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INTRODUCTION 

Motivation of the Work 

My interest toward electrical gadgets and electrical energy comes from my childhood; it was 

evident for me that I was going to be an electrical engineer. Thus, I attended and finished 

Electrical Engineering High School and graduated from the Faculty of Electrical Engineering. 

 

Having a university degree I got a job in a company whose main activities were designing and 

constructing electrical distribution network. Working as an electrical designer engineer I 

faced some generally used approximate methods and calculations for OHL design which go 

after the determination of the maximum sag of the parabolic conductor curve and the 

parameter of the catenary. In fact, I have concluded that the sag–tension calculation is 

appropriate and well described in literature, but new mathematical equations related to the 

conductor curve and the sag are needed for an easy and correct determination of the conductor 

height and the sag at any point of the span, without any limitations caused by the span 

inclination or the span type. This is of a particularly high importance for the accurate 

clearance calculation. Hence, I had to make a decision soon, whether to accept and use the 

approximate methods or to develop mathematically exact new ones on my own. This way, 

come–by–chance, I found a field of my future research. The motivation was double, providing 

novel results and taking entire responsibility for planned network. Thus, I started to create 

new algorithms in order to complement the existing OHL design. 

 

At the beginning of my research, implementing strictly mathematical approach for solving 

actual problems, I widely upgraded the parabola based calculation for OHL design providing 

several new equations for a direct use in practice. The company, where I worked at that time, 

accepted my methods and implemented them in OHL design process after I had trained the 

other designers in the company. Representing the previous company, my project named 

Designer Programme successfully entered the 19th Hungarian Innovation Award 

Competition and as a recognised innovation got into the Innovation Award 2010 book. This 

success enthused me a lot and inspired me to continue my research. 

 

Having found the solutions for several parabola problems from the aspect of OHL design, I 

started solving the catenary’s actual problems as well. It was clear that much more 

complicated algorithms have to be developed than in the case of the parabola, but at the same 

time the challenge was also bigger. Continuing my research and providing new methods, 

equations and relations concerned to the catenary, necessary conditions have also been 
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achieved for the mathematical comparison of the catenary and the parabola, and then for 

finding out their specific similarities and differences which are relevant for OHL design. 

 

I have been doing my research in the field of OHL design for more than 20 years. Presenting 

my new results in full, both in scientific journals and on professional conferences is a 

particular satisfaction to me. In order to reach more readers and listeners interested in my 

work, I use more languages alike, English, Hungarian, Croatian, Bosnian and Serbian. 

 

Structure of the Dissertation and Research Objectives 

As I spent many years doing different activities connected to OHL design, first as a design 

engineer and later also as a plan supervisor, I had the opportunity to recognize the special 

problems, which electrical design engineers face in practice when planning OHL, but 

literature does not give adequate solutions. In accordance to that, my aim was to complement 

the OHL design by special new equations for an easy application in practice. On the other 

hand, I wanted to provide a mathematical background, which helps to understand not only the 

derivation of the new equations but also the behaviour of the parabola and the catenary when 

the span inclination changes, as well as a mathematical connection between the two latter 

curves. These are important conditions for a conscious design. The main objectives are the 

following: 

 

 The aim of Chapter 1 was to present the drone and its wide usability for 

overhead lines inspection. The necessity of the mathematical algorithms 

(derived in Chapters 2–5) is highlighted for planning the appropriate flight path 

of an autonomous drone applied for inspection of overhead lines. 

  

 Considering the conductor curve as a catenary, the goal of Chapter 2 was to 

derive universal equations for determining the conductor height and the sag at 

any point of the span, usable in all span types, applying the coordinate system in 

a new way, which is uniformly used through the whole dissertation. 

 

 The aim of Chapter 3 was to create a method for modelling an inclined span by 

known data of a level span, when the span length and the catenary parameter are 

common data in both spans. Evaluating the use of 1/cosψ multiplier in the case 

of the catenary was also targeted. 

 

 In Chapter 4 the goal was to derive universal parabolic equations for the 

conductor and the sag curves, and to create a mathematical parabolic 
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approximation of the catenary in an inclined span and then to evaluate the 

application of 1/cosψ in the case of the parabola. 

 

 Chapter 5 deals with the conductor length calculation separately for the cases of 

the parabola and the catenary, and also gives the comparison of the lengths of 

the catenary and its approximation by a parabola, both the basic and the 

modified ones, i.e. first without and then also with the use of 1/cosψ multiplier. 

  

 The aim of Chapter 6 was to introduce the extension of the new methods shown 

in Chapters 2–5 in the entire section of OHL consisting of several support spans 

between the two dead–end structures. 

 

It is important to emphasize that the mathematical background has been provided in such a 

way that the frequently applied conveniences for simplification of calculations, as for instance 

considering that the maximum sag of the catenary in an inclined span is located at a mid–span 

or using 1/cosψ multiplier in the case of the catenary, are absolutely avoided. All new 

equations are mathematically exact ones without simplifications and are accompanied by 

appropriate explanations. The main steps of the derivations have been given within the body 

of the chapters, but deductions of significant lengths have been presented separately in 

Appendices, in order to read the dissertation easily. 

 

Chapters 2–5 have a very similar structure. Each one starts with an introduction of the actual 

subject and gives a literature overview highlighting those with a particular importance or 

uniqueness in the field of the actual research. The biggest part of the chapter is about the 

achievement of the new results and their explanation in details. A practical application has 

been shown through numerical examples, which are commonly used also for analysis of 

results and drawing important conclusions. Ending a chapter, the new results are summarised.  

 

Overhead Lines and their Design 

An overhead power line (overhead line, OHL) is a structure used in electric power 

transmission and distribution to transmit electrical energy along large distances. It consists of 

one or more conductors (commonly multiples of three) suspended by towers or poles. Since 

most of the insulations are provided by air, overhead lines are generally the lowest–cost 

method of power transmission for large quantities of electrical energy [1]. 

 

Overhead lines are classified in the electrical power industry by the range of voltages as 

follows, according to [2 p. 7–8]: 
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 Low Voltage – less than 1 kV, used for connection between a residential or a small 

commercial customer and the utility 

 Medium Voltage (distribution) – between 1 kV and about 33 kV, used for 

distribution in urban and rural areas 

 High Voltage (subtransmission if 33–115 kV and transmission if >115 kV) – 

between 33 kV and about 230 kV, used for subtransmission and transmission of 

bulk quantities of electrical power and a connection to very large consumers 

 Extra High Voltage (transmission) – over 230 kV, up to about 800 kV, used for long 

distance, very high power transmission 

 Ultra High Voltage – higher than 800 kV. 

 

Lines classified as "High Voltage" are quite hazardous. A direct contact with (touching) 

energized conductors still presents a risk of electrocution. 
 

Overhead lines have an important role in electric power transmission, a process in the 

delivery of electricity to consumers. As it is shown in Fig. 1, a power transmission network 

typically connects power plants to multiple substations near a populated area. The wiring 

from substations to customers is referred to as electricity distribution, following the historical 

business model separating the wholesale electricity transmission business from distributors 

who deliver the electricity to the homes [2 p. 5]. 

 

 
 

Fig. 1:  The split of elements of electric power global arrangement [2] 

 

Figs. 2, 3 and 4 show extra high voltage (EHV), medium voltage (MV) and low voltage (LV) 

OHL. Thus, the first one is a transmission OHL, while the other two ones are distribution 

OHL. 
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 Fig. 2:  EHV OHL               Fig. 3:  MV OHL                 Fig. 4:  LV OHL 

 

The major components of OHL are the towers (supports), insulators and conductors. The 

towers for support of the lines are made of wood (as–grown or laminated), steel (either lattice 

structures or tubular poles), concrete, aluminum, and occasionally reinforced plastics. The 

insulators are used to separate the bare conductors from the tower structure. They must 

support the conductors and withstand both the normal operating voltage and surges due to 

switching and lightning. The insulators are broadly classified as either the pin–type, which 

supports the conductor above the structure, or the suspension type, where the conductor 

hangs below the structure. The bare wire conductors on the line are generally made of 

aluminum (either plain or reinforced with steel or sometimes composite materials). Bundled 

conductors are applied for voltages over 200 kV to avoid corona losses and audible noise. 

They consist of several subconductors which are connected by non–conducting spacers. 

Overhead lines are often equipped with a ground conductor (a shield wire or an overhead 

earth wire). It is a conductor that is usually grounded (earthed) at the top of the supporting 

structure to minimise the likelihood of direct lightning strikes to the phase conductors. The 

shield wires on transmission lines may include optical fibers (OPGW), used for 

communication and control of the power system [2 p. 8–9]. 

 

According to [3], classification of OHL towers is given below from the point of view of the 

tower’s function. It means whether the tower is a suspension type, an angle type or a dead–

end type. Depending on the deviation angle of the line, the respective tower is chosen. The 

suspension type of the towers (shown in Fig. 2) carries the load of the conductor in a normal 

situation only. However, suspension towers are usually designed to work satisfactorily for 

very small angular deviation of the line. The standard code of practice of different countries 

has specified the maximum deviation angle for the use of the suspension towers. The angle 
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towers are used when the line route deviates more than this specified maximum angle. The 

angle towers can again be sub–grouped for different ranges of angular deviation. So the 

towers can be categorized as small angle, medium angle or large angle towers. The towers 

used at the termination point of the line are dead–end towers and are designed to carry large 

unbalanced load. The dead–end towers are the strongest and heaviest ones. In practice large 

angle towers are designed so that they can be used as dead end towers. Doing so will 

eliminate the need for designing one more tower type that is dead–end. The angle towers and 

dead end towers use tension insulator strings (see in Fig. 5), whilst the suspension towers are 

provided with the suspension insulator strings [3]. 

 

 
 

Fig. 5:  The angle tower of transmission line 

 

The energized conductors of transmission and distribution lines must be installed in a manner 

that minimizes the possibility of injury to people, flashovers to other conductors, and to 

inanimate objects such as buildings, whether below or adjacent to the line. Self–supporting 

overhead conductors elongate with time, with increasing temperature and with ice and wind 

loads; any such conductor elongation increases the sag of the conductor which may decrease 

the clearance to objects or people. Under all foreseeable conditions, despite the effects of 

weather and variations in electrical loading, the line’s conductors must remain at safe 
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distances from people, other conductors, vehicles, buildings, and any other reasonably 

anticipated activities. To ensure safe minimum electrical clearances under all conditions, the 

height and lateral position of the conductor between support points must be calculated for all 

wind, ice and temperature conditions which the conductor may experience. These 

calculations are commonly referred to as sag–tension calculations. [4 p. 1]. These give the 

necessary data for obtaining the equation for the conductor curve which is needed for a 

clearance calculation. 

A major goal of OHL design is to maintain adequate clearance between energized conductors 

and the ground or objects so as to prevent dangerous contact with the line. This is extremely 

dependent on the voltage the line is running at. [2 p. 8] 

 

Methodology of the Dissertation 

In order to describe the conductor curve when planning overhead lines, the parabola or the 

catenary model is used. Thus, the calculations can be parabola or catenary based. The last one 

is known as exact and complicated, while the first one as approximate and simple. In practice 

it is a well–known fact that when the spans are large (for instance over 400 metres) the 

conductor curve cannot be considered as a parabola, since the difference in comparison to the 

catenary is then not negligible. According to this work, when the conductor curve is 

considered as a catenary, then the main datum, which has to be taken from the sag–tension 

calculation, is a parameter of the catenary, while in the case of the parabola it is the maximum 

sag. Since both cases have been discussed separately, the main input data (all given in metres) 

are grouped as follows, while their usage is detailed in Chapters 2 and 4. 

 

Catenary              Parabola 

S – span length                       S – span length 

h1 – height of the left–hand side support point       h1 – height of the left–hand side support point 

h2 – height of the right–hand side support point     h2 – height of the right–hand side support point 

c – catenary parameter           Dmax – maximum sag of the parabola 

 

The first three data listed above are considered as known or given ones, while the fourth 

datum is taken from the sag–tension calculation. The latter calculation is not the subject of 

this work, as it is widely available and well explained in literature [4]. The focus is placed on 

deriving new equations for the conductor curve and the sag, and also defining the length 

formulas. In connection with the above listed input data for the case of the parabola only, 

there is one part of Chapter 4 where the maximum sag is not an input datum, and hence the 
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results of the sag–tension calculation are not necessary, but one coordinate of the vertex point 

(either x or y) has to be determined and then applied as the fourth input datum. 

Generally, each calculation is referred to one temperature of the conductor, and it is the one 

which the catenary parameter or the parabola’s maximum sag datum is related to. The change 

in temperature causes the change of the two latter data, and hence the conductor curve is 

different at each temperature, as well as the conductor sag and the length. In accordance with 

that, the minimum vertical clearances have to be checked for the most unfavourable 

conditions (worst–case scenario), i.e. when the sag is maximum (see in Fig. 6). On a warm 

summer day, the conductor will sag more than on a cooler winter day, making the lowest 

point of the conductor much closer to the ground or objects. The conductor will also sag more 

as the electricity load increases. A highly loaded transmission line in the summer can sag 

more metres than in the winter carrying the same amount of electricity [5]. The maximum 

allowable sag (for which the minimum ground clearance is maintained) determines the 

maximum allowable conductor temperature [6]. However, it is worth mentioning that ice load 

can also be the cause of the maximum sag. 

 

 
 

Fig. 6:  Conductor curve, maximum sag and minimum ground clearance 
 

Determining the equation for the conductor curve is of high importance, because the 

conductor height then can be calculated at any point of the span. It is necessary for instance to 

calculate the conductor clearance when some objects are placed under the conductors in a 

span. Fig. 6 shows a simple example with the supports on the same elevation. It is a level 

span. When the supports are on the different elevations (inclined span) each calculation 

becomes more difficult. In that case the lowest point of the conductor is not located at a mid–
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span, but it is removed. This work has targeted inclined spans, but level ones have been 

discussed as well. 

In practice, the sag–tension–temperature tables [7] are frequently used when planning 

distribution OHL by the parabola method. These are created by sag–tension calculations and 

are available for many different types of the conductors. Such tables contain the mid–span 

sags in level spans for different temperatures. This work also shows how to use it in an 

inclined span, when the span length is a common datum in both spans, by applying the special 

new equations. Regarding to the catenary a method for modelling an inclined span is 

provided, which is applicable when the span length and the catenary parameter are common 

data in level and inclined spans. Proposed methods can be used in all spans with line post and 

dead–end insulators as well. In spans with suspension insulators, which can move freely in the 

direction of the line, in some cases the horizontal distance between the conductor’s 

attachment points can differ from the span length. In these cases the techniques described in 

[8–12] are recommended. However, as long as the suspension insulators stay vertically (Fig. 

6), the methods and the equations shown in this work are all usable by applying the 

conductor’s attachment point’s data instead of the support point’s data, in order to take the 

length of the insulators into account. 

All new equations and relations in this work have been derived analytically and most of them 

have directly been checked in practice and by practical numerical examples as well. Knowing 

that the parabola, the catenary and the square of hyperbolic sine are all even functions, they 

are suitably applied for creating the mirror image examples, which made the proposed 

methods and also the correctness of the obtained results very clear. There are practical 

examples in each chapter used also for drawing important conclusions, which cannot be 

drawn analytically. Considering the fact that the parabola is an algebraic function, while the 

catenary is a transcendental one, therefore solutions of both algebraic and transcendental 

equations are included. The parabola based calculation is improved by algebraic 

transformations and matrix calculus, while the catenary based calculation is widen by the 

application of hyperbolic and their inverse functions, as well as related identities. Basic 

mathematical techniques for finding the first derivative and the maximum of the curve have 

been applied in both cases. The conductor length calculation is uniformly improved by the use 

of the integral calculus. New equations have been derived for the use in inclined spans, 

whereas the adequate equations related to level spans have been obtained as the 

simplifications of the first ones. 
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1   DRONE USAGE IN OHLs ENVIRONMENT 

1.1  A Drone (unmanned aerial vehicle, UAV) 

In a technological context a drone [13,14] is an unmanned aircraft. Drones are more formally 

known as unmanned aerial vehicles (UAVs) or unmanned aircraft systems (UASes). In fact, a 

drone is a flying robot. Generally the aircrafts may be remotely controlled or can fly 

autonomously through software–controlled flight plans in their embedded systems working in 

conjunction with onboard sensors and a GPS module. In recent past, UAVs were most often 

associated with the military, where they were used initially for anti–aircraft target practice, 

intelligence gathering and then, more controversially, as weapons platforms. Drones are now 

also used in a wide range of civilian roles ranging from search and rescue, surveillance, traffic 

monitoring, weather monitoring and fire–fighting to personal drones and business drone–

based photography, as well as videography, agriculture and even delivery services [15]. 

 

 

Fig. 1.1:  Drone [16] 

The basic components of a drone are a frame, propellers, motors, battery (Li–Po), camera, 

gimbal (for image stabilization), GPS module, speed controller, receiver, flight controller, 

landing gear and other sensors. 

The frame is generally made of lightweight material such as plastic, fibreglass while in the 

case of expensive models aluminum or titanium. Propellers are responsible for drone 

movements and they are made of plastic or carbon fibre. 

https://searchenterpriseai.techtarget.com/definition/robot
https://internetofthingsagenda.techtarget.com/definition/embedded-system
https://whatis.techtarget.com/definition/sensor
https://searchmobilecomputing.techtarget.com/definition/Global-Positioning-System
https://whatis.techtarget.com/definition/personal-drone
https://internetofthingsagenda.techtarget.com/definition/drone-photography
https://internetofthingsagenda.techtarget.com/definition/drone-photography
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1.2  Overhead Lines Inspection by Drones 

In this section the principle of autonomous drone implementation in overhead lines inspection 

will be shown. Fig. 1.2 presents the trajectory of drone flight following the conductors in 

spans. The inclined spans located in a hilly terrain are selected here in order to show that a 

drone has to fly differently forward, down and up in each span of an overhead line to be 

inspected. As it can be seen the drone trajectory has been built by catenary curves in actual 

spans. These catenaries are the conductor curves. Thus, for programming the flight path of a 

drone, it is needed to know the equations for the conductor curves in actual spans of an 

overhead line.   

 
Fig. 1.2:  Principle of overhead line inspection by a drone 

The inspection of long overhead line by a remote controlled drone would be quite difficult in 

practice as it is necessary to permanently and precisely guide and control the drone. There 

must be a person who is responsible for this demanding task. Therefore it is more advisable to 

use an autonomous drone but in this case the drone needs a pre–calculated flight path. In 

order to plan an appropriate flight path [17] it is recommended to combine an offline and 

online planning. Using obtained online data from sensors mounted on the conductors or poles 

of overhead lines, the offline pre–calculated flight path has to be suitably modified. The 

corresponding principle scheme is given on Fig. 1.3. 
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Fig. 1.3:  Combining offline and online planning of a drone trajectory 

Regardless to what extent the drone trajectory [18,19] within one span has to be modified, it 

will still be a catenary curve. As it is explained in details in Chapter 2, in fact the parameter of 

the catenary (c) has to be appropriately changed since it determines the shape of the catenary. 

In the case of overhead lines with shorter spans, when the parabola model is in use, instead of 

the catenary model, the leading coefficient (a) of the parabola has to be suitably modified as it 

determines the shape of the parabolic curve. The parabola and also its special features as the 

conductor curve are widely described in Chapter 4. 

Regarding to the above explained modification of the drone trajectory Fig. 1.4 presents both 

the offline calculated trajectory (soft black line) and the sensors based modified trajectory 

(dashed red line) within one span. If the drone trajectory in a span is the catenary, then the 

parameter c is different in two cases. Depending on the online data received from the camera 

and sensors, the modified trajectory may be either under or up to the offline calculated 

trajectory. Evidently, the special case is also possible when two trajectories are quite identical. 
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Fig. 1.4:  Drone trajectories within one span 
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1.3  Importance of Overhead Lines Inspection 

For uninterrupted power supply it is necessary to keep the electric grid (both overhead lines 

and underground cables) in a good condition. For this purpose their periodical inspection is 

essential. Presenting some possible damages in practice, the following pictures show well the 

importance of overhead lines inspection. In Fig. 1.5a, down on the left–hand side, it can be 

seen that the vibration damper (mass drooping) has significantly slipped down from its 

original place. It is enlarged in Fig. 1.5b. 

 

              

a.)          b.) 

Fig. 1.5:  Slipped vibration dumper mounted on an overhead line 

In this case a double problem is present. In one hand the vibration dumper is not positioned on 

the right place (notice that the other dumpers are all put near the insulators) and so cannot 

work properly, on the other hand it causes abrasion (Fig. 1.6) of the conductor because of its 

loose fixation.  
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                 Fig. 1.6:  Abrasion [20]                     Fig. 1.7:  Bird–caging [20] 

Fig. 1.7 shows bird–caging (or basketing) in a conductor. It occurs when conductor wires are 

loaded in compression, causing them to buckle and in severe cases, flare outward radially, 

forming shapes which are similar to baskets or birdcages. This permanent deformation can be 

induced during stringing, installation of compression fittings, or by excessive heating of the 

conductor in service [20]. 

Fig. 1.8 presents gunshot damages. It may be observed on conductors, aerial warning markers, 

and insulators as well. These are popular targets with vandals, especially in proximity to 

hunting grounds. Obviously, gunshots may cause significant damage to conductors [20]. 

    

a.)                                                                    b.) 

Fig. 1.8:  Gunshot damages [20] 

Due to technological improvements all over the world, the electric energy consumption is 

continuously raising. As a consequence, bigger requirements related to transmission grids 

have appeared. In recent years, large wind parks and solar parks have been connected and 

thus, they have also contributed to this fact. The capacity of the grid has to be expanded in 

order to be able to accommodate the new renewable energy projects.  

Taking into consideration the above mentioned facts, it can be generally stated that the 

increasing capacity of electric energy transmission is becoming more and more important. 

One possibility of increasing the capacity of existing power lines is the application of the 

dynamic line rating method, which is becoming widely used nowadays. 

The target of dynamic line rating is to safely utilise the transmission capacity of the existing 

transmission lines, which is based on real conditions in which overhead lines operate. The 
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most important difference between static and dynamic line rating is that ‘static current’ is 

determined based on mainly conventional atmospheric conditions, while dynamic line rating 

takes into consideration the actual atmospheric conditions, which in most of the cases offer 

better cooling and thus, allow higher ‘dynamic’ current, contributing to improving safety [21].  

Computing the dynamic line rating of an overhead transmission line is a difficult and complex 

task because it has to inherently solve two problems:  

 determining the thermal current limit for a particular span, which can involve 

different measurements and different calculation methods  

 determining the weakest span i.e. the span, which gives a limit for the entire 

transmission line, which presumes that determination of thermal current for all 

spans has been performed; therefore the weakest span may change in 

consequence of different atmospheric conditions and span features (tension, 

clearance margin, etc.) [21]. 

There are different monitoring technologies existing on the market that are designed to 

measure certain line parameters such as conductor tension, temperature (Fig. 1.9) or sag.  

 

Fig. 1.9:  Conductor temperature sensor attached to the energized conductor [22] 

These measurements are useful for calculating line ratings but they are not sufficient for 

dynamic line rating. It is necessary to take into account the atmospheric conditions, because, 

for instance, higher wind speeds and lower ambient temperatures improve conductor cooling 

[21]. It is important to highlight that the line load capacity may vary even 20 – 30 %. For 

example, on a windy night at  –20 ˚C the line can be much more loaded than in sunny 

windless weather at +40 ˚C. The sensors are not mounted in each span only in critic spans, for 

instance on a mountaintop and in a valley. They are usually attached to a place which is hard 

to reach. Attaching, maintaining and replacing of these smart gauges, which have to be 
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mounted on the conductor or pole of overhead lines, should be done by drones instead of 

high–cost human power. This will be one of the advantageous usages of drones in overhead 

lines environment. 

