CFA interpolator23, as part of the ISP 

implemented in FPGA or an ASIC. From the single channel sensor stream the G channel is 

interpolated fist. Using the recovered G pixels and the original input pixels, the R and B channels 

are recovered by the same module [42].  

 

23 Color Filter Array Interpolation v7.0, PG002, Xilinx Inc 2015, https://docs.xilinx.com/v/u/en-

US/pg002_v_cfa  

https://docs.xilinx.com/v/u/en-US/pg002_v_cfa
https://docs.xilinx.com/v/u/en-US/pg002_v_cfa
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Figure 86. Block diagram of a Color Filter Array Interpolator 

A.2.2 Gaussian Noise Removal 

Sources of imaging noise in order of significance are shot-, electronic-, and thermal-noise. All 3 

noise sources are uncorrelated and can be modelled as additive Gaussian noise. Several effective 

methods have been adopted widely to denoise images and video streams: 

- Spatial filtering techniques, such as bilateral filtering [84], 

- Temporal (motion compensated, or motion adaptive) IIR filtering [85], 

- Deep learning based methods [86]. 

While novel FPGAs can implement any of these approaches, for streaming ISPs without access to 

an external frame buffer, pure spatial filters are the most efficient option. Temporal and neural 

approaches to noise reduction have extensive literature, but here I’d like to mention a simple and 

effective method for temporal noise reduction, which can be efficiently implemented in FPGAs. 

A.2.3 Motion Adaptive Noise Reduction 

Spatial noise reduction combines values from neighboring pixels. Temporal filtering aims to 

combine information from the same pixel between subsequent frames. In order to avoid combining 

pixels corresponding to different objects which moved from one frame to the next, temporal 

filtering is enabled by dense optical flow calculation, which creates one to one correspondence of 

pixel locations between frames. Optical flow calculation in turn requires feature detection and 

tracking, which are typically a computationally intensive function out of the reach of ISPs.  

On stationary scenes temporal noise reduction can produce impressive results without 

compromising image quality. But when pixels pertinent to different objects, typically a moving 

foreground object and the background, are erroneously combined trailing motion artifacts are 

introduced. It is also important to note that the human visual system is more sensitive to noise on 

stationary regions of an image than on edges of moving objects. Therefore, it is feasible to construct 

a module, which feeds back information from the same pixel location from previous frames if 

motion has not been detected in the vicinity of the pixel, but limits this feedback when motion is 

detected. 

Motion Adaptive Noise Reduction (MANR) is a recursive temporal filter with a programmable 

motion transfer function trading off noise suppression with trailing artifacts. Pixel variance can be 
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computed from frame-to-frame pixel differences, in turn calculated using the previous image 

buffered. The motion transfer function maps measured variance to a pixel specific feedback factor 

𝑘𝑛(𝑥, 𝑦), such that the output pixel 𝑟𝑛(𝑥, 𝑦) is computed from input pixel value 𝑠𝑛(𝑥, 𝑦) as 

  𝑠𝑛(𝑥, 𝑦) = 𝑟𝑛(𝑥, 𝑦)(1 − 𝑘𝑛(𝑥, 𝑦)) + 𝑠𝑛−1(𝑥, 𝑦)𝑘𝑛(𝑥, 𝑦),  (116) 

for frame n, effectively defining a two-tap, adaptive low-pass IIR filter for each pixel. 

Augmenting MANR and the method proposed in [S1][S2] for suppression of Gaussian noise, 

Chapter 6 presents my work on the field of non-linear filter implementations on FPGAs. 

A.3 Review of the Fast Fourier Transform 

This Appendix section introduces the Discrete, and Fast Fourier Transforms, their inverse, different 

and optimization options such as higher-, and split radix algorithms.  

A.3.1 The Discrete Fourier Transform 

The DFT 𝑋(𝑘),⇌ 𝑘 = 0, … , 𝑁 − 1 of a sequence 𝑥(𝑛), ⇌ 𝑛 = 0, … , 𝑁 − 1 is defined as 

𝑋(𝑘) = ∑ 𝑥(𝑛)

𝑁−1

𝑛=0

𝑒−
𝑗𝑛𝑘2𝜋

𝑁 , 𝑘 = 0, … , 𝑁 − 1 (117) 

where 𝑁is the transform size and 𝑗 = √−1.  

The inverse DFT (IDFT) is 

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)

𝑁−1

𝑘=0

𝑒
𝑗𝑛𝑘2𝜋

𝑁 ,         𝑛 = 0, … , 𝑁 − 1 (118) 

Homology in the definitions of (117) and (118) allows merging them into the form 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑊𝑁
𝑘𝑛 ,

𝑁−1

𝑛=0

 (119) 

where 𝑊𝑁
𝑘 = 𝑒

2𝜋𝑗𝑘

𝑁  is often referred as phase-, or twiddle factors. In embedded applications the 

factors are often pre-computed and stored in memory. If the twiddle factors are stored in memory, 

the DFT or IDFT computation differs only in the twiddle addressing sequence.  

A.3.2 Derivation of the FFT 

Direct form computation of a single FFT bin (sample x(k), or spectrum X(k)) requires N 

multiplications and N-1 additions. Symmetry of the DFT calculation can be exploited to drastically 

speed up execution. Creating separate sums for even and odd values of n:  

𝑋[𝑘] = ∑ 𝑥[2𝑟]𝑊𝑁
2𝑟𝑘 +

(
𝑁
2
)−1

𝑟=0

∑ 𝑥[2𝑟 + 1]𝑊𝑁
(2𝑟+1)𝑘

(
𝑁
2
)−1

𝑟=0

, (120) 

which, in turn can be written as 

𝑋[𝑘] = ∑ 𝑥[2𝑟]𝑊𝑁/2
𝑟𝑘

(𝑁/2)−1

𝑟=0

+ 𝑊𝑁
𝑘 ∑ 𝑥[2𝑟 + 1]𝑊𝑁/2

𝑟𝑘 ,

(𝑁/2)−1

𝑟=0

 (121) 

by utilizing that  𝑊𝑁
2 = 𝑒−𝑗2𝜋2/𝑁 = 𝑒−𝑗2𝜋/(𝑁/2) = 𝑊𝑁/2, and 𝑊𝑁

2𝑟𝑘+1 = 𝑊𝑁
𝑘𝑊𝑁/2

𝑟𝑘 . 
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This result facilitates the computation of an N point DFT to the computation of two N/2 DFTs 

followed by a combination step. The decomposition and post-combination step can be used on the 

N/2 point DFTs recursively, eventually breaking down the whole structure to two-point atomic 

DFTs. The 2 point DFT operation is defined as: 

𝑋[0] = 𝑥[0] + 𝑥[1]  

𝑋[1] = 𝑥[0] + 𝑒−
𝑗2𝜋

2 𝑥[1] = 𝑥[0] − 𝑥[1]  
(122) 

This operation is generally referred as the butterfly operation (Figure 87). It is important to note, 

that the butterfly operation is free of multiplications. 

 

Figure 87. Butterfly operation 

The optimized signal-flow graph of the 8 point FFT (Figure 88) is a radix-2 decomposition of the 

DFT operation, using 2 input butterflies and complex multipliers as basic elements. The graph has 

3 columns, generally referred as ranks or stages, with 4 butterfly operations in each rank.  
 

 

Figure 88. Eight point DIT FFT 

Note that the spectra samples on the output are in natural order, but the input time-domain 

samples are in bit-reversed order. 

A.3.3 Decimation in Time or Frequency 

Figure 88 describes the signal flow graph of a Decimation In Time (DIT) algorithm for computing 

the FFT, proposed by Cooley and Tukey in [67]. Because of the homology of DFT and IDFT, the 

reversed signal flow graph (Figure 89) also performs an FFT operation. Alternatively, this approach 

is referred as Decimation In Frequency (DIF). 

