
Óbuda University

PhD Thesis

New Deep Neural Network Applications
in Robot Control and System Supervision

Mély Neurális Hálózatok Új Alkalmazásai
a Robotirányítás és a Rendszer-felügyelet Terén

Artúr István Károly

Supervisor: Dr. Péter Galambos

Doctoral School of Applied Informatics
and Applied Mathematics

Budapest, 2023

1

ABSTRACT
Various fields, such as image and natural language processing and speech

and image synthesis, among others, have seen great success with deep learn-
ing approaches. As a result, more and more scientific fields are adopting and
leveraging these successful methods. Robotics is no exception, and it is cur-
rently experiencing a surge of new technologies and innovations inspired by
deep learning results. However, the requirements of robotics solutions are
unique, and addressing the drawbacks of deep learning approaches, such as
the need for a large training dataset, time-consuming training and data prepa-
ration, high computational complexity, and limited generalization power, are
necessary.

The focus of this dissertation is to provide solutions for some of these
challenges. This is first done by investigating the potential of unsupervised
learning technologies in detecting anomalies and identifying states in robotic
systems in an online fashion. The dissertation also delves into transfer learn-
ing approaches and proposes a technique that integrates non-RGB data modal-
ities (such as optical flow) into a transfer learning pipeline, utilizing RGB pre-
trained feature extractors. Furthermore, the dissertation explores automated
dataset generation and annotation techniques and presents two methods: one
for automatically annotating real-life visual data for robotic manipulation and
the other for generating synthetic image datasets and automatically annotating
them for object segmentation tasks in robotic manipulation.

2

KIVONAT
Számos tudományterület, köztük a képfeldolgozás, a természetes (embe-

ri) nyelvek feldolgozása, kép és beszéd szintézis stb., jelentős fellendülést ért
el a mély tanulás új eredményeinek köszönhetően. Következésképpen, egy-
re több tudományterület adaptálja és aknázza ki ezeknek az új eljárásoknak az
előnyeit. Ez alól a robotika sem kivétel, ami jelenleg újszerű és innovatív meg-
oldások áradatát élvezi, melyeket a mély tanulási eljárások inspiráltak/tettek
lehetővé. Azonban, a robotikában a megoldások speciális kihívások elé van-
nak állítva, amik megkövetelik a mély tanulási módszerek hátrányainak (nagy
mennyiségű tanító adathalmaz szükségessége, időigényes tanítási és adat elő-
készítési folyamat, nagy számítási kapacitás, korlátozott általánosítóképesség
stb.) kiküszöbölését.

Ez a disszertáció ezen kihívások megoldására fókuszál. Az első téziscso-
port a felügyelet nélküli tanítási módszerek lehetőségeit vizsgálja, az online
állapotfelismerés és anomália detekció terén, a robotikában. A második tézis-
csoport a transfer learning témakörrel foglalkozik, és egy olyan eljárást mutat
be, ami lehetővé teszi az RGB képeken előtanított neurális hálózatok haszná-
latát olyan transfer learning feladatokban, ahol a bemenő adatok nem feltétle-
nül RGB modalitásúak. A harmadik téziscsoport az automatikus adathalmaz
generálás és annotáció módszereit vizsgálja. Itt két eljárás kerül bevezetésre,
az egyik valós képi adathalmazok automatikus annotációjával foglalkozik, a
robotkarral történő manipuláció kontextusában, a másik ugyanebben a kon-
textusban, szintetikus képi adathalmazok generálását és azok automatikus an-
notációját teszi lehetővé.

3

DECLARATION
Undersigned, Artúr István Károly, hereby I state that this Ph.D. thesis is my own work,
wherein I only used the sources listed in the references. All parts taken from other works,
either as word-for-word citations or rewritten, keeping the original meaning, have been
unambiguously marked, and a reference to the source was included.

NYILATKOZAT
Alulírott Károly István Artúr kijelentem, hogy ezt a doktori értekezést önállóan készítet-
tem, és abban csak az irodalmi hivatkozások listájában szereplő forrásokat használtam fel.
Minden olyan részt, amelyet szó szerint, vagy azonos tartalomban, de átfogalmazva más
forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Budapest, November 22, 2023

..

Artúr István Károly

Contents

1 Preliminaries 13
1.1 Historical background . 13
1.2 Unsupervised learning . 14

1.2.1 Support vector machines . 16
1.3 Transfer learning for Deep learning . 17

1.3.1 Pre-trained models . 18
1.3.2 Sim-to-real . 18
1.3.3 Domain-invariant features . 19
1.3.4 Imitation and demonstration-based learning 19
1.3.5 Pre-trained models and modularity for perception 20
1.3.6 Multimodal data and unsupervised pre-training for perception . . 21

1.4 Synthetic data . 22
1.4.1 Photorealistic synthetic data . 22
1.4.2 Domain randomization . 23

2 State and anomaly detection based on real-time clustering 25
2.1 Motivation . 25
2.2 OCSVMs for clustering in data streams 26

2.2.1 Formalisms . 27
2.2.2 Clustering algorithm . 29
2.2.3 Discovering hierarchies . 31
2.2.4 The effects of using sliding window sampling 35
2.2.5 Experimental results . 41

2.3 OCSVMs for evaluating generative models 44
2.3.1 Evaluation of Generative Adversarial Networks 45
2.3.2 Methodology . 46
2.3.3 GAN evaluation experiments . 47
2.3.4 Results . 49

2.4 New scientific results . 54

3 Cross-modal mapping-based transfer learning 55
3.1 Optical-flow input for models pre-trained on RGB data 56

3.1.1 Motivation and related approaches 56
3.1.2 Methodology . 57
3.1.3 Encoding optical flow and grayscale image as RGB data 58
3.1.4 OSFNet network architecture 63

CONTENTS 5

3.1.5 Experimental results . 64
3.2 Compound loss for mitigating class imbalance 72

3.2.1 Motivation . 72
3.2.2 Loss formulation . 73

3.3 New scientific results . 76

4 Automatic large-scale visual dataset generation 77
4.1 Creating real-life segmentation datasets 78

4.1.1 Motivation . 78
4.1.2 Annotation procedure . 79
4.1.3 Experimental results . 84

4.2 Synthetic dataset preparation . 87
4.2.1 Motivation . 87
4.2.2 OE and SynLORIS synthetic scenes and FTRG method 89
4.2.3 Fine-tuning GQCNNs with task-specific synthetic data 98

4.3 New scientific results . 107

5 Summary 108
5.1 Future Work . 110

REFERENCES 112

PUBLICATIONS RELATED TO THE THESIS 129

OTHER PUBLICATIONS 131

Acknowledgment

I would like to express my sincere gratitude to my supervisor, Dr. Péter Galambos, for his
guidance, encouragement, and invaluable feedback throughout the course of this research.
His extensive knowledge and expertise have been a constant source of inspiration for me.

I would also like to extend my heartfelt thanks to my colleagues in ABC-iRob, for their
support, encouragement, and assistance throughout my research project. Their valuable
contributions have helped me in many ways to complete this work.

In addition, I would like to acknowledge the support of my family, who have always
stood by me and provided me with the motivation and strength to pursue my goals.

Thank you all for your invaluable contributions and support throughout this research
project.

Structure of the Thesis
The Thesis is divided into five parts. Part 1. provides an overview of the historical back-
ground, motivations, and necessary preliminary knowledge required for the thesis work.
Parts 2. through 4. present the new scientific results, each comprising two major sections
that focus on different, related scientific achievements. The sections follow a similar struc-
ture, beginning with an explanation of the theoretical background, problem formulation,
and proposed approach, followed by a description of the experimental setup and method-
ology and the results and evaluation. The thesis statements summarizing the new scientific
results are presented at the end of each part.

Part 2. introduces an online clustering algorithm for automatic state discovery and
anomaly detection in robotic applications using One-Class Support Vector Machines
(OCSVMs). The first major section describes the algorithm in detail and evaluates its per-
formance on a real-life robot setup. The second major section shows how the approach
can also be used for the evaluation of generative deep learning models. Part 3. presents a
method called cross-modal mapping, which enables the use of non-RGB data modalities
(such as optical flow) with feature extractors pre-trained on RGB data in a transfer learn-
ing scenario. The first major section demonstrates how this method can train deep learning
models with transfer learning, using RGB pre-trained feature extractors and optical flow
data as input. The second section describes a loss function and training strategy proposed
to address class imbalance during experiments. Part 4. outlines two automated dataset gen-
eration and annotation pipelines. The first method describes an approach for automatically
collecting and annotating real-life visual object segmentation datasets for robotic manip-
ulation, and the second section presents a method for generating and annotating synthetic
visual object segmentation datasets for robotic manipulation. Finally, Part 5. summarizes
the contributions of the Thesis and outlines potential future research directions.

Notations and Symbols

TABLE 1
COMMON ABBREVIATIONS AND NOTATIONS

ABC-iRob Antal Bejczy Center for Intelligent Robotics
AGV Automated Guided Vehicle

AI Artificial Intelligence
API Application Programming Interface
BAT Blender Annotation Tool

BWT Backward Transfer
CNN Convolutional Neural Network

COCO Common Objects in Context dataset
DAVIS Densely Annotated Video Segmentation dataset

Dex-Net Dexterity Network
DL Deep Learning

DOF Degrees of Freedom
FOV Field of View
FPS Frames Per Second

FTRG Filling the Reality Gap
FWT Forward Transfer
GAN Generative Adversarial Networks

GQCNN Grasp Quality Convolutional Neural Network
GUI Graphical User Interface

HDRI High Dynamic Range Image
HRI Human-Robot Interaction
IoU Intersection over Union

KITTI Karlsruhe Institute of Technology and Toyota Technological Institute dataset
mAP mean Average Precision

ML Machine Learning
MNIST Modified National Institute of Standards and Technology dataset

MTC Moveit! Task Constructor framework
OCSVM One-Class Support Vector Machine
OFSNet Optical Flow Segmentation Network

PASCAL VOC PASCAL Visual Object Classes dataset
PNG Portable Network Graphic
RBF Radial Basis Function

R-CNN Region-based Convolutional Neural Network
ReLU Rectified Linear Unit
RGB Red, Green, Blue

RoI Region of Interest
ROS Robot Operating System
RPN Region Proposal Network
STL Standard Triangle Language
SVC Support Vector Clustering
SVM Support Vector Machine
TCP Tool Center Point

U-Net A fully convolutional neural network called U-Net
uNLC unsupervised Non-Local Consensus voting method
VGG A deep convolutional neural network model by the Visual Geometry Group at Oxford University

YOLO A deep convolutional neural network model named You Only Look Once

List of Figures

1.1 Robotics challenges for DL . 15

2.1 Using varying sliding window sizes for input stream sampling to train a
linear OCSVM for a non-linear problem 36

2.2 Qualitative evaluation of the proposed clustering approach, using class la-
bels from three different datasets. The clusters/group of clusters selected
by the hierarchy-building strategy were associated with certain class IDs.
A prediction of -1 means that none of the selected OCSVMs/groups rec-
ognized the sample . 37

2.3 Number of samples for the training set (n) for different values of w with a
fixed sampling rate (f) and expected event length (T) 39

2.4 Increase in training/inference times when using overlapping windows. (N :=
NOCSVM) . 40

2.5 The experimental robot application . 42
2.6 Development of the number of OCSVMs in the ensemble during the first

cycle of the robot operation. A state ID of -1 means an unrecognized
state (none of the OCSVMs recognized the sample). In those cases, a new
OCSVM was trained and added to the ensemble. If multiple OCSVMs
activated, the one with the lowest ID was used 43

2.7 Results of the clustering in inference mode 43
2.8 Test model architecture (a) Generator architecture (b) Discriminator archi-

tecture . 48
2.9 Outliers from the MNIST dataset . 50
2.10 Generated images of some models . 51
2.11 Generated samples from the IC-GAN-ImageNet, IC-GAN-ImageNet-halfcap

and IC-GAN-COCO models . 52

3.1 Image representation of non-RGB modalities. a: RGB image and cor-
responding depth data as a grayscale image, b: RGB image and corre-
sponding surface normals as RGB image, c: Consecutive RGB frames
and corresponding optical flow as RGB image (using the 2D polar color
map method) . 59

LIST OF FIGURES 10

3.2 Inputs formed from optical flow and a grayscale frame a: Left column:
DAVIS 2016 validation set camel sequence frames, Right column: The
corresponding cross-modal mapped inputs. b: Left column: Frames from
a video in our own dataset, Right column: The cross-modal mapped inputs
corresponding to the provided frames. 61

3.3 Effect of moving object and camera on the cross-modal mapped inputs
(only movements along the horizontal image direction are represented) . . 63

3.4 System architecture for data collection using the industrial AGV system
prototype . 65

3.5 Ground-truth segmentation masks generated by the uNLC method for the
FieldData set . 66

3.6 Testing AGV setup. a: Robot platform, camera and test environment, b:
Camera fixture . 67

3.7 Comparison of cross-modal mapped inputs using the Farenback and PWC-
Net methods for optical flow computation. Top row: cross-modal mapped
inputs using the Farenback optical flow computation method. Bottom row:
cross-modal mapped inputs using PWC-Net for optical flow computation 68

3.8 Qualitative evaluation of uNLC, U-Net-F, U-Net-PWC and U-Net++PWC
predictions. Rows from top to bottom: RGB frames, ground truth seg-
mentation masks, uNLC predictions, U-Net-F predictions, U-Net-PWC
predictions, U-Net++PWC predictions 70

3.9 Results of OFSNet on our fine-tuning dataset compared to the uNLC method
that was used for the automatic labeling. The left columns depict the
frames of the video sequence, the images in the second columns are the
corresponding cross-modal mapped inputs, the third columns are the uNLC
results, and the fourth columns are the predicted segmentations from OF-
SNet. a: The uNLC method produces finer segmentation maps, and both
methods fail to capture multiple moving objects (third row). b: Some-
times, uNLC fails to segment the whole object, but OFSNet does it suc-
cessfully. c: OFSNet can compensate for the motion of the camera; if
there is no moving object on the scene, the prediction is a map of zeros. d:
The uNLC method can better segment smaller objects, but OFSNet fails
to do so. 71

3.10 Comparison of Cross-Entropy (CE), Soft Dice (SD) and Compound losses 73
3.11 Comparison of Cross-Entropy, Soft-Dice and Compound losses 74
3.12 Training strategy: weighting parameter (α) development over the training

process . 75

4.1 Filtering of triangles; a: 3D surface model of a simple object with surface
normals of the mesh triangles, b: cross-section view of the scene with the
camera and the object, c: the triangles on the dotted face are not projected,
d: all other faces might be visible depending on the location of the object
in the camera’s Field of View (FOV) . 83

4.2 Real data annotation setup . 84
4.3 Robot path for data collection . 85

LIST OF FIGURES 11

4.4 Initial annotations, the automatic segmentation accuracy degrades around
the edges of the images . 86

4.5 Annotations (created by using the corrected cTTCP and K matrices) over-
layed on an image . 87

4.6 Examples of automatically annotated real images 88
4.7 Example rendered frames from the OE synthetic dataset 91
4.8 Synthetic images rendered from the SynLORIS scene 92
4.9 Example BAT annotations for the OE synthetic dataset 93
4.10 Samples from our FTRG dataset; a: Seamless transition from real to syn-

thetic textures on a selected subset of objects, b: Random texture for a
selected subset of objects of interest with real background and clutter, c:
Real objects in a synthetic scene with synthetic clutter 94

4.11 Train-test accuracy matrices of image classification models, using expe-
rience replay and data from the OpenLORIS Object and the SynLORIS
datasets, as evaluated by the OpenLORIS Object benchmark on all four
factors. (brighter color means greater accuracy) 96

4.12 Synthetic data generation and GQCNN training pipeline 100
4.13 Proximity-based classification of pick grasps visualized inside Blender:

(a) pick grasps, (b) place grasps, (c) valid grasps out of all the pick grasps,
(c) invalid grasps out of all the pick grasps 101

4.14 Flowchart of the automated synthetic grasp dataset generation procedure . 104
4.15 Experimental setup used for evaluation: (a) Scene setup with the robot, ob-

ject camera, and table, (b) Planned grasps which do not result in collisions
are evaluated as successful, (c) Grasps that result in collisions between the
robot and the table are evaluated as unsuccessful 104

List of Tables

1 Common abbreviations and notations . 8

2.1 Results of the proposed clustering algorithm compared to baseline classi-
fication models. Values represent accuracy as reported by [1, 2, 3] 37

2.2 Average probability of generating non-outlier samples for dif-
ferent GAN models . 50

2.3 Comparison of evaluation metrics (IS, FID, and our proposed method us-
ing ν = 0.5, ν = 0.6, and ν = 0.7) on different IC-GAN models. An
upward arrow next to the score name means higher values are better, and
a downward arrow means lower values are better. 53

3.1 The structure of the OFSNet model, including the Inception v3 feature
extractor from #1 to #12. The network structure from #13 to #18 is our
contribution, and only the parameters of this part were modified during the
training process. 64

3.2 Evaluation of our model (OFSNet), U-Net variants trained with cross-
modal mapped inputs and other state-of-the-art methods on the DAVIS
2016 bechmark . 69

3.3 Evaluation of the OFSNet and uNLC models on our manually labeled test
set . 70

4.1 Composition of the OE synthetic dataset 90
4.2 Train-test accuracy matrix R from [4]; Tr represents training data, Te

represents testing data, Ri,j is the accuracy of the model trained on Tri
and evaluated on Tej , N is the number of tasks 95

4.3 Quantitative results from our continual learning experiments. Values per
cell from top to bottom: accuracy, BWT, FWT, overall accuracy (as de-
scribed in [4])) . 96

4.4 Performance of models (mAP @ IoU≥ 0.5) evaluated on five randomly
selected subsets of our testing set . 97

4.5 Evaluation of our fine-tuned GQCNN against the Dex-Net 2.0 pre-trained
GQCNN for depth images generated from a camera with the same extrin-
sic parameters as in the training setup. 105

4.6 Evaluation of our fine-tuned GQCNN against the Dex-Net 2.0 pre-trained
GQCNN for depth images generated from a camera with the different ex-
trinsic parameters from the training setup. 106

Part 1

PRELIMINARIES

1.1 Historical background
Computers can easily solve formal problems that are challenging for humans. However,
with the increasing demand for adaptive systems, there is a need to tackle tasks that are
hard to formulate but can be easily handled by humans, such as the recognition and ma-
nipulation of objects. These tasks require a complex understanding of the environment.
The automatic extraction of this required knowledge is called Machine Learning (ML).
The way the data is presented to the ML system (feature representation) heavily influ-
ences how well the extracted knowledge represents the given problem. Deep Learning
(DL) refers to ML approaches that extract features from raw data using multiple hierarchi-
cal trainable artificial neural network layers [5, 6]. Consequently, DL techniques have the
ability to develop feature representations that are most suitable for specific tasks.

The theoretical foundation of DL had been established long before it gained widespread
recognition, thanks in part to the winning entry in the ImageNet Challenge 2012 (LSVRC-
2012) [7]. Krizhevsky, Sutskever, and Hinton introduced a deep convolutional neural net-
work, now known as AlexNet, which surpassed previous state-of-the-art methods and out-
performed other competitors, achieving a top-5 test error rate of 15.3%, more than 10
percentage points better than the second-best entry. Following this success, DL has been
widely adopted for a variety of use cases, including speech recognition [8, 9, 10], image
processing [11, 12, 13, 14], natural language processing [15, 16, 17], sentiment analysis
and recommendation systems [18, 19], among others. Numerous major companies such as
Google, Facebook, Amazon, and IBM have also established their own DL research teams.

The fields of machine learning and AI are gradually making their presence felt across
a wide range of industries, subtly impacting our daily lives as well as professional ser-
vices and military applications. The manufacturing industry, in particular, stands to bene-
fit significantly from these advancements, with numerous research projects exploring the
potential of Industry 4.0 concepts with great fervor.

DL has introduced innovative advancements in various aspects of robotics throughout
its development. A general overview of the DL methods frequently used in robotics can
be found in [20], while other surveys provide a more focused review of the most notable
results, such as robot control through reinforcement learning [21, 22], robotic manipula-
tion and grasping [22, 23], mobile robot navigation [23], and transfer learning for robotics
[23, 24]. Despite the fact that DL-based solutions can be applied to a diverse range of

PART 1. PRELIMINARIES 14

problems, they have the disadvantages of unpredictability and high computational com-
plexity. In safety-critical systems, like self-driving cars and industrial robots, DL methods
are never used on their own, and their output is always treated with uncertainty. As a
result, these DL methods are tested against adversarial attacks and on benchmarks that
assess their robustness. Due to the high computational complexity and time-consuming
training process of DL systems, alternative model architectures, and corresponding train-
ing strategies have been introduced. For example, Pao et al. proposed the Random Vec-
tor Functional Link Neural Networks (RVFLNN) [25, 26], which utilize a novel training
strategy for a shallow network architecture to avoid the time-consuming training process
typical of DL systems. Building on the RVFLNN method, Chen et al. introduced Broad
Learning Systems, which offer an incremental training strategy for the rapid adaptation
and retraining of such models [27, 28]. New approaches in the field of DL have been pro-
posed to address these issues, often taking advantage of the modular nature of DL models
through an appropriate model structure and/or training strategy [29]. In addition to the
training process, data collection and preparation for DL require a significant amount of re-
sources, especially if done manually. This issue is particularly relevant in robotics, where
data collection often involves performing actions on an actual robot. Such data collection
can take months of robot hours and requires multiple robots, resulting in significant costs
[30]. To minimize the amount of labeled data required for training, new DL approaches are
utilizing unsupervised/semi-supervised methods and transfer learning [31, 32, 33]. More-
over, some approaches aim to reduce resource requirements by conducting data collection
primarily in simulation instead of reality [34, 35].

The role of DL-based approaches in robotics research can be better understood by
considering the major challenges in robotics and the corresponding DL solutions. Figure
1.1. provides a structured overview of these challenges, organizing the landscape into three
main categories: perception, motion, and knowledge adaptation.

This work focuses primarily on perception-level difficulties, including object detec-
tion, segmentation, and other related tasks essential for robotic manipulation and mobile
robot navigation. While previous studies have indicated that DL methods can provide
promising results, they also demonstrate significant limitations, such as high computa-
tional complexity and the requirement of extensive training data. Given the importance
of resource efficiency in robotics, it becomes crucial to search for improved DL-based
solutions that can overcome these challenges. To address these issues, this dissertation
explores unsupervised learning techniques, transfer learning, and automated dataset gen-
eration methodologies.

1.2 Unsupervised learning
Unsupervised learning techniques play a critical role in many deep learning approaches
due to the high data demands of training complex models with numerous parameters.
Fully supervised training requires a large number of labeled examples, which is a time-
consuming and resource-intensive process to prepare. Therefore, researchers seek learning
approaches that require fewer or no labeled examples [36]. Unsupervised learning can ex-
tract valuable information about data structure and hierarchies using only the data samples
without requiring ground truth labels. The extracted knowledge representation can serve

PART 1. PRELIMINARIES 15

Fig. 1.1. Robotics challenges for DL

as a foundation for DL models that will require fewer labeled examples, as they already
have a good understanding of the data’s underlying nature and only need fine-tuning for
specific tasks, or it can be used for clustering and anomaly detection.

The vast amount of data generated by modern manufacturing processes provides us
with an abundance of information that can be distilled and utilized to develop effective in-
terventions. While the acquisition and storage of raw data is no longer a major challenge,
there is a pressing need for solutions that can effectively explore correlations and make
real-time decisions. Consequently, numerous recent studies are focusing on developing
online methods, including the reformulation of techniques originally designed for analyz-
ing historical data [37, 38, 39]. Given the impracticality of conducting real-time manual
data labeling, these techniques inherently necessitate an unsupervised approach.

Clustering, a kind of unsupervised learning, involves grouping data samples based on
similarity [40]. It can be used for uncovering hidden patterns, structures, or relationships
in the data. Unlike classification, clustering is an unsupervised process, meaning that it
does not involve the use of class labels, and sometimes the number of clusters is not known
in advance. According to [40], the similarity measure used in clustering can be expressed
as a distance measure. This is because the similarity between two samples can be viewed
as the distance between them in the feature space.

One approach for clustering is to use these similarity measures and construct the re-

PART 1. PRELIMINARIES 16

gions of the feature space corresponding to the different clusters based on the computed
distances between the training samples [40].

An alternative method involves identifying features that have a high ability to differ-
entiate between samples or discovering principal directions within the feature space that
allow for improved separation of data. These discriminating features can be derived from
any subset of the input data, or they can be generated using a network architecture, as
noted in [41].

In some cases, it may be more practical to utilize the computational mechanism of a
supervised learning algorithm, even if no actual labels are available. Anomaly detection is
one such example that can be approached as a clustering problem, whereby two clusters
can be expected - one for normal samples and another for anomalies. In an unsupervised
training process for anomaly detection, only training data from the normal sample cluster
is extracted and, as a result, can be automatically labeled as belonging to the same class.
The supervised method’s computation can then be used to train a system to recognize
similar samples as those belonging to this normal cluster. However, when an anomaly
appears that is dissimilar to the training examples, it will be classified as a sample not
belonging to the normal sample cluster and thus deemed an anomaly, as outlined in [KA2].

This idea is employed in the work presented in the first thesis group (Part 2.), utilizing
the Support Vector Machine (SVM) technique for unsupervised online state discovery and
anomaly detection in robot applications.

1.2.1 Support vector machines
Support Vector Clustering (SVC), which is typically implemented using support vector
machines, is thoroughly explained in [42]. This method is built on the foundation of the
work conducted by Schölkopf et al. [43], and Tax and Dunin [44], who pioneered the use
of kernel functions [45] for support vector description [46] of data structures in a high-
dimensional space.

The kernel function allows for the formulation of a distance measure in a higher-
dimensional space, as opposed to directly separating data samples in the feature space.
By utilizing this kernel function, the separation of data samples can be designed, as de-
scribed in [45], resulting in highly complex and nonlinear decision boundaries within the
feature space.

When utilizing SVC, the training samples are transformed into a high-dimensional
space using a Gaussian kernel function. In this high-dimensional space, the data is encom-
passed within a hypersphere with a center of a and a radius of R. To regulate the number
of outliers allowed, a penalty parameter is introduced. An outlier is defined as a sample
for which |Φ(x)− a|22 > R2 + ξ, where Φ(.) is the kernel function that maps the sample x
from the feature space to the high-dimensional space, and ξ is a slack variable that allows
for a soft margin, as detailed in [42].

The contour of the hypersphere creates boundaries within the feature space, which
separates points that fall on the inside of the hypersphere when mapped to the high-
dimensional space from those that fall on the outside. The shape of this decision boundary
is influenced by the kernel function’s parameters and the penalty coefficient for outliers,
as noted in [42]. The appropriate adjustment of these parameters relies on the noise and

PART 1. PRELIMINARIES 17

structural overlap within the data and is discussed in detail in [42]. If the parameters are
correctly set, smooth, disjoint boundaries should manifest within the feature space.

The clusters are defined by the non-overlapping sets in the data space [42]. As a result,
if any path connecting two points x1 and x2 in the feature space exits the hypersphere in
the high-dimensional space, those two points are considered to belong to different clus-
ters. In [42], this criterion is evaluated numerically by checking twenty points along the
connecting line between x1 and x2.

A simpler way to perform clustering with support vector machines is to use the One-
Class Support Vector Machine (OCSVM) [43, 44], which is the basis of the SVC algo-
rithm. In cases where only two clusters are anticipated, such as anomaly detection, the
cluster assignment method suggested in [42] may not be necessary, thereby simplifying
the system.

The proposed unsupervised online algorithm for state discovery and anomaly detection
in robotic applications, described in the first thesis group (Part 2.), also utilizes OCSVM
models.

1.3 Transfer learning for Deep learning
Training a DL model from scratch is a resource-intensive process in terms of time and data
requirements. If a DL-based approach provides a suitable solution for a robot application,
it should be designed with adaptability in mind, allowing it to be applied to similar prob-
lems. This adaptability or robustness of the model always has to be considered, and thus,
it is represented in the background layer in Figure 1.1. displaying it as an underlying re-
quirement that is present at all levels of challenges. Transfer learning is a field that focuses
on utilizing knowledge gained from solving previous problems to accelerate the training
process or improve the performance of new solutions [47]. A problem can be defined by
a domain D and a task T [47]. The domain is a combination of a feature space X and a
corresponding marginal probability distribution P (X), where X = {x1...xn} ∈ X [47].
Given a specific domain D = {X , P (X)}, a task can be described by T = {Y , f(.)},
where Y is a label space and f(.) is a function that should be learned based on the training
data, which consists of {xi, yi} pairs, where xi ∈ X and yi ∈ Y [47]. Two problems are
considered different if either their domains or their tasks are different.

Transfer learning entails discovering and applying abstract knowledge to new prob-
lems. This abstract knowledge can take various forms, such as an abstract kinematic or
dynamic model, a set of rules or laws, a formula or function, an algorithm, a policy, and
so on. By utilizing this knowledge, we can develop new solutions for similar problems.
For example, when dealing with the forward kinematics task for a given robot arm, this
knowledge could be represented by an abstract robot model or a set of rules for creating
one, as well as a method for solving the forward kinematics problem given a specific robot
model in a predefined format. With this knowledge, we can construct new solutions for the
forward kinematics problem with different manipulators. However, for some problems, it
may not be possible or practical to derive the analytic formulation of such knowledge. In
such cases, DL methods can be used to approximate the abstract knowledge [47].

In robotics, the primary transfer learning techniques include utilizing pre-trained DL
models, sim-to-real approaches, extracting domain-invariant features, and learning through

PART 1. PRELIMINARIES 18

imitation or demonstrations. These methods have proven to be effective in facilitating
knowledge transfer from prior tasks to new problems [47].

The second thesis group (Part 3.) explores pre-trained model-based transfer learning
approaches for domains with optical flow, a non-RGB data modality for mobile robot
navigation.

1.3.1 Pre-trained models
Pre-trained models are a popular technique for transfer learning, where they are used as
general feature extractors [48, 49]. They represent a general knowledge base required for
a particular field of problems and are utilized to initialize the DL-based solution for a new
specific problem. During training, the pre-trained models may be fine-tuned, or a smaller
learning-based model may be trained from scratch to process the features extracted by the
pre-trained model. The use of pre-trained models is most widespread in approaches for
image processing, utilizing deep Convolutional Neural Networks (CNNs). For instance,
various publicly available DL models have been pre-trained on the ImageNet dataset [50],
including AlexNet [7], GoogleNet [51], the VGG model [52], and others. These models
are highly effective in extracting high-level features from image data for a wide range of
image-processing tasks.

1.3.2 Sim-to-real
A large portion of learning-based solutions for robotic manipulation and navigation rely on
a trial-and-error approach. However, conducting such approaches directly on the physical
robot is often not feasible due to concerns about safety, cost, and time constraints [53,
54]. Due to these challenges, there is a growing need to separate the solution preparation
process from the physical world. One common approach to address this issue is to develop
the solution in a simulated environment and subsequently apply it to real-world problems.

Preparing solutions in a simulated environment offers several advantages, including
the availability of complete and precise information about the environment, as well as
the rapid, decoupled computation and preparation of different environmental scenarios.
However, a significant challenge is to adapt the obtained solution to the real-world problem
to leverage these benefits. This issue is commonly referred to as bridging the "reality gap"
[34, 35]. There are two primary approaches for addressing this challenge: randomization
and the creation of simulations and data generation that is as close to reality as possible
[34, 55, 35, 56, 57, 58].

Sim-to-real approaches that employ randomization are based on the concept that if a
model can perform well in a highly randomized source domain, it is likely to have excel-
lent generalization capabilities, which means it should be able to adapt to the real-world
domain as well [34, 55]. The other approach for bridging the reality gap, which involves
creating a simulation environment that closely resembles the real world, allows the trained
DL model to be directly applied to the real-world problem [35, 57, 58].

PART 1. PRELIMINARIES 19

1.3.3 Domain-invariant features
It is a common transfer learning scenario when a solution for a given problem with a spe-
cific domain exists, and a new solution for a new problem with the same task but a different
domain is needed. Some of these approaches seek to identify features independent of a
particular domain [18, 59]. These domain-independent features can be extracted by utiliz-
ing data from multiple domains (D1,D2, ...). For instance, let X1 and X2 be the feature
spaces of two domains, with features X1 = x11,x12, ... and X2 = x21,x22, ..., respectively.
When x1i and x2j are identical, and their marginal probability distributions in the two do-
mains (D1,D2) are similar, they are considered common features of the two domains. As
an example, for datasets of images of objects to be grasped, common features could be the
shapes that facilitate grasping the objects with a specific gripper configuration. Common
features can often be more complex than simple, general low-level features (e.g., complex
shapes and textures) [48, 49], and are often challenging to find using analytic methods. As
such, DL is typically used to extract these common features.

1.3.4 Imitation and demonstration-based learning
Imitation learning, a learning-based method that generates solutions based on demonstra-
tions, has been successfully employed in robotic manipulation skills [24, 60, 61, 62, 63].
In this approach, a demonstration is used as the solution for the source problem, with the
aim of learning a solution for the target problem. The differences between the source and
target problems may be due to the differing embodiment of agents. For example, a task
of robotic manipulation can be taught to a robot by providing a demonstration of a human
performing the task and requiring the robot to perform the same task [60].

Many approaches assume that the demonstration provides a close-to-optimal solution
to the source problem, and therefore the performance of the solution for the target problem
is measured by comparing it to the demonstration [62, 63, 64]. To achieve this, a state
description is necessary. A solution for the target problem is described by a sequence of
states that need to be similar to the demonstration states [62, 63]. To ensure comparability
between the source and target problems, the state description must be independent of the
problem type, which can be assured with the help of common features. Adapting the
source solution to the target solution is also known as skill transfer or skill extraction.

To simplify the demonstration learning scenario, the source problem is typically de-
fined in a way that is very similar to the target problem. This involves providing demon-
strations through teleoperation rather than tracking the hand of a human performing the
task. Human hands have different kinematic structures than conventional robot manipula-
tors, and tracking them can introduce errors to the system. On the other hand, demonstra-
tions provided through teleoperation are very similar to the target problem and can be used
as starting points for further exploration [63]. This approach also allows for the collection
of relevant internal data from the demonstration, such as forces, torques, and velocities,
which can be measured with high accuracy, contrary to visual tracking. In such scenar-
ios, the measurement errors are mainly due to the physical construction of the manipula-
tor, which is the same during the demonstrations and during operation. Consequently, in
demonstration learning tasks, usually, other modalities are utilized besides vision, such as
tactile information [65].

