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Abstract
In my Thesis I elaborated certain improvements in the subject areas of Opti-

mal and Adaptive controllers with the main aim of realizing their efficient inte-
gration. In the traditional mainstream, optimal controllers are based on the math-
ematical foundations of functional optimization under constraints. The adaptive
controllers that tackle strongly nonlinear problems normally use Lyapunov func-
tions for the calculation of the control signal. Both structures have their own inner
rigidity that makes their combination not trivial. Recognizing that the mathemat-
ical structure of the alternative of the Lyapunov function-based technique, the
Fixed Point Iteration-based adaptive control immediately allows the integration
of the various particular variants of these methods, I concentrated on the elab-
oration of adaptive optimal controllers. I have shown that by eliminating the
constraint terms in the optimal control by incorporating the dynamic model in
the cost functions the computational burden of the method can be significantly
reduced in the case of quite sophisticated cost functions. I also elaborated im-
provement in the FPI-based adaptive controllers by reducing its noise sensitivity
using simple filtering techniques, and efficiently tackled the problem of actuator
saturation. I suggested separate or optionally partly coupled application of this
adaptive method with parameter identification purposes the need of which arose
not from the side of control applications. I pointed out the limitation of the evolu-
tionary algorithms in parameter identification issues, and suggested the use of the
improved identified model with the same adaptive technique to improve its sta-
bility. The statements of my Thesis are underpinned by simulation investigations
I made by the use of Julia language programs.
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1. Introduction

1.1 Motivations and Goals
In practical control tasks various typical problems must be tackled as e.g., the

lack of precise dynamic model of the system to be controlled, the presence of
unknown external disturbances and their consequences, limited physical possi-
bilities for introducing control force or other equivalent action into the controlled
process, limited possibilities for measuring or at least estimating the controlled
system’s actual physical state. For tackling at least certain elements of these prob-
lems various control methodologies have been elaborated. Some of them were
based on particular mathematical formalism that do not seem to be easily com-
bined with each other. In this field of efforts there is a plenty of open problems
and a general lack of integration can be observed. The question naturally arose:
is it possible to reach certain achievement in this direction? My work was mo-
tivated by this simple question. Explanation of the precise mathematical details
of which I obtained my motivations can be given only after the state-of-the-art
review. In the sequel I give only a short summary of my ideas.

The Model Predictive Controller (MPC) was early idea developed for utiliz-
ing the available dynamic model of the controlled system. In order to provide
the designer possibility for force limitations or complying with various other,
often contradictory requirements, these controllers mathematically were formu-
lated as solutions to the optimization under constraints tasks. Normally, the cost
functions represented some weighted sum of various penalty terms that should
have been minimized, while the dynamic model of the controlled system ap-
peared in the constraint terms. In the early dynamic programming approach
the mathematical background was the minimization of functionals with strong
analogy of the variation principles of Classical Mechanics. The computational
power -requirements of this approach was considerably reduced by the applica-
tion of time grid with discrete time-resolution in the Receding Horizon Controller
(RHC) that maintained the constraint terms with combination with the Lagrange
multipliers. The practical applicability of this approach strongly depended on the
dynamics (speed) of the physical process to be controlled, and the technological
level of the available processors that were able to realize these control methods.
I realized that in this formalism there is a great freedom for the designer
to play with the possibilities for distributing certain details between the cost
and the constraint terms. This possibility made me carrying out simulation
investigations.

Whenever the computational resources were not rich enough to apply the
complex mathematical framework of optimized controllers, as e.g., in Robotics
in the nineties of the past century, the dynamic model was utilized without being
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placed into the mathematical framework of optimal controllers. The so called
Computed Torque Control (CTC) had to scope with the problem of lacking re-
liable and precise dynamic models. It became clear in the early nineties that
no such models can be constructed even within the Classical Mechanics-based
framework that does not consider friction effects. In the literature coping with
the problems of incomplete and imprecise models generally happens by the use
of either Robust design as the Variable Structure / Sliding Mode Controller, or
by the application of Adaptive techniques. The Sliding Mode controller often
produces dangerous excitation of the controlled system while the mainstream of
the finer adaptive controllers is based on Lyapunov’s 2nd or direct method. I rec-
ognized that from various points of view this method is very complicated,
needs complete state estimation, so the question naturally arose whether is
it possible to combine with the optimal control approach its possible, more
simple alternative that was based on Banach’s fixed point theorem? For
this reason I carried out simulation investigations with this mathematically
simple approach.

