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Ssummary

A doktori kutatas célja olyan innovativ, nem-invaziv agy-szamit6gép interfész (BCI) rendszerek
fejlesztése, amelyek EEG jeleken alapulva képesek kiilonféle robotikus aktuatorok - példaul
robotkarok és mobil robotok - pontos és hatékony vezérlésére. A kutatas két {6 iranyvonalat
kovetett:

(1) a mentalis parancsok megbizhat6 felismerése gépi tanulasi modszerekkel.

(2) ezek parancsokka torténd atalakitasa kiilonféle robotikus eszk6zok iranyitasahoz.

Az els6 célkitlizés a gépitanulasi algoritmusok (SVM, neuralis halézatok és ANFIS) alkalmazasa
volt a hulldmtranszformaciéval torténé jellemzdkinyerés mellett, az EEG jelek osztalyozasanak
pontossaganak novelése érdekében. A mddszerek atlagosan 93%-os osztalyozasi pontossagot
eredményeztek, ami megalapozza a BCI rendszerek megbizhaté miikodését valés kérnyezetben.

A masodik célkitizés a BCI rendszerek aktuatorvezérlési alkalmazasainak kidolgozasa volt.
Harom kiilonall6 rendszer kertilt megtervezésre és megvaldsitasra:
1- HITI Brain alapu rendszer - 6 szabadsagfoku (DOF) robotkar vezérlése:
A rendszer képes volt 12 kiilonb6z6 mentalis parancs alapjan vezérelni egy 6 DOF robotkart,
amely az emberi kar természetes mozgasait képes utdnozni. Ez a megoldas magas foku
intuitivitast és pontossagot biztositott.
2- Node-RED alapu rendszer - innovativ vezérlés magas DOF esetén:
Egy Uj eljarast dolgoztam ki, amellyel egy nagy szabadsagfoku robotkart lehet vezérelni
mindossze 4 agyi jel alapjan. Ez a modszer csokkenti a felhasznalé mentalis terhelését, és
hatékonyabba és kényelmesebbé teszi a robotvezérlést.
3- Node-RED alapt rendszer - kerekes robot vezérlése:
Ez a rendszer lehet6vé teszi mobil robotok (pl. intelligens kerekesszékek, kerékparok,
jarmivek) iranyitasat EEG jelek segitségével, igy uj tavlatokat nyit a mozgaskorlatozottak
segitésében és a jovo intelligens kozlekedési eszkozeiben.
A kutatds tudomanyos és gyakorlati jelent6sége kiemelkedd, kiilondsen az asszisztiv
technologiak és az ember-gép interakcid teriiletén. A nem-invaziv megkozelités biztonsagosabb,
etikusabb és hozzaférhet6bb alternativat nyujt az invaziv rendszerekkel szemben. A jovébeli
fejlesztési iranyok kozott szerepel a szabadsagfokok tovabbi novelése, multimodalis vezérlési
megoldasok (pl. hang, szemmozgas) integralasa, valamint a felhasznaléhoz alkalmazkodo,
tanul6 rendszerek létrehozasa.



1. Antecedents of the Research

The origins of this study on Brain-Computer Interface (BCI) systems for robotics control via EEG
signals are founded in the increased need for assistive technology, especially for those with
physical limitations. BCIs have historically progressed from invasive to non-invasive techniques,
with non-invasive EEG-based systems gaining popularity owing to their safety, accessibility, and
ethical benefits. Previous research has investigated EEG signal categorization utilizing machine
learning methods, such as Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and supervised
learning approaches, to enhance the accuracy of translating brain signals into robotic
instructions. However, there are still gaps in attaining intuitive control of high-degree-of-
freedom (DOF) robotic systems while requiring low cognitive strain. This study expands on
these foundations by suggesting novel approaches to improve EEG signal analysis, such as
wavelet transformations for feature extraction and ANFIS for classification. Furthermore, it
solves the difficulty of commanding complicated robotic arms and mobile robots with fewer
mental instructions, increasing usability and efficiency. The work is further supported by its
emphasis on real-world applications, such as assistive robots, where non-invasive BCIs have
practical and ethical advantages over invasive alternatives. By incorporating these advances,
the study adds to the overarching objective of making BCI technology more accessible, accurate,
and user-friendly for those with mobility disabilities.



