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Abstract

In my Thesis I elaborated certain improvements in the subject areas of Optimal and Adap-
tive controllers with the main aim of realizing their efficient integration. In the traditional
mainstream, optimal controllers are based on the mathematical foundations of functional
optimization under constraints. The adaptive controllers that tackle strongly nonlinear prob-
lems normally use Lyapunov functions for the calculation of the control signal. Both struc-
tures have their own inner rigidity that makes their combination not trivial. Recognizing
that the mathematical structure of the alternative of the Lyapunov function-based technique,
the Fixed Point Iteration-based adaptive control immediately allows the integration of the
various particular variants of these methods, I concentrated on the elaboration of adaptive
optimal controllers. I have shown that by eliminating the constraint terms in the optimal
control by incorporating the dynamic model in the cost functions the computational burden
of the method can be significantly reduced in the case of quite sophisticated cost functions.
I also elaborated improvement in the FPI-based adaptive controllers by reducing its noise
sensitivity using simple filtering techniques, and efficiently tackled the problem of actua-
tor saturation. I suggested separate or optionally partly coupled application of this adaptive
method with parameter identification purposes the need of which arose not from the side of
control applications. I pointed out the limitation of the evolutionary algorithms in parameter
identification issues, and suggested the use of the improved identified model with the same
adaptive technique to improve its stability. The statements of my Thesis are underpinned by
simulation investigations I made by the use of Julia language programs.
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Chapter 1

Introduction

1.1 Motivations and Goals
In practical control tasks various typical problems must be tackled as e.g., the lack of

precise dynamic model of the system to be controlled, the presence of unknown external dis-
turbances and their consequences, limited physical possibilities for introducing control force
or other equivalent action into the controlled process, limited possibilities for measuring or at
least estimating the controlled system’s actual physical state. For tackling at least certain ele-
ments of these problems various control methodologies have been elaborated. Some of them
were based on particular mathematical formalism that do not seem to be easily combined
with each other. In this field of efforts there is a plenty of open problems and a general lack
of integration can be observed. The question naturally arose: is it possible to reach certain
achievement in this direction? My work was motivated by this simple question. Explanation
of the precise mathematical details of which I obtained my motivations can be given only
after the state-of-the-art review. In the sequel I give only a short summary of my ideas.

The Model Predictive Controller (MPC) was early idea developed for utilizing the avail-
able dynamic model of the controlled system. In order to provide the designer possibil-
ity for force limitations or complying with various other, often contradictory requirements,
these controllers mathematically were formulated as solutions to the optimization under
constraints tasks. Normally, the cost functions represented some weighted sum of vari-
ous penalty terms that should have been minimized, while the dynamic model of the con-
trolled system appeared in the constraint terms. In the early dynamic programming approach
the mathematical background was the minimization of functionals with strong analogy of
the variation principles of Classical Mechanics. The computational power -requirements of
this approach was considerably reduced by the application of time grid with discrete time-
resolution in the Receding Horizon Controller (RHC) that maintained the constraint terms
with combination with the Lagrange multipliers. The practical applicability of this approach
strongly depended on the dynamics (speed) of the physical process to be controlled, and the
technological level of the available processors that were able to realize these control meth-
ods. I realized that in this formalism there is a great freedom for the designer to play
with the possibilities for distributing certain details between the cost and the constraint
terms. This possibility made me carrying out simulation investigations.
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Chapter 1. Introduction

Whenever the computational resources were not rich enough to apply the complex math-
ematical framework of optimized controllers, as e.g., in Robotics in the nineties of the past
century, the dynamic model was utilized without being placed into the mathematical frame-
work of optimal controllers. The so called Computed Torque Control (CTC) had to scope
with the problem of lacking reliable and precise dynamic models. It became clear in the early
nineties that no such models can be constructed even within the Classical Mechanics-based
framework that does not consider friction effects. In the literature coping with the problems
of incomplete and imprecise models generally happens by the use of either Robust design
as the Variable Structure / Sliding Mode Controller, or by the application of Adaptive tech-
niques. The Sliding Mode controller often produces dangerous excitation of the controlled
system while the mainstream of the finer adaptive controllers is based on Lyapunov’s 2nd or
direct method. I recognized that from various points of view this method is very com-
plicated, needs complete state estimation, so the question naturally arose whether is it
possible to combine with the optimal control approach its possible, more simple alter-
native that was based on Banach’s fixed point theorem? For this reason I carried out
simulation investigations with this mathematically simple approach.

In the modern control approaches the efficient tool of evolutionary algorithms-
based system identification methods can be found. It was a natural idea to investigate
how is it possible to combine evolutionary methods-based system identification tech-
niques with the fixed point iteration-based adaptive control.

In dynamic control problems the presence of observation or sensor noise is a gen-
eral problem. Due to the structure of the fixed point iteration-based approach it was
expected that the noise issues have enhanced significance in this case. Therefore, I felt
strong motivation to consider noise filtering possibilities. The success of the Accelera-
tion Feedback Controllers that have to cope with similar problems convinced me that
it is not hopeless to make investigations in this direction.

1.2 State of Art
In control technology, various control methods are present in the inventory of possible

solutions. The appropriate choice can be selected according to various particular and practi-
cal aspects related to a given task, and there is no way to generally state that a given method
would be superior in comparison with others. Such properties as mathematical complexity,
the need for computational power, the need for a more or less precise dynamic model of the
controlled system, robustness against modeling errors and external disturbances, adaptivity,
and possibilities for implementation can be considered when a control approach is chosen to
tackle a given problem.

The wide set of model-based controllers belong the (MPC) (e.g., [1]) in which beside
the dynamic model of the controlled system various force limitations and other restrictive
factors can be taken into account that originate from sources other than the model. It was
successful especially in the control of slow processes as e.g., crystallization, that can be
traced by computers of limited computational power. For finding the optimum a computa-
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Chapter 1. Introduction

tionally greedy approach was suggested in the late Fifties of the past century as Dynamic
Programming that aimed at the minimization of functionals [2, 3]. The computational power
of this approach later was reduced by solving this problem over a discretized time-grid and
using numerical approximations under the name Receding Horizon Controller [4]. However,
the original elegant structure in general was maintained. The analogy with the Canonical
Equations of Motion of Classical Mechanics were maintained with related issues as the flow
of incompressible fluids and conservation rule for the Hamiltonian (or artificial Hamiltonian)
of the controlled system (e.g., [5]). These controllers generally applied Lagrange’s Reduced
Gradient Algorithm [6]for problem solution. In special cases as linear time-invariant system
models and quadratic cost functions, also utilizing the theoretical results by Riccati [7] and
Shur [8, 9], considerable mathematical simplifications were achieved under the name Linear-
Quadratic Regulators [10]. This approach was able to treat modeling errors in a very simple
manner: the optimized motion was designed for a whole horizon, but normally only one step
of this optimized force was exerted on the system, and in the next step a new horizon have
been calculated again.

Whenever the computational resources were not rich enough to apply the complex math-
ematical framework of optimized controllers, as e.g., in Robotics in the nineties of the
past century, the dynamic model was utilized without being placed into the mathematical
framework of optimal controllers. The so called Computed Torque Control (CTC) [11]
had to scope with the problem of lacking reliable and precise dynamic models. It became
clear in the early nineties that no such models can be constructed even within the Classical
Mechanics-based framework that does not consider friction effects [12]. Various friction
models were considered with regard to slow velocity motion where the phenomenon stick–
slip’ typically occurs (e.g., [13–15]). It was also realized that building in even the simplest
friction models leads to observation or identification problems (e.g., [16]). High complexity
friction models need the introduction of complementary degree of freedom (DOF) as in the
LuGre model [17].

In many cases, a simple PID-type controller invented in the 1940s [18] can do well.
In robotics, the direct use of the dynamic model without inserting it into the mathematical
framework of optimal controllers was initiated in the 1980s [11] in the concept of (CTC). In
this approach the inverse dynamic model is directly used for the calculation of the control
signal without using the mathematical complexity of the optimal controllers. However, it
became clear very early that practically it is impossible to develop precise dynamic robot
models (e.g., [12]), and that the identification of important parameters related to modeling
the friction effects has limitations, too (e.g., [16]).

The robust variable structure/sliding mode controllers that became popular in the 1990s
(e.g., [19]) are simple solutions that can solve the problem of modeling errors and unknown
external disturbance. In a similar manner, resolved acceleration rate control (e.g., [20]) and
acceleration feedback controllers (e.g., [21]) can be considered as improvements of the CTC
controllers.

The wide class of adaptive controllers tackle the imprecisions of the models in different
manners. The widest subset uses Lyapunov’s stability theorems and keeps prevailing from
the early 1990s to the present (e.g., [22]) as well as the model reference adaptive control
(e.g., [23]). Normally, stability or asymptotic stability of these solutions are guaranteed for
a huge set of possible parameters of which the appropriate ones can be selected on the basis
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Chapter 1. Introduction

of practical aspects often applying various versions of evolutionary computation as genetic
algorithms [24, 25], particle swarm optimization [26–29], simulated annealing [30], and so
on.

Strong non-linearity is a natural feature of most physical, biological, economic, and en-
gineering systems. In spite of that most of traditional software packages solving optimiza-
tion problems can normally handle only linear time-invariant system models with typically
quadratic cost function structures because this restricted subject area can be tackled by well-
elaborated and efficient mathematical tools as the application of Riccati equations [7] (it
provides the solution of special first-order quadratic differential equations by solving second-
order linear ones), Schur’s decomposition method that obtains the solution of quadratic ma-
trix equations by solving linear ones [8, 9]. For solving linear matrix inequalities in system
and control theory a complete program was announced by Boyd et al. in 1994 [31] for which
efficient MATLAB program packages have been developed [32]. The mainstream of the
engineering research efforts aimed at the elaboration of approximate linear system models
and quadratic cost functions for tackling optimization problems by the use of this efficient
mathematical apparatus. In [33], the linear matrix inequality (LMI) condition based on slack
variables was used to reduce the high gains of control, resulting in using the robust H∞ state
feedback controllers.

However, for more complex dynamical models and specially structured cost functions
the more general mathematical context does not allow such relatively simple solutions. In-
stead of using ready-made program packages researchers have to develop their own program
codes that are not supported by the rigorous and reliable quality guaranties of the MATLAB
packages.

From a mathematical point of view, optimization can be formulated by the use of varia-
tion calculus. In the 1950s, i.e., in the advent of the appearance of powerful computers, Bell-
man introduced dynamic programming [2] that computationally is too greedy. The problem
was later simplified by the introduction of a discrete, evenly scaled time-grid of resolution
δ t that is dense enough to allow numerical differentiation and Euler integration over it. The
sum of the cost function contributions in the grid points of a horizon of discrete length H
was minimized for a first-order dynamical system under the constraint q(ti+1)−q(ti)

δ t ≈ q̇(ti)
in which the function q̇(ti) = F (q(ti),u(ti)) describes the dynamic model of the controlled
system, and u(ti) denotes the control force. By the use of the usual constraint function
gi(q(ti),q(ti+1),u(ti)) :=

q(ti+1)−q(ti)
δ t −F (q(ti),u(ti)), a general cost function (with a simpler

notation)
∑H

ℓ=1Φ(qℓ,uℓ) has to be minimized over the horizon by varying the coordinates
{q2, . . . ,qH} (q1 is given as the initial condition of the motion), and force terms {u1, . . . ,uH−1}

(because uH has influence only on the next grid point at time tH+1). The optimization must
have done under the constraints gi(qi,qi+1,ui) = 0. It traditionally can be solved by the use
of Lagrange’s reduced gradient method by using Lagrange multipliers for gradient reduction
that was introduced in the late 18th century for solving constrained problems in Classical
Mechanics [6]. It can well be used for controlling slow processes as e.g., crystallization in
chemistry [1, 34] and traffic control [35, 36]. Later, it obtained ample applications from
the 1960s with the development of computer technology that provided easy implementation
possibilities (e.g., [37, 38]). The scheme description is known as the (RHC) [4] which is a
reliable, heuristic realization of the (MPC) (e.g., [39, 40]) that has many applications (e.g.,
[41–46]). The adaptive version of RHC were investigated in many cases, such as in [47]

55



Chapter 1. Introduction

wherein the used Adaptive Receding Horizon Controller (ARHC) is based on Lyapunov’s
adaptation law, whereas in [48], the adaptive controller is based on the set membership
identification algorithm, which iteratively calculates at each cycle a set of candidate plant
models. The general ARHC is used in [49] along with particle swarm optimization (PSO).
Implementing the sliding mode (SM) as an adaptive technique for ARHC is addressed in
[50].

Because of the fact that the Lagrange multipliers normally have clear physical interpreta-
tion (e.g., [51]), and the strong analogy with the canonical equations of Classical Mechanics
[5, 52, 53] that provides solutions similar to the flow of incompressible fluids, together with
the plausible mathematical consequences of this approach, the constraint-based formulation
of the problem generally prevailed, though it is not the computationally simplest and cheap-
est approach. These analogies are derived from considering the auxiliary function of the
problem in (1.1)

Ψ({q}, {λ }, {u}) :=
H∑
ℓ=1

Φ(qℓ,uℓ)−
H−1∑
ℓ=1

λℓgℓ(qℓ,qℓ+1,uℓ) . (1.1)

Evidently, Ψ({q}, {λ }, {u}) is not bounded, and at the point where the gradient reduction
algorithm stops, it satisfies the equations as ∂Ψ

∂λ j
= 0, meaning that the solution satisfies the

constraint conditions, ∂Ψ

∂qk
= 0 that can be so interpreted that the reduced gradient is 0, and an

additional condition ∂Ψ

∂ui
= 0. These partial derivatives allow the interpretation of the appear-

ance of the numerical approximation of a differential equation for λ̇ , considering the qi and
λi pairs as canonical coordinate pairs, and interpreting Ψ as a Hamiltonian with the conser-
vation property Ψ̇ ≡ 0. The analogy with the flow of incompressible fluids is related to the
fact that the canonical state propagation equations are related to symplectic transformations
that conserve the volume of the phase space (Liouville’s theorem, e.g., [5]).

The numerical algorithm that solves the above problem is commenced by finding a
point on the constraint surface by using the Newton–Raphson algorithm [54–56], then mak-
ing consecutive small steps along the reduced gradient ∇Φ −

∑
ℓλℓ∇gℓ in which the La-

grange multipliers are so chosen that for the constraint gradients it must be valid that ∀ j(
∇g j

)T
(∇Φ −

∑
ℓλℓ∇gℓ) = 0 (in this formulation the symbol ∇ contains ∂

∂q and ∂

∂u compo-
nents). Gradient reduction needs the solution of this linear set of equations. The algorithm
stops when the reduced gradient becomes zero. It was realized that placing the dynamic
model into the constraint term of the optimization task is rather a tradition than a necessity.
If we do not insist on the above mentioned elegant formal analogies with classical mechan-
ics, the complexity of the calculations can be considerably reduced. In the original approach
the free variables of the optimization are the coordinate values {q}, and the force terms {F}

over the horizon, and the quantities that additionally have to be calculated are the {λ } La-
grange multipliers for reduction of the gradient containing the partial derivatives according
to the components {q} and {F}. In [57], the structure of the auxiliary function was investi-
gated in the case of a simple paradigm, and it was found that the appropriate solution is at
its saddle point. Furthermore, instead of using a set of individual constraint functions for
optimization as {gℓ = 0}, the use of a single constraint term defined as G :=

∑
ℓ g2ℓ = 0 can

be successfully applied with only one associated Lagrange multiplier that can very easily
be computed. In [58], the use of the Lagrange multipliers was completely evaded, and the
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Chapter 1. Introduction

method’s operation was illustrated by controlling the dynamic model of two connected mass
points that were able to move in a given linear direction. In this approach, the free variables
of the optimization are only the force terms {F} over the horizon, the gradient in the opti-
mization consists only of the ∂

∂F components, and the simple gradient descent method can
be applied without any gradient reduction. Following this simple illustration, the method
was used for simulating the treatment of illness type 1 diabetes mellitus in determining the
necessary insulin ingress rate, and the estimation of the evolution of the not observable in-
ternal model variables. In [59], this approach was considered for the RHC control of the
Furuta pendulum [60], and in [61, 62] application possibilities were considered in solving
the inverse kinematic task of redundant robots.

With regard to the significance of the effects of measurement noises, in the traditional
literature, in which normally PID-type feedback terms are used, and in the adaptive con-
trol some Lyapunov function-based techniques are prevailing, the noise terms are modeled
as additional terms of more or less marginal significance. Generally it is assumed that the
physical causes of the noise terms are not identified and individually modeled. It is assumed
that the effect of a large number of statistically independent noise sources produce some re-
sult of normal distribution with zero mean if the appropriate sensors are well installed. The
effect of the lost signals together with the additional Gaussian noise are assumed and, for
instance, the Kalman filters are so designed that they are optimized for this Gaussian spec-
trum (e.g., [10, 63–65]). However, it can be emphasized that the digital components in the
realistic applications do not allow to realize the long tail of the Gaussian distributions, and
the originally causal models are treated as really causal ones burdened with the additional
noise terms. (The control of stochastic processes is absolutely out of the scope of my dis-
sertation.) Since the Fixed Point Iteration-based method feeds back higher order derivatives
than the traditional ones, and the adaptation mechanism of this approach learns from the
observations of the recent time instances, any noise filtering technique causes some delay
that may corrupt this very special and primitive learning method. Therefor, the use of this
method made it necessary to consider noise filtering issues.

Since in the numerical control the mathematical properties of the differentiation can
cause high noise-like contribution, the traditional approach simply applies low pass filters
as e.g., Bodó and Lantos in [66], in my dissertation I also applied it in one of the theses.
For fixed point iteration-based control specific preliminaries as ad hoc ideas can be found in
[67–70].

1.3 Research Chapters and their Related Aims
This Thesis consists of seven chapters where four of which are the main research ones.

Each of them has related particular studies that are organized as follows: Chapter 2 will
investigate the possibility of reducing the complexity of solving constrained optimization
problems by using the Gram-Schmidt Algorithm. While at the second part, the suggested
alternative method will be tested by using a 7-DOF redundant robot system. Chapter 3, the
modification of the Receding Horizon Controller will be suggested, in which the use of the
constraint terms is completely evaded, and the dynamic model is built in the cost function by
the use of little redundancies. Next, the applicability and limitations of this modification will
be investigated by using the dynamic control (Furuta pendulum and a 4-DOF SCARA robot
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model) , and, on the basis of some formal analogy, in the solution of the differential inverse
kinematic tasks of redundant robot arms. Also, the actuator saturation and windup effects
will be introduced. Chapter 4 will study the cooperation between the FPI-based adaptive
technique with the simple noise filtering techniques. Further, these combinations will be
compared against Unscented Kalman Filter. Following, Chapter 5, will probe the limitations
of the applicability of Particle Swarm Optimization (PSO) with Fixed Point Operation-based
adaptive controllers in on-line and off-line modes. Finally, the conclusions of the Thesis will
be outlined in Chapter 6 while the future research possibilities will be proposed in Chapter 7.

1.4 Research Methodology
All investigations of the proposed theoretical algorithms and their engineering applica-

tions are tested via running the simulation on Julia Language. The reason behind selecting
Julia is related to its wide availability as a free and open-source software, capability for pro-
viding professional visualization methods that fit the publication requirements. Besides that,
its fast processing that reflects the most modern computational technologies against the lack
of resources was an important motivation for its use.

The used editions of Julia during the research are v1.4.2-win64 (May 25, 2020), v1.4.2-
win64 (July 7, 2021) and lastly v1.8.0 (September 6, 2022). The supporting environments
are Python v3.7 and v3.9 so that the visualization in Julia and the possible use of the qt
back-end (i.e., it applies the Python’s Matplot Library) were important facts that motivated
my choice.
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Chapter 2

Investigations About Computational
Acceleration For Optimization Problems

The Lagrange’s method has considerable computational needs that mathematically de-
scribe the constrained physical systems in Analytical Mechanics [6]. However, nowadays,
in the possession of cheap computers and software products it became a practical problem
solving tool for instance in the Solver package of MS EXCEL that can be applied in finan-
cial and technical problems (e.g., [71, 72]). In many cases the Lagrange multipliers have
important physical meaning, therefore it is necessary to compute them (e.g., [51, 73]), and
the Solver package also computes them.

This chapter, in its first part, investigates the possibility of speeding up the computations
of solving constrained optimization problems by avoiding the calculations of individual La-
grange multipliers. While at the second part, the suggested alternative method is tested by
using a 7-DOF redundant robot system.

2.1 Complexity Reduction by using the Gram-Schmidt Al-
gorithm

Consider the general form of the task Optimization Under Constrains: Let f : IRn 7→ IR a
differentiable cost function and set the problem as follows:

Find min. of f (x) under the constraints that
∀k ∈ {1, . . . ,K} gk(x) = 0 ,

(2.1)

where ∀k gk(x) IRn 7→ IR is a differentiable function. Evidently, in (2.1) – with the exception
of singular cases– the constraint equations determine an n−K dimensional hypersurface
embedded in IRn over which the actual minimum has to be found.

The basic idea of complexity reduction is very simple: for computing the reduced gra-
dient it is not necessary to invest effort into computing the Lagrange multipliers defined in
(2.2).

∀k : −

(
∂gk

∂x

)T
∂ f
∂x

+
∑
ℓ

(
∂gk

∂x

)T
∂gℓ
∂x

λℓ = 0 . (2.2)
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Instead of that it is enough to put the appropriate gradients into the columns of a matrix as[
∂g1
∂x . . . ∂gK

∂x −∂ f
∂x

]
(2.3)

and apply to this matrix the Gram-Schmidt algorithm [74, 75] that originally was invented by
Laplace [76]. It is based on the observation that if we have two linearly independent vectors
a and b then with some real factor ν ∈ IR the vector b̃ := b− νa can be made orthogonal
to a. Really, orthogonality means that aT b−νaT a = 0, i.e., ν = aT b/aT a, and b = b̃+νa.
Accordingly, in the first step the 2nd, . . . , K+1th columns of the matrix in (2.3) must be made
orthogonal to the first column in this manner. In the next step the 3rd,. . . , K+1th columns of
the so obtained matrix must be orthogonal to its 2nd column, and so on. Finally, in the last
column a vector appears that is orthogonal to each previous column of the final matrix. Since
the first K columns of the original matrix in (2.3) can be built up by linearly combining the
first K columns of the final matrix, each of them will be orthogonal to the first K columns of
(2.3), that is, in the last column of the final matrix the reduced gradient appears, and for this
it is not necessary to build up the Lagrange multipliers defined in (2.2). Furthermore, if the
norm of a column becomes very small, it simply can be skipped in the process to avoid the
appearance of very big ν factors.

Further simplification can be done if we take it into account that ∀igi(x) = 0 if and only
if G(x) = 0. Consequently, it is enough to make a single step of orthogonalization for the
two column matrix

[
∂G
∂x

∣∣∣−∂ f
∂x

]
.

Finally, instead of the original form of G(x) its modified version G(x) :=
∑

ℓ |gℓ(x)|
β can

be considered for 1 < β < 2 based on the observation that for the function |x| the Newton–
Raphson algorithm would be very fast, however, around the x = 0 it should have instabilities.
This instability would be evaded for a β that is a little bit greater than 1. On the same time
it is not trivial if the calculation of the |x|β powers could result in time-sparing. For this
purpose numerical investigations, experiments must be done.