PART 1. PRELIMINARIES 20

1.3.5 Pre-trained models and modularity for perception
Visual modality is rich in information, and thus, it is often used in robot applications.
However, visual data is often characterized by high-dimensional feature vectors that pose
challenges during analysis and processing. Therefore, rather than training new DL solu-
tions from scratch on large datasets, pre-trained image processing models like AlexNet,
GoogleNet, and VGG networks are also often utilized in robot applications. Girshick
et al. demonstrated that these pre-trained models’ features could be used for visual ob-
ject detection in their R-CNN (Region-based Convolutional Neural Network) proposal
[66]. They later introduced the Fast R-CNN method, which significantly improves the
R-CNN’s training and inference speed [67]. In R-CNN, the pre-trained model extracts
features from regions of interest (RoI) in input images, and object-specific support vector
machines (SVMs) classify the extracted feature vectors. The RoIs are determined by a re-
gion proposal method. In contrast, Fast R-CNN infers the output from the feature maps of
RoIs using fully connected neural network layers. Girshick showed that Fast R-CNN per-
forms more accurate and faster object detection than R-CNN (9 times faster training and
213 times faster inference). This is mainly due to the model architecture, which allows the
prediction layers to be optimized together with the feature extractor during a single-stage
training procedure.

In their study, Ren et al. developed a region proposal network (RPN) using deep learn-
ing to improve the Fast R-CNN object detection method. To enhance the Fast R-CNN
structure, they integrated the RPN using an attentional interface and coined it Faster R-
CNN [68]. The authors reported that their approach achieved real-time object detection
and outperformed other region proposal methods with Fast R-CNN. They were able to
conduct inference at 17 frames per second (FPS), which was superior to previous meth-
ods.

In their research, Johnson, Karpathy, and Li introduced a fully convolutional local-
ization network named DenseCap by using the Faster R-CNN method to propose regions
for a recurrent neural network that produces complex image captions [17]. Valipour et
al . utilized this model in their incremental learning scenario and combined it with the
VGG-16 pre-trained model for object detection and localization [69]. They developed a
DL-based perception pipeline that enabled a robot to recognize and manipulate various
objects requested by a human operator through speech recognition using the CMU Sphinx
module. Additionally, the team incorporated the Festival speech synthesis system [70] to
enable the robot to provide feedback on its current state verbally. The researchers also
created a method for correcting the localization network’s classifications incrementally
through HRI, utilizing speech recognition, and human gesture recognition systems. Their
study highlights how different DL modules can be integrated to solve a complex robotics
problem involving object detection and HRI.

Redmon et al. proposed a novel approach to object detection with their YOLO (You
Only Look Once) network [71]. Unlike R-CNN and its variants, YOLO does not re-
quire separate region proposal networks; instead, it directly infers bounding boxes and
class probabilities from globally extracted features. This two-part network comprises a
CNN for feature extraction and a smaller neural network for classification and regression.
This approach allows for end-to-end training while still leveraging the modular nature of
DL models. The feature extractor and top network can be separated and are responsible

PART 1. PRELIMINARIES 21

for different subtasks. Moreover, YOLO infers predictions globally, based on the whole
image, instead of extracting local features. Redmon et al. also introduced a feature extrac-
tor architecture for YOLO, inspired by GoogleNet, which was pre-trained on ImageNet,
achieving similar performance to the 2012 GoogleNet model. During the evaluation, their
Fast YOLO model achieved an inference speed of 155 FPS with a mean average precision
(mAP) of 52.7, outperforming the deformable parts model (DPM) and the VGG-16-based
YOLO. Although VGG-16-based Faster R-CNN achieved the highest mAP (73.2), it was
slower than YOLO, and the YOLO model demonstrated better generalization to artwork
and natural images from the internet. It is crucial to note that the YOLO model retains
modularity, allowing for resource-efficient transfer learning using pre-trained feature ex-
tractors rather than training the entire network from scratch.

The YOLO model has a particular relevance to the field of robotics because the pre-
diction process of the bounding boxes for its object detection is based on the MultiGrasp
system proposed by Redmon et al. which was originally designed for 2D grasp detection
for robotic manipulation based on RGB image data [72].

The work in the second thesis group (Part 3.) is based on another DL model that
utilizes pre-trained models for feature extraction, namely the U-Net and its variants [73].
The experiments for the third thesis group (Part 4.) were carried out with the help of
R-CNN variant DL models, the Mask R-CNN [74].

1.3.6 Multimodal data and unsupervised pre-training for perception
In robotics, depth data plays a crucial role alongside visual information. However, unlike
RGB data, pre-trained models for depth and point cloud information are not as abundant,
as seen in the limited availability of models such as PointNet [75]. As a result, creative
approaches are often required to handle this modality effectively.

Estimating the pose of an object is crucial in predicting a grasp. Zeng et al. proposed
a fully convolutional neural network segmentation method for object 6D pose estimation
using multi-view RGB-D sensors [76]. In this method, 2D images are segmented using
a segmentation network based on the pre-trained VGG architecture, and a segmented 3D
point cloud is constructed based on the segmentations. The former scanned objects are
then fit onto the segmented scene to estimate the object poses. Using this method, the
authors developed a pose estimator model for multiple objects with occlusion in a cluttered
environment. The output of the network is a dense probability map for each of the given
object labels, with values for every pixel of the image. The probability maps are then
thresholded to construct the 3D segmented point cloud. This approach achieved third and
fourth place in the 2016 Amazon Picking Challenge.

To process multiple modalities, a possible approach is to use separate convolutional
structures and fuse them into a common layer at a higher level of the deep learning model,
as demonstrated in [77]. Another approach is to encode depth data into color images
and process them using convolutional neural networks pre-trained on RGB images, as
proposed by Schwarz et al. [78]. This method performs classification and regression based
on features extracted from both the images and the converted depth data. When compared
with the method of Bo et al. [79], which used unsupervised learning of hierarchical feature
representations from RGB-D objects, the approach of Schwarz et al. was able to learn
from less data and achieved better accuracy for RGBD data. Moreover, the RGB-based

PART 1. PRELIMINARIES 22

classification accuracy was also comparable, with a 92% accuracy compared to 92.1% for
the method of Bo et al.

The method that Bo et al. utilized, the unsupervised pre-training of the feature ex-
tractor, is another popular approach for learning meaningful and representative features
from inputs. This approach has been widely used in various applications such as RGB-D
recognition [79], tactile object recognition [80], and robotic grasping [81]. Typically, an
autoencoder structure is employed to extract features from inputs by minimizing the re-
construction error. This approach is particularly useful in problems where labeled datasets
are not available for training. Schmitz et al. utilized a denoising autoencoder for pre-
training their model in tactile object recognition [80]. They reported that the unsupervised
pre-training together with dropout significantly improved the recognition rate, achieving
an 88% recognition rate compared to 64.7% without pre-training and dropout.

The second thesis group (Part 3.) focuses on the utilization of data modalities other
than RGB (such as optical flow) in conjunction with transfer learning using pre-trained
models that were trained on RGB data.

1.4 Synthetic data
Continual learning and transfer learning are two of the most commonly used approaches to
achieve good generalization in dynamic environments. Continual learning is a technique
that enables models to accumulate knowledge over time while avoiding forgetting previ-
ously acquired knowledge [82, 4]. Transfer learning, on the other hand, relies on training
models on datasets that force them to generalize well [47, 49]. Both methods have shown
promise in improving the generalization capability of deep learning models in dynamic
environments.

In the third thesis group (Part 4.), an automatic synthetic dataset generation and an-
notation pipeline is proposed, with which we demonstrate how using synthetic data in the
fine-tuning phase of transfer learning approaches and in continual learning can be benefi-
cial for object and grasp detection for robotic manipulation.

1.4.1 Photorealistic synthetic data
Alberto Garcia-Garcia and Pablo Martinez-Gonzalez proposed a system that generates
a vast amount of photorealistic data for indoor semantic scene segmentation and robot
manipulation using virtual reality (VR) technologies and Unreal Engine [83, 84]. Their
DL models, trained on this data, demonstrated favorable qualitative results in monocular
depth estimation, 6D pose estimation for synthetic samples, and 6D pose estimation [83].
Their study suggests that VR technologies can assist in incorporating realism into synthetic
scenes, such as realistic robot interactions.

Roberts et al. created Hypersim, a photorealistic synthetic dataset for indoor scene
understanding [85]. Their dataset stands out by providing publicly available 3D assets,
which is not the case for most synthetic datasets that only offer rendered images. The use
of publicly available 3D assets increases the flexibility of use cases and potential for future
development. Another significant aspect of their work is the decoupling of the annotation
pipeline from the rendering process, which allows for the generation or modification of

PART 1. PRELIMINARIES 23

annotations without re-rendering a scene. The proposed method in this dissertation for
generating annotations for synthetic data is also decoupled from the scene preparation and
the rendering. It allows the approach to be used for any scene, not limited to robotic ma-
nipulation, and to change the annotations without re-rendering. Furthermore, we utilized
only publicly available free 3D assets, unlike Hypersim, which required a cost of $57K,
with $6K dedicated to purchasing the necessary 3D assets. Although Hypersim’s scenes
are of higher quality and they used a greater number of 3D assets compared to ours.

In addition, Roberts et al. evaluated the sim-to-real performance of models trained
on the Hypersim dataset through experimentation. They discovered that pre-training on
Hypersim resulted in improved semantic segmentation performance on NYUv2 [86] when
compared to pre-training on PBRS [87]. However, performance was not improved com-
pared to pre-training on SceneNet RGB-D [88]. The authors attributed these findings to
the fact that PBRS contains significantly more samples than Hypersim, while SceneNet
RGB-D contains even more. They suggested that the improved photorealism of Hyper-
sim allowed it to achieve comparable results to these larger datasets. They also proposed
that there may be a trade-off between photorealism and the amount of data required to
achieve good sim-to-real performance. This idea is supported by the work of Huh et al. in
[48], who found that increasing the number of classes or pre-training data beyond a cer-
tain point did not significantly improve transfer learning performance with the ImageNet
dataset [50]. These results suggest that a smaller amount of well-chosen, high-quality
data may be more beneficial for transfer learning than simply increasing the size of the
dataset. Although these findings are for the pre-training phase of transfer learning, they
are promising for the fine-tuning phase, as the generalization capability should be main-
tained as much as possible during fine-tuning, while the size of the fine-tuning set should
be kept to a minimum.

1.4.2 Domain randomization
The technique of domain randomization involves introducing artificially high levels of
variation into the synthetic dataset. This compels models trained on such datasets to disre-
gard the effects of the randomized factors, allowing them to generalize to real-world data
[89, 90, 91, 92].

In their research, Tobin et al. established that a deep learning model, trained solely
on a vast amount of low-fidelity rendered images with domain randomization, could be
effectively utilized in real-world settings [92]. By introducing randomization in camera
and object positions, as well as lighting conditions, along with utilizing unrealistic envi-
ronmental textures, they were able to demonstrate that their DL model (trained exclusively
on domain randomized data) was capable of accurately detecting basic geometric objects
in a real-world environment. These detections were precise and dependable enough to be
employed in a robotic grasping pipeline.

Tremblay et al. demonstrated that the domain randomization method could be ap-
plied to more intricate scenarios to bridge the reality gap [91]. Their research revealed
that DL models trained on their domain randomized data for vehicle detection on the
KITTI dataset [93] were able to perform competitively against models trained on the Vir-
tual KITTI dataset [94].

Given the achievements of photorealism and domain randomization techniques in bridg-

PART 1. PRELIMINARIES 24

ing the reality gap, a question arises: Is it feasible to leverage both techniques to obtain
the best of both worlds? To address this question, Tremblay et al. proposed a combination
of the two methods for bridging the reality gap [89]. Their work involved the utilization
of photorealistic synthetic images in conjunction with domain-randomized ones. They
demonstrated that DL models trained exclusively on such a synthetic dataset could achieve
state-of-the-art performance in robotic manipulation. Our experiments also investigate the
impact of fusing domain-randomized and photorealistic data for fine-tuning purposes in
robotic manipulation.

Eversberg and Lambrecht investigated the effectiveness of implementing photorealism
and domain randomization techniques in a synthetic dataset for industrial object detection
[90]. They utilized Blender, an open-source 3D creation suite, to generate their synthetic
dataset. Their findings indicate that domain randomization techniques were more effective
for the background and clutter objects (unrelated to the object of interest) compared to
higher realism. On the other hand, for the object of interest, realistic textures and lighting
appeared to lead to better performance than domain randomization techniques.

Prakash et al. proposed a method called structured domain randomization, which aims
to generate domain-randomized synthetic data while preserving the structural context of
the environment [95]. For instance, conventional domain randomized image datasets for
vehicle detection randomly place the vehicles, camera, and other environment objects in
the scene. In contrast, in a structured domain randomization dataset, the vehicles are
placed on roads to maintain the structural context of the environment. The authors com-
pared their approach with photorealistic approaches, such as the Virtual KITTI and the
GTA V dataset [96], as well as a domain randomized dataset [91]. Their experiments
showed that models trained on a dataset with structured domain randomization can out-
perform models trained on photorealistic or domain-randomized synthetic data. The ad-
vantage of structured domain randomization comes from the trained model’s better un-
derstanding of the scene context than models trained on conventional domain randomized
data while being exposed to a similar level of variation in the data distribution.

Part 2

STATE AND ANOMALY DETECTION
BASED ON REAL-TIME
CLUSTERING

2.1 Motivation
Modern robot applications are often designed to operate with a high degree of autonomy,
which allows them to function in environments that are not strictly structured. More-
over, cutting-edge robot applications enable humans and robots to work together in shared
workspaces, resulting in highly non-deterministic behavior. These conditions create sig-
nificant uncertainties in robot operation, leading to fluctuations in cycle time and making
the overall process difficult to execute and oversee. Therefore, many robot applications
now incorporate machine learning (ML) technologies, such as deep learning (DL), into
their motion planning/control and quality assurance processes. ML methods provide ef-
fective and flexible solutions for dealing with non-deterministic processes.

As a consequence, ML for robotics is currently a widely researched topic. Recent
approaches based on DL have shown remarkable results in processing large amounts of
high-dimensional data [36, 30, 97, 98, 99]. With the latest robot controllers that enable
access to internal states such as joint angles, accelerations, and drive torques, as well
as the availability of affordable and easy-to-use cameras that provide high-quality visual
data, acquiring the necessary data for training robust DL models is no longer a problem.
However, a large part of DL approaches rely on supervised learning [36]. Given the vast
number of trainable parameters of such models (often up to billions [98]), the training
process requires numerous labeled examples to achieve good generalization [36, 30]. La-
beling the samples is a resource-intensive and time-consuming task that often requires
manual intervention [100].

Efficient utilization of available resources and minimizing setup times are crucial in
robotics. Therefore, there is a need for methodologies that facilitate training ML models
with fewer or no labeled examples. Internationally recognized ML scientists such as Yann
LeCun, Yoshua Bengio, and Geoffrey Hinton predict that the future of ML will rely on the
development of more advanced and precise unsupervised learning methods [36]. This sug-

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 26

gests that research aimed at harnessing large datasets without requiring laborious manual
labeling holds significant scientific importance.

As suggested by Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, one way to
achieve this goal is by utilizing unsupervised learning, which can reveal hidden relation-
ships, structures, associations, or hierarchies within the provided data without requiring
additional data labeling [101]. Such methods typically rely on a similarity measure to
group the samples. This process is commonly referred to as clustering [101]. The similar-
ity measure can also be expressed as a distance measure since the similarity between two
data points can be interpreted as the distance between the two points in the feature space
[101].

In this part, I propose an online clustering algorithm, utilizing a dynamically con-
structed ensemble of OCSVMs (One-Class Support Vector Machine) for the real-time
identification of recurring events and anomalies in robot applications (Section 2.2). I
demonstrate how a similar approach can also be used to evaluate generative models (Sec-
tion 2.3).

2.2 OCSVMs for clustering in data streams
Several unsupervised techniques have been successfully applied in various DL-related
problems, including k-means clustering for learning low-level filters for Convolutional
Neural Networks (CNNs) [77], decision tree and neural network hybrids [102], and the
use of generative models for learning feature extractors [103]. However, classical clus-
tering methods are often limited by large computational complexity when dealing with
large data samples and prior assumptions about the number of clusters or data distribution
parameters, among other factors. As a result, these methods are not always suitable for
robotics, where quick decision-making and adaptation during online operations is often
necessary.

The characteristics of an ideal online clustering system for robotics are the following:

• Required human activity must be minimal in the training and setup process.
• The system should work for an unknown number of clusters as well.
• Clustering must be performed online to avoid the long-term storage of dense data.
• For long operation, the so-called concept drift [104] and concept evolution [105]

must be handled.
• All of the most commonly used data types in modern robot applications should be

accepted as input. E.g., joint-space coordinates/velocities/accelerations, Cartesian
pose/speed/acceleration, forces, and torques, visual (image) and depth data, etc.

These requirements necessitate the use of lightweight clustering methods. Prior to
implementation and experimentation, various techniques have been explored to identify
those that meet the requirements.

Several recent approaches have employed an online clustering method that is based on
the k-means clustering algorithm [37, 106]. However, when the system operates continu-
ously, unexpected events or states may arise at any moment during the operation, including
the ML model training or inference. As a result, the number of clusters may change over

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 27

time, and it cannot be determined beforehand. For k-means clustering-based solutions,
adjusting the number of clusters adaptively would necessitate recomputing the cluster cen-
troids [37]. Although this solution is theoretically feasible, it is time-consuming, and real-
time operation is not possible as response times need to be extremely short for monitoring
robot applications. Therefore, k-means clustering-based algorithms and extensions of the
online k-means clustering are not well-suited for real-time clustering in robot applications.

Online clustering has also been accomplished with the use of self-organizing maps, as
demonstrated by past research [107, 108, 39, 38]. For such approaches, the online behavior
is usually achieved by an underlying tree-like architecture, which can automatically grow
over time until a pre-defined convergence criterion is met [39, 38].

Previous studies, such as those conducted by Ghafoori et al. [109], Gretton et al. [110],
and Ma et al. [111], have successfully utilized the One-Class Support Vector Machine
(OCSVM) method to detect anomalies in complex data flows. SVMs train a linear classi-
fier for binary classification in the input data. A kernel function can be used to transform
the linear classifier optimization problem into a higher dimensional space, where the data
points may be linearly separable even if they weren’t in the original feature space [45].
This approach results in nonlinear decision boundaries in the feature space at the cost of
additional computations. For linear SVMs, there are methods that enable training times to
scale linearly or even sublinearly with the number of training examples and the number
of features while only scaling linearly with the number of features during inference [112,
113]. For SVMs with non-linear kernels, approximation methods have been introduced
that are able to drastically decrease the training and inference times for SVM models for
non-linear classification [114, 115, 116]. Some of these approximation methods have been
demonstrated to be applicable in tasks involving very high-dimensional data, such as vi-
sual object detection [114, 116].

Our algorithm leverages the OCSVM technique to perform online unsupervised state
discovery and anomaly detection in robotics applications, building on the promising re-
sults obtained by prior research. We have conducted experiments with a representative
collaborative robot application to demonstrate the effectiveness of this approach.

2.2.1 Formalisms
The Support Vector Machine (SVM) method trains a linear classifier for binary classifica-
tion using a decision function of the form:

f(x) = wTx + b, (2.1)

where x is the input vector, w is the weight vector and b is the bias [46]. Predictions
are made based on the values of f(x), where f(x) ≥ 0 results in a prediction of y = 1,
and f(x) < 0 results in a prediction of y = −1 [46]. While standard SVMs determine
the parameters of the decision function using a training dataset with ground-truth labels,
the One-Class Support Vector Machine (OCSVM) is specifically designed to distinguish
samples belonging to one class from those of any other class [43, 44]. As a result, unsu-
pervised training is possible using a set of unlabeled samples that are assumed to belong to
the same class, which is useful for anomaly detection when rare data must be distinguished
from the rest.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 28

When implementing OCSVMs, there are typically two approaches that are used. One
method, as outlined in [43] by Schölkopf et al., involves separating the training samples
from the origin using a hyperplane in the feature space and maximizing the distance be-
tween the hyperplane and the origin. This design results in a quadratic programming
problem that is formalized as follows:

min
w,ξi,ρ

(
1

2
‖w‖2 +

1

νn

n∑
i=1

ξi − ρ

)
w · Φ(xi) ≥ ρ− ξi ∀i
ξi ≥ 0 ∀i

(2.2)

where Φ(xi) is the kernel function, ρ is the size of the margin, ξi is the loss defined by the
distances of outliers from the hyperplane, and ν is a parameter to set the trade-off between
the number of outliers and the accuracy of the decision boundary.

The quadratic programming problem (2.2) can be solved by the Lagrange-multiplier
method (using specialized solver algorithms such as SMO [117, 118]), which leads to a
decision function similar to (2.1)

f(x) = sgn(w · Φ(xi)− ρ) = sgn

(
n∑
i=1

αiK(x,xi)− ρ

)
, (2.3)

where αi are the Lagrange multipliers.
The second method, introduced by Tax and Duin in [44], involves enclosing the train-

ing samples in the feature space with a spherical surface and minimizing the volume of this
hypersphere. The hypersphere is characterized by its center a and radius R > 0. The cen-
ter a is determined by a linear combination of the support vectors. The hypersphere does
not necessarily enclose all training samples and instead employs a soft margin, whereby a
loss function is used to determine the penalty associated with samples outside of the hy-
persphere. The formulation of this method is described by (2.4) [44], where the parameter
C is used to adjust the penalty function.

min
R,a

R2 + C
n∑
i=1

ξi

‖xi − a‖2 ≤ R2 + ξi ∀i
ξi ≥ 0 ∀i

(2.4)

The decision function that classifies a given sample x as a member of the class is
obtained by solving the minimization problem (2.4) using the Lagrange multiplier method.
The decision is based on whether the distance between the sample x and the center a is
smaller than the radius R. This distance can also be computed using the kernel method
[44].

The Radial Basis Function (RBF), also known as the Gaussian kernel, is the most
frequently used kernel function. Its formulation for two data points, xi and xj , is given by

K(xi,xj) = exp

(
−‖xi − xj‖2

2σ2

)
, (2.5)

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 29

where the kernel parameter σ controls the sensitivity of the kernel function and should

be set to a suitable empirically chosen value. It is often substituted by γ =
1

2σ2
, which

simplifies the expression to

K(xi,xj) = exp
(
−γ‖xi − xj‖2

)
. (2.6)

The series expansion of the RBF kernel function leads to an infinite series, in which
the terms

〈xi,xj〉 , 〈xi,xj〉2 , 〈xi,xj〉3 . . .

are present, which are also kernel functions on their own. This provides the flexibility
to design the classifier in a space with arbitrary dimensionality, allowing for nonlinear
decision boundaries to be formed in the feature space [119].

2.2.2 Clustering algorithm
Algorithm 1. shows the proposed clustering approach. The algorithm takes a data stream
S as its input. In S, data points Xi|i ∈ {t, t − 1, t − 2, ...} are available at a sampling
rate (f Hz) defined by the robot controller setup, with Xt being the most recent data
point at time step t. For 6 DOF robot arms Xi usually contains the measured forces
and torques acting on the robot’s TCP, the Cartesian pose of the TCP or the robot pose
in joint space so the dimensionality of the data points (d) is usually 6, meaning Xi ∈
R6. A sampling window at time step t (Wt) is defined by the window size w, where
Wt|w = {Xt,Xt−1, ...,Xt−w+1}, meaning that the sampling window always contains the
w most up-to-date data points. The state recognition and the anomaly detection (OCSVM
predictions) are performed on the flattened Wt|w samples (Wt|w ∈ Rdw), whenever a
new data point is available in S. This means, effectively the rate of predictions matches
the rate at which new data points are available in S, making this method suitable for real-
time use during inference, as long as the inference process is shorter than 1/f .

For training the OCSVM models, a non-overlapping training window is maintained
Wt

train. Similarly to the sampling window, Wt
train also contains w number of data points,

but contrary to Wt, Wt
train is not updated upon the availability of each new data point,

but rather after receiving w number of data points. This means if Wt
train is updated at

time step t, it contains the same data points as Wt (Wt
train = Wt), but its elements would

not change until time step t + w (Wt
train = Wt+1

train = ... = Wt+w−1
train), when its new

elements would be Wt+w
train = {Xt+1,Xt+2, ...,Xt+w}. A training set T is formed of the n

most recent training windows T = {Wt
train,W

t−w
train, ...,W

t−nw
train }, where n is the number

of training samples.
The algorithm creates an ensemble of trained OCSVM models (E) dynamically. At

each time step, the latest sample Wt is evaluated by all the OCSVMs in the ensemble.
An OCSVM’s output can be either 1, indicating that the sample belongs to the cluster
represented by the given OCSVM, or −1, indicating that the sample does not belong to
that cluster. If the stopping criterion is not met yet, and none of the trained OCSVMs in the
ensemble can classify the current sample (Wt), it is assumed to belong to a new, unseen
cluster. To recognize this cluster, a new OCSVM is trained using the current training set

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 30

(T). Thus, the number of trained OCSVMs and recognizable clusters increases online as
the robot continues to operate.

It is often beneficial to add a cool-down period (cd) before training a new OCSVM,
meaning a new OCSVM will only be trained and added to E if none of the already trained
OCSVMs in E recognized any of the previous cd number of samples (Wt−cd+1...Wt). As
a result, the algorithm can avoid training an excessive amount of OCSVMs in the presence
of noisy data.

Algorithm 1: Clustering algorithm
input: S, w, n, stopping_criterion, cd
/* Initialize internal variables */
Wt = [], Wt

train = [], T = [] E = [];
C = [[]];
i = 0, count = 0;
stop = False, no_train_step = 0;
on new Xt in S:

/* Update data structures */
i += 1;
Wt.append(Xt);
if Wt.size() > w then

Wt.remove(0);
if i == w then

Wt
train=Wt;

i = 0;
T.append(Wt

train);
if T.size() > n then

T.remove(0);
else

Wt
train=Wt−1

train;
/* Perform predictions */
p = [];
for OCSVM in E do

p.append(OCSVM.predict(Wt));
/* Train a new OCSVM if needed */
if !stop and (all(p==-1) or E.size() == 0) and T.size() == n then

if count < cd then
count += 1;

else
E.append(OCSVM.train(T));
count = 0;

else
no_train_step += 1;
if no_train_step == stopping_criterion then

stop = True;
/* Update contingency table */
C_update(p, C);

The algorithm assumes that the robot application contains repeated operations (robot
cycles). Otherwise, the number of OCSVMs may increase indefinitely. A stopping crite-
rion for the training of new OCSVMs can also be specified by the number of time steps
without encountering a sample that could not be classified. In practice, instead of the num-
ber of samples, it may be practical to specify a certain amount of time, after which no new
OCSVMs will be trained if all samples in the time frame can be recognized by at least one

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 31

OCSVM in E. This time frame should be selected with consideration to the time needed
for the robot to complete one repetition of the application.

Once the stopping criterion is satisfied, the algorithm transitions to the inference phase,
where it is presumed that all the states and events during robot operation were accurately
mapped under typical conditions. A sample that cannot be recognized by any OCSVM
in the ensemble is classified as an anomaly. Therefore, this technique enables automated
identification of events that fall outside the scope of typical robot operation and are hence
classified as anomalous.

During the training process, OCSVMs that represent very similar clusters may emerge.
Algorithm 1. defines a contingency table C, which is used for the “pruning” of the number
of recognized clusters. C is a quadratic matrix, and its number of rows/columns is equal
to the number of trained OCSVMs in the ensemble. The elements in C represent how
many times an OCSVM “fires” together with another one (how many times did they both
recognize the same sample). This is done by performing the prediction with each OCSVM
in the ensemble, storing all the predictions in an array p, and updating the corresponding
elements of the contingency table based on p. The function responsible for the update of
the contingency table can be seen in Algorithm 2.

Algorithm 2: C_update function
input : p, C
def C_update(p, C):

for (i = 0; i < p.size(); i++) do
if p[i] == 1; // OCSVM i activated
then

for (j = 0; j < p.size(); j ++) do
if p[j] == 1; // OCSVM j also activated
then

C[i][j] + +;

2.2.3 Discovering hierarchies
Once the training procedure has finished (the stopping criterion is met), the contingency
table can be used to discover multi-level hierarchies in the dynamically constructed en-
semble of OCSVMs, using the bottom-up hierarchy building strategy described in Algo-
rithm 3. The hierarchy building is performed in a bottom-up fashion by creating groups
of OCSVMs in the ensemble, where each individual OCSVM corresponds to some ele-
mentary state. The inputs to the algorithm are the ensemble of trained OCSVMs (E), the
contingency table (C) for a finite, recorded segment of the input stream (R), the recorded
segment of the input stream (R), and a threshold value th to determine the level at which
two OCSVMs are considered to be similar and should be grouped together. The data
stream segment (R) should cover precisely one or more application cycles. The param-
eter th ranges from 0 to 1, where a value of 0 indicates that all OCSVMs belong to one
group, while a value of 1 indicates that only OCSVMs with identical predictions for all

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 32

samples are grouped together. Given these inputs, the algorithm generates groups (G) that
indicate which OCSVMs in the ensemble can predict more generalized states together.

Algorithm 3: Bottom-up hierarchy building strategy
input : E, C,R, th
/* Initialize internal variables */
H = [], G = [];
N =R.size();
/* Calculate entropies */
for OCSVM in E do

H.append(Entropy(OCSVM.predict(R)));
H /= max(H);
for h in H do

/* Find the index of the minimal entropy OCSVM */
ih = argmin(H);
if ih in G then

H[ih] = 2 ; // OCSVM ih is already in a group

else
/* Create a new group */
G.append([ih]);
I = [];
for j = 0; j < C[ih].size(), j ++ do

I.append(Info_Gain(C,(ih, j), N)); // Compute Information Gain
for ih

I[ih] = -1;
for j = 0; j < I.size(); j ++ do

/* Start with the most similar OCSVM */
ig = argmax(I/max(I));
if C[ih][ig]/C[ih][ih] > th then

G[-1].append(ig) ; // Add ig to the current group
I[ig] = -1;

else
break;

H[ih] = 2;

return: G
The hierarchy building is based on the predictions of all the OCSVMs in E for all

samples in (R). First, the entropy over time is computed for the activations of all OCSVM
models. This is done according to Algorithm 4. which accumulates the length of continu-
ous positive predictions (pulse durations) made by an OCSVM in terms of the number of
time steps and stores them in an array (δ). After that, δ is normalized, and the entropy is
computed over it using (2.7). The hierarchy-building strategy uses the OCSVM with the
lowest computed entropy as a basis for the next group if it is not a part of a group already.
The intuition behind this approach is that OCSVMs that activate continuously for a few
distinct segments of the data stream are more informative than the ones that frequently
alternate between positive and negative predictions. The former kind of OCSVMs will
make predictions that have a lower entropy over time, and thus they can be distinguished
from OCSVMs that failed to learn informative decision boundaries.

H(X) = −
∑
x∈X

p(x) log2 p(x) (2.7)

The lowest entropy OCSVM is then compared to all other OCSVMs in the ensemble.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 33

Algorithm 4: Entropy function
input : o
def Entropy(o):

/* Create array (δ) of pulse durations for positive
outputs */

acc = 0, δ = [];
oprev = o[0];
for o in o do

if o == 1 then
acc +=1;

if o == -1 and oprev == 1 then
δ.append(acc);
acc = 0;

oprev = o;
if oprev == 1 then

δ.append(acc);

/* Return entropy of δ */
if δ.size() == 0 then

return: 0
else

δ /= sum(δ);
H = 0;
for p in δ do

if p > 0 then
H -= p · log2 p ; // Entropy according to (2.7)

return: H

For each OCSVM pair, the information gain is computed based on C and (2.8). The imple-
mentation of the information gain computation is described by Algorithm 5. The function
calculates the joint and marginal probability distributions necessary for computing the in-
formation gain (I), which measures the amount of information obtained from one random
variable by observing another [120]. In our case, the two random variables are the posi-
tive predictions of the two OCSVMs, meaning that a large information gain between two
OCSVMs signals that just by observing the predictions of one of the OCSVMs, we gain
a lot of information on what the predictions of the other OCSVM might be. Computing
the information gain ensures that we do not group a very general OCSVM that activates
for almost all states with an OCSVM that only activates at certain events. However, I on
its own is not enough to determine whether the two OCSVMs usually activate at the same
or at opposite times (since the value of I would be great for both cases). The hierarchy
building algorithm uses the OCSVM with the maximum information gain, which is most
likely a good choice for grouping with the minimum entropy OCSVM, and adds it to the
group, depending on the value of th. If the ratio of the OCSVMs firing together and them
firing separately is bigger than th, the maximum information gain OCSVM is added to
the group. The process is then repeated until all OCSVMs have been added to at least one
group.

I(X, Y) =
∑
x∈X

∑
y∈Y

p(x, y)
log2 p(x, y)

p(x)p(y)
(2.8)

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 34

Algorithm 5: Info_Gain function
input : C, i, j, N
def Info_Gain(C, (i, j), N):

I = 0;
/* Calculate joint probability distribution */
p(x = 1, y = 1) = C[i][j] / N ;
p(x = 1, y = −1) = (C[i][i] - C[i][j]) / N ;
p(x = −1, y = 1) = (C[j][j] - C[i][j]) / N ;
p(x = −1, y = −1) = (N - (C[i][i] + C[j][j] - C[i][j])) / N ;
/* Calculate marginal probabilities */
p(x = −1) = p(x = −1, y = 1) + p(x = −1, y = −1);
p(x = 1) = p(x = 1, y = 1) + p(x = 1, y = −1);
p(y = 1) = p(x = 1, y = 1) + p(x = −1, y = 1);
p(y = −1) = p(x = 1, y = −1) + p(x = −1, y = −1);
/* Return Information Gain (according to 2.8) */
if p(x = −1, y = −1) != 0 then

I += p(x = −1, y = −1) · p(x=−1,y=−1)
p(x=−1)p(y=−1)

if p(x = 1, y = −1) != 0 then
I += p(x = 1, y = −1) · p(x=1,y=−1)

p(x=1)p(y=−1)

if p(x = −1, y = 1) != 0 then
I += p(x = −1, y = 1) · p(x=−1,y=1)

p(x=−1)p(y=1)

if p(x = 1, y = 1) != 0 then
I += p(x = 1, y = 1) · p(x=1,y=1)

p(x=1)p(y=1)

return: I

To create multi-level hierarchies, the hierarchy-building algorithm can be applied mul-
tiple times with various values of th. Instead of computing the entropies and information
gain for individual OCSVMs during each iteration, the groups formed in the previous iter-
ation can be utilized. Within each group, the prediction can be determined by a majority
vote. The method can also be used to prune unwanted OCSVMs from the ensemble by
defining a maximum number of accepted groups (NMAX

G). To achieve this, the OCSVMs
belonging to the last G.size()−NMAX

G groups can be deleted, as the groups are added to
G in ascending order of entropy (lower entropy meaning more informative predictions).
Here, G.size() denotes the number of groups in G.