2. Objective

This work's aim is divided into two parts:
1- Use machine Learning algorithms to enhance the classification accuracy of EEG signals.
2- Design a BCI System to control Different actuator using Braiin Signals.
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3. Research Methods and Challenges
1- The process of classifying EEG signals starts with artifact reduction, which eliminates
noise generated by physiological interferences such as eye blinks, muscle movements

(itchiness), and external disruptions. The cleaned signals are next preprocessed, which

involves computing statistical characteristics like as mean, variance, skewness, and

kurtosis to define signal qualities. Wavelet Transform (WT) decomposition is then used
to divide the EEG signals into frequency sub-bands, isolating important components such
as the beta band (13-30 Hz), which is critical for motor imagery identification. Following
that, feature extraction detects discriminative patterns in the decomposed signals,
improving the separability of various mental states. Finally, the collected characteristics
are input into a classification algorithm (e.g.,, SVM, ANN, or ANFIS) that divides EEG
signals into discrete groups, allowing for reliable interpretation of brain activity in
applications such as BCI-controlled robots. This organized technique guarantees that the
EEG signal analysis is robust and noise resistant.
2- Three different BCI systems were built for the control of the robotic actuators:

- The first system was built using the HITI brain software. It is GUI software that used
as a medium to enable communication between the BCI device and the Robotic arm.
With this method the control of the robotic arm was executed using 12 different types
of signals from the brain, based on mental commands and facial expressions 9 each
joint require two type of signals to rotate it in both directions).

- The first system problem was the large number of brain signals needed to be created,
which leads to a high training required for the patient. The solution for it is with the
design of the second system. In this system the Node-RED software was used for
communication instead of HITI-Brain. With the new system the control of the robotic
arm was executed only with four different type of brain signals, two to control the
rotation of each joint and two for the transition between joints.

- The success of using the Node-RED software opened a new idea to design a new
system to control wheeled robots. The node-red is a GUI -IoT software. With this
feature we an control the Wheeled robots from two different places in the world using
Brain signals.



4. New Scientific Results

The following theses encapsulate the essence and significance of my scientific research
conducted during my Ph.D. studies:

Thesis No. 1

I have demonstrated the practicality, safety, and applicability of non-invasive BClIs in real-world
robotic applications, with a particular emphasis on assistive technologies for the disabled users.
(Chapter 7/7.1 [4],[5], [6])

Discussion

1.

The following important elements are emphasized in my statement:

Real-World Applications: Non-invasive BCIs are more practicable and easier to use,
making them more suitable for deployment in practical, everyday contexts. This is
consistent with the requirements of incapacitated users, who need systems that are both
user-friendly and dependable.

Safety Benefits: Non-invasive BCIs mitigate the health risks and complications that are
linked to invasive and semi-invasive technologies, such as long-term maintenance,
infection risks, and surgical procedures. This renders them a more acceptable and secure
option for a broad user base, particularly for assistive purposes.

Emphasize Disabled Users: The objective is to establish systems that prioritize safety,
comfort, and simplicity of adoption for individuals with disabilities. These criteria are
more effectively met by non-invasive BCIs than by their invasive counterparts.

Adoption and Accessibility: Non-invasive BCIs are more likely to be widely adopted due
to the fact that they do not necessitate specialized expertise for setup and maintenance or
complex medical procedures. This renders them more suitable for mass-market assistive
devices.

I reaffirm the thesis that non-invasive BClIs are not only technologically viable but also
ethically and socially preferable options for assistive robotic systems

Thesis No. 2

I have proven the effectiveness of combining advanced feature extraction techniques with
robust classification methods in EEG data analysis, specifically for applications in BCI-
controlled robotic systems (Chapter 7/ 7.1 [1], [3]).

Discussion:

The following is illustrated by my statement:



Wavelet Transforms for Feature Extraction: I have demonstrated that wavelet transforms
are highly effective in the extraction of meaningful and relevant features from EEG
signals. This is of particular significance due to the fact that EEG data are frequently
complex and chaotic, necessitating sophisticated preprocessing methods to enhance the
signal-to-noise ratio and emphasize patterns during classification.