The conductors of overhead lines are regularly endangered by aeolian vibrations, it may cause 

fatigue failure of conductor strands (Fig. 1.10). The most critical locations are at suspension 

clamps, dead–end clamps, splices, clamp of spacers and vibration dampers [20]. Lightning 

discharges on overhead lines can also cause strand failure (Fig. 1.11), but in this case its 

location can be at any point of the span. 

      

      Fig. 1.10:  Strand failure caused by   Fig. 1.11:  Strand failure caused by 

               aeolian vibrations [20]              lightning discharge [20] 

Detection of these problems in time is of particular importance, as strand failures result in 

reduction of conductor’s cross–section. In some cases it can lead to a complete breakage of 

the conductor. A strand failure can be identified only by a close–up or recording, but not by 

helicopter or with binoculars from the ground. Therefore, it is of great importance for the 

inspection by drones, preferably by autonomous ones. Due to these day–to–day tasks, besides 

planning and building overhead lines, it is necessary to know the exact spatial location of the 

conductors in spans in order to plan an appropriate drone flight path.  

Modern drones have been installed with special sensors which continuously ensure the safety 

distance between a drone and the objects in its close area to prevent collision. Evidently, 

besides the drone flying over a pre–calculated flight path, board sensors and human 

intervention must also be taken into account, but it is not being dealt here. 

For planning a precise drone flight path, it is essential to know the mathematic equation for 

the conductor curve in a span. Depending on the given data the parabola model or the 

catenary model is in use but it is very important to know what the specific differences of the 

parabola and catenary curves are. It is also necessary to clearly understand in which cases the 

multiplier 1/cosψ can be applied in the calculations and when cannot. The answers on these 

questions are explained in details in the following chapters with a complete mathematic 
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background and practical examples. The length of the drone trajectory can be calculated by 

universal formulas for the conductor length, presented in Chapter 5.  

The new mathematical derivations and equations presented in Chapters 2–5 can also be used 

to complement the results produced by the sensor (Fig. 1.11) mounted on an overhead line, 

which measures the fundamental frequency of the conductor vibrating under natural turbulent 

wind [23].  

  

Fig. 1.12:  Sensor for measuring the frequency of the conductor vibrating [24] 

This sensor provides the maximum sag datum. Knowing the span length and the coordinates 

of the support points of the conductor in a span, the equations for the conductor curve and the 

sag can be determined. Then the conductor height and the sag value can be calculated at any 

point of the span. Furthermore, the coordinates of the lowest point as the most critical point of 

the conductor in a span can also be obtained. Finally the drone flight path can be made. These 

facts clearly justified the importance and necessity of the new equations from Chapters 2–5.  

 

1.4  Extensive Applicability of Drones 

Utilities have to gain a lot by drone adoptions. Kilometres of electric lines, both transmission 

and distribution ones, have to be periodically inspected [25–28]. The use of manned aircraft 
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for line inspections is significantly more expensive in comparison to the use of drones for 

doing the task. What is more, drones are generally able to collect more data [29]. 

Fig. 1.13 shows an overhead line inspection by a drone. In Fig 1.14 many inspection points 

can be seen in a single close photo taken by a drone camera. 

 

Fig. 1.13:  Overhead line drone inspection [30] 

 

 

Fig. 1.14:  Inspection points in a photo taken by a drone camera [31] 

 

Due to their numerous benefits, drones have been more frequently applied in several areas of 

everyday life and work. In article [29] the author lists 25 ways how drones are lowering 

worker and business risk and improving operational efficiency for energy companies, electric, 

gas, solar, water and wind utilities. 
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1. Vegetation management inspections for transmission and distribution lines and 

water pipeline rights–of–way 

2. Inspection of transmission and distribution lines for equipment wear, corrosion, 

leaning, sagging wires, broken insulators or stay wires and real–time looks 

during and after emergencies 

3. Survey–grade maps for siting transmission lines, pipelines, dams, solar farms and 

wind farms 

4. Construction site monitoring and reporting (counting numbers of rigs, 

documenting avoidance of endangered species set–aside areas) 

5. Line of sight analysis 

6. Interactive visual simulations, like transmission line tower heights, for stakeholder 

engagement 

7. Substation equipment inspections 

8. Gas pipeline inspections and leak detection 

9. Pinpointing malfunctioning solar panels 

10. Mapping ideal orientation of solar panels to maximize energy output 

11. Inspection of underwater intake pipes 

12. Leak detection in water pipelines 

13. Hydroelectric dam inspections, including fish ladders on older dam systems 

14. Aqueduct and canal inspections 

15. Reservoir monitoring, including water level trends related to climate change 

16. Landslide documentation 

17. Wind turbine preventive maintenance inspections  

18. Surveys and documentation of bird mortality at wind farms 

19. Discovery of damaged fencing or anti–climb guards from vandalism  

20. Monitoring for potential terrorist security threats 

21. Monitoring for criminal activity in remote areas (illegal drug labs/grows) 

22. Remediation site monitoring 

23. Coal stockpile volume calculation 

24. Inspections of ash ponds 

25. Smokestack inspections 

Unmanned Aerial Vehicles are robots that are aerial–based and designed to perform visual 

inspection. Such robots are increasing in interest to electric power utilities because they 
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automate the inspection of transmission line assets. Work can be performed while the 

transmission lines are energized. Currently, electric power utilities are interested in 

investigating the technology of unmanned aerial vehicles (UAV’s) since they give clear 

images and unique inspection view when they fly near the transmission lines. In a fully 

autonomous mode the complete flight is performed without human help or interactions. Thus, 

neither an operator nor supervision by humans is needed. However, knowledge for planning 

the flight and the analysis of the results are required. Currently, an autonomous mode is not 

yet allowed in most countries or it needs a special permission by authorities. Special 

navigation aids and emergency procedures are also essential for this type of flight [32]. 

 

1.5  Summary of Drones Usage 

To conclude this chapter the following facts can be highlighted in connection with the drone 

usage: 

For planning the flight path for autonomous drone used for the inspection of overhead lines, it 

is necessary to know the equation for the conductor curve. 

The future application of autonomous drones will definitely be mounting the sensors (as 

temperature and sag sensors, etc.) on the conductors of overhead lines. The drone will carry it 

out without necessity of the disconnection of the power supply since it can work on energized 

lines. This will be a huge benefit of drones in comparison to present practice when it is done 

with costly human power and the disconnection of the power supply. The use of drones for 

overhead lines inspection provides a significant reduction of safety risks and costs. 
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2   APPLICATION OF A CATENARY MODEL 

2.1  Introduction 

Conductors in spans of overhead lines take the shape of a catenary, a curve of the hyperbolic 

cosine function. The word catenary comes from the Latin word catena, meaning chain [33]. 

 

The mathematical derivation of the catenary equation is shown below, according to a 

procedure presented in [34,35], it is the same as shown in numerous related literature. In order 

to simplify the derivation, the curve is replaced in the coordinate system in a way that its 

vertex point is set at the origin. Notice, that the catenary’s vertex is originally located on the 

y–axis, at the point (0 ; c), where c =H/w is the catenary parameter (see in Section 2.3). 

 

Fig. 2.1 shows the conductor APB suspended between the two support points, A and B. The 

following symbols are used: 

w  –  weight of the conductor per unit length 

T  –  tension at any point P of the conductor 

T0 –  tension at the point O of the conductor 

l   –  length of the span 

L  –  total length of the conductor 

s   –  length of the conductor OP. 

 

 
 

Fig. 2.1:  Conductor curve of overhead transmission line [35] 

 

At point P, the weight of the conductor is ws acting along the y–axis and tension T0 is acting 

along the x–axis. Hence, 

 
0

tan
T

ws
  (2.1) 

From the triangle, shown in Fig. 2.1, we can also write the following relations  
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dx

dy
tan  (2.2) 

and 
H

ws

T

T

dx

dy y


0

    as    HT 0  (2.3) 

where H is a horizontal tension. Let us suppose ds is a small portion along the conductor from 

the point P, and dx and dy are the components along x and y. Then 

 222 )()()( dydxds   (2.4) 

or 
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






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Thus, 
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1
H

sw

ds
dx



  (2.6) 

Integrating (2.6) with respect to s yields (2.7) 

 K
H

ws

w

H
x  arcsinh  (2.7) 

where K is a constant of the integration. From the initial conditions, at s=0, x=0, then we get 

K=0 (at point O). Therefore, (2.7) becomes 

 
H

ws

w

H
x arcsinh  (2.8) 

or 
H

wx

w

H
s sinh  (2.9) 

From (2.3), dy/dx can be expressed as 

 
H

ws

dx

dy
  (2.10) 

Substituting (2.9) into (2.10) gives (2.11) 

 
H
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H
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w

H

H

w
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sinhsinh   (2.11) 

Integrating (2.11) with reference to x, we get 

 B
H

wx

w

H
y  cosh  (2.12) 

where B is the constant of the integration. From the initial conditions, when x=0, y=0, so that 

 
w

H
BB

w

H
         0  (2.13) 
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Thus, the equation of the curve in Fig 2.1 is given by (2.14). 

 
w

H

H

wx

w

H
y  cosh  (2.14) 

After replacing the curve in a way that its vertex is at the point (0; H/w)=(0; c), the final 

equation for the catenary curve is obtained.  

 
H

wx

w

H
y cosh  (2.15) 

The equation (2.15) is widely applied in the following sections for deriving the new 

expressions applicable in OHL design. The curve of (2.15) is shown in Section 2.3, as well as 

its replacement in order to define the equation for the conductor curve, which is usable for the 

practical determination of the conductor height at any point of the span. 

Regarding to a sag–tension calculation of the conductor [4], professional literature gives a 

well explained procedure. However, for describing the conductor curve the coordinate system 

is generally used in a way that the origin is set at the vertex point of the conductor curve, so 

the distance toward the left–hand or right–hand side support of the span is measured from the 

vertex, in both directions with a positive sign. This method is not suitable for extensive 

mathematical analysis of the conductor curve, and also not optimal for OHL design, for 

instance, because of the fact that the height of the vertex of the conductor curve is never zero. 

For these reasons this work proposes a strictly mathematical approach, applying a coordinate 

system in a way that an origin is set on the line which goes through the left–hand side support, 

on the elevation of the bottom of the lower–positioned support of the span. The latter 

condition prevents the height of any support point from being negative, even in sharply 

inclined spans. The y–coordinate of the conductor curve presents the conductor height related 

to the x–axis, but the x–coordinate presents a horizontal distance from the left–hand side 

support. The heights of the support points are not generally the support heights (but they can 

be), it means that the proposed method also bears the use of the supports of different heights. 

Such an approach makes the application of many mathematical techniques easy, which can 

contribute to a more accurate OHL design. 

 

This chapter is built as follows. After an overview of related research, which is briefly given 

in Section 2.2, the equation for the catenary conductor curve is derived using the coordinate 

system as it is explained above. Section 2.4 deals with the sag equation and the determination 

of the maximum sag’s location, and also provides special formulas for computing the 

characteristic sags of the catenary. Section 2.5 introduces the special cases of inclined spans, 
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while Section 2.6 shows equations for the conductor and the sag curves in a simplified case of 

an inclined span called levelled. A practical application of the developed equations and an 

analysis of the catenary on a rising span inclination are presented in Sections 2.7 and 2.8 

respectively. The last section in this chapter gives a short conclusion and summarizes the 

novel results. 

 

2.2  Related Research 

A catenary based calculation for OHL design is widely available in professional literature. 

The basis of the proposed procedure is generally the same in most publications, but there are 

also some ones which use an uncommon approach. In the following, some studies are briefly 

cited from both mentioned categories. 

 

Deriving the equation of a catenary is well available and frequent in literature; for instance in 

[36–38]. When planning overhead lines the mentioned equation has to be appropriately used 

in order to define the equation for the conductor curve. Generally, the catenary curve is 

replaced so that its vertex is located at the origin (explained in Section 2.3) and the equation 

of that curve is in use, as it is applied in [35,39]. It is very practical in the case of a level span 

since the maximum sag then can be obtained without the sag equation, by substituting x=S/2 

into the equation of the replaced curve. Computing the conductor sag at any point within the 

span is also a relatively simple task when the support points are on the same elevation. On the 

other hand, in the case of an inclined span the determination of the equations for the 

conductor and the sag curves is more complicated. Some studies which discuss the spans with 

the support points on the different elevation are [40–42]. These publications present the 

completion of an inclined span to a longer level one, which consists of two inclined sub–

spans. Both curves in these sub–spans are parts of the same catenary; therefore their 

parameters are the same. This way the initial task is transformed into a much simpler one. An 

important result obtained by this method is the horizontal distance of the catenary’s vertex 

point from the lower support point. It can be used for defining the equation for the conductor 

curve. 

 

Paper [43] is also one of those concerned to inclined spans. The author presents the so called 

Newton–Raphson sag method for calculating the sag and the horizontal tension at the lowest 

point of a conductor supported at unequal heights. The method is based on an iterative 

procedure and is also applicable to a conductor supported at equal heights. 
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The instructions for determining the sag in an inclined span from the given sag in a level one 

by the use of 1/cosψ multiplier can be found inter alia in [44–46]. The publication [47] 

mentions that the use of this multiplier results an approximate calculation. 

 

In comparison to the methods mentioned above, the new approach for determining the 

equations for the conductor and the sag curves, which is detailed in this chapter, avoids the 

use of 1/cosψ and the presumption that the maximum sag of the catenary in an inclined span 

is located at a mid–span, as it is in the case of a level span, and provides a universal sag 

equation for the sag calculation at any point of the span. Another essential difference is in the 

way of the replacement of the catenary curve in the coordinate system. According to the new 

approach, the origin is never located at the catenary’s vertex point. 

 

The following two papers concerned to the catenary conductor equation should also be 

mentioned as these are unique each in their own way. 

 

Paper [28] presents the determination of the equation for the catenary conductor curve from 

the survey data. The method described employs the least–squares criterion for curve fitting, 

and uses the iterative algorithm to solve for the required parameters. Input data points are 

(0;0), (x1;y1), (x2;y2),…, (xn;yn) where (0;0) is the left–hand side support point and (xn;yn) is the 

right–hand side support point. Thus, the two support points and a number of the conductor’s 

points along the span are necessary to obtain the catenary equation. The author explains the 

usability of the presented method from both the line design engineer’s point of view and the 

surveyor’s point of view. The origin of the coordinate system is set at the left–hand side 

support point.  

 

Paper [49] uses a specific approach, which differs from the previous ones mentioned above, 

providing a transcendental equation and proposes its solving by the use of a scientific 

calculator because it cannot be solved analytically. The author also mentions the catenary 

approximation by a parabola, which is very frequent in the existing literature: „when the 

supports of a catenary are at different elevations, the mathematical complexity precludes a 

theoretically correct solution, and a parabolic approximation is the recommended approach”. 

 

Finally, [50] has to be mentioned. This book widely discusses overhead lines, but also deals 

with sag–tension calculation, and numerous other topics in connection with electrical 

conductors. 
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2.3  Equation for the Catenary Conductor Curve 

The main goal of this section is the determination of the equation for the catenary conductor 

curve using the following input data: span length, heights of the support points related to x–

axis and the catenary parameter. The shape of the catenary depends on this parameter c > 0. 

An increase in the catenary parameter causes the catenary curve to become shallower and the 

sag to decrease [4]. For a conductor with no wind and no ice, the catenary parameter is the 

ratio of the horizontal tension H (given in N/mm2 or daN/mm2) to unite the mass of the cable 

w (given in N/mm3 or daN/m,mm2), i.e. c =H/w (given in metres) [51]. The catenary 

parameter typically has a value in the range of 500 – 2000 metres for most transmission lines 

under most conditions [4].  

 

2.3.1  Basic Equation for the Conductor Curve 

The basic catenary equation is expressed by (2.16) and its curve, y1, is illustrated in Fig. 2.2. 

   ,      cosh1 x
c

x
cy  (2.16) 

It can be seen that the vertex of the catenary curve y1 is located at point (0;c). If y1 curve is 

replaced so that its vertex is set at the origin, the equation of the replaced curve, y2, is then 

given by (2.17). 

   ,        cosh2 xc
c

x
cy  (2.17) 
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Fig. 2.2:  Catenary curves 
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In order to present the conductor curve in a mathematically convenient coordinate system for 

OHL design, the catenary curve y2 has to be appropriately replaced both horizontally and 

vertically, as it is shown in Fig. 2.3. The inclined span has been deliberately chosen instead of 

the level one, so the derived equation will be universal. 
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Fig. 2.3:  Catenary conductor curve in an inclined span 

 

 

The following symbols are used in Figure 2.3: 

 

A(0;h1)  –  left–hand side support point 

B(S;h2)  –  right–hand side support point 

MIN(xMIN; yMIN)  –  catenary’s low point 

C(xc; yc)  –  conductor’s point with a maximum sag 

S  –  span length 

Dmax  –  maximum sag 

y(x) –  conductor curve (catenary) 

yline(x) –  chord, straight line between the support points 

ψ  –  angle of the span inclination. 
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The basic equation for the conductor curve on the interval [0,S] shown in Fig. 2.3 is the 

following: 

  Sxyc
c

xx
cxy MIN

MIN ,0        cosh)( 


  (2.18) 

This equation is also expressible by square of the hyperbolic sine function as (2.19).  

  Sxy
c

xx
cxy MIN

MIN ,0       
2

sinh2)( 2 


  (2.19) 

Notice that cosh(x) and sinh2(x) are both even functions, while sinh(x) is an odd one. Hence, 

cosh(–x)=cosh(x) and also sinh2(–x)=sinh2(x), but sinh(–x) ≠ sinh(x). The basic expressions for 

functions cosh(x) and sinh2(x) are as follows: 
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Thus, equations (2.18) and (2.19) have their equivalent versions in exponential form given by 

(2.22) and (2.23). 
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All four equations (2.18), (2.19), (2.22) and (2.23) are universal, i.e. they can be applied in 

inclined and level spans as well, but for their concrete usage the vertex point (marked with 

MIN) has to be determined previously. In Fig. 2.3 it is the lowest point of the curve. In 

comparison to the parabolic (quadratic) equation for the conductor curve there is a significant 

difference, since it can be defined even without knowing the vertex point of the conductor 

curve when the maximum sag of the parabola is given (see Chapter 4).  

 

2.3.2  Determining the Vertex Point and the Final Catenary Equation 

The coordinates of the catenary’s vertex point can be determined on the basis of the following 

input data: S, h1, h2, c. By points A and B, we can write two equations (2.24) and (2.25) in two 

unknowns, then the first equation has to be subtracted from the second one. 
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By the application of identity (2.27) [52] xMIN can be defined as (2.29) [4,53–56]. 
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Using (2.29), yMIN is obtained from (2.24) and transformed into (2.32). 
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Since xMIN and yMIN are determined, the basic equation (2.19) for the conductor curve can be 

completed to (2.33), whereas the final catenary equation is given by expression (2.34). The 

actual interval is [0,S]. 
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With the help of the previous equation the conductor height related to x–axis can be computed 

at any point of the span. Since the terrain within the span frequently differs from x–axis, the 

height of the terrain related to x–axis has to be taken into account when computing the ground 

clearance of OHL. Another important usage of equation (2.34) is drawing the conductor 

curve. 
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The vertex point of the catenary is generally the lowest point of the conductor. However, 

there are special cases of inclined spans when the vertex is out of the span and hence differs 

from the lowest point of the conductor, in their location. The latter point is then positioned at 

the lower support point of the span, but the coordinates of the catenary’s vertex are still given 

by (2.29), (2.32). However, the equation (2.34) is applicable in any case, so it proves its 

universal usability. 

 

2.4  Sag Equation and its Use 

The conductor sag is the distance measured vertically from the conductor to the straight line 

(chord) joining two support points of a span. Actually the sag varies on the interval of the 

span, i.e. increases from zero to maximum, then decreases to zero, going from the left–hand 

side support to the right–hand side one. It can be appropriately described by the equation for 

the sag, D(x), as the function of x, where x varies from zero to the span length, x[0,S]. The 

curve of D(x) is called here a sag curve and is shown in Fig. 2.4. The sag value at some point 

within the span is a vertical distance from the x–axis to the sag curve. 

 

Distance

S
a
g

 D ( x )

x C S0

 ( x c ; D max )
D max

 
Fig. 2.4:  Sag curve 

 

Differently to the conductor curve, which has the low point, the sag curve has the maximum 

point. The coordinates of the latter are xc and Dmax. 

Some literature identifies the sag curve with the conductor curve even though they have own 

separate equations. It is mathematically incorrect according to the explanation given above. 

However, the vertical distance measured from the straight line to the conductor curve at some 

point of the span is equal with the vertical distance measured from the x–axis to the sag curve 

at the same point of the span. The actual use of the sag equation is a calculation of the sag at 

an arbitrary point of the span. It is necessary for example, to obtain the clearance over the 

conductors at some points within the span. 
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2.4.1  Derivation of the Sag Equation 

The equation for the sag curve (shortly called as sag equation), D(x), can be derived by the 

use of the equation for the conductor curve. For this purpose, firstly the equation for the 

straight line, yline(x), passing through the support points A and B has to be defined on the 

interval [0,S], then subtract (2.34) according to (2.36). The result provided is the sag equation, 

which is usable for the sag calculation at any point of the span. 
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Besides the sag calculation, (2.37) can be applied for determining the location of the 

maximum sag in a span, and also for defining special formulas for the following characteristic 

sags of the catenary conductor curve: 

 Maximum sag Dmax 

 Mid–span sag D(S/2) 

 Low point sag D(xMIN), where 0 ≤ xMIN ≤ S. 

 

2.4.2  Location of the Maximum Sag in a Span 

Finding the first derivative of (2.37) and considering 2sinhx·coshx=sinh2x [52], then solving 

equation (2.39), the location of the maximum sag in a span is obtained and given by (2.42). 
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From (2.42) it is obvious that the maximum sag of the catenary in an inclined span is not 

located at a mid–span, but it is moved toward one of the two support points. Now there is a 

question whether it is moved toward the higher or the lower one. The answer to this question 

is given below without the use of numerical examples, but strictly analytically. 

Denoting the second summand in (2.42) with q yields expression (2.43): 

 q
S

xC 
2

 (2.43) 

Now let us assume that the maximum sag is moved from the mid–span toward the higher 

support point and that the right–hand side support point is higher than the left–hand side one, 

i.e. assume that relation (2.44) is valid and then check it mathematically step by step. 

If    0              21  qhh         (2.44) 

The initial conditions are given: S>0, c>0, h1>0, h2>0. The main steps for checking the 

validity of the assumption given by (2.44) are shown in the following lines: 
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The inverse hyperbolic sine (see Fig. 2.5) is a monotonic, strictly increasing function [57], so 

                              if    )(arcsinh)(arcsinh            1212 xxxx        (2.47) 
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Fig. 2.5:  Curve of arcsinh(x) 

 

Applying (2.47) in (2.46) gives (2.48), which can deduce (2.50) 

 
 cSc

hh

S

hh

2/sinh2

1212







 (2.48) 

 
 cScS 2/sinh2

11


  (2.49) 



 

39 

  cScS 2/sinh2/   (2.50) 

Taking into consideration relations (2.51) and (2.52), it can be stated that the previous one is 

valid. 

 02/ cS  (2.51) 

    if    xxx sinh              0          (2.52) 

This way the validity of the assumption (2.44) is also proved. The same process applied for 

cases h1>h2 and h1=h2 gives further two relations: 

if    0              21  qhh         (2.53) 

if    0              21  qhh         (2.54) 

Thus, the above question of the movement of Dmax has been satisfactory answered. 