In the modern control approaches the efficient tool of evolutionary algorithms-
based system identification methods can be found. It was a natural idea to
investigate how is it possible to combine evolutionary methods-based system
identification techniques with the fixed point iteration-based adaptive con-
trol.

In dynamic control problems the presence of observation or sensor noise
is a general problem. Due to the structure of the fixed point iteration-based
approach it was expected that the noise issues have enhanced significance
in this case. Therefore, I felt strong motivation to consider noise filtering
possibilities. The success of the Acceleration Feedback Controllers that have
to cope with similar problems convinced me that it is not hopeless to make
investigations in this direction.

1.2 State of Art
In control technology, various control methods are present in the inventory of

possible solutions. The appropriate choice can be selected according to various
particular and practical aspects related to a given task, and there is no way to
generally state that a given method would be superior in comparison with others.
Such properties as mathematical complexity, the need for computational power,
the need for a more or less precise dynamic model of the controlled system, ro-
bustness against modeling errors and external disturbances, adaptivity, and possi-
bilities for implementation can be considered when a control approach is chosen
to tackle a given problem.
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The wide set of model-based controllers belong the (MPC) (e.g., [1]) in which
beside the dynamic model of the controlled system various force limitations and
other restrictive factors can be taken into account that originate from sources
other than the model. It was successful especially in the control of slow processes
as e.g., crystallization, that can be traced by computers of limited computational
power. For finding the optimum a computationally greedy approach was sug-
gested in the late Fifties of the past century as Dynamic Programming that aimed
at the minimization of functionals [2, 3]. The computational power of this ap-
proach later was reduced by solving this problem over a discretized time-grid
and using numerical approximations under the name Receding Horizon Con-
troller [4]. However, the original elegant structure in general was maintained.
The analogy with the Canonical Equations of Motion of Classical Mechanics
were maintained with related issues as the flow of incompressible fluids and con-
servation rule for the Hamiltonian (or artificial Hamiltonian) of the controlled
system (e.g., [5]). These controllers generally applied Lagrange’s Reduced Gra-
dient Algorithm [6]for problem solution. In special cases as linear time-invariant
system models and quadratic cost functions, also utilizing the theoretical results
by Riccati [7] and Shur [8, 9], considerable mathematical simplifications were
achieved under the name Linear-Quadratic Regulators [10]. This approach was
able to treat modeling errors in a very simple manner: the optimized motion
was designed for a whole horizon, but normally only one step of this optimized
force was exerted on the system, and in the next step a new horizon have been
calculated again.

Whenever the computational resources were not rich enough to apply the
complex mathematical framework of optimized controllers, as e.g., in Robotics
in the nineties of the past century, the dynamic model was utilized without being
placed into the mathematical framework of optimal controllers. The so called
Computed Torque Control (CTC) [11] had to scope with the problem of lacking
reliable and precise dynamic models. It became clear in the early nineties that
no such models can be constructed even within the Classical Mechanics-based
framework that does not consider friction effects [12]. Various friction mod-
els were considered with regard to slow velocity motion where the phenomenon
stick–slip’ typically occurs (e.g., [13, 14, 15]). It was also realized that build-
ing in even the simplest friction models leads to observation or identification
problems (e.g., [16]). High complexity friction models need the introduction of
complementary degree of freedom (DOF) as in the LuGre model [17].

