
Óbuda University

PhD Thesis

Multi-Directional Image Projections with Fixed
Resolution for Object Recognition and Matching

Gábor Kertész

Supervisors:
Dr. Zoltán Vámossy

Dr. habil. Sándor Szénási

Doctoral School of Applied Informatics and
Applied Mathematics

Budapest, 2019.

Final Examination Committee:
Chair:

Prof. Dr. Péter Nagy, DSc
Members:

Dr. Kálmán Palágyi, PhD (University of Szeged)
Dr. Szabolcs Sergyán, PhD

Dr. László Csink, PhD

Full Committee of Public Defense:
Opponents:

Dr. Kálmán Palágyi, PhD (University of Szeged)
Dr. László Csink, PhD

Chair:
Prof. Dr. Péter Nagy, DSc

Secretary:
Dr. Edit Tóthné Laufer, PhD

Replacement secretary / member:
Dr. József Tick, PhD

Members:
Dr. Szilveszter Kovács, PhD (University of Miskolc)

Dr. Szilveszter Pletl, PhD (University of Szeged)
Replacement member:

Dr. Ferdinánd Filip, PhD (J. Selye University)

Date of Public Defense:
October 17th, 2019

Declaration

I, the undersigned, Gábor Kertész, hereby state and declare that this Ph.D. thesis
represents my own work and is the result of my own original research. I only used the
sources listed in the references. All parts taken from other works, either as word for
word citation or rewritten keeping the original meaning, have been unambiguously
marked, and reference to the source was included.

Nyilatkozat

AlulírottKertész Gábor kijelentem, hogy ez a doktori értekezés a saját munkámat
mutatja be, és a saját eredeti kutatásom eredménye. Csak a hivatkozásokban fel-
sorolt forrásokat használtam fel, minden más munkából származó rész, a szó szerinti,
vagy az eredeti jelentést megtartó átiratok egyértelműen jelölve, és forráshivatkozva
lettek.

Gábor Kertész

i

Contents

Abstract vi

Kivonat viii

List of Figures xii

List of Tables xvi

List of Algorithms xvii

1 Introduction 1
1.1 Object matching . 2

1.1.1 Color-based segmentation and matching 3
1.1.2 Keypoints and feature descriptors 3
1.1.3 Template matching . 4
1.1.4 Haar-like features . 5

1.2 Projection features . 6
1.2.1 4D signature calculation . 6
1.2.2 Projection-based object matching 8

1.3 Goal of the research . 9

2 Multi-directional image projections 11
2.1 Introduction . 12

2.1.1 The Radon-transform . 12
2.1.2 Properties of the Radon-transform 13
2.1.3 Other related transformations 21

2.2 Multi-directional projections with fixed bin number 21
2.2.1 Memory and computational cost 24
2.2.2 Properties of the transformation 26

2.3 Data-parallel implementation . 29
2.3.1 Results and evaluation . 34

2.4 Object matching using multi-directional image projections with fixed
bin number . 37
2.4.1 Two- and four-dimensional projections 37
2.4.2 Multi-directional projections 43

2.5 Summary . 49

ii

3 Application of Multi-directional Projections in Siamese Convolu-
tional Neural Networks 50
3.1 Introduction . 51

3.1.1 Convolutional Neural Network 51
3.1.2 Siamese architecture . 53
3.1.3 Goal . 54

3.2 Neural Architecture Generation . 55
3.2.1 Methodology . 55
3.2.2 Results . 62

3.3 Distributed training . 65
3.3.1 Master/Worker pattern . 65
3.3.2 Methodology . 65
3.3.3 Results and evaluation . 69

3.4 Results and evaluation . 73
3.4.1 Data . 74
3.4.2 Performance . 77

3.5 Summary . 83

4 Conclusion 84

Bibliography 88

Publications related to the dissertation 97

Other, non-related publications 99

A Other resources 101
A.1 One-shot classification accuracy . 101
A.2 Generated neural architectures . 103

iii

Acknowledgments

First of all, I would like to thank my doctoral supervisors, Dr. Zoltán Vámossy and
Dr. habil. Sándor Szénási for their valuable, ongoing support during my doctoral
studies. As a result of their professional leadership and the many years of their ded-
icated work I became the researcher and lecturer that I am today. I am immensely
grateful for the guidance and encouragement they have given me along this path.

I am thankful to the members of the committee, especially Prof. Dr. Péter Nagy,
Dr. Kálmán Palágyi, Dr. László Csink, and Dr. Adrienn Dineva, for sacrificing time
and providing feedback during the review of the dissertation.

Special thanks to the staff of the John von Neumann Faculty of Informatics; in
particular Prof. Dr. Dezső Sima, Dr. habil. András Molnár, Dr. habil. Imre Felde
and Dr. Szabolcs Sergyán for providing professional background and an inspiring
environment. Thanks to my colleague Dániel Kiss for his regular professional help.

Thanks to the Doctoral School of Applied Informatics and Applied Mathematics,
especially Prof. Dr. Aurél Galántai and Prof. Dr. László Horváth for providing reg-
ular professional feedback and the opportunity to attend international conferences.

I am grateful to my colleagues at MTA SZTAKI for their patience when I finalized
the dissertation.

I am thankful to Dr. Éva Nagyné Hajnal and Dr. Márta Seebauer, for considering
me capable, and starting me on this path.

I would like to thank my family, especially my parents, for their support and
encouragement in helping me achieve my goals throughout my life. Without their
selfless financial and spiritual support, my dissertation would not have been possible.
Thank you for the patience of my friends during the writing of the dissertation.

Balázs, Csaba, István and Zsolt provided much useful advice during our profes-
sional discussions. Thank you for the inspiration.

I am grateful to my current and former students for their hard work, which
resulted in presented and awarded studies at the National Scientific Students’ Asso-
ciations Conference.

I am grateful to János, who, many years ago, directed me to the teaching pro-
fession – a turning point in my life.

Finally, I owe special thanks to Gina – this dissertation would not have been
completed without her understanding, patience, and support.

iv

Köszönetnyilvánítás

Szeretnék köszönetet mondani doktori témavezetőimnek, Dr. Vámossy Zoltánnak
és Dr. habil. Szénási Sándornak a tanulmányaim során nyújtott folyamatos, értékes
segítségükért. Szakmai vezetésük, több éves áldozatos tevékenységük eredményeként
váltam azzá a kutatóvá és oktatóvá, aki ma vagyok. Mérhetetlenül hálás vagyok az
iránymutatásért és ösztönzésért, amellyel végigsegítettek ezen az úton.

Köszönöm a bizottság tagjainak, kiemelten Prof. Dr. Nagy Péternek, Dr. Palágyi
Kálmánnak, Dr. Csink Lászlónak és Dr. Dineva Adrienn-nek hogy idejüket áldozták
és tanácsokkal láttak el a disszertáció áttekintése során.

Külön köszönettel tartozom munkatársaimnak az Óbudai Egyetem Neumann
János Informatikai Karán, elsősorban Prof. Dr. Sima Dezsőnek, Dr. habil. Molnár
Andrásnak, Dr. habil. Felde Imrének és Dr. Sergyán Szabolcsnak köszönöm a pro-
fesszionális szakmai háttér biztosítását és az inspiráló környezetet. Köszönöm Kiss
Dániel kollégámnak a rendszeres szakmai segítséget.

Köszönet az Alkalmazott Informatikai és Matematikai Doktori Iskolának, kü-
lönösen Prof. Dr. Galántai Aurélnak és Prof. Dr. Horváth Lászlónak a rendszeres
szakmai visszajelzést és a nemzetközi konferenciákon való részvételi lehetőség bizto-
sítását.

Hálás vagyok az MTA SZTAKInál dolgozó kollégáimnak a türelmükért, amelyet
a disszertáció befejezésekor tanúsítottak.

Köszönöm Dr. Nagyné Hajnal Évának és Dr. Seebauer Mártának, hogy évekkel
ezelőtt rátermettnek tartottak, és elindítottak ezen az úton.

Köszönettel tartozom családomnak, elsősorban a szüleimnek a támogatásukért és
ösztönzésükért, amellyel egész életemben segítettek a céljaim elérésében. Önzetlen
anyagi és lelki támogatásuk nélkül a dolgozatom nem jöhetett volna létre. Köszönöm
barátaim türelmét, amelyet a disszertáció megírása során tanúsítottak.

Számtalan hasznos tanáccsal látott el szakmai diszkusszióink során Balázs, Csaba,
István és Zsolt, köszönöm az inspirációt.

Hálás vagyok a jelenlegi és egykori hallgatóimnak a lelkiismeretes munkájukért,
melynek eredményeképp Tudományos Diákköri Konferencián bemutatott és díjazott
pályamunkák, valamint közös publikációk születtek.

Hálával tartozom Jánosnak, aki hosszú évekkel ezelőtt az oktatói pályára terelt,
amely fordulópont volt az életemben.