Relation (2.54) refers to a level span when there is no movement of Dmax. Summarizing 

(2.44), (2.53) and (2.54) the final conclusion in connection with the location of Dmax related to 

the mid–span, proved analytically here, is the following: 

The maximum sag of the catenary conductor curve in a level span is located at a mid–span, 

but in an inclined span it is moved from a mid–span toward a higher suspension point. 

This is an essential difference in comparison to the parabola, since the maximum sag of the 

parabolic conductor curve is always located at a mid–span, in level and inclined spans as well. 

This feature effectively simplifies the parabola based algorithms for overhead line design. 

 

2.4.3  Characteristic Sags 

Since xC is obtained, it can be used to determine the maximum sag (2.57). The main steps of 

the deduction are the following: 
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The previous expression is a formula for calculating the maximum sag of the catenary 

conductor curve in an inclined span. Similarly, formulas (2.59) and (2.61) for the other 

characteristic sags can be defined as follows. 
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Mid–span sag: 
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Low point sag (sag at the lowest point of the conductor): 
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Considering the fact that the conductor sag is defined only within the span, the previous 

formula concerns to all spans where xMIN[0,S]; the lowest point of the conductor and the 

vertex point have then the same location. In these cases the low point sag is in fact identical 

with the vertex point sag. The term low point sag is frequent in literature and that is why it is 

also used here, instead of the term vertex point sag. The adequate clarification can be done 

with the following five relations taking into consideration that in some cases xMIN as x–

coordinate of the vertex point may be outside the span. 

 If   MINMIN xDx         0   is not defined (2.62) 

 If    max)2/(0        2/0 DSDxDSx MINMIN   (2.63) 

If    max        2/ DxDSx MINMIN                                               (2.64) 

 If      0 2/         2/ max  MINMIN xDSDDSxS  (2.65) 

 If   MINMIN xDSx            is not defined (2.66) 

Relations (2.62) and (2.66) correspond to special cases of inclined spans (explained in Section 

2.5) where the vertex point is out of the span. 
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2.5  Special Cases of Inclined Spans 

In practice, in most spans the vertex point of the catenary curve and the lowest point of the 

conductor are the same (like in Fig. 2.3), and in that case xMIN [0,S]. It has to be mentioned 

that the conductor curve is in fact part of the mathematical catenary curve. They both have the 

same equation, only their domains differ. While the conductor curve is defined on the interval 

[0,S], the domain of the mathematical catenary curve is an open interval (–∞,+∞). Notice that 

the lowest point of the conductor cannot be out of the span, but the vertex point can. Thus, the 

locations of these two points may differ. Fig. 2.6 shows such a special case of an inclined 

span with xMIN < 0. 
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Fig. 2.6:  Special inclined span with xMIN  < 0 

 

In this case the lowest point of the conductor (here denoted by M) is identical with the left–

hand side support point of the span. In order to present this rare case appropriately, the 

catenary curve is shown on the interval [2xMIN – S, S]; it is drawn by a dashed line out of the 

span (i.e. on the interval [2xMIN – S, 0]), while the conductor curve is drawn by a soft line on 

the interval [0, S]. In this case xMIN < 0 and h1 < h2. There is also another type of the special 

case of an inclined span, when xMIN > S and h1 > h2. It is shown in Fig. 2.7, where the catenary 

curve is shown on the interval [0, 2 xMIN] and it is drawn by a dashed line out of the span (i.e. 

on the interval [S, 2 xMIN ]). On the other hand, the conductor curve is drawn within the span, 

by a soft line. 

2 
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Fig. 2.7:  Special inclined span with xMIN  > S 

 

It is important to emphasize that the coordinates of the vertex point defined by expressions 

(2.29) and (2.32) are usable in all possible cases, i.e. in both special and classical inclined 

spans, but also in level ones. This proves the universality of the mathematical approach 

applied in this work which sets the origin of the coordinate system on the line of the left–hand 

side support. 

The common characteristic of the introduced special inclined spans is the following: when the 

vertex point is located out of the span, the location of the lowest point of the conductor is at 

the lower support point of the span. The sag value equals zero at that point. 

Taking into consideration the above discussed, the inclined spans can be divided into two 

groups: 

 Classical inclined spans where the vertex point and the low point have the same location 

 Special inclined spans where the vertex point and the low point differ in their location. 

Logically, each of two groups has two types of the span, h1 < h2 and h1 > h2. 

 

2.6  Equations for Conductor and Sag Curves in a Level Span 

In a level span the support points are on the same elevation (h1=h2=h). Actually, it is a 

simplification of an inclined span. In this special case the equations for the conductor curve 

(2.67) – (2.70) are much simpler than the adequate ones in an inclined span, since the lowest 

point (2.71) of the conductor is located at a mid–span. 
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The equation for the conductor sag in a level span is given by expressions (2.72) – (2.75), 

while the formula for the calculation of the maximum sag is (2.76). 
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2.7  Practical Application of the Derived Equations 

This section deals with a practical use of the new equations for the conductor and the sag 

curves, and also the special formulas for characteristic sags of the catenary. Two numerical 

examples of high voltage OHL have been shown for this purpose. Inclined spans have been 

applied in order to find out the direction of the movement of the maximum sag related to the 

mid–span, i.e. to its location in a level span. This way the result provided analytically in 

Section 2.4.2 can be proved numerically. Besides, two examples also show how to calculate 

the conductor height related to some point, which does not lie on the x–axis. The input data in 

the first of the two examples have been taken from [41], but the height of the left–hand side 

support point is added as an additional datum which is necessary for calculations by the use of 

the mathematical approach shown in this work. The second example is a mirror image of the 
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first one; together they present the logic and usability of the new method well. The height 

difference between the support points is significant (200 metres), in one example the left–

hand side support point is lower, while in the other example it is higher than the right–hand 

side support point. In practice the inclined span is a more complicated task, while the level 

span is considered to be a simple one. 

Using the given input data the following equations, coordinates, heights and distances have 

been determined in both examples: 

 Equation for the straight line connecting the support points, yline(x) 

 Equation for the conductor curve, y(x) 

 Equation for the sag curve, D(x) 

 Conductor height related to the given point K(xK ; yK) 

 Location of the maximum sag related to a mid–span 

 x–coordinate of the vertex point, xMIN 

 y–coordinate of the vertex point, yMIN 

 Distance between the vertex point and the right–hand side support point, S – xMIN 

 Conductor sag at the vertex point, D(xMIN) 

 Location of the maximum sag, xC 

 Maximum sag, Dmax 

 Distance xC – S/2. 

The results and the graphs of the two examples have been presented side by side in order to 

show well that the two graphs are mirror images of each other, and also to confirm the 

usability of the developed new equations for the conductor and the sag curves in different 

span types. 
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Example 2.1:  Inclined span (h1<h2) 

 
Table 2.1:  Input data in Example 2.1 

S [m] h1 [m] h2 [m] c [m] xK [m] yK [m] 

700 50 250 1000 550 105 

 

The equation for the straight line connecting the support points: 

  700,0        50285714.0)(  xxxyline
 (2.77) 

The equation for the conductor curve:  

  700,0        292456.47
102

570691.73
sinh102)(

3

23 



 x

x
xy  (2.78) 

The equation for the sag curve:  

  700,0        707544.2
102

570691.73
sinh102285714.0)(

3

23 



 x

x
xxD  (2.79) 

The conductor height related to point K: 

 m 947963.57105)550()(  yyxyh KKK
  

The location of the maximum sag related to a mid–span:  2/SxC  . 

 
Table 2.2:  Results of Example 2.1 
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Fig. 2.8:  Conductor curve in Example 2.1 

xMIN [m] 73.570691 yMIN [m] 47.292456 

S – xMIN [m] 626.429309 D(xMIN) [m] 23.727742 

xC [m] 355.533930 Dmax [m] 64.272969 

xC – S / 2 [m] 5.533930 hK [m] 57.947963 
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Example 2.2:  Inclined span (h1>h2) 

 
Table 2.3:  Input data in Example 2.2 

S [m] h1 [m] h2 [m] c [m] xK [m] yK [m] 

700 250 50 1000 150 105 

 

The equation for the straight line connecting the support points: 

  700,0        250285714.0 )(  xxxyline
 (2.80) 

The equation for the conductor curve: 

  700,0        292456.47
102

429309.626
sinh102)(

3

23 



 x

x
xy  (2.81) 

The equation for the sag curve: 

  700,0        707544.202
102

429309.626
sinh102285714.0 )(

3

23 



 x

x
xxD  (2.82) 

The conductor height related to point K: 

 m 947963.57105)150()(  yyxyh KKK
  

The location of the maximum sag related to a mid–span:  2/SxC  . 

 
Table 2.4:  Results of Example 2.2 
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Fig. 2.9:  Conductor curve in Example 2.2 

xMIN [m] 626.429309 yMIN [m] 47.292456 

S – xMIN [m] 73.570691 D(xMIN) [m] 23.727742 

xC [m] 344.466100 Dmax [m] 64.272969 

xC – S / 2 [m] –5.533930 hK [m] 57.947963 
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Considering the above results the maximum sag in inclined span is located near the mid–span 

and is closer to the higher support point. This way the analytically provided conclusion from 

Section 2.4.2 has been confirmed numerically here. | xC – S/2 | = 5.53 metres in both examples. 

 

2.8  Analysis of the Catenary on Rising Span Inclination 

Special features of the catenary conductor curve and also some differences in comparison to 

the parabolic conductor curve can be provided by analysing the catenary when the span 

inclination increases, while the span length remains unchanged. The span inclination changes 

with Δh=h2–h1. In order to perform the mentioned analysis, a practical numerical example is 

shown with one level span and two inclined ones. The catenary parameter, c, is common 

datum in all spans. The height of the left–hand side support point, h1, remains unchanged, but 

the height of the right–hand side support point, h2, is different in each case (see Table 2.5). 

This way the same catenary is presented with different span inclinations (i.e. with different 

Δh). In other words, all three conductor curves are parts of the same catenary curve. 

 

Example 2.3:  One level span and two inclined spans 
 

Table 2.5:  Input data in Example 2.3 

Input 

data 

Case 1 

h2 = h1 

Case 2 

h2 = 2h1 

Case 3 

h2 = 3h1 

S [m] 700 700 700 

h1 [m] 100 100 100 

h2 [m] 100 200 300 

c [m] 1000 1000 1000 
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Fig. 2.10:  Conductor curves in Example 2.3 

 
Table 2.6:  Calculated maximum sags and their locations in Example 2.3 

Results Case 1 Case 2 Case 3 

xC [m] 350 352.84718 355.53393 

Dmax [m] 61.87782 62.48522 64.27297 

 

Based on Fig. 2.10, it is evident that while the MIN point moves toward the lower support 

point, the maximum sag moves toward the higher one when the span inclination (or Δh=h2–

h1) increases. It is also seen from Table 2.6 that the maximum sag value is higher in an 

inclined span than in a level one, and grows on rising Δh. This is a significant difference in 

comparison to the parabola because its maximum sag does not vary when Δh changes. For 

this reason 1/cosψ multiplier is used to increase the parabola sag in an inclined span. It is 

discussed in details in Chapter 4, while the use of 1/cosψ in the case of the catenary is 

examined and evaluated in Chapter 3. 

Further conclusions in connection with the catenary sag can be drawn by using the sag 

equations (2.83), (2.84) and (2.85). These are obtained by (2.73) and (2.37), and concern to 

the three conductor curves shown in Fig. 2.10. 

  700,0        877819.61
102

350
sinh102)(

3

23

1 



 x

x
xD  (2.83) 

  700,0        231019.22
102

471540.210
sinh102142857.0 )(

3

23

2 



 x

x
xxD  (2.84) 
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  700,0        707544.2
102

570691.73
sinh102285714.0 )(

3

23

3 



 x

x
xxD  (2.85) 

The following tables are created applying the previous equations and are constructed for 

making a comparison of D(x) and D(S – x) when 0 ≤ x ≤ S/2, in three actual cases with 

different Δh. In fact the results present the sags on the same distance measured in the positive 

direction from the left–hand side support and also in the negative direction from the right–

hand side support. The tables have been structured in a bit unusual way in order to compare 

the obtained results easily. 

 

Table 2.7:  D1(x) and D1(S – x) 

x 

[m] 

D1(x) 

[m] 

S – x 

[m] 

D1(S – x) 

[m] 

0 0 700 0 

50 16.539 650 16.539 

100 30.465 600 30.465 

150 41.811 550 41.811 

200 50.607 500 50.607 

250 56.874 450 56.874 

300 60.628 400 60.628 

350 61.878 350 61.878 

  

Table 2.8:  D2(x) and D2(S – x) 

x 

[m] 

D2(x) 

[m] 

S – x 

[m] 

D2(S – x) 

[m] 

0 0 700 0 

50 16.471 650 16.930 

100 30.409 600 31.115 

150 41.831 550 42.607 

200 50.748 500 51.453 

250 57.164 450 57.692 

300 61.078 400 61.360 

350 62.481 350 62.481 

 
 

Table 2.9:  D3(x) and D3(S – x) 

x 

[m] 

D3(x) 

[m] 

S – x 

[m] 

D3(S – x) 

[m] 

0 0 700 0 

50 16.715 650 17.635 

100 30.930 600 32.343 

150 42.643 550 44.195 

200 51.848 500 53.258 

250 58.532 450 59.589 

300 62.677 400 63.240 

350 64.257 350 64.257 

  
Analysing the previous results, it is obvious that identity D(x) = D(S – x) when 0 ≤ x ≤ S/2 is 

valid only in the first case of the three ones shown above, but in other two cases it is not, i.e. 

D(x) ≠ D(S – x) when 0 < x < S/2. The first case is a level span, while the others are inclined 

ones. This way the following very important feature of the catenary is identified: the sag 
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function of its curve replaced from interval [0, S] to [–S/2, S/2] is an even function in the case 

of a level span, but in an inclined span it is neither an even nor an odd function. It is expressed 

mathematically as follows: 

 



























2
        

22

)cat()cat()cat( S
xD

S
xD

S
xD levlevlev

  is an even function (2.86) 

 



























2
        

22

)cat()cat()cat( S
xD

S
xD

S
xD incincinc

  is not an even function (2.87) 

Furthermore, due to (2.88) the latter is not an odd function either. 

 


















22

)cat()cat( S
xD

S
xD incinc

 (2.88) 

Sag curve D(x) from Fig. 2.4 and its replacement to interval [–S/2, S/2] are shown in Fig. 2.11. 

The replaced curve is denoted by D( x+S/2). 

Distance

S
a
g

 D ( x )

x C S0

 ( x c ; D max )

– S / 2

 D ( x+S/ 2)

 ( x c –  S  / 2; D max )

 
Fig. 2.11:  Curves D(x) and D(x+S/2) 

 

Taking into consideration the above discussed, it can be concluded that the sag curve in a 

level span has the exact shape of an inverted catenary, while in an inclined span it is very 

similar to an inverted catenary. When the span inclination (or the difference in elevation of 

the support points, Δh) increases, then the sag curve differs better from an inverted catenary. 

The difference between the sag curves in inclined and level spans is not big enough to be seen 

well on a common diagram, but it is also not negligible from the aspect of OHL design, 

especially when Δh is significant. The comparison of the sag curves in inclined and level 

spans is discussed in details in Chapter 3. 

 

2.9  Summary of the Chapter 

Chapter 2 widens the catenary based calculation using a given catenary parameter, c, as one of 

the input data besides the span length, S, and the heights of the support points related to x–

axis, h1 and h2. The conductor curve is presented in the coordinate system in such a way 



 

51 

which is much more practical than the way that it is generally used in literature. Setting the 

origin on the line of the left–hand side support instead of the catenary’s vertex point is more 

natural for OHL designers since the distances in a span are usually measured from the left–

hand side support, when planning OHL, but not from the vertex point. Due to the new 

approach, a universal equation for the conductor curve has been derived, which efficiently 

covers all types of the spans ensuring the determination of the conductor height and also 

drawing the conductor curve easily, with no limitations caused by the span inclination. 

 

A universal sag equation derived by applying the new equation for the conductor curve is 

usable not only for determining the maximum sag, but also the sags at the low point and the 

mid–span, or any other point of the span. On the basis of the provided special sag formulas, 

the mentioned three characteristic sags of the catenary are different in an inclined span, but 

they are all equal in a level span. 

 

The new approach introduced in this chapter also gives an opportunity for a qualitative 

analysing of the catenary conductor curve on rising span inclination (or difference in the 

support points elevation, Δh). This way some specific differences between the catenary and 

the parabola, important from the aspect of OHL design, can be adequately discussed. 

 

The practical applications of the new results are presented widely in Section 2.7 and partly in 

Section 2.8. The catenary based calculation ensures an exact determination of the conductor 

height and the sag, avoiding errors caused by the approximation of the catenary by a parabola. 
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3   INCLINED SPAN MODELLING BY A GIVEN LEVEL SPAN 

3.1  Introduction 

As the support points in a span can be located on the same or different elevation, all spans are 

divided into two basic groups, level [58–60] and inclined spans. In some literature the 

inclined spans are called non level spans [58] or sloping spans [47]. Taking into consideration 

that the supports (or towers) used for constructing OHL usually have the same height, level 

spans are commonly present in a flat terrain (see in Fig. 3.1), while inclined spans can be 

found in a hilly terrain. However, inclined spans also occur in a flat terrain when two adjacent 

towers have different heights. The latter case is shown in Fig. 3.2, where the height difference 

between the support points is visibly significant. Considering the elevation of the support 

points, the basic difference between level and inclined spans is well seen in these two figures. 

An example of an inclined span in a hilly terrain is shown in Fig. 3.3. 

 

 
Fig. 3.1:  Level spans in a flat terrain 

 

 
Figure 3.2:  Inclined span in a flat terrain 
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Fig. 3.3:  Inclined span in a hilly terrain [61] 

 

The equations for the conductor curve and the sag in a level span can be obtained if the 

following input data are known: span length, S, catenary constant, c and height of the support 

points, h1. Besides the freely chosen vertical distance (Δh) between the support points, the 

listed data are sufficient for determining the equations for the conductor curve and the sag 

concerned to a formed inclined span. It is shown by using the new method called inclined 

span modelling by a given levelled span (or shortly inclined span modelling). A given level 

span here means that S, c and h1 data are given. While modelling, these data have to remain 

unchanged. The conductor curve is considered here as a catenary and the following conditions 

have to be fulfilled: 

 Equal catenary parameter, c, in both level and inclined spans, i.e. clev = cinc, 

 Equal span length, S, in both level and inclined spans, i.e. Slev = Sinc. 

These conditions practically mean that the conductor curves in level and inclined spans are in 

fact different parts of the same catenary, but the span length is equal in these two cases. 

 

Because of the specificity of the actual theme, the following symbols are used in this chapter: 

ylev(x) – equation for the conductor curve in a level span 

yinc(x) – equation for the conductor curve in an inclined span 

yline lev(x) – equation for the straight line connecting the support points in a level span 

yline inc(x) – equation for the straight line connecting the support points in an inclined span 

Dlev(x) – sag equation in a level span 

Dinc(x) – sag equation in an inclined span 
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Dlev(S/2) – mid–span sag in a level span 

Dinc(S/2) – mid–span sag in an inclined span 

Dlev max – maximum sag in a level span 

Dinc max – maximum sag in an inclined span 

ΔD(x) – equation for the difference between the sags in inclined and level spans 

ΔD(S/2) – difference between the mid–span sags in inclined and level spans 

ΔDmax – difference between the maximum sags in inclined and level spans. 

 

The structure of this chapter is as follows. After a short overview of related research, which is 

given in Section 3.2, the inclined span modelling method is presented in details in Section 3.3. 

Deriving the difference between Dinc(x) and Dlev(x), its analysis and practical application are 

all shown in Section 3.4 as well as the examination of the use of 1/cosψ multiplier. Section 

3.5 deals with the analysis of the existing formula for the maximum sag available in some 

earlier literature, then the relation between the maximum sags of the catenary in inclined and 

level spans is derived. The latter section also shows a practical application of the new relation. 

Section 3.6 gives a short conclusion and a summary of the novel results. 

 

3.2  Related Research 

Since the main application of the inclined span modelling method presented in this chapter is 

derivation of the relation between the conductor sags in inclined and level spans, therefore the 

related literature is which deals with this relation. 

 

Regarding to the conductor sag in two span types the publications [62–65] contain the 

following or the corresponding statement: 

The midpoint sag in inclined span is approximately equal to the sag in a horizontal span 

equal in length to the inclined span. 

The horizontal span means here a level span, while the midpoint is a mid–span point. 

However, the above statement is not an exact relation, but an approximate one which is 

concerned to a mid–span sag only. 

 

Another relation between the sags in inclined and level spans can be found inter alia in 

[41,42,44,45,66] publications which state that the mid–span sag in a level span multiplied by 

the reciprocal of the cosine of the chord’s inclination is equal to the mid–span sag in an 

inclined span. Thus, this relation is also regarded exclusively to a mid–span sag. 
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According to paper [67] the sag in an inclined span is approximately equal to the sag of a 

level span of the same length multiplied by the secant of the inclination of the chord. The 

author provides an expression which relates to a mid–span sag and mentions that the proposed 

expression is an approximate one. Considering the fact that the secant is the reciprocal of the 

cosine function, the actual statement in fact does not differ from the previous one which does 

not use the secant function, but the reciprocal of the cosine one. 

 

The author of the publication [41] widens the previous statement and alleges that 1/cosψ 

multiplier used for the determination of the mid–span sag in an inclined span from the given 

mid–span sag in a level span can be applied not only at a mid–span point but at any other 

point of the span. In other words, this means that the sag equation in a level span multiplied 

by 1/cosψ (or secψ) gives the sag equation in an inclined span. 

 

Summarising the all above mentioned, it is evident that the relation between the sags in two 

span types in some publications is considered as an exact relation, but in some others as an 

approximate one. Furthermore, in some papers it regards only to mid–span sag, but in some 

others to a sag at any point of the span. The adequate mathematical background in connection 

with the use of 1/cosψ multiplier is not available in literature, thus the question of the real 

relation is still open. That is the reason why this chapter discusses this topic in details 

providing an exact mathematical relation and containing the examination and evaluation of 

the mentioned multiplier’s application. 

 

The expression for computing the maximum sag of the catenary in an inclined span, given in 

[41,68] has to be mentioned as well. Having analysed the proposed expression, it can be 

concluded that in fact it is the product of 1/cosψ and the maximum sag of the catenary in a 

level span. Thus, the actual expression can be considered as the relation between the 

maximum sags in inclined and level spans. It is appropriately discussed in Section 3.5 and 

also the exact mathematical relation is derived. 

 

3.3  Description of the Inclined Span Modelling Method 

In order to explain adequately the method for modelling an inclined span, four curves with 

common S and c for each one are drawn in Fig. 3.4. The angle of the span inclination is 

marked as ψ. 
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Fig. 3.4:  Curves for explaining the inclined span modelling by a given level span 

 

The initial curve is the one in a level span, drawn from point A(0;h1) to point B(S;h1). The 

equation of this curve is given by (3.1) or (3.2) and is defined on the interval [0,S]. 

 
1

2
cosh  

2/
cosh)( h

c

S
c

c

Sx
cxylev 


  (3.1) 

 
max 1  

2/
cosh)( levlev Dhc

c

Sx
cxy 


  (3.2) 

Using the previous equations, two versions of the sag equation regarded to a level span can be 

obtained in the following way: 

 
c

Sx
c

c

S
cxyhxD levlev

2/
cosh

2
cosh)()( 1


  (3.3) 

 c
c

Sx
cDxD levlev   

2/
cosh)( max 


  (3.4) 

Each of four preceding equations is a function of x, so it can be applied at any point of the 

span. 