2.1.1 A Simple Numerical Example
Since in [77, 78] the basic idea was the use of non-quadratic cost functions that can

penalize the error terms in sophisticated manner, depending on the inner parameters of these
cost functions, for numerical investigations the following simple problem was considered in
[79]:

minimize f (x) = A1(xn1− x1)2+

A2(xn2− x2)4+A3(xn3− x3)6

s.t. g1(x) = 0, g2(x) = 0

where g1(x) = x21+ x22+ x23−R2,

g2(x) = (x1−0.5R)2+ x22+ x23−R2

x1n = 0.2R , x2n = 0.3R , x3n = 0.4R

(2.4)

The optimization was commenced from the known absolute minimum of the cost function.
From this point at first the Newton–Raphson algorithm moved the starting point to the con-
straint surface then the reduced gradient algorithm continued moving over the surface. The
parameters of the computations are given in Table 2.1.
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Table 2.1: The parameters of the numerical calculations
Parameter Value

Constraint radius R 5.0

Step length for gradient estimation δx 10−3

Error limit ε 10−2

Newton–Raphson speed parameter a1 0.5

Reduced Gradient speed parameter a2 10−3

Cost function parameter A1 1.0

Cost function parameter A2 2.0

Cost function parameter A3 3.0

Cost function parameter β 1.1

In the first step the results obtained for the sequential gradient reduction with ∂g1/∂x and
∂g2/∂x are compared with that obtained by a single reduction with ∂G/∂x for G = g1(x)2+
g2(x)2.

According to the expectations both algorithms found the same local optimum with the
same final cost function with quite comparable number of numerical steps. In both cases the
same Newton–Raphson algorithm was used during 30 steps while the cost value f increased
from its absolute minimum 0 to about the value of 140, and the constraint variable G well
approximated 0. The appropriate cost functions are described in Fig. 2.1.
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Steps
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20

40
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80

100

120

140

f(x
)

The Cost Function
f(x) Double
f(x) Single

Figure 2.1: Variation of the cost function for the double steps and the single step gradient
reduction for G = g1(x)2+g2(x)2

Following that a Reduced Gradient Algorithm kept the G = 0 or the g1(x) = 0, and
g2(x) = 0 values, pushed the norm of the reduced gradient to zero and reduced the cost value
to about 50 (Fig. 2.2).

1111



Chapter 2. Thesis 1

0 20 40 60 80
Steps

0

50

100

150

200

250

300

|R
ed

uc
ed

G
ra

di
en

t|

The Norm of the Reduced Gradient
|Red. Grad. | Double
|Red. Grad. | Single

Figure 2.2: Variation of the norm of the reduced gradient (it is relevant only in the second
phase of the algorithm) for the double steps and the single step gradient reduction for G =
g1(x)2+g2(x)2

The significant differences are present in the different time-need of the calculations as is
given in Fig. 2.3. The main computation need in the Newton–Raphson phase consists of two
essential steps: the estimation of the gradient and making the corrective steps. These steps
were made by the code provided in the Appendix 7.
While Newton-Raphson phase had the same time-need 4 [µs] in both cases, the time-need of
the Reduced Gradient phase was reduced from about 75–100 [µs] to 18–32[µs] in the case
of the single step reduction. Taking into account that in this simple example we had only
2 Lagrange multipliers, generally it can be expected that by reducing the number of these
multipliers in more complicated cases more time can be spared by this approach.
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Figure 2.3: The time-need (LHS) and its zoomed (RHS) for the double steps and the single
step gradient reduction for G = g1(x)2+g2(x)2

It is interesting to see how many computational effort is needed in the reduced gradient
phase of the algorithm to pull back the actual point onto the constraint surface. Fig. 2.4.
reveals that these corrections are significant only at the beginning of the algorithm at which
the reduced gradient has relatively great norm.
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Figure 2.4: The time need (LHS) and its zoomed (RHS) of the corrections needed for pulling
back the actual point onto the constraint surface in the reduced gradient phase of the algo-
rithm

In the second step the use of the single constraint term in a single step gradient reduction
G(x) :=

∑
ℓ |gℓ(x)|

β was investigated. It can be stated that the results given in Figs. 2.5, 2.6
are comparable with that of the single step reduction algorithm using G(x) = g1(x)2+g2(x)2.
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Figure 2.5: Variation of the x coordinates and the value of the cost function for a single step
reduction for GSingle(x) = g1(x)2+g2(x)2 against Gβ (x) = |g1(x)|β + |g2(x)|β
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Figure 2.6: Variation of the individual constraint functions and the norm of the reduced
gradient function for a single step reduction for GSingle(x) = g1(x)2+g2(x)2 against Gβ (x) =
|g1(x)|β + |g2(x)|β

However, Fig. 2.8 testifies that considerable increase happened in the computational time.

1313



Chapter 2. Thesis 1

0 25 50 75 100 125 150
Steps

0

5000

10000

15000

20000

25000

[
s]

Approximated Time Need = 1.1
t Single
t

40 60 80 100 120 140 160
Steps

0

10

20

30

40

[
s]

Approximated Time Need = 1.1
t Single
t

Figure 2.7: The time need of the Newton-Raphson phase and the reduced gradient phase for
a single step reduction for GSingle(x) = g1(x)2+g2(x)2 against Gβ (x) = |g1(x)|β + |g2(x)|β
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Figure 2.8: The time need of the corrections needed for pulling back the actual point onto the
constraint surface in the reduced gradient phase of the algorithm for a single step reduction
for GSingle(x) = g1(x)2+g2(x)2 against Gβ (x) = |g1(x)|β + |g2(x)|β

In the sequel this simple idea was applied in solving a more complicated task, namely
providing the solution of a differential inverse kinematic task of a redundant robot arm.

2.2 Solving the Inverse Kinematic Task by Accelerated Re-
duced Gradient Algorithm

It is well known that normally the inverse kinematic task of redundant robot arms –
with the exception of very special constructions – cannot be solved by the use of simple
formulae. Various generalized inverses can be used for selecting a particular one of the huge
set of ambiguous solutions. While the Singular Value Decomposition (SVD) [80]-based
methods, and the Gram-Schmidt algorithm [74, 75]-based ones may result in velocity profiles
that cause huge q̈ values that is difficult to track by the robot as a Classical Mechanical
system, the Moore-Penrose pseudoinverse [81, 82] can yield quite smooth solution if the
actual configuration is not in the vicinity of singularities. Its main idea is the realization of
the necessary motion of the end effector by minimized joint coordinate time-derivatives. In
this case the more general optimization task given in (2.1) takes the more special form as
follows:
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minimize C(q̇) :=
n∑

ℓ=1

q̇2ℓ

under the constraint ẋ = J(q)q̇ .

(2.5)

The Jacobian of the system J(q) depends on the particular structure and the parameters of
the robot arm and on the free choice how the home position – outlined in Fig. 2.9– is de-
fined for the given arm. The very simple case study considered in [57] revealed that instead
individually setting constraint equations to the constraints {g(i)(q̇) = 0} and using only a sin-
gle constraint G(q̇) :=

∑
ℓ g(ℓ)(q̇)

2
= 0 quite considerable computational need can be spared.

Furthermore, since this approach does not wish to produce some generalized inverse, it arbi-
trarily can be modified by using various cost functions while the same constraints are consid-
ered as in the case of the Moore-Penrose pseudoinverse. In the present section this method is
applied for solving the inverse kinematic task for an open kinematic chain structure outlined
in Fig. 2.9.

Cartesian System of Coordinates fixed at the Workshop
x1

x2

x3

L(1)

axle1

L(2)

axle2

axle3

L(3)

L(4)

axle4

r̃
r

Gripper Tool Center Point

Figure 2.9: Symbolic description of the Home Position of an open kinematic chain (courtesy
by J.K. Tar from a not published and not reviewed lecture notes)

2.2.1 Definition of the Kinematic Parameters and the Differential In-
verse Kinematic Task

The Inverse Kinematic Task of a robot can be described by the desired position of the
Tool Center Point (TCP) r with respect to the Cartesian Workshop Coordinates of Reference,
and the desired pose O of the workpiece or the tool that can be achieved by various joint
coordinates ξ1,ξ2, · · · ,ξn (it is an ambiguous solution). The velocity of the TCP is given by
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(2.6) [
ṙ(t)
0

]
=

(
ξ̇1

dH(1)

dξ1
H(1)−1

+

ξ̇2H(1)dH(2)

dξ2
H(2)−1

H(1)−1
+ . . .+

+ ξ̇nH(1)H(2) · · ·

· · ·H(n−1)dH(n)

dξn
H(n)−1

H(n−1)−1

· · ·H(2)−1
H(1)−1

)[ r(t)
1

]
,

(2.6)

in which the H(i) homogeneous matrices are defined as follows:

H(i)
(

ξi,e(i),L(i)
)
≡

[
O
(

ξi,e(i)
)

L(i)

0T 1

]
(2.7)

for rotational joint in which the components of the unit vector e(i) are distributed in the

generator of the rotation G =

 0 −e3 e2
e3 0 −e1
e2 e1 0

, and the appropriate rotational matrix is

computed by the Rodrigues formula [83] as

O(i) = I + sinξiG +(1− cosξi)G
2 . (2.8)

For shifts

H(i)
(

ξi,e(i),L(i)
)
=

[
I ξie(i)+L(i)

0T 1

]
(2.9)

is obtained. In (2.6) the upper left block of size 3× 3 determines the skew symmetric ro-
tational velocity of the object gripped by the robot. In this equation the element of a linear
space, the tangent space of the group of the homogeneous matrices at the identity matrix,
that describes the motion of the workpiece G(t), is expressed as a linear combination of the
vectors of this linear space

{
G(i)(ξ (t))

}
expressed by the joint coordinate velocities ξ̇i in

(2.10).
n∑

i=0

ξ̇iG(i)(ξ (t)) = G(t) . (2.10)

For getting rid of unnecessary redundancies the independent components can be placed in
the Jacobian of the problem (the upper left block of G(i) is always skew-symmetric, and the
4th row is always zero), the independent elements of G(i)(ξ (t)) and that of G(t) can be placed
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into a column containing 6 rows as:

G(i)⇔ IR6 ∋ J(i) =



G(i)
12

G(i)
13

G(i)
23

G(i)
14

G(i)
24

G(i)
34


,

G⇔ IR6 ∋ ẋ =


G12

G13

G23

G14

G24

G34

 , IRn ∋ ξ̇ =

 ξ̇1
...

ξ̇n

 ,

(2.11)

Following that some solution has to be found for the set of redundant linear equations given
in (2.11) that also can be written as ẋ = J(ξ )ξ̇ . In the sequel the method suggested in [57]
will be applied with the application of a more complex cost function than that of the Moore-
Penrose pseudoinverse.

2.2.2 Setting the Cost Function and the Simulation Parameters
Because no any generalized inverse was needed, the following complex cost function

form was used:

C(ξ , ξ̇ ) =
∑

i

Ci(ξi, ξ̇i) ,

Ci(ξi, ξ̇i) =

=



Ci

∣∣∣ ξ̇i
∆̇

∣∣∣Ṗi
(
1+ ξi−∆ξ

∆i

)Pi
if ξ̇i > 0 and ξi > ∆i ,

Ci

∣∣∣ ξ̇i
∆̇

∣∣∣Ṗi
if ξ̇i < 0 and ξi > ∆i ,

Ci

∣∣∣ ξ̇i
∆̇

∣∣∣Ṗi
(
1+ −ξi+∆ξ

∆i

)Pi
if ξ̇i < 0 and ξi <−∆i ,

Ci

∣∣∣ ξ̇i
∆̇

∣∣∣Ṗi
if ξ̇i > 0 and ξi <−∆i ,

Ci

∣∣∣ ξ̇i
∆̇

∣∣∣Ṗi
if −∆i ≤ ξi ≤ ∆i ,

that has the following interpretation: within the safe range [−∆i,∆i] |ξ̇i| is limited in a similar
way as in the case of the Moore-Penrose pseudoinverse (only the power term can be differ-
ent), but any attempt to leave this region is seriously punished while turning back to the safe
range remains without extra punishment. The seriousness of the punishment depends on the
parameter ∆̇i. The Newton-Raphson algorithm was simply realized as

ξ̇ (i+1) = ξ̇ (i)−α1
G(ξ̇ (i))

∥∇G(ξ̇ (i))∥2
∇G(ξ̇ (i)) (2.12)
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with α1 = 10−1, and it was stopped when a small value of G, i.e., the situation G(ξ̇ )≤ µ =
5× 10−4 was achieved. In the reduced gradient phase the iteration happened according to
the rule

ξ̇ (i+1) = ξ̇i(i)−α2

˜
∂C(ξ , ξ̇ )

∂ ξ̇
(2.13)

with α2 = 10−4, and it was stopped when the norm of the reduced gradient met the condition∥∥∥∥∥ ∂̃C(ξ ,ξ̇ )

∂ ξ̇

∥∥∥∥∥≤ µ = 5×10−4. For getting rid of infinite runtime both algorithms were stopped

if the number of iterations achieved the 500 step, and they were not stopped due to the above
conditions. The parameters α1 and α2 were set experimentally for the given simulations.

2.2.3 Simulation Results
For testing the suggested method, a higher DOF system was used so that the inverse kine-

matics required more calculations to show how the suggested method behaves. Therefore a
7-DOF redundant robot arm was used so that the type of the joints were [r,r,r,s,r,r,r] where r
is related to the rotational joint, whereas s to the prismatic (shifting) one. The homogeneous
coordinates r̃ = [1,0,0,1] corresponded to the vector connecting the arbitrarily selected point
at the last axle with the (TCP) in the home position.

The orientation was described by an orthogonal matrix, since the orientation errors gen-
erally can be considered as the relevant components of a near identity orthogonal matrix that
–according to the Rodrigues formula– in the lowest order in the angle of rotation:

Ogoal ≊ (I +Gξ )Oact ,[
Ogoal −Oact

]
Oact−1 ≊ Gξ .

(2.14)

where G is a skew symmetric matrix of which only 3 elements are independent. These
independent components describe the orientation error.

Figure 2.10: The kinematic structure and kinematic parameters of the 7-DOF robot defined
in the home position

The unit vectors of the Rotational Axles in the Home Position are given in the columns
of the matrix in (2.15)

E =

 0 0 0 1 1 0 0
0 1 1 0 0 1 0
1 0 0 0 0 0 1

 , (2.15)
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and the shift parameters were given in (2.16)

R =

 0 0 S l L 0 0
0 0 0 0 0 0 0
h 0 0 l 0 0 0

 . (2.16)

Table 2.2: The parameters of the simulation
The Reduced Gradient Method’s parameters Value

Error parameter µ 5×10−4

Newton-Raphson speed parameter α1 10−1

LGR speed parameter α2 10−4

Displacement for gradient est. δx [rad] or [m] 10−3

Cost Function Parameters Value

Safe range parameter ∆i [rad] or [m] ∀i 0.8

Velocity limit parameter ∆̇i [rad s-1] or [m s-1] ∀i 5×10−2

Power parameter for distance Pi ∀i 1.5

Power parameter for velocity Ṗi ∀i 4

Cost parameters [C1,C2,C3,C4,C5,C6,C7] [1,6,1,8,2,8,1]

Kinematic Robot Parameters Value

The height of the 1st horizontal axle h [m] 1.0

For the 1st long arm S [m] 2

For the 2nd long arm l [m] 1

For the prismatic arm L [m] 0.5

In the simulation, two types of trajectories were investigated. In the first step the Simple
Trajectory was considered (Figs. 2.11 – 2.13) that was generated by the formula Ampl ∗ time
in the space of the joint coordinates. Here, the trajectory tracking worked nicely with very
small error in the range of −0.45[mm] in negative direction and +0.01[mm] in positive one
with regard to the Cartesian Coordinates.

Figure 2.11: The trajectory tracking error (LHS) and the orientation tracking error in Carte-
sian coordinates (RHS) - simple trajectory
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Figure 2.12: The joint coordinates in tracking the simple trajectory

Figure 2.13: At the top: nominal and realized Cartesian coordinates and the orientation of the
tool, at the bottom: 3D picture of the Cartesian trajectory, and the joint coordinate velocities
- simple trajectory

The other trajectory was the Complex Trajectory that was generated in the space of the
joint coordinates by the formula 10 ∗Ampl.sin.(Ω ∗ time) in which Ampl and Ω are 1× 7
matrices: each matrix element contains the parameters of the sinusoidal nominal motion for
the appropriate joint coordinate. This complex trajectory sometimes approached kinematic
singularities that were observed by increased Cartesian and orientation errors (as it can be
seen in Fig. 2.14).
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Figure 2.14: The trajectory tracking error (LHS) and the orientation tracking error in Carte-
sian coordinates (RHS) - complex trajectory

Figure 2.15: The joint coordinates in tracking the complex trajectory

Figure 2.16: At the top: nominal and realized Cartesian coordinates and the orientation of the
tool, at the bottom: 3D picture of the Cartesian trajectory, and the joint coordinate velocities
- complex trajectory

It can be observed that big jump (which means big punishment from the cost function)
can happen when the realized trajectory for any joint hits the lower permitted limits and
where the velocity is in the appropriate (positive or negative) direction. For example, the first
jump happened with the joint 2 at step 173 which is described in Fig. 2.17. The second one
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happened when the joint 6 reached the step 665, there, an immediate jump happened so that
correcting the direction and avoiding dangerous position as in Fig. 2.18. However, the event
in which joint 2 achieved the upper limit about the step number approx. 690 in Fig. 2.15,
did not generate such drastic jump in the joint velocities. This fact can be explained by the
interaction between the motion of the various axles i.e. that the inverse kinematic task has to
be solved even at high costs. This behavior originates from the fact that in the task defined in
(2.2.2) the constraint equations are precisely realized even near the singularities where large
joint velocity components have to occur. In these cases the costs simply are increased and
the cost function cannot efficiently act as a penalizing factor.

Figure 2.17: The jump in Joint Coordinates Joint velocities (LHS) related to the Joint 2
(RHS)

Figure 2.18: The biggest jump in Joint Coordinates Joint velocities (LHS) related to the Joint
6 (RHS)

2.3 Thesis Statement I
I have recognized that in contrast to the traditional approach of optimal controllers,

in which the optimization of a cost function happens via individually dealing with each
dynamic model term as a constraint equation, it is possible to construct a single con-
straint equation that guarantees the fulfillment of each original constraint. In this new
approach, similarly to the traditional one, the Newton-Raphson algorithm is used for
finding a point on the embedded hypersurface that contains the possible solutions, and
Lagrange’s Reduced Gradient Algorithm is used for moving along the hypersurface,
but in our case only one Lagrange multiplier can be used. By directly using the Gram-
Schmidt algorithm for gradient reduction, in this manner considerable decrease in the
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computational efforts became possible.

I have observed that in application areas that contain singularities (e.g., in solv-
ing inverse kinematic task of redundant robot arm) this approach is sensitive to the
presence of kinematic singularities as well as the Moore-Penrose pseudoinverse-based
solutions that need the application of complementary tricks for dealing with near sin-
gularity solutions. I have recognized that the common reason of this sensitivity is that
the constraints are exactly taken into account in both cases.

Related own publications: [A. 1] and [A. 2]

2323



Chapter 3

Improvement of the Fixed Point
Iteration-based Adaptive Receding
Horizon Controller

In this chapter, I have investigated the applicability and limitations of using (ARHC) in
various engineering applications. Because the Fixed Point Iteration-based Adaptive Control
method is considered in the Thesis, it is expedient to briefly summarize its essence in the
sequel.

3.1 The Fixed Point Iteration-based Adaptive Control
The schematic structure of this controller is described in Fig. 3.1.

  

Nominal trajectory
qN (t)

Kinematic
Needs

q̈Des (t)
Deformation

q̈Deform (t )

t−τ

t−τ

Appr. Model
Q(t)

Dyn. System

q̈(t )

q̇(t )=∫
t 0

t

q̈(ξ)d ξq(t )=∫
t 0

t

q̇(ξ)d ξ

Realized trajectory

q(t )

q̇(t )

Figure 3.1: The schematic structure of the Fixed Point Iteration-based Adaptive Controller
for a second order dynamical system (after [84]); the delay time τ normally corresponds to
the cycle time of the digital controller.

24
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The boxes of this scheme can be filled in with various contents that may differ from each
other in little details. The main issues are detailed in the sequel.

3.1.1 The Response Function
This method is the modification of the Computed Torque Control [11] that directly uses

the inverse dynamic model of the controlled system (in the present controller it is in the block
Appr. Model) for the calculation of the necessary control forces. (Since normally only its
approximate version is known, it is referred to as approximate model.) The box Dyn. System
symbolizes the exact model of the controlled system. These two models realize a composite
function

q̈ = E
(

q, q̇,A
(

q, q̇, q̈De f orm
))

≊ f (q̈De f orm) (3.1)

where A denotes the approximate inverse model, and E stands for the exact dynamic model.
As the dashed lines in the figure indicate it, both depend on the actual state of the 2nd order
system. However, since q(t) and q̇(t) only slowly vary in time, while q̈(t) can be abruptly
changed, (3.1) is a good approximation. The function f

(
q̈De f orm) is referred to as the

controlled system’s response function.

3.1.2 Kinematic Requirements
The blockKinematic Needs can contain various functions of qN(t) and q(t) the realization

of which makes the trajectory tracking error converge to zero if the q̈Des value recommended
by t is realized. Normally it is built up of the components given in (3.2).

e(t) := qN(t)−q(t) tracking error (3.2a)

ė(t) = q̇N(t)− q̇(t) derivative tracking error (3.2b)

eInt(t) =
∫ t

t0
e(ξ )dξ integrated tracking error . (3.2c)

For instance, (3.3) corresponds to a PID-type solution, while (3.4) means a PD-type error
feedback for a constant, positive Λ .(

Λ +
d
dt

)3

eInt(t)≡ 0⇒
q̈Des(t) = q̈N(t)+Λ

3eint(t)+3Λ
2e(t)+3Λ ė(t) .

(3.3)

(
Λ +

d
dt

)2

e(t)≡ 0⇒
q̈Des(t) = q̈N(t)+Λ

2e(t)+2Λ ė(t) .

(3.4)

Regarding the proof, it is easy to see that the general solution of the time-invariant, linear,
homogeneous set of equations (

Λ +
d
dt

)m

g(t)≡ 0 (3.5)
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take the form

g(t) =
m−1∑
ℓ=0

cℓ (t − t0)
ℓ exp(−Λ(t − t0)) for t > t0 . (3.6)

where the {cℓ} coefficients are determined by the initial conditions. With other words, the
linear space of the solutions of (3.6) is spanned by the basis functions, and each of these
basis functions converges to zero as t →∞. The polynomial functions in (3.6) may cause
some fluctuation of the errors in the PID-type control, and a less complex initial variation in
the PD type one. I note that it is not compulsory to deduce the proportional, the derivative
and the integrated error feedback gains from a single parameter Λ . To evade the transient
fluctuations often fractional order derivatives are fed back as e.g., in [85–88]. More general
info on fractional order derivatives can be found e.g., in [89, 90].