Végül különleges köszönettel tartozom Ginának – ez a disszertáció nem készült
volna el megértése, türelme és támogatása nélkül.

v

Multi-Directional Image Projections with Fixed
Resolution for Object Recognition and Matching

Gábor Kertész

Abstract
The use of computer vision and image processing in traffic analysis and control

has shown significant growth in recent years. In addition to traditional solutions
(such as traffic counting, accident detection), multi-camera applications based on
vehicle identification and tracking have also emerged.

Innovation is supported by the explosive growth of image classification efficiency
in recent years, which is the result of machine learning, in particular, the rise of
deep learning.

This dissertation introduces solutions for multi-camera vehicle tracking to recog-
nize and match vehicles through multiple with low-resolution, low-quality camera
images.

The first group of theses deal with multi-directional image projections. I have de-
veloped a method for mapping two-dimensional image functions to one-dimensional
projection vectors similar to the Radon transformation. The novelty of the solution
is the fixed bin number, which is independent of the projection angle and specified
as the input to the procedure. The memory cost of the resulting projection matrix
is independent of the size of the input image.

I have designed and implemented a parallel version of the method in a GPU
environment, taking into account the specific architecture and properties of the
graphics processors. Runtime is linear and speedup is proportional to the number
of available processing units.

I have compared the defined multi-directional image projection method with
lower dimensional procedures in case of object matching. After evaluating the re-
sults, I have found that by applying the method, accuracy increased significantly
and by using a fixed number of bins, the efficiency improved as well.

In the second group of theses, I present my results related to object matching
based on machine learning solutions. In accordance with the state-of-the-art solu-
tions, I have designed a method based on a Siamese convolutional neural network,
which is capable of handling image projections as input. For a comprehensive mea-
surement, it was first necessary to review possible network architectures and develop
a method that generates multiple Convolutional neural network architectures based
on input matrix dimensions. Based on the known convolutional design patterns, I
have developed an optimization method based on backtracking search for Neural
Architecture Generation. Based on the given input size and the number of hidden
layers, the algorithm makes suggestions for the architecture of the head parts of the
Siamese structured neural network, having the memory cost of the parameters taken
into account.

The resulting architectures can be trained in parallel on a cluster of multiple
workstations with GPUs. For the implementation, I designed and implemented a
Master/Worker method, where the scheduler optimizes parallel efficiency based on

vi

the parameters of the architectures. Based on the measurement results, I found that
the acceleration is approximately equal to the number of workstations involved.

During the investigations, I analyzed the effects of the application of different
projection methods as input to the Siamese networks and compared the results to
the classic image input based comparators. When evaluating the results, I concluded
that the projection methods are suitable for object matching and the method based
on the fixed number of bins is Pareto optimal in terms of pairing efficiency and
memory cost.

vii

Többirányú, rögzített felbontású képi vetületek
objektumok felismerésére és párosítására

Kertész Gábor

Kivonat
A gépi látás és képfeldolgozás használata a forgalomelemzés és -irányítás terü-

letén az elmúlt években jelentős növekedésnek indult. A hagyományos megoldások
(például forgalomszámlálás, balesetészlelés) mellett a járművek azonosításán és kö-
vetésén alapuló több-kamerás alkalmazások is megjelentek.

Az innovációt támogatja a képi klasszifikáció hatékonyságának elmúlt években
tapasztalt robbanásszerű növekedése, amely a gépi tanulás, azon belül is a mélyta-
nulás megjelenésének eredménye.

Jelen disszertáció több-kamerás járműkövetés témakörében mutat be megoldá-
sokat a gépjárművek azonosítására és több képen keresztüli párosítására alacsony
felbontású, gyenge minőségű kameraképek esetén.

Az első téziscsoport a többirányú képi vetületek témakörével foglalkozik. Kidol-
goztam egy módszert, amely a Radon transzformációhoz hasonlóan alkalmas két-
dimenziós képi függvények egydimenziós vetületi vektorokra való leképezésére. A
megoldás újdonsága a vetületi szögtől független fix rekesszám, amely az eljárás be-
meneteként megadható. Az így készített vetületi mátrix memóriaköltsége független
a bemeneti kép méretétől.

Megterveztem és implementáltam a módszer párhuzamos változatát GPU környe-
zetben, figyelembe véve a grafikus processzorok sajátos felépítését és tulajdonságait.
A futásidő lineáris, a gyorsulás az elérhető műveletvégzők számával arányos.

A kidolgozott többirányú képi vetületi módszert összevetettem alacsonyabb di-
menziójú eljárásokkal egyezésvizsgálat esetén. Az eredmények kiértékelése után meg-
állapítottam hogy a módszer alkalmazásával jelentősen nőtt a pontosság, illetve a
fix rekesszámnak köszönhetően a hatékonyság is is javult.

A második téziscsoportban az egyezésvizsgálat gépi tanuláson alapuló megoldásá-
val kapcsolatos eredményeim mutatom be. A korszerű megoldásoknak megfelelően,
egy sziámi konvolúciós neurális hálózatra épülő módszert terveztem, amely alkalmas
akár képi vetületet bemeneteként fogadni. Az átfogó méréshez elöször szükséges volt
áttekinteni a lehetséges hálózati architektúrákat, és kidolgozni egy módszert amely
többféle konvolúciós neurális hálózati architektúrát generál a bemeneti mátrix di-
menzióihoz igazodva. Az ismert konvolúciós tervezési minták alapján kidolgoztam
egy visszalépéses keresésen alapuló optimalizációs módszert neurális architektúra ge-
nerálásra. Az algoritmus az adott bemeneti méret és a rejtett rétegek száma alapján
tesz javaslatokat a sziámi szerkezetű neurális hálózat fej-részeinek architektúrájára,
figyelembe véve a paraméterek memória-költségét.

Az így előállított architektúrák tanítása párhuzamosan is történhet, több, GPU-
val felszerelt munkaállomásból álló klaszterben. A megvalósításhoz egy Master/
Worker elvű módszert terveztem és valósítottam meg, ahol az ütemező az archi-
tektúrák paraméterei alapján optimalizálja a párhuzamos hatékonyságot. A mérési
eredmények alapján megállapítottam hogy a gyorsítás megközelítőleg egyezik a be-
vont munkaállomások számával.

viii

A vizsgálatok során különféle vetületi módszerek alkalmazásának hatásait vizs-
gáltam a sziámi hálózatok bemeneteként, és az eredményeket összehasonlítottam a
hagyományos képi bemenetű komparátorokra. Az eredmények kiértékelésekor meg-
állapítottam, hogy a vetületi módszerek alkalmasak objektum párosításra, valamint
a fix rekesszámú módszer Pareto optimális a párosítás hatékonysága és memória
költsége szempontjából.

ix

Abbreviations & notations

In this study the following notations and abbreviations were used:

Abbrevations
PCC Pearson Correlation Coefficient
CNN Convolutional Neural Network
SNN Siamese Neural Network
GPU Graphical Processing Unit
FCN Fully Convolutional Network
FC Fully Connected (layers)
MDIPFL Multi-directional Image Projections with Fixed Length
LPT Longest Processing Times

Projections

I image matrix
Ii,j pixel value of image on coordinate (i, j)
N ×M matrix size
πH , πV , πD, πA horizontal, vertical, diagonal, antidiagonal projection vectors
S2,S4 two- and four-dimensional projection-based signatures
σ standard deviation
cov(·, ·) covariance between two vectors
ρH , ρV , ρD, ρA correlation coefficient of horizontal, vertical, diagonal vectors
r(·) rectified value of scalar
µ similarity
f̌(p, φ) = Rf Radon transform of function f
p line of summarization
α, φ rotational angle
LL,HL projection segments around point P
S number of bins
res resolution
start, end position of projection on segment LL+HL
P+
H set of ρH correlation coefficients for true pairs

P−H set of ρH correlation coefficients for false pairs

x

Neural networks
OW , OH width and height of output
IW , IH width and height of input
FW , FH width and height of filter
PW , PH horizontal and vertical padding
SW , SH horizontal and vertical stride
Fnum number of filters
F

(i)
num number of filters in layer i
Lnum number of convolutional and pooling layer pairs
Nnum number of neurons
N

(i)
num number of neurons in layer i

x ∈ X observations
c ∈ C categories
f(x) = c mapping of observations to categories
S(·, ·) predicted similarity of inputs
m ∈M models
ferr(·) error rate of model
fmemory(·) parameter number of model
m1 � m2 m1 Pareto dominates m2

xi

List of Figures

1.1 Horizontal (a) and vertical (b) image projections are calculated by
summarizing the row and column values in the matrix. 7

1.2 Diagonal (a) and antidiagonal (b) image projections of a squared
image matrix. 7

1.3 The visualized projection signature of a vehicle observation. Subfigure
(a) shows the squared image of a rear-viewed vehicle. In diagrams (b),
(c), (d) and (e), the horizontal, vertical, diagonal and antidiagonal
projections are visualized (πH , πV , πD and πA, respectively). 8