Using the hierarchy-building algorithm with a high value for th (≥ 0.9), OCSVMs that
recognize similar events can be merged together. After the merging and pruning, the algo-
rithm can be repeated with lower-and-lower values for th until only one group is retained.
As a result, a hierarchy will be formed, described by the groups of OCSVMs/OCSVM
groups. It is important to note that at the end of the hierarchy building for small values of
th, groups will most likely include OCSVMs or groups that produce opposite predictions.
For such cases, instead of the majority vote-based prediction, the group’s prediction can
be considered positive if any of the members of the group produce a positive prediction.
As a rule of thumb, for groups created with th < 0.5 this method should be used instead
of the majority vote.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 35

A recommended procedure for determining the parameters and using the clustering
algorithm, together with the hierarchy-building strategy:

1. Determine the sampling rate (f) and the approximate average length of robot states
or events to be discovered (T). These two parameters are pre-determined given the
hardware components and the given robot application.

2. Determine a minimum sample size (wmin) that is still large enough to carry mean-
ingful information about the robot state (e.g., wmin = 3 if position information is
received and acceleration might be informative regarding the robot states), prefer-
ably enabling linear separation.

3. Use (2.9.) to set the values of w and n, starting from w = wmin and increas-
ing. Lower values of w tend to capture lower-level (shorter) states, meaning more
OCSVMs will be trained and their firing frequency will be higher. Higher values
of w incorporate more data, which can stabilize the predictions. However, too high
values of w risk having a low value for n, which can result in OCSVMs that activate
for larger sections of the cycle than intended (in extreme cases some can even stay
active all the time).

4. Determine the stopping criterion (e.g., two repetitions of the robot application with-
out new OCSVMs being trained).

5. Set the threshold at which OCSVMs will be considered as similar (e.g., th = 0.9).
6. Merge or delete OCSVMs (th = 0.9 hierarchy building strategy), discover possible

cluster hierarchies (repeated use of hierarchy building strategy with decreasing th
until only one group is left).

7. Run the algorithm in inference mode for state/event prediction and anomaly detec-
tion.

8. If the results are not satisfactory, go back to step 3. and change the value of w.

2.2.4 The effects of using sliding window sampling
Increasing dimensionality

In robot applications, it is often challenging to use a single data point to characterize
the current process accurately. To address this, the clustering algorithm (Algorithm 1.)
uses sliding-window-based data stream sampling to create inputs for the OCSVMs. The
length of the window (w) and the number of samples used for training (n) determine the
approximate duration of the application states that the algorithm can handle. Windowing
can lead to high dimensionality in the input array (dw number of dimensions), where d is
the number of dimensions in the data points. This results in a trade-off between window
length, number of training samples, sampling rate, and real-time performance. Despite
this trade-off, the increased dimensionality due to windowing can enable linear separation
of the samples in the dw dimensional space, similar to the kernel method. This means that
even if individual data points are not linearly separable in the feature space Rd, they can
still be linearly separated in the high-dimensional space created by the windowing process.

An example of how linear OCSVMs can handle non-linear classification in the feature
space with sliding window-based sampling is shown in Figure 2.1. The data points used

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 36

Fig. 2.1. Using varying sliding window sizes for input stream sampling to train a linear OCSVM for a
non-linear problem

in the example are two-dimensional and were generated by alternating between two states,
each lasting for 200 data points, with a 50 data point transition period between them. One
state was characterized by a normal distribution with a mean of 0 and a standard deviation
of 0.5 in both dimensions, and the other was also a normal distribution with a mean of
0 but with a standard deviation of 2.5, where only values with an absolute value of 3.5
and greater were retained. Multiple linear OCSVMs were trained using different sliding
window widths (w) on a training sequence of 1000 data points with our algorithm. The
figure displays the evaluation results of these OCSVM models, where the color of the
data points corresponds to the OCSVMs’ predictions, given the flattened window of the
w most recent data points as input. Results indicate that using a higher value for w (12
and 24) enables the linear OCSVM models to learn non-linear decision boundaries in the
feature space. It should be noted that the OCSVMs were trained in an unsupervised fashion
without using the correct labels for the states. The error rate reported for each OCSVM in
the figure represents the number of misclassified samples (excluding the transition period).

To further highlight this effect, we also evaluated the proposed clustering algorithm,
using exclusively linear OCSVMs, on three datasets commonly used for testing classifi-
cation models, the Iris Flower dataset [1], the UCI Wine dataset [2], and the UCI Digits
dataset [3]. The datasets exhibit different numbers of features and classes. The Iris dataset
consists of 150 instances which are three-dimensional vectors containing the sepal length,
sepal width, and petal length in cm for the given instance. The task is to classify these
instances into one of three classes. The Wine dataset contains 178 thirteen-dimensional
instances. Each dimension constitutes one of thirteen (chemical) properties (such as alco-
hol level, color intensity, hue, etc.) for wines. The task is to classify instances into one of
three types of wines. The Digits dataset contains 1797 instances, each having sixty-four

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 37

Fig. 2.2. Qualitative evaluation of the proposed clustering approach, using class labels from three different
datasets. The clusters/group of clusters selected by the hierarchy-building strategy were associated with
certain class IDs. A prediction of -1 means that none of the selected OCSVMs/groups recognized the sample

TABLE 2.1
RESULTS OF THE PROPOSED CLUSTERING ALGORITHM COMPARED TO BASELINE CLASSIFICATION

MODELS. VALUES REPRESENT ACCURACY AS REPORTED BY [1, 2, 3]

Xgboost SVM Random Forest Neural Network Logistic regression Ours

Iris 92.105 94.737 89.474 97.368 94.737 82.143(81.6-100) (86.8-100) (78.9-97.4) (92.1-100) (86.8-100)

Wine 97.778 80.000 100.000 97.778 93.333 64.417(93.3-100) (68.9-91.1) (100-100) (93.3-100) (86.7-100)

Digits 96.160 97.607 96.939 96.327 94.880 70.729(95.2-97) (96.9-98.3) (96.1-97.7) (95.4-97.2) (93.8-95.9)

dimensions. Each instance is a 8× 8 sized normalized bitmap of a handwritten digit. The
task is to classify instances into one of 10 classes, each representing a given digit.

It is a common approach to evaluate clustering performance against existing class la-
bels, although class labels may not always be adequate for the data structure, and thus the
evaluation of clustering methods [121]. Nevertheless, the proposed algorithm was able
to develop clusters that closely relate to the class labels in all three test datasets. During
the training procedure, the datasets were converted into data streams by retrieving their
instances according to the corresponding class labels in ascending order. When reaching
the end of a dataset, the stream would start over from the first instance (simulating the
beginning of a new cycle). The best clusters (or groups of clusters) were selected using
the hierarchy-building method. The training of new OCSVMs was terminated after 5000
time steps for all three datasets, although for the Iris and the Wine datasets, meaningful
clusters appeared much sooner (around 1500 and 100 iterations). Figure 2.2. demonstrates
the qualitative prediction results for a cycle after the conclusion of the training procedure
for all three datasets.

For the Iris dataset, the parameters w = 10 and n = 4 were used with ν = 0.2.
On the Wine dataset, w was changed to 15, and for the Digits dataset, it was set to 40.
Table 2.1. shows the quantitative results of the experiments in comparison to baseline
classification methods.

The results show that even though our algorithm did not use class labels and only
utilized linear OCSVM models, it was still able to achieve performance levels similar to
the baseline classification methods, especially in the simpler Iris and Wine datasets. This
is due to the windowing process, which (with the correct selection of w) ensures that the

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 38

samples are linearly separable and that the formed clusters will represent meaningful states
even without explicitly labeling them.

Decreasing computational complexity

The proposed algorithm uses the Wt
train non-overlapping sliding windows for training

dataset creation. This is because using overlapping windows (such as Wt) with a fixed
number of samples results in a shorter time period for collecting training data, leading
to overfitting. In such a scenario, multiple OCSVMs are trained for specific parts of the
event, which do not produce a decision boundary that generalizes well. On the other hand,
if the time period for collecting training data is kept constant, n needs to be increased due
to the overlap. In this case, if we consider the expected length of events in seconds T and
the sampling rate f in Hz, to ensure that w and n are set appropriately, one can follow
equations (2.9) and (2.10) for non-overlapping and overlapping windows, respectively.

n ≈ T f
w

(2.9)

n ≈ T f − w + 1 (2.10)

It is clear that for the same w, there is a difference in n for overlapping and non-
overlapping sliding windows. The computational complexity of the OCSVM training
with a non-linear kernel is typically O(Dn2) or O(Dn3), and for a linear OCSVM, it
is O(Dn), where D is the number of features [114]. With the sliding window-based sam-
plingD = dw, which means for a givenw, this value will be the same for both overlapping
and non-overlapping sliding window-based approaches. On the other hand, the difference
in n between overlapping and non-overlapping sliding windows results in different com-
putational times. The complete computational complexity of training OCSVMs with the
proposed algorithm, using non-overlapping sliding windows for training, and (2.9) to de-
termine w and n is

ttrain ∝ NOCSVMwOtrain

linear:

Otrain = O(dn)→ ttrain ∝ NOCSVMwdn ≈ NOCSVMT fd

non-linear:

Otrain = O(dn2)→ ttrain ∝ NOCSVMwdn2 ≈ NOCSVMT fdn

(2.11)

where Otrain is the original computational complexity of training an OCSVM directly on
the data points.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 39

Fig. 2.3. Number of samples for the training set (n) for different values of w with a fixed sampling rate (f)
and expected event length (T)

Similarly, the computational complexity for the inference with our algorithm is

tinference ∝ NOCSVMwOinference

linear:

Oinference = O(d)→ tinference ∝ NOCSVMwd

non-linear:

Oinference = O(dn)→ tinference ∝ NOCSVMwdn ≈ NOCSVMT fd

(2.12)

where Oinference is the original computational complexity of predicting with an OCSVM
directly on the data points.

Figures 2.3. and 2.4. show the difference in the number of training samples and the
comparison of training times of OCSVMs for fixed T and f when using overlapping
and non-overlapping sliding windows, considering a non-linear (O(Dn2)) and a linear
OCSVM (O(Dn)). The training set size was determined using equations (2.9) and (2.10)
for non-overlapping and overlapping windows, respectively, based on the window size w.
Both w and the number of training samples n fall in the range of 1 to T f , where w = 1
represents a single data point per sampling window and n = T f means that the training
set contains T f data points. When w = T f , there is only one window in the training
set (n = 1). In these extreme cases, the two windowing methods are equivalent, but
n = 1 has no practical use, and w = 1 is equivalent to no windowing. The computational
times are presented on a relative scale, which indicates the magnitude of the difference
between the two methods relative to the duration of events T f . The training and inference
computational times were calculated based on (2.11) and (2.12), respectively, for a single
OCSVM (NOCSVM = 1). The findings indicate that adopting non-overlapping sliding
windows in the training process can lead to considerably faster training times for both
linear and non-linear OCSVMs. Moreover, using non-overlapping sliding windows can
also result in faster inference times for non-linear OCSVMs.

Dehghani et al. provide quantitative analysis on the benefits of using overlapping slid-
ing windows in time-series data for human action recognition [122]. They reveal that
the perceived benefit of improved classification accuracy while using overlapping slid-
ing windows is only due to the evaluation techniques which employ subject-dependent

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 40

Fig. 2.4. Increase in training/inference times when using overlapping windows. (N := NOCSVM)

cross-validation. They demonstrate that with subject-independent cross-validation, there
is no noticeable performance gain when using overlapping sliding windows instead of non-
overlapping ones. They also point out that using overlapping sliding windows increases
the computational time and memory requirement of the process due to data duplication.
This further supports our approach of using non-overlapping sliding windows.

The equivalent of subjects in the study by Dehghani et al. in our case, would be differ-
ent robot setups/applications. For our method, the cross-environment generalization is not
yet explored, and it is also not strictly required since the method learns in an unsupervised
and online fashion, and it is intended to be re-trained for each new application.

Evaluating our method on the Iris and Wine datasets while using overlapping sliding
windows for training revealed that the use of overlapping sliding windows does not provide
a substantial increase in performance compared to using non-overlapping windows. In the
meantime, the amount of stored data drastically increased, and the ν parameter of the
OCSVMs had to be altered significantly to avoid overfitting. However, this resulted in
an increased number of trained OCSVM models. On the Iris datasets, we achieved an
accuracy of 85.0 (compared to 82.143 using non-overlapping windows) with ν = 0.4,
w = 10, and n = 40. After the same number of iterations, 65 OCSVMs were trained
instead of the 10 OCSVMs when using non-overlapping windows. Similarly, in the Wine
dataset, we achieved an accuracy of 69.325 (compared to 64.417 using non-overlapping
windows), with ν = 0.6, w = 15, and n = 60, while training 59 OCSVMs instead of 10.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 41

2.2.5 Experimental results
The proposed online clustering algorithm was validated through a life-like collaborative
robot application using the KUKA LBR iiwa 7-DOF industrial robot. The experiment
imitates circumstances in an assembly application where the robot arm is dealing with
non-ergonomic and highly repetitive jobs while the human worker is responsible for the
tasks that require more developed manual skills. For the validation of an online clustering
algorithm, concept drift also had to be taken into consideration.

The main requirements for the robot application, in order to serve as a suitable test-bed
for the algorithm, are:

1. The application must consist of clearly separable states or events.
2. During the operation, there must be continually changing circumstances so concept

drift can develop.
3. In the application, unplanned events (anomalies) should appear at unexpected times.
4. The application must exploit collaboration between the robot and the operator.

The experimental investigation was aimed to identify the states of the robot application
automatically with the method shown in Algorithm 1.

In the experimental robot application, the robot draws polygons on a sheet of paper
using a pencil as a tool. The application consists of two parts. During the first part,
the human operator can teach the four vertices of a quadrilateral by moving the robot’s
flange by hand. This makes use of the collaborative nature of the robot application while
enabling tasks that are similar in nature (corresponding stages of operation can be easily
determined) but not identical since the human worker cannot move the flange to the exact
same pose each time.

In the latter phase of the application, the robot operates autonomously without any
collaboration. Its task involves producing polygons by linking previously learned vertices
with straight lines. Upon completing a polygon, the robot creates a brief line segment
that extends toward the center of the shape and proceeds to generate a smaller concentric
polygon within the preceding one. For optimal tilt angle, the robot uses a distinct pencil
orientation when drawing the first two edges compared to the last two edges. The process
is then repeated for a total of 15 polygons following this procedure, after which the robot
reverts to drawing the largest polygon to commence a new cycle.

The distinct states of drawing each side of the polygons are evident and easily distin-
guishable within the process. In our experiments, the clustering algorithm was used to
identify and distinguish between four states that corresponded to drawing the four sides of
the polygons. Concept drift appears in the experiment as the top of the pencil gradually
wears away and as the robot draws smaller and smaller polygons in one cycle.

In addition, the output from the clustering process is utilized to identify anomalies such
as a worn-out or broken pencil tip, thereby showcasing the algorithm’s anomaly detection
capabilities. If an anomaly is detected, the robot completes the ongoing polygon before
using a fixed pencil sharpener located within its workspace to sharpen the pencil. It is
important to note that the pencil may reach critical wear or break at any point during the
robot’s operation. Figure 2.5. shows the robot performing the drawing task. Such a robot
application fulfills all the previously specified requirements.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 42

Fig. 2.5. The experimental robot application

During the evaluation, the main performance measure was whether the automatically
detected states could be associated with the real-world working phases of the robot cell
or not. Additionally, the assessment also examined the algorithm’s capability to identify
anomalies during the inference stage. The evaluation was carried out for the part of the
application when the robot draws the four sides of the polygon. Accordingly, four states
were associated with the four sides.

During the experiment, the values of w and n were set to 15 and 20, respectively. This
translates to 0.075 seconds for each sample and approximately 1.5 seconds for a training
set, assuming a sampling frequency of 200Hz. We used the scikit-learn software library
[123] for the OCSVM implementation, which uses LIBSVM [118] and the OCSVM im-
plementation from Schölkopf et al. ([43]), and we set ν = 0.05. The OCSVMs used the
RBF kernel (2.6) with γ = 2.0. It is important to note that in other applications, the values
of w and n may require adjustment based on the expected duration of the working phases
to be identified.

The input data stream for the algorithm comprised of force and torque values obtained
from the robot’s Tool Center Point (TCP), with the cartesian position of the TCP also
being recorded simultaneously. The data stream was manually annotated using simple
heuristics, which aided in the evaluation of the algorithm’s prediction results. During the
evaluation phase, the robot completed two full working cycles, which involved drawing
15 concentric polygons consecutively. The results indicate that after approximately 25000
data points (either at or just after the conclusion of the first full cycle), the number of
OCSVMs ceased to increase, indicating no further appearance of unknown states, and the
state transients became regular and clearly identified the states of the robot application.
The progression of the number of OCSVMs during the first cycle can be seen in Figure
2.6.

Figure 2.7. shows the prediction results for one polygon drawing after the stopping cri-
terion has been met. The upper graph represents the position of the robot’s TCP along the

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 43

 0.46
 0.48
 0.5
 0.52
 0.54
 0.56
 0.58
 0.6

 0 20 40 60 80 100

x

[
m
]

−2
 0
 2
 4
 6
 8
 10
 12
 14
 16

 0 20 40 60 80 100

N
u
m
b
e
r

o
f

s
t
a
t
e
s

/

S
t
a
t
e

I
D

time [s]

Number of recognisable states
State ID

Fig. 2.6. Development of the number of OCSVMs in the ensemble during the first cycle of the robot
operation. A state ID of -1 means an unrecognized state (none of the OCSVMs recognized the sample). In
those cases, a new OCSVM was trained and added to the ensemble. If multiple OCSVMs activated, the one
with the lowest ID was used

 0.48
 0.49
 0.5

 0.51
 0.52
 0.53
 0.54
 0.55
 0.56
 0.57

 160 161 162 163 164 165 166 167 168 169

A B

CD

A B

CD

A B

CD

A B

CD

x

[
m
]

A B C D A1.

2. 3.

4.

 4
 6
 8

 10
 12
 14
 16
 18

 160 161 162 163 164 165 166 167 168 169

S
t
a
t
e

I
D

time [s]

Fig. 2.7. Results of the clustering in inference mode

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 44

x-axis, while the lower graph portrays the ID of the active OCSVM model (corresponding
to detected states) at all times. The figure clearly shows that the state transitions coincide
with the manually determined location where the vertices (A, B, C, and D) are drawn.

During the evaluation, the algorithm could identify over 95% of the states after the
first cycle (during which new OCSVMs were still trained) and 100% of anomalies (man-
ually breaking the tip of the pencil). Using the hierarchy-building strategy, we also ob-
tained groups of OCSVMs that predicted states that corresponded to orientation changes
of the gripper. Naturally, since the orientation is only changed after drawing two sides
of the polygon, the group, which could recognize a given orientation, incorporated both
OCSVMs recognizing the polygon sections with the same orientation, thereby establishing
a hierarchy between OCSVMs.

In addition to the experimental setup, the proposed algorithm was successfully de-
ployed in an industrial context during the 2018 Pioneers Industry 4.0 Hackathon challenge
held in Linz. The algorithm was part of the winning proposal in the Digital Twin category
by the joint teams of REACH Solutions and MaxWhere, and it was applied to a packaging
robot application for automatic state discovery and anomaly detection using a data stream
of the robot’s Cartesian pose.

The proposed algorithm has a limitation in that it may not generate accurate predictions
for binary features. This could be due to the fact that the data points are closely clustered
together, with little variation to distinguish meaningful differences. Decision-tree-based
methods may be better suited for binary data in this regard.

2.3 OCSVMs for evaluating generative models
With the outstanding recent achievements of diffusion-based image synthesis models such
as Stable Diffusion models or DALL-E [99, 97], interest in generative models is higher-
than-ever. Such approaches are able to learn the underlying probability distribution in a
provided dataset and sample new data points using their own representation of the data
distribution. This means that a dataset can be enriched by novel synthesized data points,
which is a great potential for training large DL models that require huge datasets. Robotics,
in particular, could benefit tremendously from synthetic data generation, as the collection
of real data in the context of robotics often involves performing the robot application with
the real robot as well. Naturally, using real robots for extended amounts of time for the
sole purpose of large-scale data collection is very expensive and time-consuming [30].
Synthetic data can be generated at much lower costs, and as such, it is very beneficial to
use.

However, one big drawback of generative models is that the evaluation of the quality of
the synthesized data often relies on subjective metrics. This makes it difficult to compare
multiple models and decide which one would be better suited for a certain task.

In this section, an evaluation method is proposed for generative models, which is based
on the clustering method described in Section 2.2.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 45

2.3.1 Evaluation of Generative Adversarial Networks
In recent years, Generative Adversarial Networks (GANs) [124] have become widely pop-
ular among various types of generative models due to their ability to generate high-quality
data automatically. GANs are composed of two neural networks that compete with each
other, namely a generator and a discriminator. The discriminator network is responsible
for distinguishing real and generated samples, while the generator network aims to gen-
erate synthetic samples of high quality from random input vectors in a way that deceives
the discriminator network. This joint training process enables the generator to learn and
replicate the underlying probability distribution of the original dataset. As a result, the
discriminator network can later be used as a feature extractor, with the advantage that its
training does not require supervision [103].

Once both networks have been trained, it is possible to examine the output of the
generator network by interpolating in its input space [124, 103]. The generated results
exhibit a smooth transition when the corresponding input vectors (inputs to the genera-
tor network) are sampled along the interpolated paths. This smoothness suggests that the
discriminator network developed a meaningful representation of the feature space, which
implies that it can extract reliable, general low-level features even when the training sets
are discontinuous in the feature space [124, 103]. This makes GANs well-suited for train-
ing good-quality feature extractors for large datasets without supervision. As an example,
Deep Convolutional GANs (DCGANs) developed by Radford et al. incorporate the advan-
tages of GANs with the efficiency of convolutional layers, allowing for the generation of
higher resolution images [103]. By training DCGANs on large image datasets, pre-trained
feature extractors can be obtained, which can be used later for specific purposes through
transfer learning techniques.

However, GANs struggle with the drawback that there is no simple, objective mea-
sure for their performance. Thus, a significant amount of research is being conducted to
identify appropriate evaluation metrics for GANs. To this end, the Google Brain team
conducted a comprehensive study comparing various GAN models and popular evalua-
tion metrics [125]. They also introduced new benchmark datasets that employ precision
and recall metrics to evaluate GANs. In conclusion, the team emphasized the need for
future research on GANs to be based on objective evaluation metrics. The most popular
techniques for GAN evaluation utilize an independent pre-trained feature extractor, such
as the Inception model [126]. This approach involves the statistical analysis of the fea-
ture distribution of the feature extractor’s output for actual and generated input samples,
resulting in evaluation metrics such as the Inception Score (IS) and the Fréchet Inception
Distance (FID) [127, 128]. Alternatively, some techniques aim to establish a geometrical
interpretation for comparing actual and generated samples, including the Geometry score
[129].

As per the aforementioned techniques, an effective evaluation metric can leverage an
independent model like the Inception network. It can also be advantageous if the method
has a geometric interpretation. This section demonstrates the potential benefits of the
OCSVM-based clustering approach (Algorithm 1.) for evaluating generative models.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 46

2.3.2 Methodology
The proposed approach aims to establish a performance metric for generative models that
is independent of the model’s training procedure and architecture. Similar to the Fréchet
Inception Distance, the clustering-based method offers a probabilistic interpretation, but
it does not rely on features from a pre-trained feature extractor. As such, it can evalu-
ate generative models without being tied to the semantics of the generator’s output data.
While most generative models are used for image generation, where pre-trained feature
extractors, such as the Inception model, can be used to assess generated samples, training
a generative model on non-visual data without an existing pre-trained feature extractor
can also be beneficial (since GAN models can be used to acquire a pre-trained feature
extractor, without data labeling). However, when no pre-trained feature extractor exists
for the given data type, evaluation methods based on pre-trained feature extractors cannot
be used. The proposed method overcomes this issue by providing an evaluation method
that is not dependent on a pre-trained feature extractor. Additionally, the proposed method
can be applied in scenarios where data is not interpretable by humans, making it hard to
evaluate the generative model empirically.

Furthermore, SVMs have a simple geometric interpretation (learning a separating hy-
perplane) which makes this measure similar to the Geometry Score as well. The proposed
method only requires the original and generated samples for evaluation and does not rely
on the generative method and its structure. Thus, it can be expanded for multiple genera-
tive model types and training procedures. As a proof of concept, the evaluation of some
test GANs is elaborated.

To train the clustering method, we randomly select a subset of the real dataset with
n samples and set w to 1. We apply the algorithm to all n samples, resulting in a single
trained OCSVM, which can be employed for evaluation. Subsequently, we can evaluate
different generative models trained on the same dataset by feeding their generated samples
to the OCSVM and computing the probability of a randomly drawn synthetic sample being
classified as an outlier. The generative models with smaller outlier probabilities generate
samples that have a probability distribution more similar to the original ones. Moreover,
apart from the relative comparison of different generative models, the outlier probability
can also indicate the absolute performance of a single generative model if we examine
it based on a pre-determined probability of the possible outlier probability for samples
drawn from the real dataset.

Naturally, the performance measure relies on the specific OCSVM model used, which
means that comparisons are only valid if they employ the same OCSVM. Additionally,
it is crucial to acknowledge that a low outlier percentage does not guarantee diversity.
Thus, the method provides an upper bound for the model’s performance and is susceptible
to mode collapse as it currently stands. Due to mode collapse, the GAN may generate
samples that originate from a subset of the input space, denoted as Sgenerated ⊂ S. If the
centroid of this subset lies within the decision boundary of the OCSVM, the generated
samples will have very few outliers. To overcome this issue, the proposed method could
be augmented with a diversity measure in the future, allowing for the detection of varying
degrees of mode collapse.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 47

2.3.3 GAN evaluation experiments
We conducted two experiments to illustrate the potential of the proposed performance
measure in evaluating GAN models. The first experiment showcases how our approach
can be a reliable evaluation method for the comparative and absolute assessment of GAN
models using a simple custom GAN architecture and data from the MNIST dataset [130].
Additionally, the experiment displays the impact of mode collapse on the performance
scores. In the second experiment, a comparative analysis is performed between our method
and the Inception Score (IS) and Fréchet Inception Distance (FID) scores, utilizing pre-
trained IC-GAN models [131] and data from the ImageNet dataset [50].

Custom GAN on MNIST data

In order to test the applicability of the proposed method, a test task for model comparisons
was set up. This task is to generate samples similar to the MNIST dataset [130], which
consists of 28x28 pixel grayscale images of handwritten digits.

For the experimentation, a simple GAN structure was created, as illustrated in Figure
2.8. The generator network is a fully connected neural network comprising three hidden
layers and an output layer. The hidden layers consist of 256, 512, and 1024 neurons,
respectively, while the output layer has 784 neurons, which is equal to the number of pixel
values in a 28x28 image. The network’s input is a latent vector z ∈ R100, with the vector
elements drawn from a noise source with a standard normal distribution. The Leaky ReLU
activation function is applied to the hidden layers, while the hyperbolic tangent function
is used for the output layer. The network’s weights are initialized randomly via a uniform
distribution.

The discriminator network is also a fully connected neural network with three hidden
layers, and it takes a flattened image as its input (x ∈ R784). The hidden layers are made
up of 1024, 512, and 256 neurons, respectively, and use Leaky ReLU activation. The
output layer has one neuron and uses a hyperbolic tangent activation function. Dropout
was applied after all hidden layers with a dropout rate of 0.5 to avoid overfitting.

The generator network, G(), takes a latent vector (z ∈ R100) and produces a flattened
image, denoted as x = G(z), (x ∈ R784). The discriminator network, D(), accepts a
flattened image as its input that can come either from the generator or from the original
dataset. The output of D() for a given (x ∈ R784), denoted as y = D(x), is a scalar value
(y ∈ R) signaling whether the given input is a generated sample or a real sample that is
drawn from the original dataset.

During training, the discriminator is trained to be able to distinguish the generated
images from the real ones. The objective of the generator network is to fool D() by
generating synthetic images that are very similar to the original ones. The training process
of these competing networks can be interpreted as a mini-max two-player game between
D() and G() [124], and it can be formulated as

min
G

max
D

V (D,G) = Ex∼Pdata(x)[log2D(x)] + Ez∼Pz(z)[log2(1−D(G(z)))]. (2.13)

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 48

input layer

hidden layers

output layer

fc fc fc fc

neur# = 100

neur# = 256, 512, 1024

neur# = 784
Linear

Leaky ReLU

tanh

latent

vector

(z)

z0

z1

z99

attened

image

(x)

x0,0

x0,1

x27,26

x27,27

(a)

fcfcfcfc

x0,0

x0,1

x27,26

x27,27

attened

image

(x)

input layer

neur# = 784
Linear

hidden layers

neur# = 1024, 512, 256
Leaky ReLU

output layer

neur# = 1
tanh

(b)

classification

output

drop drop drop
y

Fig. 2.8. Test model architecture (a) Generator architecture (b) Discriminator architecture

The discriminator network utilizes the cross-entropy loss function. For a batch of
training samples, which can be computed as

1

b

b∑
i=1

[log2D(x(i)) + log2(1−D(G(z(i))))]. (2.14)

The loss for the generator network for a training batch can be described as the second
term of (2.14), so the generator loss is

1

b

b∑
i=1

log2(1−D(G(z(i)))). (2.15)

For the minimization of the loss function, both networks used the Adam optimizer with
a learning rate of 0.0001.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 49

IC-GAN on ImageNet data

The MNIST dataset contains 28×28 pixel grayscale images, resulting in a 784-dimensional
sample space. Despite its considerable size, this dimensionality pales in comparison to
samples encountered in traditional image-processing tasks. To illustrate the applicability
of the proposed evaluation method to high-dimensional data, we employ it to assess GAN
models for ImageNet data. For this experiment, we focus on a tiny subset of the ImageNet
dataset, comprising 169 images exclusively from the "West Highland White Terrier" class,
to evaluate various Instance-Conditioned GAN (IC-GAN) models. IC-GANs facilitate
instance-based conditioning for image generation by training on a partitioned data mani-
fold with overlapping regions, each represented by a data point and its nearest neighbors
[131]. Consequently, they capture the local distribution around each data point. When
conditioned with a specific instance, IC-GANs can generate samples that map to the prox-
imity of the conditioning instance on the data manifold, ensuring the generated samples
resemble the conditioning instance.

For our experiments, we employed pre-trained IC-GAN models1 without further train-
ing, conditioning them with an instance from the ImageNet dataset. The chosen condi-
tioning instance is from the "West Highland White Terrier" class; thus, in evaluating the
models, we compare the generated samples with a set of 169 images from the ImageNet
dataset belonging to the same class. The output of the IC-GAN models is a 256×256 RGB
image. Accordingly, all real images were resized to a 256×256 resolution, resulting in a
196,608-dimensional sample space. Employing our proposed method, we utilized all 169
real samples to fit OCSVMs for GAN model evaluation.

We present results for three distinct IC-GAN models, employing the Inception Score
(IS), Fréchet Inception Distance (FID), and outcomes from our proposed evaluation method.
All three models utilize the BigGAN backbone [132]. One model, IC-GAN-COCO, un-
derwent training on the COCO-Stuff dataset [133], while the other two were trained on
ImageNet. One of the latter two models, which we refer to as IC-GAN-ImageNet-halfcap,
used a reduced channel multiplier (as in [131]), affecting the network width. The other
model we refer to as IC-GAN-ImageNet.

2.3.4 Results
Custom GAN on MNIST data

In order to demonstrate the use of the proposed evaluation method, GAN models were
trained for 10000, 25000, and 50000 iterations with batch sizes of 50 and 100. The dis-
criminator weights were updated two times for each generator weight update (k = 2), and
the learning rates were 0.0001 for all models. The GANs were implemented through the
Python API of the TensorFlow deep learning framework [134].

To demonstrate the consistency of the comparative results, multiple OCSVM models
were created, all trained on 20000 randomly sampled images of the MNIST dataset (n =
20000, w = 28× 28 = 784). To match the output range of the GAN generator, the image

1Implementation and weights available at https://github.com/facebookresearch/ic_
gan

https://github.com/facebookresearch/ic_gan
https://github.com/facebookresearch/ic_gan

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 50

Fig. 2.9. Outliers from the MNIST dataset

pixels were scaled to the [−1, 1] interval. Implementation of the OCSVM models was
carried out using the scikit-learn Python module [123].

For each GAN, the non-outlier probability was determined by calculating the average
percentage of non-outliers from 500 generated images, repeated a hundred times.

Two GAN models were trained for all iteration/batch size combinations. The GANs
are named like a_b_c where a is the number of iterations, b is the batch size, and c is the
model number. The evaluation was performed with linear OCSVM models using ν = 0.01
and ν = 0.05. For both values of ν, three OCSVM models were trained with different
randomly sampled training sets.

In the case of OCSVM models with ν = 0.01, the probability of a real sample from
the MNIST dataset being an outlier is 1%. For models with ν = 0.05, this probability
increases to 5%, based on the OCSVM formulation in (2.2). This property was confirmed
through the collection of additional testing sets of samples from the MNIST dataset, which
were disjoint from the training sets. The outlier probabilities were calculated in these
sets using the different OCSVM models. The outliers within the MNIST dataset were
mostly represented by samples that appeared faulty or anomalous. This suggests that
OCSVMs are capable of identifying samples that a human observer would also consider
faulty. Figure 2.9. displays some samples from the MNIST dataset that were classified as
outliers by an OCSVM model with ν = 0.01.