3.1.3 Convergence Issues
Since the available inverse model usually is not precise, function A is not exactly the in-

verse of E. For achieving the desired kinematic design as the output of the response function
as q̈Des = f (q̈⋆), in the input argument a deformed value q̈⋆ must be written. To find the
appropriate extent of deformation an iterative process can be invented in the form as follows
for an α ∈ IR (q̈ ≡ x):

xDe f
n+1 = xDe f

n +α

(
xDes

n − f
(

xDe f
n

))
. (3.7)

In the vicinity of the appropriate deformed value the following approximations can be done:

f
(

xDe f
n

)
= f

(
x⋆+ xDe f

n − x⋆
)
≊ f (x⋆)+

∂ f
∂x

(
xDe f

n − x⋆
)

. (3.8)

The iteration in (3.7) can be so realized that during one step of digital controller only one
iterative step can be realized. However, if xDes

n varies only slowly, this iteration can be
convergent. Approximately, to a constant xDes a constant x⋆ belongs. Since f (x⋆) = xDes it
can be written that:

xDe f
n+1− x⋆ ≊

[
I −α

∂ f
∂x

∣∣∣∣
x⋆

](
xDe f

n − x⋆
)

, (3.9)

that can be convergent if α > 0 is small, and the function f (x) is differentially approximately
direction keeping. That means that for a small δx displacement it holds that:

δ f T
δx = [ f (x+δx)− f (x)]T δx > 0 . (3.10)

For an arbitrary non-singular real quadratic matrix M and a real column of appropriate size
w it can be written that

∥[I −αM]w∥2 = wT [I −α
(
M+MT)+α

2MT M
]

w =

∥w∥2−αwT (M+MT)w+α
2wT MT Mw ,

(3.11)

that is the Frobenius norm of the transformed column can decrease if

∥w∥2−αwT (M+MT)w+α
2wT MT Mw < ∥w∥2 , (3.12)
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that for α > 0 leads to
0 < αwT MT Mw < wT (M+MT )w

0 < α <
wT (M+MT )w

wT MT Mw

(3.13)

since 0 < wT MT Mw can be assumed.1

In the control of mechanical devices, if the inverse of the inertial matrix is well approx-
imated, this direction keeping property can be well assumed in the practice for the response
function (i.e.,the product of the exact inertia matrix and the inverse of its approximation must
be in the vicinity of the identity matrix.)

3.1.4 On the Content of Block Deformation
In the above considerations in the practice it is difficult to know which values of α are

small enough for guaranteeing the fact of convergence, and large enough for guaranteeing
fast enough convergence. The simple parameter α in (3.7) was only the simplest version
of transforming the control task into finding the fixed point of an iteration. For this pur-
pose various functions were suggested for use in this block. In the first relevant publication
in [84] the Robust Fixed Point Transformation a function containing three parameters was
recommended for single variable functions as in (3.14).

q̈De f (tn+1) =
(

Kc + q̈De f (tn)
)
×[

1+Bcσ

(
Ac

(
f
(

q̈De f (tn)
)
− q̈Des(tn+1)

))]
−Kc

(3.14)

where −1<σ(x)<1 is a rigorously monotonic increasing (sigmoid) function with σ(0)= 0,
and σ ′(0) = 1, as e.g., tanh(x). Evidently, if f

(
q̈De f (tn)

)
− q̈Des(tn+1) = 0 then the iteration

arrives at q̈De f (tn+1)= q̈De f (tn), i.e., the solution is the fixed point of this parametric function.
According to Banach’s fixed point theorem, if we have a contractive map in linear, normed,
complete metric space (Banach space) as F : B 7→B, the iterative sequence generated by
this function as {. . . ,xn+1 = F(xn), . . .} converges to the unique fixed point of this function
x⋆ = F(x⋆). Therefore, the three parameters Ac, Kc, and Bc must be so chosen that the
resulting mapping must be contractive. Contractivity means that there exists a 0 ≤ L < 1
limit value so that ∀x, y ∈ B ∥F(y)−F(x)∥ ≤ L∥y− x∥.

For setting the parameters consider the value of the following derivative in (3.14):

dq̈De f (tn+1)

dq̈De f (tn)
= 1
[
. . .
]
+
(

Kc + q̈De f (tn)
)

BcAcσ
′(. . .)

d f
dq̈De f (tn)

(3.15)

1In quantum mechanical applications it is often utilized that the eigenvalues of Hermitian –generally
complex– matrices are real numbers. In control technology this assumption is rarely utilized. Really, by defini-
tion a matrix M is Hermitian if MT∗ =M. In this case for the eigenvalue λ and –generally complex– eigenvector
x it can be written that Mx = λx, and xT∗Mx = λxT∗x. This equation is equivalent with xT∗MT∗ = λ ∗xT∗, that,
because M is Hermitian, leads to xT∗M = λ ∗xT∗, and xT∗Mx = λ ∗xT∗x. These together lead to λ ∗xT∗x = λxT∗x
where xT∗x > 0, that is λ must be real. The real Hermitian matrices are the symmetric ones. Since each real
matrix can be decomposed into symmetric and skew symmetric parts as M = 1

2

(
M+MT

)
+ 1

2

(
M−MT

)
, in

the direction keeping property only the symmetric part of the matrix plays role, since due to symmetry reason
wT
(
M−MT

)
w = 0.
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in which in the fixed point
[
. . .
]
= 1, and σ ′(0) = 1, therefore it takes the value

dq̈De f (tn+1)

dq̈De f (tn)
= 1+

(
Kc + q̈De f (tn)

)
AcBcσ

′(0)
d f

dq̈De f (tn)
. (3.16)

Let Bc =±1, Kc ≫
∣∣q̈De f (t)

∣∣. In this case (3.16) can be approximated as

dq̈De f (tn+1)

dq̈De f (tn)
≊ 1+KcAcBcσ

′(0)
d f

dq̈De f (tn)
. (3.17)

If the sign of d f
dq̈De f (tn)

is well defined in a task, a small Ac value can make (3.17) equal to
1− ε ∈ (−1,1) that guarantees convergence, since for a single variable, differentiable real
function the integral estimation can be used as

f (y)− f (x) =
∫ y

x
f ′(ξ )dξ

| f (y)− f (x)|≤
∫ y

x

∣∣ f ′(ξ )∣∣dξ ,

(3.18)

therefore if ∃0≤ L < 1 so that | f ′(x)|≤ L, this single variable function is contractive.
For multiple variable functions Dineva suggested appropriate parametric fixed point trans-

formation functions in [91]. It is based on the following simple construction: let g(x) :
IR 7→ IR be a bounded, strictly monotonic increasing function, and g−1(x) its inverse. Let
F(x) : IR 7→ IR defined as F(x) := g−1 (g(x)−K)+D. Consider the sequence generated by
F(x) as {. . . ,xn+1 = F(xn), . . .}. For the so obtained sequence it is true that

g(xn+1−D) = g(xn)−K . (3.19)

For appropriate parameters D and K this sequence evidently converges to the unique fixed
point of function F(x) (see Fig. 3.2 that contains other simple recommendation for F(x)).
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g(x) g(x−D)

g(x)−K

x

g(xn)−K=g (xn+1−D)

xn+1

xn+2

xn+3

xn+4

x∗xn

  

x
x1

x2

F (x)

xn+1=F (xn)

x3

x4 x∗

Figure 3.2: Schematic figure explaining the convergence of sequence {. . . ,xn+1 = F(xn), . . .}

Evidently there is a fixed point of F(x) as x⋆ = F(x⋆). Dineva suggested the following
iteration for the inputs r ∈ IRn :

h(i) := f (r(i))− rDes ,

e(i) :=
h(i)

∥h(i)∥
,

r(i+1) := [F(A∥h(i)∥+ x⋆)− x⋆]e(i)+ r(i) .

(3.20)

Evidently, if h(i) = 0 then r(i+1) = r(i), that is this function has a fixed point r⋆ ∈ IRn, and
only one parameter A ∈ IR must be set to achieve convergence. For the estimation the re-
quirement for convergence in the vicinity of the fixed point x⋆ ∈ IR F(x) can be approximated
by its first order Taylor series expansion, leading to

r(i+1) = F ′(x⋆)A∥h(i)∥e(i)+ r(i) . (3.21)

A similar Taylor series approximation can be done for f (r) in the vicinity of r⋆ for which it
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holds that f (r⋆) = rDes:

f (r) = f (r⋆+ r− r⋆)≊ f (r⋆)+
∂ f
∂ r

∣∣∣∣
r⋆
[r− r⋆] = rDes +

∂ f
∂ r

∣∣∣∣
r⋆
[r− r⋆] , (3.22)

leading to

h(i) := f (r(i))− rDes ≊
∂ f
∂ r

∣∣∣∣
r⋆
[r− r⋆] . (3.23)

By substituting this into (3.21) it is obtained that

r(i+1)≊ F ′(x⋆)A∥h(i)∥ h(i)
∥h(i)∥

+ r(i) = F ′(x⋆)A
∂ f
∂ r

∣∣∣∣
r⋆
[r− r⋆] , (3.24)

that is

r(i+1)− r⋆ ≊

[
I +F ′(x⋆)A

∂ f
∂ r

∣∣∣∣
r⋆

]
(r(i)− r⋆) (3.25)

It is evident that we have to consider the same contractivity problem as in (3.9).
To tackle the problem of finding the appropriate parameter α in (3.7) in [92] the augmen-

tation of the appropriate arrays was suggested to obtain vectors of identical Frobenius norm,
since these vectors can be rotated into each other, and the selected parameter can be a simple
interpolation with the angle of rotation as indicated in Fig. 3.3. The physically interpreted
projections of the rotated vectors simultaneously suffer rotation and shrink/dilatation, and
the appropriate adaptive factor λa must be found in the (0,1) interval. For constructing the
rotation operators the generalization of the Rodrigues formula [83] was applied.

Interpreted dimension

Interpreted dimension

Not interpreted dimension

Rotational axis in the
augmented space

Rotation in the
augmented space

Projection of the rotation in the 
interpreted space

Augmentation

Augmentation

b⃗ a⃗

B⃗

A⃗

φ

Interpolation with the angle of rotation:

φ λa∈[0,1 ]is replaced by λaφ , where 

Figure 3.3: The idea of abstract rotation of the augmented vectors (published in [29])
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3.2 The Receding Horizon Scheme-based Approach with-
out Gradient Reduction

Generally Lagrange’s Reduced Gradient Algorithm [6] is used for finding the optimum
under constraints referred to as Nonlinear Programming. Recent investigations [57, 58] re-
vealed that considerable numerical complexity reduction can be achieved by reducing the
number of the necessary Lagrangian multipliers. These investigations were discussed in
details in Thesis I.

Another formal possibility is completely evading gradient reduction in spite of the fact
that the Lagrange multipliers often have important physical interpretation [51], and reveal a
strict analogy between the mathematical formalism of the optimal controllers and the Canon-
ical Equations of Motion of Classical Mechanical Systems [5, 52, 53]. From this analogy
important mathematical conclusions can be concluded as e.g., the similarity with the flow of
incompressible fluids. However, in these considerations the artificial co-state variables (the
Lagrange multipliers themselves) take part that are not necessary entities in optimization. In
the forthcoming considerations complete evasion of the Lagrange multipliers in optimization
task are considered. This idea was also coined and used by Redjimi et al. in [58, 93] with the
intent of speeding up computations in state estimation of a particular type 1 diabetes mellitus
model, but this possible research direction was not further continued by them. Systematic
investigations in utilizing the avoidance of using constraint terms in optimization were made
by me as it is summarized in the sequel.

The basic idea of RHC is to calculate a defined Cost function for every point over a given
finite horizon with respect to the requirements of the described system defined by its dynamic
model. The cost function must include the Control Signal F and qo as the Optimized State
Variable to define the extent of penalization in the cost minimization process. (In the last
point of the horizon an extra terminal contribution can be applied that is not used in these
considerations.) For a first order dynamical system of equation of motion q̇ = f (q,F) the
original approach in which the model is taken into account as constraint takes the form of
(3.26):

Minimize
HL∑
ℓ=1

Φ (qo(ℓ),F(ℓ))

under the constraints∀i ∈ {1, . . . ,HL−1} :

qo(i+1)−qo(i)
∆ t

− f (qo(i),F(i)) = 0

by varying {F1, . . . ,FHL−1} and {q2, . . . ,qHL} ,

(3.26)

where Φ (qo(ℓ),F(ℓ)) denotes the cost function in grid point ℓ, ∆ t is the time-resolution of
the grid, and HL ∈ N is the horizon length, and qo(1) is ab ovo given as the initial state of
the controlled system. Taking into account the dynamic model as constraint

This mathematical complexity evidently can be evaded by incorporating the dynamic
model into the function that directly calculates the costs. In this case Evidently, this idea
can be extended easily for a second (and higher) order dynamical system in the manner as
follows:
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Minimize
HL∑
ℓ=3

Φ (qo(ℓ),F(ℓ)) over the grid points

q̈o(i) = f (qo(i), q̇o(i),F(i))∀i ∈ {1, . . . ,HL−2} ,

q̇o(i) = q̇o(i−1)+∆ tq̈o(i−1)∀i ∈ {2, . . . ,HL−1} ,

qo(i) = qo(i−1)+∆ tq̇o(i−1)∀i ∈ {3, . . . ,HL} ,

by varying {F(1), . . . ,F(HL−2)} ,

(3.27)

in which qo(1), qo(2), and q̇o(1) = qo(2)−qo(1)
∆ t correspond to the initial state of the 2nd or-

der dynamical system without any contradiction. This approach corresponds to the physical
interpretation of the forward differences as follows: the second time-derivative of a physi-
cal quantity at time instant t will determine the future value of the first time-derivative as the
present value of the first time-derivative will determine the value of the coordinate in the next
future grid point. By a convenient use of little redundancy in the memory usage by maintain-
ing grid values for q, q̇, and q̈, the cost function can be easily formulated by incorporating
the dynamic model in it.

Evidently, this problem can be tackled by the simple reduced gradient algorithm using the
independent variables {F(1), . . . ,F(HL−2)}, and the qo(1), qo(2), and q̇o(1) (redundantly
coded) initial conditions.

3.3 Further Modifications in the Original RHC Approach
Independently of using or evading the use of Lagrange multipliers, the main feature of

the RHC controllers is that for the compensation of the effects of modeling errors, they
need frequent measurement or estimation of the actual state. Originally, only one step is
realized following the exertion of the optimized control force, and the whole next horizon is
redesigned from the actually observed new initial state. In Hamza Khan’s original adaptive
solution it was suggested to use only a few points for tracking the optimized trajectory
(more than one) instead exerting the optimized forces before making the new observations
[94].

A possible new way for dealing with the state observations can be designed in the follow-
ing manner: instead interrupting the optimization process with observations, it is carried out
by the use of a hypothetical (but more or less realistic) dynamic model, and instead making
measurements, its known computed values can be used in the initial conditions for the next
horizon. It is reasonable to assume that the physical system that exactly has this model can
move along this optimized trajectory if it obtains the appropriate control forces. Then the
actually controlled system is driven along this optimized trajectory instead of the nom-
inal one by the adaptive controller that makes the necessary observations and calculates the
necessary control forces for the actual dynamic model. If the actual dynamic model is not
very far from the assumed approximate version, this adaptive motion can be hopefully real-
ized. If possible, it is expedient to make the optimization for a little bit more heavy dynamic
model for which the force limitations may come into effect. In the forthcoming investigation
this idea is applied, too.
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3.3.1 Simulation Examples for a Furuta Pendulum
In this section this approach is exemplified in the optimal adaptive control of a Furuta

pendulum that is a popular paradigm due to its nonlinear dynamic model. The development
of the precise dynamic model obtained considerable attention in the literature (e.g., [60, 95–
97]).

A dynamic model of strongly overestimated inertia and friction parameters is used in an
RHC controller to track the nominal trajectory under cost terms penalizing the control forces.
The so obtained optimized trajectory is tracked by an adaptive controller that uses a more
realistic approximate dynamic model of the controlled system. Since the approximate and the
actual models contain smaller inertia and friction parameters than that used for optimization,
it is expected that the cautiously optimized trajectory can be precisely tracked by the actual
system without suffering from heavy force burdens.

The Furuta pendulum that was invented by K. Furuta and his colleagues in 1992 is
outlined in Fig. 3.4. It consists of a first arm with m1 mass and length L1 in which the
distance l1 refers to location of the center of mass (measured from the rotational axis of
the arm). In the same manner, the parameters m2, L2 and l2 are related to the second arm.
Parameters J2xx ,J2yy and J2zz correspond to the moment of inertia of arm 2 around the x-axis,
y-axis and z-axis, respectively. However, the first arm is rotating only around axis z so the
only moment of inertia of arm-1 is taken with respect to axis z as J1zz . The generated torque
F1 and F2 of DC motors rotate the arms with angle q1 and angular velocity q̇1 with q̈1 and
arm-2 with angle q2 and angular velocity q̇2 with q̈2 joint coordinate acceleration. Parameter
b1 denotes the damping coefficients of the joints. The equations of motion can be set as:



q̈1
(

J1zz +m1l21 +m2L2
1+
(
J2yy +m2l22

)
×sin2 q2+ J2xx cos2 q2

)
+ q̈2m2L1l2 cosq2

−m2L1l2 sinq2q̇22+ q̇1q̇2 sin2q2

×
(
m2l22 + J2yy − J2xx

)
+b1q̇1




q̈1m2L1l2 cos2 q2+ q̈2(m2l22 + J2zz)

+1
2 q̇21 sin2q2

(
−m2l22 − J2xx + J2yy

)
+b2q̇2+gm2l2 sinq2





=

[
F1
F2

]
. (3.28)

The dynamic parameters of the system are given in Table 3.1, the parameters used for
the optimization and the approximate parameters used for tracking the optimized trajectory
are given in Table 3.2. The whole simulation was set for 4000 steps and discrete horizon
length HL = 6. The time-resolution of numerical calculations was ∆ t = 10−3 [s]. The cost
functions were defined in (3.29) with the parameters Cq = 1, ∆q = 10−3 [rad], and Pq = 3.
This structure guarantees that the small tracking errors are nicely penalized with the usual
quadratic terms, but the penalization of higher tracking errors becomes more brutal due to
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the power term 3. With regard to the control torque components, CF = 0 was set when the
control torque components were not penalized and CF = 1000 for the penalization of the
great control torque components with ∆F = 0.001 [N ·m] and PF = 1. The gradient descent
method was set as follows: F(n+1) = F(n)−α∇Φ(F(n)) with αmax = 10−8 in maximum
1000 steps. If it was necessary, as the minimum was approached, α was decreased to achieve
finer localization of the ∥∇Φ∥ = 0 point until either the minimal value αmax/100 or the
maximum step number 1000 was achieved.

Figure 3.4: Furuta Pendulum (τ1 ≡ F1, τ2 ≡ F2) on the basis of [97]

Table 3.1: The dynamic model parameters of the pendulum (from [97])

Parameter Exact Value

Viscous damping coeff b1 [N ·m · s] 10−4

Viscous damping coeff b2 [N ·m · s] 2.8×10−4

Mass of Arm 1 m1 [kg] 0.300

Mass of Arm 2 m2 [kg] 0.24

Length of Arm 1 L1 [m] 0.278

Length of Arm 2 L2 [m] 0.300

Distance l1 [m] 0.150

Distance l2 [m] 0.148

Moment of inertia J1zz [kg ·m2] 1.3×10−2

Moment of inertia J2xx [kg ·m2] 1.2×10−2

Moment of inertia J2yy [kg ·m2] 2.48×10−2

Moment of inertia J2zz [kg ·m2] 2.48×10−2

Gravity [g m · s−2] 9.81
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Table 3.2: The dynamic model parameters of the pendulum used for optimization and track-
ing the optimized trajectory expressed by the use of the quantities given in Table 3.1

Parameter Optimization Tracking

Viscous damping coeff. b1 [N ·m · s] 2b1 0.5b1

Viscous damping coeff. b2 [N ·m · s] 2b2 0.5b2

Mass of Arm 1 m1 [kg] 2m1 0.5m1

Mass of Arm 2 m2 [kg] 2m2 0.5m2

Length of Arm 1 L1 [m] L1 L1

Length of Arm 2 L2 [m] L2 L2

Distance l1 [m] l1 l1

Distance l2 [m] l2 l2

Moment of inertia J1zz [kg ·m2] 2J1zz 0.5J1zz

Moment of inertia J2xx [kg ·m2] 2J2xx 0.5J2xx

Moment of inertia J2yy [kg ·m2] 2J2yy 0.5J2yy

Moment of inertia J2zz [kg ·m2] 2J2zz 0.5J2zz

Gravity g [m · s−2] g g

Φ(q(ℓ),F(ℓ)) =
2∑

j=1

Φ
q
j (ℓ) +

2∑
j=1

Φ
F
j (ℓ)

Φ
q
j (ℓ) =Cq


∣∣∣∣qN

j (ℓ)−qo
j(ℓ)

∆q

∣∣∣∣Pq

if
∣∣∣∣qN

j (ℓ)−qo
j(ℓ)

∆q

∣∣∣∣> 1∣∣∣∣qN
j (ℓ)−qo

j(ℓ)

∆q

∣∣∣∣2 if
∣∣∣∣qN

j (ℓ)−qo
j(ℓ)

∆q

∣∣∣∣≤ 1

Φ
F
j (ℓ) =CF

∣∣∣∣Fj(ℓ)

∆F

∣∣∣∣PF

(3.29)

The output of simulations were made for non-adaptive and adaptive case under force pe-
nalization against the force limitation with adaptivity. Figure. 3.5 describes both the non-
adaptive and adaptive tracking with force penalization against the output response of the
adaptive controller without force penalization, also it reveals that the force penalization
causes observable error in tracking the nominal trajectory. It can be seen that the adaptive
solution precisely can track the optimized trajectory.

For the adaptivity, in the case of the Furuta pendulum, I used Dineva’s adaptive defor-
mation function given in (3.20) with F(x) = 0.5x+D with D = 0.3, A = −2.0, and in the
kinematic block Λ = 12.0 [s−1] in (3.3).

In Fig. 3.6 the trajectory tracking error between nominal and optimized trajectories while
the Fig. 3.7 illustrates the error of tracking of the optimized trajectory (i.e., the difference
between the optimized the realized trajectories). The appropriate control torque components
are described in Fig. 3.8. It is evident that the torque components that are necessary for track-
ing the optimized trajectory in their absolute values are much smaller than their counterparts
that occurred during the optimization. Figure. 3.9 reveals the operation of the adaptation
mechanism: considerable adaptive deformation is required for precise tracking of the opti-
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mized trajectory.
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Figure 3.5: At the top: The trajectory tracking of the non-adaptive case (LHS) and in the
adaptive case (RHS) with force penalization. At the bottom: output responses without force
penalization.
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Figure 3.6: At the top: The error of tracking the nominal trajectory by the optimized one, and
tracking error between the optimized and the realized trajectories under force penalization
(in the adaptive case). At the bottom: output responses without force penalization.
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Figure 3.7: At the top: The error of tracking the optimized trajectory in the non-adaptive
case (LHS) and in the adaptive case (RHS) under force penalization. At the bottom: output
responses without force penalization.
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Figure 3.8: At the top: The control torque components F1 and F2 in the non-adaptive case
(LHS) and in the adaptive case (RHS) with force penalization (Fo1 and Fo2 denote the force
need of the optimized system with overestimated parameters, Fa1 and Fa2 denote the force
need of tracking the optimized trajectory by the actual system). At the bottom: output re-
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Figure 3.9: The adaptation mechanism without force penalization (LHS) and in the case of
force penalization (RHS).