2.1 The Shepp-Logan [54] phantom is a standard test image used in the
testing of image reconstruction algorithms: it consists of 10 differently
sized, rotated ellipses with different intensity levels inside the squared
area. 14

2.2 The transformation of the sinus wave is formalized as A sin(α + β),
where A stands for the amplitude and β is the phase shift. 15

2.3 The results of horizontal translation on the sinogram: subfigures (a),
(b), (c) and (d) show the input image, where the object is shifted to
the right. Subfigures (e), (f), (g) and (h) present the sinograms for
each input image [K2]. It is notable, that the changes of the amplitude
are directly affected by the distance changes from the center of the
image. 16

2.4 The effect of shifting in Radon space results in rotation. The original
image (in subfigure (a)), and the sinogram of its projection sums (in
subfigure (e)). To illustrate the effect of the circular shifting, the
resulting matrix of the Radon transform is shifted by φ = π/2, π and
π/6, presented in subfigures (b), (c) and (d), respectively. Subfigures
(f), (g) and (h) show the result of the reconstruction after shifting [K2]. 17

2.5 Insignificant regions in the sinogram. In subfigure (a) is the image
representation of the matrix defined in (2.14). In subfigure (b) is the
sinogram of the Radon transform of the image. The regions above
and below the projection of the corner points are insignificant [K2]. . 18

2.6 The Radon transform of a unit matrix. In subfigure (a) is the image
representation of the unit matrix defined in (2.15). Subfigure (b)
shows the sinogram of the Radon transform of this image. Note, that
the intensity is affected by the number of pixels summarized: the
brightest points are in the centers of the diagonal and antidiagonal
projections at 45, 135, 225 and 315 degrees [K2]. 18

xii

2.7 The effect of intensity changes on the sinogram. Subfigures (a), (b),
(c) and (d) show the input image, where the object intensity is 1, 0.8,
0.6 and 0.2, respectively, and subfigures (e), (f), (g) and (h) presents
the sinograms for the input images [K2].
While the forms of the sinusoids are the same, the intensity levels
(visible on the bars) are different. 19

2.8 The effect of noise in the Radon space. Subfigure (a) shows the origi-
nal image with a zero mean, 0.1 variance Gaussian noise. In (b), the
sinogram of the original image is visualized. In (c) is the Gauss filtered
original image. Subfigure (d) gives the reconstructed image. Note,
that the reconstruction removes some noise. Subfigure (e) shows the
sinogram after filtering each column with a moving average filter, and
in subfigure (f) is the reconstructed image of this method [K2]. 20

2.9 A sample vehicle image in subfigure (a) and the sinogram of the
Radon transform for the same image for angles [0; 2π) in subfigure
(b). 22

2.10 (a) The proposed method with fixed bin sizes. Rotational angle α is
30 degrees and the number of bins is 10. (b) The value of one pixel
can affect two (or more) projection bins, according to the resolution. . 22

2.11 The affected pixels for different bin numbers, and the affected bins
for a single pixel. (a) S = 8, which is equal to the width and height
(N) of the matrix. (b) S = 6, having S < N . (c) S = 15, having
S > N , which results in a single pixel affecting multiple bins. 25

2.12 A sample output of the defined method. In subfigure (a) is the sample
image, and in subfigure (b) is the result of the proposed method,
displayed as an intensity image, similar to the sinogram. For the
sample, S = N resolution was used. For reference, subfigure (c)
shows the result sinogram of the Radon transform, the same as in
Fig. 2.9. 26

2.13 The behavior corner region points (subfigure (a)) in the transforma-
tion space of the MDIPFL method (subfigure (b)). Bin number is set
to S = N . Note the straight diagonal lines representing the move-
ment of the two opposite corners while the other two are projected to
the start and end of the projection line. 27

2.14 The output of the MDIPFL method for a unit matrix type image
with maximum intensity values in all positions. The image is shown
in subfigure (a) and the result of the transformation is in subfigure (b). 27

2.15 The results of horizontal translation when applying the MDIPFL
transformation: subfigures (a), (b), (c) and (d) show the input image
where the object is shifted to the right. Subfigures (e), (f), (g) and (h)
present the result of transforms for each input image. The number of
bins is set to S = 100. 28

2.16 The effects of image rotation to the result of the MDIPFL transform.
Subfigure (a), (b) and (c) show the input images, where (a) is the
original, (b) (c) are rotated by 90 degrees and 30 degrees counter-
clockwise, respectively. Subfigures (d), (e) and (f) are the visualized
results of the transformation of (a), (b) and (c). 28

xiii

2.17 Visualized steps of the parallel method for multi-directional projec-
tions with fixed vector length. 33

2.18 Comparison of runtimes for different image sizes [K4]. The horizontal
axis displays the width of the squared images in pixels. The vertical
axis shows the runtimes in milliseconds. The CPU and GPU imple-
mentations of the presented method were compared with the runtime
of MATLAB’s GPU-accelerated Radon transform [K4]. 36

2.19 The calculated horizontal, vertical, diagonal and antidiagonal projec-
tions for different observations of the same vehicle. In subfigure (a)
and (d) are images I1 and I2, in subfigures (b) and (c) the normalized
vertical and horizontal projections, and in subfigures (e) and (f) the
diagonal and antidiagonal projections are shown. Note the difference
caused by the blink on the left side of the vehicle on I2. [K5]. 38

2.20 The calculated horizontal, vertical, diagonal and antidiagonal projec-
tions for observations of two different vehicles. In subfigure (a) and
(d) are images I1 and I3 of the vehicles; in subfigures (b), (c), (e)
and (f) the normalized vertical, horizontal, diagonal and antidiagonal
projections are shown. Note the high correlation coefficients for the
clearly different functions [K5]. 39

2.21 The measured correlation coefficients and calculated similarity scores
in the case of true pairs using the 4D signatures. The scatter plot in
subfigure (a) shows the values of ρH and ρV . In subfigure (b), the
diagonal ρD and antidiagonal ρA correlations are visualized. The µ
similarity is presented in subfigure (c) [K5]. 40

2.22 The measured correlation coefficients in the case of false pairs using
the 4D signatures. Subfigure (a) shows a scatter diagram of measured
ρH horizontal and ρV vertical correlations. In subfigure (b) is a similar
diagram with the diagonal (ρD) and antidiagonal (ρA) coefficients.
Note the large spread and high amount of very strong similarities.
Also, it is notable that the negative correlations are removed and
corresponding values are set to zero [K5]. 41

2.23 A histogram of the distribution of the similarities calculated for the
same (red) and different (blue) objects [K5]. 41

2.24 Distributions of similarity scores generated by using alternatives to
the Euclidean norm (Figure 2.23). In the subfigure (a) the average,
in (b) the maximum and in (c) the minimum values were used from
the four calculated coefficients. 42

2.25 Histogram of the similarities measured using the multi-directional
projection method, with a fixed bin number of 25, and StepSize set to
five degrees. Red columns show the percentage for the comparison of
the same and blue columns present the calculated values for different
objects [K5]. 44

2.26 The rate of false positives if the threshold is adjusted to a limit where
50% (F50) or 80% (F80) of true matches should pass, for different
number of projection bins [K5]. 45

2.27 A comparison of memory cost for the 2D and 4D signatures and the
multi-directional method with fixed bin numbers for different image
sizes. 45

xiv

2.28 A selection of various false positive and false negative pairs [K5]. . . . 46
2.29 (a) Distribution of calculated similarity scores when using the Radon

transform to produce multi-directional projections. The step size used
for rotation was five degrees. The scores are similar to the previously
introduced 4D signature-based method, visualized in Figure 2.23. Di-
agram (b) shows the differences between the two histograms. 48

3.1 The basic structure of the "two-headed" Siamese Neural Network.
The fully-convolutional (FCN) layers are followed by fully-connected
(FC) layers. These heads share the same weights, and their outputs
are multi-dimensional vectors. The distance of the output vectors
gives the similarity of the inputs [K6]. 53

3.2 The sequence diagram of the interactions between the Master and
the Worker instances. After the Master starts, the Workers take
new tasks from the waiting queue, process them, and send the results
back. After there is no job left, the Worker gets notified by a so-called
poison pill, and then terminates [K9]. 69

3.3 The estimated complexity values and the processing times for each
model, ordered by the estimated value based on (3.10). The thick
red line represents the complexity value, while the thin columns show
the processing times for each model. Although there are some visible
diversions between the two, the calculated correlation is strong, 0.749
[K9]. 72

3.4 Correlation heatmap generated using the input parameters of model
training and the measured processing times from the total of 4000
trainings. pred represents the predicted complexity based on (3.10). . 73

3.5 A sample frame from the Vehicle ReIdentification dataset provided for
the International Workshop on Automatic Traffic Surveillance, on the
29th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2016) [112]. 74

3.6 Sample images from the dataset, from left to right: the original image,
the result of the Radon transform, the MDIPFL transform and the
Trace transform, respectively. 76

3.7 One-shot classification accuracy for classes N = 1 . . . 10, grouped by
different numbers of hidden convolutional-pooling layer pairs, from 1
to 5, left to right, respectively. 79