Extending the curve of ylev(x) on the interval (S,S+q] and omitting its part on the interval [0,q) 

creates the conductor curve in an inclined span drawn from point M(q;yM) to point N(S+q;yN), 

where 0 < q < S, yM = ylev(q) and yN = ylev(S+q). This way the created curve has the same 

equation as the initial one does, but it is defined on the interval [q,S+q]: 

  SxxyAB lev ,0       )()( curve   (3.5) 
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  qSqxxyMN lev  ,       )()( curve
 (3.6) 

Note that both curves, AB and MN, are the parts of the same catenary. Thus, the catenary 

parameter is equal in two cases. Furthermore, the span length remains unchanged. 

The following step is the displacement of the curve MN so that point M is set at point A. To 

reach that, the actual curve has to be translated horizontally q units to the left, and vertically 

h1–yM units upward. The horizontal translation produces curve PR and then the performed 

vertical translation gives the final curve AQ: 

  SxqxyPR lev ,0       )()( curve   (3.7) 

  SxqyhqxyAQ levlev ,0       )()()( 1curve   (3.8) 

Both translations are made by an appropriate use of the equation concerned to a level span, 

ylev(x). The equation of the final curve drawn from point A to point Q is marked below as 

yinc(x), and is defined on the interval [0,S]. Considering (3.9) it is expressed by (3.10). 

 
c

Sq
c

c

S
cqyh lev

2/
cosh

2
cosh)(1


  (3.9) 

 
c

Sq
ch

c

qSx
cxyinc

2/
cosh

2/
cosh)( 1





  (3.10) 

The rearrange of (3.10) yields (3.11). (The complete deduction is given in Appendix 1.) 

 
1

2
sinh

2
sinh2)( h

c

q

c

Sx

c

x
cxyinc 











  (3.11) 

The next step is the determination of q=q(S,c,h1,h2), i.e. expressing q by S, c, h1 and h2. The 

quotient q/c can be obtained by using identity (3.12), see deduction in Appendix 2. 

 )()(12 qyqSyyyhhhΔ levlevMN   (3.12) 

 

 

c

S
c

hh

c

q

2
sinh2

arcsinh 12




  (3.13) 

Substituting (3.13) into (3.11) gives the final equation (3.14) for the conductor curve in a 

modelled inclined span, expressed by the given data (S, c, h1) for a level span and h2 obtained 

by h2=h1+Δh, where Δh is freely chosen. 
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Since h1 is fixed, then considering (3.12), either h2 or Δh can be freely chosen for an inclined 

span. In other words, the span inclination is defined by the choice of either h2 or Δh in our 

case. Let us mention that h1 and h2 data are considered as the heights of the support points 

related to x–axis, but not as the tower heights. 

Using (3.14), the sag equation concerned to an inclined span, Dinc(x), can be obtained as 

shown below: 

 )()( 1
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Having obtained (3.14) and (3.16), the inclined span modelling is finished. Both yinc(x) and 

Dinc(x) are defined on the interval [0,S]. 

 

As a particular form of the wide usability of the inclined span modelling method, the further 

sections of this chapter also show how it can be applied for derivation of the following unique 

relations: 

 Relation between the catenary sags in inclined and level spans, 

 Relation between the maximum sags of the catenary in inclined and level spans. 

 

3.4  Difference between Dinc(x) and Dlev(x) 

It is well known that the sag–tension calculation in inclined spans is more difficult than it is in 

level spans. Nowadays the sag–tension tables [7] are available for many different types of 

conductors, and contain the mid–span sags in level spans in dependence of the temperature. It 

causes a problem that the sag in an inclined span differs from the sag in a level span. This 

statement concerns not only to a mid–span sag but to the sag at any point of the span 

excluding the start and end points, i.e. Dinc(x) ≠ Dlev(x), 0 < x < S. That is why the available 

sag–tension tables cannot be directly applied in inclined spans. Thus, it would be very useful 

to have an exact relation between the sags in inclined and level spans in order to be able to 

calculate the first from the latter given one. This opportunity may be reached when the 

difference between Dinc(x) and Dlev(x) is known. Derivation, analysis and practical application 

of the mentioned difference are the main goals of this section. 
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3.4.1  Deriving the Equation  ΔD(x) = Dinc(x) – Dlev(x) 

Since the sag equations in level and inclined spans have been determined in the previous 

section, these can be used now to define their difference, denoted by ΔD(x). Based on (3.17) 

and considering (3.16) and (3.3), it is expressed by (3.18). (See deduction in Appendix 3.) 

 )()()( xDxDxDΔ levinc   (3.17) 
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Applying identity for hyperbolic sine function given by (3.19) [69], then considering (3.20), 

the previous equation changes into (3.21). 
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 (3.21) 
 

Using (3.21) it is possible to compute the difference between the catenary sags in inclined and 

level spans at any point of the span, when the catenary parameter is equal in both spans, as 

well as the span length. 

Let us mention that if (3.17) is transformed into (3.22) then Dinc(x) can be obtained from the 

given Dlev(x) by computing ΔD(x) with the use of (3.21). 

 )()()( xDΔxDxD levinc   (3.22) 

The previous expression can be considered as the relation between the catenary sags in 

inclined and level spans. As each part in (3.22) is the function of x, it can be applied at any 

point of the span, not only at a mid–span. This justifies the completeness of the shown 

relation. 

The special version of (3.22) concerns to a mid–span, x=S/2. According to (3.23) it is given 

by (3.24). Notice that Dlev(S/2)=Dlev max, but Dinc(S/2)≠Dinc max, and so ΔD(S/2)≠(ΔD)max. That 

is why the actual symbols are used in (3.23), but not Dlev max, Dinc max and (ΔD)max. 

 )2/()2/()2/( SDSDSDΔ levinc   (3.23) 
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 (3.24) 
 

Expression (3.23) can be simply transformed for calculating Dlev(S/2) from the given 

Dinc(S/2), and also (3.22) can be transformed for calculating Dlev(x) from the given Dinc(x), but 

these are infrequent tasks in practice. The conditions listed above (clev = cinc and Slev = Sinc) 

have to be fulfilled in this case as well. 

 

3.4.2  Analysis of ΔD(x)  

This section deals with the analysis of ΔD(x). Drawing the graph of ΔD(x) when the span 

inclination (or Δh) changes, it shows how the sag difference, its minimum and maximum 

vary. It is presented in a following numerical Examples 3.1 and 3.2. The first example has one 

conductor curve (y1) in a level span and four other ones (y2, y3, y4, y5) in inclined spans. The 

height of the left–hand side support point is identical in each of the five spans, but the height 

of the right–hand side support point is higher in each following span than in the previous one, 

as the span inclination increases. The span length and the catenary parameter remain 

unchanged in all spans. The curve of ΔD(x) has been drawn in four different cases: 

ΔD1(x)=D2(x)–D1(x),….., ΔD4(x)=D5(x)–D1(x). As it can be seen in Fig. 3.6, ΔD(x) has three 

roots (0, r and S) within the span when the span inclination is low, and ΔD(x) changes sign. 

As the span inclination increases, the root r moves toward the next nearer root, afterwards it 

does not exist. Then ΔD(x) does not change sign any more and Dinc(x)>Dlev(x). It can be 

observed from all curves in Fig. 3.6 that the value of |(ΔD)min|, if it exists on the interval (0,S), 

is not significant at all, while (ΔD)max can be significant in the case of high inclination. 

 

Example 3.2 is deliberately chosen as a mirror image of the Example 3.1 in order to 

demonstrate that the developed method is also usable in the opposite case, i.e. when the height 

of the right–hand side support point is fixed in each span, but the height of the left–hand side 

one increases. Four curves of ΔD(x) drawn in Example 3.2 are the following: ΔDI(x)=DII(x)–

DI(x),….., ΔDIV(x)=DV(x)–DI(x). The input data for the level spans in both examples are 

identical, thus D1(x)≡DI(x). 
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Example 3.1 

 
Table 3.1:  Input data in Example 3.1 
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Fig. 3.5:  Conductor curves in Example 3.1 
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Fig. 3.6:  ΔD(x) curves in Example 3.1 

Data 1 2 3 4 5 

 S [m]  800  800  800  800  800 

h1 [m]  100  100  100  100  100 

h2 [m]  100  160  220  280  340 

 c [m] 1200 1200 1200 1200 1200 
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Example 3.2 

 
Table 3.2:  Input data in Example 3.2 

Data I II III IV V 

 S [m]  800  800  800  800  800 

h1 [m]  100  160  220  280  340 

h2 [m]  100  100  100  100  100 

 c [m] 1200 1200 1200 1200 1200 
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Fig. 3.7:  Conductor curves in Example 3.2 
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Fig. 3.8:  ΔD(x) curves in Example 3.2 
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Now some important conclusions can be drawn from ΔD(x). First, let us mention the 

following evident identity: 

 0)()0()()0()()0(  SDΔDΔSDDSDD incinclevlev
 (3.25) 

Thus, ΔD(x) always has at least two roots, x1=0 and x2=S, on the interval [0,S], but taking into 

consideration Figs. 3.6 and 3.8, the third one also exists when the span inclination is not 

significant. Denoting the third root as r, we can write the following relevant relations: 

 

Case 1 (three roots): 

If  h1<h2  then: 

  rxxDxDxDΔ levinc ,0      )()(      0)(   (3.26) 

  SrxxDxDxDΔ levinc ,      )()(      0)(   (3.27) 

    
minmax DΔDΔ   (3.28) 

 

If  h1>h2  then: 

  rxxDxDxDΔ levinc ,0      )()(      0)(   (3.29) 

  SrxxDxDxDΔ levinc ,      )()(      0)(   (3.30) 

    
minmax DΔDΔ   (3.31) 

 

Case 2 (two roots): 

If  h1<h2  or  h1>h2  then: 

  SxxDxDxDΔ levinc ,0      )()(      0)(   (3.32) 

 

Returning to case 1, it is worth emphasizing that relation Dinc(x)>Dlev(x) is more dominant 

than its opposite one. Furthermore, (ΔD)max is clearly higher than |(ΔD)min|, regardless whether 

h1<h2 or h1>h2. 

 

Based on the above discussion, it can be concluded that the quotient of Dinc(x) and Dlev(x) on 

the interval (0,S) is not a constant in the case of the catenary. It is expressed by (3.33): 

 Sx
xD

xD

lev

inc  0      const.
)(

)(
 (3.33) 
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This way a special feature of the catenary has been revealed. Taking into consideration the 

adequate relation concerned to a parabola given by (4.34) in Section 4.3.2, a remarkable 

difference between the parabola and the catenary based calculations has been explored. 

 

3.4.3  Practical Application of ΔD(x) and the Inclined Span Modelling 

This section presents a practical application of ΔD(x) and also the inclined span modelling 

method through numerical examples, which use the main expressions derived in this chapter. 

The first one of the two examples deals with the sag computing at a mid–span point, while the 

other one at any other point of the span. Determining the equations for the conductor and the 

sag curves in the given level and the modelled inclined spans is shown in the first example of 

this section. 

 

Example 3.3 
 

Input data are given in Table 3.3. Using them, firstly ylev(x) and Dlev(x) are obtained, then also 

yinc(x) and Dinc(x) when the right–hand side support point is elevated with 200 metres (thus 

h2=h1+200m), but S and c data remain unchanged. In the next step, Dlev(S/2) and ΔD(S/2) are 

calculated, and then added up to get Dinc(S/2), i.e. the mid–span sag in a modelled inclined 

span. The result is checked by using (3.16) when x=S/2. Finally, the two conductor curves 

and their mid–span sags are drawn on the common diagram. The straight lines connecting the 

support points in two spans, yline lev(x) and yline inc(x), are also drawn on the same figure, to 

make the sag more visible. 

 

Table 3.3:  Data for level and inclined spans in Example 3.3 

 

 

 

 

 

 

Solution and calculations: 
 

The use of (3.1), (3.3), (3.14) and (3.16) yields (3.34) – (3.37): 
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Span S [m] h1 [m] h2 [m] c [m] 

Level 700 100 100 1000 

Inclined 700 100 300 1000 
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Inserting x=S/2=350 m into (3.35) and then the data from Table 3.3 into (3.24) give the 

following values: 
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The sum of the above two values yields the mid–span sag in a modelled inclined span, which 

has to be obtained: 

Dinc(350 m) = 61.878 m + 2.379 m = 64.257 m 

This result can be checked with the help of (3.37) obtained from (3.16). As it gives the same 

value, the correctness of the calculations has been proved.  
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The results are shown in Fig. 3.9. 
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Fig. 3.9:  Conductor curves and mid–span sags in level and inclined spans in Example 3.3 
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Example 3.4 
 

The given data for the level span are the following: S, h, c and Dlev(535 m); the latter datum is 

a sag at x=535 metres, and h1=h2=h. The change of the sag is calculated when the right–hand 

side support point is elevated with 180 metres and data S, c remain unchanged. Then the sag 

at the actual point of a modelled inclined span is determined. Finally, the conductor curves 

and the sags at x=535 metres are drawn on the common diagram. The input data are separated 

in the following tables regarding to a level and an inclined span: 

 
Table 3.4:  Known data for a level span in Example 3.4 

 

 

 
 

Table 3.5:  Known and unknown data for an inclined span in Example 3.4 

 

 

 

 

Calculations: 

 

Using (3.21), ΔD(535 m) can be calculated as follows: 
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So, Dinc(535 m) = Dlev(535 m) + ΔD(535 m) = 59.68448 m + 1.93104 m = 61.61552 m 

 

S [m] h1 [m] h2 [m] c [m] Dlev(535 m) [m] 

800  100  100  1200 59.68448 

S [m] h1 [m] h2 [m] c [m] Dinc(535 m) [m] 

800  100  280  1200 ? 
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Fig. 3.10:  Conductor curves and sags at x = 535 metres in Example 3.4 

 

Thus, the sag in an inclined span is calculated from the given sag in a level span using 

expression for ΔD(x) applied at the actual point x=535 metres. The sag difference is 1.93104 

metres. According to the graph of ΔD3(x) curve in Fig. 3.6 (Example 3.1), this value is very 

close to the maximum of ΔD3(x). 

 

3.4.4  Examination of the Use of 1/cosψ for the Catenary Based Calculation 

As it is mentioned in Section 3.2 some earlier literature proposes the use of 1/cosψ multiplier 

for computing the sag in an inclined span by a known sag in a level span. According to [41] 

the mentioned multiplier can be applied for the sag calculation at any point of the span. It is 

expressed mathematically by relation (3.38) containing ψ as the angle between the chord and 

the horizontal line: 

 SxxDxD levinc  0          )(
ψcos

1
)(  (3.38) 

Defining the span inclination, the angle ψ depends on the vertical distance between the 

support points, Δh. Taking into consideration (3.33), the quotient of Dinc(x) and Dlev(x) is not a 

constant, but according to (3.38) it is, because 1/cosψ=const. Since (3.33) is derived from the 

exact relation between Dinc(x) and Dlev(x), it means that (3.38) is an approximate relation and 

hence it produces errors in sag calculation. The absence of an adequate exact relation usable 

for a quick targeted sag calculation causes the need of the use of (3.38). In order to examine 

adequately the usability of (3.38) and thus also 1/cosψ multiplier, the mathematical 
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background is presented with the application of the exact expressions for Dinc(x) and Dlev(x) 

from Section 3.3. 

The multiplier 1/cosψ can be obtained by any of the two following expressions: 
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Using expressions (3.3) and (3.16), the equation for the sag error, denoted by E(x), is defined 

by (3.41). 

 )(
ψcos

1
)()( xDxDxE levinc   (3.41) 

Thus, the value of the actual sag error can be determined at any point within the span. 

Applying (3.39) the previous equation becomes (3.42): 
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In order to analyse E(x), five conductor curves are drawn in Fig. 3.11, one in a level span and 

four others in inclined spans. As it can be seen in Table 3.6, data S, c and h1 are common 

ones, while h2 differs in each case. This way E(x) can be analysed when the span inclination 

(or Δh) changes. The lowest points of the curves are marked as MIN 1, MIN 2,.…, MIN 5. 

 
Table 3.6:  Input data for curves in Fig. 3.11 

Data 1 2 3 4 5 

 S [m]  700  700  700  700  700 

h1 [m]  100  100  100  100  100 

h2 [m]  100  150  200  250  300 

 c [m] 1000 1000 1000 1000 1000 
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Fig. 3.11:  One curve in a level span and four others in inclined spans 

 

According to (3.43), the curve of E(x) has been drawn in four different cases. These are 

denoted by E1(x), E2(x), E3(x), E4(x) and shown in Fig. 3.12. The superscripts in (3.43) refer to 

the adequate curves and data, but note that h1
(i+1)=h1

(1) (i=1,2,3,4) here. 
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Fig. 3.12:  E(x) curves concerned to different span inclinations 

 

Considering all curves in Fig. 3.12, it can be concluded that the difference between |Emin| and 

Emax is not significant. The locations of Emin and Emax within the span are very close to S/4 and 

3S/4 respectively, when h1<h2. Furthermore, it is well seen that E(x) has two fixed roots, x1=0 

and x2=S, and between them also the third one. The latter slightly moves with the span 

inclination, toward the next nearer root, but it is always very close to the mid–span. If the 

mid–root is denoted by the symbol z, then: 
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 0)()()0(  SEzEE  (3.44) 

Since E(x) changes sign within the span, Dinc(x) is lower than (1/cosψ)·Dlev(x) in one part of 

the span, but in the other one it is higher. It is mathematically described in the following way: 

If  h1<h2  then: 
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Similarly, it can be shown that the adequate relations concerned to the other type of an 

inclined span are given as: 

If  h1>h2  then: 
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Thus, sign of the sag error on the interval (0,z) or (z,S) depends on the type of an inclined 

span, h1<h2 or h1>h2. It is worth mentioning that errors in sag calculation directly produce 

errors in clearance calculation. Hence, the use of the approximate relation given by (3.38) is 

unfavourable from more aspects. That is why the application of an exact equation for 

computing Dinc(x) given by (3.16) should be recommended instead of (3.38). 

 

3.5  Review of the Maximum Sag of the Catenary  

Whether the conductor curve is considered as the parabola or the catenary, the maximum sag 

is the most relevant among all characteristic sags (mid–span sag, maximum sag, low point 

sag) of the conductor curve. This section analyses the existing expression for the maximum 

sag of the catenary, which is available in some earlier literature, then the new unique 

expression Dinc max=Dinc max(Dlev max,S,c,Δh) has also been derived. 

 

3.5.1  Analysis of the Existing Expression for the Maximum Sag 

Expression (3.49), which is available in [41,45], regards to the maximum sag in an inclined 

span. Since its deduction has not been explained in details, it has to be appropriately analysed 

and discussed. 
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Here b is the maximum sag of the catenary in an inclined span, c presents the length of the 

straight line connecting the support points, a is the span length and finally the quotient σ/γ 

defines the catenary parameter. Expressing c by the Pythagorean Theorem and using labels 

from this chapter, (3.49) can be rewritten as: 
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The first fraction in the previous formula is in fact 1/cosψ multiplier from (3.38), while the 

remaining part of the formula presents the maximum sag of the catenary in a level span, due 

to (3.51). 
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Thus, (3.49) can be expressed in the following simplified form: 

 
max max 
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1
levinc DD 
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This formula can be considered only as an approximate one, since it evidently contains more 

mathematical inexactness. According to the conclusions from Section 3.4.4, the use of 1/cosψ 

for determining the catenary sag in an inclined span from the given sag in a level span does 

not give exact results. Moreover, since (3.52) is in fact (3.38) regarded to a mid–span, hence 

Dinc(S/2) should stay in (3.52) instead of Dinc max. It is because the maximum sag of the 

catenary in an inclined span is slightly moved from the mid–span, while in a level span it is 

not. Therefore, (3.49) cannot be an exact relation. The errors resulted by the use of (3.49) are 

not significant in spans with low inclination, but in steep spans they can be significant. 

However, the application of an exact formula given by (2.57) in Chapter 2 is recommended 

instead of (3.49) or (3.52). 

 

3.5.2  Relation between Dinc max and Dlev max 

Returning to (3.52), in Section 3.5.1 it is considered as an approximate formula for computing 

the maximum sag of the catenary in an inclined span and then the adequate exact formula has 

been proposed. Taking into account the structure of (3.52) it can also be considered as relation 

between the maximum sags of the catenary in inclined and level spans. Due to the presence of 

1/cosψ multiplier the actual relation can be only an approximate one, but not an exact. Since 
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the adequate exact relation is presently not available in literature, it is worth determining it 

here using the above explained method for modelling an inclined span. This process needs 

three steps: 

 Deriving Dinc(x) so that it contains Dlev max in the final equation 

 Finding the location of Dinc max, i.e. xC, by solving the equation (Dinc(x))’=0 

 Inserting xC into Dinc(x) to get Dinc max. 

Based on Fig. 3.4 and the discussion in Section 3.3, Dinc(x) can be derived as follows: 
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Taking into consideration (3.55) and (3.56), the final expression for Dinc(x) is given by (3.58). 
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The rearrangement of the previous equation gives (3.59): 
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Thus, the first derivative of Dinc(x) is given by (3.60). 
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Solving (3.61) yields xC: 
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Expressing q from (3.13) and substituting it into (3.66) results in (3.68). 
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The last step inserts xC into Dinc(x), according to (3.69) and (3.70), in order to get Dinc max. 

Because of its significant length the deduction is detailed in Appendix 4. The final result is 

given by (3.71). 
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 (3.71) 

This is an exact relation between the maximum sags of the catenary in inclined and level 

spans. Notice that Dinc max=Dinc max(Dlev max,S,c,Δh). Using expression for xMIN given by (2.29), 

the previous relation changes into (3.72): 
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The simplified form of (3.72) is expression (3.73) where ΔDmax=ΔDmax(S,c,Δh) presents the 

difference between the maximum sags of the catenary in inclined and level spans. If Dlev max is 

given, then Dinc max can be obtained by computing ΔDmax and adding it up to Dlev max. 

 
maxmax max DΔDD levinc   (3.73) 

The applicability of (3.71) is presented below regarding to five catenaries drawn in Fig. 3.11 

and using the input data from Table 3.6 (Section 3.4.4). Applying (3.51) and (3.71), the 

maximum sags for all catenaries drawn in Fig. 3.11 are computed and then listed in Table 3.7: 

 

Table 3.7:  Maximum sags of the catenaries drawn in Fig. 3.11 

 

 

 

 

 

 

 

 

 

 

 
 

It is evident that the maximum sag of the catenary increases with the span inclination. Let us 

mention that each of five sags has different location within the span, even though S and c are 

common data. This is an important difference in comparison to a parabola, since its maximum 

sag is always located at a mid–span independently of the span inclination. The fact that the 

maximum sags in Tables 3.7 and 2.6 are equal, verifies the correctness of relation (3.71). 

 

3.6  Summary of the Chapter 

Chapter 3 shows in details how to model an inclined span by given basic data of a level one, 

when the span length and the catenary parameter are common data. The equations for the 

conductor curve and the sag are given in level and inclined spans as well. 

 

Using the sag equations in both inclined and level spans, the exact relation between the 

conductor sags in two span types is derived. Since the relation is given as a function of x, it 

means that the sag at an arbitrary point of an inclined span can be directly calculated from the 

Curve Dlev max [m] ΔDmax [m] Dinc max [m] 

y1 61.87782 – – 

y2 – 0.15241 62.03023 

y3 – 0.60740 62.48522 

y4 – 1.35844 63.23626 

y5 – 2.39515 64.27297 
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given sag at the same point of the appropriate level span. Also, the existing approximate 

relation between the sags in inclined and level spans that can be found in some earlier studies 

is adequately discussed. Having both the new and the earlier relations, the error produced by 

the use of the approximate relation can be exactly obtained at any point of the span. 