TABLE 2.2
AVERAGE PROBABILITY OF GENERATING NON-OUTLIER SAMPLES FOR

DIFFERENT GAN MODELS

OCSVM
ν = 0.01 ν = 0.05

G
A

N
m

od
el

10000_50_1 0.982 0.981 0.978 0.957 0.951 0.950
10000_50_2 0.861 0.861 0.853 0.803 0.800 0.799
10000_100_1 0.899 0.900 0.897 0.849 0.840 0.842
10000_100_2 0.856 0.852 0.842 0.787 0.772 0.778
25000_50_1 0.916 0.916 0.917 0.852 0.850 0.847
25000_50_2 0.934 0.933 0.933 0.874 0.870 0.871
25000_100_1 0.966 0.967 0.965 0.922 0.920 0.921
25000_100_2 0.920 0.919 0.915 0.853 0.845 0.845
50000_50_1 0.979 0.978 0.976 0.947 0.939 0.942
50000_50_2 0.964 0.963 0.957 0.922 0.918 0.918
50000_100_1 0.956 0.954 0.950 0.895 0.886 0.888
50000_100_2 0.959 0.958 0.956 0.904 0.898 0.904

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 51

Fig. 2.10. Generated images of some models

Table 2.2. shows the results of the experiments, and Figure 2.10. shows non-cherry-
picked and randomly sampled generated images from some of the models that were used
for the experiments.

Table 2.2. demonstrates that higher scores (less probability of a generated sample being
an outlier) are achieved with more training iterations of the GANs. The batch size does not
significantly affect the scores. The use of different OCSVM models to evaluate the GANs
produces similar results, maintaining the relative ranking according to the performance
measure. Thus, the proposed method is robust enough to be employed as an independent
and objective evaluation method.

When comparing the scores with the generated images in Figure 2.10., we can observe
that models with higher scores tend to generate visually more appealing samples. It is
noteworthy that model 10000_50_1 achieved an exceptionally high score. However, the
generated images reveal that this is due to mode collapse, as the model predominantly
generates images of the number one while ignoring other classes. Model 25000_100_1
also exhibits a mild form of mode collapse. It is important to note that this measure does
not account for diversity as it is. A model that generates very similar samples within the
decision boundary of the OCSVM will have a low probability of generating outliers. This
limitation can be addressed by employing a diversity metric for the generated samples and
performing evaluation using a combined measure.

The presented results clearly suggest that the proposed clustering-based approach us-
ing OCSVM models for computing the evaluation metric is a feasible approach for evaluat-
ing generative models. This method combines probabilistic and geometric approaches and

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 52

has several advantages over previous methods. One key benefit is that it does not require
an external benchmarking dataset or a pre-trained feature extractor, making it applicable
to any kind of data. Moreover, the OCSVMs used for evaluation are trained directly on
the training dataset for the generative model in an unsupervised fashion. For large datasets
with many features, linear OCSVMs can be used as demonstrated, which can be trained
faster than large deep neural networks such as the Inception model. Furthermore, it has
already been proven that the training time of linear SVMs decreases with the increase of
the training dataset size for a fixed generalization error [135]. The proposed evaluation
metric is also robust to changes in OCSVM parameters, such as ν, and consistently ranks
models regardless of these values. It can be used to evaluate a single generative model or
to compare two or more models trained on the same dataset.

However, a drawback of this approach is its inability to detect mode collapse, which
should be evaluated using a separate measure of sample diversity. It is also not yet clear
how well this method performs on special architectures, such as cGANs and other types
of generative models. Overall, the proposed OCSVM-based evaluation metric presents a
promising alternative for evaluating generative models.

IC-GAN on ImageNet data

Figure 2.11 depicts the generated samples from the IC-GAN-ImageNet, IC-GAN-Image-
Net-halfcap, and IC-GAN-COCO models. Employing our proposed evaluation method,
three distinct linear OCSVMs were trained on the 169 real samples, with ν values set to
0.5, 0.6, and 0.7. The ν value controls the metric’s sensitivity. To accommodate high-
quality generated data that closely resembles real samples, ν is incrementally adjusted
until the metric is no longer "saturated" (saturation implies the absence of outliers in the
generated samples, leading to the GAN achieving the maximum possible score of 1.0).
Table 2.3 presents the performance scores computed using our method, denoted by the
corresponding ν values, along with the IS and FID scores.

Fig. 2.11. Generated samples from the IC-GAN-ImageNet, IC-GAN-ImageNet-halfcap and IC-GAN-
COCO models

Observing Figure 2.11, it is evident that the IC-GAN-COCO model struggled to gener-
alize to the "West Highland White Terrier" class under the selected instance conditioning.
This outcome is expected, considering the model was trained on the COCO-Stuff dataset,
which lacks images from the "West Highland White Terrier" class. This observation is

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 53

TABLE 2.3
COMPARISON OF EVALUATION METRICS (IS, FID, AND OUR PROPOSED METHOD USING ν = 0.5,

ν = 0.6, AND ν = 0.7) ON DIFFERENT IC-GAN MODELS. AN UPWARD ARROW NEXT TO THE SCORE

NAME MEANS HIGHER VALUES ARE BETTER, AND A DOWNWARD ARROW MEANS LOWER VALUES ARE

BETTER.

Model IS↑ FID↓ ν = 0.5↑ ν = 0.6↑ ν = 0.7↑
IC-GAN-ImageNet 1.5728 4.2307 0.92 0.92 0.8
IC-GAN-ImageNet-halfcap 1.4196 4.5334 1.0 0.96 0.88
IC-GAN-COCO 1.7246 6.2961 0.28 0.16 0.08

further supported by the low scores associated with this model in our proposed evaluation
method and the highest FID value. On the other hand, the Inception Score assigns a high
score to this model, highlighting one of the drawbacks of IS. IS is derived from the KL
divergence between label distributions and the sum of label distributions (marginal dis-
tribution) of the generated samples after processing through the Inception model [127].
The score is high for dissimilar label and marginal distributions, meaning sharp label
distributions (representing distinct objects in an image) and a nearly uniform marginal
distribution (indicating the generator’s ability to produce samples from multiple classes).
Consequently, IS falls short in capturing intra-class diversity, leading to conflicting results
in our experiment compared to FID, our proposed method, and even human judgment. In
contrast, our proposed performance measure assigns a low score to the IC-GAN-COCO
model, consistent with the computed FID values and human evaluation of the generated
samples.

Our proposed method assigns a higher score to the IC-GAN-ImageNet-halfcap model
compared to the IC-GAN-ImageNet model, in contrast to the findings from FID, where the
IC-GAN-ImageNet model emerged as the top performer. Although the score difference
between these two models is not as significant as their difference from the IC-GAN-COCO
model, a potential explanation could be a mild case of mode-collapse in the IC-GAN-
ImageNet-halfcap model. While subjective judgment is required to determine whether
the outputs of IC-GAN-ImageNet or IC-GAN-ImageNet-halfcap appear more realistic, it
is apparent that IC-GAN-ImageNet generates a more diverse set of samples, including
images with multiple dogs and out-of-frame faces. Conversely, most outputs from the
IC-GAN-ImageNet-halfcap model depict a single front-facing dog. The higher score of
the IC-GAN-ImageNet-halfcap model might be attributed to this narrower distribution of
generated samples, leading to a larger ratio falling within the decision boundaries of the
OCSVMs. A more in-depth analysis involving multiple classes and a more extensive set of
generated samples is needed to make a definitive judgment on the superiority of these two
models. Nevertheless, the experiment demonstrates that our proposed evaluation metric
aligns with FID and human evaluation.

PART 2. STATE AND ANOMALY DETECTION BASED ON REAL-TIME CLUSTERING 54

2.4 New scientific results

Thesis 1
I present a new clustering algorithm (Algorithm 1.) for the automatic online and real-time
classification of operation states and detection of anomalies in robotic applications utiliz-
ing finite state descriptor dimensions and continuous numerical features. Besides robotics
applications, the use of the algorithm can be generalized to the evaluation of generative
machine learning models. The effectiveness of the proposed method was demonstrated on
a representative collaborative robot application, as well as through successful implemen-
tation in a real-world industrial setting.

Sub-thesis 1.1

I showed that a dynamically constructed ensemble of OCSVMs together with a contin-
gency table can be used to discover a multi-level hierarchy of elementary states using a
bottom-up hierarchy-building strategy (Algorithm 3.).

Sub-thesis 1.2

Through representative examples, I showed that using non-overlapping sliding windows
in the input data stream for acquiring training samples significantly reduces the compu-
tational time without significantly degrading the prediction performance. I provided for-
mulas for determining the computational requirements depending on the parameters of the
method (2.11) and (2.12).

Sub-thesis 1.3

I demonstrated that the OCSVM-based anomaly detection approach, initially designed for
robotics applications, can be effectively used to evaluate generative machine learning mod-
els through statistical analysis of synthesized outputs. Unlike current evaluation methods,
this approach is able to evaluate models independently of the output data semantics, as it
does not require a pre-trained feature extractor.

Related publications: [KA1, KA2, KA3]

Part 3

CROSS-MODAL MAPPING-BASED
TRANSFER LEARNING USING
PRE-TRAINED RGB FEATURE
EXTRACTORS

Transfer learning in deep learning (DL) typically involves reusing the feature extractor
of a large deep learning model pre-trained for image recognition on a massive dataset of
RGB images. The image recognition head is replaced with a different network, enabling
"fine-tuning" on a smaller dataset for a specific task without altering the weights of the
pre-trained feature extractor [47, 48]. Here, we consider the source domain to be the
large-scale dataset for image classification and the target domain to be the smaller dataset
for a specific task. Transfer learning assumes that if the source domain dataset is ade-
quately representative, the pre-trained feature extractor can produce meaningful features
for the target domain data without updating its weights. This approach is advantageous
because it allows the utilization of high-level, descriptive features without training a large
feature extractor model, which would require significantly more training data and time.
However, certain problems may necessitate using modalities other than RGB for which
pre-trained feature extractors do not exist. This part demonstrates how transfer learning
can still be employed for such problems by specifying an appropriate cross-modal map-
ping for the input data. We support this statement with experiments focused on moving
object segmentation in video sequences that utilize optical flow modality in the input of
RGB pre-trained feature extractors.

First, the cross-modal mapping approach is introduced, which enables the encoding
of optical flow and grayscale image data as an RGB image. Then, a new DL model, the
OFSNet (Optical Flow Segmentation Network), is proposed, with which we demonstrate
how the cross-modal mapping approach can be utilized with an RGB pre-trained feature
extractor for the segmentation of moving obstacles in a real-world mobile robot naviga-
tion task leveraging optical flow information. Additionally, we provide evaluation results
on the DAVIS dataset for moving object segmentation, using the OFSNet model and U-
Net variants employing the cross-modal mapping method against other state-of-the-art
approaches. Finally, we propose a new loss function and corresponding training strategy,

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 56

which were utilized for the training of the OFSNet model to mitigate the effects of the
imbalance between the object and background mask sizes.

3.1 Optical-flow input for models pre-trained on RGB data

3.1.1 Motivation and related approaches
Detecting motion and segmenting moving objects in video sequences is a crucial com-
puter vision task that supports object tracking and recognition in various fields, such as
video surveillance, mobile robotics, and self-driving cars. However, solving this problem
remains challenging due to several factors, like camera motion, dynamic backgrounds,
occlusions, shadows, and changes in lighting conditions.

Background subtraction methods are often utilized for detecting moving objects in
video sequences, assuming a static background, particularly in video surveillance systems
[136]. These methods involve estimating a model of the background and then classify-
ing the pixels of a given video frame as either background or foreground based on their
similarity to the background model. Various techniques exist for background modeling,
including those that rely on local patterns of textures and photometric features [137, 138],
as well as those that use a mixture of Gaussian distributions [139, 140]. Recently, Patil and
Murala proposed a background estimation and foreground segmentation method using a
DL approach, specifically the Generative Adversarial Networks architecture [141]. Other
studies have shown that beyond simple images, additional modalities can also be utilized
for background modeling. For example, Sun et al. proposed a method that leverages
RGB-D data for this purpose [142].

One limitation of background modeling methods is that they often require an initial
background model, meaning the first few video frames cannot contain any moving ob-
jects, which cannot always be ensured in real-life scenarios. Additionally, these meth-
ods are typically restricted to situations where the camera is stationary, although some
special exceptions exist [143]. Consequently, while background subtraction methods are
well-suited to problems like video surveillance, they are not suitable for detecting moving
objects based on frames from onboard cameras of mobile robots and autonomous vehicles.

Other methods use edge and boundary detection techniques to track moving objects in
a scene [144, 145, 146]. These methods typically calculate the difference between edge
maps from consecutive frames to identify moving edges. Additionally, several proposals
for predicting object boundaries use DL models [147, 148, 149, 150]. Such techniques
can also be employed for object detection and semantic segmentation [151, 152]. Gupta
et al. introduced a method for object detection that utilizes contour detection based on
RGB-D data, and a deep learning model [153].

Kao et al. [154] proposed a geometric approach for segmenting moving objects, which
employs optical flow and estimated depth. In scenarios where the camera is also in motion,
such as self-driving cars or mobile robots, the optical flow must be adjusted according to
the camera’s motion. This issue was thoroughly discussed by Thompson and Pong [155].
To tackle this challenge, Bideau et al. proposed a hierarchical method that first employs
an optical flow-based geometric approach, followed by a convolutional neural network for
motion segmentation [156].

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 57

A method proposed by Bors and Pitas [157] utilizes a median radial basis function
network for optical flow estimation, and moving object segmentation is carried out based
on the smooth optical flow predicted by their model. Joint estimation for optical flow and
moving object segmentation has been investigated by Junhwa, and Stefan [158]. Fragki-
adaki et al. proposed a method for moving object detection based on optical flow bound-
aries and DL [159]. Their approach employs a two-stream convolutional network that
utilizes RGB and optical flow data to generate a moving objectness score for the given
region of a bounding box, with moving objectness proposals originating from the optical
flow boundaries.

Zhou et al. proposed a method for zero-shot video object segmentation called MATNet
[160]. The approach utilizes a two-stream encoder to process both RGB video frames and
optical flow data and a decoder that considers predicted object boundaries. To obtain opti-
cal flow, the PWC-Net, a convolutional neural network, is employed [161]. Additionally,
the method incorporates a Motion Attentive Transition (MAT) block, which enables the
encoder to learn interleaved motion and appearance representation, preventing overfitting
on object appearance [160].

To prevent overfitting when training complex deep learning models on small, spe-
cialized datasets, it is recommended to utilize pre-trained networks with transfer learn-
ing. While numerous pre-trained feature extractors exist for RGB image data, using other
modalities with a close connection to visual information, such as depth, optical flow, or
surface normals, can sometimes be a better choice, as demonstrated by many of these pre-
vious approaches. However, incorporating additional modalities, such as optical flow data,
into transfer learning can be challenging. To address this issue, we propose a method to
utilize feature extractors, which were pre-trained on RGB image data, in domains where
modalities other than RGB might be better suited, by taking advantage of a cross-modal
mapping for the inputs. To demonstrate this method, we introduce Optical Flow Segmen-
tation Network (OFSNet), a deep neural network designed for moving object segmentation
in video sequences for mobile robot navigation, which exploits optical flow information
and transfer learning with RGB pre-trained feature extractors.

3.1.2 Methodology
For DL-based semantic image segmentation, pre-trained networks are commonly utilized.
In their research ([162]), Long et al. proposed the use of "fully-convolutional" neural net-
work architectures for image segmentation, which employed pre-trained models such as
AlexNet from [7], VGG net from [52], and GoogleNet [126]. Their approach showed
that fully convolutional architectures result in a flexible model that can process inputs
of arbitrary sizes while achieving state-of-the-art accuracy and speed. The authors also
introduced the skip architecture, which combines deep semantic information with shal-
low appearance information to produce refined segmentation results. The U-Net model,
initially developed for semantic segmentation in biomedical fields [73], is a popular ap-
proach that employs a fully convolutional network architecture and skip connections. The
architecture comprises a compressing and expanding part, where the compressing part is
a traditional convolutional feature extractor, and the expanding part applies inverse convo-
lution operations symmetrically to the compressing part. Additionally, the U-Net model
employs skip connections, which helps to smooth the loss function’s surface and decrease

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 58

the likelihood of becoming stuck in a suboptimal solution [163]. Networks with this struc-
ture are commonly referred to as U-Net variants. In our experiments, we also utilize the
fully convolutional U-Net with the pre-trained ResNet50 and ResNet152 feature extrac-
tors [164]. Furthermore, our proposed model for moving object segmentation in mobile
robotics, OFSNet, is based on the U-Net architecture and can also be considered a U-Net
variant.

However, for detecting motion in video sequences, processing individual still frames
is usually insufficient. Therefore, temporal information should also be considered. DL-
based methods for detecting moving objects typically utilize temporal information during
the prediction process [165, 166, 167, 168]. In order to train these models, datasets con-
taining labels for motion detection and moving object segmentation are necessary. The
KITTI [93] and DAVIS [169] datasets are two of the most commonly used for this pur-
pose. These datasets include video sequences annotated with segmentation mask labels.
The KITTI dataset primarily focuses on self-driving cars. It, therefore, consists of videos
displaying traffic situations, whereas the DAVIS dataset is more diverse, including videos
of vehicles, humans, animals, and other objects. In our experiments, we utilize the DAVIS
2016 benchmark dataset.

Acquiring a publicly available dataset for segmenting moving objects in mobile robotics,
tailored to a specific task, can pose a significant challenge, often necessitating the devel-
opment of a customized training dataset for each specific use case. However, creating
such a dataset requires manual labeling of video frames, which is best avoided due to the
time-intensive nature of the process.

Pathak et al. demonstrated that optical flow can be employed to generate labels to
train a model for still image segmentation [170]. Their methodology involves an unsu-
pervised feature learning approach that utilizes optical flow-based segmentation of video
sequences known as uNLC (unsupervised Non-Local Consensus Voting) [171]. The un-
supervised optical flow-based segmentation serves as a pseudo ground truth to train their
feature extractor. To tackle the issue of insufficient labeled training data for moving object
segmentation, Bideau et al. proposed MoA-Net. This model employs optical flow-based
labeling in a self-supervised manner [172]. Like these methods, we also utilize an optical
flow-based automatic labeling approach (uNLC from [171]) for our experiments. This ap-
proach allows us to leverage supervised learning techniques in an unsupervised setting by
generating the ground-truth segmentation masks automatically (self-supervision).

3.1.3 Encoding optical flow and grayscale image as RGB data
Eitel et al. presented a two-stream CNN architecture for image recognition that incorpo-
rates depth information by encoding it into color data [173]. Similarly, we encode optical
flow information in our proposed method using the cross-modal mapping method defined
in (3.2).

Our proposed model, OFSNet, is built on top of a pre-trained (Inception v3) feature
extractor [51], which was trained for image recognition on real-world RGB images from
the ImageNet dataset [50]. To utilize the pre-trained model, we encode the optical flow
data and video frames in a way that mimics RGB data, allowing them to be input to the
Inception model. We call this encoding a cross-modal mapping as it can be used to create
an RGB representation of the non-RGB optical flow modality.

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 59

Fig. 3.1. Image representation of non-RGB modalities. a: RGB image and corresponding depth data as
a grayscale image, b: RGB image and corresponding surface normals as RGB image, c: Consecutive RGB
frames and corresponding optical flow as RGB image (using the 2D polar color map method)

Vision-related modalities that are not RGB, often have a conventional representation
and are frequently visualized as images or in conjunction with them. For instance, depth
data is typically presented as a grayscale image where the pixel intensity indicates the
distance between the surface and the camera. Surface normals are represented by 3D
vectors, which, for visualization purposes, are interpreted as red, green, and blue channels
to form an RGB image. Optical flow data comprises 2D vectors depicting pixel movement
between two frames. It is often represented by 2D arrows drawn over images, symbolizing
the optical flow vectors. Other methods represent optical flow by assigning colors to each
pixel based on the direction and magnitude of the optical flow vector at that pixel, using a
2D polar color map. Figure 3.1. shows some examples of these representations.

Such encoding methods are frequently used for visualization purposes. Understanding
the semantic meaning of these representations makes it easy to evaluate the information
conveyed by different modalities. For instance, Figure 3.1. demonstrates that the object in
the depth image is closer to the camera than any other portion of the image. The surface
normals reveal that the background is horizontal (indicated by only a ’Z’ component, ren-
dering it blue). The optical flow visualization indicates that only the object was in motion
between the two frames, and it was approaching the camera (opposite sides of the object
move in opposite directions, causing it to appear larger). By converting non-RGB modal-
ities into RGB representations using such encoding techniques, we can obtain a visual
presentation of additional information that is not immediately apparent from RGB data
alone. As we interpret these representations as (RGB) images, identifying edges, shapes,
patches, colors, etc., and use our additional semantic knowledge to decode their meaning,
we suggest that pre-trained RGB feature extractors learn features that are general enough
to be utilized in a transfer learning scenario with such cross-modal mapped representa-

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 60

tions. During the fine-tuning phase of the transfer learning process, the network head’s
objective is to learn how to leverage the additional semantic information provided by the
non-RGB modality.

In order to confirm our hypothesis, we assess the accuracy of the predictions made
by OFSNet and different U-Net variants when segmenting moving objects in video se-
quences. To accomplish this, we utilize pre-trained RGB feature extractors and apply
transfer learning using cross-modal mapped optical flow and grayscale image data.

For feature extraction, OFSNet employs the pre-trained Inception v3 model, which is
specifically designed to process RGB images with a resolution of 299x299 pixels. Prior
to being fed into the model, the video frames undergo a series of preprocessing steps.
Firstly, they are cropped to a rectangular shape and resized to 299x299 pixels using bilinear
interpolation. Subsequently, the optical flow is calculated between every two consecutive
frames, and its horizontal and vertical component is mapped onto the R and G image
channels, while a monochrome representation of the latter frame corresponds to the B
channel of the resulting RGB image. In order to ensure that all values fall within the range
of zero to one, a channel-wise normalization is applied. The resulting structures contain
three channels, which can be interpreted as the R, G, and B channels of an image. Figure
3.2. demonstrates some of the inputs generated using this approach for a short sequence
from both our own and the DAVIS 2016 dataset.

We use Gunnar Farneback’s optical flow computation technique to create the cross-
modal mapped inputs due to its high level of accuracy and favorable computational per-
formance [174]. The Farneback algorithm is a two-frame optical flow calculation tech-
nique that employs polynomial expansion to approximate the neighborhoods of image
pixels. This approximation is achieved using quadratic polynomials, which represent the
local signal model in a local coordinate system [174]. The Farneback optical flow method
generates an image pyramid consisting of multiple resolution levels, with point tracking
initiated at the lowest resolution level and continued until convergence. Consequently, the
method can accommodate larger pixel motions. In our experiments, an image scale of 0.5
was used, resulting in pyramid layers that were half the size of the preceding one, follow-
ing the classical pyramid approach. Three layers were constructed during the pyramid-
building process.

For the formalized mathematical description of the cross-modal mapping for the in-
put formulation, we describe images as third-order tensors of pixel intensities (I), where
the dimensions of the tensor are represented by w, h and c which stand for image width,
height and the number of channels respectively. xijk denotes the intensity of the pixel in
the ith column, and jth row for the kth channel. The tensor slice, which contains all pixel
intensities for one channel (k), is denoted as I::k. Thus, an RGB image would be repre-
sented as a third-order tensor (IRGB) with w and h determined by the image resolution
and c = 3 for the three channels. IRGB::1 , IRGB::2 , and IRGB::3 stand for the R (red), G (green)
and B (blue) intensities respectively. In the case of monochrome images (IY), such as a
grayscale image, due to c = 1, IY becomes a second-order tensor. Similarly, optical flow
can be represented as a third-order tensor (F), with dimensions of w, h, and c = 2, where
the slices F::1 and F::2 stand for the horizontal and vertical components of the optical flow
vectors for each pixel.

We use the OpenCV library [175] for image processing functionalities such as crop-
ping, rescaling, RGB to grayscale conversion, and optical flow computation with the

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 61

Fig. 3.2. Inputs formed from optical flow and a grayscale frame a: Left column: DAVIS 2016 validation
set camel sequence frames, Right column: The corresponding cross-modal mapped inputs. b: Left column:
Frames from a video in our own dataset, Right column: The cross-modal mapped inputs corresponding to
the provided frames.

Farneback method. The optical flow computation can be carried out on two consecutive
grayscale-converted frames. The RGB to grayscale conversion method used by OpenCV
is described in the CCIR 601 standard [176] according to

IY = 0.299IRGB::1 + 0.587IRGB::2 + 0.114IRGB::3 (3.1)

Given the computed optical flow (F) and the corresponding later RGB frame converted

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 62

into a grayscale image (IY) using (3.1), the cross-modal mapping for combining optical
flow and a grayscale frame can be described as

R̂ = F::1 + abs(min(F::1))J
w×h)

Ĝ = F::2 + abs(min(F::2))J
w×h)

IRGB::1 =
R̂

max(R̂)

IRGB::2 =
Ĝ

max(Ĝ)

IRGB::3 =
IY

max(IY)

(3.2)

where IRGB is the cross-modal mapped RGB representation of the combined optical flow
and grayscale modalities, Jw×h is a w × h sized matrix of ones, the functions min() and
max() give the minimum, and the maximum valued elements in a matrix respectively, and
abs() computes the absolute value element-wise.

The cross-modal mapped inputs generated by (3.2) consist of the R and G channels,
which correspond to the normalized horizontal and vertical channels of the optical flow,
respectively, and the B channel which is dedicated to the monochrome (grayscale) image.
As depicted in Figure 3.2., the color tone of the consecutive inputs may change dramat-
ically as a result of channel-wise normalization. During normalization, all optical flow
vectors are offset and rescaled independently along both dimensions. As a consequence,
the pixel with the greatest displacement towards the left of the image has an R channel
intensity of 0, while the pixel with the greatest displacement towards the right side has an
intensity of 1. This implies that if an object is moving from left to right in a sequence,
only the object will appear red (have a high intensity in the R channel), while if the object
is moving from right to left, everything else will appear red (have a high intensity in the
R channel) except for the object. The same principle applies to vertical displacement in
the images and the G channel in the cross-modal mapped input, as demonstrated in Fig-
ure 3.2. Nonetheless, despite this characteristic, the moving objects do not blend entirely
into the background. Due to the optical flow computation and the cross-modal mapping, a
well-defined boundary is generated separating the moving objects and the background.

By normalizing the optical flow, we also account for the motion of the camera. When
the camera is moving horizontally to the right or turning to the right, the whole visual scene
seems to move to the left. In this case, anything moving along with the camera would have
a high intensity along its R channel, while other parts wouldn’t. The same effect would
be observed if a stationary camera captured an object moving horizontally from left to
right in the scene. This aspect makes it simpler for the OFSNet model to ignore camera
motion. The inclusion of the grayscale frame is another essential aspect that enables the
model to detect moving objects by utilizing their appearance. This characteristic improves
the predictions’ consistency over time, as moving objects do not vanish and reappear from
the inputs when there is temporarily no motion in the scene.

Figure 3.3. demonstrates how the proposed cross-modal mapping impacts the inputs
when there are different object and camera motions. To incorporate more detail, we uti-
lized a Voronoi texture for the background, which aids in determining whether the camera

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 63

Fig. 3.3. Effect of moving object and camera on the cross-modal mapped inputs (only movements along
the horizontal image direction are represented)

or the object is moving. The cross-modal mapped inputs are arranged in a matrix based
on the object and camera motion (three options for both: moving left, right, or stationary).
The figure depicts that the coloring of the moving object is not significantly influenced by
the camera motion. When the object is moving left or right (left and right columns), its
coloring remains consistent regardless of the camera’s motion (rows). The figure solely
illustrates movement in the horizontal direction, hence only exhibiting the effect of mo-
tion on the R channel. A limitation of this method to counteract the effects of camera
motion using the cross-modal mapping approach is that the optical flow computation may
not be precise for large, homogeneous surfaces. Therefore, if objects are in front of such
a surface, it may be difficult to distinguish whether the movement in the images is due to
camera or object movement. As a result, in our OFSNet experiments with a real mobile
robot, we pre-filter the optical flow field to compensate for the motion in the scene caused
by the 3D motion of the camera [KAO1].

3.1.4 OSFNet network architecture
The OFSNet model was implemented using TensorFlow’s Python API [134] and the In-
ception v3 pre-trained model for RGB feature extraction [51]. The final classification layer
of the Inception v3 model was removed, leaving only the final average pooling layer that
yields a volume of 1x1x2048. The upsampled segmentation mask predictions were gener-
ated using transposed convolution layers and using skip connections. The OFSNet model
performs a single-stage segmentation mask prediction, following the same approach as the
U-Net model and its variations [73].

The model’s output is a segmentation mask with a resolution of 30x30 pixels, which
is intentionally kept low due to the time constraints required for the real-time detection of
moving obstacles for mobile robots. This allows the model to achieve a sufficient predic-
tion speed of over 1 frame per second. However, the downside of using a low-resolution

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 64

TABLE 3.1
THE STRUCTURE OF THE OFSNET MODEL, INCLUDING THE INCEPTION V3 FEATURE EXTRACTOR

FROM #1 TO #12. THE NETWORK STRUCTURE FROM #13 TO #18 IS OUR CONTRIBUTION, AND ONLY

THE PARAMETERS OF THIS PART WERE MODIFIED DURING THE TRAINING PROCESS.

type patch size/stride
or remarks input size

Layers from Inception v3 model
1 conv 3x3/2 299x299x3
2 conv 3x3/1 149x149x32
3 conv padded 3x3/1 147x147x32
4 pool 3x3/2 147x147x64
5 conv 3x3/1 73x73x64
6 conv 3x3/2 71x71x80
7 conv 3x3/1 35x35x192
8 3 x Inception see [51] figure 5 35x35x288
9 5 x Inception see [51] figure 6 17x17x768

10 2 x Inception see [51] figure 7 8x8x1280
11 pool 8x8 8x8x2048
12 linear Inception v3 features 1x1x2048

Layers for segmentation
13 transposed conv 3x3/2 1x1x2048
14 transposed conv 4x4/2 3x3x1280
15 skip connection #9+#14 8x8x1280
16 transposed conv 16x16/2 8x8x1280
17 linear logits 30x30x1
18 sigmoid classifier 30x30x1

output is the loss of detailed information about the shape of the detected obstacles. While
this lack of detail may be a limitation for some applications, it is generally acceptable for
obstacle avoidance, where the overall size of the obstacle is often more important than its
precise shape.

The proposed model’s structure is presented in Table 3.1., where each layer’s input
size is equal to the output size of the previous layer. The last layer (#18) is responsible
for performing an element-wise sigmoid activation, resulting in a binary pixel-wise seg-
mentation in a 30x30 image. Here, the intensity of each pixel corresponds to the predicted
probability of the pixel belonging to the moving object.

3.1.5 Experimental results
Our experiments demonstrate how large deep learning feature extractors pre-trained on
RGB image data can be applied in a transfer learning scenario, even when the target do-
main does not exclusively employ the same RGB modality. We evaluate our method by
comparing U-Net variants trained on cross-modal mapped data to state-of-the-art solutions
for moving object segmentation, including a popular unsupervised approach, uNLC, on
the DAVIS 2016 dataset, and comparing the performance of the OFSNet model to uNLC
on custom real-world data from an industrial Automated Guided Vehicle (AGV) system
prototype.

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 65

Warehouse Remote location

LAN

Sensor-fusion

module

Robot platform

On-board system,

camera

Results of

obstacle

detection

Remote

system

Transfer

collected data

Prepare data

Update network

Transfer updated

network description

Fig. 3.4. System architecture for data collection using the industrial AGV system prototype

Dataset preparation and training procedure

The training process of OFSNet involved three stages, each using a self-supervised learn-
ing scheme that utilized automatically generated segmentation annotations predicted by
the uNLC method. This approach was inspired by the work in [170] and [172]. Unlike
[170], we treated the output of the uNLC method as the true ground-truth labels instead of
interpreting them as pseudo-ground-truth. The first two training stages employed different
optimization objectives (loss formulations) using the DAVIS 2016 dataset [169]. The third
stage utilized a task-specific dataset, which we refer to as the fine-tuning dataset.

The OFSNet model was trained in separate stages to achieve an initial model that is
trained for the general task of moving object segmentation. This initial model could then
be specialized for a narrower domain using the fine-tuning dataset. This approach re-
sulted in an OFSNet that is trained for general moving object segmentation, which could
be adapted to various domains by repeating the third training stage with different train-
ing data. For our mobile robot navigation scenario, we used the fine-tuning dataset to
specialize this general OFSNet for moving object segmentation.

The DAVIS 2016 dataset comprises 50 video sequences, which include a total of 3,455
annotated frames, all recorded at 24 frames per second and resolutions of 1080p and 480p.
The dataset is divided into training and validation sets, with 30 and 20 video sequences,
respectively. For the first two training stages, we used the training set of the DAVIS 2016
dataset at 480p resolution to train the models, and we evaluated their performance on the
480p resolution validation set.

The fine-tuning dataset was gathered from two sources. The first, which we call Lab-
Data, was recorded in our laboratory using the built-in webcam of a notebook attached to a
moving platform and positioned 1 meter above the ground, facing horizontally. It contains
short video sequences, ranging from 1 to 5 seconds in length, of moving obstacles, such as
humans and rolling chairs, captured with the moving camera. The obstacles moved with
velocities between 0 and 5 meters per second relative to the ground. In total, we recorded
16 video sequences containing 2,154 frames, which were annotated with segmentation
masks using the uNLC method. These 16 sequences also included some in which only the
camera was moving, with no moving objects in the scene. For these sequences, a segmen-

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 66

Fig. 3.5. Ground-truth segmentation masks generated by the uNLC method for the FieldData set

tation map consisting of zeros was used as the ground truth for all frames. The proportion
of such frames in the LabData set is roughly 30%.

The other source of data for the fine-tuning dataset is an industrial AGV system pro-
totype. The data collection system architecture is demonstrated by Figure 3.4. With the
depicted data collection setup, bag files were recorded containing RGBD video sequences
from the onboard camera and motion information of the robot platform provided by the
sensor-fusion module. A total of 33 video sequences, each consisting of 100 frames, were
recorded. Prior to cross-modal mapping, the corresponding depth and robot motion data
were utilized for optical flow compensation to account for camera motion. This dataset,
which we refer to as FieldData, was also annotated with segmentation masks utilizing the
uNLC method. Empty segmentation masks were included for sequences that lacked mov-
ing obstacles. (Similar to the LabData, roughly 30% of frames did not contain any moving
obstacles.) Ground-truth masks generated by the uNLC method for some frames of the
FieldData set are shown in Figure 3.5.

To create the fine-tuning dataset, we combined the LabData and FieldData sets. For
model evaluation, we selected 17 video sequences from the FieldData set as the validation
set. The remaining FieldData and all of the LabData were used for training, resulting in
3,754 labeled frames for training and 1,700 for evaluation. Figure 3.6. displays the physi-
cal AGV setup with the onboard camera, which served as the testing and implementation
site for the final OFSNet.