3.3.1.1 Simulations with LuGre Friction Model

In these simulations the particular form of the LuGre friction model was taken from [98].
In this case the parameters given in Table 3.3 were in use. In this model for the description of
the phenomenon of stick-slip a hidden dynamic variable, z(t) is introduced that physically is
related to the behavior of the bristles of connected brushes. Depending on the velocity of the
surfaces in touch v(t), the actual value of ż(t) is determined by v(t) and z(t), and the friction
force F(t) depends on z(t), ż(t), and v(t) according to (3.30).

dz
dt

= v−
σ0|v|

Fc +Fsexp(−|v|/vs)
z (3.30a)

F = σ0z+σ1
dz
dt

+Fv × v . (3.30b)

Table 3.3: The LuGre model parameters of the simulations

Parameter Value
σ0 [Nm−1] Stiffness 20.0

σ1 [Nsm−1] Viscous friction 8.0
FC [N] Coulomb friction force 2.2
FS [N] Stribeck friction force 1.1

Fv [Nsm−1] Static friction force 0.3
vs [ms−1] Characteristic velocity of Stribeck friction 0.5

The cost functions were defined in (3.29) with the parameters Cq = 5, ∆q = 10−5 [rad], and
Pq = 4. With regard to the control torque components, CF = 2 ,∆F = 0.01 [N ·m] and PF = 1
were set.

Figures 3.10 and 3.12 reveal that in spite of the drastic not modeled friction forces given
in Fig. 3.13, the adaptive tracking was quite precise. It can be seen that where great negative
friction forces occurred in time, the control forces have been increased, and vice versa. The
phase trajectories of the hidden internal variables of the friction model in Fig. 3.13 well rep-
resent the stick-slip phenomenon captured by the LuGre model. The graphs of the second
time-derivatives of the joint coordinates in Fig. 3.11 display the great extent of the necessary
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adaptive deformation required for defying the friction effects not modeled in the optimiza-
tion. The control parameters were in F(x) = 0.5x+D with D = 0.15 and A =−5.0 in (3.20),
and Λ = 15.0 [s−1] in (3.3).
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Figure 3.10: The trajectory tracking (LHS) and generated forces (RHS)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

8

6

4

2

0

2

4

[ra
d]

1e 5 The Tracking Error: Nominal -- Optimized

qNom
1 qo1

qNom
2 qo2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [s]

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

[ra
d]

The Tracking Error: Optimized -- Realized
qo1 q1
qo2 q2
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3.3.2 Design of Adaptive Receding Horizon for SCARA Robot
In this session the idea that was at first considered for the control of the Furuta pendulum,

was further tested for a different physical system, the 4-DOF SCARA robot. In the suggested
solution the dynamic model is directly used without any gradient reduction by using a transi-
tion between the gradient descent and the Newton–Raphson methods to achieve possibly fast
operation. The optimization is carried out for an overestimated dynamic model, and instead
of using the optimized force components the optimized trajectory is adaptively tracked by
an available approximate dynamic model of the controlled system. Also, the dynamic model
was built in the cost function.

The speed of optimization certainly strongly depends on the properties of the cost func-
tions in use. In [77, 78] very complex cost functions were introduced that were based on
polynomial behavior of the functions

(
|x|
∆

)p
. If p > 1 such functions have little contribu-

tion if |x| ≪ ∆ > 0 (this is an error tolerant region), and drastically increase as |x| ≫ ∆ (it
corresponds to a strongly penalized region). However, numerical problems often arose.

In the present investigations, the cost function was composed for the generalized coordi-
nate q j for penalizing tracking error and the penalization of the driving force u j term as in
(3.29) as follows:

Φ
q
j (ℓ) :=Cq j

∣∣∣(qN
j (t)−qO

j (t))/δ

∣∣∣p+1

1+
∣∣∣(qN

j (t)−qO
j (t))/∆

∣∣∣p ,ΦF
j (ℓ) =Cu j


|Fj −∆u|

pu if Fj > ∆u
0 if −∆u ≤ Fj ≤ ∆u
|Fj +∆u|

pu if Fj <−∆u

(3.31)

For the big tracking error, its graph looks like that of a linear function to evade numerical
problems, whereas for small errors it is tolerantly flat and small (typical shapes are given in
Fig. 3.14). With regard to the force penalization, it can be stated that a range of forces were
exerted without any penalization.
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Figure 3.14: The schematic structure of the cost function shape for penalization (for arbitrary
physical dimensions) δ = 10−5, ∆ = 2000δ , and various p values: (a) in full scale; (b)
zoomed in excerpt.

In this manner, a relatively fast algorithm was created for seeking the possible minimum
of the cost function, because the linear part gives very fast convergence in the Newton–
Raphson algorithm. Figure. 3.14 reveals, that this algorithm must slow down at the flat parts
belonging to small errors.

For the optimization with a heavy model (i.e., a model having bigger inertia data and
assuming higher gravitational acceleration as the realistic one), and adaptively tracking the
optimized trajectory with a more realistic model, numerical data given in Table 3.4 were
used. (The length data are identical for the heavy and the exact models, but the masses, the
inertia moments, and the gravitational acceleration are overestimated for the heavy model.)

Therefore, the force values that were calculated in the optimization process were dropped
and the smoothed version qOs(t) of the optimized trajectory qO(t) was adaptively tracked by
the use of an available approximate dynamic model of the actual system under control. For
smoothing, a third-order solution inspired by [99] was applied as(

Λ f ilt +
d
dt

)3

qOs(t) = Λ
3
f iltq

O(t) , qOs(t0) = 0, q̇Os(t0) = 0, q̈Os(t0) = 0, (3.32)

with 0<Λ f ilt = constant. For very high frequencies it has the transfer function characteristic
in the Laplace transform as ∝ s−3 (very drastic rejection), and at zero frequency it has the
value 1.

The whole control process for having each optimal coordinate qO
i , filtered optimal coor-

dinate qOs
i and the realized one qi can be recognized through the flow chart in Fig. 3.15.
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Figure 3.15: The flow chart of the controlling mechanism.

The dynamic model of the 4-DOF SCARA robot arm was taken from [100]. The gen-
eralized coordinates of the robots are q1 [m] is the only prismatic joint, and q2, q3, q4 are
rotary ones measured in [rad] units. Accordingly, the generalized forces are F1 [N] for the
first joint, and F2, F3, F4 have the dimension [N ·m]. The equations of motion are given in
(3.33)–(3.36),

F1 = (m1+m2+M+Mload)q̈1−g(M+m1+m2+Mload) , (3.33)

F2 = (m1L2
1/4+m2L2

1+m2L2
2/2+m2L1L2 cos(q3)+Mload(L2

1+L2
2+2L1L2)+Θload)q̈2

+(m2L2
2/2+m2L1L2 cos(q3)/2+Mload(L2

2+L1L2 cos(q3))+Θload)q̈3+Θload q̈4
− q̇2(m2L1L2 sin(q3)+Mload2L1L2 sin(q3))q̇3− q̇23(m2L1L2 sin(q3)+MloadL1L2 sin(q3)) ,

(3.34)
F3 = (m2L2

2/2+m2L1L2 cos(q3)/2+Mload(L2
2+L1L2 cos(q3))+Θload)q̈2

+(m2L2
2/4+MloadL2

2+Θload)q̈3+Θload q̈4+ q̇22L1L2sin(q3)(m2/2+Mload) ,
(3.35)

F4 =Θload q̈2+Θload q̈3+Θload q̈4 . (3.36)

The dynamic parameters of the heavy model used for optimization, the exact system
model (not known by the controller), and the available approximate system model used for
trajectory tracking are given in Table 3.4.
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Table 3.4: The Dynamic Model Parameters in Equations (3.33)–(3.36).

Parameter Exact Model
for Simulation

Heavy Model
for Optimization

Approximate Model
for Adaptive Control

M[kg] component’s mass 10.0 15.0 12.0
m1[kg] component’s mass 20.0 25.0 21.0
m2[kg] component’s mass 10.0 13.0 12.0

Mload [kg] load’s mass 50.0 55.0 52.0
g [m · s−2] grav. accel. 9.81 10.0 9.0

θload [kg ·m2] load’s inertia moment 45.0 50.0 42.0
L1[m] arm length 2.0 2.0 2.0
L2[m] arm length 1.0 1.0 1.0

3.3.2.1 Simulation Results

The necessary time-grid resolution depends on various factors such as the dynamics of
the nominal trajectory to be tracked, the structure of the cost function applied, the parameters
used in smoothing the optimized trajectory, and that of the adaptive controller that tracks the
smoothed trajectory. From a practical point of view, making numerical simulations for a
given problem seems to be an easier way. A simple check of reliability is the comparison of
the results obtained for the sets {δ t = 10−4 [s],ST EPS = 4000,HL = 12} (referred to as set 1)
and {0.5δ t,2 ·ST EPS,2 ·HL} (referred to as set 2) that physically corresponds to computing
the same task with a finer time resolution. If the results obtained for the tracking precision
and the control force needs can be well compared to each other, the original time resolution
δ t can be considered as acceptable. Table 3.5 shows the controller parameter values that
used during all the simulation parts. The tracking parameter must be great enough to track
the dynamic of the optimized motion, and to evade strong noise-sensitivity it is not expedient
to use too much value. The smoothing parameter must be relatively large in order to follow
the fast correction terms to the optimized trajectory’s motions, but no much higher value is
needed because its increase also increases the role of the higher frequency noise components.
For the particular simulations these parameters were set experimentally. In general they
depend on the needs of the particular application.
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Table 3.5: The Controller’s Parameters.

Parameter Meaning Value
δ t Discrete time resolution 10−4[s]
Λ Trajectory tracking exponential coeff. 36.0 [s−1]

Λ f ilt Trajectory smoothing exponential coeff. 800.0 [s−1]

Cq1 =Cq3 =Cq4 Cost contribution coeffs. 106

Cq2 Cost contribution coeff. 2×106

δ Cost parameter 1 10−5 [rad] or [m]
∆ Cost parameter 2 2000 ·δ

Cu1 =Cu2 =Cu3 =Cu4 Force cost parameter 1 104

p Cost parameter 3 1.1
∆u Force cost parameter 2 varying [N ·m] or [N]
pu Force cost parameter 3 1.5

Ra Augmented arrays’ Frobenius norm 106 [m · s−2] or [rad · s−2]
H Discrete horizon length 12

q̈maxa Moderating factor in adaptive control 104 [m · s−2] or [rad · s−2]
q̈maxk Moderating factor in kinematic block 107 [m · s−2] or [rad · s−2]
αmin Stopping limit in minimum seeking 10−2

λa Adaptive interpolation factor 1.0

I. Simulations Without Force Limitation – Different Time Resolutions

In the simulation investigations, the operation of the method at first was considered for a
cost function without control force penalizing terms (in this case ∀ jCu j = 0). The common
control parameters of these simulations are given in Table 3.5. Some sinusoidal motion was
chosen for the nominal trajectory to be tracked.

It can be seen in Figs. 3.16–3.19 that halving the time-resolution δ t = 10−4 [s] did not
produce significantly different results. The adaptive abstract rotations have no noticeable
differences (Fig. 3.20). Naturally, the computational burden of the method strongly depends
on the time resolution which can be noticed in the big differences of the computational time
need in Fig. 3.21. On this basis, it was determined that for a preliminary design the compu-
tationally less greedy set 1 parameters’ setting will be used in the case of force limitations. It
worth mentioning that the big initial transient is a typical consequence of a PID-type tracking
policy.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time [s]

1.0

0.5

0.0

0.5

1.0

A
m

p
l 
[m

] 
o
r 

A
n
g

le
 [

ra
d

]

Nom. and Opt. Traj., PID, = 36.0

qNom
1 [m]

qo1 [m]

q1 [m]

qNom
2 [rad]

qo2 [rad]

q2 [rad]

(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time [s]

1.0

0.5

0.0

0.5

1.0

A
m

p
l 
[m

] 
o
r 

A
n
g

le
 [

ra
d

]

Nom. and Opt. Traj., PID, = 36.0

qNom
1 [m]

qo1 [m]

q1 [m]

qNom
2 [rad]

qo2 [rad]

q2 [rad]

(b)

Figure 3.16: Trajectory tracking without force limitation for q1 and q2: (a) For the set 1. (b)
For the set 2.
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Figure 3.17: Trajectory tracking without force limitation for q3 and q4. (a) For the set 1. (b)
For the set 2.
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Figure 3.18: Nominal optimized trajectory tracking errors qN −qO without force limitation.
(a) For set 1.(b) For set 2.
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Figure 3.19: Optimized realized trajectory tracking errors qO − q without force limitation.
(a) For set 1. (b) For set 2.
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Figure 3.20: The adaptive abstract rotations. (a) For set 1. (b) For set 2.
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Figure 3.21: The computational time need of the main cycle without force limitation. (a) For
set 1. (b) For set 2.

II. Simulations Without Force Limitation – With Higher Minimum Error Stopping Con-
ditions

Based on previous comparison, set 1 will be chosen for the upcoming investigations. In
the sequel, to decrease computational burden, the setting αmin = 10−1 value was used. This
corresponds to a less precise approximation of the local minimum, but the noise filtering ap-
plied for adaptive tracking can tackle the effects of this increased imprecision. According to
Figs. 3.22 and 3.23, it can be stated that the RHC controller was able to generate a good op-
timized trajectory that was successfully tracked by the adaptive controller. The comparison
of Figs. 3.21 and 3.24b reveals quite considerable reduction in the necessary computational
time. (Instead of counting the necessary mathematical operations for estimating the hypo-
thetical time need for the goal of comparison, the time needs were measured by the use of
a given hardware and software system, in this case the service of the Julia language. The
actual times indicate that this hardware is not appropriate for realizing the control that is
needed for such fast robot motion. However, it satisfactory for making comparisons. In the
practice the available hardware and software tools determine the achievable computational
speed. The computer must be fast enough to solve a given control task. For the solution
of the same task various mathematical solutions exist. Those solutions that use simpler and
faster mathematical operations for solving a given problem can spare time. Therefore, they
can control faster motions than the methods that need more complex and resource greedy
mathematical operations.) The adaptive abstract rotation is within accepted range as it can
be seen in Fig. 3.24a.
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Figure 3.22: Trajectory tracking without force limitation for the increased αmin = 0.1. (a)
For q1 and q2. (b) For q3 and q4.
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Figure 3.23: Trajectory tracking errors without force limitation for the increased αmin = 0.1.
(a) For nominal-optimized: qN −qO. (b) For optimized-realized: qO −q.
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Figure 3.24: The adaptive abstract rotations (a) and the computational time-need of the main
cycle without force limitation (b) for the increased αmin = 0.1.

III. Simulations With Force Limitation

These simulations were made by keeping the increased αmin = 0.1 and by choosing the
set 1; otherwise the parameters given in Table 3.5 were in use. The value of the parameter
∆u = 495.0 [N] or [N ·m] considerably corrupted the optimized trajectory by not allowing
it to exert the necessary control forces. Figures. 3.25 and 3.26 reveal that in the optimiza-
tion phase the force limitation seriously concerned the optimized trajectories qO

1 (t), qO
2 (t),
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qO
3 (t), and qO

4 (t), the smoothed versions of which were adaptively well tracked.According to
Fig. 3.27b the time need of the optimum seeking was kept at a relatively low level.
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Figure 3.25: Trajectory tracking with force limitation ∆u = 495.0 [N] or [N ·m] for the in-
creased αmin = 0.1. (a) For q1 and q2. (b) For q3 and q4.
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Figure 3.26: Trajectory tracking errors with force limitation ∆u = 495.0 [N] or [N ·m] for
the increased αmin = 0.1: (a) For nominal-optimized: qN − qO. (b) For optimized-realized:
qO −q.
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Figure 3.27: The adaptive abstract rotations (a) and the computational time need (b) of the
main cycle with force limitation ∆u = 495.0 [N] or [N ·m] for the increased αmin = 0.1.

It is interesting to observe how sharply the parameter value ∆u concerns the results for
pu = 1.5. If the limits of the penalty-free force region are increased from ∆u = 495.0 to
∆u = 500.0 [N] or [N ·m] the optimized trajectory suffered far fewer distortions (Fig. 3.28).
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Figure 3.28: Trajectory tracking with force limitation ∆u = 500.0 [N] or [N ·m] for the in-
creased αmin = 0.1: (a) For q1 and q2. (b) For q3 and q4.

3.4 General Receding Horizon Solution of the Inverse Kine-
matic Task

A quasi-differential approach was elaborated for solving the inverse kinematic task of
robots in Section 2.2 that, though calculates the Jacobian, instead inverting it, applies a fixed
point iteration that automatically evades the singularities. However, its solution depends
on the eigenvalues of the Jacobian, and it was found not flexible enough for all practical
purposes. The Moore-Penrose solution can be generalized as an optimization task under
constraints for quite complex cost functions. The hard constraint in this approach forces
the exact solution of the inverse kinematic task when it is possible. Due to it the intent
of minimizing the costs is overridden in the vicinity of the singularities. In the present
approach, based on the formal structure of the Receding Horizon Controllers, an alternative
solution is suggested that allows flexibility for relaxing the costs and the hard constraints,
too. Its computational complexity to some extent is reduced via evading the technique of
gradient reduction. Simulation results are presented for the same 7-DOF robot arm that
was considered in Section 2.2. In the selected solutions the q̇ variables were treated as
the independent variables of the optimization (instead of the force terms of the dynamical
problems), and the q coordinates were calculated as dependent ones in a little bit redundant
representation as follows:

• The Nominal Cartesian Trajectories XN(1), . . . ,XN(HL) that are known in advance
since definite ideas are available for the future of the nominal motion are given over
the horizon;

• The also known initial joint coordinates in the first grid point q(1) taken from the last
actual value (in the control applications it is measured or somehow observed);

• By using the q̇ values in the grid points {q̇(1), . . . , q̇(HL−1)}, with Euler integration,
fill in the horizon points as q(i+1) = q(i)+∆ tq̇(i) for i = 1, . . . ,HL−1;

• By the use of the model function compute the assumed future Cartesian values XO(i) =
F (q(i)) for i ∈ {2, . . . ,HL};
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• Compute the cost functions over the grid points i ∈ {2, . . . ,HL} and the penalty values
for the q̇ components over the grid points i ∈ {1, . . . ,HL−1} as

Φ =

6,HL∑
j=1,i=2

Φ
X
j (i) +

6,HL−1∑
j=1,i=1

Φ
U
j (i)

Φ
X
j (i) =


∣∣∣∣XN

j (i)−XO
j (i)

∆x

∣∣∣∣PX

if
∣∣∣∣XN

j (i)−XO
j (i)

∆x

∣∣∣∣> 1∣∣∣∣XN
j (i)−X jO(i)

∆x

∣∣∣∣2 if
∣∣∣∣XN

j (i)−XO
j (i)

∆x

∣∣∣∣≤ 1

Φ
U(i) =


∣∣∣ q̇(i)

∆ q̇

∣∣∣Pq̇out
if
∣∣∣ q̇(i)

∆ q̇

∣∣∣> 1∣∣∣ q̇(i)
∆ q̇

∣∣∣Pq̇in if
∣∣∣ q̇(i)

∆ q̇

∣∣∣≤ 1

• The so computed cost function can be minimized by using the simple Gradient De-
scent Algorithm so that the components of ∇Φ can be arranged in a matrix of size
R6×(HL−1);

• The starting point of the next horizon will be the element q(2) of the so optimized
horizon, and the joint coordinates’ time-derivatives can be estimated by the value that
is found in q̇(1) of the present horizon after the optimization.

In the cost contribution ΦX
j (i) the component tracking errors that in absolute value are greater

than ∆x are very strongly penalized if PX > 1, and for smaller error components the usual
quadratic tracking rule is prescribed. In similar manner, in the term ΦU

j (i), the joint coor-
dinate time-derivatives are very seriously penalized if their absolute value is bigger than ∆ q̇
and Pq̇out > 1, but the small values’ penalty contribution is very small if Pq̇in > 1. Therefore
it is expected that by the use of these shape parameters the trajectory tracking precision can
be relaxed if the high q̇ values are seriously penalized.

For describing the orientation and its error, in these simulations it was taken into account
that GT = −G and G2T = G2 the even power components in (3.37) are symmetric while
the odd power ones are skew symmetric, the very redundant representation of O, in which 9
matrix elements are used for describing the rotations of only 3 independent parameters can be
reduced if only the three independent components of the skew symmetric part of O, namely
OA :=

(
O−OT)/2 are considered for expressing the pose of the tool, as e.g., OA

12, OA
13, and

OA
23. On this basis a model function F :Rn 7→R6 is used for describing the forward kinematic

task as F1(q1, . . . ,qn) = OA
12, F2(q1, . . . ,qn) = OA

13, F3(q1, . . . ,qn) = OA
23, F4(q1, . . . ,qn) = r1,

F5(q1, . . . ,qn) = r2, and F6(q1, . . . ,qn) = r3 as is given in (3.37).

O = exp(qG) = I +

 0 −e3 e2
e3 0 −e1
−e2 e1 0

sinq+

+

 e21−1 e1e2 e1e3
e2e1 e22−1 e2e3
e3e1 e3e2 e23−1

(1− cosq) .

(3.37)
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3.4.1 Simulation Results
In the 7-DOF redundant robot system described in Fig. 2.10 the homogeneous coordi-

nates related to the TCP were r̃ = [1.0,0,0,1]. The other kinematic parameters are given in
Table 3.6.

