
Doctoral School of Applied Informatics and Applied Mathematics
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Motivation
Machine learning solutions are gradually making their presence felt across a
wide range of industries, subtly impacting our daily lives, professional services,
and military applications. The manufacturing industry, in particular, benefits sig-
nificantly from these advancements, with numerous research projects exploring
the potential of Industry 4.0 concepts with great fervor.

Out of all machine learning approaches, Deep learning (DL) incorporates
some of the most significant and impactful improvements of recent years. It has
introduced innovative advancements in various aspects of robotics throughout its
development as well [1]. Despite the fact that DL-based solutions can be applied
to a diverse range of problems, they have the disadvantages of unpredictability
and high computational complexity [2, 3]. In safety-critical systems, like self-
driving cars and industrial robots, DL methods are never used independently,
and their output is always treated with uncertainty. As a result, these DL meth-
ods are often tested on benchmarks that assess their robustness [4, 5, 6, 7]. Due
to the high computational complexity and time-consuming training process of
DL systems, alternative model architectures and training strategies have been in-
troduced, such as deep convolutional neural networks [8, 9] and transfer learning
[10, 11, 12], to enable the training of robust models with limited resources.

In addition to the training process, data collection and preparation for DL
require significant resources as well, especially if done manually [3]. This issue
is particularly relevant in robotics, where data collection often involves perform-
ing actions on an actual robot [13]. Such data collection can take months of
robot hours and require multiple robots, resulting in significant costs. To min-
imize the amount of labeled data required for training, new DL approaches are
utilizing unsupervised/semi-supervised methods and transfer learning [14, 15].
Moreover, some approaches aim to reduce resource requirements by collecting
data primarily in simulation instead of reality [16, 17, 18].

This work focuses mainly on perception-level problems, including object de-
tection, segmentation, and other related tasks essential for robotic manipulation
and mobile robot navigation. While previous studies have indicated that DL
methods can provide promising results, they also demonstrate significant limita-
tions caused by high computational complexity and the requirement of extensive
training data. Given the importance of resource efficiency in robotics, searching
for improved DL-based solutions to overcome these challenges becomes crucial.
To address these issues, this work explores unsupervised learning techniques,
transfer learning, and automated dataset-generation methodologies for robotics.
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Thesis 1
State and anomaly detection based on real-time clustering

Preliminaries
The Support Vector Machine (SVM) method trains a linear classifier for binary
classification using a decision function of the form

f(x) = wTx+ b,

where x is the input vector, w is the weight vector and b is the bias [19]. Pre-
dictions are made based on the values of f(x), where f(x) ≥ 0 results in a
prediction of y = 1, and f(x) < 0 results in a prediction of y = −1 [19].
While standard SVMs determine the parameters of the decision function using a
training dataset with ground-truth labels, the One-Class Support Vector Machine
(OCSVM) is specifically designed to distinguish samples belonging to one class
from those of any other class [20, 21]. As a result, unsupervised training is possi-
ble using a set of unlabeled samples that are assumed to belong to the same class,
which is useful for anomaly detection when rare data must be distinguished from
the rest.

When implementing OCSVMs, there are typically two approaches that are
used. One method, as outlined by Schölkopf et al. [20], involves separating the
training samples from the origin using a hyperplane in the feature space and
maximizing the distance between the hyperplane and the origin.

The second method, introduced by Tax and Duin [21] involves enclosing the
training samples in the feature space with a spherical surface and minimizing the
volume of this hypersphere.

The decision function that classifies a given sample x as a member of the
class is obtained by solving the maximization or minimization problem using
the Lagrange multiplier method (utilizing specialized solver algorithms such as
SMO [22, 23]). Distances in the feature space can also be computed using the
kernel method [21], which transforms the problem to a higher-dimensional space
where the samples become linearly separable.

The Radial Basis Function (RBF), also known as the Gaussian kernel, is the
most frequently used kernel function. Its formulation for two data points, xi and
xj , is given by

K(xi,xj) = exp

(
−∥xi − xj∥2

2σ2

)
,
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where the kernel parameter σ controls the sensitivity of the kernel function and
should be set to a suitable empirically chosen value.

The series expansion of the RBF kernel function leads to an infinite series, in
which the terms

⟨xi,xj⟩ , ⟨xi,xj⟩2 , ⟨xi,xj⟩3 . . .

are present, which are also kernel functions on their own. This provides the flex-
ibility to design the classifier in a space with arbitrary dimensionality, allowing
for nonlinear decision boundaries to be formed in the feature space.