Additionally, we manually labeled a small, randomly selected subset of the fine-tuning
dataset to provide a quantitative evaluation of the trained OFSNet model and to compare

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 67

Fig. 3.6. Testing AGV setup. a: Robot platform, camera and test environment, b: Camera fixture

its performance to the uNLC method. We refer to this manually labeled subset as the
testing set.

During all three training stages, we employed mini-batch training with a batch size of
20. The mini-batch elements were selected randomly from cross-modal mapped inputs of
the corresponding dataset (DAVIS 2016 for stages 1 and 2 and fine-tuning dataset for stage
3). We also utilized data augmentation by randomly altering the saturation and contrast
of the inputs and flipping them horizontally. In all training stages, we used the Adam
optimizer [177] with a learning rate of 0.001.

During the first stage, we trained the network on the DAVIS 2016 training set exclu-
sively using Cross-Entropy loss for 20,000 iterations. During the second stage, we contin-
ued to train the network on the DAVIS 2016 training data, but for 5,000 iterations using
the compound loss function described in (3.7). In the third stage, we trained the model on
the fine-tuning dataset for 5,000 iterations using the compound loss from (3.7).

DAVIS 2016 results

In order to assess the effectiveness of the cross modal mapping method for transfer learn-
ing when training models for general moving object detection, we evaluated OFSNet and
U-Net variants’ performance on the validation set of the DAVIS 2016 dataset using the
recommended benchmark metrics by [169]. Our results suggest that the general OFSNet
is not as effective as other state-of-the-art methods for general moving object segmentation
according to the metrics. However, it is important to note that the segmentation maps gen-
erated by OFSNet have a resolution of 30x30 pixels, which were then upscaled and padded
to match the resolution of the DAVIS 2016 ground truth segmentation maps, which have a
resolution of 854x480 pixels, for evaluation purposes. Because the resolution of the OF-
SNet output is significantly lower than other methods, it would be unfair to make direct
comparisons between them. Nonetheless, we have included these results for the sake of
completeness.

Additionally, to showcase the effectiveness of the cross-modal mapping approach, we
decided to train and evaluate three U-Net variants, namely U-Net-F, U-Net-PWC, and

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 68

Fig. 3.7. Comparison of cross-modal mapped inputs using the Farenback and PWC-Net methods for optical
flow computation. Top row: cross-modal mapped inputs using the Farenback optical flow computation
method. Bottom row: cross-modal mapped inputs using PWC-Net for optical flow computation

U-Net++PWC with an output resolution of 864x480, rather than comparing the OFS-
Net model to other state-of-the-art moving object detection approaches. U-Net-F and U-
Net-PWC follow the standard U-Net architecture according to [73], while U-Net++PWC
uses the U-Net++ architecture from [178]. Both U-Net-F and U-Net-PWC incorporate a
pre-trained ResNet50 feature extractor backbone, and U-Net++PWC uses the pre-trained
ResNet152. All three models use cross-modal mapped inputs (without cropping and re-
scaling). The U-Net and U-Net++ network implementations from [179] were used for the
models, which were trained on the DAVIS 2016 dataset’s training set. U-Net-F and U-Net-
PWC used the same self-supervised training approach as OFSNet (i.e., minibatch, number
of training iterations, loss function, learning rate, optimizer, etc.), while U-Net++PWC
was trained using the ground-truth segmentation masks rather than the uNLC predicted
ones.

To compute the optical flow, we utilized the Farneback method for U-Net-F, while
for U-Net-PWC and U-Net++PWC, we employed the PWC-Net [161]. The PWC-Net is
computationally more demanding than the Farneback method, but it generates a smoother
optical flow field. For general moving object detection tasks, there are no strict time re-
quirements as with moving obstacle detection for mobile robotics, so the additional com-
putations required for using PWC-Net are an acceptable tradeoff for better accuracy. It
is worth noting that Zhou et al. also utilized PWC-Net for predicting optical flow in their
moving object segmentation solution, MATNet [160]. Figure 3.7. demonstrates the differ-
ences between cross-modal mapped inputs using the Farneback and the PWC-Net optical
flow computation methods. The superiority of the PWC-Net predicted optical flow over
the Farneback method for cross-modal mapped inputs is apparent in how the moving ob-
jects are usually more distinctly recognizable. The improved quality of the optical flow
employed in the cross-modal mapped inputs is the reason why U-Net-PWC performs bet-
ter than U-Net-F and even the uNLC method in certain evaluation categories.

Table 3.2. presents the quantitative evaluation results of the uNLC, OFSNet, U-Net-F,
U-Net-PWC, U-Net++PWC, SegFlow (from [180]) and MATNet methods on the DAVIS
2016 benchmark. The J , F , and T metrics were adapted from [169], where J (Jaccard
index) is defined as the intersection over union for the predicted and ground truth segmen-
tation maps and assesses the region similarity, while F (F-measure) measures the contour
accuracy and T is the temporal stability. The metrics with an upward arrow indicate that
higher values are preferred, whereas those with a downward-pointing arrow suggest that
lower values are desirable.

The evaluation results indicate that the OFSNet model does not achieve state-of-the-

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 69

TABLE 3.2
EVALUATION OF OUR MODEL (OFSNET), U-NET VARIANTS TRAINED WITH CROSS-MODAL MAPPED

INPUTS AND OTHER STATE-OF-THE-ART METHODS ON THE DAVIS 2016 BECHMARK
↑ Jmean ↑ Jrecall ↓ Jdecay ↑ Fmean ↑ Frecall ↓ Fdecay ↓ T

uNLC 0.551 0.558 0.126 0.523 0.519 0.114 0.523
OFSNet 0.244 0.088 -0.036 0.150 0.000 -0.003 0.150
U-Net-F 0.483 0.527 0.039 0.461 0.458 0.059 0.461

U-Net-PWC 0.505 0.584 0.079 0.548 0.643 0.058 0.548
U-Net++PWC 0.618 0.736 0.039 0.653 0.797 0.056 0.653

SegFlow 0.674 0.814 0.062 0.667 0.771 0.051 0.282
MATNet 0.824 0.945 0.055 0.807 0.902 0.045 0.216

art performance (comparable to uNLC), which is likely due to its network architecture
with limited output resolution. In contrast, the U-Net variants, U-Net-F and U-Net-PWC,
achieve comparable or even superior results to the uNLC method (bold font indicates su-
perior results), and U-Net++PWC achieves results comparable to SegFlow. This finding
suggests that incorporating non-RGB modalities into a transfer learning pipeline via the
cross-modal mapping approach is a promising direction to achieve state-of-the-art results
even with limited available data. However, the results also show that MATNet, an approach
that considers object boundaries during the decoding process, outperforms the U-Net vari-
ants that use cross-modal mapping, in all categories. Additionally, it is worth noting that
the cross-modal mapping approach used in this experiment only incorporates object ap-
pearance and motion information (optical flow). Future work could potentially develop
an approach that also includes object boundary information, in a similar fashion to the
HED-U-Net approach [181]. Unlike MATNet, U-Net-F and U-Net-PWC utilize automat-
ically generated uNLC segmentations rather than the perfect ground-truth segmentations
provided in the DAVIS 2016 dataset, enabling these models to be used in an unsupervised
manner through self-supervision.

To qualitatively evaluate the performance of the uNLC, U-Net-F, U-Net-PWC and
U-Net++PWC methods, a selection of frames from the validation set of the DAVIS 2016
benchmark, along with the corresponding ground truth segmentation masks and prediction
results, are shown in Figure 3.8.

Real-world mobile robot navigation results

We evaluated the performance of the OFSNet model by comparing it with uNLC on our
manually labeled testing set. The evaluation results are summarized in Table 3.3. The
evaluation metrics used were PA (average pixel-wise accuracy), SA (average ratio of the
size of predicted and ground-truth object masks in pixel units), DoC (average distance
of the center of masses of predicted and ground truth masks in pixel units), Dice coef-
ficient, precision, recall, and TS (temporal stability). TS was computed as the rational
size change of the predicted object masks from frame to frame (ranging from 0 to 1, with
values closer to 1 being better). The SA, DoC, and Dice metrics were computed only on
frames that contain moving obstacles. In contrast, precision and recall were computed for
the background, which allowed us to include frames without moving obstacles. The TS
measure was computed for the whole validation set of the fine-tuning dataset without the

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 70

Fig. 3.8. Qualitative evaluation of uNLC, U-Net-F, U-Net-PWC and U-Net++PWC predictions. Rows from
top to bottom: RGB frames, ground truth segmentation masks, uNLC predictions, U-Net-F predictions, U-
Net-PWC predictions, U-Net++PWC predictions

TABLE 3.3
EVALUATION OF THE OFSNET AND UNLC MODELS ON OUR MANUALLY LABELED TEST SET

↑ PA ↑ SA ↓ DoC ↑ Dice ↑ Prec., Recall TS
uNLC 0.763 0.237 6.575 0.278 0.801, 0.941 0.895

OFSNet 0.827 0.406 4.757 0.374 0.822, 0.978 0.945

need for manually labeled frames since it does not require ground truth segmentations for
its computation.

The evaluation was conducted using the uNLC predictions that were cropped to a rect-
angular shape and rescaled to 30x30 pixels. The results of the evaluation demonstrate
that OFSNet outperformed the uNLC method in all categories. To provide a better insight
into the performance of OFSNet, we included the predicted segmentation masks of uNLC
and OFSNet for several frames from our fine-tuning dataset for qualitative assessment in
Figure 3.9.

Based on the results, it is evident that OFSNet is incapable of segmenting small objects
or capturing fine details. Still, it can effectively handle camera motion and larger moving
objects, such as humans. In mobile robot navigation, detecting moving objects is critical
for dynamic obstacle avoidance, and the model’s inability to capture fine details is of little
significance. The labels were generated using the uNLC method, which only expects a
single moving object in the scene. This explains why OFSNet struggles to accurately
segment multiple moving objects in a single frame. With more accurate labeling, the
model could potentially be improved to better segment multiple moving objects. The
success of the OFSNet model can be attributed to its ability to utilize a pre-trained RGB
feature extractor through our proposed cross-modal mapping approach. Future research
should focus on developing a network architecture capable of generating high-resolution
segmentation masks at a faster rate and incorporating additional information into the cross-
modal mapping, such as object boundaries and depth data.

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 71

Fig. 3.9. Results of OFSNet on our fine-tuning dataset compared to the uNLC method that was used for
the automatic labeling. The left columns depict the frames of the video sequence, the images in the second
columns are the corresponding cross-modal mapped inputs, the third columns are the uNLC results, and
the fourth columns are the predicted segmentations from OFSNet. a: The uNLC method produces finer
segmentation maps, and both methods fail to capture multiple moving objects (third row). b: Sometimes,
uNLC fails to segment the whole object, but OFSNet does it successfully. c: OFSNet can compensate for
the motion of the camera; if there is no moving object on the scene, the prediction is a map of zeros. d: The
uNLC method can better segment smaller objects, but OFSNet fails to do so.

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 72

3.2 Compound loss for mitigating class imbalance

3.2.1 Motivation
In the process of training OFSNet, we discovered that the class imbalance created by the
relatively small size of the moving objects in the training dataset resulted in a tendency
for the predicted masks to be biased toward the background when we employed the Cross-
Entropy loss function. The Cross-Entropy loss for a binary segmentation problem for a
single frame can be expressed as follows:

LCE = − 1

N

N∑
i=1

yilog2(pi) + (1− yi)log2(1− pi), (3.3)

where LCE is the Cross-Entropy loss for a single frame, andN represents the total number
of pixels in the output, which is 900 in our specific case (for the OFSNet model). The
correct label for each pixel is represented by yi, where a value of 0 denotes the background,
and a value of 1 denotes the moving object. The predicted probability of the ith pixel
belonging to the moving object is represented by pi.

In situations where the moving object only occupies a small portion of the frame, if the
model predicts that all pixels belong to the background, the calculated loss will be lower
compared to when it predicts that they all belong to the moving object. This indicates
that if we solely rely on Cross-Entropy loss, the model will have a tendency to favor
background predictions rather than foreground predictions for a specific output pixel.

To address this issue, there are two straightforward approaches. The first one involves
implementing a weighted Cross-Entropy loss [73], while the second approach involves di-
rectly optimizing a measure that prevents this bias. One such measure is the Sørensen-Dice
coefficient or the Dice coefficient [182, 183]. This coefficient is utilized for measuring the
overlap between two sets and ranges from 0 to 1. A value of 1 indicates that there is perfect
overlap between the two sets, while a value of 0 means that there is no overlap. The Dice
coefficient can be computed for two sets, A and B, in the following manner:

Dice =
2|A ∩B|
|A|+ |B|

, (3.4)

where |A ∩ B| means the common elements of A and B and |A| and |B| are the number
of elements in A and B, respectively.

In our segmentation task, our objective is to maximize the Dice coefficient between
the ground-truth mask and the predicted mask. To achieve this, we can employ the Soft
Dice coefficient.

SoftDice =

2
N∑
i=1

yipi

N∑
i=1

pi +
N∑
i=1

yi

, (3.5)

where N denotes the total number of pixels in the output, while yi represents the accurate
label for the ith output pixel. In our case, a value of 0 represents the background, and
a value of 1 represents the foreground, which in our context, corresponds to the moving

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 73

object. The predicted probability of the ith output pixel belonging to the moving object is
represented by pi.

From (3.5), a loss function can be formulated, which is referred to as Soft Dice loss
(LSD):

LSD = 1− SoftDice. (3.6)

Optimizing for the Soft Dice loss ensures maximum overlap between the ground truth
and the predicted segmentation, and its value does not depend on the image resolution.

3.2.2 Loss formulation
The proposed compound loss is the linear combination of the Cross-Entropy loss and the
Soft Dice loss:

L = (1− α)LCE + αLSD, (3.7)

where the weight factor α is utilized to modulate the relative importance of the two meth-
ods.

Fig. 3.10. Comparison of Cross-Entropy (CE), Soft Dice (SD) and Compound losses

The compound loss involves leveraging the Soft Dice loss to counteract the bias toward
predicting the background that arises due to the class imbalance and the Cross-Entropy
loss. This is achievable because the Dice loss attains its highest value when all pixels are
predicted as background. However, if all pixels are predicted to belong to the moving
object, the Soft Dice loss will be less than its maximum value. Thus, it penalizes false
negative predictions more severely than false positives.

Figures 3.10. and 3.11. exhibit the aforementioned phenomenon with a simple 1D
mask example. The ground truth 1D mask is displayed on top of the left-hand side graph in
Figure 3.10., with yellow pixels representing the foreground and purple pixels representing
the background. The ground truth mask comprises a 1D array of 100 pixels, with an 11-
pixel-long foreground segment located precisely in the middle of the array. The left-hand
graph illustrates the values of the Cross-Entropy, Soft Dice, and compound loss functions
(α = 0.5 for the compound loss) for predictions in which a foreground segment of the

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 74

Fig. 3.11. Comparison of Cross-Entropy, Soft-Dice and Compound losses

same size (11 pixels) is shifted across the 1D array. The values on the horizontal axis
denote the position of the center of the 11-pixel-long positive segment in the predictions.

From the graph, it is evident that all three loss functions treat object localization in a
similar manner. However, the right-hand-side graph exposes the primary difference be-
tween the Cross-Entropy and Soft Dice losses and highlights the advantages of utilizing
the compound loss. In this case, instead of shifting the foreground segment in the pre-
dictions, it is centered in the middle of the 1D array, and only its width is adjusted. The
graph shows the steep increase in the Cross-Entropy loss for false positive pixel predic-
tions, whereas, for false negative predictions, the Soft Dice loss produces a much steeper
curve. The compound loss, based on the value of the α parameter, can capitalize on both
of these desired characteristics. It no longer has a plateau for false positive predictions, as
is the case with the Soft Dice loss, which would negatively affect the gradient magnitude
and, consequently, the training process. It also penalizes false negative predictions more
than the Cross-Entropy loss.

In Figure 3.11., the values of the Cross-Entropy, Soft Dice, and compound losses are
shown for all possible combinations of the location and width of the predicted foreground
segment. One can observe that the Cross-Entropy loss tends to slope globally towards
smaller widths, whereas the Soft Dice loss attains its maximum value in the same region.
The compound loss, on the other hand, exhibits a more distinct minimum compared to
the Cross-Entropy loss while still having a steep surface for large predicted widths. It is

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 75

Fig. 3.12. Training strategy: weighting parameter (α) development over the training process

important to note that, in reality, the predictions can have disjoint regions as well, and
the loss surfaces tend to be much more complex in higher dimensions, depending on the
number of trainable parameters. Nonetheless, this simple example provides an intuitive
illustration of the Cross-Entropy loss’s bias toward predicting background and the rationale
behind the proposed compound loss function.

In our experiments, we observed that assigning a weight value larger than 0.7 to α can
lead to unstable optimization for the Soft Dice loss. As a result, we devised an empirical
technique that employs the Cross-Entropy loss at the initial stages of the training process
to provide an approximate localization of the moving objects. After this step, we apply
the Soft Dice loss to maximize the overlap between the predicted and ground-truth masks.
Therefore, we continuously modify the value of α during the training process. The value
of α is determined as follows:

α =

(
j

ne

)4

1.6
, (3.8)

where the value of j represents the current iteration count during training, where ne is the
total number of iterations. To delay the significant use of the Soft Dice loss until later in
the training process, the power of 4 is applied. Additionally, to ensure that the value of
α remains at or below 0.625, a division by 1.6 is implemented. Figure 3.12. depicts the
value of the α parameter throughout the training process, using (3.8).

PART 3. CROSS-MODAL MAPPING-BASED TRANSFER LEARNING 76

3.3 New scientific results

Thesis 2
I developed a Deep Learning model (OFSNet), and a corresponding loss function for mov-
ing object segmentation in video sequences, enabling moving obstacle avoidance in indoor
environments for mobile robot navigation. The proposed method has been validated in a
real-world industrial Automated Guided Vehicle (AGV) system prototype.

Sub-thesis 2.1

I demonstrated that feature extractors pre-trained on real-world RGB images can general-
ize to combined optical flow and grayscale input data with appropriate formatting/cross-
modal mapping (3.2). This conclusion was supported by experiments on the DAVIS 2016
dataset and real-world data acquired from an industrial Automated Guided Vehicle (AGV)
system prototype.

Sub-thesis 2.2

I introduced a compound loss function (3.7) and a corresponding empirical training ap-
proach that utilizes a dynamic linear combination of Cross-Entropy Loss and Soft Dice
Loss functions to overcome their counter-effecting biases. The effectiveness of this loss
function and training strategy was demonstrated through the training of the OFSNet model.
I demonstrated that the weighting parameter (α) can be dynamically adjusted (3.8) to en-
sure the best overlap between the ground truth and the predicted segmentation masks, even
in unbalanced (in terms of object-to-background ratio) datasets.

Related publications: [KA4, KA5, KA6]

Part 4

AUTOMATIC LARGE-SCALE
VISUAL DATASET GENERATION

Robots are excellent at carrying out repetitive tasks with high precision. Modern robotic
solutions, however, may require high flexibility from the robots as well, such as being able
to manipulate randomly organized objects in a cluttered scene. Current state-of-the-art
achieves this level of flexibility with the use of machine learning technologies [184, 185,
89, 186]. The most commonly used sensor modality for such tasks is vision. Modern
cameras are relatively cheap and small in size, and there are several pre-trained models for
visual data readily available.

Typically, pre-trained models are trained on widely used datasets such as ImageNet
[50] for image classification, the COCO dataset [187] for object detection and segmen-
tation, or domain-specific datasets like PASCAL-VOC [188], and KITTI [93] for au-
tonomous vehicles. These deep learning models, which have been pre-trained on large-
scale datasets, possess a comprehensive understanding of visual scenes and are adaptable
to various domains, such as sensory integration [189] and medical applications [190].

Despite their versatility, pre-trained models may not always be optimal for a specific
robotic task. In such cases, additional training is necessary on a smaller dataset that is
tailored to the particular problem at hand. Even with deep neural networks, this dataset can
still be relatively modest, comprising only a few hundred or a few thousand labeled images
for supervised learning. The time required for labeling these images heavily depends on
the nature of the task for which the dataset is being prepared. For robotic manipulation,
it is essential to have precise information on the location and pose of the objects in the
scene. If a DL model is to derive this information from images, semantic segmentation
of the scene is typically required. However, manual annotation of an object segmentation
dataset comprising hundreds or thousands of images can be exceedingly time-consuming,
particularly when multiple objects are present in the scene, which is not uncommon in
robotic applications. A generally accepted solution for this problem is the use of synthetic
data.

We propose an automated annotation method for object segmentation in real images,
specifically tailored for robotics applications. Our method leverages the unique features
of robotics, such as access to the robot’s pose information and the ability to mount a cam-
era on the robot. Additionally, we take advantage of the fact that objects with known
geometries can be placed in predetermined poses within the robot’s workspace. Under

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 78

these assumptions, we can describe the digital twin [191] of the whole scene with a high
degree of accuracy, enabling us to compute virtual camera projections. The virtually pro-
jected information augments the actual photos with annotations that make the ML dataset.
This approach extends the digital twin paradigm to the field of ML dataset creation and
validation.

Furthermore, we propose a synthetic data generation approach using computer graph-
ics to generate photorealistic randomized synthetic image datasets. The synthetic dataset
generation procedure employs automated annotation for generating instance segmentation
masks. A method called Filling the Reality Gap (FTRG) is also introduced, which uses the
proposed automated real data annotation and synthetic data generation processes together,
to overcome the reality gap.

Both dataset generation approaches are evaluated qualitatively by creating datasets
with them and quantitatively by evaluating neural networks trained on the datasets created
by them. The effectiveness of the FTRG method is showcased on a robotic pick-and-
place task, and the benefits of using the proposed synthetic data generation pipeline are
also highlighted in two additional approaches: using synthetic data during the experience
replay of continual learning approaches for scene classification and utilizing the flexibility
of synthetic data generation to create task-specific grasp-detection datasets.

4.1 Creating real-life segmentation datasets

4.1.1 Motivation
Training a DL model for object segmentation using a synthetic dataset has numerous ad-
vantages. For instance, it is a relatively rapid and inexpensive process, and the annotation
can be automated. Additionally, the labels are typically more reliable than those obtained
from a public online annotation service. Moreover, with suitable tools, it is possible to sim-
ulate a wide range of scenes. Nevertheless, the major disadvantage of a synthetic dataset
is that it is not directly derived from the target domain in which the DL model is intended
to operate.

According to Tremblay et al. [89], the problem of constructing a synthetic dataset that
is effective in the target domain can be mitigated by integrating domain randomization
with photorealistic data. Their research demonstrated that utilizing both highly random-
ized (i.e., non-photorealistic) scenes and photorealistic synthetic images yields superior
outcomes when compared to using either of them exclusively. This finding suggests that
incorporating real data into the dataset (i.e., mixing synthetic and real data) may further
improve the performance of DL models for object segmentation. However, the automated
annotation of real samples presents a challenge.

As a result, we propose a method for automatically generating instance segmentation-
type annotations for real-world images in a robotic manipulation setting. This allows us
to create datasets containing real-world images of objects annotated with instance seg-
mentation masks and use these datasets to directly train DL models or to enhance the
performance of models trained on synthetic images by mixing synthetic and real data.

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 79

4.1.2 Annotation procedure
The proposed annotation procedure (Algorithm 6.) is capable of automatically generating
instance segmentation masks for real images. To achieve this, it utilizes a virtual repre-
sentation of the significant elements of the real scene, including the camera and objects.
This virtual scene is a digital twin of the physical environment, with the virtual camera
and objects mirroring the pose of their real counterparts. By doing this, we are able to
calculate the segmentation masks for the objects in the virtual scene and then map these
annotations to the corresponding images captured by the camera in the real-world scene.

The generation of instance segmentation masks is accomplished by computing the
perspective projection of 3D points located on the surfaces of the objects onto the image
plane. We follow the formalism described in [192], which defines the perspective pro-
jection x̄ = (u, v, 1)> of a 3D point wX = (wX,w Y,w Z, 1)> (given in the world frame)
as:

x̄ = KΠ cTw
wX, (4.1)

where K represents the camera matrix, which contains the intrinsic parameters of the
camera and can be determined by camera calibration. To accomplish this, we utilize the
OpenCV library [175]. The projection matrix Π is in the form of [I|0], where I is a
3 × 3 identity matrix and 0 is a column vector of three zeros. Finally, cTw is the 4 × 4
homogeneous transformation matrix that describes the transformation between the world
and the camera frame.

Let P(wX) denote the perspective projection of the point wX, F a face defined by a set
of points (F = {wX1,

w X2, ...,
w Xn}), R(wX) a ray coming from the origin of the camera

frame and going through the point wX, and wXOall all the possible points on the surface of
objectO. To create segmentation masks, a finite set of points on the surface of each object
needs to be selected: wXO = {wX|wX on the surface of O}, wXO ⊆ wXOall. The power
set P(wXO) contains all the possible (not necessarily meaningful) faces for objectO, for a
given set of surface points wXO. Polygons can be formed in the image plane by projecting
each point of a face: PolyF = {P(wXi) for wXi ∈ F}, and using the projections as the
vertices of the polygon. A set of faces FO ⊆ P(wXO) have to be chosen for object O,
such that all the projections given by P(wXj) for wXj ∈ wXOall fall inside at least one
of the polygons of PolyFk , for Fk ∈ FO, but projections P(wX), where R(wX) does not
intersect the object in 3D space, do not fall into any of the polygons from PolyFk , for
Fk ∈ FO.

For a simple cube, we can select its vertices as the set of surface points (wXO =
vertices), while the set of faces FO would naturally be the six faces of the cube. Projecting
the points of these faces would yield six tetragons in the image plane. It’s evident that any
point on the surface of the cube would fall inside at least one of these tetragons. Any other
point which is not on the surface or inside the cube, and also not between the camera and
the cube or behind the cube (so the ray from the origin of the camera frame going through
the point does not intersect the object) would get projected outside of all the tetragons.
Thus, merging all the tetragons into a single polygon gives us the segmentation mask for
the cube.

However, selecting surface points and defining faces manually for complex objects is
not practical. Fortunately, the Standard Triangle Language (STL) format is a widely used

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 80

virtual representation for 3D object models. This format provides a 3D surface model of
the object, represented by an object mesh consisting of triangles formed by vertices. This
means we can use the STL representation directly by defining wXO = wTo

oXO, where
oXO are the vertices in the STL format defined in the object frame, and wTo is the 4 × 4
homogeneous transformation matrix that describes the transformation between the object
and world frames. FO can be chosen according to the triangles in the STL representation.
In typical robotics scenarios, it can be assumed that a 3D model of the objects is available
or can be created with ease. A photogrammetry application can also be used to obtain a
3D mesh, as these methods are increasingly accessible with mobile phones [193]. In our
experiments, we utilized Qlone [194] to scan clutter objects. Using the STL representation
of the object mesh has the added benefit that it is only necessary to measure the pose of
the object frame relative to the world frame to determine wTo, instead of measuring every
individual point relative to the world frame (wXO).

Before annotating the images, it is necessary to determine the transformation matrix
cTw from (4.1). In our experiments, we utilize an industrial robot and attach the camera in
a known, fixed pose to the robot’s end effector. As a result, the transformation between the
camera frame and the robot’s tool center point (cTTCP) remains constant regardless of the
robot’s pose. The transformation between the robot TCP and the world frame (TCPTw)
can be obtained from the robot controller at any given time. Consequently, we can express
the transformation between the camera and the world frame as cTw = cTTCP

TCPTw.
Algorithm 6. describes the process of automated annotation. It assigns a unique color

ID (RGB values) to each object (O1,O2, ...). The segmentation mask M used by the
algorithm has 5 channels, with the first three representing the object’s color ID (RGB)
and the remaining two storing information about the triangle and object to which each
pixel belongs. The algorithm proceeds by projecting the vertices of each triangle in the
objects’ mesh in order. LetO and T denote the current object and triangle being projected,
respectively. For each pixel falling inside the projection of T , the algorithm performs a
test with three possible outcomes.

If the pixel is black, it is colored with the color ID of O. If the pixel is already colored
with the same color ID as O, it is already marked as belonging to O, so no action is
necessary. If the pixel is already colored with the color ID of a different object Õ, a
decision must be made regarding its color. The algorithm accomplishes this by looking up
the triangle T̃ of the object Õ based on the last two channels of the mask and calling the
IsOccluded function (Algorithm 7.) on the two triangles T and T̃ .

The IsOccluded function determines whether T is occluded by T̃ by first checking
trivialities, such as whether all vertices of one triangle are closer to the camera than the
other. If the trivialities do not apply, the algorithm uses the SignedVolume function, whose
definition is provided in Algorithm 8., to make the decision. If T is occluded by T̃ , no
action is taken. Otherwise, the pixel is colored with the color ID of the current object O.

To account for the lens distortions of the camera, it is necessary to adjust the actual 3D
coordinates using the formula provided in [195]:

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 81

Algorithm 6: Projection algorithm
input : Image shape: [w, h, 3], List of objects: O = [O1,O2, . . .]

/* Init annotation as black image */
Init: M = zeros((w, h, 5));
for O ∈ O do

for T ∈ O.triangles do
/* Projection as in (4.1) */
vi1, v

i
2, v

i
3 = Project(T .vertices);

temp_img = zeros((w, h));
/* Get internal pixels of the triangle */
P = Where(DrawTriangle(temp_img, (vi1, v

i
2, v

i
3), color=1) == 1);

for p ∈ P do
if M[p][0 : 3] == [0, 0, 0] then

/* It was background before */
M[p][0 : 3] = O.color_id;
M[p][3] = O.id;
M[p][4] = T .id;

else if M[p][0 : 3] == O.color_id then
/* It is the same object */
Pass;

else
T̃ = O.GetTriangle(M[p][3],M[p][4]);
if IsOccluded(T , by = T̃) then

/* T̃ occludes T */
Pass;

else
M[p][0 : 3] = O.color_id;
M[p][3] = O.id;
M[p][4] = T .id;

return: M

x̃ = cX/cZ

ỹ = cY/cZ (4.2)

r = x̃2 + ỹ2cX ′cY ′
cZ ′

 = cZ

x̃(1 + k1r + k2r
2 + k3r

3) + 2p1x̃ỹ + p2(r + 2x̃2)
ỹ(1 + k1r + k2r

2 + k3r
3) + 2p2x̃ỹ + p1(r + 2x̃2)
1


where the original 3D coordinates of a point with respect to the camera frame are denoted
by cX , cY , and cZ. The distortion vector [k1, k2, p1, p2, k3], which is determined during
the camera calibration process [195], is used to modify the coordinates, and the resulting
distortion-corrected 3D coordinates of the point relative to the camera frame are given by
cX ′, cY ′, and cZ ′.

By substituting cX = cTw
wX into (4.1), where cX = (cX,c Y,c Z, 1)>, we can

project 3D points onto the image plane, accounting for camera distortions, by using cX ′,
cY ′, and cZ ′ instead of cX , cY , and cZ.

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 82

Algorithm 7: IsOccluded function
input : Triangle: T , Other triangle: T̃
def IsOccluded(T , by = T̃):

if all(T̃ .vertices.z < T .vertices.z) then
/* T̃ is closer to the camera */
return: True

else if all(T .vertices.z < T̃ .vertices.z) then
/* T is closer to the camera */
return: False

else
/* There is an overlap in z */
occluded = False;
orig = [0,0,0];
for ṽ1, ṽ2 ∈ Pairs(T̃ .vertices) do

for v1, v2 ∈ Pairs(T .vertices) do
/* Check if the sides of T̃ intersect the T -orig

tetrahedron */
if sign(SignedVolume(ṽ1, v1, v2, orig)) ==

sign(SignedVolume(ṽ2, v1, v2, orig)) then
Pass;

else if sign(SignedVolume(ṽ1, ṽ2, v1, v2)) ==
sign(SignedVolume(ṽ1, ṽ2, v2, orig)) ==
sign(SignedVolume(ṽ1, ṽ2, orig, v1)) then

occluded = True;
break;

else
Pass;

if occluded == True then
break;

return: occluded

Projecting every vertex in the scene can be computationally expensive, especially with
a large number of complex objects. To improve this process, we utilize information from
the STL files to filter vertices for projection selectively. The filtering approach is limited
to situations where all object models consist of closed surfaces, meaning that each object
has a well-defined inside and outside. In STL files, mesh triangles are defined such that
their surface normals point outwards of the object. By analyzing these surface normals,
we can determine which mesh triangles are obstructed by the camera-facing parts of the
object and can be omitted from the projection process. Figure 4.1. demonstrates how our
method detects triangles that face away from the camera. Specifically, we classify triangles
whose surface normal and the camera’s z axis form an angle smaller than 45 degrees as
belonging to the backside of the object. The specific angle value (45 degrees in our case)
is dependent on the Field of View (FOV) of the camera. This approach effectively filters
out up to half of the triangles and their vertices, significantly reducing computational time
for further processing.

When multiple objects are present in a scene, or when dealing with complex geome-
tries, some surfaces facing the camera may be obscured due to occlusions. To address this
issue, our projection algorithm (Algorithm 6.) incorporates additional functions outlined
in Algorithms 7. and 8. These functions enable us to account for potential occlusions in

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 83

Algorithm 8: SignedVolume function
input : 3D points: a, b, c, d
def SignedVolume(a, b, c, d):

return: dot(cross(b− a, c− a), d− a)

C
a
m
e
ra

F
O
Vz

object

C
a
m
e
ra

F
O
Vz

object C
a
m
e
ra

F
O
Vz

object

object

a, b,

c, d,

Fig. 4.1. Filtering of triangles; a: 3D surface model of a simple object with surface normals of the mesh
triangles, b: cross-section view of the scene with the camera and the object, c: the triangles on the dotted
face are not projected, d: all other faces might be visible depending on the location of the object in the
camera’s Field of View (FOV)

the scene during the projection process. These functions operate under the assumption that
the objects in the scene do not intersect each other’s volumes (i.e., there are no intersecting
triangles) and that the size of the objects and their distances from the camera are similar
in scale (i.e., there are no projected triangles that completely enclose other projected trian-
gles). While it is possible for these conditions to be violated in certain scenarios, such as
when a single object is much closer to the camera than the others or when there is a large
object in the background, such situations are both rare and unlikely to be relevant for the
purposes of automated segmentation for object detection. Therefore, our algorithm does
not take such edge cases into consideration.

To generate annotations for each image in our dataset, we perform the process outlined
in Algorithm 6. individually for each image. Our experiments indicate that, for scenes
containing multiple complex objects (consisting of approximately 5,000 triangles after fil-
tering), the automated annotation process typically takes less than 10 seconds to complete.
For simpler objects with low-polygonal meshes, computation times can be reduced even
further.