Table 3.6: The parameters of the robot model
Parameters in Fig. 2.10 Value

The height of the 1st horizontal axle h [m] 1.0

For the 1st long arm S [m] 2

For the 2nd long arm l [m] 1

For the prismatic arm L [m] 0.5

The time-resolution was ∆ t = 10−3 [s], the horizon length was HL = 3, the algorithm was
stopped when the situation ∥∇Φ∥ ≤ µ = 10−4 was achieved, the components of the gradient
were estimated with a final step length δ q̇ j(i) = 10−3 for each j, i index pairs. The maximum
allowed number of steps in the optimization was 300. The Gradient Descent algorithm was
realized as q̇(next) = q̇(now)−α2∇Φ(now) with α2 ∈ [10−6,10−4]. To achieve fast conver-
gence, the actual value of α2 was increased by the factor 1.2 for the next cycle if ∥∇Φ∥ was
reduced in the previous step, but it was decreased by dividing it with 1.2 if this value have
increased. However, its value was kept between the above given range. In the first series
a relatively fast trajectory was tracked by using the above parameters. In a basic settings
∆x = 10−3 [rad] or [m], PX = 3, Pq̇out = Pq̇in = 4, ∆ q̇ = 0.8 [rad · s−1] or [m · s−1] were chosen,
and various trajectories were considered with its use. Figures. 3.29 and 3.30 reveal that in
this manner it was possible to track a relatively fast motion (in Fig. 3.31 the joint coordinate
values are in the range of approximately ±10 [rad · s−1] or [m · s−1]).
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Figure 3.29: The trajectory tracking (LHS) and its error (RHS) in Cartesian Coordinates for
fast motion
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Figure 3.30: The orientation tracking (LHS) and its error (RHS) for fast motion

0 500 1000 1500 2000 2500
Steps

−5

0

5

10

[ra
d/
s]
or

[m
/s
]

The Time-derivative of the Realized Joint Coordinate  [μ=0.0001]
μ̇1

μ̇2

μ̇3

μ̇4

μ̇5

μ̇6

μ̇7

0 500 1000 1500 2000 2500
Steps

0.00

0.02

0.04

0.06

0.08

0.10

[n
on

di
m
en

si
on

al
×
10

00
]

The  Minimal Value of α2 in the Search [μ=0.0001]

Maximal
Minimal
Actual

Figure 3.31: The q̇ values (LHS) and the variation of the adaptive speed parameter α2 (RHS)
for fast motion

Figure. 3.31 testifies that the control feedback caused quite considerable fluctuation in
the joint coordinate time-derivatives that seem to be superposed over a massive trend that
can be observed in the figure of the realized joint coordinates in Fig. 3.32. The ambiguity of
the solution is evident.
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Figure 3.32: The realized q values and the joint coordinates that were used for bringing about
the realizable xN trajectory for fast motion

In the next step tracking a slower motion (in Fig. 3.35 the joint coordinate values are in
the range of approximately ±2 [rad · s−1] or [m · s−1]) was considered. The results are given
in Figs. 3.33, 3.34, and 3.35 that reveal that the joint coordinate time-derivative limitations
had less significant effects and more precise tracking was possible.
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Figure 3.33: The trajectory tracking (LHS) and its error (RHS) in Cartesian Coordinates for
slower motion
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Figure 3.34: The orientation tracking (LHS) and its error (RHS) for slower motion
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Figure 3.35: The q̇ values (LHS) and the variation of the adaptive speed parameter α2 (RHS)
for slower motion

For a stopping motion (i.e., for motions that asymptotically approach a fixed position and
orientation) simulations are presented in Figs. 3.36, and 3.37.
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Figure 3.36: The trajectory tracking (LHS) and its error (RHS) in Cartesian Coordinates for
stopping motion

0 500 1000 1500 2000 2500
Steps

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

[n
on

di
m
en

si
on

al
]

The Nominal and Realized Orientations [μ=0.0001]

OμNom
12

Oμ
12

OμNom
13

Oμ
13

OμNom
23

Oμ
23

0 500 1000 1500 2000 2500
Steps

−4

−3

−2

−1

0

1

2

3

[1
00

0×
no

nd
im

en
si
on

al
]

The Orientation Errors [μ=0.0001]
OμNom
12 −Oμ

12
OμNom
13 −Oμ

13
OμNom
23 −Oμ

23

Figure 3.37: The orientation tracking (LHS) and its error (RHS) for stopping motion

To illustrate the ability of this formalism for relaxing the trajectory tracking precision re-
quirements ∆x was increased from 10−3 to 10−2 [rad] or [m], PX = 3, and ∆ q̇ was decreased
form 0.8 to 0.4 [rad · s−1] or [m · s−1] that has the following qualitative meaning: greater
tracking errors are allowed with smaller penalty (cost) contributions, in the same tracking of
too fast trajectory part was hindered by increasing the penalty value even for smaller q̇ com-
ponents. In harmony with the expectations, Fig. 3.38 displays the corruption of the trajectory
and orientation tracking. On the basis of Fig. 3.39 it can be stated that the ambiguity of the
solution was so utilized that at the cost of a considerable decrease in the |q̇4|, |q̇5|, |q̇6| and
|q̇7| the |q̇1|, |q̇2| and |q̇3| components were increased.

0 500 1000 1500 2000 2500
Steps

−1

0

1

2

3

4

[m
]

The Nominal and Reali ed Trajectory in Cartesian Coordinates [μ=0.0001]

Xμom1
XRea1
Xμom2
XRea2
Xμom3
XRea3

0 500 1000 1500 2000 2500
Steps

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

[n
on

di
m
en

si
on

al
]

The Nominal and Realized Orientations [μ=0.0001]
OμNom
12

Oμ
12

OμNom
13

Oμ
13

OμNom
23

Oμ
23

Figure 3.38: The trajectory tracking (LHS) and orientation tracking (RHS) in Cartesian Co-
ordinates for more relaxed slower motion
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Figure 3.39: The realized q values and the joint coordinates that were used for bringing about
the realizable xN trajectory for the more relaxed slower motion

The above figures well illustrate the ability of the suggested solution to play with ambi-
guity of the solution of the redundant problem. The nominal trajectory to be tracked were
brought about by the nominal joint coordinates {qN

i (t)} that were not found to be optimal
since the realized {q(t)} solutions that produced good tracking for the position and the orien-
tation of the end effector are considerably different to each other. The sensitivity of q̇i(t) in
participation of the generated motion of the end effector depend on the actual orientation of
the robot arm. Since the optimization generally tries to provide the solution with the most
sensitive joint coordinates, their role can change in time. Figures. 3.29 and 3.33 reveal that
the fast motion swept a wider range of displacement than the slower one. Therefore different
ranges of the configuration of the arm was swept by them. Figures. 3.31 and 3.35 reveal that
in the case of the fast motion the joint coordinate velocities quite frequently changed role
than in the case of the slow motion. In Fig. 3.35 the joint coordinates of higher indices took
rather part in the realization of the motion: for shorter effective arm segment faster motion
is necessary in the case of revolute joints. (More precise interpretation of the observations
cannot be given for the nontrivial results of a strongly nonlinear task.) As a consequence of
the integration of the joint velocities the participation of the different joint coordinates in the
realized motion (Figs. 3.32 and 3.39) considerably differs from the nominal variation of the
joint coordinates that generated the motion of the end effector.

3.5 Tackling Actuator Saturation in Fixed Point Iteration-
based Adaptive Control

The limited output of various drives means a challenge in controller design whenever the
acceleration need of the nominal trajectory to be tracked temporarily exceeds the abilities of
the saturated control system. The prevailing control design methods can tackle this problem
either in a single theoretical step or in two consecutive steps. In this latter case in the first
step the design happens without taking into account the actuator constraints, then apply
a saturation compensator if the phenomenon of windup is observed (e.g., [101–103]). In
the Fixed Point Iteration-based Adaptive Control (FPIAC) that has been developed as an
alternative of the Lyapunov function-based approach the actuator saturation causes problems
in its both elementary levels: in the kinematic/kinetic level where the desired acceleration is
calculated, and in the iterative process that compensates the effects of modeling errors of the
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dynamic system under control and that of the external disturbances.
In the case of the adaptive control the precision further can be improved by switching on

the adaptive loop. However, if the control drive is not able to exert enough force, the adaptive
law may produce enormous deformation because the realized acceleration can never achieve
the desired one. To evade this situation the following steps can be done within the frames of
the FPIAC scheme:

1. Stop the increase/decrease of eint(t) over/under a limited value eintmax /−eintmax ;

2. Apply an interpolation parameter λ ∈ [0,1] and use the weighted desired 2nd time-
derivative q̈Des = q̈Des

PIDλ + q̈Des
PD (1−λ );

3. Introduce a maximal absolute value for the deformed value with a sigmoid function
q̈De f = q̈maxσ

(
q̈De f /q̈max

)
, and use this limited q̈De f value as the input of the approx-

imate dynamic model;

4. Introduce a maximal absolute value for the torque and apply it at the output of the
approximate dynamic model Q as Qlim =Qmaxσ (Q/Qmax), and exert this limited force
to the controlled system;

5. Set the weighting parameter as λ = 1−σ(|Qlim|/Qmax).

The above rules guarantee that the integrated error term cannot diverge, the adaptive de-
formation cannot not diverge, and the controller’s drive is not overloaded. As a consequence,
within the range of the abilities of the drive precise trajectory tracking can be achieved, while
outside of this region the tracking precision is corrupted but the control signal remains sta-
ble. The operation of this modified adaptive controller will be investigated in the sequel via
simulations.

3.5.1 Simulation Results
To exemplify the operation of the method nominal trajectories with small (i.e., 0.25) and

big (i.e., 1.0) amplitude were considered for the modified van der Pol oscillator [104], in
which the modification consisted in adding a nonlinear damping term that is proportional
to the square of the velocity of the moving body that is typical in the case of motion in a
turbulent fluid. The equation of motion of the system is given in (3.38) in which Q denotes
the control force. This system has an unstable equilibrium state in q = 0, q̇ = 0, and it is
excited if q2 < d, and damped if q2 > d.

mq̈ =−kq−b(q2−d)q̇− csign(q̇)q̇2+Q , (3.38)

The approximate model in (3.39) was a simple damped linear oscillator with the param-
eters ma = 6.0 [kg], ka = 200.0 [N ·m], and ba = 15.0 [N · s ·m−1]. It had a stable equilibrium
in the same state.

maq̈ =−kaq−baq̇+Q (3.39)
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The control parameters were: Λ = 2.5 [s−1], Kc = 2× 103 [m · s−2], Bc = −1, and Ac =
0.125/Kc. In (3.14) σ1(x) ≡ tanh(x), in the limitations σ(x) ≡ x/(1+ |x|) was used. The
exact model parameters are given in Table 3.7

Table 3.7: Parameters of the controlled system

Parameter Exact Value
Mass m = 20.0 [kg]
Spring’s stiffness k = 100.0 [N ·m−1]

Damping coeff. b = 3.0 [N · s ·m−3]

Turbulent friction coeff. c = 6.0 [N · s2 ·m−2]

Excitation/Damping separator d = 0.5 [m2]

Figures. 3.40–3.43 reveal that without force limitations the adaptive controller efficiently
can track the prescribed motion and well compensates the effects of the modeling errors in
the PID-type control.
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Figure 3.40: Non-adaptive (LHS) and adaptive (RHS) PID-type trajectory tracking without
force limitation
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Figure 3.42: Non-adaptive (LHS) and adaptive (RHS) control force without force limitation
in a PID-type control
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Figure 3.43: The phase trajectory tracking (LHS) and the integrated error (RHS) of the
adaptive controller without force limitation in a PID-type control

The situation drastically changes if in the same system the limitation Qmax = 300.0 [N]
is switched on. Figure. 3.44 reveals the corruption of the trajectory tracking, while in
Fig. 3.45 the windup of the adaptive deformation and the calculated control force (that cannot
be exerted) can be observed. Also, according to Fig. 3.46, the integrated tracking error takes
great values.
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Figure 3.44: The trajectory (LHS) and phase trajectory (RHS) tracking in the adaptive PID
control in the case of force limitation Qmax = 300.0 [N]
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Figure 3.45: The q̈ values (LHS) and the control force (RHS) in the adaptive PID control in
the case of force limitation Qmax = 300.0 [N]
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Figure 3.46: The trajectory tracking error (LHS) and the integrated error (RHS) in the adap-
tive PID control in the case of force limitation Qmax = 300.0 [N]

Figures. 3.47–3.49 testify that no such problem occurs if the amplitude of the nominal
motion is small: in this case the saturation of the forces does not play important role in the
operation of the adaptive PID controller.

0 2 4 6 8 10
Time [s]

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

[m
]

The Traject ry Tracking f r PD=0 F rce limit.=1 Adapt.=1

q(t)
qNom(t)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Time [s]

−1.0

−0.5

0.0

0.5

1.0

[m
]

The Phase T ajecto y T acking fo  PD=0 Fo ce limit.=1 Adapt.=1

Fo  q(t)
Fo  qNom(t)

Figure 3.47: The trajectory (LHS) and phase trajectory (RHS) tracking in the adaptive PID
control in the case of force limitation Qmax = 300.0 [N] and small amplitude of the nominal
motion
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Figure 3.48: The q̈ values (LHS) and the control force (RHS) in the adaptive PID control in
the case of force limitation Qmax = 300.0 [N] and small amplitude of the nominal motion

0 2 4 6 8 10
Time [s]

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

[m
]

The Traject ry Tracking Err r f r PD=0 F rce limit.=1 Adapt.=1

qNom(t) − q(t)

0 2 4 6 8 10
Time [s]

0.00

0.01

0.02

0.03

[m
s]

The Integrated Error for PD=0 Force limit.=1 Adapt.=1

Errint(t)

Figure 3.49: The trajectory tracking error (LHS) and the integrated error (RHS) in the adap-
tive PID control in the case of force limitation Qmax = 300.0 [N] and small amplitude of the
nominal motion

To show the effects of the introduction of the limitation in the integrated error with
eintmax = 0.05 [m · s], q̈max = 103 [m · s−2], and the application of the interpolation parameter
λ between the PID and PD-type kinematic tracking requirements the motion of big nominal
amplitude was considered. It is evident that the tracking error is big (the controller’s drive
does not have the necessary capacity), however, the effect of windup has been evaded in spite
of the saturation of the control signal. The interpolation factor λ (t) was closer to 1 than to 0
that means that rather the PID-type tracking strategy dominated the kinematic design.
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Figure 3.50: The trajectory tracking (LHS) and the tracking error (RHS) in the suggested
novel adaptive control for big amplitude of the nominal motion
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Figure 3.51: The q̈ values (LHS) and the control force (RHS) in the suggested novel adaptive
control for big amplitude of the nominal motion
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Figure 3.52: The integrated error (LHS) and the interpolation parameter λ (RHS) in the
suggested novel adaptive control for big amplitude of the nominal motion

The counterparts of Figs. 3.50–3.52 (belonging to the big amplitude of nominal motion)
are Figs. 3.53–3.55 for the nominal trajectory of small amplitude. According to the figures
it can be stated that the saturation effects did not play significant role in this control.
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Figure 3.53: The trajectory tracking (LHS) and the tracking error (RHS) in the suggested
novel adaptive control for small amplitude of the nominal motion
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Figure 3.54: The q̈ values (LHS) and the control force (RHS) in the suggested novel adaptive
control for small amplitude of the nominal motion
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Figure 3.55: The integrated error (LHS) and the interpolation parameter λ (RHS) in the
suggested novel adaptive control for small amplitude of the nominal motion

3.5.1.1 Simulations with LuGre Friction Model

In these simulations the approximate dynamic model of the van der Pol oscillator con-
tained only a viscous friction force model. To test the abilities of the adaptive controller in
the exact system an additional, LuGre-type friction model was built up. In this model the
friction effects are described the use of a complementary dynamic variable z(t) that cannot be
directly observed by the controller. The FPI-based approach is especially convenient when
some hidden, dynamically coupled subsystem disturbs the motion of the controlled physi-
cal system. The adaptive mechanism automatically makes the necessary correction without
the need of developing complicated observers for the hidden state variable. The parameters
of the friction model are given in Table 3.8. The control parameters were: Λ = 2.5 [s−1],
Kc = 2×103 [m · s−2], Bc =−1, and Ac = 5.0/Kc in (3.14).
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Table 3.8: The LuGre model parameters in (3.30) of the simulations (they were set experi-
mentally in order to keep the friction forces in the order of magnitude of that of the simple
viscous model)

Parameter Value
σ0 [Nm−1] 5000.0
σ1 [Nsm−1] 1000.0

FC [N] 10.0
FS [N] 20.0

Fv [Nsm−1] 10.0
vs [ms−1] 1.0

I. Simulations without force limitation
At first simulation results are presented without force limitation. Figures 3.56 and 3.58

testify that both the phase trajectory and the trajectory tracking remained precise in the adap-
tive control, in spite of the not modeled friction force in Fig. 3.59. It can be observed that
in the control force considerable terms appeared for the compensation of the friction force
(Fig. 3.57). The last figure also reveals that a great extent of adaptive deformation was
necessary for the compensation of the effects of the not modeled friction force. The phase
trajectory of the hidden dynamic variable of the LuGre model z(t) well explains the nature
of this model, too (Fig. 3.59). The phenomenon of stick-slip can be well identified in this
figure.
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Figure 3.56: The trajectory (LHS) and phase trajectory (RHS) tracking in the adaptive PID
control without force limitation and small amplitude of the nominal motion
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Figure 3.57: The q̈ values (LHS) and the control force (RHS) in the adaptive PID control
without force limitation and small amplitude of the nominal motion
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Figure 3.58: The trajectory tracking error (LHS) and the integrated error (RHS) in the adap-
tive PID control without force limitation and small amplitude of the nominal motion
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Figure 3.59: The Friction Force (LHS) and the Phase trajectory for z (RHS) in the adaptive
PID control without force limitation small amplitude of the nominal motion

II. Simulations with force limitation
he simulation results displayed in Figs, 3.60, 3.61, 3.62, 3.63 have similar properties and

allow similar consequences as that of the free of friction case.
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Figure 3.60: The trajectory (LHS) and phase trajectory (RHS) tracking in the adaptive PID
control in the case of force limitation Qmax = 300.0 [N] and small amplitude of the nominal
motion
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Figure 3.61: The q̈ values (LHS) and the control force (RHS) in the adaptive PID control in
the case of force limitation Qmax = 300.0 [N] and small amplitude of the nominal motion
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Figure 3.62: The trajectory tracking error (LHS) and the integrated error (RHS) in the adap-
tive PID control in the case of force limitation Qmax = 300.0 [N] and small amplitude of the
nominal motion
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Figure 3.63: The Friction Force (LHS) and the Phase trajectory for z (RHS) in the adaptive
PID control in the case of force limitation Qmax = 300.0 [N] and small amplitude of the
nominal motion

3.6 Thesis Statement II
I have elaborated further modification of the Receding Horizon Controller. By di-

rectly incorporating the dynamic model into the cost function calculated over a horizon,
I have completely eliminated the use of the constraint term from the formalism. I have
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shown that by the application of a transition between the simple Gradient Descent and
the fast Newton-Raphson Algorithms an efficient method can be developed for finding
the local minima. In this manner strong penalization of high forces became possible,
however, the method did not guarantee the evasion of actuator saturation and windup
problems in the Fixed Point Iteration-based adaptive control.

To tackle actuator saturation and windup problems I have elaborated a complemen-
tary method in which a hypothetical heavy device model was applied in the optimization
of the trajectory, and the so obtained optimized trajectory was adaptively tracked by a
realistic not heavy approximate dynamic model. The main benefit of this approach is
that the optimization’s mathematical structure can be completely separated from that
of the adaptive tracking.

Related own publications: [A. 3], [A. 4], [A. 5] and [A. 6].
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Investigation of the Cooperation of Noise
Filtering Methods With Fixed Point
Iteration-based Adaptive Techniques

In Chapter 1 I briefly mentioned that in dynamic control problems the presence of ob-
servation or sensor noise is a general problem. The special structure of the Fixed Point
Iteration-based approach makes one expect that the noise issues have enhanced significance
in this case. The success of the Acceleration Feedback Controllers (e.g., [105]) that have to
cope with similar problems also confirm the idea that useful investigations can be done in
this direction. Fixed point iteration-based control specific preliminaries as ad hoc ideas were
already published in [67–70]. In Subsection 3.3.2 I already applied the traditional low pass
filter technique that was borrowed from [66, 99]. In this Chapter I summarize the results of
my own novel investigations.

The first part investigates a very drastic noise filtering technique that was introduced to
support the operation of the adaptive control. Its basic idea is affine approximation of the
various derivatives within successive moving windows. This idea was checked in coopera-
tion of a special continuous variant of fixed point transformations. The investigations were
made for the modified van der Pol oscillator that had an additional quadratic drag force term
also used in Subsection 3.5.

The second part outlines the comparison between Unscented Kalman Filter (UKF) and
two methods based on Fixed Point Operation-based adaptive controllers.

4.1 Using High Frequency Noisy Signal Filtering
In this approach, the noisy signal of the direct observation modeled with a noise term

N (t) added to the exact value q(t) as qo(t) = q(t) +N (t) was tracked by the filtered
(smoothed) signal qs(t) according to the differential equation and initial conditions given
in (4.1) (

Λ f ilt +
d
dt

)3

qs(t) = Λ
3
f iltqo(t)

qs(t0) = 0, q̇s(t0) = 0, q̈s(t0) = 0,

(4.1)
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with 0 < Λ f ilt = constant. This idea has been borrowed from [66, 99]. In the frequency do-
main at zero frequency it has the transfer function 1, while for high frequencies (very drastic
rejection) it is ∝ s−3 (s is the variable of the Laplace transform), that is it realizes drastic
suppression for the high frequency components. This method was applied for smoothing the
optimized trajectory in subsection 3.3.2 that was adaptively tracked by the use of an available
approximate dynamic model of the actual system under control.

4.2 Application of Simple Moving Window with Affine Sig-
nal Approximation

For noise filtering the following idea was used: the exact values qe, q̇e, q̈e were obtained
from the simulations via Euler integration and use of the exact model parameters and state
variables. The observed coordinate value was burdened with some measurement noise as
qo(t) = qe(t)+NA[rand()]. Instead of the noisy observed qo(t) values the controller used the
smoothed qs(t) values that were calculated by fitting an affine form to the last L discrete mea-
sured values. A buffer of length L ∈ N was introduced as a moving signal sampling window
that was filled in with the latest observed values as {qo(t −L+0),qo(t −L+1), . . .qo(t −L+
L)}, i.e., {qo(t −L+m)}, m = 0,1, . . . ,L, and these values were approximated as {a0m+b0},
i.e., for obtaining the first derivative an affine form of the signal was considered. Via fitting
the parameters a0, b0 with the least squares error, the smoothed value qs(t) = a0L+ b0 was
chosen at the end of the window.

In the place of the direct numerical derivative of the noisy signal the filtered approxi-
mation (i.e., the observed values) q̇o(t) =

qs−qs(t−1)
δ t was written. Following that, the above

approximation for the q̇o(t) values were put into the grid points {q̇o(t − L+ 0), q̇o(t − L+
1), . . . q̇o(ti−L+L)}, and were approximated with the same affine form as {a1m+ b1} in quite
similar manner providing q̇s = a1L+b1 to provide the filtered derivatives as q̈s. This scheme
can be continued for obtaining the higher order derivatives.

The integrated error eint was computed by the use of qs(t). Evidently, the significance of
the noise amplitude NA in a control task depends on the dynamics of the nominal trajectory
to be tracked.

4.3 Continuous Time Fixed Point Iteration-based Control
In the following, another form of Adaptive Deformation block (from Fig. 3.1) will realize

the following sequence of the deformed signals ([106]):

q̈De f (0) = q̈Des(0) , (4.2a)

q̈De f (i+1) = q̈De f (i)+Aσ

(
f
(
q̈De f (i)

)
− q̈Des(i+1)

w

)
, (4.2b)

in which σ(x) is a monotonic increasing sigmoid function with the properties σ(−∞) =−1,
σ(∞) = 1, σ(0) = 0, and A, w ∈ R are adaptive control parameters. If q̈Des(t) only slowly
varies, i.e., for the above iteration it approximately can be considered as a constant, in the
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vicinity of the solution of the control task q̈⋆ for which f (q̈⋆) = q̈Des first order Taylor series
approximation can be done for the iteration:

f (q̈) = f (q̈− q̈⋆+ q̈⋆)≈ f (q̈⋆)+
d f
dx

∣∣∣∣
q̈⋆
(q̈− q̈⋆) , (4.3a)

q̈(i+1) = q̈(i)+
A
w

dσ

dx

∣∣∣∣
0

d f
dx

∣∣∣∣
q̈⋆
(q̈(i)− q̈⋆) , (4.3b)

q̈(i+1)− q̈⋆ ≈

[
1+

A
w

dσ

dx

∣∣∣∣
0

d f
dx

∣∣∣∣
q̈⋆

]
(q̈(i)− q̈⋆) . (4.3c)

Evidently, q̈⋆ is the fixed point of the deformation function, and if for the quantity in (4.3c) it
holds that −1 < [·]< 1, the iteration converges to its fixed point. With regard to convergence
issues relevant details were written in Subsection 3.1.3

Following the idea of the paper [106], for a short cycle time τ and a slowly varying q̈Des

value in (4.2b) can be interpreted as follows:

dq̈De f

dt
≈ q̈De f (i+1)− q̈De f (i)

τ
=

=
A
τ

σ

(
f
(
q̈De f (i)

)
− q̈Des

w

)
,

(4.4)

that indicates that instead making iterations between the consecutive digital control cycles
finer approach can be achieved by continuously tuning the variable q̈De f . Something similar
happens in the application of the classical Luenberger observer in the control of Linear Time-
invariant (LTI) systems [107].