3.8 Average processing times of models grouped by input types and the
number of hidden layers. Each bar represents the average process-
ing time of the training 50 models twice. Error bars illustrate the
standard deviation. 80

3.9 The results visualized by the number of parameters for the model
and the validation error rate. Each model was tested with 10,000
validation examples. The Pareto optimal results – values that are
not dominated by any other result – are visualized in the bottom left
corners as the Pareto frontier [K6]. 82

xv

List of Tables

2.1 Processing of the projection calculation methods on different image
sizes [K4]. 35

2.2 Runtime of the proposed method compared to the Radon transform
function in MATLAB [K4]. 36

2.3 Performance of the 2D and 4D projection signatures for object match-
ing. Note that the calculated similarity score is very high for the false
pairs as well [K5]. 40

2.4 Performance of the multi-directional projections, with bin number set
as N, 2N-1, 25, 50, 100 and 300. As visible, constant bin numbers
perform better [K5]. 43

3.1 The distributed processing of the models was done in two separate
runs. While there is a minimal difference between the results, the
speedup and the efficiency in both cases are very high. It is also
important to point out that the load balance of this scheduling is
very good, the granularity of the last tasks is fine, causing a low idle
time for the Worker which terminates first. Time values in this table
are represented in a HH:MM:SS format [K9]. 71

3.2 The results of 1000 simulations of random scheduling. The generated
runtimes are ordered increasingly, and the minimum, maximum and
median values are described in three columns of this table. Time
values in this table are represented in a HH:MM:SS format [K9]. . . . 71

3.3 The different input types, by matrix sizes. As MDIPFL works with
a fixed bin size, multiple outputs were generated and tested. 75

3.4 The measured prediction accuracy for each transformation for 2,4,6,8
and 10-way classification. The models were tested with 10,000 tests
and the best performances were selected for this table. 78

A.1 Top measured one-shot classification accuracy for different inputs dur-
ing N-way classification for one hidden convolutional-pooling layer pair.101

A.2 Top measured one-shot classification accuracy for different inputs dur-
ing N-way classification for 2 hidden convolutional-pooling layer pairs. 101

A.3 Top measured one-shot classification accuracy for different inputs dur-
ing N-way classification for 3 hidden convolutional-pooling layer pairs. 102

A.4 Top measured one-shot classification accuracy for different inputs dur-
ing N-way classification for 4 hidden convolutional-pooling layer pairs. 102

A.5 Top measured one-shot classification accuracy for different inputs dur-
ing N-way classification for 5 hidden convolutional-pooling layer pairs. 102

xvi

List of Algorithms

1 Method to calculate Multi-Directional Fixed Length Projections of
an Image. 23

2 Kernel procedure to calculate the image projection for multiple direc-
tions. 31

3 Function to calculate the output size for a given input image with
the size given as IW and IH . Lnum is the total number of convolution-
al-pooling layer pairs. CW , CH , PW and PH gives the maximum sizes
of the convolutional kernels and pooling windows. 57

4 Method to calculate the maximum window sizes for a given input
image: Lnum is the total number of convolutional-pooling layer pairs.
IW and IH denotes the input size and rCP gives the minimum ra-
tio between convolutional and pooling window sizes. The GetSize
function is defined in Algorithm 3. 58

5 Searching for available solutions using a recursive backtracking search
with multiple results. 59

6 The estimation of the ideal batch size for training. The minimum
number of training batches is defined as 10; however, this could de-
pend on the number of training samples in a single epoch. Function
RoughEstimation results in the number of bytes defined in (3.7). . 61

7 The algorithm of the Master. For representation purposes, the inner
loop is an infinite loop, which accepts incoming TCP connections on
the defined IP and port; however, in an actual software cancellation
can be implemented as well for to shutdown of the listener. 66

8 Processing of the client requests is based on the first message of the
client: if the client states it is "ready," then a new task is sent to it.
In other cases, the worker is trying to send the results of a process. . 67

9 The pseudo language representation of the Worker process. The work-
ers repeatedly ask for the next neural architecture, and after training
and evaluation, the results are sent back to the Master. Worker ter-
mination is implemented with the "poison pill" approach. 68

xvii

Chapter 1

Introduction

Equations are just the boring part of mathematics.
I attempt to see things in terms of geometry.

— Stephen Hawking

Closed-circuit television cameras – also known as surveillance cameras – are often
applied to monitor traffic. Based on the use cases, several applications of these
traffic cameras are known: congestion-detection and accident-detection systems are
popular, speed cameras, safety and various enforcement solutions as well [1]. Most
of these solutions require the device to be able to identify or track the vehicle, which
could be challenging depending on the brightness and weather conditions. Advanced
devices have high-resolution cameras with infrared LEDs for night vision [2], also
PTZ1 cameras can be used to track object movement.

On distant locations like public roads, highways, bridges and tunnels simple static
cameras are placed with non-overlapping fields of view. These camera-networks are
mostly used to measure traffic after crossroads and calculate the average speed of
vehicles based on the distance between the cameras and the time of observations [3].

Recognizing a vehicle by using the plate number is not always feasible [4]. In
tunnels, where natural light is rare and colors are hard to detect, the usage of such
high-level devices is not cost-efficient, giving similar low-quality images as other,
less expensive cameras. The changes in lighting and vehicle movement can cause
difficulties when matching the image representations, as well as different camera
settings could reflect in errors.

1pan-tilt-zoom

1

In computer vision, there are simple methods to find objects with specific colors
or shapes [5]. Most methods are based on lines or corners, or other keypoint-based
descriptors extracted from template images. In the case of noisy and low-quality
pictures, low-level techniques can be applied, for example, template matching [K1]
and histogram- or image projection-based comparison [6].

The improvement of the projection-based method can be done by increasing the
number of projection angles. There are some well-known methods that provide a
mapping from two-dimensional data to one-dimensional projections, like the Radon
transform [7] [8]. This, however, in the case of a rectangular structure, gives different
projection lengths for different angles [K2], affecting in the result matrix of the
Radon transform (the sinogram) as blank areas.

In Chapter 2, a method that generates the multi-directional projections of a
squared input is introduced. This transform has a similar result as the application
of the Radon transform; however, the negative effects are removed with a fixed
vector length. To demonstrate the robustness of this algorithm, a data-parallel
implementation is also described and evaluated in Chapter 2, Section 2.2.

In the following section (Section 2.3), this method is used as an input for object
matching in the case of vehicle images. The precision rate, memory efficiency and
computation cost of the method is compared with the rates given by previously
studied techniques.

As a second thesis group, in Chapter 3, a machine learning-based solution is de-
signed and developed for the same problem, based on Siamese-architectured convo-
lutional neural networks. To analyze the applicability of the projection-based neural
comparison, a novel method to generate convolutional neural network (CNN) archi-
tectures is proposed (Section 3.2). A distributed environment with high parallel
efficiency is designed and implemented (Section 3.3), where the networks with the
generated architectures are trained and evaluated (Section 3.4).

1.1 Object matching
Richard Szeliski [9] declares object recognition as one of the most challenging tasks
of computer vision. By defining the actual task, the problem can be object detection,
instance or category recognition. If the size and visual representation of the sought
object or objects are known, and the task is to locate these on the input image, the
task is object detection. The most popular applications for object detection can be
observed in digital cameras, smartphones or even on social network sites for face
detection on images.

In the case of re-recognizing a previously examined object, the task is referred to
as instance recognition. The process of determining that two visual objects represent
the same entity is object matching [9].

To match object representations, a number of methods were introduced during
the history of computer vision. The early approaches are summarized in the paper of
Joseph L. Mundy [10], concluding that the basic detection methods, such as template
matching and basic signal processing, were used to detect and match objects. Mundy
also states that some of the early ideas were revisited later in the 1990s.

Modern approaches for object matching were done using geometric object de-
scriptors, lines, edges, corners and other interesting keypoints.

In the following sections some of these methods are presented.

2

1.1.1 Color-based segmentation and matching
A simple solution for object segmentation is based on colors. If the foreground color
of the object is different from the colors of the environment and the background,
object boundaries can be easily marked.

These color-based segmentation methods [5] can be implemented based on the
RGB2 representation of colors; however, the HSI3 intensity-based model is a proper
choice for these tasks.

After the object is separated, multiple procedures can follow to match the object
of interest with a reference. Based on the color information, the color histograms of
the two can be compared [11]. It is worth mentioning, that although the results for
true pairs from the same collection of images are satisfactory, changes in lightning or
small color changes can significantly change the measured distance between the two
histograms. Another disadvantage of this matching method is that the shape and
texture of the object is ignored [12], and as different images can have very similar
color histograms, in these cases the defined similarity would result in a false positive
match.

It is notable, that segmentation could also be done based on intensity, texture
[13] or edges [14]. Modern approaches are based on trainable convolutional neural
networks. Examples for semantic segmentation are fully-convolutional networks [15]
or to handle the computational expenses the U-Net structure [16] is often used.