In many cases, a simple PID-type controller invented in the 1940s [18] can do
well. In robotics, the direct use of the dynamic model without inserting it into the
mathematical framework of optimal controllers was initiated in the 1980s [11] in
the concept of (CTC). In this approach the inverse dynamic model is directly used
for the calculation of the control signal without using the mathematical complex-

4



ity of the optimal controllers. However, it became clear very early that practically
it is impossible to develop precise dynamic robot models (e.g., [12]), and that the
identification of important parameters related to modeling the friction effects has
limitations, too (e.g., [16]).

The robust variable structure/sliding mode controllers that became popular in
the 1990s (e.g., [19]) are simple solutions that can solve the problem of modeling
errors and unknown external disturbance. In a similar manner, resolved accelera-
tion rate control (e.g., [20]) and acceleration feedback controllers (e.g., [21]) can
be considered as improvements of the CTC controllers.

The wide class of adaptive controllers tackle the imprecisions of the models
in different manners. The widest subset uses Lyapunov’s stability theorems and
keeps prevailing from the early 1990s to the present (e.g., [22]) as well as the
model reference adaptive control (e.g., [23]). Normally, stability or asymptotic
stability of these solutions are guaranteed for a huge set of possible parameters of
which the appropriate ones can be selected on the basis of practical aspects often
applying various versions of evolutionary computation as genetic algorithms [24,
25], particle swarm optimization [26, 27, 28, 29], simulated annealing [30], and
so on.

Strong non-linearity is a natural feature of most physical, biological, eco-
nomic, and engineering systems. In spite of that most of traditional software
packages solving optimization problems can normally handle only linear time-
invariant system models with typically quadratic cost function structures because
this restricted subject area can be tackled by well-elaborated and efficient math-
ematical tools as the application of Riccati equations [7] (it provides the solution
of special first-order quadratic differential equations by solving second-order lin-
ear ones), Schur’s decomposition method that obtains the solution of quadratic
matrix equations by solving linear ones [8, 9]. For solving linear matrix inequal-
ities in system and control theory a complete program was announced by Boyd
et al. in 1994 [31] for which efficient MATLAB program packages have been
developed [32]. The mainstream of the engineering research efforts aimed at the
elaboration of approximate linear system models and quadratic cost functions for
tackling optimization problems by the use of this efficient mathematical appara-
tus. In [33], the linear matrix inequality (LMI) condition based on slack variables
was used to reduce the high gains of control, resulting in using the robust H∞
state feedback controllers.

However, for more complex dynamical models and specially structured cost
functions the more general mathematical context does not allow such relatively
simple solutions. Instead of using ready-made program packages researchers
have to develop their own program codes that are not supported by the rigorous
and reliable quality guaranties of the MATLAB packages.

From a mathematical point of view, optimization can be formulated by the
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use of variation calculus. In the 1950s, i.e., in the advent of the appearance of
powerful computers, Bellman introduced dynamic programming [2] that compu-
tationally is too greedy. The problem was later simplified by the introduction of
a discrete, evenly scaled time-grid of resolution δ t that is dense enough to allow
numerical differentiation and Euler integration over it. The sum of the cost func-
tion contributions in the grid points of a horizon of discrete length H was mini-
mized for a first-order dynamical system under the constraint q(ti+1)−q(ti)

δ t ≈ q̇(ti)
in which the function q̇(ti) = F (q(ti),u(ti)) describes the dynamic model of the
controlled system, and u(ti) denotes the control force. By the use of the usual
constraint function gi(q(ti),q(ti+1),u(ti)) :=