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 84

Fig. 4.2. Real data annotation setup

4.1.3 Experimental results
Our experimental setup for automatically annotating real-life data is depicted in Figure 4.2.
Before the annotation process can begin, the preliminary steps that must be completed are:

1. Acquiring object meshes in STL format (oXO for all objects)
2. Camera calibration (determining K)
3. Attaching the camera to the robot (measuring cTTCP)
4. Placing the objects in known poses (measuring wTo)

Once the preliminary steps are completed, data collection and automated annotation
can commence. The camera is mounted on a robot, which is then moved to a pre-generated
set of target poses scattered in a grid pattern on the surface of concentric spheres centered
around the scene. At each pose, the robot stops, and the camera captures an image of the
scene. Metadata regarding the current pose of the robot’s TCP relative to the world frame
is attached to the image. This metadata enables computation of cTw and the object masks.

To showcase the potential of our method for creating automatically annotated datasets
for object segmentation, we designed a sample setup. In this particular scenario, the objec-
tive was to generate an object segmentation dataset for a wooden storage box containing
microscope slides. This task is particularly challenging to achieve through manual anno-
tations due to the following reasons:

• There are several objects in the scene at once (box and individual glass slides)
• The glass slides are tightly packed inside the box, so there are a lot of occlusions
• Due to the occlusions, the shape of the mask for the box is complicated, so there is

no primitive shape that could directly describe it. As a result, the manual annotation
would require drawing a polygon around the box instead of a primitive shape. Draw-
ing polygons takes more time and requires higher precision during the annotation.

• The setup contains transparent (glass) objects, which are hard to segment accurately
by hand

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 85

To facilitate automated annotations, we first created 3D meshes of the wooden box
and glass slides. Our setup consisted of a Universal Robot UR16e robot arm and an Intel
Realsense D435 camera, with the camera mounted on the robot’s end effector. The wooden
storage box containing the glass slides was positioned within the robot’s workspace at a
precisely known pose.

The robot executed a pre-determined motion along a set of parameterized concentric
spheres located above the box, with the camera attached to its end effector. To capture
multiple images with varying camera orientations, a grid of points was defined on these
spherical surfaces at which the robot would halt and capture an image. A visualization
of the robot’s path and the intermediate photo poses can be found in Figure 4.3. The
images were then saved to disk along with the corresponding TCP poses. Using (4.1), in
conjunction with the projection algorithm (Algorithm 6.), we were able to automatically
generate segmentation masks for each object in every image of the dataset.

Fig. 4.3. Robot path for data collection

The initial results of the generated dataset and the corresponding annotations are shown
in Figure 4.4. Our observations suggest that the annotations are reasonably precise when
the objects are positioned near the center of the image. However, errors tend to increase as
the objects move toward the edges. The accuracy achieved in the first trial is inadequate
to train a model that can perform accurate segmentation of small objects such as the glass
slides.

It is likely that the initial annotation errors occurred due to imprecisely measured trans-
formation matrix parameters (cTTCP and wTo) and poorly calibrated camera parameters.
To address these inaccuracies, we employed a genetic algorithm-based optimization pro-
cess to enhance the precision of the transformation matrix cTTCP and the camera’s intrin-
sic parameters (K).

We chose some specific points on the box object (its corners) and measured their posi-
tion with respect to the object frame. For simplicity, we only used the box in this process.
These points were projected onto the image plane using the same method as for the mesh

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 86

Images and annotations

Masks overlayed on image

Fig. 4.4. Initial annotations, the automatic segmentation accuracy degrades around the edges of the images

vertices. We manually marked these special points on a small number (less than 10) of
the real-world images. We used these points as a reference to optimize the accuracy of the
parameters by minimizing the 2D Euclidean distance between the projected points and the
manually marked points in the images.

Correction coefficients were introduced for each element of the cTTCP and K matrices,
which were used as the variables in the optimization procedure. The original elements in
cTTCP and K were multiplied by their respective correction coefficient to calculate the
projected points. By changing the correction coefficients, the projection of the points
was adjusted accordingly, allowing optimization to minimize the 2D Euclidean distances
between the projected points and the manually marked points until a predefined threshold.

After applying the genetic algorithm-based optimization, the corrected cTTCP and K
matrices were utilized to reconstruct the segmentation masks. An example of the precise
annotation achieved using the corrected transformation matrix and camera intrinsic pa-
rameters is shown in Figure 4.5. This particular image was deliberately captured from a
non-predefined angle and was not included in the manually marked images used to obtain
special points. The accuracy of the annotations validates the effectiveness of the auto-
mated annotation procedure, utilizing the corrected cTTCP and K matrices in generating
object segmentation datasets for robotics applications.

We conducted an additional experiment for generating datasets, wherein we employed

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 87

Fig. 4.5. Annotations (created by using the corrected cTTCP and K matrices) overlayed on an image

a more accurate calibration process for both the camera and robot. Figure 4.6 exhibits
sample images depicting the segmentation masks produced by our automatic annotation
pipeline for real-world data after employing the precise camera calibration. Unlike before,
we did not utilize the genetic algorithm-based parameter optimization to generate these
masks. As demonstrated, the system can directly generate precise segmentation masks
with a high degree of accuracy after undergoing precise calibration. The dataset comprised
400 samples featuring various types and numbers of objects, varying degrees of clutter, and
illumination, annotated with instance segmentation masks.

4.2 Synthetic dataset preparation

4.2.1 Motivation
Robots in modern robotic applications often encounter dynamic environments that un-
dergo constant changes in illumination, clutter, and object occlusions [4]. In such sce-
narios, data-driven approaches, such as Deep Learning (DL), are commonly employed to
enable robots to perceive their surroundings through visual data processing. The general-
ization capability of DL models is critical in dynamic environments. In this section, two
methods for achieving excellent generalization in DL models are explored. The first ap-
proach is continual learning [82, 4], which involves accumulating knowledge over time
in a dynamic environment while avoiding the forgetting of previously acquired knowl-
edge [82]. The second approach is transfer learning [47, 49], which relies on datasets that
facilitate the training of models capable of good generalization.

In both of these approaches, the training data plays a crucial role. Studies have demon-
strated that knowledge acquired by training on a dataset from a source domain transfers
better to a target domain when the source and target domains share similarities [49]. Ad-
ditionally, introducing variations in the data distribution of the training set can assist the
trained model in adapting to differences in the data distributions between the source and
target domains [91, 92]. Since many DL-based solutions employ supervised learning tech-
niques, the training datasets often require manual annotation [36]. However, the manual

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 88

Fig. 4.6. Examples of automatically annotated real images

annotation of data can be highly time-consuming or impractical, particularly in complex
tasks such as semantic scene segmentation or instance segmentation, which are commonly
used in robotic applications. Moreover, DL models necessitate extensive training datasets.
As a result, annotating the training data can pose a significant challenge in developing new
DL-based solutions for robotics.

The benefits of utilizing automated methods for data annotation and synthetic data for
DL model training are apparent. Synthetic data can be easily annotated automatically,
and diverse variations in the data distribution can be incorporated. Nonetheless, using
synthetic data alone does not eliminate the generalization obstacle. Ultimately, the trained
model must be capable of processing real data. This requirement can only be fulfilled if
the model trained on the synthetic dataset can also generalize to the real data, which is
commonly known as "bridging the reality gap" [92, 91].

There are two primary strategies for bridging the reality gap. The first approach is to
generate a synthetic dataset that closely resembles the real dataset [83, 84, 85, 89, 90]. In
the case of synthetic images, this is accomplished by photorealism. The second approach
is domain randomization. This method incorporates exaggerated levels of variability into
the synthetic dataset, causing models trained on such datasets to disregard the effects of
the randomized factors and generalize to real data as well [89, 90, 91, 92].

The advantages of using a synthetic dataset are often discussed in terms of transfer
learning. It is widely accepted that pre-training on a large synthetic dataset and then fine-
tuning on real data can be more effective than training solely on real data [85, 196]. For
instance, Nowruzi et al. investigated the benefits of including a synthetic dataset along
with real annotated data for object detection [196]. In their experiments, they trained a
DL model (SSD single shot detector [197] with MobileNet as the backbone [198]) from

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 89

scratch on a dataset containing both synthetic and real data. They discovered that the ad-
ditional synthetic data considerably reduced the requirement for training on real samples
(10%, 5%, and 2.5% of the original real dataset were used). Furthermore, when train-
ing the model from scratch, pre-training on synthetic data and fine-tuning on real data
outperformed training the model on a mixed dataset (comprising both real and synthetic
samples). The pre-trained model also has the advantage that it can be adapted to other
domains by fine-tuning on a small amount of real data, thereby eliminating the need for
another lengthy training process involving the entire synthetic dataset. Thus, creating a
synthetic dataset can often be viewed as an alternative when a large annotated real dataset
for pre-training is not available.

We propose a technique for automatically generating and annotating synthetic image
data and show that the advantages of synthetic data can also be leveraged during fine-
tuning. Our approach assumes the availability of a pre-trained model and focuses on the
fine-tuning step. We demonstrate how synthetic data can improve the fine-tuning process
of transfer learning methods for robotic perception for manipulation and the training of
continuous learning techniques that use experience replay for image classification.

4.2.2 OE and SynLORIS synthetic scenes and FTRG method
When training a DL model using a synthetic dataset, challenges may arise when the model
later performs inference on real-world data due to differences between the simulated and
target domains. These differences can include neglected physics interactions and a sim-
plified world model. These challenges are even more significant in reinforcement learn-
ing, which requires interaction with the environment in addition to perception [58, 199].
Nonetheless, the quality of the synthetic dataset remains important in perception tasks,
as demonstrated in [200]. Therefore, sim-to-real approaches in reinforcement learning
can provide valuable insights into the requirements that the simulation software used for
synthetic data generation must meet.

The key lessons to learn from sim-to-real approaches in reinforcement learning are the
importance of close-to-reality simulation and domain randomization [58, 199, 91]. In the
context of perception for object segmentation tasks, achieving close-to-reality simulation
is accomplished by generating photorealistic renders. Therefore, the primary requirement
for simulation software is the ability to produce such high-quality renders.

It has been shown that introducing randomization to certain parameters of the scene,
such as lighting conditions, textures, and backgrounds, can enhance generalization and im-
prove adaptation to real-world scenarios [91]. This technique is known as domain random-
ization. Therefore, the simulation software used as a foundation for generating synthetic
data must have the capability to randomize these aspects of the scene as conveniently as
possible.

In addition to domain randomization and photorealism, the presence of physics simu-
lation is not an essential requirement but rather a preference, as it enables the creation of
natural-looking piles of objects (e.g., for robotic bin-picking tasks), which may be difficult
to construct manually.

Finally, it is essential to consider the accessibility and setup costs of the simulation
software. It is advisable to use a lightweight and easy-to-learn simulation software rather
than a cumbersome one. Open-source software is advantageous because of its versatility

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 90

TABLE 4.1
COMPOSITION OF THE OE SYNTHETIC DATASET

Image ID
training (t)

validation (v) textures objects lighting

0-399 t photoreal. OE static
400-499 v photoreal. OE static
500-899 t photoreal. OE rand.
900-999 v photoreal. OE rand.

1000-1399 t rand. OE rand.
1400-1499 v rand. OE rand.
1500-1899 t photoreal. OE, bolt rand.
1900-1999 v photoreal. OE, bolt rand.
2000-2399 t rand. OE, bolt rand.
2400-2499 v rand. OE, bolt rand.

and ease of access. Therefore, a well-documented open-source simulation software can be
an excellent foundation for any synthetic data generation pipeline.

Based on these considerations, we have selected the Blender 3D suite as the founda-
tion for our synthetic data generation pipeline. Blender is an open-source software with
a thriving and supportive community [201]. As a result, there are numerous online re-
sources available to learn its features and functionalities. Although the use of Blender
falls beyond the scope of this work, we encourage readers to refer to these resources for
any unfamiliar terminology or additional inquiries about Blender’s capabilities. Blender
is a general-purpose 3D creation tool that is not limited to a specific domain type, unlike
certain driving or robotics simulators. Its primary function is the creation of computer
graphics, and it offers an abundance of tools for manipulating visual scenes, including 3D
object models, lighting and camera configurations, geometry modifications, textures and
shading, image post-processing, and more. Blender can generate photorealistic renders
and incorporates physics simulation through the Bullet physics engine. Additionally, it in-
cludes a Python API, which facilitates integration into a DL training workflow, as most DL
frameworks support the Python programming language. Lastly, accessibility and ease of
setup were key factors in our decision. We believe that an open-source computer graphics
software with extensive documentation, like Blender, is a strong foundation for synthetic
data generation.

For our experiments, we created two virtual scenes. The first one is a tabletop environ-
ment that includes objects available at our laboratory to test our proposal of using synthetic
data for the fine-tuning of DL models. We refer to this scene as the OE scene. The second
scene, SynLORIS, was created to replicate a scene from the OpenLORIS Object dataset
[4] and was used to compare the performance of continual learning models with and with-
out synthetic data for experience replay. SynLORIS is a synthetic version of one of the
real scenes in the OpenLORIS Object dataset. Both scenes were created with the aim of
generating a fine-tuning dataset.

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 91

Fig. 4.7. Example rendered frames from the OE synthetic dataset

OE scene

The OE scene includes two categories of objects: 3D printed ‘OE’ logos and DIN EN
ISO 10642 M8x55 bolts. The clutter objects present in the scene are clamps and pliers,
which were photo-scanned using the Qlone [194] photogrammetry application in our lab-
oratory. The background of the scene is a planar tabletop. The positions of the OE logos,
bolts, clutter objects, and the distance between the camera and the background plane were
randomized.

To achieve realistic simulation in our experiments, we utilized photorealistic textures
and realistic lighting for the objects and background. To create the photorealistic shading
of the tabletop, we applied an image texture, while the clutter objects utilized textures
obtained from photo-scanning. The OE logos and bolts had shaders specifically designed
using Blender. Additionally, we created randomized textures for domain randomization,
which were intentionally unrealistic.

A dataset of 2,500 images (referred to as the OE synthetic dataset) was generated from
the scene. Table 4.1. provides a detailed description of the dataset’s composition. Some
rendered frames of the OE synthetic dataset can be seen in Figure 4.7.

SynLORIS

We modeled our SynLORIS scene based on a real scene from the OpenLORIS Object
dataset. To achieve a similar environment, we replicated the placement of the desk and
background elements, as well as the lighting direction. We selected 3D assets that resem-
ble the real objects and textures but limited our selection to freely available ones from
BlenderKit’s library. The scene was not created with the aim of producing highly realistic
renders or perfectly recreating the objects because, for the OpenLORIS Object benchmark,

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 92

Fig. 4.8. Synthetic images rendered from the SynLORIS scene

the images are resized to 50 × 50 pixels, which means fine details would have been lost
anyway.

In the SynLORIS scene, we incorporated variations in two factors highlighted in [4]:
illumination and object pixel size. The scene features three sources of illumination: an
HDRI, an area light simulating light coming through the window, and a point light source
situated above the table. We altered the power of the lamps and the strength of the HDRI
lighting to achieve different illumination effects. To simulate variations in object pixel
size, we moved the camera closer and farther away from the objects along a 3D spline that
we manually defined.

In a similar fashion to the single-factor experiments conducted in OpenLORIS Object,
we designed nine illumination-related tasks in the SynLORIS scene, each with a different
illumination level. We considered a subset of seven objects from the OpenLORIS Object
dataset, all of which share the same scene. To create the dataset, we generated 30 synthetic
images for each object in each task. Regardless of the object or task, we used the same
camera path. Overall, the dataset contains 1,890 rendered images (9 tasks, 7 objects per
task, 30 images per object). Figure 4.8. displays some of the rendered frames. We uti-
lize the SynLORIS dataset in our experiments to demonstrate how an image classification
model using experience replay can benefit from synthetic data.

Blender Annotation Tool (BAT)

To generate segmentation-type annotations for the OE synthetic dataset, we created the
Blender Annotation Tool (BAT), a Blender addon1. BAT can be used via a simple user
interface (referred to as BAT panel) located in a dedicated tab of the "n-panel" of the 3D

1https://github.com/ABC-iRobotics/blender_annotation_tool

https://github.com/ABC-iRobotics/blender_annotation_tool

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 93

Fig. 4.9. Example BAT annotations for the OE synthetic dataset

Viewport. The class for the background is added by default with black color. The BAT
panel can be used to create, delete or rename classes, change the color ID of a class or
the collection of objects associated with it, and for toggling whether the object collection
should be treated as a collection of instances or not.

In order to generate segmentation masks, BAT utilizes the viewport renderer OpenGL.
Consequently, BAT is dependent on an open GUI of Blender and cannot operate in the
background. Despite this limitation, the time and resources required for generating anno-
tations are significantly less than rendering (two orders of magnitude based on our expe-
rience). Moreover, the rendering of synthetic images can be executed separately from the
annotation generation, enabling us to leverage a powerful headless server for rendering
while using a separate system with limited resources for annotation generation. Examples
of the produced annotations are shown in Figure 4.9.

FTRG method

We propose a method for generating a mixed-reality dataset by utilizing the described
automatic annotation techniques. This method is called "Filling the Reality Gap" (FTRG),
as it seamlessly combines synthetic and real data to create rendered counterparts of real

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 94

Fig. 4.10. Samples from our FTRG dataset; a: Seamless transition from real to synthetic textures on a
selected subset of objects, b: Random texture for a selected subset of objects of interest with real background
and clutter, c: Real objects in a synthetic scene with synthetic clutter

images. By combining the automatic real-data annotation pipeline with the synthetic data
generation and annotation method (using BAT), we are able to mix elements of both real
and virtual scenes, including objects of interest, backgrounds, and clutter objects, in a
single image. By controlling the degree to which the virtual scene is mixed with the real
one, we can create a seamless transition between the two environments. The name of our
method, FTRG, reflects its purpose in bridging the gap between reality and the virtual
environment.

The FTRG method involves several steps. First, we use our automatic real-data annota-
tion pipeline to create a real dataset. Next, a synthetic version of the scene is created using
Blender. To ensure consistency between the real and synthetic images, Blender’s motion
tracking module determines the camera pose, motion, and internal parameters based on
the real dataset images. After rendering, the real and synthetic images can be seamlessly
blended using Blender’s compositor workspace. To create our FTRG dataset, we com-
bined various elements of the real and synthetic images (such as real backgrounds with
synthetic objects or synthetic backgrounds with real objects). The labels for the FTRG
dataset are inherited from either the real or the synthetic scene using BAT. Figure 4.10. il-
lustrates some possible ways of mixing synthetic and real data in the FTRG dataset.

To demonstrate the effectiveness of the FTRG method, in our experiments, we con-
ducted a comparison of Mask-RCNN [74] networks that were fine-tuned using various
datasets. Specifically, we compared the performance of networks fine-tuned using the
FTRG method with those fine-tuned using photorealistic synthetic data, domain random-
ized synthetic data, or real images.

Continual learning experiments

For our experimentation with continual learning, we utilized the OpenLORIS Object bench-
mark proposed by She et al. in [4]. They proposed an evaluation approach for continual
learning techniques based on the train-test accuracy matrix, which is illustrated in Ta-
ble 4.2. They introduced two metrics: Forward Transfer (FWT) and Backward Transfer

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 95

TABLE 4.2
TRAIN-TEST ACCURACY MATRIX R FROM [4]; Tr REPRESENTS TRAINING DATA, Te REPRESENTS

TESTING DATA, Ri,j IS THE ACCURACY OF THE MODEL TRAINED ON Tri AND EVALUATED ON Tej , N
IS THE NUMBER OF TASKS

R Te1 Te2 ... TeN
Tr1 R11 R12 ... R1N

Tr2 R21 R22 ... R2N

...
TrN RN1 RN2 ... RNN

(BWT). FWT is the average accuracy calculated for the upper triangle of the train-test
accuracy matrix, marked in blue in the table. BWT, on the other hand, is the average ac-
curacy for the lower triangle of the train-test accuracy matrix, marked in red in the table.
BWT measures how well a model retains information from previous tasks, while FWT
measures how well a model adapts to new tasks after training on the previous ones.

She et al. demonstrated that maximizing FWT is particularly difficult for many con-
tinual learning techniques. In our interpretation, FWT measures the ability of a trained
model to generalize to new tasks. Our experiments aim to test the hypothesis that the use
of synthetic data in the form of rendered images can enhance the FWT of specific contin-
ual learning models. To this end, we employed continual learning with experience replay
[202] and evaluated its performance on the single-factor benchmarks introduced by She et
al.

We limited our experimentation to seven objects from the OpenLORIS Object dataset,
namely bottle_01, bowl_01, cup_02, cup_04, ladle_02, paper_cutter_04, and scissors_01,
as these objects were also used to generate our synthetic dataset, SynLORIS. The evalua-
tion was based on four factors: illumination, occlusion, clutter, and object pixel size, and
each factor had nine tasks with varying levels of the corresponding factor. We assessed
two models for each factor in our experiments. One of the models was trained exclusively
with data from the original OpenLORIS Object training set, while the other was trained
with data from both the OpenLORIS Object and the corresponding SynLORIS dataset.
Both models had a memory budget of 2000 and were trained for 100 iterations on each
task. The OpenLORIS Object dataset’s validation set for the seven objects was employed
for testing across all factors and tasks. We evaluated each model using the same metrics
employed by She et al. for all four factors.

In Figure 4.11., the train-test accuracy matrices for all four factors are displayed to
allow for qualitative assessment. These matrices are presented as images, where the pixel
intensity corresponds to the value of an element in the matrix. A pixel with a value of 0 is
represented as black, while a pixel with a value of 1 is represented as white.

It should be noted that the SynLORIS dataset incorporates changes in only two factors,
namely illumination and object pixel size. This is apparent in Fig 4.11., which demon-
strates that significant differences in the train-test accuracy matrices are only noticeable
in these two factors. In such instances, the model that had access to synthetic samples
performed better than the model that solely underwent training with real samples.

Table 4.3. presents the outcomes of our continual learning experiments utilizing the
metrics introduced by She et al. in [4]. The first row (m1) displays the results obtained
from exclusively training models on the OpenLORIS Object dataset. In contrast, the sec-

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 96

Clutter

Trained on

OpenLORIS Object

Occlusion Object pixel sizeIllumination

Trained on

OpenLORIS Object

+

SynLORIS

Fig. 4.11. Train-test accuracy matrices of image classification models, using experience replay and data
from the OpenLORIS Object and the SynLORIS datasets, as evaluated by the OpenLORIS Object bench-
mark on all four factors. (brighter color means greater accuracy)

TABLE 4.3
QUANTITATIVE RESULTS FROM OUR CONTINUAL LEARNING EXPERIMENTS. VALUES PER CELL FROM

TOP TO BOTTOM: ACCURACY, BWT, FWT, OVERALL ACCURACY (AS DESCRIBED IN [4]))

Illumination Occlusion Object pixel size Clutter

m1

0.954
0.945
0.539
0.77

0.999
0.999
0.782
0.903

0.991
0.991
0.683
0.854

1.0
1.0

0.704
0.868

m2

0.979
0.979
0.685
0.848

0.996
0.995
0.74
0.882

0.991
0.993
0.768
0.892

0.993
0.994
0.716
0.869

ond row (m2) showcases the performance of models that underwent training on data orig-
inating from both the OpenLORIS Object and the SynLORIS datasets. It is worth noting
that the models trained on both real and synthetic data exhibited considerably better FWT
for the illumination and object pixel size factors when compared to models that exclusively
used real data.

Experiments on synthetic data for fine-tuning

We conducted experiments to showcase the influence of incorporating synthetic data into
the fine-tuning stage of deep neural network training. Additionally, we emphasize the
advantages of using the FTRG approach over solely relying on photorealistic synthetic
images and/or domain randomization.

We trained multiple Mask-RCNN models, utilizing different instance segmentation
datasets, and assessed their performance using the same test dataset2. The models all
shared the same network architecture and were initialized with the same set of pre-trained

2Mask-RCNN implementation from: https://github.com/matterport/Mask_RCNN

https://github.com/matterport/Mask_RCNN

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 97

TABLE 4.4
PERFORMANCE OF MODELS (MAP @ IOU≥ 0.5) EVALUATED ON FIVE RANDOMLY SELECTED

SUBSETS OF OUR TESTING SET

subset1 subset2 subset3 subset4 subset5
MRCNN-R 0.8889 0.8983 0.9029 0.9077 0.8674
MRCNN-P 0.8763 0.8599 0.8505 0.8296 0.8395

MRCNN-DR 0.8654 0.8307 0.8437 0.8132 0.7949
MRCNN-DR-R 0.9955 0.9817 0.9831 0.9774 0.9651

MRCNN-DR-P-R 0.9984 0.9887 0.9891 0.9812 0.9709
MRCNN-FTRG 1.0 0.99 0.9895 0.98 0.9715

weights (which were originally trained on the COCO dataset [187]). We adopted the same
hyperparameters and a fixed number of training iterations for fine-tuning across all the
models. In total, we trained five models and named each one based on the type of data
utilized for its training.

• MRCNN-R: This model was fine-tuned using only real data. The training dataset
was annotated by our automated real dataset annotation method.

• MRCNN-P: This model was fine-tuned using only photorealistic samples from the
OE synthetic dataset

• MRCNN-DR: This model was fine-tuned using only synthetic images with unrealis-
tic textures from the OE synthetic dataset.

• MRCNN-DR-R: This model was fine-tuned using both domain-randomized synthetic
samples from the OE synthetic dataset and samples from the real dataset.

• MRCNN-DR-P-R: This model was fine-tuned using synthetic samples from the OE
synthetic dataset (both photorealistic and domain randomized) and real samples as
well.

• MRCNN-FTRG: This model was fine-tuned using the FTRG dataset, which com-
bines the real dataset with the domain-randomized synthetic dataset using the FTRG
method.

Our test data was gathered by capturing real images in diverse settings (comprising
varying backgrounds and object arrangements), levels of clutter (as well as the types of
objects present in the clutter), and illumination conditions. We annotated this test set
utilizing the proposed automated real data annotation method. Table 4.4. lists the mean
average precision (mAP) for all six models at intersection over union (IoU) values greater
than or equal to 0.5. The results presented in the table were obtained from five different
randomly selected subsets of the test dataset.

Our findings indicate that models which were exclusively fine-tuned on synthetic data
produced inferior results when compared to models trained solely on real data. However,
models that were trained on datasets containing both synthetic and real data surpassed the
performance of models trained solely on real data. This suggests that utilizing synthetic
data during the fine-tuning phase of deep neural network training can lead to better results
than exclusively training on real data.

Notably, the model trained on our FTRG dataset achieved superior results in four out of
five cases, outperforming all other models. We believe the slight improvement compared to

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 98

the MRCNN-DR-P-R model can be attributed to the fact that our FTRG dataset comprises
samples that contain a mixture of real and synthetic elements. This property enables the
MRCNN-FTRG model to adjust better to diverse real-life domains.

4.2.3 Fine-tuning GQCNNs with task-specific synthetic data
Motivation

Robots are extensively used in industrial packaging and assembly processes due to their
ability to perform tasks that would be too tedious and repetitive for humans; however,
as the industry shifts towards greater flexibility, new requirements for robot applications
emerge, resulting in novel challenges in robotic manipulation. One such challenge is grasp
planning, which involves finding appropriate grasps for an object based on a quality mea-
sure, such as wrench-space metrics computed analytically [203], empirical evaluation from
physical trials [30], or similarity to human-provided grasps [204].

Grasp planning is necessary for some robotic manipulation tasks because the robot’s
program cannot be "rigid" and repeat the exact same movements over and over if the pose
and/or the object’s geometry are unknown in advance. Therefore, grasp planning is used
to find appropriate grasps for a given object according to a quality measure. This allows
for flexibility in the robot manipulation pipeline, allowing for quick and easy adjustments
to be made for novel objects or objects with unknown poses.

Determining the quality of grasps is a complex problem that depends on several factors
such as object geometry, gripper geometry, dynamic properties like friction forces, and the
task to be performed after the object is grasped [205]. Analytical approaches can provide
reliable solutions based on simulated contacts and dynamics, but they often require prior
knowledge of object properties such as geometry, material, and inertia matrix. Besides,
their computation can be time-consuming [203]. Furthermore, object detection and pose
estimation must be performed separately, and it is challenging to incorporate the relevant
information about the task into analytical grasp planning.

On the other hand, data-driven approaches for grasp planning can integrate object de-
tection, pose estimation, and grasp planning into a single model [206]. These models
can learn general grasping policies from large datasets and apply them to novel objects
[30, 206]. Moreover, grasp prediction with such models is significantly faster compared to
analytical methods [206]. However, a large dataset is required to train these models. Col-
lecting a large-scale grasping dataset using physical robots can be time-consuming and
expensive, taking up to months [30]. As a result, offline-generated simulation-based syn-
thetic data is usually preferred, where analytical grasp quality approaches can be used for
ground-truth generation [206].

Miller and Allen developed Graspit!, which is a simulator used for evaluating robotic
grasps [203]. With Graspit!, users can import arbitrary gripper and object geometries and
evaluate a large number of grasps for a given gripper-object combination to identify the
best quality grasps using a sampling-based approach. Although Graspit! can also simulate
and compute the quality of grasps in a dynamic environment, this is beyond the scope of
our research for now. Goldfeder et al. created the Columbia Grasp Database, along with
a data-driven approach for grasp planning, using the Graspit! simulator [207, 208]. Their
approach involved matching partial object geometry information against a large dataset

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 99

of 3D models and selecting appropriate grasps from a set of pre-computed grasps for the
matched objects. A similar approach called Dex-Net 1.0, which used pre-computed grasps,
was introduced by Mahler et al. who utilized cloud computing to significantly reduce the
application runtime [209]. They used Multi-View Convolutional Neural Networks to mea-
sure the similarity between objects. Mahler et al. later compiled a vast synthetic dataset of
6.7 million point clouds with grasps and associated analytic grasp metrics, called Dex-Net
2.0, based on their results in Dex-Net 1.0 [206]. They proposed a convolutional neural net-
work architecture called Grasp Quality Convolutional Neural Network (GQCNN), which
could predict the probability of successful grasps directly from the depth image data. They
demonstrated that a GQCNN trained on Dex-Net 2.0 synthetic dataset outperformed other
state-of-the-art approaches that used point cloud registration while being 3× faster. More-
over, they achieved great precision (99%) on a set of novel objects.

One limitation of the aforementioned methods is that they only consider grasping in
isolation, without taking into account the specific task that will be performed after the
grasp. According to Costanzo et al., using fixed grasps alone can render a robot manip-
ulation task infeasible [210]. They propose that in-hand manipulation techniques, such
as object pivoting based on tactile feedback (detailed in [211]), may be necessary for a
successful task solution, and thus grasps should be selected accordingly. Task-specific
grasp planning methods aim to address this issue by incorporating a task encoding into the
grasp prediction process [212, 213, 214]. However, the task encoding in such approaches
is typically categorical and represents a generalized use case, such as poking or pouring
water. While these methods work well for general scenarios, they may not be sufficient for
specific pick-and-place tasks in robotic assembly where object geometries and assembly
order limit the number of suitable grasps. In such cases, a categorical task encoding would
require the representation of each unique assembly as its own category, which would ne-
cessitate the model’s retraining from scratch each time a new assembly task is presented. A
more appropriate solution for these scenarios would be a transfer learning-based approach.

Transfer learning is a technique that involves reusing large deep-learning models that
have been pre-trained on vast datasets. During transfer learning, only the top layers of
the network are modified, while the lower layers, which extract more general features, are
left untouched. This approach allows us to use a relatively small dataset without overfit-
ting since only a fraction of the network’s parameters need to be adjusted. The process of
modifying the top layers is called fine-tuning the network. We propose an automated syn-
thetic dataset generation pipeline using sampling-based analytic grasp quality assessment
(Graspit!) and computer graphics (Blender) to fine-tune GQCNN models for task-specific
grasp planning in robotic assembly. Our focus is on predicting geometrically well-placed
grasps and not examining dynamic grasp qualities. We present and discuss the results
through a simple yet representative simulated task.

Methodologies

Similarly to the Columbia Grasp Database by Goldfeder et al. our synthetic dataset gen-
eration pipeline also utilizes Graspit! for determining grasps qualities. Figure 4.12. shows
the proposed synthetic dataset generation pipeline. As the figure demonstrates, Graspit! is
used to automatically generate grasps for two scenarios: picking and placing the object.
In the picking scenario, Graspit! provides multiple possible grasps for picking the object.

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 100

Graspit!

place

scenario

pick

scenario

Blender

pick grasps

place grasps

valid grasps

invalid grasps

scene

...

Output

...

synthetic depth image

} GQCNN

training

Fig. 4.12. Synthetic data generation and GQCNN training pipeline

In the placing scenario, Graspit! provides grasps suitable for placing the object. For our
experiments, we use a Franka Emika Panda robot, its signature parallel jaw gripper, and
a simple object composed of box primitives. Our experiment simulates an insertion-type
assembly subtask where the object is grasped at the thicker part. By sequentially chaining
pick-and-place setups according to the assembly order, a more complex assembly can be
composed. For the synthetic dataset generation, we require the 3D models of objects, the
gripper model, and knowledge of the assembly process, including the location of parts
relative to each other and the assembly order.

Our proposed method incorporates Graspit! with the Robot Operating System (ROS),
an open-source robotics framework that provides useful tools for creating and managing
robotic applications [215]. With the help of the Graspit! ROS interface3 in conjunction
with Graspit! Commander4 the Graspit! grasp planning process can be automated using the
Python programming language and ROS. We store the Graspit! grasp planning outputs in
multiple JSON files, each named according to whether the grasps are for the pick or place
scenario. The files contain the object pose, a list of search energies from Graspit! (which
can be used to create a hierarchy of predicted grasps), and a list of predicted grasp poses.
Both the object pose and the grasp poses are expressed relative to the world frame and
consist of a 3D vector for object/gripper location and a quaternion (in [x, y, z, w] format)
for object/gripper orientation.

To generate the synthetic depth images, we have utilized Blender, a free and open-
source 3D computer graphics software. We leveraged Blender’s Python API to automate
the rendering process and manipulate the intrinsic and extrinsic camera parameters to
match a real-world calibrated camera. In our experiments, we used the camera param-
eters of a PrimeSense camera provided with the GQCNN implementation5.