If segmentation is done as a preprocessing step, beyond color data, distance
functions based on the shape of the segmented object can be applied to match
the representation with others. Such a method is given as the Edge Histogram
Descriptor [17] where the relative distribution of different edge-types was used as a
signature of the object.

1.1.2 Keypoints and feature descriptors
While color information is important, the human eye uses more information to rec-
ognize objects [18]. Segmentation, categorization and instance detection is based on
spatial information, as well as relationships with adjacent objects and the surround-
ing environment.

In computer vision algorithms the problem space is narrowed down, reducing
the visual representation as possible. According to a survey by Mundy [10], the
paradigm of detection switched from basic geometric descriptions to appearance
features.

Image features are based on keypoints and descriptors. A keypoint is a point of
interest that is invariant to rotation, translation, scale and intensity transformations.
The descriptor gives information about the region around this point.

Points of interest could be corners, line endings, or points on a curve where the
curvature is locally maximal. Historically, the first corner detection method was
presented by Hans P. Moravec [19] in 1977. The idea was that corners (and edges)
could be detected locally using a small window: if the shifting of the window to any
direction results in a large change in the intensity sum, a corner is detected. As
only a 45-degree shift is considered, any edges not horizontal, vertical or diagonal

2Red-Green-Blue
3Hue-Saturation-Intensity

3

are incorrectly marked as corner points.
The Moravec detector is not isotropic, the response is not invariant to rotation.
An improved solution was presented by Christopher G. Harris and Mike Stephens

[20] in 1988. To deal with the noise and possible rotations, a Gaussian window func-
tion was introduced. Using this window, all possible shifts should be examined; how-
ever, this step would have been computationally intense. So, instead, the first-order
Taylor series expansion was used to approximate the value.

In 1994, Jianbo Shi and Carlo Tomasi [21] proposed a method based on the
Harris detector, with a small and effective change on the scoring formula.

It is important to point out that both the Harris corner detector and the Shi-
Tomasi detector are invariant to rotation; however, both are affected by input scal-
ing. The scaling issue could be handled by storing external information about the
region around the point of interest, for example, the patch size [22]. Other de-
scriptors based on derivatives are often used as descriptors, like the Laplacian of
Gaussians (LoG) or Difference of Gaussians (DoG) [23].

Scale-invariant feature transform (SIFT) was published by David G. Lowe in
1999 [24]. Inspired by the Harris detection, the procedure of feature extraction was
based on the application of Gaussian kernels to obtain multiple scale representations
of the same image, which was used to discard points of interest with low contrast.

The SIFT method is sensitive to lightning changes and blur, but the most impor-
tant drawback of the application is that it is computationally heavy and real-time
applications are not feasible.

The Speeded up robust features (SURF) [25] technique is using integral images
resulting in a faster detection with similar precision [26]. It is worth mentioning,
that the SURF method itself is not real-time; however, parallelization is possible.

If the task is matching instances of similar objects of the same category with
similar appearance on low-quality images, the application of feature-based descrip-
tors could result in low performance. While scale-invariant feature detection is a
computationally intense process, noise of low contrast, blur and lightning changes
affect the features, and therefore the result of matching as well.

For the vehicle-matching problem several solutions were introduced. For aerial
object tracking, [27] introduced an extended line segment-based approach to detect
and warp observations for matching. The authors proposed another approach in
the following year based on 3D model approximation [28]. A similar method for
vehicle matching of observations in different poses was introduced in [29], where
the estimation is supported by the reflected light. In [30], it was pointed out that
temporal information could also be used for tracking in a multi-camera network.

1.1.3 Template matching
To deal with the matching of low-quality images, classic template matching [31]
can be used. Finding the visual representation of an object on a reference image is
based on a basic, pixel-level comparison of the reference pixels and the template.
The matching process is comparing the pixels of the template image with the ref-
erence image, using a sliding window, and selecting the best fit. The window is a
template-sized patch, which is moved over the reference image.

While moving the window over the reference image, the fitting of the correspond-
ing pixels is measured. There are several methods to evaluate: the simple ways are

4

to calculate the sum of squared differences or the cross-correlation. However, the
normalized versions of these methods usually provide better results.

Depending on the chosen method, the minimum or maximum value represents
the best match on the image. Multiple matches can be handled as well, if a threshold
is applied instead of the minimum-maximum selection.

Template matching is sensitive to rotational or scalable changes on the reference
image. A possible solution to solve the problems raised by different sizes is to create
multiple images resizing the original template, match each of them on the reference,
and, finally, select the best match of the results. These multi-scale template-match-
ing methods are highly parallelizable [K3]. It is notable that this method could still
fail detecting rotated or tilted objects.

1.1.4 Haar-like features
The processing of intensity values on an image patch is computationally expensive,
and although parallelizational methods exist, the effectiveness is questionable. An
alternative to working with intensities is based on integral images.

In 1997, Constantine P. Papageorgiou et al. presented a method [32, 33] which
was based on the idea of Haar wavelets. After a statistical analysis of multiple
objects from the same class, the trainable method was able to detect objects, for
example, pedestrians or faces.

In 2001, Paul Viola and Michael Jones [34] published a machine learning ap-
proach to detect visual representations rapidly. Motivated by Papageorgiou et al. the
system was not working directly with intensities, initially an integral image represen-
tation was computed from the source, storing the sum of pixel intensities for every
point on the image.

The authors also defined Haar-like features [35] as differences in the sum of
intensities in rectangular regions in an image. Using the integral image, the intensity
sum of a rectangular region can be calculated in constant time, producing a fixed
step number for Haar-like feature computation.

The Viola-Jones detector is trainable and uses an AdaBoost-based technique to
select the important features and to order them in a cascade structure to increase
the speed of the detection. The method was very popular and widely used from face
detection to vehicle detection.

After the detection, the matching could be done based on the same features
used for detection [36], without the need of unnecessary computation. Reyes Rios-
Cabrera et al. [4] presented a complex system for vehicle detection, tracking and
identification. In the identification method, a so-called vehicle fingerprint was used,
which is based on the Haar-features used for detecting the vehicles.

The speed and accuracy of a system based on reusing Haar-like features are
satisfactory; however, the condition of necessary pre-training is difficult to meet in
real-life applications. The training set of images and the test set should be acquired
on the same environmental conditions. Also, the set needs to be large enough to
include multiple environments, conditions (lightning, weather, etc.).

5

1.2 Projection features
Similar low-level features could be constructed based on the sum of intensities for
every column and row of the patch. These sums, the horizontal and vertical projec-
tions, are one-dimensional vectors mapped from the 2D image.

Applications of row and column sum vectors are first described by Herbert
J. Ryser in 1957 [37], which is referred as one of the first discrete tomography [38,
39] methods: based on the two orthogonal projections, the original binary matrix is
reconstructable. Reconstruction from a small number of projections can yield mul-
tiple valid results. It is notable that, in the case of a non-binary domain of values,
the number of possible solutions of the reconstruction method can be lowered by
more projections.

While reconstruction is important in medical applications [40], for object im-
age matching the projection functions themselves could be used. Margrit Betke
et al. presented a method for vehicle detection and tracking [41], where projection
vectors are calculated of an edge map and are used to adjust the position during
tracking.

In other applications, projections can be used for gait analysis for walking people
[42], where the video sequence is transformed into a spatio-temporal 2D represen-
tation. Patterns in this so-called Frieze-group [43] representation can be analyzed
using horizontal and vertical projections. As an extension, a variation of this method
could be developed based only on the shape information [44], resulting in a method
that was not affected by body appearance.

The idea of using a mapping of the vehicle observation for further processing also
appeared in [45], where the distance calculation between observations were based
on edge maps.

1.2.1 4D signature calculation
Vedran Jelača et al. [46] presented a solution based on projections for vehicle match-
ing in tunnels, where object signatures are calculated from projection profiles. A
possible interpretation of this method is presented here in detail.

After the region of interest is selected, the area is completed to a square and
cropped. As color data are irrelevant in dark, artificially lighted areas such as
tunnels, the images are grayscaled, meaning that the information is simplified from
a RGB structure to a single intensity value. In the case of 8-bit grayscale images,
the intensity information of one pixel is stored in one single byte.

Each image can be handled as matrix I ∈ NN×N where Ii,j = [0, 1, . . . 255] denotes
the element of the matrix at (i; j). The horizontal (πH) and vertical projections (πV)
for a squared N ×N matrix result in vectors with the same length:

dim πH = dim πV = N. (1.1)
These projections are the averaged sums of the rows and columns of the matrix,

normalized to [0, 1] by the value of maximal possible intensity:

πH(i) = 1
255N

N∑
j=1

Ii,j,

πV (j) = 1
255N

N∑
i=1

Ii,j,
(1.2)

6

πH

(a)

πV

(b)

Figure 1.1. Horizontal (a) and vertical (b) image projections are calculated by
summarizing the row and column values in the matrix.