q(ti+1)−q(ti)
δ t −F (q(ti),u(ti)), a gen-

eral cost function (with a simpler notation)
∑H

ℓ=1 Φ(qℓ,uℓ) has to be minimized
over the horizon by varying the coordinates {q2, . . . ,qH } (q1 is given as the ini-
tial condition of the motion), and force terms {u1, . . . ,uH−1} (because uH has
influence only on the next grid point at time tH+1). The optimization must have
done under the constraints gi(qi,qi+1,ui) = 0. It traditionally can be solved by
the use of Lagrange’s reduced gradient method by using Lagrange multipliers
for gradient reduction that was introduced in the late 18th century for solving
constrained problems in Classical Mechanics [6]. It can well be used for control-
ling slow processes as e.g., crystallization in chemistry [34, 1] and traffic control
[35, 36]. Later, it obtained ample applications from the 1960s with the devel-
opment of computer technology that provided easy implementation possibilities
(e.g., [37, 38]). The scheme description is known as the (RHC) [4] which is
a reliable, heuristic realization of the (MPC) (e.g., [39, 40]) that has many ap-
plications (e.g., [41, 42, 43, 44, 45, 46]). The adaptive version of RHC were
investigated in many cases, such as in [47] wherein the used Adaptive Receding
Horizon Controller (ARHC) is based on Lyapunov’s adaptation law, whereas in
[48], the adaptive controller is based on the set membership identification algo-
rithm, which iteratively calculates at each cycle a set of candidate plant models.
The general ARHC is used in [49] along with particle swarm optimization (PSO).
Implementing the sliding mode (SM) as an adaptive technique for ARHC is ad-
dressed in [50].

Because of the fact that the Lagrange multipliers normally have clear phys-
ical interpretation (e.g., [51]), and the strong analogy with the canonical equa-
tions of Classical Mechanics [52, 53, 5] that provides solutions similar to the the
flow of incompressible fluids, together with the plausible mathematical conse-
quences of this approach, the constraint-based formulation of the problem gen-
erally prevailed, though it is not the computationally simplest and cheapest ap-
proach. These analogies are derived from considering the auxiliary function of
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the problem in (1)

Ψ({q}, {λ }, {u}) :=
H∑

ℓ=1

Φ(qℓ,uℓ)−
H−1∑
ℓ=1

λℓgℓ(qℓ,qℓ+1,uℓ) . (1)

Evidently, Ψ({q}, {λ }, {u}) is not bounded, and at the point where the gradi-
ent reduction algorithm stops, it satisfies the equations as ∂Ψ

∂λ j
= 0, meaning that

the solution satisfies the constraint conditions, ∂Ψ

∂qk
= 0 that can be so interpreted

that the reduced gradient is 0, and an additional condition ∂Ψ

∂ui
= 0. These partial

derivatives allow the interpretation of the appearance of the numerical approxi-
mation of a differential equation for λ̇ , considering the qi and λi pairs as canon-
ical coordinate pairs, and interpreting Ψ as a Hamiltonian with the conservation
property Ψ̇ ≡ 0. The analogy with the flow of incompressible fluids is related to
the fact that the canonical state propagation equations are related to symplectic
transformations that conserve the volume of the phase space (Liouville’s theo-
rem, e.g., [5]).

The numerical algorithm that solves the above problem is commenced by
finding a point on the constraint surface by using the Newton–Raphson algo-
rithm [54, 55, 56], then making consecutive small steps along the reduced gra-
dient ∇Φ −

∑
ℓ λℓ∇gℓ in which the Lagrange multipliers are so chosen that for

the constraint gradients it must be valid that ∀ j (∇g j)
T (∇Φ −

∑
ℓ λℓ∇gℓ) = 0 (in

this formulation the symbol ∇ contains ∂

∂q and ∂

∂u components). Gradient reduc-
tion needs the solution of this linear set of equations. The algorithm stops when
the reduced gradient becomes zero. It was realized that placing the dynamic
model into the constraint term of the optimization task is rather a tradition than
a necessity. If we do not insist on the above mentioned elegant formal analogies
with classical mechanics, the complexity of the calculations can be considerably
reduced. In the original approach the free variables of the optimization are the
coordinate values {q}, and the force terms {F} over the horizon, and the quantities
that additionally have to be calculated are the {λ } Lagrange multipliers for reduc-
tion of the gradient containing the partial derivatives according to the components
{q} and {F}. In [57], the structure of the auxiliary function was investigated in the
case of a simple paradigm, and it was found that the appropriate solution is at its
saddle point. Furthermore, instead of using a set of individual constraint func-
tions for optimization as {gℓ = 0}, the use of a single constraint term defined as
G :=