After setting up the camera, the grasp poses obtained from Graspit! are loaded and
transformed to the object frame in Blender, regardless of the object pose in Graspit! and
Blender (the grasp poses from both the pick and the place scenario are represented in the
same frame). Then the pick grasps are sorted into two categories based on their geometric

3https://github.com/graspit-simulator/graspit_interface
4https://github.com/graspit-simulator/graspit_commander
5https://github.com/BerkeleyAutomation/gqcnn

https://github.com/graspit-simulator/graspit_interface
https://github.com/graspit-simulator/graspit_commander
https://github.com/BerkeleyAutomation/gqcnn

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 101

(a)

(b)

(c)

(d)

Fig. 4.13. Proximity-based classification of pick grasps visualized inside Blender: (a) pick grasps, (b)
place grasps, (c) valid grasps out of all the pick grasps, (c) invalid grasps out of all the pick grasps

proximity to place grasps, valid and invalid grasps. The group of pick grasps with a cor-
responding place grasp is classified as valid, while the pick grasps with no corresponding
place grasps are classified as invalid. We considered two grasps “corresponding” if the dis-
tance between their origins was less than 5mm and their relative orientation difference is
less than 10 degrees. We also pre-filtered the grasps to remove those that were too similar.

Once all the pick grasps were classified as valid or invalid, a JSON object is generated
that contains a list of 2D grasps, represented by a 2D point (in pixel units), an angle, and a
label (1 for valid grasps and 0 for invalid grasps). After this, an RGB-D image is rendered
where the RGB image was saved as a PNG file, and the depth data is saved separately as
a NumPy array. We also generated segmentation masks for each rendered frame using the
Blender Annotation Tool, although we did not utilize them in our experiments.

The Blender scene was prepared in a way that the object’s location along the X and
Y axes and its orientation along the Z axis were randomized throughout each frame. This
process resulted in a collection of rendered synthetic depth images and corresponding
2D grasps for multiple object poses. The proposed pipeline uses Blender with Python
programming language to automate the rendering process and generate synthetic data.
Figure 4.13. shows the pick grasps, the place grasps, and the separation of the pick grasps
into valid and invalid grasps.

A Python script is utilized to generate a synthetic grasp dataset in the format of Dex-
Net 2.0 using the output from Blender. The script loads the depth images and correspond-
ing 2D grasps. It rotates, crops, and resizes the depth images to create 32× 32 sized depth
images for each grasp, where the grasp point is positioned in the center of the image, and
the gripper’s opening direction is horizontal. Since we only generate grasps which are
appropriate for picking (but not necessarily for placing), additional 12 invalid grasps are
added along with each grasp (both valid and invalid), which have the same position as the

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 102

original grasp, but they are rotated in either a positive or negative direction along the Z
axis in increments of 15° (up to +90°and −90°). In our experiments, adding these invalid
grasps significantly improved the accuracy of the predicted grasps’ orientation. During
our experiments, we also found that cropping a 128× 128 square area of the depth image
first and rescaling that to 32× 32 proved better than cropping 64× 64 or 32× 32 directly,
although the best value most likely depends on the specific setup (camera-object distance).
The 32 × 32 depth images are bundled in a single NumPy array and saved as an npz file.
Similarly, the labels and the robot gripper poses (containing the depth of the grasp points)
are saved as npz archives.

Finally, the GQCNN, which was pre-trained on the Dex-Net 2.0 dataset, is fine-tuned
on our automatically generated synthetic grasp planning dataset, using the scripts provided
for fine-tuning with the GQCNN implementation6. The fine-tuning process involved train-
ing for 60 epochs, with a train/validation split of 0.9/0.1. We utilized a sparse loss with a
momentum-based optimizer, a decay rate of 0.999, and a base learning rate of 0.01.

Once the training phase is complete, we assess the GQCNN models using synthetic
depth images from Blender and the Moveit! Task Constructor (MTC) framework [216].
This framework enables us to define complex tasks, such as our pick-and-place exper-
iment, using a modular approach that breaks down the task into elementary subtasks
(known as stages). MTC performs the robot motion planning for the entire task, taking
collisions in the scene into account. In our experiments, we introduce a grasp generator
stage that uses the ROS-based GQCNN grasp planning service from the GQCNN imple-
mentation to obtain the best grasp from a GQCNN for a given depth image. With this
new generator stage, we adapt the MTC pick-and-place demo scene for our experiments,
which utilizes the Franka Emika Panda robot. We recreate the table, object, and camera in
the MTC scene to match their relative positions in Blender. To assess the GQCNN mod-
els, we perform robot motion planning using MTC, using the best predicted grasp from
the GQCNN model. During the evaluation, we define a fixed place pose for the object
and utilize MTC to identify the stage in which task execution failure occurs. We consider
grasps that result in a collision between the robot arm/hand and the table during the in-
verse kinematics computation stage for placing as failed grasps, while those that do not
result in such collisions are deemed successful. It’s worth noting that this evaluation solely
considers geometric criteria in the form of collisions, with no regard for the quality of the
grasps concerning force closure or other dynamic properties. Nevertheless, we hypothe-
size that the predicted grasps using our fine-tuned GQCNN models will be robust, given
that the pre-trained GQCNNs already consider dynamics and our positive grasps dataset
is generated from Graspit!, which also provides robust grasps. However, real-world trials
are necessary to validate this hypothesis in the future.

In summary, the main components of the synthetic data generation pipeline, GQCNN
training, and evaluation process, with their purpose and requirements, are:

• Graspit!: This tool is utilized for automated and robust grasp generation in two
scenarios: picking and placing. For both scenarios, we require 3D models of the
robot gripper, the object, and the table. In the picking scenario, the object must be
placed in a stable, natural position on the table, while in the placing scenario, the
object must be positioned in its final pose relative to all the relevant assembly parts

6Available online at https://github.com/BerkeleyAutomation/gqcnn

https://github.com/BerkeleyAutomation/gqcnn

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 103

that preceded it. Grasp poses for both scenarios are expressed as 3D poses of the
robot gripper’s frame relative to the Graspit! world frame.

• Blender: Used for generating synthetic RGB-D frames and ground-truth grasp in-
formation for training and evaluating the GQCNN models. To set up the Blender
scene, a camera and 3D models for the object and the table are necessary. For each
rendered frame, the object should be randomly placed in a natural lying pose on
the table within the camera’s field of view. The object position along the X and Y
axes and its rotation around the Z axis of the Blender world frame should be ran-
domized. The intrinsic parameters of the Blender camera must match those of the
camera used in the real-world setup, which can be determined by camera calibration.
Section 4.2.3 discusses the impact of different extrinsic camera parameters during
training and inference. The pick and place grasps from Graspit! are transformed
into a common coordinate frame within Blender, namely the object’s frame, and
the pick grasps are classified as valid or invalid based on their proximity to place
grasps. The valid and invalid grasp points are projected onto the image plane us-
ing Blender’s camera projection, and their orientation is used to create ground-truth
grasp information for training the GQCNN models.

• Moveit! Task Constructor: Used for automating the assessment of the GQCNN
models once trained. This tool requires the robot model, 3D models of the object and
table, and a cylinder-shaped dummy object to represent the camera. Although the
camera, object, and table can be placed anywhere within the robot’s workspace, their
relative poses must match those in Blender when the depth image was generated
for the model under evaluation. MTC performs motion planning for the entire task,
taking into account collision checking, using the grasp predicted by the GQCNN and
a fixed place pose. The prediction is regarded as successful if the motion planning
is accomplished without collisions, and as unsuccessful, if the inverse kinematics
solution for the place pose fails due to a collision.

Figure 4.14. shows the flowchart representation of the automated synthetic grasp dataset
generation.

Experimental setup

For our experiments, we evaluate the performance of different GQCNN models by assess-
ing the success rate of collision-free motion plans in a peg-in-hole-like insertion task. The
experimental setup, visualized by RViz, can be seen in Figure 4.15. The peg object in
the experiments is made up of two box primitives, one of which is sized 10cm in the X
direction and 1cm in both Y and Z directions, with the origin being the geometric center
of the box, the other one is sized 3cm in X and 2cm in Y and Z directions and is located
3.5cm in the X direction. In the setup, the object is lying on its side (the Z axis of the
object frame pointing upwards) on the surface of a table. The table is simply represented
as a flat surface.

Since the 3D grasp pose predicted by the GQCNNs is oriented according to the line
between the depth camera and the grasp point, we included an additional platform for
placing in MTC to avoid unnecessary collisions between the robot arm and the table. In-

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 104

Start

Coordinate transform

Camera intrinsics

End

Pick grasps in

world frame

Gpick

Place grasps in

world frame

Gplace

Pick grasps in

object frame

Gpick

Place grasps in

object frame

Gplace

i = 0

Gpick[i] has

corresponding

grasp in Gplace

Yes

No

i++ i < len(Gpick)

Yes

No

Project Gpick

to image plane

Render synthetic

RGB-D image

Labels for

pick grasps

Lpick

2D grasps

from Gpick

Crop, rotate, scale

Fine-tuning

grasp dataset

with labels

Pick scenario

(Graspit! world)

Place scenario

(Grapit! world)

Graspit! grasp planning Graspit! grasp planning

Classify Gpick as valid

Classify Gpick as invalid

Fig. 4.14. Flowchart of the automated synthetic grasp dataset generation procedure

(a) (b) (c)

Fig. 4.15. Experimental setup used for evaluation: (a) Scene setup with the robot, object camera, and table,
(b) Planned grasps which do not result in collisions are evaluated as successful, (c) Grasps that result in
collisions between the robot and the table are evaluated as unsuccessful

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 105

TABLE 4.5
EVALUATION OF OUR FINE-TUNED GQCNN AGAINST THE DEX-NET 2.0 PRE-TRAINED GQCNN FOR

DEPTH IMAGES GENERATED FROM A CAMERA WITH THE SAME EXTRINSIC PARAMETERS AS IN THE

TRAINING SETUP.

Model Success rate (task) Success rate (pick) Success rate (place)

Dex-Net 2.0 GQCNN 0.65 1.0 0.65
Fine-tuned GQCNN 0.9 1.0 0.9

side Graspit! we simply use the “table” object instead. For the gripper (Panda Hand7),
we defined the virtual contacts using the user interface of Graspit! and modified the in-
ventor files to include appropriate scaling so the size of the gripper in Graspit! matches
the real-life gripper. We ran the Graspit! grasp planning a total of 3 times for pick grasps
and 5 times for place grasps, from which we acquired 23-26 pick grasps, and around 30
place grasps after the initial filtering (removing multiples of pick grasps and place grasps
or grasps with high contact energy). Based on geometric proximity, 5 pick grasps were
classified as valid, and the rest as invalid (see Figure 4.13).

To create the fine-tuning dataset, we used the first 20 RGB-D frames generated in
Blender. The object pose was randomized for each of these frames, and a total of 489 pick
grasps were identified as either valid or invalid. To ensure accurate prediction of gripper
orientation, we added 12 invalid grasps for each of the 489 original ones while converting
the data into Dex-Net 2.0 format. This process resulted in 6357 grasps, of which only
1.57% were positively labeled.

We performed fine-tuning on the Dex-Net 2.0 pre-trained GQCNN model using the
aforementioned dataset. Fine-tuning was conducted for 60 epochs with a batch size of
64. Subsequently, we compared the fine-tuned model with the original Dex-Net 2.0 pre-
trained model by evaluating the success rate of pick-place operations using MTC. We used
20 additional rendered frames, which were not part of the training or validation data, and
shared the same camera placement as the training setup. Additionally, we generated 40
other RGB-D frames with a different camera placement than the training setup. We report
the results of these evaluations separately to showcase the sensitivity of our approach to
variations in the setup.

Results using camera extrinsic parameters from training setup

Table 4.5. shows the results of our evaluation using synthetic depth images from Blender
and the same camera extrinsics as in the setup for generating the training data. In these
evaluation frames, only the object pose was randomized. It is evident from the table that
the fine-tuned GQCNN performed significantly better than the original Dex-Net 2.0 pre-
trained model.

It is worth noting that during our experiments, none of the predicted grasps from either
the original Dex-Net 2.0 pre-trained model or the fine-tuned model resulted in a collision
during the object picking phase. The failed grasps that were observed were due to the
models’ inability to predict a suitable grasp in the given task context, leading to collisions

7We based our solution on the model provided here: https://github.com/
JenniferBuehler/graspit-pkgs/issues/55#issue-515423230

https://github.com/JenniferBuehler/graspit-pkgs/issues/55#issue-515423230
https://github.com/JenniferBuehler/graspit-pkgs/issues/55#issue-515423230

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 106

TABLE 4.6
EVALUATION OF OUR FINE-TUNED GQCNN AGAINST THE DEX-NET 2.0 PRE-TRAINED GQCNN FOR

DEPTH IMAGES GENERATED FROM A CAMERA WITH THE DIFFERENT EXTRINSIC PARAMETERS FROM

THE TRAINING SETUP.

Model Success rate (task) Success rate (pick) Success rate (place)

Dex-Net 2.0 GQCNN 0.5 1.0 0.5
Fine-tuned GQCNN 0.55 1.0 0.55

during the object placing phase. It is expected that the success rate for picking the object
would be higher than placing it because only a few grasps that are feasible for picking
the object would also be suitable for placing it. Therefore, the likelihood of predicting a
successful grasp for both the picking and placing phases is lower. Our results indicate that
fine-tuning a GQCNN on a small number of synthetic grasps labeled with task-specific
information can significantly improve the model’s ability to predict a grasp that will be
successful for the entire task.

Our approach can be easily adapted to new objects or assembly tasks with the help
of the assembly information, scene setup, and 3D models of objects and the robot. This
allows for flexible adjustment of the grasp prediction pipeline for new scenarios, even
within a single day. The entire process, including scene setup in Blender, fine-tuning
dataset generation, and GQCNN model training, can be quickly accomplished, especially
since the scene, robot, and camera setups typically do not require frequent modifications
compared to the assembly tasks which may change frequently.

Results using different camera extrinsic parameters

In Table 4.6., we present the results obtained by comparing the performance of our fine-
tuned GQCNN model with the Dex-Net 2.0 pre-trained GQCNN on 40 synthetic depth
images. These images were generated using a camera location different from the one
used in the setup for generating the fine-tuning dataset. It is observed that the performance
difference between the two models is not as significant as it was in the case of using camera
extrinsics from the training setup. This suggests that the fine-tuned model’s predictions
for setups different from the training setup are more aligned with the predictions of the
original GQCNN. However, this limitation could potentially be overcome by automatically
varying the camera pose during the generation of the training dataset in Blender. This
approach holds promise for future improvements to make the fine-tuned GQCNN models
more robust to changes in camera setup.

PART 4. AUTOMATIC LARGE-SCALE VISUAL DATASET GENERATION 107

4.3 New scientific results

Thesis 3
I defined and realized two procedures to create and label object segmentation datasets au-
tomatically. I showed that these datasets can be utilized to train deep learning models
for visual perception tasks in robotic manipulation, such as scene recognition or object
and grasp detection. The first method employs the projection algorithm (6.) to generate
instance segmentation masks for real-world images with known geometry. The second
method utilizes computer graphics to generate and label synthetic rendered images auto-
matically.

Sub-thesis 3.1

I showed that incorporating synthetic samples during the training process of a continual
learning model that utilizes experience replay can significantly enhance its forward trans-
fer. I demonstrated the validity of this statement by creating a synthetic version of a subset
of the OpenLORIS Object dataset and comparing two continual learning models: one that
was trained using synthetic data and one that was not.

Sub-thesis 3.2

I introduced a solution to address the “reality gap” challenge when transferring deep learn-
ing models trained on synthetic data to the real world. This solution, named FTRG (Filling
The Reality Gap), involves the integration of automated real and synthetic data annotation
techniques to enable a smooth transition between synthetic and real components within a
single image. Through comparative analysis of Mask R-CNN models trained on datasets
utilizing different methods to overcome the “reality gap”, including domain randomiza-
tion and photorealistic synthetic data, I demonstrated that the FTRG method can achieve
beyond the state-of-the-art performance.

Sub-thesis 3.3

I proposed a method for creating task-specific grasp detection datasets for robotic assem-
bly tasks that consider grasp poses that do not necessarily result in collision-free placing.
This method involves automated synthetic data generation, labeling, and sampling-based
grasp planning techniques, leveraging known object and assembly geometries and assem-
bly order. I demonstrated the effectiveness of the method by fine-tuning a GQCNN net-
work on a generated dataset and showing that the fine-tuned GQCNN outperforms the
original in an asymmetric insertion-type robotic assembly task.

Related publications: [KA7, KA8, KA9, KA10, KA11]

Part 5

SUMMARY

This Thesis aims to enhance the current state-of-the-art solutions for robotics based on
deep learning approaches. The research conducted within this thesis addresses relevant
issues faced by the industry, including the requirement for an extensive dataset to train
deep learning models, the time-intensive process of labeling training data, challenges as-
sociated with online predictions, leveraging non-RGB modalities with transfer learning,
and ensuring the trained models possess good generalization capabilities. The presented
solutions are not only scientifically relevant but also practically applicable.

In Part 2. of this Thesis, an unsupervised online clustering approach for state discovery
and anomaly detection in robot applications is presented. The proposed solution addresses
the challenges of requiring a large training dataset and time-consuming labeling procedure
by utilizing a dynamically trained ensemble of OCSVM models with unsupervised learn-
ing (Algorithm 1.). This approach eliminates the need for a pre-assembled offline training
dataset and instead learns from online data in the form of a data stream from the robot
system.

In addition to the experimental setup presented in this Thesis, which evaluates the
proposed clustering approach on a representative real-world collaborative robot applica-
tion, the method has also been successfully applied in various other industrial scenarios.
For instance, during the 2018 Pioneers Industry 4.0 Hackathon challenge held in Linz, it
was deployed in a packaging robot application for automatic state discovery and anomaly
detection using a data stream of the robot’s Cartesian pose. It was part of the winning pro-
posal in the Digital Twin category by the joint teams of REACH Solutions and MaxWhere.
Another industrial application was carried out under the S3FOOD EU-funded project for
digital innovation in the agrifood industry in collaboration with the Innoskart ICT Cluster,
Mortoff Ltd., and GoodMills Magyarország, where the proposed approach was applied for
system supervision by automatically clustering and recognizing failures during the flour
packaging process based on a data stream from several sensor sources in an industrial
milling company.

In addition, experimental results have demonstrated that the proposed method can be
utilized to evaluate generative machine learning models. This finding has broader impli-
cations beyond robotics and system supervision, particularly given the current surge of
interest in such technologies, fueled by the success of diffusion models [99].

In Part 3. of this Thesis, the proposed cross-modal mapping approach is described
in (3.2), which incorporates non-RGB modalities (grayscale image and optical flow) into

PART 5. SUMMARY 109

the prediction pipeline of a deep learning model that uses an RGB pre-trained feature
extractor and transfer learning. The approach is evaluated using the OFSNet model for
moving obstacle detection in a mobile robot navigation scenario. This technique addresses
the challenge of requiring a large labeled training dataset by using transfer learning for
data modalities where pre-trained models are not available due to the lack of large-scale
labeled data. The Thesis also proposes a corresponding training strategy in (3.8) and a loss
function in (3.7) for object segmentation tasks with class imbalance.

The experimental results illustrate the real-world application of the proposed cross-
modal mapping approach, compound loss function, and trained OFSNet model in an in-
dustrial AGV system prototype. This application was developed in collaboration with
GAMMA DIGITAL Kft. under the GINOP 2.2.1-15-2017-00097 program (Gazdaságfe-
jlesztési és Innovációs Operatív Program).

Part 4. of this Thesis proposes two automated visual dataset generation methods for
robotic manipulation: one for collecting and annotating real image data using a robotic
arm (Algorithm 6.) and another for generating and annotating synthetic datasets for object
segmentation using computer graphics. These approaches tackle the time-consuming task
of labeling large datasets by automating the data collection and annotation procedures.
Moreover, the thesis introduces the FTRG method, which combines both of these auto-
mated dataset generation pipelines to address the challenge of training models with good
generalization capabilities.

In addition to demonstrating the benefits of the proposed dataset generation methods on
experimental results in the context of object segmentation for robotic manipulation, image
recognition for continuous learning, and grasp planning in robotic assembly tasks, these
methods have been successfully applied in other robotic manipulation tasks. Specifically,
the proposed methods have been utilized in the development of a real-world robot setup
for the automated, flexible preparation of digital pathology archives in the 2019-1.3.1-KK-
2019-00007 (KIKOK) project, as well as in the agrifood industry for the development of
a robotized mushroom harvesting setup.

Other publications related to the Ph.D. thesis and the accompanying research work:
[KAO1, KAO3]

PART 5. SUMMARY 110

5.1 Future Work
As with any scientific research, a PhD Thesis represents only a snapshot of our current
understanding of a particular topic. While the research presented in this thesis provides
valuable insights and contributes to the existing literature, there are still many potential
directions for future research that remain unexplored. In this section, possible future re-
search directions in deep learning-based approaches for robotics are discussed, building
upon the findings and limitations of the methods proposed in this Thesis.

When using the clustering algorithm (Algorithm 1.) described in the first thesis (Part
2), it is important to consider the sampling rate and expected length of events when select-
ing the parameters of the method, such as w and n. In the future, it may be possible to
develop a metric or evaluation method to compare OCSVM ensembles without the need
for a labeled dataset. This would facilitate the “vertical development” of the proposed
solution by enabling the use of multiple ensembles at the same time, each trained with
different parameters, to increase robustness and reduce the need for parameter tuning.

One possible direction for further research is to explore alternative unsupervised meth-
ods that can handle binary data more effectively than OCSVM predictors in the current
algorithm. An example of such an alternative approach could be a modified random for-
est method, as proposed in [217]. Incorporating multiple unsupervised predictors into the
algorithm could broaden the range of data sources that the method can be applied to.

In terms of evaluating generative models, one important drawback of the proposed
method is its inability to detect mode collapse. However, there is potential for improve-
ment in the future, as a metric could be integrated into the method to measure data diversity
and thus also account for mode collapse.

As showcased in Part 3. of the Thesis, the proposed cross-modal mapping approach
(3.2) only considers object appearance (grayscale image) and motion (optical flow) infor-
mation. In the evaluation, it was observed that the performance of U-Net variants utilizing
the cross-modal mapping approach was inferior to that of MATNet [160], which leverages
object boundaries as well for precise segmentation predictions. A promising direction
for future research would be to expand the cross-modal mapping formulation to encom-
pass object boundaries. Such an extension could potentially enhance the accuracy of the
predicted segmentation masks for moving objects.

Likewise, the integration of cross-modal mapping for alternative modalities could be
explored in various fields, such as employing depth data for object detection or depth and
surface normal data in computer graphics. Additionally, the implications of different cross-
modal mapping methods could be further investigated, such as comparing the utilization of
polar colormap-based RGB optical flow encoding with our strategy of combining optical
flow and grayscale image to form RGB images.

The findings presented in Part 4. are particularly promising for future advancements.
The experimental results show that the real data annotation process necessitates precise
camera and robot calibration. This technique could be enhanced substantially if a more
precise and adaptable calibration procedure could be established for the robot-camera
setup. To achieve this, it may be necessary to develop and integrate hand-eye calibration
methodologies into the dataset generation pipeline.

The automatic annotation of real images has certain limitations with respect to the ob-
ject models. The method is currently only capable of handling closed object models that

PART 5. SUMMARY 111

have distinct inside and outside regions. Also, significant variations in the size of object
models might cause anomalies when computing the overlap between projected triangles
from the STL representation. Furthermore, the algorithm cannot handle objects that inter-
sect with each other. To address these limitations, further enhancements can be made to
the proposed algorithm (Algorithm 6).

The synthetic dataset generation pipeline can be enhanced by improving BAT’s capa-
bility to automatically generate various types of annotations, such as depth data, optical
flow, surface normals, and object boundaries, in addition to segmentation-type annotations
for the rendered images. Also, the FTRG method can be improved by allowing the direct
import of real-life camera calibration results into the computer graphics software instead
of relying on camera tracking, which involves extra manual configuration. Moreover, fu-
ture research can explore the potential of the FTRG method in pre-training DL models and
analyzing the generalization abilities of the pre-trained models.

A larger-scale experiment could be conducted for continuous learning with experience
replay, where all four environmental factors are randomized, utilizing a larger subset or
the whole OpenLORIS Object dataset.

Regarding the grasp planning approach, the classification of grasps as valid or invalid
currently only takes into account the geometry of the robot gripper. However, utilizing
MTC not only as an evaluation tool but also as a means to determine the validity of pick
and place grasp proposals generated through the sampling-based approach could result in
a more precise grasp planning dataset that is specific to a particular setup involving a robot
and an environment. Moreover, the applicability of this approach to other setups, such as
those with different camera extrinsics, environments, or manipulators, should be further
investigated.

REFERENCES

[1] R. A. Fisher, “Iris,” UCI Machine Learning Repository, 1988, DOI:
https://doi.org/10.24432/C56C76.

[2] S. Aeberhard and M. Forina, “Wine,” UCI Machine Learning Repository, 1991,
DOI: https://doi.org/10.24432/C5PC7J.

[3] E. Alpaydin and C. Kaynak, “Optical Recognition of Handwritten Digits,” UCI
Machine Learning Repository, 1998, DOI: https://doi.org/10.24432/C50P49.

[4] Q. She, F. Feng, X. Hao, Q. Yang, C. Lan, V. Lomonaco, X. Shi, Z. Wang, Y. Guo,
Y. Zhang et al., “OpenLORIS-Object: A robotic vision dataset and benchmark for
lifelong deep learning,” in 2020 IEEE international conference on robotics and
automation (ICRA). IEEE, 2020, pp. 4767–4773.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[6] L. Deng, D. Yu et al., “Deep learning: methods and applications,” Foundations and
Trends® in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[8] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning
for speech recognition and related applications: An overview,” in Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 8599–8603.

[9] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research groups,” IEEE Signal
Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[10] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent
neural networks,” in 2013 IEEE international conference on acoustics, speech and
signal processing. IEEE, 2013, pp. 6645–6649.

[11] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, Object Recognition with
Gradient-Based Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 319–345. [Online]. Available: https://doi.org/10.1007/3-540-46805-6_19

http://www.deeplearningbook.org
https://doi.org/10.1007/3-540-46805-6_19

REFERENCES 113

[12] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q. V. Le et al., “Large scale distributed deep networks,” in Advances in
neural information processing systems, 2012, pp. 1223–1231.

[13] Q. V. Le, R. Monga, M. Devin, G. Corrado, K. Chen, M. Ranzato, J. Dean, and A. Y.
Ng, “Building high-level features using large scale unsupervised learning,” CoRR,
vol. abs/1112.6209, 2011. [Online]. Available: http://arxiv.org/abs/1112.6209

[14] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to
human-level performance in face verification,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2014, pp. 1701–1708.

[15] R. Collobert and J. Weston, “A unified architecture for natural language processing:
Deep neural networks with multitask learning,” in Proceedings of the 25th interna-
tional conference on Machine learning. ACM, 2008, pp. 160–167.

[16] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning
based natural language processing,” IEEE Computational intelligence magazine,
vol. 13, no. 3, pp. 55–75, 2018.

[17] J. Johnson, A. Karpathy, and F. Li, “Densecap: Fully convolutional localization
networks for dense captioning,” CoRR, vol. abs/1511.07571, 2015. [Online].
Available: http://arxiv.org/abs/1511.07571

[18] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale sentiment
classification: A deep learning approach,” in Proceedings of the 28th international
conference on machine learning (ICML-11), 2011, pp. 513–520.

[19] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts,
“Recursive deep models for semantic compositionality over a sentiment treebank,”
in Proceedings of the 2013 conference on empirical methods in natural language
processing, 2013, pp. 1631–1642.

[20] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: A review
of recent research,” CoRR, vol. abs/1707.07217, 2017. [Online]. Available:
http://arxiv.org/abs/1707.07217

[21] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A
survey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–
1274, Sep. 2013. [Online]. Available: https://doi.org/10.1177/0278364913495721

[22] S. Amarjyoti, “Deep reinforcement learning for robotic manipulation - the
state of the art,” CoRR, vol. abs/1701.08878, 2017. [Online]. Available:
http://arxiv.org/abs/1701.08878

[23] L. Tai and M. Liu, “Deep-learning in mobile robotics - from perception to control
systems: A survey on why and why not,” CoRR, vol. abs/1612.07139, 2016.
[Online]. Available: http://arxiv.org/abs/1612.07139

[24] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning
from demonstration,” Robotics and autonomous systems, vol. 57, no. 5, pp. 469–
483, 2009.

[25] Y.-H. Pao and Y. Takefuji, “Functional-link net computing: theory, system architec-
ture, and functionalities,” Computer, vol. 25, no. 5, pp. 76–79, 1992.

http://arxiv.org/abs/1112.6209
http://arxiv.org/abs/1511.07571
http://arxiv.org/abs/1707.07217
https://doi.org/10.1177/0278364913495721
http://arxiv.org/abs/1701.08878
http://arxiv.org/abs/1612.07139

REFERENCES 114

[26] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, “Learning and generalization character-
istics of the random vector functional-link net,” Neurocomputing, vol. 6, no. 2, pp.
163–180, 1994.

[27] C. P. Chen and Z. Liu, “Broad learning system: An effective and efficient incre-
mental learning system without the need for deep architecture,” IEEE transactions
on neural networks and learning systems, vol. 29, no. 1, pp. 10–24, 2017.

[28] C. L. P. Chen and Z. Liu, “Broad learning system: A new learning paradigm and
system without going deep,” in 2017 32nd Youth Academic Annual Conference of
Chinese Association of Automation (YAC), May 2017, pp. 1271–1276.

[29] A. Yamaguchi and C. G. Atkeson, “Differential dynamic programming for graph-
structured dynamical systems: Generalization of pouring behavior with different
skills,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids), Nov 2016, pp. 1029–1036.

[30] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collec-
tion,” The International journal of robotics research, vol. 37, no. 4-5, pp. 421–436,
2018.

[31] Y. Bengio, “Deep learning of representations for unsupervised and transfer learn-
ing,” in Proceedings of ICML Workshop on Unsupervised and Transfer Learning,
2012, pp. 17–36.

[32] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,” in Pro-
ceedings of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp.
37–49.

[33] G. E. Hinton, A Practical Guide to Training Restricted Boltzmann Machines.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 599–619. [Online].
Available: https://doi.org/10.1007/978-3-642-35289-8_32

[34] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from simulation
to the real world,” CoRR, vol. abs/1703.06907, 2017. [Online]. Available:
http://arxiv.org/abs/1703.06907

[35] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan,
L. Downs, J. Ibarz, P. Pastor, K. Konolige, S. Levine, and V. Vanhoucke,
“Using simulation and domain adaptation to improve efficiency of deep
robotic grasping,” CoRR, vol. abs/1709.07857, 2017. [Online]. Available:
http://arxiv.org/abs/1709.07857

[36] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[37] E. Liberty, R. Sriharsha, and M. Sviridenko, “An algorithm for online k-means clus-
tering,” in 2016 Proceedings of the eighteenth workshop on algorithm engineering
and experiments (ALENEX). SIAM, 2016, pp. 81–89.

https://doi.org/10.1007/978-3-642-35289-8_32
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1709.07857

REFERENCES 115

[38] P. Xu, C.-H. Chang, and A. Paplinski, “Self-organizing topological tree for online
vector quantization and data clustering,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 35, no. 3, pp. 515–526, 2005.

[39] M. M. Campos and G. A. Carpenter, “S-tree: self-organizing trees for data cluster-
ing and online vector quantization,” Neural Networks, vol. 14, no. 4-5, pp. 505–525,
2001.

[40] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on
Neural Networks, vol. 16, no. 3, pp. 645–678, May 2005.

[41] Y. Bengio, A. C. Courville, and P. Vincent, “Unsupervised feature learning and deep
learning: A review and new perspectives,” CoRR, abs/1206.5538, vol. 1, no. 2665,
p. 2012, 2012.

[42] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, “Support vector clustering,”
Journal of machine learning research, vol. 2, no. Dec, pp. 125–137, 2001.

[43] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, “Support
vector method for novelty detection,” Advances in neural information processing
systems, vol. 12, 1999.

[44] D. M. Tax and R. P. Duin, “Support vector data description,” Machine learning,
vol. 54, no. 1, pp. 45–66, 2004.

[45] B. Schölkopf, “The kernel trick for distances,” Advances in neural information pro-
cessing systems, vol. 13, 2000.

[46] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,
no. 3, pp. 273–297, 1995.

[47] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[48] M. Huh, P. Agrawal, and A. A. Efros, “What makes imagenet good for
transfer learning?” CoRR, vol. abs/1608.08614, 2016. [Online]. Available:
http://arxiv.org/abs/1608.08614

[49] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?” Advances in neural information processing systems,
vol. 27, 2014.

[50] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-
scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition, 2009, pp. 248–255.

[51] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-
ception architecture for computer vision,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 2818–2826.

[52] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[53] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant feature
spaces to transfer skills with reinforcement learning,” CoRR, vol. abs/1703.02949,
2017. [Online]. Available: http://arxiv.org/abs/1703.02949

http://arxiv.org/abs/1608.08614
http://arxiv.org/abs/1703.02949

REFERENCES 116

[54] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains:
A survey,” Journal of Machine Learning Research, vol. 10, no. Jul, pp. 1633–1685,
2009.

[55] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer
of robotic control with dynamics randomization,” CoRR, vol. abs/1710.06537,
2017. [Online]. Available: http://arxiv.org/abs/1710.06537

[56] S. James and E. Johns, “3D Simulation for Robot Arm Control with
Deep Q-Learning,” CoRR, vol. abs/1609.03759, 2016. [Online]. Available:
http://arxiv.org/abs/1609.03759

[57] B. Planche, Z. Wu, K. Ma, S. Sun, S. Kluckner, T. Chen, A. Hutter, S. Zakharov,
H. Kosch, and J. Ernst, “Depthsynth: Real-time realistic synthetic data generation
from CAD models for 2.5D recognition,” CoRR, vol. abs/1702.08558, 2017.
[Online]. Available: http://arxiv.org/abs/1702.08558

[58] Y. You, X. Pan, Z. Wang, and C. Lu, “Virtual to real reinforcement learning
for autonomous driving,” CoRR, vol. abs/1704.03952, 2017. [Online]. Available:
http://arxiv.org/abs/1704.03952

[59] F. Zhuang, X. Cheng, P. Luo, S. J. Pan, and Q. He, “Supervised representation
learning: Transfer learning with deep autoencoders.” in IJCAI, 2015, pp. 4119–
4125.

[60] J. Lee, “A survey of robot learning from demonstrations for human-
robot collaboration,” CoRR, vol. abs/1710.08789, 2017. [Online]. Available:
http://arxiv.org/abs/1710.08789

[61] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends in cognitive
sciences, vol. 3, no. 6, pp. 233–242, 1999.