ANFIS for Classification: I demonstrated that the accuracy of EEG data analysis is
considerably improved by employing the Adaptive Neuro-Fuzzy Inference System
(ANFIS) as a classification method. This implies that ANFIS is an exceptional candidate
for the classification of mental commands from EEG signals, as it is well-suited for the
interpretation of nonlinear and equivocal data.

Supervised Machine Learning Applicability: The fact that supervised machine learning
algorithms can similarly improve classification accuracy demonstrates that a variety of
advanced methods, in addition to ANFIS, can be effectively employed for the
classification of EEG signals. This broadens the scope of my findings, demonstrating that
the results are not constrained to a single approach but rather to a general framework that
integrates sophisticated classifiers and feature extraction.

Improved Accuracy: Your research demonstrates that the integration of sophisticated
preprocessing (wavelet transformations) with potent classifiers (e.g., ANFIS or supervised
machine learning algorithms like SVM and neural networks) leads to a substantial increase
in classification accuracy. This enhancement is essential for real-world applications that
require precision and reliability in the interpretation of EEG signals.

Thesis No. 3:

I have demonstrated the practicality and efficacy of employing Brain-Computer Interfaces
(BClIs) to attain intuitive and precise control of intricate robotic systems, specifically a six-
degrees-of-freedom (DOF) robotic arm (Chapter 7/7.1 [2], [8].

Discussion:
The following important elements are emphasized in the statement:

1.

Human Arm Movement Replication: Your demonstration of the ability of BCIs to
reconcile the divide between human intention and robotic execution was achieved
through the use of a 6-DOF robotic arm that closely resembles human arm movements.
This results in a more intuitive and natural control of the robotic limb for the user.

Intuitive Control: The capacity to operate a robotic arm through mental commands
enables users to operate it without the need for extensive physical interfaces or manual



inputs. The interaction is simplified, and cognitive and physical distress are reduced,
which is particularly beneficial for users with disabilities.

3. Robotic Control Precision: The robotic arm's high degree of accuracy demonstrates that
BCls are capable of translating mental commands into precise, fine-grained movements.
This is essential for applications that necessitate delicate or coordinated duties, such as
industrial automation, prosthetics, or assistive devices.

4. Developing BCI Applications: Your research underscores the potential of BCIs to evolve
from basic robotic duties to more complex systems with greater degrees of freedom. You
contribute to the body of evidence that supports the scalability and versatility of BCIs in
robotics by demonstrating successful control of a 6 DOF robotic arm.

5. Practical Significance: The emphasis on intuitive and precision control demonstrates the
practical applicability of this technology in real-world scenarios, particularly in assistive
technologies for individuals with motor impairments or in environments that necessitate
seamless human-robot interaction.

Thesis No. 4:

By using a simple approach, I demonstrated a new method to control a higher degree of freedom
robotic arm with only four commands. Instead of assigning two mental commands to every joint
in the robotic arm which leads (which leads to the fact that the higher DOF the more double
Number mental commands required) only four mental commands used. With this method
(Chapter 7/ 7.1 [7]).

Discussions:
I demonstrated that:
1- Complex tasks can be managed by fewer mental commands.
2- This method could be applicable for different fields, like assistive devices.
3- The reduction in cognitive loads highlights the potential for reducing mental fatigue.

Thesis No. 5:

I endorsed a statement emphasizing the prospective advantages of using Brain-Computer
Interface (BCI) technology for the control of mobile robots. The assertion indicates that BCI
may improve the efficiency and efficacy of robotic control by enabling direct brain inputs that
control robot motions and commands. This integration may enhance accessibility and
engagement with robots, particularly for those with physical disabilities (Chapter 7/7.1 [7]).



5. The Possibility to utilize the results:

The findings of this brain-controlled robotic system have major practical implications,
particularly in the domains of assistive technology and human-robot interaction. The system
can be adapted to assist individuals with motor impairments by allowing them to control a
robotic arm using only non-invasive EEG signals and minimal mental commands. This allows
them to perform essential tasks such as object manipulation, mobility assistance, or
prosthetic control. Furthermore, the modular and scalable design, which employs platforms
such as HITI Brain, Node-RED, and Arduino, facilitates integration into a variety of robotic
systems, including wheelchairs, smart home devices, and industrial manipulators.
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