∑
ℓ g2ℓ = 0 can be successfully applied with only one associated Lagrange

multiplier that can very easily be computed. In [58], the use of the Lagrange
multipliers was completely evaded, and the method’s operation was illustrated
by controlling the dynamic model of two connected mass points that were able
to move in a given linear direction. In this approach, the free variables of the
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optimization are only the force terms {F} over the horizon, the gradient in the op-
timization consists only of the ∂

∂F components, and the simple gradient descent
method can be applied without any gradient reduction. Following this simple
illustration, the method was used for simulating the treatment of illness type 1
diabetes mellitus in determining the necessary insulin ingress rate, and the esti-
mation of the evolution of the not observable internal model variables. In [59],
this approach was considered for the RHC control of the Furuta pendulum [60],
and in [61, 62] application possibilities were considered in solving the inverse
kinematic task of redundant robots.

With regard to the significance of the effects of measurement noises, in the
traditional literature, in which normally PID-type feedback terms are used, and
in the adaptive control some Lyapunov function-based techniques are prevailing,
the noise terms are modeled as additional terms of more or less marginal signif-
icance. Generally it is assumed that the physical causes of the noise terms are
not identified and individually modeled. It is assumed that the effect of a large
number of statistically independent noise sources produce some result of normal
distribution with zero mean if the appropriate sensors are well installed. The ef-
fect of the lost signals together with the additional Gaussian noise are assumed
and, for instance, the Kalman filters are so designed that they are optimized for
this Gaussian spectrum (e.g., [10, 63, 64, 65]). However, it can be emphasized
that the digital components in the realistic applications do not allow to realize
the long tail of the Gaussian distributions, and the originally causal models are
treated as really causal ones burdened with the additional noise terms. (The con-
trol of stochastic processes is absolutely out of the scope of my dissertation.)
Since the Fixed Point Iteration-based method feeds back higher order deriva-
tives than the traditional ones, and the adaptation mechanism of this approach
learns from the observations of the recent time instances, any noise filtering tech-
nique causes some delay that may corrupt this very special and primitive learning
method. Therefor, the use of this method made it necessary to consider noise fil-
tering issues.

Since in the numerical control the mathematical properties of the differen-
tiation can cause high noise-like contribution, the traditional approach simply
applies low pass filters as e.g., Bodó and Lantos in [66], in my dissertation I also
applied it in one of the theses. For fixed point iteration-based control specific
preliminaries as ad hoc ideas can be found in [67, 68, 69, 70].

1.3 Research Methodology
All investigations of the proposed theoretical algorithms and their engineer-

ing applications are tested via running the simulation on Julia Language. The
reason behind selecting Julia is related to its wide availability as a free and open-
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source software, capability for providing professional visualization methods that
fit the publication requirements. Besides that, its fast processing that reflects the
most modern computational technologies against the lack of resources was an
important motivation for its use.

The used editions of Julia during the research are v1.4.2-win64 (May 25,
2020), v1.4.2-win64 (July 7, 2021) and lastly v1.8.0 (September 6, 2022). The
supporting environments are Python v3.7 and v3.9 so that the visualization in
Julia and the possible use of the qt back-end (i.e., it applies the Python’s Matplot
Library) were important facts that motivated my choice.

2. Investigations About Computational Acceleration
For Optimization Problems

The Lagrange’s method has considerable computational needs that mathe-
matically describe the constrained physical systems in Analytical Mechanics [6].
However, nowadays, in the possession of cheap computers and software prod-
ucts it became a practical problem solving tool for instance in the Solver pack-
age of MS EXCEL that can be applied in financial and technical problems (e.g.,
[71, 72]). In many cases the Lagrange multipliers have important physical mean-
ing, therefore it is necessary to compute them (e.g., [73, 51]), and the Solver
package also computes them.