A radix-2 DIF FFT first splits the frame to an even and an odd part by a radix-2 rank, then calculates 

the DFT of the even and the odd halves. Conversely, a radix-2 DIT FFT performs two N/2 point 
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DFTs, then combines the results in the last rank. The approaches have the exact same complexity 

and resource requirements, however, there are some key differences, which may render one or the 

other more favorable for a particular application: 

 DIT DIF 

I/O ordering Output is in natural order Input is in natural order 

Multiplier free stage First Stage Last Stage 

Multiplier position Pre-butterfly Post-butterfly 

Table 20. sample ordering per FFT configuration 

 

 

Figure 89. Eight point DIF FFT 

Cyclic convolution in the frequency domain is used extensively to accelerate 1D and 2D 

convolutions [S21], [S19], [S22]. Cyclic convolution can be implemented using a DIF FFT and a DIT 

IFFT (Figure 90), without input or output reordering. However, the coefficient memory holding 

H(z) should either be re-ordered or addressed in non-natural order. 

 

 

y(t) 
 

FFT 

 

H(z) 

 

IFFT 

 

x(t) 

 

Figure 90. Cyclic Convolution in the Frequency Domain 

It is important to note that each time the data passes through the adders or subtractors its dynamic 

range may expand. In case an FFT implementation uses dedicated multipliers with fixed operand 

sizes, having the multipliers in front of the butterflies may reduce quantization noise. E.g., using 

16 bit input data, the DIT algorithm first does the complex multiplications (4 real multiplications) 

on 16 bit data, whereas it DIF was used, the multipliers should be at least 17 bits wide. In case of 

DIT, the subsequent additions and subtractions must be performed on wider data, however the 

benefits of smaller multipliers usually overweight the cost of wider adders and subtractors.  
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A.3.4 Alternative implementations  

There are custom FFT architectures which trade the regular structures of DIT or DIF for different 

advantages, while using the same resources. Most notably, it is possible to construct FFT 

algorithms (e.g. 8 point FFT in Figure 91), in which the FFT ranks are all similar, therefore one 

instance can be reused several times to perform the FFT [87], [88]. 

 

 

Figure 91. FFT architecture with similar stages 

In a DIF radix-2 algorithm, most of the non-trivial factors are in the first stages of the algorithm. In 

DIT, most multiplications are in the final stages. Therefore, multipliers can be saved, if the recursive 

radix-2 breakdown of an N =2M point starts with a DIF, then at M/2 all subsequent n=2M/2 point FFT 

sub-modules are broken down as DIT FFT. This approach is known as Decimation in Time and 

Frequency (DIFT). At the transition layer, outputs of DIF butterflies (post-multiply by 𝑊𝑁
𝑘) will 

drive DIT butterflies (pre-multiply by 𝑊𝑁
𝑙 ), so some of these multipliers can be merged into a single 

multiplier (multiplying by 𝑊𝑁
𝑘+𝑙, which is also a twiddle factor). In DSP processors the overhead 

introduced by the irregularities of twiddle factors in the transition layer may be well compensated 

by the multiplications saved. FPGA implementations are affected by irregular transition layer, the 

two different kinds of butterflies used and the extra control logic necessary for complicated twiddle 

address generation.  

There are numerous other ways to approximate the DFT results [88]. For the computation of real-

valued convolution and correlation kernels, a very important use case for image compression and 

processing, only the real valued DFT bins are required. For this sub-class the Discrete Sine or 

Cosine Transform can be used, which are analogous in FPGA implementation to the DFT. 

A.3.5 Higher radixes, algorithmic complexity 

In general, if the transform size N can be constructed as a product of prime factors 

𝑁 = ∏ 𝑝𝑘

𝑀−1

𝑘=0

 (123) 

the N point DFT operation can constructed using M stages, each having N/ pk radix pk butterfly 

instances. In each radix-p butterfly, multipliers are associated with all but the first input, totaling 

in ∑ (𝑝𝑘 − 1)
𝑁

𝑝𝑘

𝑀−1
𝑘=0  complex multiplications for in the FFT. In case of the N= 8 = 23 example, 12 

non-trivial complex multiplications are necessary, which is a significant saving compared to the 

8*8 complex multiplications required for the direct computation of (119). Furthermore, omitting 
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the trivial multiplications with 𝑊𝑁
0 = 1, the total number of complex multiplications necessary for 

an FFT drops to: 

∑(𝑝𝑘 − 1)(
𝑁

𝑝𝑘
− 1)

𝑀−1

𝑘=0

≈ 𝑂(𝑁log(𝑁)) (124) 

The vast majority of DFTs used in signal processing applications are ones where N=2M, M being a 

positive integer. In these cases, the FFT algorithm derived can be further simplified by merging 

neighboring ranks together. Instead of using two point (radix-2) FFTs as basic elements, four point 

(radix-4), or eight point (radix-8) dragonflies can be used. The radix-4 DIT FFT can be derived the 

same way as the radix-2. First, perform an N/4 point DFTs on the four quarters of x(n): 

𝑋̂(𝑙, 𝑞) = ∑ 𝑥[4𝑚 + 𝑙]𝑊𝑁
4

𝑚,𝑞
,

𝑁/4−1

𝑚=0

 (125) 

With 𝑙 = 0,1,2,3 and 𝑞 = 0,1,2, . . ,
𝑁

4
− 1, then do four point DFTs on the results: 

𝑋(
𝑁

4
𝑝 + 𝑞) = 𝑋(𝑝, 𝑞) = ∑[𝑊𝑁

4

𝑙𝑞
𝑋̂(𝑙, 𝑞)]𝑊4

𝑙𝑝

3

𝑙=0

 (126) 

Using a matrix representation, equation (126) can be rewritten as: 

[
 
 
 
 
𝑋0,𝑞

𝑋1,𝑞

𝑋2,𝑞

𝑋3,𝑞]
 
 
 
 

= [

1 1 1 1
1 −𝑗 −1 𝑗
1 −1 1 −1
1 𝑗 −1 −𝑗

]

[
 
 
 
 
𝑊𝑁

0𝑋̂(0, 𝑞)

𝑊𝑁
𝑞
𝑋̂(1, 𝑞)

𝑊𝑁
2𝑞

𝑋̂(2, 𝑞)

𝑊𝑁
3𝑞

𝑋̂(3, 𝑞)]
 
 
 
 

 (127) 

Factorizing the matrix to create sparse matrices leads to 

[
 
 
 
 
𝑋0,𝑞

𝑋1,𝑞

𝑋2,𝑞

𝑋3,𝑞]
 
 
 
 

= [

1 0 1 0
0 1 0 −𝑗
1 0 −1 0
0 1 0 𝑗

] [

1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

]

[
 
 
 
 
𝑊𝑁

0𝑋̂(0, 𝑞)

𝑊𝑁
𝑞
𝑋̂(1, 𝑞)

𝑊𝑁
2𝑞

𝑋̂(2, 𝑞)

𝑊𝑁
3𝑞

𝑋̂(3, 𝑞)]
 
 
 
 

 (128) 
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Figure 92. Radix-4 DIT dragonfly 
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In a practical implementation, the number of complex multiplications can be further reduced as 
multiplications by 0, 1, –1, j, and –j come at no cost in a parallel hardware implementation. 
Therefore (128) can be directly transformed to the signal flow-graph of the radix-4 DIT element, 
referred as a dragonfly (Figure 92). 

A radix-8 FFT can similarly be derived. Apart from the seven multipliers necessary to carry out 
twiddle factor multiplications, the radix-8 dragonfly has two complex multipliers within the 
dragonfly structure. 

It looks obvious that using a higher radix decomposition of the DFT is beneficial to minimize the 

silicon area allocated for block multipliers, which is typically the case in ASIC designs. However, 

in most FPGA designs the goal is to map the design such that the allocated slice / multiplier ratio 

matches that of the target device. In fact, image processing designs often deplete slice resources 

(registers and LUTs) before running out of block multipliers. 

Also, if run-time configurable transform length with minimal control logic is necessary, a high 

radix FFT implementation covers fewer point-sizes. If available memories permit storing 1024 bins, 

a radix-2 implementation can address all powers-of-2 FFT sizes from 2 to 1024. Radix – 4 FFTs can 

cover only 4, 16, 64, 256, 1024, while radix-8 can cover only 8, 64 and 512.  