Building on the theory of unsupervised learning with OCSVMs, I proposed
an unsupervised real-time algorithm (Algorithm 1.) that dynamically trains an
ensemble (E) of OCSVM models for automatically discovering the state of robot
applications and for the detection of anomalies. The algorithm operates on a data
stream S . In S, data points Xi|i ∈ {t, t−1, t−2, ...} are available at a sampling
rate (f Hz) defined by the robot controller setup, with Xt being the most recent
data point at time step t. For the OCSVM inference and training, sliding window
sampling is used. The inference is performed on overlapping sliding windows
(Wt) which ensures real-time behavior. On the other hand, the training set (T)
consists of non-overlapping samples (Wt

train) to avoid overfitting and to reduce
computational costs. The algorithm can be parameterized with w and n, which
dictate the widths of the sliding windows and the number of samples used for
training, respectively. I provide formulas to determine the algorithm’s computa-
tional complexity for a given set of parameters using linear or non-linear (RBF)
kernels.

The algorithm creates a contingency table (C) that indicates how often dif-
ferent OCSVMs in the ensemble “fired” together. This information is then used
to form groups of OCSVMs with the aim of building hierarchies of recognized
states (Algorithm 2). The hierarchy building is performed offline, on a recorded
segment of the data stream (R), to guarantee that all OCSVMs will receive the
same inputs.

I also showed that the state discovery algorithm can be used for evaluating
and comparing generative machine learning models, such as Generative Adver-
sarial Neural Networks (GANs) by analyzing their synthesized outputs. The
experimental results suggest that this method could be a great alternative in use
cases where for the synthesized data semantics pre-trained feature extractors are
not available. However, the algorithm in itself is unable to identify mode collapse
and should be used in combination with a diversity measure.

4



New Scientific Results

Thesis 1

I present a new clustering algorithm (Algorithm 1.) for the automatic online
and real-time classification of operation states and detection of anomalies in
robotic applications utilizing finite state descriptor dimensions and continuous
numerical features. Besides robotics applications, the use of the algorithm can
be generalized to the evaluation of generative machine learning models. The
effectiveness of the proposed method was demonstrated on a representative col-
laborative robot application, as well as through successful implementation in a
real-world industrial setting.

Algorithm 1: Unsupervised clustering algorithm
input: S , w, n, stopping criterion, cd
/* Initialize internal variables */
Wt = [], Wt

train = [], T = [] E = [];
C = [[]];
i = 0, count = 0;
stop = False, no train step = 0;
on new Xt in S:

/* Update data structures */
i += 1;
Wt.append(Xt);
if Wt.size() > w then

Wt.remove(0);
if i == w then

Wt
train=Wt;

i = 0;
T.append(Wt

train);
if T.size() > n then

T.remove(0);
else

Wt
train=Wt−1

train;
/* Perform predictions */
p = [];
for OCSVM in E do

p.append(OCSVM.predict(Wt));
/* Train a new OCSVM if needed */
if !stop and (all(p==-1) or E.size() == 0) and T.size() == n then

if count < cd then
count += 1;

else
E.append(OCSVM.train(T));
count = 0;

else
no train step += 1;
if no train step == stopping criterion then

stop = True;
/* Update contingency table */
C update(p, C);
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Sub-thesis 1.1

I showed that a dynamically constructed ensemble of OCSVMs together with a
contingency table can be used to discover a multi-level hierarchy of elementary
states using a bottom-up hierarchy-building strategy (Algorithm 2.).

Algorithm 2: Bottom-up hierarchy building strategy
input : E, C, R, th
/* Initialize internal variables */
H = [], G = [];
N = R.size();
/* Calculate entropies */
for OCSVM in E do

H.append(Entropy(OCSVM.predict(R)));
H /= max(H);
for h in H do

/* Find the index of the minimal entropy OCSVM */
ih = argmin(H);
if ih in G then

H[ih] = 2 ; // OCSVM ih is already in a group

else
/* Create a new group */
G.append([ih]);
I = [];
for j = 0; j < C[ih].size(), j ++ do

I.append(Info Gain(C,(ih, j), N )); // Compute Information Gain
for ih

I[ih] = -1;
for j = 0; j < I.size(); j ++ do

/* Start with the most similar OCSVM */
ig = argmax(I/max(I));
if C[ih][ig]/C[ih][ih] ¿ th then

G[-1].append(ig) ; // Add ig to the current group
I[ig] = -1;

else
break;