For designing a Luenberger observer, where the exact state variable q(t) is not precisely
known, because the measurable value qMeas(t) is burdened with some unknown additional
stochastic measurement noise N (t) as qMeas(t) = q(t)+N (t), the motion of an estimated
value q̂(t) is computed and used for the calculations that tracks the noisy signal via its first
time-derivative, starting from some plausible initial estimate q̂(t0) in (4.5a). This equation
of motion is similar to that of q(t) in (4.5b), but it also contains an additional drift term that
pulls q̂(t) toward qMeas(t) through ˙̂q(t). The application of the first derivative corresponds to
a gentle low pass type noise filtering. From (4.5c) it is clear that if the noise is not too big,
i.e., qMeas(t) ≊ q(t), for a stable system matrix A an appropriate additional term can speed
up the convergence q̂(t)→ q(t). When the tracking error became small enough, for the esti-
mation of the joint coordinate derivative the q̇(t)≊ ˙̂q(t) can be applied independently of the
calculation of the control force u(t). In (4.4) some similar tracking property is formulated for
dq̈De f

dt with limited amplitude so that q̈De f (t) itself inherits some noise in the FPI-based con-
trol. For dealing with nonlinear system, the limitation of the possible value by the function
σ is practically desirable. The Luenberger observer works as follows:

˙̂q(t) = Aq̂(t)+Bu(t)+L(qMeas(t)− q̂), (4.5a)
q̇(t) = Aq(t)+Bu(t) . (4.5b)

By subtracting⇒ d
dt
(q(t)− q̂(t)) = A(q(t)− q̂(t))+L(qMeas(t)− q̂(t)) . (4.5c)
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in which 0 < L determines the speed of the additional drift term.
The saturation of the sigmoid function limits the speed of this drift in our case when

the deformed value is far from the solution, and w determines the order of magnitude of
the response error over which the maximum speed has to be applied. In the vicinity of the
solution the Taylor series approximation yields

dq̈De f

dt
≈ A

τw
∂ f
∂x

∣∣∣∣
q̈⋆

(
q̈De f − q̈⋆

)
. (4.6)

If the drift of q̈⋆ is small in comparison with that of q̈De f the above approximation can be
further interpreted as

d
(
q̈De f − q̈⋆

)
dt

≈ A
τw

∂ f
∂x

∣∣∣∣
q̈⋆

(
q̈De f − q̈⋆

)
, (4.7)

for which, on the basis of the Jordan canonical form [108, 109], the satisfactory condition
of the convergence is that the real part of each eigenvector of the matrix A

τw
∂ f
∂x

∣∣∣
q̈⋆

must be

negative.

4.4 Performance of Fixed Point Iteration-based Adaptive
Control in Noise Filtering

The simulations were made for the van der Pol oscillator with additional quadratic drag
force term in the equation of motion (3.38). The model data and control parameters are given
in Table 4.1. The discrete time resolution of the Euler integration was δ t = 10−3 [s]. The
observed coordinate value was burdened with measurement noise qo(t) = qe(t)+NA[0.5−
rand()] in which the random function generator provided values with even probability in the
range [0,1], and the Noise Amplitude was NA = 6×10−3 [m].

Qualitatively it can be expected that if fast motion has to be controlled, in which during
the cycle time τ , and especially during the filtering time L ·τ the variation of the generalized
coordinates is considerable, and the great velocities imply strong nonlinear control forces, the
relative significance of the measuring noise of the generalized coordinates is smaller and the
acceleration feedback in the adaptive approach can improve the control quality. However,
for slow motion it can be expected that the acceleration feedback may corrupt the control
quality and the traditional PID-type approaches may produce superior results.
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Table 4.1: The Model and Control Parameters of the Simulations

Measurement Parameter
Unit Description Exact Value Approx. Value
[kg] Mass m 20.0 10.0

[N ·m−1] Stiffness k 100.0 400.0
[N · s ·m−1] Damping b 3.0 2.1
[N ·m−3 · s] Excitation d 2.5 2.0

[m] Separator a 1.5 1.2
[N ·m−2 · s2] Drag Coeff. c 6.0 3.0

[s−1] Λ in (3.3) 6.0 −−
[s] τ in (4.4) 10−3 −−

[m · s−2] w in (4.4) 6.0 −−
[m · s−1] A in (4.4) −1.0 −−

The table also contains the control parameters applied for a PID-type trajectory tracking and
that of the Continuous Fixed Point Transformation in (4.4). Typical result is obtained for the
trajectory and phase trajectory tracking of fast motion in Figs. 4.1 and 4.2. It is evident that
in this case the adaptivity well improved the control quality in the noisy case, too.

Figure 4.1: Comparison of effect of adaptivity on the: (At top: trajectory tracking) , (At
bottom: related trajectory tracking error) in the noise-free [LHS] and noisy [RHS] cases of
fast motion (NA: non adaptive, AD: Adaptive)
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Figure 4.2: Comparison of effect of adaptivity on the phase trajectory tracking in the noise-
free [LHS] and noisy [RHS] cases of "fast" motion (NA: non adaptive, AD: Adaptive)

Figure. 4.3 reveals that the noises essentially did not blocked the adaptive algorithm: the
desired and the realized values were very close to each other.

Figure 4.3: Comparison of the development of the adaptive control signal in the noise-free
[LHS] and noisy [RHS] cases of fast motion

Similar observations can be done for a considerably slower motion at which the increased
effect of the measurement noises can be best studied in the graphs of the phase trajectories
(Figs. 4.4–4.6).
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Figure 4.4: Comparison of effect of adaptivity on the: (At top: trajectory tracking) , (At
bottom: related trajectory tracking error) in the noise-free [LHS] and noisy [RHS] cases of
slow motion (NA: non adaptive, Ad: Adaptive)

Figure 4.5: Comparison of effect of adaptivity on the phase trajectory tracking in the noise-
free [LHS] and noisy [RHS] cases of "slow" motion (NA: non adaptive, AD: Adaptive)

Figure 4.6: Comparison of the development of the adaptive control signal in the noise-free
[LHS] and noisy [RHS] cases of slow motion
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Finally, Figs. 4.7–4.9 belong to the case of very slow motion, when the adaptive feed-
back causes greater tracking error than the traditional PID feedback-based Computed Torque
Control.

Figure 4.7: Comparison of effect of adaptivity on the: (At top: trajectory tracking) , (At
bottom: related trajectory tracking error) in the noise-free [LHS] and noisy [RHS] cases of
very slow motion (NA: non adaptive, Ad: Adaptive)

Figure 4.8: Comparison of effect of adaptivity on the phase trajectory tracking in the noise-
free [LHS] and noisy [RHS] cases of "very slow" motion (NA: non adaptive, AD: Adaptive)
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Figure 4.9: Comparison of the development of the adaptive control signal in the noise-free
[LHS] and noisy [RHS] cases of very slow motion

To summarize the possible observations, it can be stated as follows:
Typical result is obtained for the trajectory and phase trajectory tracking of fast motion

in Figs. 4.1 and 4.2. It is evident that in this case the adaptivity well improved the control
quality in the noisy case, too. Figure 4.3 reveals that the noises essentially did not blocked
the adaptive algorithm: the desired and the realized values were very close to each other,
while the extent of the necessary adaptive deformation was quite considerable.

For the slow motion, the trajectory tracking errors displayed in Fig. 4.4 testify that when
the dynamics of the motion to be tracked, due to the extra feedback properties of the FPI-
based method, the tracking error of the adaptive motion slightly increased due to the mea-
surement noise. However, it is much better than that of the non-adaptive one. The phase
trajectories in Fig. 4.5 also confirm this observation. The zoomed in excerpts of the forma-
tion of the control force in Fig. 4.6 testifies that the qualitative trends in the formation of the
control signal essentially remained the same in the noise-free and the noisy cases.

Finally, Figs. 4.7 and 4.8 reveal that for very slow motion, i.e., for keeping the system in
a static position, application of the adaptive control makes not sense because it feeds back
unnecessary noise components. The second time-derivatives of the generalized coordinates
described in Fig. 4.9 testify that the adaptive deformation also takes part in the compensation
of the consequences of the almost static modeling errors. The nominal q̈N values are almost
the same as the desired ones (q̈Des), i.e., no significant PID corrections were added to the
nominal motion, however, the deformed q̈De f quite considerably differ from the nominal and
the desired values.

The above observations correspond to the expectation that the adaptive approach was
invented for the compensation of the effects of the modeling errors in the dynamic model of
the system. In the case of slow motion the effects to be compensated by the adaptivity, with
the exception of the static terms, simply do not play any role (they provide little contribution
in the equation of motion according to the dynamic model), and in this case the usual, classic
PID-type feedback can work almost perfectly. The consequences of modeling errors of static
nature can be well compensated for by the simple non-adaptive approach, too.
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4.5 Comparison of Noise Filtering between Fixed Point
Iteration-based Adaptive Control and Unscented Kalman
Filter

In control applications the use of observed noisy and sometimes incomplete sets of ob-
servations makes a general problem arise that traditionally is tackled by the use of various
Kalman filters. The main point behind these filters is to provide some optimized output
based on the assumption that the measurement noises are of Gaussian nature and that the
subsequent measurements of the same variables are statistically independent. The original
concept was developed for linear system model, the later variants were extended to tackle
nonlinear models, too, since the nonlinearities make the observation and filtering problems
even more significant than in the case of linear systems. The Fixed Point Iteration-based
adaptive controllers are especially noise-sensitive since they need the feedback of higher or-
der derivative errors than the usual Resolved Acceleration Rate controllers. For supporting
them simpler noise filtering techniques were developed than the Kalman filters since no filter
optimization issues were considered by them. In the present investigations the operation of
various noise filtering methods are compared with each other in this special control applied
for the strongly nonlinear van der Pol oscillator. The simulations confirm that instead of the
use of complicated Kalman filter the simpler ones seem to be applicable as well. The scheme
of the adaptive controller was outlined in Fig. 3.1.

4.5.1 The Compared Noise Filtering Methods

I. Filtering with Affine Signal Approximation

In the investigations the observed noisy signal denoted by qo(t) and the realized one q(t)
was used for the computation of the tracking error components defined in (4.8).

eint(t) :=
∫ t

t0
(qo(ξ )−q(ξ ))dξ ,

(
Λ +

d
dt

)3

eint(t)≡ 0 (4.8)

This statement is valid for the Filtering with Affine Signal Approximation and the Application
of an Efficient Third Order Low Pass Filter parts.

This affine function approximation technique was used and described in Section 4.2.
During the simulations, the control parameters were set as follows: τ = δ t = 10−3 [s], w =
6 [m · s−2], A = −0.22 [s−2] (in (4.4)), and ΛFPI−1 = 8.0 [s−1] (in (4.8)). The length of the
digital filter was L = 30.

II. Application of an Efficient Third Order Low Pass Filter

This method was described in section 4.1. In the block Kinematic Needs of Fig. 3.1
the appropriate exponent in (4.8) was ΛFPI−2 = 12.0[s−1], while the filtering constant λ or
λFPI−2 = 250.0[s−1] in (4.1) was in use. The Fixed Point Transformation Function applied
in the block Deformation of Fig. 3.1 in this case was the original Robust Fixed Point Trans-
formation published in [84] as in (3.14) in which the same sigmoid function was in use as
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in (4.4), and in the simulations Kc = 106 [m · s−2], Bc = −1, and Ac =
5×10−2

Kc
[m−1 · s2] were

applied.

III. Unscented Kalman Filter

Unscented Kalman Filter is considered one of the most widely spread statistical tech-
niques which can be used for estimation e.g., in financial applications, nonlinear control
systems, and many more subject areas wherever the full state feedback is required. The filter
is based on the nonlinear Unscented Transformation that calculates the statistical properties
for an arbitrary random variable [64, 65, 110, 111]. In the applications the nonlinear system
is described as function of firstly the input state variables qk which is the dynamic descrip-
tion of the studied system in addition to which the process noise wk−1 is considered, and
secondly, the observed values or the system measurements zk to which also is added a so
called sensor noise vk in (4.9)

qk = f (qk−1,uk−1)+wk−1 , (4.9a)
zk = h(qk)+ vk . (4.9b)

In our calculations a strictly causal process was assumed with wk = 0, furthermore it was
assumed that the variables are directly measurable, i.e., zk ≡ h(qk) = qk + vk was assumed
with an appropriate measurement noise. For the discretized dynamic model (i.e., for the first
equation of (4.9)) the approximation

q̇ j ≈ q̇ j−1+
δ t
m

(
−kq j −b(q2j −a2)q̇ j +u j

)
,

q j ≈ q j−1+δ tq̇ j ,
(4.10)

that was created on the basis of the dynamic model of the controlled system in (4.21) (a
van der Pol oscillator). In the case of the Extended Kalman Filter (EKF), in general, the first
order Taylor series approximation of the functions in (4.9) is applied that is rather appropriate
to tackle slight nonlinearities. In [63] a new idea was introduced according to which instead
using the Jacobians of the functions in (4.9), the state distribution was specified by a minimal
set of deterministically chosen sample points of a Gaussian random variable (i.e., the sigma
points), and these points were propagated through the nonlinear system. The so obtained
points better approximate the posterior mean and covariance than the method based on the
Jacobians.

In this study, the state vector physically is q(k) = [q̇k, qk] with the initial conditions of
the mean is q̂0 = E[q0] and the initial covariance P0 = E[(q0− q̂0)(q0− q̂0)T ]. In every cycle
the sigma points of the probability density distribution (it is tacitly assumed to be Gaussian
or Normal distribution) are calculated for L = 2 as

χk−1 =
[
q̂k−1, q̂k−1+

√
(1+λ )Pk−1, q̂k−1+

√
(2+λ )Pk−1,

q̂k−1−
√

(1+λ )Pk−1, q̂k−1−
√

(2+λ )Pk−1

] (4.11)

where q̂k−1 is a matrix of size 2× 1, and the sigma points are obtained by adding and sub-
tracting to it the appropriate columns of the Lower Triangle Cholesky Factorization Matrix

7777



Chapter 4. Thesis 3

[112]. The definition of the parameters can be found in table 4.2. Then, the dynamic model
f (qk,uk) is evaluated via sigma points as χ∗

k|k−1 = f (χk−1,uk−1). Then the values of esti-
mated prior state and covariance are computed by multiplying their values by the weighted
sample means W m

i and W c
i in (4.12), respectively (their values are given in table 4.2)

q̂−k =

2L∑
i=0

W m
i χ

∗
i,k|k−1 (4.12a)

P−
k|k−1 =

2L∑
i=0

W c
i [χ

∗
i,k|k−1− q̂k][χ

∗
i,k|k−1− q̂k]

T +QNoise . (4.12b)

The process noise covariance QNoise ∈ R2×2 where it is set to be [10−1;10−3].

Table 4.2: The UKF Scaling Parameters

Parameter Description Value
α Primary Scaling 10−2

β Secondary Scaling 10−3

κ Scalar 0.0
L State vector Dimension 2
λ Scalar α2(L+κ)−L

W m
0 Initial State Weight λ

L+λ

W m
i State Weight 1

2(L+λ)

W c
0 Initial Covariance Weight λ

L+λ
+(1−α +β )

W c
i Covariance Weight 1

2(L+λ)

ΛUKF Positive constant in(4.8) [s−1] 36.0

After that, UKF starts the correction phase for L = 2 as

χk|k−1 :=

[
q̂−k−1, q̂−k−1+

√
(1+λ )P−

k−1, q̂−k−1+
√

(2+λ )P−
k−1

q̂−k−1−
√

(1+λ )P−
k−1, q̂−k−1−

√
(2+λ )P−

k−1

]
.

(4.13)

Then the unscented transformation is done over the observed values i.e., the sigma points are
calculated by the function of γk|k−1 = h(χk|k−1) and then recombined to produce the predicted
measurement values ẑ−k =

∑2L
i=0 =W m

i γi,k|k−1 and the predicted measurement covariance

Pz−k z−k
=

2L∑
i=0

W c
i [γi,k|k−1− ẑ−k ][γi,k|k−1− ẑ−k ]

T +RNoise (4.14)

where the measurement noise covariance RNoise ∈R2×2 were set to [10−2;10−3]. The trading
values between the state and measurement are obtained by calculating the cross covariance
in (4.15)

Pqkzk =

2L∑
i=0

W c
i [χi,k|k−1− q̂−k ][γi,k|k−1− ẑ−k ]

T (4.15)
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that allows to compute the Kalman gain Kgain = PqkzkP−1
qkzk

, and thus to obtain the updated
values of the state variables and covariance by:

q̂k = q̂−k +Kgain (ẑ− ẑ−) (4.16a)

Pk = P−
k −Kgain Pz−k z−k

KT
gain . (4.16b)

In general it is not easy to find appropriate values for QNoise, and RNoise. In the literature gen-
erally small (not zero) values are recommended the effects of which spread toward (4.12) and
(4.14). For making the most possible correct comparison their values were experimentally
set so that the best behavior of the Kalman filter was achieved.

4.5.1.1 General Assumptions Regarding the Inherited Noise Distribution in UKF

For the first derivative of the coordinate value the following assumptions were considered
and utilized:

• Let xi denote the actual coordinate value at time instant ti and x̂i := xi + µi its noisy
measured value later used for numerical differentiation. It is assumed that ∀ti the
probability density distribution of the additive noise component is ϕ(µ).

• Then by definition

E(µ) :=
∫

µϕ(µ)dµ , (4.17a)

σ
2(µ) :=

∫
ϕ(µ)(µ −E(µ))2dµ , (4.17b)∫

ϕ(µ)dµ = 1 . (4.17c)

where the assumption E(µ) = 0 is reasonable, and it leads to σ2(µ) =
∫

ϕ(µ)µ2dµ .

• Let ψ(µi,µi−1) the probability density distribution of the measurements made in time
instants ti and ti−1. If δ t is the time-resolution of the discrete differentiation then the
mean of the velocity computed from the measured values will be

E
(

qi −qi−1

δ t

)
=

=

∫ ∫
ψ(µi,µi−1)

xi +µi − xi−1−µi−1

δ t
dµidµi−1 ,∫ ∫

ψ(µi,µi−1)dµidµi−1 = 1 .

(4.18)

• For independent measurements ψ(µi,µi−1) = ϕ(µi)ϕ(µi−1) it yields

E
(

xi − xi−1

δ t

)
= 1

xi − xi−1

δ t
+1E

(
µi

δ t

)
−1E

(
µi−1

δ t

)
=

xi − xi−1

δ t
.

(4.19)
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• For the calculation of the standard deviation it can be stated that∫ ∫
ψ(µi,µi−1)

(
xi +µi − xi−1−µi−1

δ t

−
(xi − xi−1)

δ t

)2

dµidµi−1 =

=

∫ ∫
ψ(µi,µi−1)

(
µi −µi−1

δ t

)2

dµidµi−1

=

∫ ∫
ϕ(µi)ϕ(µi−1)

µ2
i +µ2

i−1−2µiµi−1

δ t2
dµidµi−1

= 2
σ2(µ)

δ t2

(4.20)

It must be noted that in the case of the first two methods the process noise was not interpreted,
only the observation noise had physical meaning, i.e., the process was considered strictly
causal.

4.5.2 Simulation Results
The simulations were made in Julia language by discrete time resolution δ t = 10−3 [s]

and a sinusoidal nominal trajectory has the function qN(t) = Ampl sin(ωt)+Shi f t in which
the values of the noise amplitude were 10−5[m] and 10−4[m], and the signal amplitude and
the shift were Ampl = 0.5 [m], Shi f t = 0.08 [m], respectively. For illustrating the compared
results, the van der Pol oscillator was chosen with its dynamic equation of motion in (4.21)

mq̈+b(q2−a2)q̇+ kq = u (4.21)

and the used parameters are given in table 4.3.

Table 4.3: The System Parameters

Parameter Exact Value Approx Value
Mass m [kg] 1.0 1.3

Spring stiffness k [N ·m−1] 100.0 120.0
Viscous damping b [N ·m−3 · s] 0.6 0.8

Separator a [m] 1.5 1.7

4.5.2.1 Comparisons Without Noise

As it was expected, the results that are illustrated in Figs. 4.10,4.11,4.12 show that the
UKF was powerful in the ideal situation i.e., without any noisy addition, however, the re-
sponses of the first FPI method had an acceptable trajectory tracking error in a range of
±0.6% while the value of its first derivative tracking error had a tremendous increase in a
range of ±20%. The second FPI method produced better results in both the trajectory and
first derivative tracking, where the error was in a range of ±0.1% and ±0.5% respectively.
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The best results belong to UKF with trajectory tracking error of 10−4 order of magnitude
with ±0.6% for first derivative tracking error.
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Figure 4.10: Comparison of the three methods without noise: at the top: trajectory tracking,
at the bottom: trajectory tracking error.
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Figure 4.11: Comparison of the three methods without noise: at the top: first derivative
tracking and its zoomed response, at the bottom: first derivative tracking error and its zoomed
response.
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Figure 4.12: Comparison of the three methods without noise: phase trajectory tracking and
its zoomed response.

For the noise-free case for the results of the three methods the floowing observations can
be done:

• The trajectory tracking errors displayed in te bottom of Fig. 4.10 testify that the best
result was produced by the UKF, the FPI-2 method produced comparable precision,
while the FPI-1 approach produced the highest tracking error.

• Figure 4.11 reveals that the same can be said about the first time-derivative of the
tracking errors.

• Figure 4.12 describing the phase trajectories confirms the above observations.

4.5.2.2 Comparison With Gaussian Distribution Noise

The noise amplitude firstly was examined with 10−5[m] as in Figs. 4.13,4.14,4.15. It
can be noticed that due to the small amplitude, the two FPI-based methods effectively fil-
tered the noise. The UKF produced small spikes in its response that have very small ampli-
tude and correspond to stable conditions. After that, the noise amplitude was increased to
10−4[m] where growing differences were observed. It became obvious that the FPI-2 showed
the best stability with minimum trajectory tracking error and first derivative tracking error
(Figs. 4.16,4.17,4.18).
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Figure 4.13: Comparison of the three methods in the case of noise amplitude = 10−5 [m]: at
the top: trajectory Tracking, at the bottom: trajectory tracking error.
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Figure 4.14: Comparison of the three methods in the case of noise amplitude = 10−5 [m]:at
the top: first derivative tracking and its zoomed response, at the bottom: first derivative
tracking error and its zoomed response.
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Figure 4.15: Comparison of the three methods in the case of noise amplitude = 10−5 [m]:
phase trajectory tracking and its zoomed response.
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Figure 4.16: Comparison of the three methods in the case of noise amplitude = 10−4 [m]: at
the top: trajectory tracking, at the bottom: trajectory tracking error.
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Figure 4.17: Comparison of the three methods in the case of noise amplitude = 10−4 [m]:
at the top: first derivative tracking and its zoomed response, at the bottom: first derivative
tracking error and its zoomed response.
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Figure 4.18: Comparison of the three methods in the case of noise amplitude = 10−4 [m]:
phase trajectory tracking and its zoomed response.