πD

(a)

πA

(b)

Figure 1.2. Diagonal (a) and antidiagonal (b) image projections of a squared image
matrix.

visualized in Figure 1.1.
πH ,πV , therefore, defines the two-dimensional projection signature of the object:

S2 = (πH ,πV). (1.3)

The diagonal and antidiagonal projections can be calculated likewise, but it is
important to point out that the number of elements for each projected value differs
(Figure 1.2).

The length of the diagonal projection vectors are:

dim πD = dim πA = 2N − 1, (1.4)

the number of elements in each summarization is based on the distance from the
main diagonal:

ElemNum(i) =

i if i ≤ N

2N − i otherwise
(1.5)

where i is the index of an element in a diagonal projection, having i ≤ 2N − 1.

7

The calculation of the diagonal projections πD, πA is formalized as:

πD(i) =

1

255 ·ElemNum(i)
i∑

j=1
Ij,N−(i−j) if i ≤ N

1
255 ·ElemNum(i)

i−N∑
j=1

Ij+(i−N),j otherwise

πA(i) =

1

255 ·ElemNum(i)
i∑

j=1
Ij,(i−j)+1 if i ≤ N

1
255 ·ElemNum(i)

i−N∑
j=1

Ij+(i−N),N−(j−1) otherwise

(1.6)

These projection vectors together provide the 4D projection signature of the
object:

S4 = (πH ,πV ,πD,πA). (1.7)

After normalizing the values using the number of elements that make up the
sum, multiplied with the maximum intensity value 255, the domain of the projection
function is [0; 1]. The 4D signature of a vehicle observation is visualized in Fig. 1.3.

1.2.2 Projection-based object matching
As the size of the input images could be different, the length of projection func-
tions is different as well. To be able to match these functions properly a similarity
measurement method must be defined.

Cropped image

(a)

0 20 40 60 80
column

0.1

0.2

0.3

0.4

0.5

0.6

0.7

no
rm

al
iz

ed
 p

ro
je

ct
io

n

Vertical projection

(b)

0 20 40 60 80
row

0.25

0.3

0.35

0.4

0.45

0.5

0.55

no
rm

al
iz

ed
 p

ro
je

ct
io

n

Horizontal projection

(c)

0 50 100 150
diagonal

0.1

0.15

0.2

0.25

0.3

0.35

no
rm

al
iz

ed
 p

ro
je

ct
io

n

Diagonal projection

(d)

0 50 100 150
antidiagonal

0

0.05

0.1

0.15

0.2

0.25

0.3

no
rm

al
iz

ed
 p

ro
je

ct
io

n

Antidiagonal projection

(e)

Figure 1.3. The visualized projection signature of a vehicle observation. Subfigure
(a) shows the squared image of a rear-viewed vehicle. In diagrams (b), (c), (d) and
(e), the horizontal, vertical, diagonal and antidiagonal projections are visualized
(πH , πV , πD and πA, respectively).

8

To calculate the alignment of the functions, the method suggested in [46] is to
align the projection functions globally, and then fine-tune with a "local alignment"
using a method similar to the Iterative Closest Point [47, 48].

First, the signature vectors are rescaled based on the camera settings and the
position of the object in the image, so the effects of zoom and camera settings are
corrected. After the signatures are resized, it is still necessary to align the signatures
because of shifting and length differences.

The functions are compared based on the sliding window technique: the shorter
function is moved over the longer function, and each correlation coefficient is calcu-
lated using the Pearson correlation coefficient (PCC) formula:

ρl(x,y, s) = cov(x,ys)
σ(x)σ(ys)

, (1.8)

where x,y are projection vectors, where dim x ≤ dim y. ys represents the part of
vector y, which is shifted by s and overlaps x.

Basically, the ρl(x,y, s) correlation coefficients are calculated for each step s,
where the number of steps is dim y−dim x. cov(x,ys) means the covariance between
the two vectors and σ indicates the standard deviation.

The highest value maxs ρl(x,y, s) is selected as ρ, defining the similarity of x and
y. For horizontal, vertical, diagonal and antidiagonal projection functions, notations
ρH , ρV , ρD and ρA are used, respectively.

The local alignment suggested in [46] was based on signature smoothing followed
by curve alignment: step-by-step iteratively removing the extremas caused by noise
and finding the best fit for two functions.

The range of the values are mapped to [−1; 1], which could be easily handled: the
higher the coefficient, the better the match. After all similarity values are calculated
for the projections, the result values are filtered with a rectifier, setting all negative
values to zero:

r(v) =

v if v > 0
0 otherwise

= max(0, v) (1.9)

Negative correlation values mean that the changes of one function affect an op-
posite change on the other function, meaning that the relationship between the two
is inverse. So, in this case, the penalization of the negative correlation is necessary,
because projection inverses should not be relevant at all.

The suggestion in [46] is to equally handle each dimension of the data, by using
the Euclidean norm (L2 norm). A single similarity value µ is calculated from the
4D signature as

µ =

√
r(ρH)2 + r(ρV)2 + r(ρD)2 + r(ρA)2

2 (1.10)

where 2 is the square root of the dimension number, therefore, normalizing the norm.

1.3 Goal of the research
The research described in the following chapters was inspired by this four-dimen-
sional projection signature technique. The motivation for further research was based
on the study of multiple projection directions for object descriptors.

9

The main goal is to analyze the effectiveness of multi-directional projection signa-
tures for object matching. As the four-dimensional projection signatures are appli-
cable for instance recognition, it is presumed that multiple directions would increase
the accuracy of the method.

The length of a projection vector depends on the size of the image and on the
projection angle. If the calculated similarity of different length functions is based
on the best fitting, the resulting values result in high scores even in the case of false
pairs.

My goal is to develop a multi-directional projection mapping method, where the
number of bins is independent from the rotational angle or the image size.

The properties of the designed transformation should be analyzed and the per-
formance of object matching should be compared to other similar techniques.

The possibilities of parallel implementation should also be examined, as modern
computer architectures provide great support for data-parallel execution.

For different object types, projections could have different significance in terms
of object matching. To analyze the weight of each angle, statistical or machine
learning approaches could be done.

The secondary goal of this dissertation is to study the modern machine learning
approaches of object matching and to analyze the applicability of multi-directional
projections for object descriptors for the same task.

A comprehensive experiment is necessary to determine the performance of such
methods. In large experiments, the selective environment and the broad input data
are key factors. In this dissertation, a complex experiment is designed and imple-
mented for object image matching using neural networks.

As a part of this task, a neural network architecture generation method is devel-
oped and a distributed approach for processing the models is designed.

10

Chapter 2

Multi-directional image
projections

Good approximations often lead to better ones.
— George Pólya,

Mathematical Methods in Science

While projection-based matching methods can be simply described and imple-
mented, the noise of surrounding objects and lighting changes result in noise, which
affects the precision of the solution. In works presented earlier [4, 45, 46], these draw-
backs are handled by complex appearance modeling and multiple levels of alignment
during the process.

It is clear that the computational cost of the projection transformation is low
and data-parallel solutions could be given to further reduce the runtime. However,
the complexity of the matching algorithm alongside the rescaling, noise removal and
alignment steps significantly affect the overall performance.

The idea of increasing the number of projections was motivated by the mechanism
of computer-assisted tomography machines: the more input data is given, the more
precise the reconstructed 3D image is going to be. More accurately, there is a tradeoff
between accuracy and computational cost, and the latter is directly affected by the
number of projection angles.

In the following sections, the well-known Radon transform is introduced and
analyzed, followed by the definition of a novel method for multi-directional image
projection calculation in Section 2.2. To demonstrate the real-time capabilities of the
method, a data-parallel solution is given in Section 2.3. The method is implemented
and results for object matching are evaluated in Section 2.4.

11

2.1 Introduction
For horizontal and vertical projections on rectangular patches, the summarization of
rows and columns is a correct approach. In case the diagonal and antidiagonal pro-
jections are also required in a squared matrix, the method of summarizing elements
by traversing through the matrix as given in Section 1.2 is similarly simple.

For other angles (i.e. other than 0, 45, 90, 135 degrees), this discrete, element-
based method is not applicable without direct loss of information or ambiguity.

The solution for this problem can be based on the work of mathematician Johann
Radon, who defined a mathematical framework to create a transformation between
an object and its projections [40].

2.1.1 The Radon-transform
The original mapping of 2D objects to 1D projection profiles was first studied by
Johann Radon [7] in 1917; a translation of his paper was published in 1986 [8]. The
formula and the inversion formula became popular [40] as they were used with CT1,
PET2, MRI3 and SPECT4 scanners to reconstruct images from the obtained data.
Current reconstruction algorithms are based or inspired by the inverse Radon-trans-
formation [40]. Other application fields include electron microscopy [49], astronomy
[50], and geophysics [51].

To formally define the method, define f as a function on the two-dimensional
Euclidean space R2. Let (x, y) designate coordinates of points of the plane. The
Radon transform of f results in f̌ by integrating f over all L lines in the plane.