This chapter (in the full version of dissertation), in its first part, investigates
the possibility of speeding up the computations of solving constrained optimiza-
tion problems by avoiding the calculations of individual Lagrange multipliers.
While at the second part, the suggested alternative method is tested by using a
7-DOF redundant robot system.

Thesis Statement I
I have recognized that in contrast to the traditional approach of opti-

mal controllers, in which the optimization of a cost function happens via
individually dealing with each dynamic model term as a constraint equa-
tion, it is possible to construct a single constraint equation that guarantees
the fulfillment of each original constraint. In this new approach, similarly
to the traditional one, the Newton-Raphson algorithm is used for finding
a point on the embedded hypersurface that contains the possible solutions,
and Lagrange’s Reduced Gradient Algorithm is used for moving along the
hypersurface, but in our case only one Lagrange multiplier can be used. By
directly using the Gram-Schmidt algorithm for gradient reduction, in this
manner considerable decrease in the computational efforts became possible.

I have observed that in application areas that contain singularities (e.g.,
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in solving inverse kinematic task of redundant robot arm) this approach
is sensitive to the presence of kinematic singularities as well as the Moore-
Penrose pseudoinverse-based solutions that need the application of comple-
mentary tricks for dealing with near singularity solutions. I have recognized
that the common reason of this sensitivity is that the constraints are exactly
taken into account in both cases.

Related publications to Thesis I:
Related own publications: [A. 1] and [A. 2]

3. Improvement of the Fixed Point Iteration-based
Adaptive Receding Horizon Controller

In this chapter (in the full version of dissertation), I have investigated the
applicability and limitations of using “Adaptive Receding Horizon Controller
(ARHC)” in various engineering applications. Because the Fixed Point Iteration-
based Adaptive Control method is considered in the Thesis, it is expedient to
briefly summarize its essence in the sequel.

Thesis Statement II
I have elaborated further modification of the Receding Horizon Con-

troller. By directly incorporating the dynamic model into the cost func-
tion calculated over a horizon, I have completely eliminated the use of the
constraint term from the formalism. I have shown that by the application
of a transition between the simple Gradient Descent and the fast Newton-
Raphson Algorithms an efficient method can be developed for finding the
local minima. In this manner strong penalization of high forces became pos-
sible, however, the method did not guarantee the evasion of actuator sat-
uration and windup problems in the Fixed Point Iteration-based adaptive
control.

To tackle actuator saturation and windup problems I have elaborated
a complementary method in which a hypothetical heavy device model was
applied in the optimization of the trajectory, and the so obtained optimized
trajectory was adaptively tracked by a realistic not heavy approximate dy-
namic model. The main benefit of this approach is that the optimization’s
mathematical structure can be completely separated from that of the adap-
tive tracking.

Related publications to Thesis II:
Related own publications: [A. 3], [A. 4], [A. 5] and [A. 6].
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4. Investigation of the Cooperation of Noise Filtering
Methods With Fixed Point Iteration-based Adaptive
Techniques

In chapter. 2 (in the full version of dissertation) I briefly mentioned that in
dynamic control problems the presence of observation or sensor noise is a general
problem. The special structure of the Fixed Point Iteration-based approach makes
one expect that the noise issues have enhanced significance in this case. The
success of the “Acceleration Feedback Controllers” (e.g., [74]) that have to cope
with similar problems also confirm the idea that useful investigations can be done
in this direction. Fixed point iteration-based control specific preliminaries as
“ad hoc” ideas were already published in [67, 68, 69, 70]. I already applied -in
previous chapter (in the full version of dissertation)- the traditional low pass filter
technique that was borrowed from [66, 75]. In this chapter (in the full version of
dissertation) I summarize the results of my own novel investigations.