 

Based on the function given as a quotient of Dinc(x) and Dlev(x) on the interval (0,S), an 

important feature of the catenary is revealed and hence one of the differences between the 

parabola and the catenary based calculations is easily recognized. 

 

The formula for the catenary’s maximum sag in an inclined span, available in some earlier 

literature, has been appropriately analysed then the new exact one is proposed for use. Finally, 

the exact relation between the maximum sags in two span types is derived. 

 

The new relations shown in this chapter are unique ones related to OHL. The practical 

applicability of the new relations and the developed inclined span modelling method is shown 

in Sections 4.4 and 4.5. 

 

It is important to emphasize that the new method – due to its mathematical nature – can be 

also used in the case of the parabola. It is shown in Chapter 4. 
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4   APPLICATION OF THE PARABOLA MODEL 

4.1  Introduction 

The parabola is an algebraic function, differently from the catenary, which is a transcendental 

one. According to [70] a parabola is a two–dimensional, mirror–symmetrical curve, which is 

approximately U–shaped when oriented as shown in Fig. 4.1, but which can be in any 

orientation in its plane. “Parabola fits any of several superficially different mathematical 

descriptions which can all be proved to define curves of exactly the same shape.” Two of 

them, explained in [70], are given below. “One description of a parabola involves a point (the 

focus) and a line (the directrix). The focus does not lie on the directrix. The parabola is the 

locus of points in that plane that are equidistant from both the directrix and the focus.” It is 

shown in Figs. 4.1 and 4.2. The directrix is marked as L and the focus as F in the latter figure. 

“The distance from any point on the parabola to the focus (PnF) equals the perpendicular 

distance from the same point on the parabola to the directrix (PnQn).” 

 

       

Fig. 4.1:  Parabola with various features [70]           Fig. 4.2:  Parabola, focus and directrix [70] 

 

Another description of the parabola, which is much simpler and shorter than the previous one, 

is the following: “a parabola is a graph of a quadratic function, such as y=x2”. This 

description is well suitable for the parabola based calculations in the field of OHL design. The 

way of the use of the coordinate system in this chapter is the same as it is detailed in Chapter 

2, which is regarded to the catenary based calculation. Setting the origin on the line of the 

left–hand side support, instead of putting it at the vertex point, a wide mathematical 

background has been provided and several new expressions have been derived. 

 

It is well known that the parabola based calculation is much simpler than the catenary based 

one, since the parabola is a quadratic function but the catenary is a hyperbolic one. However, 
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their curves can be very similar, and that is why the catenary is frequently approximated by a 

parabola leading to a significant simplification of the calculation. The basic input data in this 

chapter are the following: span length, heights of the support points related to x–axis, and 

maximum sag. Thus, in comparison to the corresponding input data applied for the catenary 

based calculation, the maximum sag is used here instead of the catenary parameter. 

 

There is a special relationship between the parabola and the catenary: the catenary is the locus 

of the focus of the parabola rolling along a straight line [71]. For instance, if the parabola 

ypar=x2 is rolled along the x–axis, the locus of its focus is the catenary ycat=(1/4)·cosh(4x) 

[52]. The latter curve is drawn by a dashed line in Fig. 4.3, while the parabola is a solid curve. 

 

 
Fig. 4.3:  Presentation of the relation between the parabola and the catenary [72] 

 

This chapter is built as follows. After a short overview of the research field in Section 4.2, the 

parabolic sag equation is derived and discussed in details in Section 4.3. A universal equation 

for the conductor curve is defined in Section 4.4, while the determination of the vertex point 

by three different mathematical methods is presented in Section 4.5, which also deals with the 

low point sag. Section 4.6 contains a complex numerical example with 3 spans showing the 

usefulness of the main expressions obtained in the previous sections. Derivation of the special 

parabolic equations for the conductor curve in inclined spans is given in Section 4.7, as well 

as their practical application. Section 4.8 is a continuation of the previous one presenting 

formulas for the maximum sag and the low point sag in inclined spans. Section 4.9 introduces 

the parabolic approximation of the catenary in inclined spans and also provides a wide 

discussion of 1/cosψ multiplier’s application. The last section in this chapter gives a short 

conclusion and summarizes the novel results. 
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4.2  Related Research 

Lots of mathematical books (for instance [73,74]) discuss the parabola, but here such 

literature is listed which deals with concrete application of the parabola in OHL design, for 

drawing the conductor curve. 

 

Similarly, as in the case of the catenary, for drawing the parabolic conductor curve, the related 

literature generally uses the coordinate system in a way that the vertex of the parabola is set at 

the origin of the coordinate system [34,39,75]. Therefore, the approximation of the catenary 

by a parabola is also shown in the same way. It is available in plenty of studies, for instance in 

[4,62,63]. 

 

A graphical method for drawing the parabolas by a given half–span distance and a mid–span 

sag is introduced in [76]. A very similar presentation of the mentioned method is shown in 

[41,44]. According to [76], if the sag exceeds about 5% of the span length, the sag correction 

is necessary. Using the Maclaurin’s infinite series for hyperbolic functions, article [77] shows 

a three–term sag formula for a mid–span sag in a level span, where the first term is the 

parabola’s sag, while the other two terms slightly increase it. This way, the difference 

between the calculated sag and the catenary’s sag decreases and hence the sag calculation is 

more accurate. The brochure [7] also gives a three–term sag formula but in addition it 

provides practical numerical examples, showing that the use of two terms is customary for 

long spans, large sag transmission lines whilst the use of all three terms is necessary only for 

the most exacting problems in OHL design. 

 

Some literature [75,78,79] gives the formula for calculating the maximum sag of the parabola, 

while some others [42,80] provide a sag equation which can be used to determine the sag at 

any point of the span. The latter equation is easily applicable for calculating the parabola’s 

maximum sag knowing that it is always located at a mid–span. 

 

Regarding to inclined spans, [81] introduces the conductor sagging in details by means of an 

inclined viewing line and also by means of a horizontal viewing line. Books [34,39,58,82,83] 

show the sag calculation in both level and inclined spans. The book [84] also discusses both 

span types and recommends the application of 1/cosψ multiplier for calculation of an inclined 

span sag from a given level span sag. 

 

Besides explaining the parabola based calculation for OHL design, some literature also gives 

a basic recommendation whether the conductor curve can be considered as a parabola or it has 
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to be considered as a catenary. According to [58], as long as the span is less than 300 metres 

and the sag is less than 5% of the span, the error between the catenary and the parabola 

approximates to 0.5%, and thus is not significant. The limit of 300 or 400 metres is a frequent 

criterion in literature for the maximum span length when the conductor curve can be 

considered as a parabola instead of the catenary. Obviously, this criterion does not distinguish 

level and inclined spans. One of the rare studies which propos the mentioned criterion 

separately for level and for inclined spans as well is an earlier Hungarian standard [68] for 

OHL design. It is worth mentioning that the following standard [85] does not contain any 

recommendation in connection with the use of the parabola or the catenary model. It means 

that the OHL design engineer has to select the appropriate model. The author of paper [86] 

provides practical numerical examples showing that the difference between the catenary and 

the parabola sags in inclined spans is bigger than in a level one. This way the author has 

shown that the span inclination plays an important role in selection of the parabola or the 

catenary model. 

 

Several studies [47,76,87–89] show the use of the parabola sag templates which usually 

contain cold sag curve, hot sag curve, ground clearance curve and a tower footing curve, in 

order to make easier the OHL design. Nowadays this method is not frequent, due to the use of 

computers. 

 

It has to be mentioned that numerous articles apply the parabolic approximation of the 

catenary for discussion of various topics in connection with the conductors of overhead lines, 

as mechanical state estimation of OHL [64], monitoring sag and tension of a transmission line 

[90], modified ruling span method [91] or factors which influence the accuracy of high 

temperature sag calculations [92] etc. 

 

Paper [93] contains a section which deals with the conductor sag determination in an inclined 

span. 

 

4.3  Parabolic Sag Equation 

Calculating the conductor sag at a given point within the span is a frequent task in practice. 

To solve it, the sag equation is used, by which the conductor sag can be calculated at any 

point of the span. This section presents a new method for determination of the parabolic sag 

equation based on given maximum sag of the parabola. The maximum sag can be taken from 

the available sag–tension tables or obtained by a sag–tension calculation [94]. Applying 
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mathematics, level and inclined spans are discussed separately in this section. Provided results 

show important features of the parabolic sag equation. It helps to shed light on some basic 

differences between the parabola and catenary functions, whose curves are used during 

planning and constructing electrical overhead lines. Despite the fact that their curves are often 

very similar, the equations of the parabola and the catenary are mathematically quite different. 

The presented method for determination of the parabolic sag equation is very practical for 

providing different algorithms useful for planning and designing overhead lines, especially in 

finding solutions for rare unconventional tasks in practice. 

 

4.3.1  Sag Equation in a Level Span 

For deriving the sag equation in a levelled span, Fig. 4.4 is used, which shows the conductor 

curve in the span with the support points on the same elevation. In this case the lowest point 

of the conductor (vertex of parabola) is at a mid–span, S/2. Data in Fig. 4.4 are the following: 

the span length, S, height of support points related to x–axis, h, and the maximum sag, Dmax. 
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Fig. 4.4:  Conductor curve in a level span 

 

It is obvious that the sag at the support points is equal to zero. Also it is well seen that the sag 

has the largest value, Dmax, at a mid–span. Taking into consideration these facts, the sag curve 

can be drawn as Fig. 4.5 shows. 
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Fig. 4.5:  Sag curve in a level span 
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Obtaining the equation of the curve shown in the previous figure, the conductor sag can be 

calculated at any point of the span. Since the actual curve is a parabola and has two roots (0 

and S), its equation (4.4) can be derived by the use of the so called factored form of the 

parabola equation, which is given by (4.1): 

  SxxxxxaxDlev ,0        ))(()( 21   (4.1) 

 Sxx  21        0                                                                (4.2) 

  SxSxxaxDlev ,0        ))(0()(   (4.3) 

  SxSxxaxDlev ,0        )()( 2   (4.4) 

The unknown a is the coefficient of the parabola and defines its shape. In the case of the sag 

curve, a < 0 (parabola opens downward and has a global maximum), while in case of the 

conductor curve, a > 0 (parabola opens upward and has a global minimum), but both 

parabolas open vertically. (Another type of the parabola opens horizontally, to the left or to 

the right.) 

In order to determine the unknown coefficient a, the sag curve is replaced within the x–y 

coordinate system as it is shown in Fig. 4.6: 
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Fig. 4.6:  Replaced sag curve with its top in the origin 

 

Now the top of the curve is in the origin. In this case the equation of the curve Dlev_r is much 

simpler (4.5), but the coefficient a has not changed when the curve is replaced. In fact, that 

was the reason of the replacement. Inserting the coordinates of point (S/2; – Dmax) in (4.5), 

coefficient a is obtained by (4.7) and can be substituted into (4.4) to complete the parabolic 

sag equation in a level span, i.e. to get (4.8): 
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Equation (4.8) describes the sag curve from Fig. 4.5 and is usable for a sag calculation at an 

arbitrary point of the span. However, in Hungarian literature [45,84] another version of the 

sag equation is in use frequently. For this reason, transforming equation (4.8) into (4.13) is 

shown in the following lines. This way (4.8) is adequately verified. 
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Due to identity (4.12) [74], the previous equation can also be written by (4.13): 
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Thus, (4.8) and (4.13) are equivalent equations. Being both parabola equations, they are 

transformable into a general form (4.14) or vertex form (4.15) as well. 
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Naturally, any equation from (4.8), (4.13), (4.14) and (4.15) can be used for sag calculation; 

the obtained results will be the same. 

The basic equation of the parabola in general form is given by (4.16): 

 cbxaxxy   )( 2  (4.16) 

Comparing (4.14) to the previous equation, it can be seen that coefficient c is zero and 

coefficient a is negative (since S and Dmax are always positive). As a < 0, the vertex point of 

the sag curve is the maximum point (S/2; Dmax). The coordinates of this point are easily 

recognizable in equation (4.15). 

 

4.3.2  Sag Equation in an Inclined Span 

The following method presented below is based on inclined span modelling from Chapter 3, 

but it is a bit modified here and adopted for the parabola. In order to obtain the sag equation in 
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an inclined span, firstly the equation for the conductor curve in a level span has to be defined. 

Knowing coefficient a of the sag equation and the lowest point of the conductor curve in a 

level span, i.e. point (S/2;h –Dmax), it is easy to obtain the vertex form of the equation for the 

conductor curve in a level span, by the application of (4.17). 

   MINMIN yxxaxy 
2

)(  (4.17) 

The use of the coefficient a from either (4.14) or (4.15) but now with a ”+” sign, yields 

equation (4.18), where Dmax is the maximum sag in a level span. As shown in Fig. 4.7, the 

conductor curve in a level span is the curve between the points A(0;h) and B(S;h). 

  SxDh
S

x
S

D
xylev ,0        

2

4
)( max

2

2

max 







  (4.18) 

 Distance

 H
e
ig

h
t

0 S / 2 S

h

D max

q S+q

 M

 N

 A  B

D inc ( x )

y lev ( x )  =   y inc ( x )

 D lev ( x )

y line lev

y line inc ( x )

 ψ

y N

y M

 
Figure 4.7:  Conductor curves and sag curves in level and inclined spans with the same span 

length and coefficient a of the parabola 

 

The conductor curve on the interval [q,S+q] has the same equation (4.19) as the previous one, 

but it concerns now to an inclined span with the support points M(q;yM) and N(S+q;yN). Only 

the interval has changed (with keeping its size), but neither the span length nor coefficient a 

has changed. 
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Equation (4.19) transformed into general form of the parabola is the following: 
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Since the straight line connecting the support points of the formed inclined span on the 

interval [q,S+q] is given by (4.21), the sag equation (4.23) is classically obtained by (4.22). 
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In the following lines the difference yN – yM (4.26) is determined depending on q: 
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Insertion of equations (4.24) and (4.26) into (4.23), yields (4.27). It can be transformed into 

(4.31). 
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    qSqxqxDxD levinc  ,         )(  (4.32) 

 

Thus, the parabola’s sag in an inclined span does not differ from the sag in a level span. This 

conclusion can be expressed in the following mathematical relation: 

 )()(                    If xDxDSSaa levinclevinclevinc   (4.33) 
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Practically, the above relation with its conditions concerns the case when the conductor 

curves in both level and inclined spans are parts of the same parabola curve but on different 

intervals with the same size. 

All the following features of the parabola steam from (4.33): 

 Sag curve does not depend on the span inclination 

 The maximum sags of the parabola in level and inclined spans are equal 

 The maximum sag of the parabola is always located at a mid–span, i.e. in both level and 

inclined spans. 

The latter parabola’s feature is generally known or accepted in literature, but the detailed 

mathematical background is not available. Here it is appropriately presented from OHL 

designer’s view point and given as a partial conclusion of relation (4.33). In other words, the 

already known feature of the parabola is proved analytically in this section. It is worth 

mentioning that – relating to the catenary – none of the above listed features is valid. It is a 

direct consequence of the fact that in the case of the catenary the sag curves in inclined and 

level spans differ from each other. 

Returning to (3.33) in Chapter 3, due to (4.33) the corresponding relation for the parabola is 

the following: 
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Thus, the quotient of the sag functions in inclined and level spans on the interval (0,S) is equal 

to 1, and thus is a constant. 

Furthermore, in the case of the parabola identity D(x) = D(S – x) when 0 ≤ x ≤ S/2 is valid in all 

span types, independently of the span inclination. This way the following feature of the 

parabola is identified: the sag function of its curve replaced from interval [0, S] to [–S/2, S/2] 

is an even function in the case of level and inclined spans as well. Considering (4.34) and 

denoting Dlev(x) and Dinc(x) with the same symbol, D(par)(x), the mentioned feature of the 

parabola can be expressed mathematically as follows: 
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4.4  Universal Equation for the Parabolic Conductor Curve 

Equation for the conductor curve is usable for drawing the conductor curve and also for 

determining the vertex point (low point) or the conductor height at any point of the span. 
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Derivation of this equation is shown below with the help of Fig. 4.8 which presents the 

conductor curve in the span with the support points on different elevations. 
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Figure 4.8:  Conductor curve in inclined span with h1 < h2 

 

The fact that the parabola is completely defined when any three points of its curve are known, 

is practically used here for defining the parabolic conductor curve. Two support points of the 

span, A(0;h1) and B(S;h2) are known points, while the third necessary point, C, is defined by 

the known maximum sag. The feature of the parabola that its maximum sag is always located 

at a mid–span is applied. (In the case of the catenary it is different.) Thus, the x–coordinate of 

point C is known (xC=S/2), while its y–coordinate is obtainable by (4.36), and hence C is 

given by (4.37). 
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Based on three points A, B, C of the parabolic conductor curve, the system of three algebraic 

equations, (4.38) – (4.40), in three unknowns (a, b, c) is written by utilizing the basic parabola 

equation in general form (4.16). 
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The system of the three previous equations, expressed in matrix form, is the following: 
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The solution of this system is given by (4.42) and it presents coefficients a, b, c of the 

parabola equation (4.16). 
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After substituting a, b, c into (4.16), the equation for the conductor curve in general form is 

derived: 
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The previous equation is universal, since it is usable in both types of an inclined span (h1<h2 

and h1>h2) and in level spans (h1=h2) as well. 

Having the minimum turning point, the conductor curve is a cup–shaped parabola. Differently 

from the sag equation, coefficient a is in this case positive, because the span length and the 

maximum sag are both positive. Equation (4.43) can be checked by using a conclusion from 

Section 4.3 that the parabolic sag equation is the same in level and inclined spans. 

Considering it, subtraction of the sag equation, D(x), from the equation for the straight line 

connecting the support points, yline(x), should also provide (4.43). According to (4.44) it 

obviously does and this way (4.43) is verified. 
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In a level span h1=h2=h and hence equation (4.43) changes into (4.45). 
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4.5  Vertex Point of the Parabolic Conductor Curve, Low Point Sag 

Before deriving the vertex point of the parabola it is worth mentioning the obvious difference 

between the catenary and the parabola in connection with the determination of their equations. 

While in the case of the catenary the coordinates of the vertex point are necessary data for 

defining its equation, the parabola’s equation can be obtained even without the vertex point. It 



 

88 

is shown in Section 4.3 where the equation of the parabola is obtained by its three known 

points, but none of them is the vertex. In level spans only, one of the three points is the vertex, 

because it is located at a mid–span then. Taking into consideration that the vertex point is 

very important for clearance calculation, this section shows its determination. Once the 

equation for the conductor curve is derived, different mathematical techniques are applicable 

to define the vertex point (low point) of the conductor, on the basis of a given maximum sag. 

The following three methods are detailed below: 

 Derivative of the conductor curve 

 Finding the longest level subspan within an inclined span 

 Transforming parabola equation from general form into vertex form. 

The validity of the listed methods is proved by their identical results. 

It is worth noting that the sag at the vertex point is defined if the vertex point is also the 

lowest point of the conductor, otherwise it is not.  

 

4.5.1  Derivative of the Conductor Curve 

The basic way to find the x–coordinate of the extreme point (minimum or maximum) of the 

curve y(x) is to find the first derivative, dy/dx, and to solve the equation dy/dx=0. Then by 

substituting the obtained result into the equation for the curve, the y–coordinate of the 

extreme point is also defined. The application of this method on the conductor curve, shown 

by (4.46) – (4.60), yields the vertex point of the conductor curve given by (4.61). 
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This way the x–coordinate of the vertex point is obtained. Expression (4.50) can be 

considered as the horizontal distance from the vertex point to the left–hand side support. On 
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the other hand, expression (4.51) presents the horizontal distance from the vertex point to the 

right–hand side support. 
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Based on (4.50) and (4.51), it can be concluded that the vertex point of the parabola in an 

inclined span is located on the distance of S(h2–h1)/8Dmax units from the mid–span, measured 

horizontally toward the lower support point. Obviously, the mentioned distance increases with 

the span inclination (or h2–h1), but in level spans it is equal to zero. 

Once the x–coordinate of the vertex point is obtained, the y–coordinate can be defined by 

substituting xMIN into the equation for the conductor curve according to (4.52). The deduction 

is shown in the following lines: 
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According to (4.50) and (4.60), the vertex point MIN(xMIN; yMIN) is given by (4.61). 
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4.5.2  Finding the Longest Level Subspan within an Inclined Span 

For presentation of this method Fig. 4.8 is used which contains all necessary points and 

symbols. It is well seen that there is one point (denoted by L) of the conductor curve which 

lies on the same elevation, h1, as point A does (4.62). By determination of the x–coordinate of 

the point L, the x–coordinate of the point MIN can be easily defined, since it is exactly half of 

the distance between the points A and L. Thus xMIN=xL/2. The xL is in fact the length of the 

longest level subspan within the given inclined span. Finding xMIN (4.68) is shown in the 

following lines: 
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   04)(4 max12max  SDhhSxDx LL
 (4.65) 

It is clear that xL=0 is not an appropriate solution, therefore it is necessary to solve equation 

(4.66) in order to get xL (4.67), and then also (4.68): 

 04)(4 max12max  SDhhSxD L
 (4.66) 
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Since the x–coordinate of the point MIN is obtained, its y–coordinate can be defined in the 

same way shown in the previous method, i.e. by (4.52). Both presented methods, the actual 

and the previous one, are provided for the case h1<h2, but the case h1>h2 also produces the 

same result. 

 

4.5.3  Transforming Parabola Equation from General into Vertex Form 

The fact that each parabola equation in general form (4.16) can be also written in vertex form 

(4.17) can be practically used to find the coordinates of the vertex point, as they are readable 

from the parabolic equation given in vertex form. Transforming the above derived equation 

for the conductor curve, from its general form (4.43) into vertex form (4.73), is shown 

through expressions (4.69) – (4.72), by the use of the completing the square method as 

follows: 
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According to (4.74), the coordinates of the vertex point, xMIN and yMIN, are easily recognizable 

in (4.73). These are the same ones as (4.50) and (4.60) which are previously obtained in 

Section 4.5.1. 

 

4.5.4  Low Point Sag 

Since the lowest point of the conductor is also called shortly as the low point, hence the sag at 

the lowest point of the conductor is also called as the low point sag. Note that the conductor 

sag is defined only within the span, the low point can be only within the span, and that the 

vertex point is in most cases within the span, but in sharply steep spans it can be out of the 

span. The latter case is a rare one when the low point and the vertex point differ in their 

location, while in all other cases they do not, since they are the same point then. It means that 

in most spans the low point sag can be defined by obtaining the sag at the vertex point, since 

the vertex point is the low point as well. Then the expression for the low point sag can be 

defined analytically by substituting the x–coordinate of the vertex point into the sag equation, 

as it is shown below by (4.75) – (4.80). 
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The previous expression can be used for the computation of the sag at the lowest point of the 

conductor. The ordered condition given by 0 ≤ xMIN ≤ S prevents the use of (4.80) when the 

vertex is out of the span. In that case, i.e. when xMIN < 0 or xMIN > S, the low point sag is in fact 

the sag at the lower support point, and hence it is zero. Thus, the basic discussion about the 

special cases of an inclined span given in Chapter 2, relating to the catenary, refers also to the 

parabola in the same way. 

 

4.6  Practical Usage of Equations for Conductor and Sag Curves 

The practical usefulness of the above shown equations is presented below by a numerical 

example with two inclined spans and one level span. The maximum sag is a common datum 

in each case, as well as the span length, but the heights of the support points differ. The input 

data are given in Table 4.1. 