So the Radon transform is usually defined as

f̌ = Rf =
∫
L
f(x, y)ds, (2.1)

The projection or line integral is based on line L ∈ R2, and ds is an increment
along L [40]. It is notable, that there are multiple generalized forms of the transform,
where the domain is extended to higher dimensions (such as R2 or Rn) [52, 53].

A line could be given in normal form as

p = x cos(φ) + y sin(φ), (2.2)

where φ is the angle of rotation. From p and φ, the Radon transform of f(x, y) can
be given as

f̌(p, φ) = Rf =
∫
L
f(x, y)ds. (2.3)

A rotated coordinate system with axes p and s could be presented by applying
the rotation matrix Rot(φ) as

1Computerized Tomography
2Positron Emission Tomography
3Magnetic Resonance Imaging
4Single-Photon Emission Computed Tomography

12

[
p
s

]
= Rot(φ)

[
x
y

]

=
[
cosφ − sinφ
sinφ cosφ

] [
x
y

]

=
[
x cos(φ)− y sin(φ)
y cos(φ) + x sin(φ)

]
.

(2.4)

Having axes p and s of the new coordinate system, then

x = p cos(φ)− s sin(φ)
y = p sin(φ) + s cos(φ),

(2.5)

resulting with the form of the Radon transform in

f̌(p, φ) =
∫ ∞
−∞

f(p cos(φ)− s sin(φ), p sin(φ) + s cos(φ))ds. (2.6)

Important to point out that values of φ are defined on [0; 2π); the values of
trigonometric functions outside this range are cyclically repeating.

J. Radon also defined [7, 8] the cyclic recurrence, by elegantly stating that

f̌(p, φ) = f̌(−p, φ+ π). (2.7)
Other properties regarding the rotational angle are further discussed in Section

2.1.2.

2.1.2 Properties of the Radon-transform
The visual representation of the Radon transform is often referred to as a sinogram,
where p projection sums are presented for each φ angle. A sample of the sinogram
representation is in Figure 2.1.

Sinusoid

The name sinogram comes from the sinusoid representation of the transformed
points. The reason of the sinus wave could be simply proven: the representation of
point P (x0, y0) in the Radon space can be given from (2.2) as

p = x0 cos(φ) + y0 sin(φ), (2.8)
which can be reducted to a sinus function using

sin(α + arctan(z)) =
z cos(α) + sin(α)√

1 + z2
, (2.9)

which is concluded having

sin(α + β) = sinα cos β + cosα sin β, (2.10a)
where

β = arctan(z), (2.10b)

13

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a)
0 180 360

 (degrees)

-300

-200

-100

0

100

200

300

p

0

0.5

1

1.5

2

2.5

3

(b)

Figure 2.1. The Shepp-Logan [54] phantom is a standard test image used in the
testing of image reconstruction algorithms: it consists of 10 differently sized, rotated
ellipses with different intensity levels inside the squared area.

sin(arctan(z)) = z√
1 + z2

, (2.10c)

cos(arctan(z)) = 1√
1 + z2

. (2.10d)

Using (2.9), (2.8) can be rearranged as

p

y0
=
x0

y0
cos(φ) + sin(φ) (2.11a)

p

y0√√√√1 +
(
x0

y0

)2
=

x0

y0
cos(φ) + sin(φ)√√√√1 +

(
x0

y0

)2
(2.11b)

p

y0√√√√1 +
(
x0

y0

)2
= sin(φ+ arctan(

x0

y0
)) (2.11c)

p

y0

√√√√1 +
(
x0

y0

)2
= sin(φ+ arctan(

x0

y0
)) (2.11d)

p = y0

√√√√1 +
(
x0

y0

)2

sin(φ+ arctan(
x0

y0
)) (2.11e)

14

Amplitude

Phase shift α

y

y = A sin(α+ β)

Figure 2.2. The transformation of the sinus wave is formalized as A sin(α+β), where
A stands for the amplitude and β is the phase shift.

p =
√
x2

0 + y2
0 sin(φ+ arctan(

x0

y0
)). (2.11f)

Equation (2.11f) defines a sinus wave [55] with amplitude A =
√
x2

0 + y2
0 and

phase shift θ = arctan(
x0

y0
), visible in Figure 2.2.

Translation

The horizontal and vertical translation of an object by ∆x,∆y on input I could be
denoted as

ps(φ) = ∆x cos(φ) + ∆y sin(φ). (2.12)
Based on (2.1), the Radon transform of a translated object is given as

Rf = f̌(p− ps(φ), φ). (2.13)
As visualized in Figure 2.3, the horizontal translation of the object results in

amplitude and phase changes in the sinusoids, which is formulated in (2.11f).
Vertical translation or scaling have similar effects on the sinogram.

Mirror-effect

As Johann Radon elegantly pointed out in (2.7) [7, 8], f̌(p, φ) = f̌(−p, φ + π),
meaning that the projections between [0;π) and [π; 2π) are the same but inverted.

This results in the fact that the Radon transform of an image is only relevant on
the range of [0;π), projections for every following angle can be constructed from it.

Shifting

The most trivial property of the Radon transform is that the rotation of input image
I = f(x, y) effects on f̌(p, φ) sinogram as a linear shifting.

As a result, the rotation of the object of interest does not affect the projec-
tion-based recognition, as it leads to a circular shift in the projection space.

In Figure 2.4, the circular shifting phenomenon is presented by applying the
Radon inversion formula. The inversion formula is used to reconstruct the original
image from its projections. The basic formula is given in the original work of Radon

15

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(b)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(c)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(d)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

10

20

30

40

50

60

70

(e)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

10

20

30

40

50

60

70

(f)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

10

20

30

40

50

60

70

(g)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

10

20

30

40

50

60

70

(h)

Figure 2.3. The results of horizontal translation on the sinogram: subfigures (a),
(b), (c) and (d) show the input image, where the object is shifted to the right.
Subfigures (e), (f), (g) and (h) present the sinograms for each input image [K2]. It
is notable, that the changes of the amplitude are directly affected by the distance
changes from the center of the image.

[7] [8]; however, there are multiple approaches for reconstruction, based on the
Fourier slice theorem [56] or on filtered backprojection [57].

An interesting fact is that if the object is mirrored, the resulting sinogram is
rotated by 180 degrees, which is the same as considering the reflection from left to
right and then upside-down.

Other properties

When using the Radon transform on a 2D image, some properties of the form can
be generalized, or simplified. First of all, having image as an N ×N matrix I, the
integrals calculated for each line are the sums of the affected pixel intensities.

The size of the result matrix needs to be defined according to the longest projec-
tion of the image, which is the diagonal. For a squared N ×N image, it is given by√

2N .
The sampling rate of φ is a key factor: increasing the step size causes less com-

putation; however, larger step sizes result in projection data loss. The range of the
value of φ is [0, 2π). However, according to the previously seen mirror-effect, the
range of [π; 2π) is the same as the values in [0;π), only flipped around p axis.

Because of this phenomena, it is only necessary to define the projection sums p
of I image in the range [0, π) of φ. For a discrete representation, such as an image
made of pixel intensities, a step size for rotation has to be defined. The optimal
step-size selection depends on multiple assumptions, mostly on matrix size N , so it
will be referred to as Step(N).

As the sinogram size is defined as an Rf matrix
⌈√

2N
⌉
×
⌈

π

Step(N)

⌉
, and the

16

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

100

200

300

400

(b)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

100

200

300

400

(c)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(d)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

100

200

300

400

(e)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(f)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

100

200

300

400

(g)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(h)

Figure 2.4. The effect of shifting in Radon space results in rotation. The original
image (in subfigure (a)), and the sinogram of its projection sums (in subfigure (e)).
To illustrate the effect of the circular shifting, the resulting matrix of the Radon
transform is shifted by φ = π/2, π and π/6, presented in subfigures (b), (c) and (d),
respectively. Subfigures (f), (g) and (h) show the result of the reconstruction after
shifting [K2].

input is an N ×N matrix referred as I, a few specialties could be noticed.
The first interesting property of the application of the Radon transform on

squared input is that the Rf result matrix will have regions, where the sum is
always zero, caused by a lack of crossing pixels.

In Figure 2.5, the sample binary matrix is defined with zero values, whereas the
corner points have unit intensities as

I1 =

1 0 0 0 · · · 1
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
...
1 0 0 0 · · · 1

. (2.14)

As visible, the regions over and below these boundaries are insignificant. As in
Figure 2.6, where the input matrix is a unit matrix, all values are equal to one, as

I2 =

1 1 1 1 · · · 1
1 1 1 1 · · · 1
1 1 1 1 · · · 1
1 1 1 1 · · · 1
...
1 1 1 1 · · · 1

, (2.15)

the same effect can be noticed.

17

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a) 0 180 360

 (degrees)

-300

-200

-100

0

100

200

300

p

0

5

10

15

20

25

(b)

Figure 2.5. Insignificant regions in the sinogram. In subfigure (a) is the image
representation of the matrix defined in (2.14). In subfigure (b) is the sinogram of
the Radon transform of the image. The regions above and below the projection of
the corner points are insignificant [K2].