It is important to note, that partitioning N along its prime factorization may not lead to the most 

optimal implementation either. E.g., for N = 64, radix-2, radix-4, and radix-8 implementations are 

all possible. Looking at the number of multipliers necessary on Table 21 shows that both radix-4 

and radix-8 algorithms use less multipliers than radix-2. 

 
Number of 

stages 

butterflies 

per stage 

multipliers 

within the 

butterfly 

multipliers 

per butterfly 

Total number of 

multipliers 

radix-2 log264 = 6 64/2 = 32 - 1 6*32*1=192 

radix-4 log464 = 3 64/4 = 16 - 3 2*16*3=144 

radix-8 log864 = 2 64/8 = 8 2 7 2*8*2+8*7=144 

Table 21. Multiplier counts for different radixes 

By taking advantage of one of the stages having only trivial pre-, or post-multiplications, the actual 

multiplier counts drop to 160, 96, and 88 respectively. 

A.3.6 The Split-Radix algorithm 

The first set of butterflies in the DIF dataflow (Figure 89) split computation of even and odd results. 

It is well visible here, but also noticeable after all the other stages, that there are no multipliers in 

the even butterfly branches. Based on this observation, one can construct a radix-4 like butterfly, 

comprising 3 radix-2 butterflies and 2 multipliers which carry out the multiplications required for 

the odd branches. In terms of arithmetic complexity, the split radix algorithm is superior to the 

pure radix-2, radix-4 or radix-8 FFTs, which can be exploited on DSP processors. Nevertheless, the 

L shaped butterfly poses timing challenges in silicon and FPGA implementation as partial results 

need to be propagated to match delay via the longer path; the trade-off is between control-, and 

data-flow complexity. E.g., for N=1024, the Split-Radix algorithm saves about 8% of 

multiplications, but pipelining the implementation is difficult. Although a loop-engine type of 

implementation is possible it requires a more sophisticated control block. The split-radix butterfly 

contains only 2 complex multipliers, a 33% savings in multiplier count, however the total transform 

time increases about 33% (Table 22, N/A: configuration not supported by the architecture).  
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N Real Multiplications Real Additions 

 Radix-2 Radix-4 Radix-8 Split Radix Radix-2 Radix-4 Radix-8 Split Radix 

16 24 20 N/A 20 152 148 N/A 148 

32 88 N/A N/A 68 408 N/A N/A 388 

64 264 208 204 196 1032 976 972 964 

128 712 N/A N/A 516 2504 N/A N/A 2308 

256 1800 1392 N/A 1284 5896 5488 N/A 5380 

512 4360 N/A 3204 3076 13566 N/A 12420 12292 

1024 10248 7856 N/A 7172 30728 28336 N/A 27652 

Table 22. Comparison of computational requirements 

Due to the options and factors described above, most FFT implementations are radix-2, radix-4, or 

split-radix. As processors are hindered less by the sophisticated control logic, split-radix is the 

preferred solution for DSP, GPPs or ASSPs, while most FPGA and ASIC implementations are radix-

2 or radix-4 based [87]. 

A.3.7 FPGA based FFT implementations 

This section on FPGA implementation reviews different considerations for pipelining and 

numerical representation, as well as basic signal processing structures used in efficient FPGA 

implementation of configurable FFTs. 

The two obvious extremes on the performance-footprint spectrum are the full-parallel and the one 

butterfly implementation. In the former, a custom designed, optimized architecture is 

implemented. A full parallel implementation is only feasible for small point sizes. It performs an 

N-point DFT in a single clock cycle, but I/O requirements scaling linearly with operating frequency, 

numerical representation and transform size quickly exhaust available bandwidth at the FPGA 

perimeter. 

The single butterfly solution on the other end of the spectrum has minimal arithmetic resource 

requirements, however it has significant control logic overhead (address generators), with 

performances below DSP processors on same technology process node. 

As samples are combined in stages the width of operands grows by 𝑟𝑘 = 𝑙𝑜𝑔2( 𝑅𝑘) bits. Note that 

for a pipelined implementation the width of arithmetic operators (adders / multipliers) can be 

custom tailored to the width of the data, while for the loop engine implementation operators must 

support the widest operand, namely the representation used for output data. Conversely, 

intermediate results can be quantized / rounded back to the input representation, offering a trade 

between quantization noise and footprint. 

To explore implementation options in current FPGAs, I designed and implemented three 

parametrizable FPGA architectures. All architectures were targeting Xilinx FPGAs with DSP slices 

(built in parallel, signed integer multipliers with pre-, and post-add capabilities) adjacent to 

BRAMs. 
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A.3.8 Transform time 

The transform time for an N-point FFT using the loop-engine is:  

 𝑇𝐹𝐹𝑇 = 𝑙𝑜𝑔𝑟( 𝑁)
𝑁

𝑟𝑃

1

𝑓𝐶𝐿𝐾
, (129) 

where r is the common radix of the PEs, P is the number of PEs working in parallel, and fCLK is the 

clock period time (assuming each PE completes a butterfly operation in 1 CLK cycle). 

The transform time of the pipeline architecture is simply 

𝑇𝐹𝐹𝑇 =
𝑀𝑁

𝑟𝑚𝑖𝑛𝑓𝐶𝐿𝐾
 (130) 

Where M is the number of stages (Processing Engines), and rmin is the smallest radix used for any 

of the Processing Engines. 

A.3.9 Scalability 

Another important consideration besides pure processing time is input / output transfer time. A 

loop-engine type implementation uses one side of the dual ported BRAM resources to read 

operands, and the other is used to store results. For loop-engines the I/O phase can’t overlap with 

the processing phase. Assuming one I/O operation, loading one complex operand and unloading 

one complex operand per CLK cycle, during back-to-back processing a continuous data stream for 

the loop-engine, the ratio of time spent processing versus moving data is defined as: 

 
𝑇𝐹𝐹𝑇

𝑇𝐼/𝑂
= 𝑙𝑜𝑔𝑟( 𝑁)

1

𝑟𝑃
, (131) 

which means as the number of ranks increases, increasingly more time is spent processing. 

Conversely, for the pipeline architecture 

 
𝑇𝐹𝐹𝑇

𝑇𝐼/𝑂
=

1

𝑝𝑚𝑖𝑛
, (132) 

which remains the same regardless point-size changes.  

If the FFT is expected to process frames with different point-sizes, unless compensated by the 

number of PEs in the system, TFFT may grow over TI/O, which thwarts stream data processing efforts. 

An FFT architecture scales well if it is relatively easy to adjust the allocated resources (mostly in 

PEs) to meet performance requirements and allow point-size changes. Assuming the number of 

PEs in a loop engine is a power of two, PEs are relatively easy to reconfigure to work together 

seamlessly to meet performance goals even when point-size varies.  

The pipeline architecture does not support dynamic point-size changes easily: each pipeline stage 

is processing a certain rank of the FFT, so the number of stages must be equal to the maximum 

number of ranks to allow streaming data processing. If the point-size along with the number of 

ranks decreases, the FFT operation is performed by bypassing some of the unnecessary stages, 

resulting in idle silicon.  

A.3.10 Memory Fragmentation 

Memory resource most relevant to FFT data processing are the 36kbit (Xilinx) or 20kbit (M20K 

Altera) dual-ported RAMs (BRAMs) embedded into the logic fabric. As BRAMs can be read and 

written in the same clock cycle, they fit both the loop-engine and the pipeline architecture as buffers 

between ranks.  
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A high radix butterfly utilizes the high memory bandwidth of FPGAs, as it is accessing data from 

multiple BRAMs simultaneously. For example, a radix-4 PE is reading and writing 4 complex data 

words from 4 different BRAM instances in one CLK cycle. On the low-point size end of the 

spectrum this may lead to fragmentation. For a 64-point FFTs, used for OFDM extensively, a radix-

2 butterfly needs 2 memories for data storage, and 1 for twiddle storage. A faster radix-8 

implementation needs 8 memories for data, and 7 for twiddle storage to enable simultaneous data 

access, which is an inefficient use of BRAMs. In contrast with several MBs of cache on ASSPs, FPGA 

BRAMs are relatively shallow (18-36kbit), which may limit the maximum transform size (N) an 

architecture can efficiently support. On the high end, for N>4096, data buffers feeding one input of 

a PE are constructed out of many BRAM primitives, with only one primitive actively handling 

data, which is an inefficient utilization of RAM bandwidth.  