[62] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider, I. Sutskever,
P. Abbeel, and W. Zaremba, “One-shot imitation learning,” CoRR, vol.
abs/1703.07326, 2017. [Online]. Available: http://arxiv.org/abs/1703.07326

[63] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstrations,” CoRR,
vol. abs/1709.10089, 2017. [Online]. Available: http://arxiv.org/abs/1709.10089

[64] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement learning.” in
Icml, 2000, pp. 663–670.

[65] G. Sutanto, N. D. Ratliff, B. Sundaralingam, Y. Chebotar, Z. Su, A. Handa,
and D. Fox, “Learning latent space dynamics for tactile servoing,” CoRR, vol.
abs/1811.03704, 2018. [Online]. Available: http://arxiv.org/abs/1811.03704

[66] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” CoRR, vol. abs/1311.2524,
2013. [Online]. Available: http://arxiv.org/abs/1311.2524

[67] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. [Online].
Available: http://arxiv.org/abs/1504.08083

http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1609.03759
http://arxiv.org/abs/1702.08558
http://arxiv.org/abs/1704.03952
http://arxiv.org/abs/1710.08789
http://arxiv.org/abs/1703.07326
http://arxiv.org/abs/1709.10089
http://arxiv.org/abs/1811.03704
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1504.08083

REFERENCES 117

[68] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time
object detection with region proposal networks,” CoRR, vol. abs/1506.01497,
2015. [Online]. Available: http://arxiv.org/abs/1506.01497

[69] S. Valipour, C. P. Quintero, and M. Jägersand, “Incremental learning for robot
perception through HRI,” CoRR, vol. abs/1701.04693, 2017. [Online]. Available:
http://arxiv.org/abs/1701.04693

[70] P. Taylor, A. W. Black, and R. Caley, “The architecture of the festival speech synthe-
sis system,” in THE THIRD ESCA WORKSHOP IN SPEECH SYNTHESIS, 1998,
pp. 147–151.

[71] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015. [Online].
Available: http://arxiv.org/abs/1506.02640

[72] J. Redmon and A. Angelova, “Real-time grasp detection using convolutional
neural networks,” CoRR, vol. abs/1412.3128, 2014. [Online]. Available:
http://arxiv.org/abs/1412.3128

[73] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” Computing Research Repository (CoRR),
vol. abs/1505.04597, 2015, visited on 2019-04-15. [Online]. Available: http:
//arxiv.org/abs/1505.04597

[74] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2961–2969.

[75] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation,” CoRR, vol. abs/1612.00593, 2016.
[Online]. Available: http://arxiv.org/abs/1612.00593

[76] A. Zeng, K. T. Yu, S. Song, D. Suo, E. Walker, A. Rodriguez, and J. Xiao, “Multi-
view self-supervised deep learning for 6D pose estimation in the amazon picking
challenge,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA), May 2017, pp. 1386–1383.

[77] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng, “Convolutional-
recursive deep learning for 3D object classification,” in Advances in Neural In-
formation Processing Systems, 2012, pp. 656–664.

[78] M. Schwarz, H. Schulz, and S. Behnke, “RGB-D object recognition and pose
estimation based on pre-trained convolutional neural network features,” in 2015
IEEE International Conference on Robotics and Automation (ICRA), May 2015,
pp. 1329–1335.

[79] L. Bo, X. Ren, and D. Fox, Unsupervised Feature Learning for RGB-D Based
Object Recognition. Heidelberg: Springer International Publishing, 2013, pp.
387–402. [Online]. Available: https://doi.org/10.1007/978-3-319-00065-7_27

[80] A. Schmitz, Y. Bansho, K. Noda, H. Iwata, T. Ogata, and S. Sugano, “Tactile ob-
ject recognition using deep learning and dropout,” in 2014 IEEE-RAS International
Conference on Humanoid Robots, 2014, pp. 1044–1050.

http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1701.04693
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1412.3128
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1612.00593
https://doi.org/10.1007/978-3-319-00065-7_27

REFERENCES 118

[81] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” The
International Journal of Robotics Research, vol. 34, no. 4-5, pp. 705–724, 2015.

[82] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong
learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71,
2019.

[83] P. Martinez-Gonzalez, S. Oprea, A. Garcia-Garcia, A. Jover-Alvarez, S. Orts-
Escolano, and J. Garcia-Rodriguez, “Unrealrox: an extremely photorealistic virtual
reality environment for robotics simulations and synthetic data generation,” Virtual
Reality, vol. 24, no. 2, pp. 271–288, 2020.

[84] A. Garcia-Garcia, P. Martinez-Gonzalez, S. Oprea, J. A. Castro-Vargas, S. Orts-
Escolano, J. Garcia-Rodriguez, and A. Jover-Alvarez, “The robotrix: An extremely
photorealistic and very-large-scale indoor dataset of sequences with robot trajec-
tories and interactions,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 6790–6797.

[85] M. Roberts, J. Ramapuram, A. Ranjan, A. Kumar, M. A. Bautista, N. Paczan,
R. Webb, and J. M. Susskind, “Hypersim: A photorealistic synthetic dataset for
holistic indoor scene understanding,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 10 912–10 922.

[86] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and sup-
port inference from RGBD images,” in European conference on computer vision.
Springer, 2012, pp. 746–760.

[87] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin, and T. Funkhouser,
“Physically-based rendering for indoor scene understanding using convolutional
neural networks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 5287–5295.

[88] J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison, “SceneNet RGB-D:
Can 5M synthetic images beat generic ImageNet pre-training on indoor segmenta-
tion?” in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2678–2687.

[89] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, “Deep
object pose estimation for semantic robotic grasping of household objects,” arXiv
preprint arXiv:1809.10790, 2018.

[90] L. Eversberg and J. Lambrecht, “Generating images with physics-based rendering
for an industrial object detection task: Realism versus domain randomization,” Sen-
sors, vol. 21, no. 23, p. 7901, 2021.

[91] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cam-
eracci, S. Boochoon, and S. Birchfield, “Training deep networks with synthetic
data: Bridging the reality gap by domain randomization,” in Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, 2018, pp.
969–977.

REFERENCES 119

[92] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain
randomization for transferring deep neural networks from simulation to the real
world,” in 2017 IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS). IEEE, 2017, pp. 23–30.

[93] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI
dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–
1237, 2013.

[94] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for multi-
object tracking analysis,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 4340–4349.

[95] A. Prakash, S. Boochoon, M. Brophy, D. Acuna, E. Cameracci, G. State, O. Shapira,
and S. Birchfield, “Structured domain randomization: Bridging the reality gap by
context-aware synthetic data,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 7249–7255.

[96] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Va-
sudevan, “Driving in the matrix: Can virtual worlds replace human-generated an-
notations for real world tasks?” arXiv preprint arXiv:1610.01983, 2016.

[97] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and
I. Sutskever, “Zero-shot text-to-image generation,” in International Conference on
Machine Learning. PMLR, 2021, pp. 8821–8831.

[98] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,”
Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[99] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution
image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.

[100] A. Hanbury, “A survey of methods for image annotation,” Journal of Visual Lan-
guages & Computing, vol. 19, no. 5, pp. 617–627, 2008.

[101] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on
neural networks, vol. 16, no. 3, pp. 645–678, 2005.

[102] Y. Yang, I. G. Morillo, and T. M. Hospedales, “Deep neural decision trees,” arXiv
preprint arXiv:1806.06988, 2018.

[103] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” CoRR, vol. abs/1511.06434,
2015. [Online]. Available: http://arxiv.org/abs/1511.06434

[104] A. Tsymbal, “The problem of concept drift: definitions and related work,” Com-
puter Science Department, Trinity College Dublin, vol. 106, no. 2, p. 58, 2004.

[105] M. M. Masud, Q. Chen, L. Khan, C. Aggarwal, J. Gao, J. Han, and B. Thuraising-
ham, “Addressing Concept-Evolution in Concept-Drifting Data Streams,” in 2010
IEEE International Conference on Data Mining, 2010, pp. 929–934.

http://arxiv.org/abs/1511.06434

REFERENCES 120

[106] L. Morissette and S. Chartier, “The k-means clustering technique: General consid-
erations and implementation in mathematica,” Tutorials in Quantitative Methods
for Psychology, vol. 9, no. 1, pp. 15–24, 2013.

[107] T. Kohonen and T. Honkela, “Kohonen network,” Scholarpedia, vol. 2, no. 1, p.
1568, 2007.

[108] T. Kohonen, Self-organization and associative memory. Springer Science & Busi-
ness Media, 2012, vol. 8.

[109] Z. Ghafoori, S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. A.
Leckie, “Anomaly detection in non-stationary data: Ensemble based self-adaptive
OCSVM,” in 2016 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2016, pp. 2476–2483.

[110] A. Gretton and F. Desobry, “On-line one-class support vector machines. an applica-
tion to signal segmentation,” in 2003 IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03)., vol. 2. IEEE,
2003, pp. II–709.

[111] J. Ma and S. Perkins, “Time-series novelty detection using one-class support vector
machines,” in Proceedings of the International Joint Conference on Neural Net-
works, 2003., vol. 3. IEEE, 2003, pp. 1741–1745.

[112] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A
library for large linear classification,” the Journal of machine Learning research,
vol. 9, pp. 1871–1874, 2008.

[113] E. Hazan, T. Koren, and N. Srebro, “Beating SGD: Learning SVMs in sublinear
time,” Advances in Neural Information Processing Systems, vol. 24, 2011.

[114] S. Vempati, A. Vedaldi, A. Zisserman, and C. Jawahar, “Generalized RBF feature
maps for efficient detection.” in BMVC, 2010, pp. 1–11.

[115] M. Claesen, F. De Smet, J. A. Suykens, and B. De Moor, “Fast prediction with SVM
models containing RBF kernels,” arXiv preprint arXiv:1403.0736, 2014.

[116] S. Maji, A. C. Berg, and J. Malik, “Efficient classification for additive kernel
SVMs,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 1, pp. 66–77, 2012.

[117] Z.-Q. Zeng, H.-B. Yu, H.-R. Xu, Y.-Q. Xie, and J. Gao, “Fast training support vector
machines using parallel sequential minimal optimization,” in 2008 3rd international
conference on intelligent system and knowledge engineering, vol. 1. IEEE, 2008,
pp. 997–1001.

[118] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM
transactions on intelligent systems and technology (TIST), vol. 2, no. 3, pp. 1–27,
2011.

[119] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal
margin classifiers,” in Proceedings of the fifth annual workshop on Computational
learning theory, 1992, pp. 144–152.

[120] S. Kullback, Information theory and statistics. Courier Corporation, 1997.

REFERENCES 121

[121] I. Färber, S. Günnemann, H.-P. Kriegel, P. Kröger, E. Müller, E. Schubert, T. Seidl,
and A. Zimek, “On using class-labels in evaluation of clusterings,” in MultiClust:
1st international workshop on discovering, summarizing and using multiple clus-
terings held in conjunction with KDD, 2010, p. 1.

[122] A. Dehghani, O. Sarbishei, T. Glatard, and E. Shihab, “A quantitative comparison of
overlapping and non-overlapping sliding windows for human activity recognition
using inertial sensors,” Sensors, vol. 19, no. 22, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/22/5026

[123] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[124] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, 2014, pp. 2672–2680.

[125] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are GANs created
equal? a large-scale study,” Advances in neural information processing systems,
vol. 31, 2018.

[126] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[127] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-
proved techniques for training GANs,” Advances in neural information processing
systems, vol. 29, 2016.

[128] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs
trained by a two time-scale update rule converge to a local nash equilibrium,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[129] V. Khrulkov and I. Oseledets, “Geometry score: A method for comparing generative
adversarial networks,” in International conference on machine learning. PMLR,
2018, pp. 2621–2629.

[130] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[131] A. Casanova, M. Careil, J. Verbeek, M. Drozdzal, and A. Romero-Soriano,
“Instance-conditioned GAN,” CoRR, vol. abs/2109.05070, 2021. [Online].
Available: https://arxiv.org/abs/2109.05070

[132] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high
fidelity natural image synthesis,” CoRR, vol. abs/1809.11096, 2018. [Online].
Available: http://arxiv.org/abs/1809.11096

https://www.mdpi.com/1424-8220/19/22/5026
https://arxiv.org/abs/2109.05070
http://arxiv.org/abs/1809.11096

REFERENCES 122

[133] H. Caesar, J. R. R. Uijlings, and V. Ferrari, “COCO-Stuff: Thing and stuff
classes in context,” CoRR, vol. abs/1612.03716, 2016. [Online]. Available:
http://arxiv.org/abs/1612.03716

[134] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org, visited on 2019-04-15.
[Online]. Available: https://www.tensorflow.org/

[135] S. Shalev-Shwartz and N. Srebro, “SVM optimization: inverse dependence on train-
ing set size,” in Proceedings of the 25th international conference on Machine learn-
ing, 2008, pp. 928–935.

[136] M. Piccardi, “Background subtraction techniques: a review,” in 2004 IEEE Interna-
tional Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583),
vol. 4. IEEE, 2004, pp. 3099–3104.

[137] M. Heikkila and M. Pietikainen, “A texture-based method for modeling the back-
ground and detecting moving objects,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 4, pp. 657–662, April 2006.

[138] K. L. Chan, “Segmentation of moving objects in image sequence based on
perceptual similarity of local texture and photometric features,” EURASIP Journal
on Image and Video Processing, vol. 2018, no. 1, p. 62, Jul 2018. [Online].
Available: https://doi.org/10.1186/s13640-018-0308-4

[139] S. Varadarajan, P. Miller, and H. Zhou, “Spatial mixture of gaussians for dynamic
background modelling,” in 2013 10th IEEE International Conference on Advanced
Video and Signal Based Surveillance, Aug 2013, pp. 63–68.

[140] S. S. Mohamed, N. M. Tahir, and R. Adnan, “Background modelling and back-
ground subtraction performance for object detection,” in 2010 6th International
Colloquium on Signal Processing its Applications, May 2010, pp. 1–6.

[141] P. Patil and S. Murala, “FgGan: A cascaded unpaired learning for background esti-
mation and foreground segmentation,” in 2019 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), Jan 2019, pp. 1770–1778.

[142] Y. Sun, M. Liu, and M. Q. . Meng, “Active perception for foreground segmenta-
tion: An RGB-D data-based background modeling method,” IEEE Transactions on
Automation Science and Engineering, pp. 1–14, 2019.

[143] D. Zamalieva and A. Yilmaz, “Background subtraction for the moving camera: A
geometric approach,” Computer Vision and Image Understanding, vol. 127, pp. 73–
85, 2014.

[144] C. Kim and J. Hwang, “A fast and robust moving object segmentation in video
sequences,” in Proceedings 1999 International Conference on Image Processing
(Cat. 99CH36348), Oct 1999, pp. 131–134 vol.2.

[145] P. Smith, T. Drummond, and R. Cipolla, “Layered motion segmentation and depth
ordering by tracking edges,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 4, pp. 479–494, April 2004.

http://arxiv.org/abs/1612.03716
https://www.tensorflow.org/
https://doi.org/10.1186/s13640-018-0308-4

REFERENCES 123

[146] C. Zhan, X. Duan, S. Xu, Z. Song, and M. Luo, “An improved moving object de-
tection algorithm based on frame difference and edge detection,” in Fourth Interna-
tional Conference on Image and Graphics (ICIG 2007), Aug 2007, pp. 519–523.

[147] I. Kokkinos, “Surpassing humans in boundary detection using deep learning,”
Computing Research Repository (CoRR), vol. abs/1511.07386, 2015, visited on
2019-04-15. [Online]. Available: http://arxiv.org/abs/1511.07386

[148] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, “Deepcontour: A deep convo-
lutional feature learned by positive-sharing loss for contour detection,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2015, pp.
3982–3991.

[149] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang, “Object contour detection
with a fully convolutional encoder-decoder network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 193–202.

[150] R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu, “Learning to predict crisp
boundaries,” Computing Research Repository (CoRR), vol. abs/1807.10097, 2018,
visited on 2019-04-15. [Online]. Available: http://arxiv.org/abs/1807.10097

[151] Y. Liu, M. Cheng, J. Bian, L. Zhang, P. Jiang, and Y. Cao, “Semantic
edge detection with diverse deep supervision,” Computing Research Repository
(CoRR), vol. abs/1804.02864, 2018, visited on 2019-04-15. [Online]. Available:
http://arxiv.org/abs/1804.02864

[152] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and A. L. Yuille, “Semantic
image segmentation with task-specific edge detection using CNNs and a discrimi-
natively trained domain transform,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016, pp. 4545–4554.

[153] S. Gupta, R. B. Girshick, P. Arbelaez, and J. Malik, “Learning rich features from
RGB-D images for object detection and segmentation,” CoRR, vol. abs/1407.5736,
2014, visited on 2019-04-15. [Online]. Available: http://arxiv.org/abs/1407.5736

[154] J. Kao, D. Tian, H. Mansour, A. Vetro, and A. Ortega, “Moving object segmentation
using depth and optical flow in car driving sequences,” in 2016 IEEE International
Conference on Image Processing (ICIP), Sep. 2016, pp. 11–15.

[155] W. B. Thompson and T.-C. Pong, “Detecting moving objects,” International
Journal of Computer Vision, vol. 4, no. 1, pp. 39–57, Jan 1990. [Online]. Available:
https://doi.org/10.1007/BF00137442

[156] P. Bideau, A. RoyChowdhury, R. R. Menon, and E. Learned-Miller, “The best of
both worlds: Combining CNNs and geometric constraints for hierarchical motion
segmentation,” in The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018, pp. 508–517.

[157] A. G. Bors and I. Pitas, “Optical flow estimation and moving object segmentation
based on median radial basis function network,” IEEE Transactions on Image Pro-
cessing, vol. 7, no. 5, pp. 693–702, May 1998.

http://arxiv.org/abs/1511.07386
http://arxiv.org/abs/1807.10097
http://arxiv.org/abs/1804.02864
http://arxiv.org/abs/1407.5736
https://doi.org/10.1007/BF00137442

REFERENCES 124

[158] J. Hur and S. Roth, “Joint optical flow and temporally consistent semantic seg-
mentation,” in European Conference on Computer Vision. Springer, 2016, pp.
163–177.

[159] K. Fragkiadaki, P. Arbelaez, P. Felsen, and J. Malik, “Learning to segment moving
objects in videos,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 4083–4090.

[160] T. Zhou, S. Wang, Y. Zhou, Y. Yao, J. Li, and L. Shao, “Motion-attentive transition
for zero-shot video object segmentation,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 34, no. 07, 2020, pp. 13 066–13 073.

[161] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for optical flow using
pyramid, warping, and cost volume,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8934–8943.

[162] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” Computing Research Repository (CoRR), vol. abs/1411.4038, 2014,
visited on 2019-04-15. [Online]. Available: http://arxiv.org/abs/1411.4038

[163] H. Li, Z. Xu, G. Taylor, and T. Goldstein, “Visualizing the loss landscape of neural
nets,” Computing Research Repository (CoRR), vol. abs/1712.09913, 2017, visited
on 2019-04-15. [Online]. Available: http://arxiv.org/abs/1712.09913

[164] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[165] Y. Chen, J. Wang, B. Zhu, M. Tang, and H. Lu, “Pixel-wise deep sequence learning
for moving object detection,” IEEE Transactions on Circuits and Systems for Video
Technology, 2018.

[166] W. Wang, J. Shen, and L. Shao, “Video salient object detection via fully convolu-
tional networks,” IEEE Transactions on Image Processing, vol. 27, no. 1, pp. 38–49,
Jan 2018.

[167] Y. Wang, Z. Luo, and P.-M. Jodoin, “Interactive deep learning method for segment-
ing moving objects,” Pattern Recognition Letters, vol. 96, pp. 66–75, 2017.

[168] L. Yang, J. Li, Y. Luo, Y. Zhao, H. Cheng, and J. Li, “Deep background modeling
using fully convolutional network,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 19, no. 1, pp. 254–262, Jan 2018.

[169] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-
Hornung, “A benchmark dataset and evaluation methodology for video object seg-
mentation,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 724–732.

[170] D. Pathak, R. B. Girshick, P. Dollár, T. Darrell, and B. Hariharan,
“Learning features by watching objects move,” Computing Research Repository
(CoRR), vol. abs/1612.06370, 2016, visited on 2019-04-15. [Online]. Available:
http://arxiv.org/abs/1612.06370

[171] A. Faktor and M. Irani, “Video segmentation by non-local consensus voting.” in
BMVC, vol. 2, no. 7, 2014, p. 8.

http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1612.06370

REFERENCES 125

[172] P. Bideau, R. R. Menon, and E. Learned-Miller, “MoA-Net: Self-supervised motion
segmentation,” in European Conference on Computer Vision. Springer, 2018, pp.
715–730.

[173] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard, “Mul-
timodal deep learning for robust RGB-D object recognition,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 681–687.

[174] G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,” in
Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden,
June 29–July 2, 2003 Proceedings 13. Springer, 2003, pp. 363–370.

[175] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[176] ITU-R, “ITU-R Recommendation BT.601,” International Telecommunication
Union - Radiocommunication Sector (ITU-R), Geneva, CH, Standard, Mar. 2011.

[177] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Computing
Research Repository (CoRR), vol. abs/1412.6980, 2014, visited on 2019-04-15.
[Online]. Available: http://arxiv.org/abs/1412.6980

[178] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A nested
U-Net architecture for medical image segmentation,” CoRR, vol. abs/1807.10165,
2018. [Online]. Available: http://arxiv.org/abs/1807.10165

[179] P. Iakubovskii, “Segmentation Models Pytorch,” https://github.com/qubvel/
segmentation_models.pytorch, 2019.

[180] J. Cheng, Y. Tsai, S. Wang, and M. Yang, “SegFlow: Joint learning for video
object segmentation and optical flow,” CoRR, vol. abs/1709.06750, 2017. [Online].
Available: http://arxiv.org/abs/1709.06750

[181] K. Heidler, L. Mou, C. A. Baumhoer, A. J. Dietz, and X. X. Zhu,
“HED-UNet: Combined segmentation and edge detection for monitoring the
antarctic coastline,” CoRR, vol. abs/2103.01849, 2021. [Online]. Available:
https://arxiv.org/abs/2103.01849

[182] T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on
danish commons,” Biol. Skr., vol. 5, pp. 1–34, 1948.

[183] L. R. Dice, “Measures of the amount of ecologic association between species,”
Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[184] D. Rao, Q. V. Le, T. Phoka, M. Quigley, A. Sudsang, and A. Y. Ng, “Grasping novel
objects with depth segmentation,” in 2010 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2010, pp. 2578–2585.

[185] M. Tzelepi and A. Tefas, “Semantic scene segmentation for robotics applications,”
in 2021 12th International Conference on Information, Intelligence, Systems & Ap-
plications (IISA). IEEE, 2021, pp. 1–4.

[186] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” The
International Journal of Robotics Research, vol. 34, no. 4-5, pp. 705–724, 2015.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1807.10165
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
http://arxiv.org/abs/1709.06750
https://arxiv.org/abs/2103.01849

REFERENCES 126

[187] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online]. Available:
http://arxiv.org/abs/1405.0312

[188] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (VOC) challenge,” International Journal of Computer
Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010.

[189] M. Dobeš, R. Andoga, and L. Főző, “Sensory integration in deep neural networks,”
Acta Polytechnica Hungarica, vol. 18, no. 3, pp. 245–254, 2021.

[190] F. R. Fathabadi, J. L. Grantner, I. Abdel-Qader, and S. A. Shebrain, “Box-trainer
assessment system with real-time multi-class detection and tracking of laparoscopic
instruments, using CNN,” Acta Polytechnica Hungarica, vol. 19, no. 2, 2022.

[191] B. Tipary and G. Erdős, “Tolerance analysis for robotic pick-and-place
operations,” The International Journal of Advanced Manufacturing Technology,
vol. 117, no. 5-6, pp. 1405–1426, Nov. 2021. [Online]. Available: https:
//link.springer.com/10.1007/s00170-021-07672-5

[192] E. Marchand, H. Uchiyama, and F. Spindler, “Pose estimation for augmented real-
ity: a hands-on survey,” IEEE transactions on visualization and computer graphics,
vol. 22, no. 12, pp. 2633–2651, 2015.

[193] J. Fraley, A. Imeri, I. Fidan, and M. Chandramouli, “A comparative study on afford-
able photogrammetry tools.” in ASEE Annual Conference proceedings, 2018.

[194] M. E. Gurses, A. Gungor, S. Hanalioglu, C. K. Yaltirik, H. C. Postuk, M. Berker,
and U. Türe, “Qlone®: a simple method to create 360-degree photogrammetry-
based 3-dimensional model of cadaveric specimens,” Operative Neurosurgery,
vol. 21, no. 6, pp. E488–E493, 2021.

[195] Y. Wang, Y. Li, and J. Zheng, “A camera calibration technique based on openCV,”
in The 3rd International Conference on Information Sciences and Interaction Sci-
ences. IEEE, 2010, pp. 403–406.

[196] F. E. Nowruzi, P. Kapoor, D. Kolhatkar, F. A. Hassanat, R. Laganiere, and J. Rebut,
“How much real data do we actually need: Analyzing object detection performance
using synthetic and real data,” arXiv preprint arXiv:1907.07061, 2019.

[197] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“SSD: Single shot multibox detector,” in European conference on computer vision.
Springer, 2016, pp. 21–37.

[198] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “MobileNets: Efficient convolutional neural networks for
mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[199] Q. Vuong, S. Vikram, H. Su, S. Gao, and H. I. Christensen, “How to pick
the domain randomization parameters for sim-to-real transfer of reinforcement
learning policies?” CoRR, vol. abs/1903.11774, 2019. [Online]. Available:
http://arxiv.org/abs/1903.11774

http://arxiv.org/abs/1405.0312
https://link.springer.com/10.1007/s00170-021-07672-5
https://link.springer.com/10.1007/s00170-021-07672-5
http://arxiv.org/abs/1903.11774

REFERENCES 127

[200] M. Benitez, “Quantifying generalization - CVEDIA detection technology vs. seven
open source datasets,” CVEDIA PTE Ltd, White Paper, 2020.

[201] B. O. Community, Blender - a 3D modelling and rendering package, Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018. [Online]. Available:
http://www.blender.org

[202] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Ex-
perience replay for continual learning,” in Advances in Neural Infor-
mation Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf

[203] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic grasping,”
IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp. 110–122, 2004.

[204] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka, “Physical
human interactive guidance: Identifying grasping principles from human-planned
grasps,” IEEE Transactions on Robotics, vol. 28, no. 4, pp. 899–910, 2012.

[205] M. A. Roa and R. Suárez, “Grasp quality measures: review and performance,” Au-
tonomous robots, vol. 38, no. 1, pp. 65–88, 2015.

[206] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Gold-
berg, “Dex-Net 2.0: Deep learning to plan robust grasps with synthetic point clouds
and analytic grasp metrics,” arXiv preprint arXiv:1703.09312, 2017.

[207] C. Goldfeder and P. K. Allen, “Data-driven grasping,” Autonomous Robots, vol. 31,
no. 1, pp. 1–20, 2011.

[208] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia grasp
database,” in 2009 IEEE international conference on robotics and automation.
IEEE, 2009, pp. 1710–1716.

[209] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff,
T. Kröger, J. Kuffner, and K. Goldberg, “Dex-Net 1.0: A cloud-based network of
3D objects for robust grasp planning using a multi-armed bandit model with corre-
lated rewards,” in 2016 IEEE international conference on robotics and automation
(ICRA). IEEE, 2016, pp. 1957–1964.

[210] M. Costanzo, G. De Maria, G. Lettera, and C. Natale, “Can robots refill a super-
market shelf?: Motion planning and grasp control,” IEEE Robotics & Automation
Magazine, vol. 28, no. 2, pp. 61–73, 2021.

[211] M. Costanzo, “Control of robotic object pivoting based on tactile sensing,” Mecha-
tronics, vol. 76, p. 102545, 2021.

[212] M. Kokic, J. A. Stork, J. A. Haustein, and D. Kragic, “Affordance detection for
task-specific grasping using deep learning,” in 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids). IEEE, 2017, pp. 91–98.

[213] E. Nikandrova and V. Kyrki, “Category-based task specific grasping,” Robotics and
Autonomous Systems, vol. 70, pp. 25–35, 2015.

http://www.blender.org
https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf

REFERENCES 128

[214] H. Dang and P. K. Allen, “Semantic grasping: planning task-specific stable robotic
grasps,” Autonomous Robots, vol. 37, no. 3, pp. 301–316, 2014.

[215] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng
et al., “ROS: an open-source robot operating system,” in ICRA workshop on open
source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[216] M. Görner, R. Haschke, H. Ritter, and J. Zhang, “MoveIt! Task Constructor for
Task-Level Motion Planning,” in IEEE International Conference on Robotics and
Automation (ICRA), 2019.

[217] F. Kruber, J. Wurst, and M. Botsch, “An unsupervised random forest clustering
technique for automatic traffic scenario categorization,” in 2018 21st International
conference on intelligent transportation systems (ITSC). IEEE, 2018, pp. 2811–
2818.

PUBLICATIONS RELATED TO THE
THESIS

[KA1] A. I. Károly, R. Fullér, and P. Galambos, “Unsupervised clustering for deep learn-
ing: A tutorial survey,” Acta Polytechnica Hungarica, vol. 15, no. 8, pp. 29–53,
2018.

[KA2] A. I. Károly, J. Kuti, and P. Galambos, “Unsupervised real-time classification
of cycle stages in collaborative robot applications,” in 2018 IEEE 16th World
Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE,
2018, pp. 000 097–000 102.

[KA3] A. I. Károly, M. Takács, and P. Galambos, “OCSVM-based evaluation method for
generative neural networks,” in 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2019, pp. 1–6.

[KA4] A. I. Károly, P. Galambos, J. Kuti, and I. J. Rudas, “Deep learning in robotics:
Survey on model structures and training strategies,” IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 266–279, 2020.

[KA5] A. I. Károly, R. N. Elek, T. Haidegger, K. Széll, and P. Galambos, “Optical
flow-based segmentation of moving objects for mobile robot navigation using
pre-trained deep learning models,” in 2019 IEEE International Conference on
Systems, Man and Cybernetics (SMC). IEEE, 2019, pp. 3080–3086.

[KA6] A. I. Károly, R. N. Elek, T. Haidegger, and P. Galambos, “Moving obstacle seg-
mentation with an optical flow-based DNN: an implementation case study,” in
2021 IEEE 25th International Conference on Intelligent Engineering Systems
(INES). IEEE, 2021, pp. 000 189–000 194.

[KA7] A. I. Károly and P. Galambos, “Automated dataset generation with Blender for
deep learning-based object segmentation,” in 2022 IEEE 20th Jubilee World Sym-
posium on Applied Machine Intelligence and Informatics (SAMI). IEEE, 2022,
pp. 000 329–000 334.

[KA8] A. I. Károly, Á. Károly, and P. Galambos, “Automatic generation and annotation
of object segmentation datasets using robotic arm,” in 2022 IEEE 10th Jubilee In-
ternational Conference on Computational Cybernetics and Cyber-Medical Sys-
tems (ICCC). IEEE, 2022, pp. 000 063–000 068.

[KA9] A. I. Károly, S. Tirczka, T. Piricz, and P. Galambos, “Robotic manipulation of
pathological slides powered by deep learning and classical image processing,”

REFERENCES 130

in 2022 IEEE 22nd International Symposium on Computational Intelligence and
Informatics and 8th IEEE International Conference on Recent Achievements in
Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo).
IEEE, 2022, pp. 000 387–000 392.

[KA10] A. I. Károly and P. Galambos, “Task-specific grasp planning for robotic assem-
bly by fine-tuning GQCNNs on automatically generated synthetic data,” Applied
Sciences, vol. 13, no. 1, p. 525, 2023.

[KA11] A. I. Károly, S. Tirczka, H. Gao, I. J. Rudas, and P. Galambos, “Increasing the
Robustness of Deep Learning Models for Object Segmentation: A Framework for
Blending Automatically Annotated Real and Synthetic Data,” IEEE Transactions
on Cybernetics, 2023.

OTHER PUBLICATIONS

[KAO1] R. N. Elek, A. I. Károly, T. Haidegger, and P. Galambos, “Towards optical flow
ego-motion compensation for moving object segmentation.” in ROBOVIS, 2020,
pp. 114–120.

[KAO2] T. Murooka, A. I. Karoly, F. von Drigalski, and Y. Ijiri, “Simultaneous planning
of grasp and motion using sample regions and gradient-based optimization,” in
2020 IEEE 16th International Conference on Automation Science and Engineer-
ing (CASE). IEEE, 2020, pp. 1102–1109.

[KAO3] S. Tarsoly, A. I. Karoly, and P. Galambos, “Lessons learnt with traditional image
processing techniques for mushroom detection,” in 2022 IEEE 10th Jubilee Inter-
national Conference on Computational Cybernetics and Cyber-Medical Systems
(ICCC). IEEE, 2022, pp. 000 225–000 232.

	Preliminaries
	Historical background
	Unsupervised learning
	Support vector machines

	Transfer learning for Deep learning
	Pre-trained models
	Sim-to-real
	Domain-invariant features
	Imitation and demonstration-based learning
	Pre-trained models and modularity for perception
	Multimodal data and unsupervised pre-training for perception

	Synthetic data
	Photorealistic synthetic data
	Domain randomization

	State and anomaly detection based on real-time clustering
	Motivation
	OCSVMs for clustering in data streams
	Formalisms
	Clustering algorithm
	Discovering hierarchies
	The effects of using sliding window sampling
	Experimental results

	OCSVMs for evaluating generative models
	Evaluation of Generative Adversarial Networks
	Methodology
	GAN evaluation experiments
	Results

	New scientific results

	Cross-modal mapping-based transfer learning
	Optical-flow input for models pre-trained on RGB data
	Motivation and related approaches
	Methodology
	Encoding optical flow and grayscale image as RGB data
	OSFNet network architecture
	Experimental results

	Compound loss for mitigating class imbalance
	Motivation
	Loss formulation

	New scientific results

	Automatic large-scale visual dataset generation
	Creating real-life segmentation datasets
	Motivation
	Annotation procedure
	Experimental results

	Synthetic dataset preparation
	Motivation
	OE and SynLORIS synthetic scenes and FTRG method
	Fine-tuning GQCNNs with task-specific synthetic data

	New scientific results

	Summary
	Future Work

	REFERENCES
	PUBLICATIONS RELATED TO THE THESIS
	OTHER PUBLICATIONS