H[ih] = 2;

return: G
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Sub-thesis 1.2

Through representative examples, I showed that using non-overlapping sliding
windows in the input data stream for acquiring training samples significantly
reduces the computational time without significantly degrading the prediction
performance. I provided formulas for determining the computational require-
ments depending on the parameters of the method (1) and (2).

ttrain ∝ NOCSVMwOtrain

linear:

Otrain = O(dn) → ttrain ∝ NOCSVMwdn ≈ NOCSVMT fd

non-linear:

Otrain = O(dn2) → ttrain ∝ NOCSVMwdn2 ≈ NOCSVMT fdn

(1)

where Otrain is the original computational complexity of training an OCSVM
directly on the data points.

The computational complexity for the inference with our algorithm is

tinference ∝ NOCSVMwOinference

linear:

Oinference = O(d) → tinference ∝ NOCSVMwd

non-linear:

Oinference = O(dn) → tinference ∝ NOCSVMwdn ≈ NOCSVMT fd

(2)

where Oinference is the original computational complexity of predicting with an
OCSVM directly on the data points.
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Sub-thesis 1.3

I demonstrated that the OCSVM-based anomaly detection approach, initially
designed for robotics applications, can be effectively used to evaluate genera-
tive machine learning models through statistical analysis of synthesized outputs.
Unlike current evaluation methods, this approach is able to evaluate models in-
dependently of the output data semantics, as it does not require a pre-trained
feature extractor.

Corresponding publications: [KA1, KA2, KA3].
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Thesis 2
Cross-modal mapping-based transfer learning using pre-trained
RGB feature extractors

Preliminaries
In many vision-based robotics solutions, such as moving obstacle detection for
mobile robotics, incorporating additional modalities on top of the typically used
RGB features is often beneficial [24, 25]. The most commonly utilized vision-
related non-RGB modalities are depth, surface normals, and optical flow. Since
these modalities are closely related to vision, they all have corresponding vi-
sual representations/interpretations, which are generally used for visualization
purposes. Figure 1. shows some examples of such representations.

(a)

(b)

(c)

Figure 1: Image representation of non-RGB modalities. a: RGB image and cor-
responding depth data as a grayscale image, b: RGB image and corresponding
surface normals as RGB image, c: Consecutive RGB frames and corresponding
optical flow as RGB image (using the 2D polar color map method)

Acquiring a publicly available dataset for segmenting moving objects in mo-
bile robotics, tailored to a specific task, can pose a significant challenge, often ne-
cessitating the development of a customized training dataset for each specific use
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case. In order to decrease the required number of training samples, pre-trained
feature extractors can be utilized using transfer learning [12, 11]. However, the
most commonly used pre-trained feature extractors are trained using large-scale
RGB image datasets and thus cannot directly process other modalities.

My proposal is that with the correct formulation of the inputs, feature ex-
tractors that were previously pre-trained on RGB images can be repurposed to
process non-RGB modalities. This input formulation is called cross-modal map-
ping.

In order to prove this hypothesis, a new deep neural network was proposed
called the Optical Flow Segmentation Network (OFSNet) for moving object seg-
mentation in video sequences for mobile robot navigation. The OFSNet model
is based on the popular U-Net architecture [26] and uses the Inception v3 feature
extractor [27] (Table 1).

Table 1: The structure of the OFSNet model, including the Inception v3 feature
extractor from #1 to #12. The network structure from #13 to #18 is our contri-
bution, and only the parameters of this part were modified during the training
process.

# type patch size/stride
or remarks input size

Layers from Inception v3 model
1 conv 3x3/2 299x299x3
2 conv 3x3/1 149x149x32
3 conv padded 3x3/1 147x147x32
4 pool 3x3/2 147x147x64
5 conv 3x3/1 73x73x64
6 conv 3x3/2 71x71x80
7 conv 3x3/1 35x35x192
8 3 x Inception Inception block 35x35x288
9 5 x Inception Inception block 17x17x768
10 2 x Inception Inception block 8x8x1280
11 pool 8x8 8x8x2048
12 linear Inception v3 features 1x1x2048

Layers for segmentation
13 transposed conv 3x3/2 1x1x2048
14 transposed conv 4x4/2 3x3x1280
15 skip connection #9+#14 8x8x1280
16 transposed conv 16x16/2 8x8x1280
17 linear logits 30x30x1
18 sigmoid classifier 30x30x1
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The training of the OFSNet model was performed in a self-supervised fash-
ion, using the Unsupervised Non-Local Consensus Voting (uNLC) method [28]
for generating ground-truth segmentation masks.