When the noise amplitude was increased to 10−4[m] the UKF produced so great noise
that the other two methods produced considerably better solutions because their smoothness
(Fig. 4.16).

For the comparison the effects of measurement noises the following statements can be
summarized:

• The small noise amplitude (10−5[m]) resulted in the same order of precision of trajec-
tory tracking as in the noise-free case (Fig. 4.13): the best results were provided by
the UKF, the second best was the FPI-2 solution, and FPI-1 produced geater tracking
error. However, the signal of the UKF was more noisy than the signal of the other two
methods. When the noise amplitude was increased to 10−4[m] the UKF produced so
great noise that the other two methods produced considerably better solutions because
their smoothness (Fig. 4.16).
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• In the first coordinate derivatives the UKF produced the most noisy signal. The
other two methods yielded smooth signals (Fig. 4.14). The increased noise amplitude
(10−4[m]) made the UKF provide very large noise (Fig. 4.17).

• Again, the phase trajectories in Figs. 4.15 and 4.18 confirm the above statements.

4.5.2.3 Comparison With Logistic Distribution Noise

Figures. 4.19,4.20,4.21 answer the interesting question of the effect of changing the
Gaussian noise distribution into Logistic. Unlike the UKF, the two FPI methods maintained
their ability to reduce the noisy effects. The error of trajectory tacking was in a range of
±0.75% for the first FPI method against ±0.12% for the second one while the first deriva-
tive tracking error was in a range of ±4% for the FPI −1 and ±2.5% for the FPI −2.
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Figure 4.19: Comparison of the three methods in the case of noise amplitude = 10−4 [m]: at
the top: trajectory tracking, at the bottom: trajectory tracking error.
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Figure 4.20: Comparison of the three methods in the case of noise amplitude = 10−4 [m]:
at the top: first derivative tracking and its zoomed response, at the bottom: first derivative
tracking error and its zoomed response.
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Figure 4.21: Comparison of the three methods in the case of noise amplitude = 10−4 [m]:
phase trajectory tracking and its zoomed response.

Figures. 4.19, 4.20, and 4.21 made for the noise amplitude 10−4 [m] for the logistic noise
distribution prove that the UKF achieved the worst result. This fact is not surprising because
the UKF is optimized for Gaussian noise distribution.

For showing the differences of responses for the three methods, the Mean Absolute Er-
ror (MAE) and Mean Squared Error (MSE) errors were used. The initial transient parts, in
which the errors characterize the differences in the initial conditions of the nominal trajec-
tories and the realized ones, were omitted in the calculations. The results are described in
Table. 4.4 for trajectory tracking error and Table. 4.5 for trajectory tracking derivative error.
The tables reveal that for small noise amplitudes the UKF yielded the best solution for tra-
jectory tracking. When a Gaussian noise of higher amplitude appeared, the method FPI-2
made better result than the UKF. Furthermore, when the noise distribution was changed form
Gaussian (to which the UKF was optimized), the FPI-2 method gave much better solution
than the UKF. With regard to the velocity tracking error, the UKF was yielded comparable
result with the FPI-2 method only in the lack of noises. For higher noise amplitude the UKF
became more sensitive, and for the Logistic distribution it yielded considerably worst result
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than the FPI-2 (the best) and the FPI-1 method. I note that these features can be seen in the
figures qualitatively.

Table 4.4: For trajectory tracking error

Noise Type MAE MSE
FPI1 FPI2 UKF FPI1 FPI2 UKF

No noise 0.003477 0.00069472 0.00036234 1.538e-05 6e-07 1.7e-07
Gaussian 10−5 [m] 0.0034724 0.00069474 0.00041416 1.535e-05 6e-07 2.4e-07
Gaussian 10−4 [m] 0.00388562 0.0006954 0.0018963 1.908e-05 6e-07 7.24e-06
Logistic 10−4 [m] 0.00443953 0.00069657 0.00326782 2.463e-05 6.1e-07 2.302e-05

Table 4.5: For trajectory tracking derivative error

Noise Type MAE MSE
FPI1p FPI2p UKFp FPI1p FPI2p UKFp

No noise 0.01281402 0.00347075 0.00355144 0.00020169 1.491e-05 1.554e-05
Gaussian 10−5 [m] 0.01282307 0.00348547 0.00729481 0.00020182 1.516e-05 9.055e-05
Gaussian 10−4 [m] 0.01401114 0.00511788 0.06556157 0.00026439 4.066e-05 0.0074151
Logistic 10−4 [m] 0.0161083 0.00839336 0.17379961 0.00036574 0.00010992 0.04516468

4.6 Thesis Statement III
By the use of simulation results I have shown that the FPI-based adaptive technique

can well cooperate with the simple noise filtering techniques as the cascade of moving
windows with affine signal approximation and the simple low pass filter, that do not
apply any assumption on the statistical nature on the measurement noises. I have also
shown that it is difficult to combine this method with the more traditional UKF that was
found less effective. As possible reason I identified the fact that the mathematical struc-
ture of the UKF cannot be so well fitted to that of the FPI-based adaptive approach.

Related own publications: [A. 7], [A. 8] and [A. 9].
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Chapter 5

Implementing Fixed Point
Iteration-based Adaptive Control and
Particle Swarm Optimization

In comparison with the classical Lyapunov function-based parameter identification-based
techniques, the advantage of the fixed point iteration-based techniques is that they do not
require the identification of the model parameters. However, for other purposes, especially
in life sciences, certain parameter values have definite significance and their identification is
required independently of solving the control task. This naturally make the question arise
if is it possible to identify the system’s parameters (or at least certain parameters of the
system) while the FPI-based adaptive controller is in operation. It is well known that the
early adaptive controllers in robotics [113] the dynamic model of the controlled system was
so formulated that an array of the identifiable dynamical system parameters were separated
from an array of kinematically precisely known components, and the approximate system
parameters were slowly tuned by Lyapunov functions-based constructions. At beginning of
the tuning process this method worked with large trajectory tracking error since it always
used an only slowly improved parameter set for the calculation of the necessary control
forces. Later Dineva combined this learning method with the FPI-based adaptive controller
in [114–116]. The main idea was that the FPI-based control signal was used for realizing the
adaptive control, but instead of the original PID-type feedback terms used by Slotine and Li,
she utilized the FPI-based terms for parameter tuning. This method resulted precise tracking
from the beginning, and the use of the improved parameters in the approximate model in the
adaptive control was only optional. In this research I investigated a similar problem: while
the adaptive controller worked on an FPI basis, for the identification of the system parameters
more general, evolutionary computation-based methods could be used. Utilization of the
improved parameters in the adaptive control remained rather a free option than a must, as
well as in the case of Dineva’s investigations. For the simulations I have chosen a strongly
nonlinear model with limited number of parameters, and a particular evolutionary method,
the simple and elegant Particle Swarm Optimization method [26].

The first part investigates the limitations of the applicability of Particle Swarm Optimiza-
tion (PSO) with Fixed Point Operation-based adaptive controllers in case of on-line mode.
For this purpose a simple but strongly nonlinear dynamic model was chosen by the use of
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which the problems of the parameter identification tasks can be well illustrated, expounded,
and understood. Especially the limitation of this method was pointed out when the identified
model in certain steps replaced the originally used initial one (this is the meaning of the term
on-line mode).

In the second part I made studies on the off-line combination of Fixed Point Iteration-
based adaptive controllers with (PSO) using a more complicated, realistic robot model. In
this approach the FPI-based adaptive controller is used for tracking a nominal trajectory
while the (PSO) used to refine the model, without using the improved model in the control.

5.1 Limitations in the Usage of Fixed Point Iteration-based
Adaptive Control and Particle Swarm Optimization Il-
lustrated by a Simple Paradigm

The goal is the identification of the model parameters of the controlled system during
the operation of and FPI-based controller. In this case the tuning strategy can be based on
more general learning methods. Since setting the exact model parameters mathematically
can be expressed as finding the zero value as absolute minimum of a cost function, various
possibilities are available. In [117] the efficiency of finite element methods and derivative-
free approaches are compared in the case of singular systems. If it is known a priori that the
optimization task is convex, very efficient special solution tools can be applied. If not, quite
general approach is needed. Due to its simplicity the (PSO) was chosen.

For the purpose of the investigations the popular nonlinear benchmark system, the van
der Pol oscillator [104], that was a triode that made forced nonlinear oscillations and later
its various modifications played important role in the research of chaotic phenomena (e.g.,
[118]). It was found that our certain expectations were too optimistic, though the really im-
portant parameters that played role in bringing about the observed motion were successfully
identified.

5.1.1 The Dynamic Model of the van der Pol Oscillator
Though in the practice the design of an engine, e.g., that of the water injection sys-

tem in the compressors of turbo jet engines [119] is based on extremely complex numerical
computations, for the description of the operation of such engine for control technological
purposes a relatively simple model may work well. The van der Pol oscillator –considered
as a symbolically mechanical system has the equations of motion as in (5.1) :

q̈ =−
k
m

q−
b
m
(q2−a2) q̇+

1

m
u (5.1a)

u = mq̈+ kq+b(q2−a2) q̇ (5.1b)

in which k = 250 [N ·m−1] is a spring constant, m = 10 [kg] corresponds to the inertia of a
mass point, b = 4.0 [N · s ·m−3] excitation/damping parameter, and a = 2.5 [m] is a parameter
the separates the excitation/damping region from each other. The parameters of the initial
approximate model used by the controller were k̂ = 120 [N · m−1], m̂ = 20 [kg], and b̂ =
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2.0 [N ·s ·m−3], and â= 1.5 [m]. Equation (5.1a) reveals that the output of the system model q̈
depends on some ratios of certain model parameters as k

m , b
m , and a2b

m , and the only parameter
is 1

m the dependence on which has a clear coefficient in the output is the control force u.
These relationships make the parameter estimation problem more coupled than estimation
of linear regression parameters. If the estimated value of say m is modified, it immediately
concerns the effects of the other parameters in the terms k

m , b
m , and a2b

m . The effects of such
inter-dependencies can be identified in the simulation results, too.

It also is trivial that the features of the trajectory to be tracked cannot be separated from
the problem of parameter estimation. In different trajectories the variables q, q̇, and u have
different significance in bringing about q̈, therefore it can be expected that different tra-
jectories allow the identification of different model parameters in different manner. The
simulation results also underpin this expectation.

5.1.2 Computed Simulations
In the simulations the very simple PSO solution was chosen. The four parameters to be

tuned were placed in the first four positions of a row, while in position five the appropriate
cost function (the absolute value of the difference between the observed and the estimated
q̈ values) were put. Therefore the population of the particles was represented by a matrix
the row number of which corresponded to the number of the individual particle, that was
described by the values [k,m,b,a,cost]. For storing the best local finding for a particle a
matrix of exactly the same size was used with the rows [kbl,mbl,bbl,abl,costbl], while the
best global estimation was stored in a single row as [kbg,mbg,bbg,abg,costbg]. According
to the simple and practical principles of PSO, the actual position of the actual particle was
pulled towards the direction of the best global particle by a velocity vector contribution
c3rand()[kbg − k,mbg −m,bbg − b,abg − a], and toward the best local particle by the vector
contribution c2rand()[kbl − k,mbl −m,bbl − b,abl − a] in which the function rand() means
even distribution in the interval [0,1]. In analogy with the method of Simulated Annealing
[30], without a sophisticated cooling strategy these contributions were completed with a
random term c4(rand()− 0.5)v with c4 > 1 that was able even to revert the motion of the
particle in (5.2).

vi(t +1) = c1vi(t)+ c2rand()(BLi −Pi(t))
+ c3rand()(BG−Pi(t))+ c4(rand()−0.5)vi(t) .

(5.2)

In the traditional terms the particle Pi is pulled toward the local ({BLi}) or global ({BG})
optima, the last term can have an arbitrary direction weighted by the parameter c4.

The parameters were experimentally set as c1 = 1.0 (no velocity damping was applied),
c2 = 0.2, c3 = 2.1, and c4 = 2 if this term was applied, and c4 = 0 for the computations
without this extra term.

Taking into account that a mathematically correct use of the PSO should evaluate the
effect of a given parameter setting [k,m,b,a] for a wide set of various observed {q, q̇, q̈, u}
values in which the significance of each parameter is taken from granted, in a real-time
control correct estimation cannot be expected. Instead of a wide set of examples of the
above space only elements already visited by the system during the control session can be
taken into account. Though in the case of a jerk-free continuous motion the subsequent
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examples are close to each other, the calculation of the cost or the last 12 visited points
was a reasonable compromise for finding a sub-optimal estimation of the model parameters.
Following 30 digital steps the initial approximate model was replaced with the PSO-based
best estimation.

In these simulations the Robust Fixed Point Transformation-based method was applied
where the values of the control parameters were as follows Λ = 6 [s−1] from (3.3), and Kc =
106, Bc =−1, and Ac =

0.1
Kc

from (3.14) were chosen. The time-resolution was δ t = 10−3 [s].
Simulations were made for sinusoidal motion with amplitude and frequency similar to the
free oscillation of the van der Pol oscillator were considered.

5.1.2.1 Simulations for Sinusoidal Motion

Trajectories for sinusoidal motion around the center points q10 =−0.5 [m], q20 = 0.0 [m],
and q30 =+0.5 [m] were investigated. In these computations c4 = 0 was chosen. Figure. 5.1
reveals precise trajectory tracking. According to Fig. 5.2 the phase trajectory is precisely
tracked. The jumps in the second time-derivatives reveal that at these points the better model
replaced older one, consequently the necessary adaptive deformations abruptly decreased
(i.e., the cyan (deformed) signal went back to the vicinity of the desired one), but later
increasing adaptive deformation became necessary indicating that certain parameters were
not well estimated by the PSO algorithm.
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Figure 5.1: The trajectory tracking and its error for sinusoidal motion for trajectory shift of
−0.5 [m]
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Figure 5.2: The phase trajectory tracking and the 2nd time-derivatives for sinusoidal motion
for trajectory shift of −0.5 [m]
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Figure 5.3: The estimated parameters for sinusoidal motion for trajectory shift of −0.5 [m]
(In the RHS a zoomed in excerpt of the figure in the LHS is given.)
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Figure 5.4: The 2nd derivatives for sinusoidal motion for trajectory shift of −0.5 [m]

In the next step the q20 = 0.0 [m] shift values were considered. The precise trajectory
tracking witnessed by Fig. 5.5 is accompanied by little adaptive deformations in Fig. 5.6
that indicates that the model was acceptable because its use required only small extent of
adaptive deformation. However, this means that only the parameters that are important in the
given session of the motion were well identified because Fig. 5.7 indicates high errors in the
estimated parameters. The fact that the ratio k

m influences q̈ can be explained if it is taken
into account that the parameters k and m were simultaneously overestimated.
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Figure 5.5: The trajectory tracking and its error for sinusoidal motion for trajectory shift of
0.0 [m]
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Figure 5.6: The phase trajectory tracking and the 2nd time-derivatives for sinusoidal motion
for trajectory shift of 0.0 [m]
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Figure 5.7: The estimated parameters for sinusoidal motion for trajectory shift of 0.0 [m] (In
the RHS a zoomed in excerpt of the figure in the LHS is given.)
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Figure 5.8: The 2nd derivatives for sinusoidal motion for trajectory shift of 0.0 [m]

In the set made for the trajectory shift q30 =+0.5 [m] can be well observed that the precise
trajectory tracking (Fig. 5.9) happened with relatively considerable adaptive deformation in
Fig. 5.10, though the individual parameters in Fig. 5.11 were better identified.
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Figure 5.9: The trajectory tracking and its error for sinusoidal motion for trajectory shift of
0.5 [m]
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Figure 5.10: The phase trajectory tracking and the 2nd time-derivatives for sinusoidal motion
for trajectory shift of 0.5 [m]
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Figure 5.11: The estimated parameters for sinusoidal motion for trajectory shift of 0.5 [m]
(In the RHS a zoomed in excerpt of the figure in the LHS is given.)
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Figure 5.12: The 2nd derivatives for sinusoidal motion for trajectory shift of 0.5 [m]

The observations can be summarized as follows. Due to the special structure of the
equation of motion of the van der Pol oscillator (5.1), due to the separating parameter denoted
by a, the system’s behavior considerably depends on the relationship between |q| and a. For
a q > a and q < −a the system is in a damped regime, but is |q|< a it is excited. In the first
motion belonging to the shit value −0.5 [m] described by Fig. 5.1 the coordinate q was placed
in the lower region of the excitation (q ∈ [−2.5,1.5]) with a strong asymmetry in the exciting
effect. The zeros shift value placed the nominal trajectory into the center of excitation in a
symmetric manner q ∈ [−2,2] [m]. Finally the shift value 0.5 [m] place the motion into the
upper part of the excitation in an asymmetric manner q ∈ [−1.5,2.5] [m]. The appropriate
Figs. 5.1, 5.5, and 5.9 testify the following the greater transient error, the tracking error
was stabilized approximately in the interval [−0.05,0.05] in each case. Since the method
worked online, and utilized the parameter values of the best estimation, in Figs. 5.2, 5.6,
and 5.10 certain jumps can be observed in the graphs of the second time-derivatives that
quickly relaxed and did not have observable effects in the phase trajectories. The jumps in
the identified parameters are described in Figs. 5.3, 5.7, and 5.11. Figures 5.4, 5.8, and 5.12
describe zoomed in excerpts in the graphs of the second time-derivatives. It can be concluded
that the adaptive controller well operated in each case, independently of the asymmetries in
the excitation.

5.1.2.2 Computations for Increasing Frequency and Amplitude

In the hope that a dynamically more complex trajectory may generate better {q, q̇, q̈, u}
data set for learning a nominal trajectory was chosen so that both of its amplitude and fre-
quency was linearly increased in time. In these estimations the parameter c4 = 2.0 consid-
erably improved the quality of the controlled motion. At first the trajectory shift −0.5 [m]
was considered. In Fig. 5.13 relatively precise trajectory tracking can be observed the error
of which is increasing in time at the end of the time session considered that is caused by the
increase in the amplitude and frequency of the nominal trajectory. According to Fig. 5.14
it can be stated that only little extent of adaptive deformation was necessary the implicated
that the significant parameter combinations in the case of this trajectory were well estimated.
However, as it is testified by Fig. 5.15 the individual parameters were not appropriately es-
timated.
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Figure 5.13: The trajectory tracking and its error for non-sinusoidal motion for trajectory
shift of −0.5 [m]
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Figure 5.14: The phase trajectory tracking and the 2nd time-derivatives for non-sinusoidal
motion for trajectory shift of −0.5 [m]
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Figure 5.15: The estimated parameters for non-sinusoidal motion for trajectory shift of
−0.5 [m] (In the RHS a zoomed in excerpt of the figure in the LHS is given.)

The figures belonging to the trajectory shift 0 [m] also reveal relatively precise trajec-
tory tracking (Fig. 5.16) and relatively well identified significant parameter combinations
(Fig. 5.17). Figure. 5.18 reveals that m was precisely estimated, b was found almost pre-
cisely, while the parameters as a and k had relatively little significance in this case because
they were imprecisely estimated. This fact can be understood on the basis of the dynamic
model: without trajectory shift relatively limited spring forces were generated, and the influ-
ence of the term (q2−a2) q̇ in (5.1a) was relatively insignificant, too. However, the estima-
tion of m in the term u

m was significant.
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Figure 5.16: The trajectory tracking and its error for non-sinusoidal motion for trajectory
shift of 0 [m] (In the RHS a zoomed in excerpt of the figure in the LHS is given.)
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Figure 5.17: The phase trajectory tracking and the 2nd time-derivatives for non-sinusoidal
motion for trajectory shift of 0 [m]
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Figure 5.18: The estimated parameters for non-sinusoidal motion for trajectory shift of 0 [m]
(In the RHS a zoomed in excerpt of the figure in the LHS is given.)

Figures. 5.19–5.21 belonging to the trajectory shift 0.5 [m] also reveal that m was pre-
cisely estimated but the other ones were not very well found.
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Figure 5.19: The trajectory tracking and its error for non-sinusoidal motion for trajectory
shift of 0.5 [m] (In the RHS a zoomed in excerpt of the figure in the LHS is given.)
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Figure 5.20: The phase trajectory tracking and the 2nd time-derivatives for non-sinusoidal
motion for trajectory shift of 0.5 [m]
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Figure 5.21: The estimated parameters for non-sinusoidal motion for trajectory shift of
0.5 [m] (In the RHS a zoomed in excerpt of the figure in the LHS is given.)

For the motion of increasing amplitude that takes more exhausting samples of the phase
space than the sinusoidal motion with a fixed circular frequency, (see Figs. 5.14, 5.17, and
5.20) the following observations can be done:

• Following the decay of the initially great tracking error, due to the increase of the
amplitude of the motion to be tracked, the tracking error started to slowly increase
again, in all cases belonging to the shift parameters (Figs. 5.13, 5.16, and 5.19).
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• In the second time-derivatives of the coordinate q(t) in this case no jumps can be
observed (Figs. 5.14, 5.17, and 5.20.) This statement is confirmed by the graphs of the
estimated parameters (Figs. 5.15, 5.18, and 5.21) according to which the identification
of the parameters happened in the early phase of the motion, and later no better solution
was found by the PSO.

5.2 Application for a Realistic Robot Model
The main FPI-scheme is modified so that it allows the contribution of PSO. The main

blocks remains to fit the control cycle while the addition are the PSO block and its cost func-
tion block. The PSO block takes the information from the realized coordinates qReal

1 , qReal
2 , qReal

3 ,
their first time derivatives q̇Real

1 , q̇Real
2 , q̇Real

3 , and the control torque components Q1, Q2, Q3

so that it can calculate their estimated second time derivatives q̈Est
1 , q̈Est

2 , q̈Est
3 . These esti-

mated values will be evaluated and compared with the realized second derivatives q̈Real
1 , q̈Real

2 , q̈Real
3

via the cost function defined as Cost =
∑

i |q̈
Real
i − q̈Est

i |. Here, the usual process of PSO han-
dles to search journey toward the global minimum in respect of the defined particles. The
dynamics of the PSO-based parameter tuning is not coupled to that of the adaptive control,
in contrast to the operation of the classic tuning methods. The iterative sequence of the
FPI-based adaptive controller is formed within the loop as indicated in the chart by a red
curve.
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Figure 5.22: The PSO’s operation flow chart.

The sequence of the adaptively deformed signals consists of the elements
{q̈De f (i); i ≥ 1} in which q̈De f (1) = q̈Des(1), as can be seen in the feedback loop in Fig. 5.22,
which also conveys information on the parameter identification process.