The first part investigates a very drastic noise filtering technique that was
introduced to support the operation of the adaptive control. Its basic idea is
affine approximation of the various derivatives within successive moving win-
dows. This idea was checked in cooperation of a special “continuous variant”
of fixed point transformations. The investigations were made for the modified
van der Pol oscillator that had an additional quadratic drag force term also used
before.

The second part outlines the comparison between Unscented Kalman Filter
(UKF) and two methods based on Fixed Point Operation-based adaptive con-
trollers.

Thesis Statement III
By the use of simulation results I have shown that the FPI-based adaptive

technique can well cooperate with the simple noise filtering techniques as the
cascade of moving windows with affine signal approximation and the simple
low pass filter, that do not apply any assumption on the statistical nature on
the measurement noises. I have also shown that it is difficult to combine this
method with the more traditional UKF that was found less effective. As pos-
sible reason I identified the fact that the mathematical structure of the UKF
cannot be so well fitted to that of the FPI-based adaptive approach.

Related publications to Thesis III:
Related own publications: [A. 7], [A. 8] and [A. 9].
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5. Implementing Fixed Point Iteration-based Adap-
tive Control and Particle Swarm Optimization

In comparison with the classical Lyapunov function-based parameter identification-
based techniques, the advantage of the fixed point iteration-based techniques is
that they do not require the identification of the model parameters. However, for
other purposes, especially in life sciences, certain parameter values have definite
significance and their identification is required independently of solving the con-
trol task. This naturally make the question arise if is it possible to identify the
system’s parameters (or at least certain parameters of the system) while the FPI-
based adaptive controller is in operation. It is well known that the early adaptive
controllers in robotics [76] the dynamic model of the controlled system was so
formulated that an array of the identifiable dynamical system parameters were
separated from an array of kinematically precisely known components, and the
approximate system parameters were slowly tuned by Lyapunov functions-based
constructions. At beginning of the tuning process this method worked with large
trajectory tracking error since it always used an only slowly improved parameter
set for the calculation of the necessary control forces. Later Dineva combined this
learning method with the FPI-based adaptive controller in [77, 78, 79]. The main
idea was that the FPI-based control signal was used for realizing the adaptive
control, but instead of the original PID-type feedback terms used by Slotine and
Li, she utilized the FPI-based terms for parameter tuning. This method resulted
precise tracking from the beginning, and the use of the improved parameters in
the approximate model in the adaptive control was only “optional”. In this re-
search I investigated a similar problem: while the adaptive controller worked
on an FPI basis, for the identification of the system parameters more general,
evolutionary computation-based methods could be used. Utilization of the im-
proved parameters in the adaptive control remained rather a “free option” than a
must, as well as in the case of Dineva’s investigations. For the simulations I have
chosen a strongly nonlinear model with limited number of parameters, and a par-
ticular evolutionary method, the simple and elegant Particle Swarm Optimization
method [26].

The first part investigates the limitations of the applicability of Particle Swarm
Optimization (PSO) with Fixed Point Operation-based adaptive controllers in
case of on-line mode. For this purpose a simple but strongly nonlinear dynamic
model was chosen by the use of which the problems of the parameter identifi-
cation tasks can be well illustrated, expounded, and understood. Especially the
limitation of this method was pointed out when the identified model in certain
steps replaced the originally used initial one (this is the meaning of the term “on-
line mode”).

In the second part I made studies on the off-line combination of Fixed Point
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Iteration-based adaptive controllers with Particle Swarm Optimization (PSO) us-
ing a more complicated, realistic robot model. In this approach the (FPI)-based
adaptive controller is used for tracking a nominal trajectory while the Particle
Swarm Optimization (PSO) used to refine the model, without using the improved
model in the control.

Thesis Statement IV
I have elaborated a cooperation between the Fixed Point Iteration-based

adaptive control and a system parameter identification process using Par-
ticle Swarm Optimization. The method allowed online and offline modes.
In the offline mode the adaptive control and the model identification tasks
were completely decoupled, and the quality of trajectory tracking was in-
dependent of the actual phase of identification, and was precise from the
beginning of the controller’s operation.