The moving objects often appear relatively small in the images, leading to
a class imbalance regarding the number of positive and negative pixels. This
imbalance can hinder the convergence of the training process by affecting the
value of the computed loss and, thus, the magnitude of the gradients as well.

The Cross-Entropy loss is a typical loss for segmentation models

LCE = − 1

N

N∑
i=1

yilog2(pi) + (1− yi)log2(1− pi),

where LCE is the Cross-Entropy loss for a single frame, and N represents the to-
tal number of pixels in the output. The correct label for each pixel is represented
by yi, where a value of 0 denotes the background, and a value of 1 denotes the
moving object. The predicted probability of the ith pixel belonging to the mov-
ing object is represented by pi.

Another commonly used loss function is the Soft Dice loss [29, 30]

SoftDice =

2
N∑
i=1

yipi

N∑
i=1

pi +
N∑
i=1

yi

,

LSD = 1− SoftDice.

(3)

where LSD is the Soft Dice loss, N denotes the total number of pixels in the
output, while yi represents the accurate label for the ith output pixel. Values of
0 represent the background, and a value of 1 represents the foreground, which
corresponds to the moving object. The predicted probability of the ith output
pixel belonging to the moving object is represented by pi.

Since the Cross-Entropy loss penalizes false-positive predictions more, and
the Soft Dice Loss penalizes false negatives more, I proposed a new loss function,
the compound loss, to overcome the class imbalance in the training samples. The
compound loss uses a dynamically adjustable linear combination of the Cross-
Entropy and the Soft Dice loss.
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New Scientific Results

Thesis 2
I developed a Deep Learning model (OFSNet), and a corresponding loss function
for moving object segmentation in video sequences, enabling moving obstacle
avoidance in indoor environments for mobile robot navigation. The proposed
method has been validated in a real-world industrial Automated Guided Vehicle
(AGV) system prototype.

Sub-thesis 2.1
I demonstrated that feature extractors pre-trained on real-world RGB images
can generalize to combined optical flow and grayscale input data with appro-
priate formatting/cross-modal mapping (4). This conclusion was supported by
experiments on the DAVIS 2016 dataset and real-world data acquired from an
industrial Automated Guided Vehicle (AGV) system prototype.

R̂ = F::1 + abs(min(F::1))J
w×h)

Ĝ = F::2 + abs(min(F::2))J
w×h)

IRGB
::1 =

R̂

max(R̂)

IRGB
::2 =

Ĝ

max(Ĝ)

IRGB
::3 =

IY

max(IY )

(4)

Sub-thesis 2.2
I introduced a compound loss function (5) and a corresponding empirical train-
ing approach that utilizes a dynamic linear combination of Cross-Entropy Loss
and Soft Dice Loss functions to overcome their counter-effecting biases. The ef-
fectiveness of this loss function and training strategy was demonstrated through
the training of the OFSNet model. I demonstrated that the weighting parameter
(α) can be dynamically adjusted to ensure the best overlap between the ground
truth and the predicted segmentation masks, even in unbalanced (in terms of
object-to-background ratio) datasets.

L = (1− α)LCE + αLSD

α =

(
j

ne

)4

1.6

(5)

Corresponding publications: [KA4, KA5, KA6].
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Thesis 3
Automatic large-scale visual dataset generation

Preliminaries

Dataset preparation and data annotation are significant roadblocks to developing
new Deep Learning (DL) solutions. With synthetic data, the collection and an-
notation procedure can be easily automated. However, additional measures must
be taken to ensure that the models trained on the synthetic data can adapt to the
real-world domain [16, 17, 18]. This problem is often referred to as “bridging the
reality gap”. In the case of real-world samples, however, there is no problem with
model adaptation, but we cannot take advantage of automated annotation, which
presents a challenge. I propose two methods for automated dataset generation
for visual robotics challenges.

The first method enables automated annotation for object segmentation in
real images, specifically tailored for robotics applications. The method leverages
the unique features of robotics, such as access to the robot’s pose information
and the ability to mount a camera on the robot. Additionally, it takes advantage
of the fact that objects with known geometries can be placed in predetermined
poses within the robot’s workspace. Under these assumptions, we can describe
the digital twin of the whole scene with a high degree of accuracy, enabling
us to compute virtual camera projections. The virtually projected information
augments the actual photos with annotations that make the training dataset. This
approach extends the digital twin paradigm to the field of DL dataset creation
and validation.