Pipeline architectures can match the size of the buffer used to the rank being processed, each stage 

using different memory depths, and optionally, widths. These memories can be either tiled with 

BRAMs, or, if shallow, buffers can be constructed of distributed memory.  

A.3.11 Run-time configurable transform length 

As higher radix implementations are slightly more resources efficient (Table 22), designers are 

motivated to use higher-radix PEs. Often times an FFT accelerator is required to service any 

transform length N = 2k < Nmax, dynamically re-configuring the accelerator module between data 

frames.  

Higher radix (r > 2) PEs can be augmented with bypass logic to service lower point sizes. To 

illustrate the point, consider N = 32, r = 4. A radix-4 FFT natively supports N=16, or N=64 points. 

The same signal flow graph can be used to perform two 32 point FFTs by bypassing one of the 

butterfly stages in the first of the ranks of the DIF, or last rank of the DIT FFT. 

It is possible to construct a higher radix PE, which can be split into multiple smaller radix PEs, by 

inserting multiplexers into the data-flow graph (Figure 93). The multiplexers bypass the some of 

the adder network, therefore the higher radix dragonfly is split to many smaller radix dragonflies 

/ butterflies. 

While this solution has minimal logic overhead, actually impact on twiddle factor memory can be 

significant. Usually, unless twiddle factors are run-time computed, twiddle factor memories, 

adjacent to dedicated complex multiplier c (0 < c < r), store only 𝑊𝑁
𝑐𝑘 , which is a significant saving 

compared to storing all N twiddle factors for all complex multipliers. 

-j

e-jk2/N

e-j2k2/N

e-j3k2/N
  

Figure 93. Radix-4 PE with bypass-option 
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However, if the radix-4 PE on Figure 93 works in bypassed mode – either as a radix-4, or as two 

radix-2 PEs – twiddle factor memories 1 and 3 must store values other than general radix-4 twiddle 

factors, which may result to an increase in BRAM count. 

A.3.12 Support for forward and inverse transforms 

There are three strategies to carry out both forward and inverse transforms using the same 

architecture with minimal extra hardware. 

- In the direct approach, twiddle factors are conjugated when an IFFT is performed. If only one 

quarter of the unit circle is stored, inverters on the imaginary part are readily available.  

- Alternatively, the address to the twiddle memory can be inverted. If data inverters would be 

more costly, for high-resolution twiddle factors with the whole unit circle is stored in a 

memory table, inverting the twiddle address may be a more efficient way. 

- Conjugate the data. This approach is based on the simple equation of 𝑎 ⋅ 𝑏̄ = 𝑎̄ ⋅ 𝑏. As the 

output of one rank is the input of the next, conjugations cancel each other, this option requires 

inversion of the imaginary parts of the input and the output data streams. 

A.3.13 Data scaling 

Selecting numerical representation along the FFT affects resource usage and attainable dynamic 

range. Each time data passes through adders and subtractors in PEs, data range may grow over the 

maximum range permitted by the data format. Unless data growth is addressed by proper selection 

of data representation, potential overflow or saturation can degrade precision. 

A strategy must be employed to accommodate this dynamic range expansion. An obvious solution 

is using floating-point data representation akin to general-purpose and DSP processors with built-

in floating point ALUs. It is possible to implement the required floating-point operators, adders, 

subtractors, and multipliers in FPGAs but carefully chosen Fixed Point Representation (FPR) 

operators can provide similar numerical performance with significantly less resources. 

To optimize data formatting at various stages along the pipe, let B.F designate B bits wide signed 

data with F fractional bits, e.g. a 16.15 notation describes 16 bit wide integers, representing values 

in the range [–1,1[. 

Without loss of generality, assume input data to be rendered to Bx.Bx-1 format, values ranging from 

𝑥𝑚𝑖𝑛to 𝑥𝑚𝑎𝑥 . The first butterfly (Figure 87) of a radix-2 DIF FFT contains one layer of 

adders/subtractors and one complex multiplier. Consider the worst-case input operands, with 

values 𝑥0 = (1 + j)𝑥𝑚𝑎𝑥 , 𝑥1 = (1 + j)𝑥𝑚𝑖𝑛  on the butterfly. Output values will be 𝑦0 = 0,  

𝑦1 = (1 + j)(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛), with 𝑦1 as the input operand of a complex multiplier. Assuming twiddle 

factor 𝑒−j
𝜋

4as the other multiplicand, the result is √2(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛), which is potentially a growth 

by a factor of 2√2 ≈ 2.8284. For a radix-4 FFT, the values computed in the first butterfly rank can 

experience a growth to 4√2 ≈ 5.657. To accommodate this growth and completely avoid overflows 

output data width should grow by 2 bits for a radix-2, and 3 bits for a radix-4 PE. In case of DIF 

FFTs, as dynamic range is expanded sufficiently by the first rank, for all subsequent ranks 

expanding the data path by 1 bit for radix-2 PEs, or 2 bits for radix-4 PEs is sufficient to avoid 

overflows, as proven in [89] which address this topic. 

For DIT FFTs, the first rank does not contain multipliers therefore the maximum growth is 1 bit for 

radix-2 and 2 bits for radix-4. In the second rank though, multipliers may contribute an additional 

integer bit. To accommodate range expansion an additional 2 bits for radix-2, or 3 bits for radix-4 

PEs is necessary. As in the DIF case, for successive ranks expansion by 1 bit for radix-2 PEs, or 2 

bits for radix-4 PEs is sufficient. Total bit-growth through the FFT is log2(N)+1, regardless radix or 

decimation scheme used.  
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Noise at the FFT output is a combination of: 

- quantization noise present in the input,  

- quantization and phase noise of the twiddle factors applied,  

- quantization (rounding and/or truncation) applied by arithmetic components. 

Oversizing the integer portion of the data representation at any stage does not confer benefits. 

Quantization noise at each rounding operator accumulates across the pipeline, which can be 

combated by carrying additional fractional bits. For FPGA implementations where data 

representation can be selected arbitrarily to balance resource footprint with performance, the goal 

is to find the minimum necessary integer bits to avoid over-, or under-flows, and the minimum 

number of fractional bits to contain quantization noise. 

A.3.14 Evaluating numerical performance 

Standard ways to evaluate FFT numerical performance is to model different twiddle / data 

representations along the data path and compare slot noise or single tone spectral results. For the 

slot noise test a random frame of real-, and imaginary samples are generated with Gaussian 

distribution. A small, continuous range of input samples are set to zero, then the frame is processed 

by an ideal (double-precision floating point) FFT model. Optional windowing (e.g. using a Harris 

window function) is applied. Then the test data frame is reverse transformed (IFFT) with both the 

double precision and the evaluated fixed-point model.  

 

Figure 94. FFT Dynamic range (N=1024, blue: 18-bit fixed-point, red: double precision) 

Noise level at the bottom of the resulting slot is indicative of the quantization noise characteristic 

to the numerical representation chosen. A single tone test is performed similarly, but with a 

complex sinusoid quantized to the input precision used as input to an IFFT, and dynamic range 

measured as peak to sidelobe ratio (PSR) on the spectral output. Figure 94 presents simulation 

results for an 18-bit radix-4 pipeline implementation with 18.17 twiddle factors, versus the double 

precision model. 18.17 representation of the input samples limit the dynamic range to about 18 * 6 

= 108 dB. 

As shown on Figure 95, increasing internal precision has diminishing return as output noise is 

lower bound by quantization noise present in input samples. 

Implementing data-path components in a pipeline FFT allows customizing data and twiddle 

representation along the stages. In loop-engine type implementation PE(s) calculate multiple ranks, 

therefore data-paths and twiddle sources have to support the widest/highest fractional precision 

data formats expected at the last stage of the transform.  
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Figure 95. Dynamic range as a function of fractional bits carried 

If the output width/precision is constrained, as usually output data representation matches the 

input, it makes little sense to carry all the bits through the transform (unscaled transform) only to 

drop the less significant bits at the end.  