 

Example 4.1 
 

Table 4.1:  Input data in Example 4.1 

 

 

 

 

 

 

 

 

 

Data 
Case 1 

h1 < h2 

Case 2 

h1 = h2 

Case 3 

h1 > h2 

 S [m] 400 400 400 

h1 [m] 25 45 65 

h2 [m] 65 45 25 

Dmax [m] 20 20 20 
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Based on (4.43), the equations for the conductor curves in three cases are the following: 

  400,0       251.0105)( 24

1   xxxxy  (4.81) 

  400,0      452.0105)( 24

2   xxxxy  (4.82) 

  400,0         653.0105)( 24

3   xxxxy  (4.83) 

Equations (4.81) – (4.83) are given in general form. According to the sag definition, the sag 

equation can be obtained by (4.84): 

  SxxyxyxD line ,0            )()()(   (4.84) 

Thus, firstly the equations for the straight lines connecting the support points have to be 

defined in all three actual cases: 

 400,0         251.0)(
 1

 xxxyline
                                    (4.85) 

m 45
 2
liney                                                                          (4.86) 

 400,0      651.0)(
 3

 xxxyline
                                    (4.87) 

The application of (4.84) provides a parabolic sag equation which is the same in all three 

given cases. 

  400,0      2.0105)()()()( 24

321   xxxxDxDxDxD  (4.88) 

This way the conclusion (4.33) provided analytically in Section 4.3.2 is confirmed here 

numerically. Thus, the parabolic sag equation does not depend on the span inclination (or the 

height difference between the support points). Note that the coefficient a of the parabola in 

equation (4.88) is negative, that is why the sag curve is a hat–shaped parabola. 

Using expressions (4.80), (4.50) and (4.60), the low point sag and the coordinates of the 

vertex point are calculated in each case then the results are listed in Table 4.2. Due to the fact 

that case 3 is a mirror image of case 1, and vice versa, that is why yMIN is equal in these two 

cases, as well as D(xMIN) is. In case 2 the low point sag is in fact the maximum sag, because 

this case presents a level span. 

 
Table 4.2:  Results of Example 4.1 

Results 
Case 1 

h1 < h2 

Case 2 

h1 = h2 

Case 3 

h1 > h2 

xMIN [m] 100 200 300 

yMIN [m] 20 25 20 

D(xMIN) [m] 15 20 15 
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According to (4.74), the equations for the three conductor curves in vertex form are the 

following: 

    400,0       20100105)(
24

1   xxxy  (4.89) 

    400,0       25200105)(
24

2   xxxy  (4.90) 

    400,0       20300105)(
24

3   xxxy  (4.91) 

Now all the results from the given example can be appropriately presented on the common 

diagram (see Fig. 4.9). 
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Fig. 4.9:  Sag and conductor curves from Example 4.1 

  

4.7  Special Equation for Conductor Curve in Inclined Spans 

This section shows a method for deriving a parabolic equation for the conductor curve using 

x, y coordinates of two support points and only one coordinate (either x or y) of the vertex 

point. Thus, regarding to the three points, only five out of six coordinates are needed for 

defining the new equation. Differently from equation obtained by 3 points (see Section 4.4), 

which is universal and for a frequent use, the new one is for a very special use, in inclined 

spans strictly, i.e. when h1 ≠ h2. 

In order to derive the new equation, firstly y=y(S, Dmax, h1, h2, x) is transformed into y=y(h1, 

xMIN, yMIN, x). It is shown in the following lines, where (4.92) is obtained by rearranging (4.43): 

  Sxhx
D

hh

S

D
x

S

D
xy ,0       

4
1

44
)( 1

max

12max2

2

max 






 
  (4.92) 



 

95 

 
1

max

12

max

12

max

12max2

2

max

12

2

max

12

2

max

4
1

4
1

4
1

4

4
1

4
1

4
)( hx

D

hh

D

hh

D

hh

S

D
x

D

hh

D

hh

S

D
xy 








 









 









 









 









 


  (4.93) 

 
1

max

12

2

max

12
max

2

2

max

12

2

2

max

12
max

4
1

2

4
1

2

4
1

2

4
1

)( hx

D

hhS

D

hh
D

x

D

hhS

D

hh
D

xy 








 









 











 

















 


  (4.94) 

 
1

max

12

2

max

12
max11

2

2

max

12

2

max

12
max11

4
1

2

4
1

2

4
1

2

4
1

)( hx

D

hhS

D

hh
Dhh

x

D

hhS

D

hh
Dhh

xy 








 























 




















 























 


  (4.95) 

Considering expressions for xMIN and yMIN, given by (4.50) and (4.60) retrospectively, (4.95) 

gets a simplified form: 
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The previous equation, given as y=y(h1, xMIN, yMIN, x), can be used to obtain y=y(S, h1, h2, xMIN, 

x) and also y=y(S, h1, h2, yMIN, x). To achieve it, the following expressions are necessary which 

are defined by equating coefficients b (according to y=ax2+bx+c) from equations (4.92) and 

(4.96) and then also coefficients a from the same two equations: 
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Combining (4.96), (4.97) and (4.98) is shown in the two following sections in order to define 

the new parabolic equations. 

 

4.7.1  Deriving Equation for the Conductor Curve by Given S, h1, h2, xMIN 

Expressing Dmax=Dmax(S, h1, h2, xMIN, yMIN) from (4.97) by (4.99), and substituting it into 

(4.98) yields (4.100), which can be applied to define coefficients a and b (according to 

y=ax2+bx+c) in (4.103), both expressed without yMIN. These are given by (4.101) and (4.102). 

(The complete deduction is shown in Appendix 5.) 
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Thus, the parabolic equation for the conductor curve, y=y(S, h1, h2, xMIN, x), in general form is 

the following: 
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It is obvious that x, y coordinates of the two support points (these are defined by given data S, 

h1 and h2) and only x–coordinate of the vertex point are sufficient data for defining the new 

parabolic equation for the conductor curve which is usable for the determination of the 

conductor height, related to x–axis, at any point of the span. Another important application of 

this equation is for drawing a conductor curve. The correctness of (4.103) is verified below by 

the use of the input data from Example 4.1 (case 1), but xMIN is applied instead of Dmax. The 

obtained equation is the same as y1(x) in general form, defined in the mentioned example. 
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The following equation is vertex form of (4.103). The correctness of it is also verified 

numerically using the same data that are used in (4.103). The result is vertex form of y1(x) 

from Example 4.1 (case 1). 
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4.7.2  Deriving Equation for the Conductor Curve by Given S, h1, h2, yMIN 

Expressing Dmax=Dmax(S, h1, xMIN, yMIN) from (4.97) by (4.105), and substituting it into (4.98) 

yields (4.106), which can be applied to define coefficients a and b (according to y=ax2+bx+c) 

in (4.109), both expressed without xMIN. These are given by (4.107) and (4.108). (The 

complete deduction is presented in Appendix 6.) 
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Taking into consideration (4.16), (4.96) (4.107) and (4.108), the parabolic equation for the 

conductor curve, y=y(S, h1, h2, yMIN, x), in general form is given by (4.109): 
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In this case x, y coordinates of the two support points (defined by given data S, h1 and h2) and 

only y–coordinate of the vertex point are sufficient data for defining the new parabolic 

equation for the conductor curve, which is usable for the determination of the conductor 

height, related to x–axis, at any point of the span. The equation is also applicable for drawing 

the conductor curve. Correctness of (4.109) is verified below by the use of the input data from 

Example 4.1 (case 3), but yMIN is applied here instead of Dmax. The obtained equation is the 

same as y3(x) in standard form (4.83), defined in the mentioned example. 
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Vertex form of (4.109) is given by (4.110). The correctness of it is also verified numerically 

using the same data which are used in (4.109). The result is vertex form of y3(x) from 

Example 4.1 (case 3). 
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4.8  Maximum Sag and Low Point Sag in Inclined Spans 

Similarly to the previous section, this one is also based on the use of 5 coordinates of three 

points and the maximum sag is unknown datum. Taking into consideration the importance of 

the maximum sag, it is worth deriving its formula for an easy and quick computation. This 

section shows new formulas for the maximum sag and also the low point sag in the two cases, 

when x or y coordinate of the vertex point is given, besides the given both coordinates of the 

two support points. All new formulas are obtained by combining the expressions from Section 

4.7 and are usable in inclined spans strictly. 
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4.8.1  Case 1 (Given Data are S, h1, h2, xMIN) 

In this case Dmax can be defined by equating coefficients a, from equations (4.92) and (4.103), 

according to (4.111): 
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The obtained formula for the maximum sag is applicable in all inclined spans. Its correctness 

can be easily checked by using data (S, h1, h2, xMIN) from Example 4.1 (case 1), where the 

value of Dmax is 20 metres and h1<h2. 
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This way the correctness of (4.112) is confirmed. 

The formula for the low point sag, D(xMIN), is defined below by substituting (4.112) into 

(4.80), as follows: 
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The previous formula can be examined by the use of the same data as in the case of checking 

(4.103). According to Example 4.1 (case 1), the result should be 15 metres. 
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4.8.2  Case 2 (Given Data are S, h1, h2, yMIN) 

When yMIN is given instead of xMIN, the formula for the maximum sag (4.117) is obtainable by 

equating coefficients a, from equations (4.92) and (4.109), according to (4.116): 
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The correctness of (4.117) is verified below, by using input data (S, h1, h2, yMIN) from Example 

4.1 (case 3), where Dmax=20 metres and h1>h2. 
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The formula for the low point sag given by (4.120) can be defined by substituting (4.117) into 

(4.80) and rearranging the obtained expression, as it is shown in the following lines: 
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The previous formula for the low point sag is examined by the use of the same data as in the 

case of checking (4.109). According to Example 4.1 (case 3), the correct result is 15 metres. 
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Notice that case 3 presents the inclined span where the right–hand side support point is lower 

than the left–hand side one, while case 1 shows an opposite example, i.e. the right–hand side 

support point is higher than the other one. 

 

4.9  Use of 1/cosψ Multiplier in Parabola Based Calculation 

Several new equations for the conductor and the sag curves have been derived in the previous 

sections, as well as the coordinates of the parabola’s vertex point and a formula for the low 

point sag. However, the parabola based calculation for OHL design cannot be considered as 
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entirely completed without the appropriate discussion of 1/cosψ multiplier’s use, which has an 

importance in inclined spans. Literature generally recommends the application of the 

mentioned multiplier, but wide mathematical background is not available. This section gives 

an adequate explanation of how 1/cosψ affects the parabolic curve and the sag giving an 

opportunity for the readers to get a clear resolution in connection with the use of 1/cosψ. 

Since the parabola is the approximation of the catenary, it is necessary to compare the 

parabola with the catenary, without and then also with the use of 1/cosψ for a parabola 

modification. Taking into consideration that the multiplier has an effect in inclined spans, the 

comparison of the mentioned curves has to be related to inclined spans. It produces an 

additional problem namely that literature discusses the parabolic approximation of the 

catenary in level spans only. For this reason the currently absent mathematical background for 

the parabolic approximation of the catenary in inclined spans is created below in the separate 

section, in order to make possible the adequate discussion of 1/cosψ multiplier’s use. 

 

4.9.1  Parabolic Approximation of the Catenary in Inclined Spans  

As a final result in this section, the equation of the parabola has been defined, which presents 

the approximation of the catenary in an inclined span, but in case of h1=h2=h changes into 

equation which presents the approximation of the catenary in a level span. Note: 1/cosψ 

multiplier is not used here. 

Initial conditions are the following: S, h1 and h2 are common data for both the catenary and 

the parabola, in inclined and level spans as well. The catenary parameter is the same in both 

spans, as well as the parabola’s coefficient ap. Due to this condition, the maximum sag of the 

parabola can be expressed by the given catenary parameter, c, as it is detailed below, in order 

to determine the y–coordinate of the point C(xC;yC) in Fig. 4.8. Since the support points are 

fixed and known, the parabolic equation can be derived by the 3–point method presented in 

Section 4.4. Note: in order to make the symbols of the catenary parameter and the parabola’s 

third coefficient differ from each other, parabola’s coefficients a, b, c get here subscript p. 

Due to (4.121) [72], the parabolic approximation of the catenary in a level span is given by 

(4.122). 
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The parabola curve of (4.122) has a vertex at point (0;c). Replacing the parabola in the 

coordinate system in a way that the vertex point is set in the origin, the equation of the 

parabola changes into (4.123), where 1/2c is the coefficient of the parabola and is denoted by 

ap. 
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Equating ap from (4.123) with a from (4.92), the parabola’s maximum sag can be expressed 

by the catenary parameter, c, as follows: 
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Since c is the same in level and inclined spans, as well as the span length and also coefficient 

ap, it means that the maximum sag of the parabola is the same in both spans. Knowing the 

parabola’s feature, that its maximum sag is always located at a mid–span and using the 

coordinate system according to Fig. 4.8, the third point, C, of the parabola – due to (4.125) – 

is here given by (4.126), while the points A and B are as in Fig. 4.8. 
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Based on three points A, B, C of the parabolic curve, the system of three algebraic equations, 

(4.127) – (4.128), in three unknowns (ap, bp, cp) can be written by using the basic parabola 

equation in general form (4.16). 
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The system of the three previous equations, expressed in matrix form, is the following: 
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The solution of this system is given by (4.131) and it presents coefficients of the parabola 

equation (4.16). 
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After substituting ap, bp, cp into (4.16), the equation which presents the parabolic 

approximation of the catenary in an inclined span, given in general form is (4.132): 
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The previous equation transformed into vertex form is (4.133) and hence the coordinates of 

the vertex point are expressed by (4.134) and (4.135). 
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Using (4.124) and the equations (4.14) and (4.15), the sag equations in general and vertex 

form are given as follows: 
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Derived equations (4.132), (4.133), (4.136) and (4.137) are all universal, since each of them is 

usable in both types of an inclined span (h1<h2 and h1>h2) and in level spans (h1=h2) as well. 

 

4.9.2  Parabolic Approximation of the Catenary in Level Spans  

According to the above mentioned, in case of h1=h2=h the equation which presents the 

parabolic approximation of the catenary in an inclined span changes into an appropriate 

equation concerned to a level span. This way equations (4.132) and (4.133) change into the 

two following ones, while the vertex point is then given by (4.140). 
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Due to (4.33), the sag equation in a level span is the same as in an inclined span, i.e. is given 

by (4.136) or (4.137). 

 

4.9.3  Mathematical Background of 1/cosψ Multiplier’s Use 

Based on (4.137) the sag of the parabolic curve does not depend on Δh (and thus neither on 

the span inclination), because there is no Δh=h2–h1 in the sag equation. Furthermore, 

coefficient a is also independent of the span inclination (or Δh). 

Since Dinc(x) ≡ Dlev(x), it means that mathematically there is no difference between the sags of 

the parabola in inclined and level spans and it is valid at each point of the span. On the other 

hand, the sag of the catenary is dominantly characterised by the relation Dinc(x)>Dlev(x) on the 

interval (0,S). Thus, there is an evident contradiction between the sags of the catenary and the 

parabola, which can have a negative impact on the approximation of the catenary by the 

parabola. In practice it is partly compensated by using 1/cosψ multiplier [41] which increases 

the sag of the parabola in an inclined span in comparison to the sag in a level span. The 

following formula is used: 

 SxxDxD levinc 

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 cos

1
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 (4.141) 

It is obvious that the previous expression concerns not only to the mid–span sag, but to a sag 

at any point within a span. The angle ψ is discussed in Section 3.4.4. Using 1/cosψ multiplier 

the parabola gets an important feature given by the following relation between the parabola 

sags in inclined and level spans: 

 SxxDxD levinc  0          )()( 
 (4.142) 

The caused effect is illustrated in Fig. 4.10. 
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Fig. 4.10:  Sag curves in level and inclined spans with the application of 1/cosψ for the latter 

 

Naturally, a larger inclination (i.e. larger angle ψ) of the span causes a bigger increase of 

1/cosψ, and hence also the sag in an inclined span. After application of 1/cosψ the maximum 
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sag in an inclined span is denoted by Dmax ψ and is given by (4.143), where Dmax is the 

maximum sag of the parabola in a level span.  
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The previous expression is the relation between the maximum sags of the parabola in inclined 

and level spans, when 1/cosψ is used. The sag equation in inclined spans then gets the 

following form (4.144): 
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Analysing (4.144), it can be concluded that the maximum sag is still located at a mid–span, 

thus 1/cosψ does not produce the movement of the maximum sag from the mid–span. It 

means that the above mentioned feature of the parabola that its maximum sag is always 

located at a mid–span, can be complemented in a way that it is even independent of the 

application of 1/cosψ. 

Taking into consideration (4.143), the previous equation can be written by (4.145) and is 

usable for the sag calculation at any point within the inclined span by the given maximum sag 

in a level span, Dmax. 
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Note that the sign of angle ψ does not have an effect on the results obtained by (4.145), since 

the cosine is an even function: 

 )( cos)( cos   (4.146) 

Furthermore, (4.145) is a universal sag equation, because it can also be used for a sag 

calculation at any point within a level span. In that case ψ=0 and then (4.145) becomes (4.15), 

since cos(0)=1. In the case of the mid–span (x=S/2), equation (4.145) changes into (4.143).  

 

The equation for the modified parabolic conductor curve in inclined spans can be obtained by 

the use of (4.147) or simply substituting (4.143) into (4.73) instead of Dmax. The actual 

equation in vertex form is given by (4.148), and is based on a given maximum sag in a level 

span, Dmax. 
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The previous equation is valid for both cases of inclined spans, h1<h2 and h1>h2. In a level 

span (ψ=0 and h1=h2=h) an actual equation becomes (4.18). The simplified form of (4.148) is 

the following: 

    Sxyxxaxy MINMINinc ,0        )(  

2

     (4.149) 

According to (4.149), coefficient aψ and the coordinates of the vertex point MINψ(xMIN ψ ; yMIN ψ) 

of the modified parabola are easily readable from (4.148) and are given by (4.150) – (4.152): 
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Since 1/cosψ > 1, and also Dmax > 0 and S > 0, therefore aψ > a. Knowing the relation between 

the parabola’s parameter, p, and the coefficient a of the parabola, given by (4.153) [95], and 

considering expressions (4.154) and (4.155), it can be concluded that pψ < p. (The parabola’s 

parameter is considered as the distance from the focus point to the directrix, see in Fig. 4.2.) 

 
a

p
2

1
  (4.153) 

 
max

2

8D

S
p   (4.154) 

 
max

2

 
8

 cos

D

S
p




 (4.155) 

Thus, 1/cosψ increases the parabola’s sag in an inclined span by increasing the parabola’s 

coefficient, a, i.e. by reducing the parabola’s parameter, p, in dependence of the span 

inclination (or Δh). Summarizing the above discussion, the basic and the modified parabolas 

can be described as two parabolas with a different parameter and common start and end points 

which are located on different elevation. As a consequence, the vertex points of the two 

curves differ in their position. 

Finally, it is worth mentioning that the equation for the modified parabolic conductor curve 

and the corresponding sag equation in general form are given by (4.156) and (4.157): 
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Returning to (4.34), due to (4.141) the corresponding relation for the modified parabola is the 

following: 
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Thus, when 1/cosψ multiplier is used, the quotient of the sag functions in inclined and level 

spans on the interval (0,S) is a constant. Another important conclusion in connection with the 

application of 1/cosψ, expressed mathematically, is the following one: 
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4.9.3.1  Equation for the Modified Parabolic Conductor Curve Based on Catenary Parameter 

Considering the mathematical background of 1/cosψ multiplier’s use and (4.73), the vertex 

form of the equation for the modified parabolic conductor curve in inclined spans, which is 

based on the given catenary parameter, can be directly obtained by substituting (4.160) into 

(4.73) instead of Dmax. Another mode is complementing (4.133) in a way as (4.73) is 

complemented into (4.148). The actual equation is (4.161). 
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 (4.161) 
 

4.9.4  Practical Example without and with the Use of 1/cosψ Multiplier 

Having the equations for the parabolic approximation of the catenary for both cases, without 

and with the application of 1/cosψ, they can be used in a practical example in order to analyse 

the effect of the mentioned multiplier. The input data are given in Table 4.3 concerning the 

catenary in three cases (one level and two inclined spans). Data S, h1 and c are common in 

each case. Using the above obtained expressions, firstly the vertex’s coordinates of each curve 

and the parabola’s coefficient a are determined. After that the equation of the catenary, and 

the equations of its approximations by basic and modified parabolas are defined in all three 
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cases separately. The numerical example helps to draw the concrete conclusion in connection 

with the application of 1/cosψ, which is analytically not possible. 

 

Example 4.2 
Table 4.3:  Input data in Example 4.2 

Data Case 1 Case 2 Case 3 

 S [m] 400 400 400 

h1 [m] 30 30 30 

h2 [m] 30 70 110 

 c [m] 1000 1000 1000 

 

Based on data from Table 4.3, three actual catenary curves are drawn in Fig. 4.11, by the use 

of (2.34). The vertex points of the curves are denoted by MIN 1, MIN 2 and MIN 3. Both 

inclined spans are a classic type, thus the vertex point is also the low point in each case. 
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Figure 4.11:  Catenary curves in Example 4.2 

 
Table 4.4:  Results of case 1 in Example 4.2 

 

 

 

 

 

 

 

 

Results Catenary 
Basic 

parabola 

Modified 

parabola 

a [m–1] – 5∙10–4 5∙10–4 

xMIN [m] 200 200 200 

yMIN [m] 9.933244 10 10 
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Thus, in a level span the x–coordinate of the vertex point in each case is S/2. Furthermore, the 

modified parabola does not differ from the basic one, or, in other words, 1/cosψ has no effect 

in a level span. Equations of the catenary and its approximation are given as follows: 
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Table 4.5:  Results of case 2 in Example 4.2 

Results Catenary 
Basic 

parabola 

Modified 

parabola 

a [m–1] – 5∙10–4 50249∙10–8 

xMIN [m] 100.826218 100 100.496281 

yMIN [m] 24.912729 25 24.925063 
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Table 4.6:  Results of case 3 in Example 4.2 
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Despite the fact that the three equations are mathematically different, their curves are so 

similar that the difference between them is hardly visible on the small diagram, as it is in Fig. 

4.11. For this reason the curves of Δy(x) = ypar(x) – ycat(x) and Δyψ(x) = ypar ψ(x) – ycat(x) are 

drawn in Fig. 4.12, on the common diagram. This way the effect of 1/cosψ, when the catenary 

Results Catenary Parabola 
Modified 

parabola 

a [m–1] – 5∙10–4 5099∙10–7 

xMIN [m] 2.611421 0 3.883865 

yMIN [m] 29.996590 30 29.992308 
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is mathematically approximated by a parabola, is made visible and hence can be evaluated. 

Note that due to (4.163), Δy1(x) ≡ Δyψ1(x). 
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Figure 4.12:  Curves Δy(x) = ypar(x) – ycat(x) and Δyψ(x) = ypar ψ(x) – ycat(x) in Example 4.2 

 

The analysis of all curves in the previous figure brings a clear conclusion that the use of 

1/cosψ appropriately reduces the deviation of the parabola from the catenary. It practically 

means that the modified parabola, ypar ψ(x), resembles the catenary better than the basic 

parabola, ypar(x). It is expressed mathematically by the following inequality with the catenary 

and its basic and modified approximations by the parabola, valid for inclined spans: 

 
21catparcatpar           0          )()(     )()(  hhSxxyxyxyxy 
 (4.170) 

Thus, the use of 1/cosψ multiplier is advisable. However, the phenomena from case 3 has to 

be mentioned, where Δyψ(x) changes sign within the span and the y–coordinate of the 

modified parabola’s vertex point is positioned lower than the y–coordinate of the catenary’s 

vertex point (see results in Table 4.6). From the aspect of a clearance calculation between the 

live overhead conductors and the ground or objects, it is a disadvantage. This is one of the 

reasons because the use of a parabola in spans with significant inclination (or h2–h1) is 

generally avoided, i.e. it is recommended to consider the conductor curve as a catenary. 