The generation of instance segmentation masks is accomplished by comput-
ing the perspective projection of 3D points located on the surfaces of the objects
onto the image plane. The perspective projection x̄ = (u, v, 1)⊤ of a 3D point
wX = (wX,w Y,w Z, 1)⊤ (given in the world frame) is described by

x̄ = KΠ cTw
wX, (6)

where K represents the camera matrix, which contains the intrinsic parameters
of the camera and can be determined by camera calibration [31]. The projection
matrix Π is in the form of [I|0], where I is a 3 × 3 identity matrix and 0 is a
column vector of three zeros. Finally, cTw is the 4×4 homogeneous transforma-
tion matrix that describes the transformation between the world and the camera
frame.
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Algorithm 3. describes the proposed method. For the symbolic description
of the problem, let P(wX) denote the perspective projection of the point wX,
F a face defined by a set of points (F = {wX1,

w X2, ...,
w Xn}), R(wX) a

ray coming from the origin of the camera frame and going through the point
wX, and wXO

all all the possible points on the surface of object O. To create
segmentation masks, a finite set of points on the surface of each object needs
to be selected: wXO = {wX|wX on the surface of O}, wXO ⊆ wXO

all. The
power set P(wXO) contains all the possible (not necessarily meaningful) faces
for object O, for a given set of surface points wXO. Polygons can be formed
in the image plane by projecting each point of a face: PolyF = {P(wXi) for
wXi ∈ F}, and using the projections as the vertices of the polygon. A set of
faces FO ⊆ P(wXO) have to be chosen for object O, such that all the projections
given by P(wXj) for wXj ∈ wXO

all fall inside at least one of the polygons of
PolyFk , for Fk ∈ FO, but projections P(wX), where R(wX) does not intersect
the object in 3D space, do not fall into any of the polygons from PolyFk , for
Fk ∈ FO.

The second method proposed in this thesis is for generating synthetic datasets
and an automated annotation procedure to accompany it. The foundation of this
synthetic data generation pipeline is the Blender 3D suite [32]. Blender, an open-
source software, offers numerous features and is not limited to any specific do-
main, unlike certain driving or robotics simulators. Primarily designed for com-
puter graphics, Blender provides a wide range of tools for manipulating visual
scenes. These tools include 3D object modeling, lighting and camera config-
urations, geometry modifications, textures and shading, image post-processing,
and more. Notably, Blender can generate photorealistic renders and incorporates
physics simulation using the Bullet physics engine. Moreover, Blender integrates
well with DL training workflows due to its Python API, as most DL frameworks
support the Python programming language. I developed a new Python-based
addon called Blender Annotation Tool (BAT) to streamline the generation of
segmentation mask-type annotations for synthetic visual scenes.

The efficacy of the synthetic dataset-based approach has been showcased
through three experiments: a real-life robotic pick-and-place task, a benchmark
(OpenLORIS-Object [7]) evaluating continual learning methods, and a grasp de-
tection task. The results from the pick-and-place experiments highlight the en-
hanced performance of DL models for visual object detection achieved through
the proposed synthetic data generation method. The experiments on the Open-
LORIS-Object benchmark demonstrate that synthetic data can significantly in-
crease the forward transfer of continual learning methods that utilize experience
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replay. Furthermore, the grasp detection experiments showcase that due to the
high flexibility and low resource requirements of the synthetic dataset genera-
tion procedure, improvements can also be achieved in grasp detection utilizing
task-specific information.

To address the challenge of overcoming the ”reality gap” when utilizing syn-
thetic data, I introduced an approach that combines the proposed automated real
data annotation method with the synthetic dataset generation pipeline. This ap-
proach, known as Filling the Reality Gap (FTRG), leverages a fully synthetic
representation of the real-world scene and takes advantage of the ability to obtain
segmentation masks for both real-world and synthetic scenes using the proposed
methods. By seamlessly blending real-world and synthetic elements within a sin-
gle image, this technique aims to bridge the gap between synthetic and real data.
Experimental results on the pick-and-place problem demonstrate that employing
the FTRG method to obtain a training dataset yields superior performance com-
pared to state-of-the-art approaches such as using photorealistic synthetic data or
domain randomization.

Forward transfer is an accuracy measure for evaluating continual learning
models [7]. It measures how well a model adapts to new tasks after training
on the previous ones. By utilizing the automated synthetic dataset generation
pipeline, I generated a synthetic counterpart (called SynLORIS dataset) of a sub-
set of the OpenLORIS-Object dataset and demonstrated that continual learning
methods using experience replay [33] can yield superior forward transfer perfor-
mance when synthetic samples were also used during their training.