The same dynamic range can be attained with fewer resources by scaling data after each PE. It is 

more advantageous to use the same data-width, often dictated by the width of BRAM and block 

multiplier primitives, along the data-paths within the FFT and support the dynamic range 

constrained by the input and the output data widths (Figure 96). 

 

Figure 96. FPR dynamic range as a function of transform size (N) and internal precision 

A.3.15 Block Floating point representation  

Scalers in each PE can dynamically trade range with precision. E.g., if 16 bit data is processed by 

the first stage of an FFT, and results can be committed to 18 bit wide BRAMs, scaling can be 

postponed until the data frame is accessed in the subsequent frame. If the range of all input samples 

process indicate that no samples used the upper bits, no scaling is necessary at the next stage, 

preserving dynamic range. Data dependent scaling will transform the FPR to Block Floating Point 

representation, as the FFT output should contain not just the data but information about the binary 

point position, which changes every time the data is scaled. This output, which is basically the 

number of right shifts performed on the data – is the block exponent. 

A.3.16 Twiddle factor storage, computation 

Twiddle factors (𝑊𝑁
𝑘) are either pre-calculated and stored in local memories or calculated during 

the transform. For N<64 distributed memory can be used for storage. For 64 ≤ N ≤ 512, all twiddle 

factors can be fit into a single BRAM primitive. For 512 < N it is favorable to store only one quarter 

of the complex unit circle, 𝑊𝑁
𝑘 , 0 < 𝑘 < 𝑁/4, and dedicate logic resources to allow inverting and 
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swapping the real and imaginary components to extend twiddle factors along the full unit circle. 

Also, the twiddle factor LUT may contain only the real (cosine) values, as both distributed memory 

and BRAMs allow accessing two values simultaneously, so by appropriate inversions the complex 

exponential can be restored.  

For N>1024, especially in pipeline implementations, twiddle factor storage poses potential 

problems as all PEs need to access twiddle factors simultaneously from multiple LUT instances. 

Unfortunately, at large point-sizes data storage also demands large memory buffers, rendering 

pipeline implementations memory heavy and incentivizing runtime calculation of twiddle factors. 

Twiddle factors can be calculated on the fly by using the CORDIC algorithm [81], or Direct Digital 

Synthesis (Chapter 8).  

A.4 Additional Information for Direct Digital Synthesis 

A.4.1 Alternative DDS Implementations 

This section presents a summary of the operating principles and implementation footprints of 

published DDS solutions. 

A.4.1.1 Polynomial approximation 

The piecewise-linear, Taylor-series, Chebyshev, and trigonometric decomposition algorithms all 

fit under the umbrella of polynomial approximations. The difference is only in the method of 

coefficient computations. 

As sin(φ) and cos(φ) are smooth, continuous, single-valued functions, the Taylor-series 

decomposition can be used for any 𝑓(𝑥) continuously differentiable around 𝜙𝑘  as 

𝑓(𝜑) = ∑
𝑓′𝑛(𝜑𝑘)

𝑛!

𝑁

𝑛=0

(𝜑 − 𝜑𝑘)𝑛 = ∑ 𝑎𝑛,𝑘

𝑁

𝑛=0

(𝜑 − 𝜑𝑘)𝑛 ,  (133) 

Practical implementation limits the number of terms used, therefore 𝑓(𝜑) can only be 

approximated. Also, for higher order polynomials the dynamic range of the power series and small 

coefficient values require wide arithmetic operands. With limited number of terms and arithmetic 

precision results tend to deviate as the difference between φ and 𝜑𝑘  increases. To limit |𝜑 − 𝜑𝑘|, 

piecewise polynomial approximation is typically used by slicing the phase domain into sections 

where separate, pre-computed coefficients (𝑎𝑛,𝑘) can be used for more accurate approximation.  

If N terms are used to evaluate the sum of the products for each f(φ), N-1 additions and 

multiplications have to be computed for each output sample. In case the phase domain is split into 

uniform sections, and the phase increment is constant the power series itself can be calculated 

iteratively without multiplication, using: 

(𝜑 + 1)𝑛 = ∑ (
𝑛
𝑘
)

𝑛

𝑘=0

𝜑𝑘 ,  (134) 

(𝜑 − 𝜑𝑘 + 1)2 can be computed iteratively from (𝜑 − 𝜑𝑘)2  and 𝜑 − 𝜑𝑘  such that  

(𝜑 + 1 − 𝜑𝑘)2 = (𝜑 − 𝜑𝑘)2 + 2(𝜑 − 𝜑𝑘) + 1, (135) 

My analysis for optimizing Taylor series / polynomial approximation for FPGA implementation is 

focused on practical first or second order approximation structures.  
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A.4.1.2 Piecewise Linear interpolation 

This approximation method fits line-segments on f(φ), such that the error between the 

approximated values and f(φ) are minimized. If discontinuities are tolerated, the implementation 

requires storage of coordinates [φ, f(φ)]. If the phase domain is divided into uniform sections, 

storage of φ can be eliminated. 

In order to reach 150 dB SFDR, using uniform phase sections and double precision logic, at least 

1407 sections were necessary. Using 24 bit representation, this structure needs at least 1407 x 24 bits 

memory, which equals to a memory compression ratio of 11.6 in contrast with a pure LUT based 

solution. Choosing the number of segments 𝐷 = 2𝑑 , 𝑑 ∈ ℤ efficiently uses of BRAMs. However, 

uniform sectioning of the phase domain may result to an uneven distribution of approximation 

errors (Figure 97), which are proportional with the curvature of the approximated function. 

Another approach is to set section boundaries such that the interpolation error remains under a 

predefined threshold, resulting to an approximately flat error function. By employing non-uniform 

quantization of φ, the number of sections could be reduced to 880. However, the LUT size 

requirement increases to 880(224+14) bits since the quantization of φ has to be stored as well. Also, 

extra multipliers are necessary to evaluate the (𝜑 − 𝜑𝑘)𝑛 power series. 

Using Xilinx or Lattice parts, a sine generator based on non-uniform linear interpolation allocates 

5 Block-ROMs and one 24x24 bit multiplier (4 mult18x18 primitives), which is not a significant 

saving compared to a LUT-based implementation with coarse rotation. 

 
Figure 97. 1407 point linear interpolation, time domain error 

The optimized linear interpolation algorithm proposed in [74] is configurable to trade segments 

(initialization points) with SFDR, here I consider the highest SFDR (96.2) option published, which 

uses only 960 ROM bits, and claims no multiplier use. Instead, slope coefficients are coarsely 

quantized, and numerous adders are used to replace the multipliers. Since the authors only post 

transistor counts, I estimate the equivalent register count at 1370 based on the author’s comparison 

to the CORDIC implementation (8400 vs. 54000 transistors), for which the register count is known. 

A.4.1.3 Angular decomposition 

The angular decomposition algorithm proposed in [79] is based on the fact that for low angles β (β 

<< α < π/4) cos(β) ≈ 1, so  

 sin(𝛼 + 𝛽) ≈ sin(𝛼) + sin (𝛽) cos (𝛼), (136) 

 cos(𝛼 + 𝛽) ≈ cos(𝛼) − sin (𝛽) sin (𝛼) (137) 
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By approximating with sin(β) ≈ β, results to a variant of piece-wise linear interpolation. However, 

for optimal noise performance vs. QDDFS area, the authors propose to store sin(𝛼), cos(𝛼) and 

sin(𝛽) in 3 LUT ROMs. Based on simulation results they surmise that along an SFDR target (phase 

resolution), overall LUT area is minimized if the total phase resolution (e.g. 14 bits), are split 

equally between 𝛼 and 𝛽. The 3 small ROMs map well to distributed memory in FPGAs. Using two 

multipliers and several multiplexers, total resource use is estimated at 832+400+44 equivalent 

registers, considering that the 18x18 multipliers can perform two 8x8 multiplications 

simultaneously. 