 

4.10  Summary of the Chapter 

Chapter 4 deals with a parabola based calculation for OHL design using the coordinate system 

for drawing the conductor curve in the same way as in the case of the catenary, introduced in 

Chapter 2. Due to it, a universal parabolic equation is derived, which is applicable for the 

conductor height calculation in all spans, independently of the span inclination. The input data 

are the same as in the case of the catenary, but instead of the catenary parameter the 

maximum sag of the parabola is used. Besides the universal parabolic equation for a frequent 

use, the special equation for the conductor curve in inclined spans is also derived by two 
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support points and only one coordinate of the vertex point. In this case the maximum sag is 

not a needed datum, but can be calculated as its formula is also defined. Deductions in this 

chapter are generally based on the feature of the parabola that its maximum sag is always 

located at a mid–span. The applicability of the new equations in practice is presented in 

numerical examples containing different span types. 

 

A separated section details the effect of 1/cosψ multiplier in the case of the parabola and also 

evaluates its use in practice. It is shown that 1/cosψ modifies the parabola in a way that the 

sag in inclined span is increased in comparison to the sag in a level span. This is valid at each 

point of the span except the start and end points. In fact 1/cosψ modifies both the conductor 

curve and the sag curve, but the point is that both modified curves are still parabolas. In order 

to make possible the comparison of the basic parabola and also the modified parabola with the 

catenary, the equation for the parabolic approximation of the catenary in an inclined span is 

derived previously. This unique equation, which contains the catenary parameter instead of 

the parabola’s maximum sag, is a universal one as it is usable in all span types. Differently 

from the case of the catenary where the use of 1/cosψ multiplier should be avoided, since it 

produces errors in sag calculation, in case of the parabola it is advisable. Its use is 

recommended, because it results a better parabolic approximation of the catenary. According 

to a related numerical example, this positive effect of 1/cosψ multiplier is more significant in 

spans with a high inclination. 
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5   UNIVERSAL FORMULAS FOR THE CONDUCTOR LENGTH 

5.1  Introduction and Related Research 

Because of the sag of overhead lines, the conductor within the span is always longer than the span 

itself. Thus, the conductor length calculation also has an importance when constructing overhead 

lines. In the case of the parabola based calculation the maximum sag is a necessary datum for the 

length calculation, whereas in the case of the catenary based calculation it is the parameter of the 

catenary, besides the span length and the heights of the two support points as necessary data in 

each case. 

 

Studies for OHL design generally give a solution for the conductor length calculation in level 

spans, but very rarely in inclined ones. Hence, the length formula for level spans is frequently in 

use in inclined spans as well, despite the fact that it produces errors in calculations. Furthermore, 

the available length formulas are defined for determining the conductor length in a full span, i.e. 

for frequent conventional tasks, but not for rare unconventional tasks, for instance, the conductor 

length calculation in an arbitrary part of the span, either a level or inclined one. These are the 

reasons for deriving the algorithm for calculation of the conductor length, which ensures adequate 

calculation in each case, i.e. in level and inclined spans as well, and also in a full span and in its 

part. Such a complex task can be effectively solved by the application of the integral calculus. 

Naturally, the calculation has to be shown separately when the conductor curve is considered as a 

parabola or a catenary. 

 

Regarding to related studies, lots of them (e.g. [4,78,83,96]) show the length formula for the 

catenary conductor curve in a full level span, and then the expansion of the formula into a 

series is also given, according to (5.1) [97]. The first two terms are commonly used for 

computing the length of the parabola which is the approximation of the catenary. The other 

terms in a series are negligible. Hence, due to (5.1) and considering that c=S2/8Dmax (from 

(4.124)), we can write expression (5.2).  
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Thus, the length formula for the catenary in a level span is shown far left [35,40,44], whereas 

the length formula for the parabolic approximation of the catenary can be seen far right 
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[2,60,98,99] in expression (5.2), where datum Dmax presents the maximum sag of the 

parabola. 

 

The book [81] is a rare one, which deals with the length calculation of the parabolic conductor 

curve in inclined spans. On the other hand, [47] is one of the rare studies dealing with the 

length calculation of the catenary conductor curve in inclined spans. Similarly, publication 

[100] derives the expression, which is also applicable for the latter length calculation, 

expressing L. Using labels from this work, the mentioned expression can be rewritten as 

follows: 

 









c

S
chhL

2
 sinh4)( 222

12

2  (5.3) 

It is evident that if h1=h2, then (5.3) becomes an expression which can be modified for 

calculating the length of the catenary in level spans (see (5.2) far left). 

 

The author of the book [41] presents a unique relation between the catenary lengths in 

inclined and level spans, when the catenary parameter is the same in both spans, as well as the 

span length. It can be expressed by (5.4), where ψ is the angle of the span inclination. 

 )(

cat

)(

cat
ψcos

1 levinc LL   (5.4) 

It is shown in Chapter 3 that the application of 1/cosψ in the case of the catenary is not a 

mathematically exact calculation, but an approximate one. Thus, the previous formula can 

also be classified there. However, the use of (5.4) in the case of low inclinations produces 

very small errors, which can be neglected. On the other hand, errors in steeply inclined spans 

can be significant, since the error increases with the span inclination. 

 

Referring to the conductor length in part of the span, the publication [63] has to be mentioned, 

where the total length of the parabolic conductor curve in an inclined span is given as a sum 

of the conductor lengths in two subspans. According to the shown method, the x–coordinate 

of the lowest point of the conductor is the one which divides the given span into two 

subspans. Thus, these depend on the location of the lowest point, but are not selected 

arbitrarily. 

 

Taking into consideration the above mentioned, it is obvious that all length formulas for quick 

targeted calculations of the conductor length are not available. Furthermore, some of the 

proposed formulas are suited for approximate calculations. In order to complete the collection 
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of the length formulas, the absent ones have to be defined, and the approximate ones have to 

be replaced by mathematically exact formulas. For this reason, the universal length formula is 

derived (separately for the parabola and the catenary) in this chapter, which is suitable for 

obtaining three more formulas and hence to cover together the four characteristic cases of the 

length calculation, i.e. in level and inclined spans, in a full span and in any span–part. Thus, 

four different length formulas are defined for the parabola and four others for the catenary. 

Each of them is an exact formula. The coordinate system is used in the same way as in the 

three previous chapters with the aim of keeping the uniformity of the entire work. It is well 

known that the horizontal or/and vertical translation of the curve in the coordinate system 

does not cause a change in its length. 

 

The structure of this chapter is as follows. After a short overview of related research, which is 

given in this section, the parabola length calculation is presented in Section 5.2, firstly in 

inclined spans, then also in level ones. In both span types the calculation is shown separately 

in part of a span and in a full span. Following the same order as in the case of the parabola, 

Section 5.3 deals with calculation of the catenary length. Section 5.4 shows a practical 

example by using the length formulas derived in the two previous sections and the data of the 

three conductor curves (catenary, basic parabola and modified parabola) from Chapter 4. 

Section 5.5 gives a short conclusion and a summary of the novel results. 

 

5.2  Parabolic Conductor Curve 

The length of the parabola in an inclined span differs from its length in a level span, even if 

the span length is the same in both cases, as well as the parabola’s coefficient a. That is why 

the separate length formulas are needed regarding to level and inclined spans. In the 

following, firstly the deduction concerned to an inclined span is shown then the defined final 

formula is appropriately modified for the use in a level span, considering the latter as a special 

case of an inclined span where there is no difference in height of the support points. 

 

All new length formulas, presented in this section, are concerned to the basic parabola, but 

these can be easily transformed to the corresponding length formulas for the modified 

parabola (see Chapter 4), substituting Dmax/cosψ instead of Dmax. The lengths of the basic and 

modified parabola are compared in the scope of Section 5.4. 
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5.2.1  Calculations in Inclined Spans 

This section deals with the conductor length calculation in an inclined span, separately in two 

possible cases, i.e. in the part of the span and in the full span. For this purpose Fig. 5.1 is 

used, which is based on Fig. 4.8, but contains two additional points, E and F, needed for the 

calculation of the conductor length in the part of the span. Thus, the used symbols are all as in 

Fig. 4.8, except for the here unnecessary L and D(xMIN), with additional ones, listed below: 

 

x1  –  start point of part of a span [x1, x2] [0, S] 

x2  –  end point of part of a span [x1, x2] [0, S] 

E (x1; y (x1))  –  start point of the conductor in part of a span 

F (x2; y (x2))  –  end point of the conductor in part of a span. 
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Fig. 5.1:  Parabolic conductor curve in an inclined span with h1 < h2 

 

The equation for the conductor curve (4.73) is an essential for the calculation of the conductor 

length. The deduction has been simplified by the application of (4.17), expressions for xMIN 

and a have been used from (4.73) at the end of the deduction. 

 

5.2.1.1  Conductor (Parabola) Length in Part of an Inclined Span 

The length of the parabola on the interval [x1, x2], shown in Fig. 5.1, can be determined by the 

following well known mathematical formula for the arc length [74,101,102]: 

 dx
dx

dy
L

x

x

xx  









2

1

21

2

1  (5.5) 



 

116 

The first derivative of (4.17) is (5.6). Squaring it results in (5.7): 

  MINxxa
dx

dy
 2  (5.6) 

   2
2

2 MINxxa
dx

dy









 (5.7) 

Inserting (5.7) into (5.5) and evaluating the integral [103] by the application of the substitution 

method are shown below, step by step. 
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Substituting (4.50) and a=4Dmax/S
2 (see (4.42)) into previous expression yields (5.19): 
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 (5.19) 

Formula (5.19) is a universal one for the conductor length calculation based on the parabola 

model, since it can be directly used for deriving the final formulas for calculations in a full 

inclined span, but also in a level span (a full or its part). 

 

5.2.1.2  Conductor (Parabola) Length in a Full Inclined Span 

In order to obtain the formula for the conductor length calculation in a full inclined span, 

expression (5.8) can be used, but the integral limits have to be changed into: x1=0 and x2=S. In 

fact, this is a special case of the span–part when the integral limits present the x–coordinates of the 

two support points of the conductor in a given span. The main steps for the determination of the 

final formula are the following: 
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After the substitution of expressions for xMIN and a into (5.23), it becomes (5.24): 
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Equation (5.24) is the final formula for the length calculation of the conductor within the whole 

span. It is needed more frequently than the corresponding formula for the conductor length in the 

part of the span, given by (5.19). Let us mention that both (5.19) and (5.24) are obtained by the 

application of the same algorithm, with the use of the appropriate integral limits in two different 

cases. 

 

5.2.2  Calculations in Level Spans 

The level span is a special case when the support points of the conductor are on the same 

elevation and the vertex point of the conductor curve is located at a mid–span. Actually, it is a 

simplification of an inclined span. Fig. 5.2 presents a level span with equal supports in a flat 

terrain. 
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Fig. 5.2:  Parabolic conductor curve in a level span 

 

5.2.2.1  Conductor (Parabola) Length in Part of a Level Span 

Using (5.19) and taking into consideration that h1=h2=h, it is easy to get the special formula 

for the conductor length calculation in part [x1, x2] of a level span. The length of the parabola on 

the interval [x1, x2], shown in Fig. 5.2, can be determined by the following formula: 
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Instead of the full algorithm shown in Section 5.2.1, its final formula is directly applied here 

to obtain (5.25). The size and location of the span–part [x1, x2] is arbitrarily selectable on the 

interval [0, S]. 

 

5.2.2.2  Conductor (Parabola) Length in a Full Level Span 

Since the parabola is an even function, the length of its curve in a full level span can be 

determined as a double length of the curve in one half of the span, according to (5.26). The 

main steps for deriving the final formula (5.29) are given by (5.27) and (5.28). 
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Expression (5.29) is a formula for the conductor length calculation in a full level span. 

Naturally, the appropriate application of (5.19) or (5.25) would give the same formula, but 

here the aim was to show a special use of the algorithm from Section 5.2.1. Formula (5.29) 

also has another form (5.31) obtained by using identity (5.30) [74,103]. 
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5.3  Catenary Conductor Curve 

Similarly as in the case of the parabola, the length formulas are derived in four cases, but the 

conductor curve is here considered as a catenary: 
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 Catenary length in part of an inclined span 

 Catenary length in a full inclined span 

 Catenary length in part of a level span 

 Catenary length in a full level span. 

 

5.3.1  Calculations in Inclined Spans 

In this section Fig. 5.1 from Section 5.2.1 is used with the same symbols, except for the maximum 

sag of the parabola. Instead of it the catenary parameter is applied. The deduction has been done 

regarding to inclined and level spans separately. The equation for the catenary conductor curve, 

which is obtained in Chapter 2, is used here. 

 

5.3.1.1  Conductor (Catenary) Length in Part of an Inclined Span 

The length formula in this section is derived by using (2.18). The square of its first derivative is 

given by (5.32): 
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Substituting (5.32) into (5.5) and evaluating the integral result in (5.34). 
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Applying identity (5.35), the previous expression can be transformed into (5.36), then into (5.37) 

after substitution of (2.29). 
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Formula (5.37) is a universal one for the conductor length calculation based on the catenary 

model, since it can be directly used for deriving the final formulas for calculations in a full 

inclined span, but also in a level span (a full or its part). 
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5.3.1.2  Conductor (Catenary) Length in a Full Inclined Span 

Having obtained the formula for the length of the catenary in part of an inclined span, given by 

(5.37), it can be simply transformed into an adequate formula for the catenary length in a full 

inclined span, setting x1=0 and x2=S. (The reverse order is not possible.) It is detailed below, 

where at first (5.37) has been changed into (5.38). 
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Taking into consideration (5.39), the previous length formula can be transformed into (5.42), 

as follows: 
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This formula is corresponding to the one which is presented in [47]. 

 

5.3.2  Calculations in Level Spans 

This section does not need a new figure either, that one from Section 5.2.2 can be used here as 

well. Two formulas for the length of the catenary in a level span are defined, one in part of the 

span and one in a full span. As it can be seen below, obtaining both formulas is significantly 

simpler than obtaining adequate formulas for the parabola length. Furthermore, the formulas 

themselves are also much simpler. 

 

5.3.2.1  Conductor (Catenary) Length in Part of a Level Span 

When h1= h2, then xMIN=S/2 and hence (5.34) changes into (5.43). Using identity (5.35) yields 

(5.44). 
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The previous formula is also obtainable by considering that h1=h2 in (5.37). 
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5.3.2.2  Conductor (Catenary) Length in a Full Level Span 

The easiest way to define the formula for the catenary length in a full level span is to use the 

adequate formula for the catenary length in a full inclined span, given by (5.42), and to set 

h1=h2. It results in (5.45). 
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Notice that the obtained formula is the same as (5.2) far left, which is available in literature. 

This way the correctness of the new method is verified. 

 

5.4  Practical Example and Analysis of the Results 

Having obtained the length formulas for the catenary and the parabola (basic and modified), 

all necessary conditions have been established for comparison of the lengths of the three 

mentioned curves when the latter two ones are approximations of the first one. In order to 

make a comprehensive comparison, it is recommended to include the following cases: 

 Level span, h1 = h2, 

 Incline span with low inclination, i.e. with small |h2 – h1|, 

 Incline span with high inclination, i.e. with big |h2 – h1|. 

Such a suitable and practical example has been created below (Example 5.1) by the use of the 

five catenaries, which are drawn in Fig. 3.11, according to data from Table 3.6. Having data 

for the catenaries, the additional necessary data (Dmax and Dmax ψ) for computing the length of 

the catenary approximation by a parabola (basic and modified) are obtained in all five cases 

separately and listed in Table 5.1. After that the lengths of the three curves have been 

calculated and then also compared in each case, in order to draw conclusions. 

 

Example 5.1 

According to data from Table 3.6, the maximum sag of the parabola is computed as 

Dmax=S2/8c, and then also the maximum sag of the modified parabola as Dmax ψ = Dmax/cosψ. 

These data – together with h1, h2, S from Table 3.6 – are sufficient for all length computations.  
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Table 5.1:  Catenary parameter and maximum sags of the parabolas 

 

 

 

 

 

 

 

 
 

 

 

 
Table 5.2:  Lengths of catenaries (from Fig. 3.11) and their parabolic approximations 

 

 

 

 

 

 

 

 
 

 

 

 

Based on the previous table, the following one is prepared for analysing the length differences 

of the three curves in the five given cases, according to Fig. 3.11 and Table 3.6. 

  
Table 5.3:  Differences of lengths from Table 5.2 

 

 

 

 

 

 

 

 

 

 

 

Thus, we can write relation (5.46) regarding to the level span (case 1), and relation (5.47) 

regarding to the inclined spans (cases 2 – 5): 
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According to 

Table 3.6 

Catenary 

parameter 

c [m] 

Maximum sag of  

modified parabola 

Dmax ψ [m] 

Maximum sag of  

basic parabola 

Dmax [m] 

Case 1 103 61.25 61.25 

Case 2 103 61.40605 61.25 

Case 3 103 61.87184 61.25 

Case 4 103 62.64047 61.25 

Case 5 103 63.70096 61.25 

According to 

Table 3.6 

Length of  

catenary 

Lcat [m] 

Length of  

modified parabola 

Lpar ψ [m] 

Length of  

basic parabola 

Lpar [m] 

Case 1 714.37946 714.03991 714.03991 

Case 2 716.12709 715.79359 715.72366 

Case 3 721.34459 721.02879 720.75464 

Case 4 729.95754 729.66983 729.07293 

Case 5 741.84770 741.59654 740.58204 

According to 

Table 3.6 
Lcat – Lpar ψ  [m] Lcat – Lpar  [m] Lpar ψ – Lpar  [m] 

Case 1 0.33955 0.33955 0 

Case 2 0.33350 0.40343 0.06993 

Case 3 0.31580 0.58995 0.27415 

Case 4 0.28771 0.88461 0.59690 

Case 5 0.25116 1.26566 1.01450 
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The following relation results from the previous one: 
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So, the use of the multiplier 1/cosψ (see Chapter 4) for the parabola in inclined spans is 

recommended from the aspect of the length computation, since it ensures results closer to the 

catenary length than when 1/cosψ is not used. Let us mention that due to cos(0)=1, the 

multiplier does not have influence when computing the length of the parabola in level spans. 

 

According to Fig. 3.11 in Section 3.4.4, relations (5.46) and (5.47) have been derived for 

inclined spans with h1 < h2. It is worth mentioning that the same relations also concern to 

another type of inclined spans, i.e. when h1 > h2. It confirms the universality of the developed 

method, which is achieved due to this work’s strictly mathematical approach. 

 

Another important conclusion, drawn by analysing the results from Table 5.3, is that when the 

span inclination (or |h2 – h1|) increases, then the difference in lengths of the catenary and its 

approximation by the modified parabola (see Chapter 4) decreases, whereas the difference in 

lengths of the catenary and its approximation by the basic parabola increases. Expressing it 

mathematically by the use of |h2 – h1| instead of the angle of the span inclination ψ, regarding 

to both inclined span types, it results in relations (5.49) and (5.50), as follows: 
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Note: The four previous relations are valid for inclined spans which occur in OHL practice. 

Some of these relations can be invalid for very extreme span inclinations only, which never 

occur in OHL practice and hence are not a target of this work. 

 

5.5  Summary of the Chapter 

Taking into consideration that currently there is not any publication which deals widely with 

the calculation of the conductor length in a span, and also no publication gives the length 

formulas for all characteristic cases or, if there is, it gives only approximate ones; this chapter 

shows the derivations of the following formulas, covering both very frequent and very rare 

tasks in practice: 

1. Formula for the parabola length in part of an inclined span 

2. Formula for the parabola length in a full inclined span 

3. Formula for the parabola length in part of a level span 
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4. Formula for the parabola length in a full level span 

5. Formula for the catenary length in part of an inclined span 

6. Formula for the catenary length in a full inclined span 

7. Formula for the catenary length in part of a level span 

8. Formula for the catenary length in a full level span. 

Formula 1 is a universal one for computing the length of the parabola, since formulas 2, 3, 4 

can be directly obtained from it, taking into account the following self–evident facts: 

 Full span is a special case of the span–part, when the start and end points of the 

latter are the x–coordinates of the two support points in a given span. 

 Level span is a special case of an inclined span, when the support points are 

on the same elevation. 

Similarly, formula 5 is a universal one for computing the length of the catenary, as formulas 

6, 7, 8 can be directly defined from it. 

 

Comparing the length formulas, and also their derivations in the case of the parabola and the 

catenary, all presented in this chapter, it is evident that these are significantly more 

complicated in the case of the parabola. Considering Chapters 2–4, all other derivations are 

obviously more complicated in the case of the catenary. The conductor length calculation is 

the only one which is simpler within the catenary based calculation than within the parabola 

based calculation. 

 

Using exact formulas obtained in this chapter, the lengths of the catenary and its 

approximation by the parabola (basic and modified) have been compared separately in level 

and inclined spans. This way some important conclusions have been drawn and also the 

application of 1/cosψ multiplier has been evaluated from the aspect of the length computation 

in case of the parabola. It is formulated within the thesis. 
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6   EXTENSION OF THE NEW METHODS 

6.1  Introduction 

The new algorithms and equations presented in Chapters 2–5 were originally obtained for the 

application in single dead–end spans but these are also usable in all spans with the conductors 

fixed at the rigid support insulators (pin insulator/post insulator). However, the high voltage 

overhead lines are mostly built with hanging suspension insulators mounted on the support 

towers (poles) between two dead–end (tension) towers. At a typical suspension structure, the 

conductor is supported vertically by a suspension insulator assembly, but allowed to move 

freely in the direction of the conductor axis. This conductor movement is possible due to 

insulator swing along the conductor axis. Changes in conductor tension between spans, 

caused by changes in temperature and load are normally equalized by insulator swing, 

eliminating horizontal tension differences across suspension structures [63]. In the following 

it will be shown that taking into consideration the Ruling Span Theory [104,105] and the 

movement of the support points, the use of the most methods shown in Chapters 2–5 can be 

extended in any span and also in the entire section of OHL with several support spans 

between the two dead–end structures. It is worth mentioning that the aim of this dissertation is 

not to replace the existing mechanical calculation, but to adequately upgrade it (using their 

results) by the exact and up to now missing mathematical calculations, instead of the existing 

deficient and inexact ones. The mechanical calculation (in literature so cold the Sag–tension 

calculation) already has ready methods for the determination of the horizontal movement (∆x) 

of the suspension points [41]. Knowing the insulator length also the vertical movement (∆y) 

of the suspension point can be easily obtained. Thus, the new x,y coordinates of the latter and 

so the modified span length can be considered as the known input data. Besides the maximum 

sag of the parabola (or the catenary parameter) these data are sufficient for writing the 

equations for the conductor curve and sag, as well as many other formulas shown in Chapters 

2–5. 

 

6.2  Ruling Span Theory 

The publication [104] explains well the Ruling Span Theory as follows. If all spans in a 

section of line are of the same length then the tension on individual span will be equal. 

Keeping the span lengths the same is possible on lines constructed on open terrains. 