The proposed synthetic dataset generation pipeline was also employed to
develop a procedure for automatically generating task-specific grasp planning
datasets for robotic manipulation. This method enables the fine-tuning of Grasp
Quality Convolutional Neural Networks (GQCNNs) [34] for specific assembly
tasks by utilizing known object and scene geometries, as well as the assembly
order. The objective is to train the GQCNN models to predict feasible grasps that
not only account for the object and gripper geometries and physical properties
but also consider the feasibility of the grasp in relation to the subsequent place-
ment of objects during the assembly process. The simulated experiments con-
ducted on an asymmetric insertion-type task demonstrate that fine-tuning GQC-
NNs on datasets created using the proposed method significantly improves the
task execution success rate.
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New Scientific Results

Thesis 3

I defined and realized two procedures to create and label object segmentation
datasets automatically. I showed that these datasets can be utilized to train
deep learning models for visual perception tasks in robotic manipulation, such
as scene recognition or object and grasp detection. The first method employs the
projection algorithm (3.) to generate instance segmentation masks for real-world
images with known geometry. The second method utilizes computer graphics to
generate and label synthetic rendered images automatically.

Algorithm 3: Projection algorithm
input : Image shape: [w, h, 3], List of objects: O = [O1,O2, . . . ]

/* Init annotation as black image */
Init: M = zeros((w, h, 5));
for O ∈ O do

for T ∈ O.triangles do
/* Projection as in (6) */
vi
1, v

i
2, v

i
3 = Project(T .vertices);

temp img = zeros((w, h));
/* Get internal pixels of the triangle */
P = Where(DrawTriangle(temp img, (vi

1, v
i
2, v

i
3), color=1) == 1);

for p ∈ P do
if M[p][0 : 3] == [0, 0, 0] then

/* It was background before */
M[p][0 : 3] = O.color id;
M[p][3] = O.id;
M[p][4] = T .id;

else if M[p][0 : 3] == O.color id then
/* It is the same object */
Pass;

else
T̃ = O.GetTriangle(M[p][3],M[p][4]);
if IsOccluded(T , by = T̃ ) then

/* T̃ occludes T */
Pass;

else
M[p][0 : 3] = O.color id;
M[p][3] = O.id;
M[p][4] = T .id;

return: M

Sub-thesis 3.1

I showed that incorporating synthetic samples during the training process of
a continual learning model that utilizes experience replay can significantly en-
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hance its forward transfer. I demonstrated the validity of this statement by cre-
ating a synthetic version of a subset of the OpenLORIS Object dataset and com-
paring two continual learning models: one that was trained using synthetic data
and one that was not.

Sub-thesis 3.2

I introduced a solution to address the “reality gap” challenge when transferring
deep learning models trained on synthetic data to the real world. This solution,
named FTRG (Filling The Reality Gap), involves the integration of automated
real and synthetic data annotation techniques to enable a smooth transition
between synthetic and real components within a single image. Through com-
parative analysis of Mask R-CNN models trained on datasets utilizing different
methods to overcome the “reality gap”, including domain randomization and
photorealistic synthetic data, I demonstrated that the FTRG method can achieve
beyond the state-of-the-art performance.

Sub-thesis 3.3

I proposed a method for creating task-specific grasp detection datasets for robotic
assembly tasks that consider grasp poses that do not necessarily result in collision-
free placing. This method involves automated synthetic data generation, label-
ing, and sampling-based grasp planning techniques, leveraging known object
and assembly geometries and assembly order. I demonstrated the effectiveness
of the method by fine-tuning a GQCNN network on a generated dataset and
showing that the fine-tuned GQCNN outperforms the original in an asymmetric
insertion-type robotic assembly task.

Corresponding publications: [KA7, KA8, KA9, KA10, KA11].
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[KA1] A. I. Károly, R. Fullér, and P. Galambos, “Unsupervised clustering for

deep learning: A tutorial survey,” Acta Polytechnica Hungarica, vol. 15,
no. 8, pp. 29–53, 2018.
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[KA8] A. I. Károly, Á. Károly, and P. Galambos, “Automatic Generation and
Annotation of Object Segmentation Datasets Using Robotic Arm,” in
2022 IEEE 10th Jubilee International Conference on Computational
Cybernetics and Cyber-Medical Systems (ICCC). IEEE, 2022, pp.
000 063–000 068.
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