A.4.1.4 Taylor Series Decomposition 

The Taylor series decomposition proposed in [70], uses 3rd, or 5th order polynomials to approximate 

trigonometric functions. The solution trades the number of interpolation sections, and the 

necessary initialization values which are stored in ROMs, with arithmetic complexity required for 

the evaluation of the polynomial.  

Considering that (𝑘 + 1)2 = 𝑘2 + 2𝑘 + 1, 𝑘2can be calculated recursively using accumulated 

values of 2𝑘 + 1. For a 3rd quadratic interpolator 6 multipliers, and at least 4 wide adders evaluating 

the higher order polynomials are necessary, for an estimated total 6*400 + 4*24 = 2496 equivalent 

registers. 

A.4.1.5 Coordinate rotation with CORDIC 

CORDIC-based algorithms are widely used for the calculation of trigonometric functions, square 

root, polar-rectangular coordinate conversion. A detailed description of the algorithm and its many 

applications can be found in [81]. The algorithm performs vector rotations iteratively using only 

addition and shift operations: 

𝑥′ = 𝑥 𝑐𝑜𝑠 𝜑 − 𝑦 𝑠𝑖𝑛 𝜑 
𝑦′ = 𝑦 𝑐𝑜𝑠 𝜑 + 𝑥 𝑠𝑖𝑛 𝜑 

(138) 

rotates by  the two-dimensional vector (x,y) in a Cartesian plane.  

By factoring out cos : 

𝑥′ = 𝑐𝑜𝑠 𝜑 (𝑥 − 𝑦 𝑡𝑎𝑛 𝜑) 
𝑦′ = 𝑐𝑜𝑠 𝜑 (𝑦 + 𝑥 𝑡𝑎𝑛 𝜑) 

(139) 

If rotation angles are restricted so that tan() = ±2-i, the multiplication by the tangent term is reduced 

to a simple shift operation. Arbitrary angles of rotation are obtainable by performing a series of 

successively smaller elementary rotations. If at each iteration stage only the direction of rotation is 

configured, the cos term becomes a constant, as cos() = cos(-). Therefore, the iterative rotation 

becomes: 

𝑥𝑖+1 = 𝐾𝑖(𝑥𝑖 − 𝑦𝑖𝑑𝑖2
−𝑖) 

𝑦𝑖+1 = 𝐾𝑖(𝑦𝑖 + 𝑥𝑖𝑑𝑖2
−𝑖), 

(140) 

where 𝐾𝑖 = 𝑐𝑜𝑠(𝑡𝑎𝑛−1( 2−𝑖)) = √
1

1+2−2𝑖, and di = ±1. 

Removing the scale factor from the iterative equations yields a shift and add algorithm for vector 

rotation. The product of the Ki: 
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𝐴𝑛 = ∏𝐾𝑖

𝑛

𝑖=1

, (141) 

can be applied elsewhere in the system. If the CORDIC operates with a fixed iteration length n, and 

is used solely for rotating the same initial vector (x0, y0), the scalar An can be incorporated into x0 

and y0. For twiddle factor generation, x0 and y0 are chosen as (1/An ,0), therefore all rotated results 

will have a length of 1. 

SFDR [dB] of the CORDIC can be approximated with 6n, where n is the number of iteration stages. 

The width of x,y and z accumulators (or adders in a pipelined implementation) and the number of 

iterations necessary for a particular angular resolution are closely related and proportional. The 

angle (z) is refined in each iteration step as well as x and y, therefore the angular (input) and the 

data resolutions are closely coupled. Choosing the adder-width equal to the number of iterations. 

In a fully parallel, high speed implementation with 150 dB SFDR 25 layers of adders/subtractors 

are needed, totaling 22252 adders, as for each iteration step a new layer of adders is needed. Besides 

large slice count, the large number of stages result to substantial latency between start of a frame 

to twiddle factor availability, necessitating deep data buffers to match the data flow to the twiddle 

factors in pipelined FFT implementations. Nevertheless, both issues are addressed in [82]. Instead 

of using a constant initial vector (1/An, 0), Janiszewski et.al. sliced the phase domain to multiple 

regions, each having different initial vectors. Initial x0, y0 and z0 of each stage is stored in LUTs. This 

solution replaces the first adder stages with LUTs which may be implemented as block-RAMs, 

effectively trading off slices with block-RAMs. The tradeoff helps balancing slice-count with block-

RAM usage in FPGAs and reduces the overall latency of the solution. For all algorithms observed 

before, the Janiszewski solution of splitting the phase to amplitude converter into two or more 

cascaded sections may reduce the overall cost. The first module supplies coarse values, while 

subsequent module(s) refine / approximate values in-between the widely spaced values. The goal 

is to maximize compression factor and minimize spurious content and overall resource usage.  

A.4.2 Optimizing the resonator FPGA implementation 

This section provides additional considerations and analysis of optimization options for 

implementing the Direct Form 2 IIR filter on programmable logic. Architectural solutions are 

proposed to improve the tradeoff between design size and output quality. 

A.4.2.1 Optimizing multiplier use 

Assuming 𝜔0 =
2𝜋

𝑁
, 𝑁 = 2𝑛 , 𝑛 > 14, the value of 𝑘 = 𝑐𝑜𝑠 𝜔0 ≈ 1. Introducing  

𝑘′ = 1 − 𝑐𝑜𝑠 𝜔0 = 1 − 𝑘 (142) 

allows replacing the multiplication xk by x-xk’, where 𝑘′ ≪ 1 can be exploited. Knowing that the t 

top (MSB) bits of k’ are all zeros, it is sufficient to multiply by only the portion of k’ which is under 

the first non-zero bit, thus saving 𝐵𝑠 = −⌈log2(𝑘′)⌉ bits. Assuming B bits wide data-paths through 

the resonator, using the above simplification will result to a B by 𝐵𝑘  multiplier, where 𝐵𝑘  is the 

number of bits representing k’, and with the signed product 𝐵 + 𝐵𝑘 − 1 bits wide (Figure 98)  
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Figure 98. Constrained Multiplier 

Operand sizes can be further reduced without impacting overall precision as long as the product 

width is significantly larger than B, since the product needs to be quantized back to B bits before 

being written back to the registers. Simulation results indicated that in order to reach the 150dB 

clarity goal (~24-bit precision), at least 𝐵 = 24 + log2(𝑁) bits were necessary. FPGA devices have 

dedicated 18x18 or 18x25 bit multiplier blocks, which can be combined to build wider pipelined 

multipliers. The digital resonator implemented uses BM = 35 bits for representing x and Bk=18 bits 

representing k’ (the 18 bits under the first non-zero bit in k), allocating only two mult18x18 

primitives (Figure 99). The 35 bit wide results of 18x18 primitives, or the 53 bit results of the 35x18 

multipliers have to be rounded before being added to the B bit wide partial results. This operation 

is facilitated by the addition of a rounding constant rnd = 2-B+1-1 value to the multiplier result. With 

the addition of the sign of the multiplier result through the carry-input of the adder, the round 

towards zero method can be implemented, which does not introduce DC bias and ensures filter 

stability. 

A.4.2.2 Polyphase implementation 

To ensure high operating frequencies the design has to be pipelined. However, pipelining changes 

the transfer function of the filter. Pipelining the arithmetic components and latching data only 

when valid data is present at the output of the last arithmetic component allows higher clock 

frequencies, but it does not increase the overall output data rate. The easiest way to overcome this 

problem is by using a polyphase filter, as if the resonator structure was evaluating p independent 

filters with the same transfer function. By initializing all registers involved in pipelining with valid 

partial results pertinent to the first p operands, each sub-band filter produces a new sample in p 

clock cycles, while the overall polyphase structure produces a valid output for every clock cycle.  

In the pipelined solution, the z-1 registers have to be replaced by p deep parallel shift-registers 

(Figure 99), so output samples can be collated to form a continuous output stream. This concept 

helps determining the initial states of pipe registers.  
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Figure 99. Pipelined resonator using block multipliers 

Assuming p pipeline stages, two sets of p initialization coefficients needed, describing p parallel 

filters, each having the same poles (defined through k’), but different initial phases.  