However, for construction along highways and residential areas, the span lengths can never 

be equal. The owner of the property wants the poles be installed on the boundary of his/her 
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lot. This causes a diverse length of spans that will affect the sag and conductor tension of the 

individual spans. A ruling span, also known as equivalent span or mean effective span (MES), 

is an assumed uniform design span which approximately portray the mechanical performance 

of a section of line between its dead–end supports. The ruling span is used in the design and 

construction of a line to provide a uniform span length which is a function of the various 

lengths of spans between dead–ends. This uniform span length allows sags and clearance to 

be readily calculated for structure spotting and conductor stringing. Due to written in [106] 

the ruling span may be defined as that span length in which the tension in the conductor, 

under changes in temperature and loading, will most nearly agree with the average tension in 

a series of spans of varying lengths between dead ends. A more common definition is that the 

ruling span is the span length used as a basis for calculating the conductor sags and tensions, 

constructing the sag template, and preparing the stringing tables.  

According to [85], the ruling span length can be determined by (6.1).  
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 (6.1) 

where: 

SR  –  ruling span length 

ki  –  distance between the suspension points in ith span  

(Note: in inclined spans ki > Si, while in level spans ki = Si .) 

S1,S2, …, Sn  –  the 1st, 2nd, …, nth span length respectively. 

Since the tension in all of the suspension spans is equal (or nearly so), the maximum sag in 

any of the corresponding suspension spans can be calculated using the following formula 

[105]: 
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where: 

DR  –  maximum sag obtained using the ruling span length 

Dmax i  –  maximum sag of the ith span 

Si  –  length of the ith span. 
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Fig. 6.1 shows the ith support span. Because of the conductor’s temperature change the tension 

changes and the suspension points I and J move to I’ and J’. This way the span length Si 

changes into S’i.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1:  The ith suspension span between the towers I and J 

 

Each change in temperature causes different degrees of movement of the suspension points. 

Accordingly, each mathematical calculation considers to one selected temperature of the 

conductor by the application of the adequate results of the sag–tension calculation. The latter 

is not the target of this dissertation because it is easily available and explained well in the 

existing literature, for instance [41]. Actually, the mathematical calculations shown in this 

work builds on existing sag–tension calculation using their main results. Expression (6.3) is 

the equation for the parabolic conductor curve in the ith span, taking into account the insulator 

swing. The x–axis is considered to go through the left–hand side tension tower of the OHL 

section between the two tension towers.  
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If the OHL section consists of n spans and thus n+1 towers, where all towers are support ones, 

except for the first and the last one, which are dead–end towers, then the parabolic equation 

for the conductor curve considered to all spans is given by the following expression: 
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where: 

∆x1=0, ∆xn+1=0, ∆y1=0, ∆yn+1=0, h’1=h1, h’n+1=hn+1 since the 1st and the (n+1)th towers are 

dead–end ones. (The tension insulators on dead–end towers are considered as the continuation 

of the conductor.) 

∆x2,…, ∆xi, ∆xj,…, ∆xn are data taken from the sag–tension calculation [41]. 

∆xi>0    ˅    ∆xi=0    ˅    ∆xi<0 

S’1=S1+∆x2, S’2=S2–∆x2+∆x3,…, S’i=Si–∆xi+∆xj, S’j=Sj–∆xj+∆xj+1,…, S’n=Sn–∆xn are modified 

span lengths. 
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∆y2,…, ∆yi, ∆yj,…, ∆yn are data obtained by (6.6), where Lins i is the length of the suspension 

insulator in the ith span. 

 22

 ins ins )( iiii xLLy   (6.6) 

∆yi>0    ˅    ∆yi=0 

h’2=h2+∆y2, h’3=h3+∆y3,…, h’i=hi+∆yi, h’j=hj+∆yj,…, h’n=hn+∆yn are the modified heights of 

the suspension points of the conductors on the support towers.  

Summarizing this section it can be said that taking into consideration the insulator swing and 

Ruling Span Theory, the input data for the mathematical calculations are S’i, h’i, h’j, D’max i 

instead of Si, hi, hj, Dmax i. 
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6.3  When not to apply the Ruling Span Theory 

In actual construction shown in Fig. 6.2, the stringing section is not a single dead–end span 

but it consists of series of unequal spans between the rigid dead–end supports. During 

stringing, the conductors can freely move between spans because it is temporarily supported 

by free–wheeling rollers. Under these conditions, the conductor behaves according to the 

Ruling Span Theory. [105] 

 

Fig. 6.2:  Mechanically independent spans [105] 

 

However, when the conductor are tied or fixed at the rigid support insulators (pin 

insulator/post insulator) the conductor can no longer move freely between spans. The spans, 

in a sense, become dead–end spans or mechanically independent spans. Then, the future 

behaviour of the conductor under various loading conditions will not follow the Ruling Span 

Theory. Its behaviour can be determined based on calculation procedures used for single 

dead–end spans. The difference in horizontal tension between span will then cause 

longitudinal movement or flexing in the supporting structures or insulators. 

On the other hand, when the conductor is fixed at suspension insulator or strings, the 

difference in horizontal tension between spans will be compensated by the longitudinal or 

transverse movement or swing of the strings. Hence, it is safe to assume that the conductor 

will behave according to Ruling Span Theory. [105] 
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NEW SCIENTIFIC RESULTS 

Executive Summary 
  

Electrical network can be divided into two basic groups, underground cables and overhead 

lines (OHL). It is well known that the construction of OHL is less expensive but its design is 

more complex. One of the reasons of the latter disadvantageous fact is the conductor sag, 

which directly affects clearance calculations. The OHL have to be designed and operated so 

that they would not cause injuries to people, therefore maintaining adequate distance between 

energized conductors and ground or other objects is a particularly important task of OHL 

design. When designing electrical network a special attention should be paid to the safety of 

its environment. My dissertation has been written in this spirit. 

 

Focusing on the conductor sag in a span, this dissertation introduces novel methods, 

algorithms and equations, which are creatable or obtainable by the use of the given major 

result of the sag–tension calculation (catenary parameter or parabola’s maximum sag), besides 

the span length and the heights of the support points. Both the catenary and the parabola 

based calculations have been discussed, as well as the special link between them, providing a 

wide mathematical background, which can help to solve not only standard and frequent tasks 

in OHL practice, but also some rare unconventional ones. This work is a complex 

mathematical module, which practically connects the results of the sag–tension calculation 

with clearance calculation, and in this way it contributes to safe electrical network planning. 

 

Introduction deals with the objectives and the structure of the dissertation, and also gives a 

brief introduction of the bases of overhead lines and their design. The novel results are 

reported in Chapters 2–5 and are grouped in four theses. 

 

Chapter 1 introduces the drone as an unmanned aerial vehicle and its wide applicability for 

the inspection of overhead lines giving priority to autonomous drones in comparison to 

remote controlled ones. It is highlighted that the future usage of drones will be mounting the 

sensors (as temperature and vibration sensors, etc.) on energized conductors, i.e. without 

disconnection of the power supply. For planning the trajectory of an autonomous drone used 

for inspection of overhead lines, it is necessary to know the equation for the conductor curve. 

The correspondent mathematical algorithms for determining the equations for the conductor 

curve, either the catenary or parabola, and also its length are presented in details in Chapters 

2–5. 
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Chapter 2 widens the current catenary based calculation developing universal equations for 

the conductor and the sag curves, usable in all span types. It is achieved by the new way of 

applying the coordinate system, which differs from the way that is generally used in literature. 

Besides the determination of the maximum sag and its location in an inclined span, the 

formulas for other characteristic sags (maximum sag, mid–span sag and low point sag) of the 

catenary have been obtained and also special cases of the inclined spans have been 

appropriately explained. 

 

Chapter 3 introduces a mathematical solution for inclined span modelling by the known data 

of a given level span, with the possibility of the arbitrary selection of the span inclination or 

the difference in elevation of the support points. The developed method is presented in the 

case of the catenary, but it is applicable in the case of the parabola as well. Using it, unique 

relations between the catenary sags in inclined and level spans have been derived when the 

span length is a common datum in both spans, as well as the catenary parameter. 

 

Chapter 4 describes the determination of the universal parabolic equation for the conductor 

curve taking into consideration the fact that the maximum sag of the parabola is always 

located at a mid–span, i.e. in both level and inclined spans. Three methods for defining the 

vertex point of the parabola have also been shown and explained. In addition, the special 

parabolic equations for the conductor curve, usable strictly in inclined spans, have been 

obtained by the known (x; y) coordinates of two support points and only one coordinate of the 

parabola’s vertex point. The parabolic approximation of the catenary in an inclined span has 

been created mathematically. 

 

Chapter 5 deals with the conductor length calculation for the cases of the catenary and the 

parabola using the equations for the conductor curve from Chapters 2 and 4. Applying the 

integral calculus, universal formulas have been derived for the conductor length calculation in 

level and inclined spans, and also in a span–part and in a full span as well. Moreover, the 

length of the catenary is compared to the length of its approximation by the parabola. 

  

Chapter 6 explains the extension of the new methods, shown in Chapters 2–5, in the entire 

section of OHL consisting of several support spans between the two dead–end structures. 
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Összefoglalás 

  

A villamos hálózat két csoportba sorolható, földkábeles és szabadvezeték hálózatra. 

Közismert, hogy az utóbbi megépítése olcsóbb, viszont a tervezése bonyolultabb. A 

bonyolultabb tervezés egyik oka a vezeték belógása, ami a vezetékektől való távolság 

számításával kapcsolatos.  A szabadvezeték hálózatot úgy kell tervezni és működtetni, hogy 

személyi sérülést ne okozzon, ezért a megfelelő távolság (villamos szigetelőképesség) 

fenntartása a feszültség alatt álló vezetékek és a föld vagy más tárgyak között különösen 

fontos feladat. A villamos hálózat tervezésekor annak a környezetével szembeni biztonságára 

kiemelt figyelmet kell fordítani. Ennek szellemében készült a disszertációm. 

  

A disszertáció azokat az új módszereket, algoritmusokat és egyenleteket mutatja be a vezeték 

oszlopközbeni belógásával kapcsolatban, melyek a szabadvezetékek mechanikai 

méretezésének adott főeredményén (láncgörbe paraméterén vagy a parabola legnagyobb 

belógásán) alapulnak, az oszlopköz hosszára és a felfüggesztési pontok magasságaira 

vonatkozó adatok mellett. Mind a láncgörbe, mind pedig a parabola alapú számítás 

megtárgyalásra kerül, valamint azok speciális matematikai kapcsolata is, amely segítséget 

nyújthat nemcsak a szokásos gyakorlati feladatok megoldásában, hanem egyes ritka, speciális 

feladatok esetében is. A munka eredménye egy összetett matematikai modul, amely 

praktikusan összeköti a szabadvezetékek mechanikai méretezésének eredményeit a 

vezetékektől való távolság számítással, és így hozzájárul a biztonságos hálózat tervezéséhez. 

  

A Bevezetés című fejezet a disszertáció céljait és szerkezetét mutatja be, valamint rövid 

ismertetést ad a szabadvezeték hálózatról és annak tervezéséről. Az új eredményeket négy 

tézisbe csoportosítottam, ezek a 2–5. fejezetben vannak ismertetve. 

  

Az 1. fejezetben bemutatásra kerül a drón, mint pilóta nélküli légi jármű és annak széleskörű 

alkalmazhatósága a szabadvezeték hálózat ellenőrzése területén prioritást adva az autonóm 

drónnak a távirányított drónnal szemben. Hangsúlyozva van a drónok jövőbeli használata a 

különböző szenzorok (mint hőmérséklet és rezgés szenzorok, stb.) felszereléséhez a feszültség 

alatt álló vezetékekre, a villamos hálózat kikapcsolása nélkül. A szabadvezeték hálózat 

ellenőrzésére alkalmazott autonóm drónok trajektóriájának a tervezéséhez szükség van a 

vezetékgörbe egyenletére. A releváns matematikai algoritmusok a vezetékgörbe egyenletének 

meghatározásához, mind a láncgörbe, mint pedig a parabola esetén, valamint azok hosszának 

a számításához a 2–5. fejezetek mutatják be részletesen. 
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A 2. fejezetben kibővítésre kerül a jelenleg szokásos láncgörbe alapú számítás. Itt a 

vezetékgörbe és a belógási görbe univerzális egyenletei vannak bemutatva, melyek minden 

típusú felfüggesztési közben érvényesek. Ezt a koordináta rendszer alkalmazásának egy új 

módja tette lehetővé, amely eltér a szakirodalomban használttól. A legnagyobb belógásnak és 

annak elhelyezésének a meghatározása mellett a láncgörbe többi jellegzetes belógásainak 

formulái (belógás az oszlopköz felénél, belógás a vezeték légmélyebb pontjában) is 

meghatározásra kerültek ferde felfüggesztésre vonatkozóan. A ferde felfüggesztés különleges 

eseteit is tárgyaltam. 

  

A 3. fejezetben egy matematikai megoldás van bemutatva a ferde felfüggesztési köz 

modellezésére az adott vízszintes felfüggesztési köz adatai alapján, amelynél az oszlopköz 

ferdesége vagy a felfüggesztési pontok közötti függőleges távolság tetszőlegesen választható. 

A kidolgozott módszer láncgörbére van bemutatva, de a módszer a parabolánál is 

alkalmazható. Ennek használatával a láncgörbe ferde és vízszintes felfüggesztésre vonatkozó 

belógásai között egyedi összefüggéseket dolgoztam ki arra az esetre, amikor az oszlopköz 

hossza és a láncgörbe paramétere is közös adat mindkét féle felfüggesztésnél. 

  

A 4. fejezetben a vezetékgörbe univerzális parabolikus egyenlete van megadva, felhasználva 

azt a tényt, hogy a parabola legnagyobb belógása mindig az oszlopköz felénél helyezkedik el 

mind vízszintes, mind pedig ferde felfüggesztés esetén. A parabola legmélyebb pontjának a 

meghatározásához három módszert mutattam be és fejtettem ki. Ezen túlmenően a ferde 

felfüggesztésre vonatkozóan a vezetékgörbe speciális parabolikus egyenletei kerültek 

kidolgozásra, a két felfüggesztési pont (x; y) koordinátái és a parabola legmélyebb pontjának 

egy koordinátája alapján. A láncgörbe parabolával való közelítésére ferde felfüggesztés esetén 

egy matematikai átalakítást is ismertettem. 

 

Az 5. fejezetben a vezetékhossz számítása van kidolgozva mind a láncgörbe, mind pedig a 

parabola esetére felhasználva a vezetékgörbe egyenleteit a második és negyedik fejezetekből. 

Integrálszámítás alkalmazásával univerzális formulák kerültek levezetésre a vezetékhossz 

számításához vízszintes és ferde felfüggesztés esetén, valamint a teljes oszlopközben és annak 

tetszőleges részében egyaránt. A láncgörbe hosszát összehasonlítottam a parabolagörbe 

hosszával. 

  

A 6. fejezet a 2–5. fejezetekben bemutatott új módszerek kiterjesztését tárgyalja a két feszítő 

oszlop közötti szabadvezeték hálózat teljes szakaszába, amely több oszlopközből áll. 
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Thesis 1 

Relating to the drawing of the conductor curve considered as a catenary, I have derived 

universal equations for the conductor and the sag curves which are applicable for determining 

the conductor height and the sag at any point of the span, in all possible span types with any 

span inclination. New equations also cover the special cases of inclined spans where the 

catenary’s vertex point and the conductor’s low point differ in their location. 

 

Universal equation for the conductor curve: 
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Universal equation for the sag curve: 
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I have shown that the new sag equation can be used for determining the location of the 

maximum sag in a span and also for deriving the special formulas for the characteristic sags: 

the maximum sag, the mid–span sag and the low point sag. 

 

Maximum sag formula: 
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Mid–span sag formula: 
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Low point sag formula: 
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I have demonstrated that the direction of the movement of the maximum sag from the mid–

span, which occurs when the level span changes into an inclined one, can be determined 

analytically, not only numerically. 

 

I have shown that if the conductor curve is considered as a catenary, then the sag function 

D(x+S/2) is an even function in the case of a level span, while in inclined spans it is neither an 

even nor an odd function. The sag curve in a level span has the exact shape of an inverted 

catenary, while in an inclined span it slightly differs. The difference increases with the span 

inclination. 

 

Publications connected to this thesis: [S1], [S4], [S7], [S8], [S13], [S15], [S17], [S24]. 

 

Thesis 2 

I have developed a mathematical method, called inclined span modelling by a given level 

span, which using the given data (S, c, h1) for a level span and a freely selected datum of the 

difference in the support points elevation (h2 – h1), creates equations for both the conductor 

and the sag curves in a modelled inclined span when the span length and the catenary 

parameter are common data in both spans. 
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I have revealed that the quotient of the sag functions in inclined and level spans on the 

interval (0,S) is not a constant in the case of the catenary as it is in the case of the parabola. 
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Instead of the existing approximate relation I have derived a mathematically exact one 

between the catenary sags in inclined and level spans, usable at any point of the span. 
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The function, which describes the error along the span, resulted by the application of the 

approximate relation, changes sign near the middle of the span. 

 

Instead of the existing approximate relation I have derived a mathematically exact one 

between the maximum sags of the catenary in inclined and level spans. The difference 

between the two mentioned sags increases with the span inclination. 
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where xMIN is the x–coordinate of the catenary’s vertex point given as 
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Publications connected to this thesis: [S2], [S8], [S9], [S10], [S14], [S17], [S25]. 
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Thesis 3 

I have derived a universal parabolic equation for the conductor curve by the given maximum 

sag and the coordinates of the support points, which is usable in level and inclined (classical 

and special) spans as well and from which the coordinates of the vertex point are directly 

readable. 

  Sx
D

hh
Dh

D

hhS
x

S

D
xy ,0        

4
1

4
1

2

4
)(

2

max

12
max1

2

max

12

2

max 








 



















 
   

 

Subthesis 3.1 

I have derived special parabolic equations for the conductor curve applicable strictly in 

inclined spans, by the given (x ; y) coordinates of the two support points and only one 

coordinate of the vertex point, xMIN or yMIN. 
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Subthesis 3.2 

I have created an analytical method for a parabolic approximation of the catenary in inclined 

spans. This method can also be applied in level ones. 
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I have provided a wide mathematical background which is related to 1/cosψ multiplier’s 

effect. As the sag in an inclined span increases, 1/cosψ multiplier reduces the parabola’s 

parameter and also its deviation from the catenary, resulting that the modified parabola 

resembles the catenary better than the basic (original) parabola. 
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Subthesis 3.3  

I have revealed that differently from the case of the catenary, the quotient of the sag functions 

in inclined and level spans on the interval (0,S) is a constant in the case of the parabola (either 

basic or modified by 1/cosψ), due to the two following relations: 
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Publications connected to this thesis: [S4], [S5], [S6], [S15], [S16], [S17], [S18], [S20], [S22], 

[23], [S26], [S27], [S28], [S29]. 

 

 

Thesis 4 

I have derived one universal formula for computing the length of the parabola and one for 

computing the length of the catenary, which are both usable in inclined and level spans as 

well, in full span and also in its arbitrarily chosen part. 

 

 

Universal formula for the length of the parabola: 
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Universal formula for the length of the catenary: 
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Subthesis 4.1 

Related to OHL practice, I have shown that when calculating the conductor length, the 

application of multiplier 1/cosψ for modifying the basic parabola in inclined spans ensures 

results closer to the catenary length in comparison to the case when the multiplier is not 

applied. 
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Subthesis 4.2 

Related to OHL practice, I have revealed that when the span inclination (or |h2 – h1|) increases, 

then the difference between the lengths of the catenary and its approximation by the modified 

parabola decreases, whereas the difference between the lengths of the catenary and its 

approximation by the basic parabola increases. It is expressed mathematically in the following 

two relations with the use of |h2 – h1|: 
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Publications connected to this thesis: [S3], [S4], [S11], [S12], [S19], [21], [S29]. 
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Practical Application of the New Results 

 

The practical usage of the new results is well presented and described through suitable 

numerical examples given in Chapters 2–5. The main application is the determination of the 

conductor height and the sag at any point of the span, by the universal equations for the 

conductor and the sag curves, which are applicable in any span type with any span inclination. 

New equations have been derived in the case of the parabola and the catenary as well. 

Drawing the conductor curve is another application of high importance. Besides computing 

all characteristic sags of the catenary, the inclined span modelling, the conductor length 

calculation and the parabolic approximation of the catenary in an inclined span are also very 

useful results presented in this work. The main new results were introduced in practice. My 

former company accepted my methods and implemented them in OHL design process after I 

had trained the other designers in the company. Representing the previous company, my 

project named Designer Programme successfully entered the 19th Hungarian Innovation 

Award Competition and as a recognised innovation got into the Innovation Award 2010 book 

under number 12. 

The future application of the new mathematical equations and algorithms presented in the 

dissertation is their implementation in planning the trajectory of an autonomous drone used 

for inspection of overhead lines and for mounting, maintaining or replacing the smart sensors.  
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LIST OF FREQUENTLY USED ABBREVIATIONS AND SYMBOLS 

 

OHL  Overhead Lines 

LV   Low Voltage 

MV   Medium Voltage 

HV   High Voltage 

 

S – span length (horizontal distance between two towers/supports of a span) 

h1 – height of the left–hand side support point 

h2 – height of the right–hand side support point 

Dmax – maximum sag 

w – weight of the conductor per unit length 

H – horizontal tension 

c=w/H – catenary parameter 

T – tension at any point of the conductor 

Δh=h2–h1 – difference between the elevation of the support points 

ψ – angle of the span inclination 

MIN(xMIN; yMIN) – vertex point 

y(x) – equation for the conductor curve 

yline(x) – equation for the straight line connecting the support points 

D(x) – sag equation 

D(S/2) – mid–span sag 

D(xMIN) – low point sag 

ΔD(x) – equation for the difference between the sags in inclined and level spans 

ΔD(S/2) – difference between the mid–span sags in inclined and level spans 

ΔDmax – difference between the maximum sags in inclined and level spans 

E(x) – equation for the sag error 

a, b, c – coefficients of the parabola according to cbxaxxy  2)(  

p – parameter of the parabola 

L – conductor length in a full span 

L x1 x2 – conductor length in a span–part [x1, x2] [0, S]. 



 

155 

Note: 

Notation cat or (cat) in the subscript or in the superscript refers to the catenary 

Notation par or (par) in the subscript or in the superscript refers to the parabola 

Notation par ψ or (par ψ) in the subscript or in the superscript refers to the modified parabola 

Notation lev or (lev) in the subscript or in the superscript refers to a level span 

Notation inc or (inc) in the subscript or in the superscript refers to an inclined span. 
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Appendix 5: 
 

Deriving y=y(S, h1, h2, xMIN, x): 
 

Expressing Dmax=Dmax(S, h1, h2, xMIN, yMIN) from (4.97): 

   )(24 1max12 MINMIN yhSDhhx    

    )(24 112max MINMIN yhShhDx    

   )(24 112max MINMINMIN yhSxhhxD    

   MINMIN

MIN

xhhyhS
x

D 121max )(2
4

1
   

Substituting Dmax into (4.98) to get yMIN=yMIN(S, h1, h2, xMIN): 

   
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x
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x
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x
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x
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x
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2

1

2
   

2
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
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  21

2
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2
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


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Substituting yMIN into expressions for coefficients a and b: 
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Final equation in general form according to cbxaxxy  2)( : 
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Final equation in vertex form according to   MINMIN yxxaxy 
2

)( : 
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Appendix 6: 
 

Deriving y=y(S, h1, h2, yMIN, x): 
 

Expressing Dmax=Dmax(S, h1, xMIN, yMIN) from (4.98): 
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Substituting Dmax into (4.97) to get xMIN=xMIN(S, h1, h2, yMIN): 
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     MINMINMINMIN xyhSyhSxhh )(2 11
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The solution with ”+” sign is an appropriate one. 
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Substituting yMIN into expressions for coefficients a and b: 
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Final equation in general form according to cbxaxxy  2)( : 
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Final equation in vertex form according to   MINMIN yxxaxy 
2
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