The essence of Algorithm 1 intuitively can be highlighted in the symbolic picture in
Fig. 3.3.
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Algorithm 1 The abstract rotation-based fixed point transformation algorithm
Require: 0 < ε ≪ 1, λa ∈]0,1], q̈Des(t); q̈Real(t); q̈De f (t) ∈ R3, A; B; C ∈ R4, q̈max ∈ R+

Ensure: q̈maxtanh(Trans f ormed[1:3]
q̈max

)

A← [ q̈Des
1 (t) q̈Des

2 (t) q̈Des
3 (t)

√
|R2

a −A[1 : 3]T A[1 : 3]|
]

B← [ q̈Real
1 (t −1) q̈Real

2 (t −1) q̈Real
3 (t −1)

√
|R2

a −B[1 : 3]T B[1 : 3]|
]

C← [ q̈De f
1 (t −1) q̈De f

2 (t −1) q̈De f
3 (t −1)

√
|R2

a −C[1 : 3]TC[1 : 3]|
]

∥A∥= ∥B∥= ∥C∥= Ra

A⊥B← A− (BT B)B
R2

a

∥ A⊥B ∥←√|A⊥BT A⊥B|
eα ← A⊥B

|ε+∥A⊥B∥| ; eβ ← B
Ra
; ϕ ← asin(∥A⊥B∥

Ra
)

Gen← eαeT
β
− eβ eT

α

O← I(4,4)+ sin(λaϕ)Gen+Gen2(1− cos(λaϕ)) ▷ Rodrigues formula
Trans f ormed← OC

With regard to the possible convergence of the adaptation process the general form of the
equation of motion of the robots given in (5.3) can be considered.

H(q)q̈+h(q, q̇) = Q , (5.3)

If Ĥ(q) and ĥ(q, q̇) are the approximate model components, and H(q) and h(q, q̇) denote
the exact ones, by the use of the deformed signal q̈De f the realized q̈Real can be computed
as follows:

Q = Ĥ(q)q̈De f + ĥ(q, q̇) , (5.4a)

q̈Real = H−1Ĥq̈De f +H−1(ĥ−h) . (5.4b)

In [92], as the generalization of the concept of the single variable monotonic increasing
function for multiple variable cases, the approximately direction keeping f : Rn 7→ Rn func-
tion was defined in the following manner: if ∀∆x the value ∆xT ∆ f ≡∆xT ( f (x+∆x)− f (x))
≊∆xT ∂ f

∂x ∆x>0, then f (x) is approximately direction keeping. Evidently, if someone wishes
to achieve some desired ∆ f , in the case of such a function, he/she can iteratively find an ap-
propriate input ∆x. A car driver, who is an intelligent adaptive system, can learn driving
a particular car if the steering wheel, the accelerator, and the brake pedals behave appropri-
ately. In a similar manner, a fixed point iteration can be made convergent for such systems. If
in (5.4b) the deformation is realized by the linear operator D as q̈De f = Dq̈Des, it is concluded
that

∂ q̈Real

∂ q̈Des = H−1ĤD , (5.5)

that can be made approximately direction keeping by choosing D := µĤ−1H with µ > 0

leading to ∂ q̈Real

∂ q̈Des = µI. That is, many appropriate adaptive deformations exist, and the fixed
point iteration can find a solution to the problem. More sophisticated and more general
considerations for convergence can be found in [120].

101101



Chapter 5. Thesis 4

5.2.1 Model Dynamics
The simulations were made in Julia language with time resolution δ t = 10−3 [s] by using

the 3-DOF robot system that can be realized by Equations (5.6)–(5.8) in which the fol-
lowing shortcuts were applied for simplifying the appearance as possible: c2 = cos(q2),
s2 = sin(q2), c3 = cos(q3), s3 = sin(q3), c23 = cos(q2+q3), s23 = sin(q2+q3).

Q1 = (Θ1+0.25m2L2
2c22+0.25m3L2

3c223+m3L2
2c22+0.5m3L2L3c23c2)q̈1

+

(
−0.5m2L2

2c2s2q̇2−m3L2
3c23s23(q̇2+ q̇3)/2−2m3L2

2c2s2q̇2

−0.5m3L2L3s23c2(q̇2+ q̇3)−0.5m3L2L3c23s2q̇2

)
q̇1 ,

(5.6)

Q2 = (0.25m2L2
2+0.25m3L2

3+m3L2
2+0.5m3L3L2c3)q̈2+(0.25m3L2

3+0.25m3L3L2c3)q̈3

−0.5m3L3L2s3q̇3q̇2−0.25m3L3L2s3q̇23+
(
0.25m2L2

2c2s2+0.25m3L2
3c23s23+m3L2

2c2s2

+0.25m3L2L3s23c2+0.25m3L2L3c23s2

)
q̇21+0.5m2L2gc2+m3gL2c2+0.5m3L3gc23 ,

(5.7)
Q3 = (0.25m3L2

3+0.25m3L3L2c3)q̈2+(0.25m3L2
3)q̈3+0.25(m3L2

3c23s23+m3L3L2s23c2)q̇21
+0.25m3L3L2s3q̇22+0.5m3gL3c23 .

(5.8)
Table 5.1 contains the parameters of the exact model to realize the original system be-

havior and the approximate model parameters used by the adaptive controller.

Table 5.1: The robot model parameters in Equations (5.6)–(5.8).

Parameter Exact Model Approximate Model
Θ1 [kg ·m2] 1st link’s inertia moment 50.0 55.0

m2[kg] 2nd link mass 10.0 8.0
m3[kg] 3rd link mass 20.0 18.0
L2[m] 2nd link length 2.0 2.0
L3[m] 3rd link length 1.0 1.0

g [m · s−2] gravitational accel. 9.81 9.81

5.2.2 Implementation of the PSO Strategy
For estimation of the robot model, five parameters (n = 5) were chosen: Θ1, L2, L3,

m2, and m3. These parameters were placed in a row as input. For the effective minimum
value search, the sixth place was reserved for the cost function, which was computed by the
absolute value of the difference between the estimated ^̈q and the realized (observed) q̈Real

values.
For initializing the PSO particles, a non-empty grid of points was set (i.e., it consisted

of a set of random populations with Initial Values {[Θ1ini,L2ini ,L3ini,m2ini,m3ini]}) so that the
evaluated particles could move accordingly. The number of particles was set to 32 on the
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basis of the idea as follows. It was assumed that each parameter pi might have an estimated
value δ pi, and might have a lower and an upper estimation δ pil < δ pi < δ piu. While the δ pi
values were fixed numbers, the lower and upper estimations were set randomly. For these
estimations in dimension n the necessary minimal number of parameters is 2n. For n = 3 see
Fig. 5.23.

  

δ p1

δ p2

δ p3

p3

p1

δ p3 l

δ p1uδ p1 l

δ p2 l

δ p2u

δ p3

δ p3u

Figure 5.23: Idea for selecting the PSO parameters.

The equation of motion of the particles had the same form as in (5.2).
The flowchart in Fig. 5.22 explains the signals directly fed from FPI-based control qReal, q̇Real ,

and Q that are used to calculate the estimated acceleration for each robot link as q̈Est
1 , q̈Est

2 , q̈Est
3 .

These estimated values are compared to the real second coordinate time derivatives that are
obtained from the FPI control cycle by using the cost function evaluated by the PSO algo-
rithm.

5.2.3 Simulation Results
The simulation work consists of two parts: the first realizes the parameter identification

by PSO, while the second tests the CTC controller using the identified parameters. In the
second part, the operation of the adaptive controller with the identified parameters is consid-
ered.

I. Identifying Parameters by PSO

According to the considerations with regard to the significance of the well balanced
teaching set in parameter learning, the FPI-based adaptive controller was used for realizing
or at least well approximating a nominal trajectory that was invented for teaching purposes.
Figure. 5.24 shows the responses of trajectory tracking properties for the three robot links.
As it can be seen in Figs. 5.25–5.27, which describe the phase trajectory of the motion used
for teaching, several boxes in the phase space of each link are visited. Though this is far
from the exactly even distribution over the cells, it seems to be more or less well balanced.
Figure. 5.28 shows how fast the convergence of the PSO algorithm is. Essentially each pa-
rameter was almost perfectly identified.
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Figure 5.24: Trajectory tracking (a) and the first time derivatives (b) for the three robot links
in the parameter identification process.
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Figure 5.25: The second time derivatives (a) and phase trajectory tracking (b) for q1.
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Figure 5.26: The second time derivatives (a) and phase trajectory tracking (b) for q2.
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Figure 5.27: The second time derivatives (a) and phase trajectory tracking (b) for q3.
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Figure 5.28: The cost function of the best estimation of the model during PSO teaching
iteration.

The accuracy of each estimated value for each targeted parameter is shown in Figure. 5.29.
For revealing the estimation accuracy in the five-dimensional parameter space,
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Figure 5.29: The estimated vs original parameters during teaching iteration (a) for Θ1 (b) for
L2 (c) for L3 (d) for m2 (e) for m3.

II. Operation of the Non-Adaptive CTC vs. Adaptive CTC for the Identified Parameters

After identifying the appropriate parameters by PSO, a natural option would be using
the common non-adaptive CTC in the possession of the identified model. However, the
computations revealed that the small errors in the identified parameters are not completely
insignificant. It may be advantageous to maintain the adaptive controller even in the case in
which the identified dynamic parameters are used. For this reason, two versions of the CTC
controller were applied: one without any adaption technique, while the other by activating
the FPI-based adaptive mechanism. It can be expected that the effect of adaptivity will be
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more significant in the identification phase when a very imprecise model will be used for
tracking a prescribed trajectory. It can be expected that its significance will not be so great
when a more precise model will be in use.

In fact, the trajectory tracking error in the PSO-based identifying process was between
−0.01[m] and 0.0075[m] whereas it increased in non-adaptive CTC within the range [−0.02,0.02]
[m]. The better improvement was in the adaptive CTC within the range [−0.008,0.004]
[m]. The same holds for the first derivative trajectory tracking error. It increased from
[−0.75,0.75][m · s−1] in the original identifying process to [−1.0,1.0][m · s−1] in non-adaptive
CTC. The error decreased to [−0.35,0.30][m · s−1] in adaptive CTC. The comparison can be
seen in Figs. 5.30–5.32.
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Figure 5.30: Trajectory tracking error (a) and its first time derivative (b) during the parameter
identification process.
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Figure 5.31: Trajectory tracking error (a) and its first time derivative (b) for the non-adaptive
CTC controller using the identified parameters.
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Figure 5.32: Trajectory tracking error (a) and its first time derivative (b) for the adaptive
CTC controller using the identified parameters.

In general, it can be expected that in the case of an imprecise model the non-adaptive
controller has to apply significant PID error correction terms to the second time derivatives
of the nominal coordinates; therefore, in this case, quite considerable differences can be
expected between the values of q̈Nom

1 (t), q̈Nom
2 (t), q̈Nom

3 (t), and q̈Des
1 (t), q̈Des

2 (t), q̈Des
3 (t): the

significant additions in the desired terms have the role of making the necessary corrections in
the non-adaptive controller. For a good operation, the Realized values should well track these
Desired ones, but this cannot be well realized in the non-adaptive controller. The limited ap-
plicability of the non-adaptive controller consists in this fact. However, when the adaptation
mechanism is in use, it is expected that the Realized value better approximates the Desired
one, consequently the necessary PID-type corrections in the Desired term continuously de-
crease in time, therefore both the Desired and the Realized values converge to the Nominal
ones, while the Deformed ones can increase accordingly. (As the final results, the precision
of trajectory tracking and that of the first time derivatives of the generalized coordinates can
be compared by the use of Figs. 5.30–5.32. It can be seen that the non-adaptive controller
that uses the identified parameters has the greatest error, the second greatest error belongs
to the adaptive CTC controller using the original data, and finally, the most precise tracking
was achieved by the adaptive controller using the identified model parameters.)

The above-mentioned effects can be well observed in the simulation results when the not
completely precise identified parameters were used in the non-adaptive and adaptive versions
of the CTC controller. This effect can be well tracked in the zoomed-in excerpts of Figs. 5.33
and 5.34 for the coordinate q1.
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Figure 5.33: Second time derivatives for q1 (a) and the zoomed-in excerpts (b) for the non-
adaptive CTC controller using the identified parameters.
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Figure 5.34: Second time derivatives for q1 (a) and the zoomed-in excerpts (b) for the adap-
tive CTC controller using the identified parameters.

Similar effects can be well identified in Figs. 5.35 and 5.36 for the coordinate q2, and in
Figs. 5.37 and 5.38, for the coordinate q3, too.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

200

100

0

100

200

300

A
cc

e
le

ra
ti

o
n
 [
m

s
2
]

The 2nd Deriv. for q2, Non-Adap CTC

Nom

Des
Def

Real

(a)

2.30 2.35 2.40 2.45 2.50 2.55 2.60
Time [s]

200

180

160

140

120

100

80

60

A
cc

e
le

ra
ti

o
n
 [
m

s
2
]

The 2nd Deriv. for q2, Non-Adap CTC

Nom

Des
Def

Real

(b)

Figure 5.35: Second time derivatives for q2 (a) and the zoomed-in excerpts (b) for the non-
adaptive CTC controller using the identified parameters.
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Figure 5.36: Second time derivatives for q2 (a) and the zoomed-in excerpts (b) for the adap-
tive CTC controller using the identified parameters.

108108



Chapter 5. Thesis 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

300

200

100

0

100

200

300
A

cc
e
le

ra
ti

o
n
 [
m

s
2
]

The 2nd Deriv. for q3, Non-Adap CTC

Nom

Des
Def

Real

(a)

2.5 2.6 2.7 2.8 2.9 3.0
Time [s]

300

200

100

0

100

200

300

A
cc

e
le

ra
ti

o
n
 [
m

s
2
]

The 2nd Deriv. for q3, Non-Adap CTC

Nom

Des
Def

Real

(b)

Figure 5.37: Second time derivatives for q3 (a) and the zoomed-in excerpts (b) for the non-
adaptive CTC controller using the identified parameters.
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Figure 5.38: Second time derivatives for q3 (a) and the zoomed-in excerpts (b) for the adap-
tive CTC controller using the identified parameters.

Though for the very imprecise initial model no non-adaptive simulations were done, in
Figs. 5.39–5.41, similar observations can be done for the coordinates q1, q2, and q3, respec-
tively. The adaptive controller brought closer to each other the q̈Nom, q̈Des, and q̈Real values
by applying a considerable extent of adaptive deformations.
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Figure 5.39: Second time derivatives for q1 (a) and the zoomed-in excerpt (b) during the
parameter identification process.
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Figure 5.40: Second time derivatives for q2 (a) and the zoomed-in excerpt (b) during the
parameter identification process.
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Figure 5.41: Second time derivatives for q3 (a) and the zoomed-in excerpt (b) during the
parameter identification process.

A possible measure of extent of adaptive deformation is the angle of abstract rotation in
this special adaptive controller. The figure. 5.42 underpins the fact that: the use of the very
imprecise model during the parameter identification process needed a much more drastic
adaptive deformation than the adaptive use of the identified parameters.
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Figure 5.42: The angle of adaptive abstract rotation during the parameter identification pro-
cess (a), and for the adaptive CTC controller using the identified parameters (b).

5.3 Thesis Statement IV
I have elaborated a cooperation between the Fixed Point Iteration-based adaptive
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control and a system parameter identification process using Particle Swarm Optimiza-
tion. The method allowed online and offline modes. In the offline mode the adaptive
control and the model identification tasks were completely decoupled, and the quality
of trajectory tracking was independent of the actual phase of identification, and was
precise from the beginning of the controller’s operation.

I have shown that due to balancing problems in the online case no asymptotic con-
vergence of the identified model can be expected. The fact that the use of the online
mode is not compulsory in the novel approach is an advantage over the traditional ones
that cannot avoid the application of the not well identified model from the beginning of
the control.

Related own publications: [A. 10] and [A. 11].
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Conclusions

In my Dissertation I brought about and investigated the integration of two subject areas
in control technology: the optimal and the adaptive controllers. After realizing that both
subject areas have their traditional mathematical backgrounds, namely the functional min-
imization in optimal control, and the use of Lyapunov functions tailored to the particular
problem under considerations in adaptive control, that makes their integration mathemati-
cally very complicated and difficult, I realized that in a particular slot this integration is not
difficult. It was the fixed point iteration-based adaptive control approach. I have shown
that its simple mathematical structure offers plausible possibilities for combination and inte-
gration with the heuristic optimal controllers in which a great variety of cost functions and
constraints can be applied. To utilize the so created freedom I have evaded the traditional
optimization approach in which the dynamic model is used as a set of constraint equations.
I reduced the number of constraint equations to one, and later completely evaded the use of
constraint terms by building the dynamic model into the cost function at the price of little re-
dundancies in the computations. I have shown that these variants were able to cooperate with
the adaptive technique I have applied, while allowed simplifications in finding sub-optimal
solutions in the case of various complicated cost terms in Receding Horizon controllers. Be-
sides control issues I suggested the application of this method in the solution of differential
inverse kinematic task of redundant robot arms to efficiently tame the solution in the vicinity
of kinematic singularities.

Since the adaptive method applied was expected to be noise sensitive, I suggested its
combination with various simple noise filtering techniques.

I also improved the adaptive method that originally suffered from some deficiency related
to actuator saturation issues.

Finally, I have elaborated the combination and elaboration of the adaptive control applied
with parameter estimation task that have significance independently of the need of precise
control. I have realized that by the use of the fixed point iteration-based approach the con-
trol and identification tasks can be optionally separated from each other, and arrived at the
conclusion that due to balancing problems the precision of the estimation has limitations,
and in general, it is expedient to use the improved model with some adaptive technique. I
have shown that if the adaptation has to make only small corrections, its stability range in-
creases and becomes much more reliable than the original approach using a very rough initial
dynamic system model.
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Future Research

Taking into account that the basic adaptation mechanism of the fixed point iteration-
based solution has a typical modular structure in which the kinematic and dynamic issues are
separated from each other, it offers various further development possibilities as follows:

i) In the kinematic block that defines how the tracking error required to converge to zero
or kept near zero various ideas can be applied. In my Thesis I mainly used PID-type
requirements, but any ideas related to the use of certain results of fractional order
calculus or fractional order derivatives-inspired approaches can be incorporated in this
block;

ii) Though the main idea of FPI-based approach was considering purely kinematic re-
quirements, the FPI-based Model Reference Adaptive Control variant of the method
can be combined with model- and Lyapunov function-based approaches as backstep-
ping controllers in which the kinematic and dynamic issues are not strictly separated
from each other but various Lyapunov functions can be conveniently used;

iii) The method may be applicable for making a large number of simulations how the vari-
ables of the internal compartment components can vary in time when these variables
cannot be measured, and we are in lack of satisfactory information even for estimating
them (e.g., in life sciences).

iv) The main advantage of the method from the point of view of implementation is that
instead using complicated analytical formulae in the approximate models, often quite
simple estimations can be used for the purpose of control so that the deficiencies of the
model can be evaded by a very simple adaptive mechanism. The little computational
demand of the simple model (e.g., an affine model) can substitute the computation of
very complicated Lie derivatives. If the simple model can be used by an embedded
system, the computational force of humble hardware systems can be satisfactory from
practical point of view. The main limitation if the FPI-based method, i.e., that during
one digital control step only one step of the adaptive iteration can be done generally can
be amended by decreasing the duration of the control cycle e.g., by the use of stronger
hardware. This simple observation explains that the huge computational need of the
Dynamic Programming invented in the fifties of the past century made it applicable
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for controlling slow chemical processes with hardware solutions of humble compu-
tational capacities, while for controlling fast robot motion, even in the technological
background of the late nineties was satisfactory only for the realization of the simple
CTC controller. In the parallel research by PhD student Awudu Atinga the problem of
adaptive control of underactuated by the use of fixed point iteration is considered in
details with numerical simulations for an example that does not increase the relative
order of the control task and for an other one in which for the control of a second order
system is solved by a relative order 3 controller [121].

v) For implementation issues of the fixed point iteration-based method for real life ap-
plications, in a parallel research, Bence Varga PhD student keeps working on experi-
mental investigations. He developed an experimental setup and obtained measurement
values that presently are under review for publication. His system is made of typical
cheap components that are appropriate for playing with them in the university research.
A 12 V DC motor type FIT0185 with an inbuilt encoder and planetary gearbox with
131:1 reduction ratio. This electric motor is driven by a BTS7960-M dual half bridge
motor drive. The output shaft is connected to a spring through a special coupling which
provides a position-varying external load not modeled by the controller. Its effect is
compensated by fixed point iteration-based adaptive CTC controller. The electronics
consists of Arduino DUE Board with Atmel SAM3X8E ARM Cortex-M3 32-bit pro-
cessor. The adaptive deformation is applied for the PWM (Pulse Width Modulation)
output of the controller.
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Appendix A

Regarding to section 2.1:
The estimation of the gradient and making the corrective steps:

part_time1=@elapsed ∂G=gradient("G",x_act)
part_time2=@elapsed x_act=x_act-(a1*G_act/(∂G’*∂G))*∂G
Time[counter]=part_time1+part_time2

In the Reduced Gradient phase the main steps were as follows: filling in the columns of
the matrix that subsequently is orthogonalized, taking out the last column for the reduced
gradient, making the corrective steps, and calculation of the norm of the reduced gradient
that is used for stopping the algorithm.

part_time1=@elapsed Xact[:,1:1]=gradient("g1",x_act)
part_time2=@elapsed Xact[:,2:2]=gradient("g2",x_act)
part_time3=@elapsed Xact[:,3:3]=-gradient("f",x_act)
part_time4=@elapsed reduced_matrix=GrSchm(Xact)
part_time5=@elapsed reduced=reduced_matrix[:,3:3]
part_time6=@elapsed x_act=x_act+a2*reduced
part_time7=@elapsed red_grad_norm=norm(reduced)

In this case the Gram-Schmidt algorithm was realized by the code:
function GrSchm(X)
Xv=X # at the beginning
if norm(Xv[:,1:1])>varepsilon
L21=(Xv[:,1:1]’*X[:,2:2])[1]/((Xv[:,1:1]’*Xv[:,1:1])[1])
L31=(Xv[:,1:1]’*X[:,3:3])[1]/((Xv[:,1:1]’*Xv[:,1:1])[1])
else
L21=0.0
L31=0.0
end
Xv[:,2:2]=X[:,2:2]-L21*Xv[:,1:1]
if norm(Xv[:,2:2])>varepsilon
L32=(Xv[:,2:2]’*X[:,3:3])[1]/((Xv[:,2:2]’*Xv[:,2:2])[1])
else
L32=0.0
end
Xv[:,3:3]=X[:,3:3]-L31*Xv[:,1:1]-L32*Xv[:,2:2]
return Xv
end

in which the symbols L21, L31, L32 determine the factors of reduction. In the second case
this function was simpler because the reduction happened only by a single column as

function GrSchm(X)
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Xv=X # at the beginning
if norm(Xv[:,1:1])>varepsilon
L21=(Xv[:,1:1]’*X[:,2:2])[1]/((Xv[:,1:1]’*Xv[:,1:1])[1])
else
L21=0.0
end
Xv[:,2:2]=X[:,2:2]-L21*Xv[:,1:1]
return Xv
end
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