By pipelining the adder / subtractor components (Figure 83) in order to reduce the carry chain 

lengths, further improvements can be achieved in system performance. By employing maximum 

pipelining in all arithmetic components, the closed loop with a 35x18 multiplier has an overall 

latency of 8 cycles, easily attaining CLK rates over 300 MHz in Virtex4 devices, 400 MHz in Virtex7 

devices, and 500MHz in Virtex Ultrascale devices.  

Whether pipeline stages are concentrated in shift registers or distributed in registers next to the 

arithmetic components, the system needs to be properly initialized to synchronize the p phase-

shifted filters. Once the initial coefficient vectors for registers 0 and 1 (Figure 99) are determined, it 

is easy to find the distributed coefficients by simply propagating the concentrated coefficients 

through the pipe-stages until the corresponding register location is reached. For a pipelined 

resonator generating the sine component of the quadrature signals, the initialization vector for 

register 0 is: 

  sin(𝜔𝑙), (143) 

and for register 1 is: 

  2𝐵−3[0. .0, {2 𝑠𝑖𝑛(𝜔𝑙) 𝑐𝑜𝑠( 𝑝𝜔) − 𝑠𝑖𝑛( (𝑙 + 𝑝)𝜔)}], (144) 

where l is a vector of integers from 0 to p-1. The initialization vector of register 1 has to be prefixed 

with zeros to ensure proper alignment of signal flows at the last adder. 

A.4.2.3 Quantization 

Determining the proper word-length at different points of the data-path sets the balance between 

resource utilization and output quality. This section focuses on the relations between the output 

error, and different design parameters. I analyzed the effects of the following parameters to the 

fidelity and noise level of the generated sinusoidal: 

- precision (representation) of k 

- word-length throughout the design  

- run-length of the feed-back system 

- rounding / truncation method 

The resonator architecture was implemented using Xilinx System Generator for DSP version 6.2, 

which supports rapid prototyping [S31] and easy analysis of performance and resource usage [S32] 
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in the MATLAB environment. Coefficient-, and product quantization are the primary drivers of 

quantization noise. For block-multiplier implementation, where either 18x18 or a 35x18 primitives 

were used, multiplier operand and the product sizes are fixed.  

The second largest noise-source in the filter is the quantization to B bits after the kx = 2(1-k’)x = 2x - 

2k’x subtraction. Figure 100 and Figure 101 present the SFDR and SNR values corresponding to 

different data path widths (B), for N=216. These simulation results indicate that increasing fix-point 

resolution does help lowering noise, therefore improving spectral purity, until quantization noise 

introduced by the multiplier becomes the dominant noise source. 

  
Figure 100. SFDR (left) and SNR (right) as a function of B, 35x18 bit multiplier 

  

Figure 101. SFDR (left) and SNR (right) as a function of B, 18x18 bit multiplier 

A.4.2.4 Frequency dithering 

As the block multiplier input restricts k’ to 18 bits, the excessive quantization of k’ may introduce a 

frequency shift, manifesting in accumulated phase error. Instead of allocating more bits for k’, and 

therefore doubling the size of the multiplier, one effective way to fine-tune the output frequency is 

to dither the constant multiplicand k’. This introduces frequency modulation, which in an FFT may 

cause signal power to leak to adjacent bins. Whether frequency dithering can be used or not 

depends on the target application; if phase noise around the target frequency is more acceptable 

than a constant frequency error, then dithering can be used to gain additional SFDR. Figure 102 

illustrate the effects of frequency dithering, with parameters N=216 and B=36. Both SFDR and SNR 

measurements improved from 237.98 and 100.01 dB to 270.34 and 112.73 dB respectively. The 
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Polyphase sample index  Polyphase sample index 

Harmonic component index bin index   x104  Harmonic component index bin index   x104  

graphs on Figure 102 present the time-domain errors of the polyphase interpolator phases, with 

corresponding spectra on Figure 103.  

While peak to sidelobe ratio is mostly unaffected by frequency dithering, maximal time domain 

error is reduced by a factor of eight, and correspondingly the average noise floor is about 48dB 

below the 18x35 multiplier solution without dithering.  

    

Figure 102. Time Domain error without (left) and with (right) frequency dithering, 𝑁 = 216, 𝑝 = 8 

     

Figure 103. Output spectrum [dB] without (left) and with (right) frequency dithering 

As discussed in the pipelining section, the pipelined resonator is evaluating p, phase-shifted filters 

simultaneously. To shape the phase noise added during frequency dithering, a simple Σ converter 

was used.  

A.4.2.5 Run-length reduction 

Due to accumulation of quantization noise output values deviate increasingly from the ideal 

waveform (Figure 102). If the design goal is to keep spurious content under a predetermined level, 

the free-run length of the resonator can be adjusted by periodically reinitializing the resonator 

(Figure 104), trading initialization LUT size with data width. The more often the resonator is 

reinitialized, the more memory is necessary to store initial values, but the less precise the arithmetic 

operators can get. Block-ROMs and multipliers in Xilinx FPGAs support word lengths of 18 and 36 

bits, so simulations were performed with B=36. In this configuration, 1 BRAM can store 512 words. 

2p words are necessary to initialize the resonator for each phase, allowing 256 sets per BRAMs 

used. Figure 105 presents the relation between SFDR, SNR and the period length. The local maxima 
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Polyphase Sample Index 

on Figure 106 suggests that aggregate noise has at least two components, one increasing, and one 

decreasing with run-length (N). Obviously with longer run lengths noise accumulates, and SNR 

and SFDR is expected to fall. However, ω, k and k’ are all functions on N. For shorter run-lengths 

(N<211), k’ is larger in absolute value.  

 

Figure 104. Noise reduction by re-initialization  
 

Figure 105. SNR as a function of free-run length 

     
Figure 106. SFDR (left) and SNR (right) as a function of N (35x18 bit multiplier) 

Since k’ is represented in either 18 or 36 bit fixed-point format, quantization of k’ is the noise source 

responsible for increasing noise as N is decreased, with the aggregate noise reaching an optimum 

at N=211. The resonator architecture with re-initialization is presented on Figure 107. 
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Figure 107. Resonator structure with re-initialization support 

A.4.2.6 Error feedback to the registers 

Since the resonator is a deterministic structure, error accumulation is predictable at design time by 

simulation. The LUT size can be further reduced, or the number of initializations along the SFDR 

can be increased if instead of complete re-initialization of B bits wide operands, only the difference 

between ideal output values and actual resonator outputs are stored. Errors between ideal and 

actual values after P sample long free-running periods (p << P < N) are saved to the LUT (ROM). 

Re-initialization multiplexers are replaced by adders in the resonator structure, to correct for the 

accumulated error, returning the filter to a known-good state. The reduction in ROM size is due to 

the compressed dynamic range as the error is typically several orders of magnitude smaller than 

the signal.  

In FPGAs this reduction can be used to select a different BRAM aspect ratio (1024 x 18 bits vs 

512x36) and use the increased depth to reduce free-run length P, in turn resulting to improved SNR 

and SFDR. In an ASIC, the reduced word-length can save silicon area. 

The ROM could be utilized even better with deeper quantization of the error words. Using the 

Block ROMs in 16k x 1 bit mode, data can be corrected towards the ideal value by a fixed constant 

 error every N/16384 CLK cycles, which substantially reduces the length of the free-running 

periods. In a typical case, N=218, p=8, each sub-process is corrected in every P=128 CLK cycles. 

Figure 108. presents the regulated noise. The significant, two orders of magnitude drop in time 

domain error is clearly visible in comparison with Figure 104. Since exhaustive simulations for all 

possible (216384) combinations of error ROM contents is not feasible, I developed a proxy algorithm 

to determine correction coefficients. As shown on Figure 104, accumulation of quantization-, and 

approximation errors for each sub-process can be thought of as a random walk away from zero 

during the free running periods. Each adjustment by  to the register banks is aimed to correct the 

sub-sampled discrete differential (f’(φ)) such that the resonator output error is minimized. 