I have shown that due to balancing problems in the online case no asymp-
totic convergence of the identified model can be expected. The fact that the
use of the online mode is not compulsory in the novel approach is an advan-
tage over the traditional ones that cannot avoid the application of the not
well identified model from the beginning of the control.

Related publications to Thesis IV:
Related own publications: [A. 10] and [A. 11].

6. Conclusions
In my Dissertation I brought about and investigated the integration of two

subject areas in control technology: the optimal and the adaptive controllers.
After realizing that both subject areas have their traditional mathematical back-
grounds, namely the functional minimization in optimal control, and the use of
Lyapunov functions tailored to the particular problem under considerations in
adaptive control, that makes their integration mathematically very complicated
and difficult, I realized that in a particular slot this integration is not difficult. It
was the fixed point iteration-based adaptive control approach. I have shown that
its simple mathematical structure offers plausible possibilities for combination
and integration with the heuristic optimal controllers in which a great variety of
cost functions and constraints can be applied. To utilize the so created freedom
I have evaded the traditional optimization approach in which the dynamic model
is used as a set of constraint equations. I reduced the number of constraint equa-
tions to one, and later completely evaded the use of constraint terms by building
the dynamic model into the cost function at the price of little redundancies in
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the computations. I have shown that these variants were able to cooperate with
the adaptive technique I have applied, while allowed simplifications in finding
sub-optimal solutions in the case of various complicated cost terms in Reced-
ing Horizon controllers. Besides control issues I suggested the application of
this method in the solution of differential inverse kinematic task of redundant
robot arms to efficiently tame the solution in the vicinity of kinematic singular-
ities. Since the adaptive method applied was expected to be noise sensitive, I
suggested its combination with various simple noise filtering techniques. I also
improved the adaptive method that originally suffered from some deficiency re-
lated to actuator saturation issues.

Finally, I have elaborated the combination and elaboration of the adaptive
control applied with parameter estimation task that have significance indepen-
dently of the need of precise control. I have realized that by the use of the fixed
point iteration-based approach the control and identification tasks can be option-
ally separated from each other, and arrived at the conclusion that due to balancing
problems the precision of the estimation has limitations, and in general, it is ex-
pedient to use the improved model with some adaptive technique. I have shown
that if the adaptation has to make only small corrections, its stability range in-
creases and becomes much more reliable than the original approach using a very
rough initial dynamic system model.

Own Publications

Publications Strictly Related to the Dissertation
[A. 1] H. Issa and J. K. Tar, “Speeding up the reduced gradient method for con-

strained optimization,” in 2021 IEEE 19th World Symposium on Applied Machine
Intelligence and Informatics (SAMI). IEEE, 2021, pp. 485–490.

[A. 2] H. Issa, B. Varga, and J. K. Tar, “A receding horizon-type solution of
the inverse kinematic task of redundant robots,” in 2021 IEEE 15th International
Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE,
2021, pp. 231–236.

[A. 3] H. Issa and J. K. Tar, “Tackling actuator saturation in fixed point iteration-
based adaptive control,” in 2020 IEEE 14th International Symposium on Applied
Computational Intelligence and Informatics (SACI). IEEE, 2020, pp. 221–226.

[A. 4] H. Issa, B. Varga, and J. K. Tar, “Accelerated reduced gradient algorithm
for solving the inverse kinematic task of redundant open kinematic chains,” in
2021 IEEE 15th International Symposium on Applied Computational Intelligence
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and Informatics (SACI). IEEE, 2021, pp. 387–392.

[A. 5] H. Issa, H. Khan, and J. K. Tar, “Suboptimal adaptive receding horizon
control using simplified nonlinear programming,” in 2021 IEEE 25th Interna-
tional Conference on Intelligent Engineering Systems (INES). IEEE, 2021, pp.
221–228.
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supported by adaptive feedback,” Electronics, vol. 11, no. 8, p. 1243, 2022.
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