Absolute output error is affected by all previous corrections. The goal is to provide an algorithm 

to minimize the squared error of the output error functions f(φ). 
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Assuming a decision-depth of D, the following backtracking algorithm can deliver adequate 

results: 

resonator_state = initialize_resonator_register_banks(SIN_OR_COS, reset)  
for (n=0, n<N, n+= 1) : 

err_min, resonator_state, c = iterate(resonator_state, d=0, corr=0) 
ROM[n] = c 

 
iterate(resonator_state, d, corr): 

resonator_state.output += corr 
resonator_state_next, cum_sqr_err = simulate_resonator(resonator_state, cycles=P) 
if (d<D) : 

err_min_0, resonator_state_0, c_0 = iterate(resonator_state_next, d+1, corr = -) 
err_min_1, resonator_state_1, c_1 = iterate(resonator_state_next, d+1, corr = ) 
if (err_min_0 < err_min_1): 
 return resonator_state_0, cum_sqr_err + err_min_0, 0 
else:  
 return resonator_state_1, cum_sqr_err + err_min_1, 1 

return  resonator_state_next, cum_sqr_err, 0 
 

To establish which direction the resonator output need to be corrected, the resonator is run for 2DP 

cycles, exploring the D bit binary combinations for each sub-process. Then for each 2D combination, 

the mean-square error of the generated 2DP data series is calculated, and the correction direction 

for the best (lowest-error) combination is selected. The overall algorithmic complexity is N2D steps. 

 

Figure 108. Amplitude errors of p=8 phases 

The time-domain noise on Figure 108 shows the results of the algorithm, with 1 bit error feedback 

to registers, and D=1. Applying this simple algorithm, for parameters N=216, B=36, p=8, SFDR = 

441.124 and SNR = 174.22 was achieved. 

A.4.2.7 Error feedback to the Σ converter - Results 

If abrupt jumps by correction factors  are unacceptable, feedback can be applied using a Σ 

converter (Figure 109), resulting to smooth corrections. Feedback can be incorporated either to z-1 

stages (time domain) or to the phase increment of the resonators (frequency domain). This method 

also requires a 1 bit only ROM. 
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Figure 109. Modified Σ converter 

Results of this method for parameters N=216, B=36, p=8, with 1 bit error feedback to the Σ converter 

are illustrated on Figure 110. 

 

Figure 110. Amplitude errors of p=8 sub-processes 

 

Figure 111. SFDR (left) and SNR (right) as a function of N, 18x18 bit multiplier 

If the target design is multiplier heavy, as in the case of FFTs with wide complex multipliers, and 

sliced based logic is available, the block-multipliers can be replaced by pipelined CSD 

adders/subtractors. The CSD multiplier based resonator structure can be compared directly against 

a CORDIC implementation, as both architectures are built out of pipelined adders. The advantage 

of CSD representation is at least 50% reduction in adder/subtractor count, which allows a B x Bk 

bits wide multiplier to be implemented using ½ B Bk adders. Maintaining the same output quality, 

the resonator structure uses only about 25% of the resources of the CORDIC algorithm, where 

B2 full-adders are needed. 
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A.4.3 Implementation of Quadratic Interpolator 

This section provides additional information on optimization options and FPGA implementation 

results for continuous quadratic interpolators.  

A.4.3.1 Dynamic range considerations 

It is important to take range changes into consideration as data passes through the differentiator – 

integrator stages. The range of the discrete differentials of a sinusoid is less than the range of the 

stored sinusoids, since  

 
𝑑

𝑑𝑥
[𝐴 sin(𝜔𝑥 + 𝜙0)] = 𝐴𝜔 𝑐𝑜𝑠(𝜔𝑥 + 𝜙0). (145) 

where 𝜔 =
𝜋

2𝐿+1 ≪ 1, 𝑥 < 2𝐿 , 𝑥 ∈ ℤ. Range is compressed by  

 𝐵𝑙 = − ⌈𝑙𝑜𝑔2 (
𝜋

2𝐿+1)⌉ (146) 

bits, however additional fractional bits to represent the discrete differentials are necessary to 

reduce quantization error accumulation in the subsequent integrator stage – which is best 

expressed as a binary point shift by 𝐵𝑙  bits to the left. On Figure 112 shift right operations indicate 

that the binary point is shifted left, implementing the constant multiplication, while maximizing 

the available dynamic range. After the first integrator data have to be scaled back by 𝐵𝑟  bits to 

avoid arithmetic overflows and to ensure correctly scaled output values. 

If the twiddle factor generator DDS has to generate 𝑊𝑁
𝑛𝑘for all 𝑘 = 2𝜅, 0 < 𝜅 ≤ log𝑟𝑁 instead of 

storing pre-calculated discrete differentials, samples of 𝑓(𝜑) need to be stored. 

If samples of 𝑓(𝜑) are stored in BRAM, the number of interpolation periods may be determined by 

the efficient configuration of the BRAM. Assuming the design goal is to maximize compression / 

minimize BRAM use, the widest (36 bits) block-RAM configuration supported by Xilinx devices is 

suggested, allowing 512 words per primitive. 

 

Figure 112. Phase factor source for in-place FFTs based on DII structure 



 

133 

A.4.3.2 Quadratic Interpolation Results 

Both integrators and the BRAM contents have to be initialized correctly to get optimal results from 

the interpolator. 

Assuming the expected waveform is  

 𝑓𝑛 = 𝐴 𝑠𝑖𝑛 (
2𝜋𝑛

𝑁
+ 𝜙0), (147) 

to ensure that the first two output values are 𝑓0 and 𝑓1, the initial contents of the output integrator 

can be chosen as 

 𝑓0 = 𝐴 𝑠𝑖𝑛(𝜙0) + 𝜀0, (148) 

and the initial contents of the first integrator can be chosen as 

 𝑓1 − 𝑓0 = 𝐴 [𝑠𝑖𝑛 (𝜙0 +
2𝜋

𝑁
) − 𝑠𝑖𝑛(𝜙0)] + 𝜀1, (149) 

where  values provide extra freedom to fine-tune the output in order to reduce noise. The contents 

of the LUT should be a sinusoid with amplitude 

 𝐴
2𝜋

𝑀
(1 + 𝜀𝐴), (150) 

and initial phase 

 
2𝜋

𝑀
+

𝜋

2
𝑐 + 𝜀𝜙 , (151) 

As opposed to 𝜀0 and 𝜀1  which can be used to suppress DC bias and have relatively small effects 

on the output noise spectrum, amplitude, and phase errors 𝜀𝐴 and 𝜀𝜙  as small as 10-6 affect output 

noise by as much as 40dB.  

The errors of the first DI stage are accumulated by the second integrator. If the error of the DI stage 

has the same sign over half the sine period, the integrated output is skewed. Tuning amplitude by 

𝜀𝐴 allows the piece-wise linear first order derivative to extend over the expected bounding curve, 

significantly reducing noise accumulation. 

To find optimal values for 𝜀𝐴, 𝜀𝜑 𝜀0 and 𝜀1, first the amplitude and phase need to be tuned by 

simulations. Then 𝜀1 needs to be found so the derivative transitions smoothly after the first 

multiplexer loads the first integrator stage. Finally, 𝜀0 needs to be set to cancel out the mean error. 

The optimization problem was tackled iteratively, one variable at a time, with the Newton-

Raphson algorithm, for N= 2048, 4096 and 8192. 

Based on simulation results,  can be approximated by the linear function  

 𝜀𝜙(𝑁) =
𝜋

𝑁
. (152) 

To minimize noise, 𝜀𝐴can be approximated by a hyperbolic function 

 𝜀𝐴(𝑁) = 𝑐0 −
𝑐1

𝑥−𝑐2
, (153) 

where 𝑐0= 3.1892673178E-6, 𝑐1= 1.0971156E-3, and 𝑐2= 1.1802123120E3.  
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Figure 113. SFDR (left) and SNR (right) of the quadratic interpolator as a function of N, B=36, M=1024 

Figure 113 presents the relation between the attainable SFDR, SNR and the period length, using a 

single BRAM primitive as a LUT. For N<2048, 𝑓(𝜑) can be generated by bypassing the 

interpolators. When flow-control selects no bit-shifting and continuous loading of the first 

interpolator, choosing interpolation length = 1, LUT contents are practically fed forward to the 

output directly.  
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