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a) 0 180 360

 (degrees)

-300

-200

-100

0

100

200

300

p

0

100

200

300

400

500

600

700

(b)

Figure 2.6. The Radon transform of a unit matrix. In subfigure (a) is the image
representation of the unit matrix defined in (2.15). Subfigure (b) shows the sinogram
of the Radon transform of this image. Note, that the intensity is affected by the
number of pixels summarized: the brightest points are in the centers of the diagonal
and antidiagonal projections at 45, 135, 225 and 315 degrees [K2].

18

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(b)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(c)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(d)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

10

20

30

40

50

60

70

(e)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

10

20

30

40

50

(f)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300
p

0

10

20

30

40

(g)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

2

4

6

8

10

12

14

(h)

Figure 2.7. The effect of intensity changes on the sinogram. Subfigures (a), (b),
(c) and (d) show the input image, where the object intensity is 1, 0.8, 0.6 and 0.2,
respectively, and subfigures (e), (f), (g) and (h) presents the sinograms for the input
images [K2].
While the forms of the sinusoids are the same, the intensity levels (visible on the
bars) are different.

Another trivial property of the Radon transform is that if the intensity of the
visual representation of the object changes, it affects the projection sums; however,
the form of the wave is unchanged. In Figure 2.7 this phenomenon is visualized by
all sinograms presenting the very same form. Please note that the intensity levels of
each sinogram differ. In this special case, the normalization of the sinograms result
in equivalent matrices.

In computer vision and image processing, noise removal is an important proce-
dure, with multiple different approaches [9, 14]. The effects of noise on the projection
sums of an image are very significant (Figure 2.8 a, b).

There are multiple filters that could be applied to reduce the noise on a 2D
image. However, recent studies [58] show, instead of denoising the input image (as
seen on 2.8 c), noise reduction filters could be used in the Radon space.

Please note that the filtered backprojection itself comes with minor data loss:
by using the inverse Radon formula, the reconstructed image will lose some relevant
data besides the noise (Figure 2.8 d).

To illustrate the effects of applying filtering in the Radon space, Figure 2.8 e
shows the denoised sinogram, where each projection function was filtered using a
simple moving average filter. After noise removal from each projection, the recon-
structed image is shown in Figure 2.8 f.

19

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(a)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

20

40

60

80

100

(b)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(c)

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(d)

0 180 360
 (degrees)

-300

-200

-100

0

100

200

300

p

0

20

40

60

80

100

(e)
100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

(f)

Figure 2.8. The effect of noise in the Radon space. Subfigure (a) shows the original
image with a zero mean, 0.1 variance Gaussian noise. In (b), the sinogram of the
original image is visualized. In (c) is the Gauss filtered original image. Subfigure (d)
gives the reconstructed image. Note, that the reconstruction removes some noise.
Subfigure (e) shows the sinogram after filtering each column with a moving average
filter, and in subfigure (f) is the reconstructed image of this method [K2].

20

2.1.3 Other related transformations
The Trace transform defined by Alexander Kadyrov and Maria Petrou is a gener-
alization of the Radon transform. As given in [59], the Trace transform calculates
functional T along the corresponding line L. If functional T is the integral of the
function, then this definition fits the previously defined Radon transform.

The Trace transform defines a mapping of the image as a function (p, φ), simi-
larly to the Radon transform; however, the properties could differ, based on the T
functionals applied.

The Hough transform is named after Paul V. C. Hough, who described a method
in a US patent [60] to detect straight lines in black-and-white images. The general-
ized version of this technique, the Hough transform is a mapping from image space
to parameter space, similarly as the Radon transform [61]. The Hough transform is
generally used to detect complex line patterns, parametrized curves or ellipsoids on
images, which method was first described in [62].

The relationship between the Radon and Hough transforms are largely discussed
in the literature [40, 61], with different approaches. Despite the fact that Radon
published the results 45 years before the patent of Hough, it is a fact that the Radon
transform was not discovered until years later [63]. The patent of Hough describes
a method with a very similar result, but the idea is independent from the original
paper of Radon.

There is a fundamental mathematical connection between the Radon transform
and the Fourier transform. Specifically, the two-dimensional Radon transform can
be obtained by a Radon transform, followed by a one-dimensional Fourier transform
[40].

2.2 Multi-directional projections with fixed bin
number

As previously described, the result of Radon transform – when applied to an image
(Figure 2.9) – could be used for object matching. While it is highly sensitive to
noise, noise reduction filters could be applied in Radon space.

However, few disadvantages of the method are visible: the blank areas on the
sinogram could hold up memory space in a possible implementation. To resolve
this issue, the size of the result matrix should be fixed, and the input values should
be standardized, using fixed scales, so the number of significant elements of the
projection vector does not depend on the angle of projection.

As each pixel is technically a small square, and they are the smallest visualizable
elements, it is easily concluded that projections of an image result in a set of vectors
where the length of each result vector differs and for each length l ∈ R.

For further calculations, it is realized that a standardized scale should be used,
where the length of each vector is equal and l ∈ Z. This scale, referred as resolution,
is defined by dividing the projection line into a given number of pieces.

In the proposed method, the projection line is placed to the left side of the image,
and it is rotated by α degrees around point P , which is in the top left corner. In
this case, α ∈ [0, π2].

While rotating the line, the lowest and highest points of the orthogonal projection
divide it into two segments around point P . The length of these can be easily given

21

20 40 60 80

20

40

60

80

(a)

180 360

 (degrees)

-50

0

50

p

(b)

Figure 2.9. A sample vehicle image in subfigure (a) and the sinogram of the Radon
transform for the same image for angles [0; 2π) in subfigure (b).

.
P

HL

LL

α

(a)

.
P

HL

LL

(b)

Figure 2.10. (a) The proposed method with fixed bin sizes. Rotational angle α is
30 degrees and the number of bins is 10. (b) The value of one pixel can affect two
(or more) projection bins, according to the resolution.

as

LL = cos(α)N
HL = sin(α)N.

(2.16)

To create a fixed number of subsegments for all angles, segment LL + HL is
divided into S equal parts (demonstrated in Figure 2.10a), where S stands for the
number of bins, resulting in LL+HL

S
in the resolution. Finally, the (x; y) projection

position of each pixel is given as

start =
√

(x+ 1)2 + y2 cos(arctan(y, x+ 1) + α)

end =
√
x2 + (y + 1)2 cos(arctan(y + 1, x) + α)

(2.17)

as seen in Figure 2.10b.
Based on S, each pixel is projected into one or more subsegments of the projec-

tion line. Each pixel should increase the value of all affected bins, proportionately.
Algorithm 1 defines the technique in pseudo language.

22

Algorithm 1 Method to calculate Multi-Directional Fixed Length Projections of
an Image.
function MDIPFL(I,N, S, StepSize)

R← new array[]
for α := 0→ π

2 step StepSize do
LL ← cos(α) ·N
HL ← sin(α) ·N
res← (LL + HL)/S
for all px ∈ I do

[start, end]← positionOf(px.X, px.Y, α)
rationalAccumulation(R, res, start, end, px)

end for
end for
return R

end function

The results for each direction are calculated for angles between 0 and π
2 for an

N × N sized squared matrix I, and collected into R resulting matrix. In practice,
a step size is used at the iteration of α. After LL and HL is specified, according to
(2.16), the resolution of the segment res is given by dividing the projection line into
S pieces. Each pixel px in image I is processed by calculating the position of the
projection using positionOf, which is based on (2.17), and the correct values of R
are increased proportionately, represented as function rationalAccumulation.

The behavior of the rationalAccumulation procedure can be described as:

• If the number of affected bins is 1, the pixel value is added to the bin entirely

• If the number of affected bins is 2, a ration based on the projection segments
is added to each affected bin

• If the number of affected bins is more than 2, fully covered bins are increased
by the whole value, and the value of partially affected bins are raised according
to the portion of the projection.

The effects of differently chosen resolution values are visualized in Figure 2.11.
By analyzing the potential S values, it is clear that three separate cases can be
distinguished: S < N , S = N and S > N .

In the first case, having S < N , the number of bins is lower than the width of the
squared matrix. In this case, a single pixel could only affect the content of one bin,
in some cases a maximum of two bins. By using a shorter vector, the information
is compressed and memory cost is reduced.

In case the bin number is equal to the width, formally given as S = N , the
case is the same as above: a maximum of two bins can be affected. However, it is
interesting to point out that in this case, the horizontal and vertical projections are
given as the sums of rows and columns.

If the chosen resolution is high, described as S > N , the number of bins affected
by a single pixel is greater than or equal to one. As a special limit S >

√
2N

can be mentioned, which case a single pixel will always affect more than one bin,
not influenced by the rotational angle. It is also worth mentioning that for high

23

resolutions the projection functions will have the same curvature, as the multiple
bins will have a stretching effect.

The extension of this method to [0;π] is done by moving point P to the upper
right corner, and rotating HL and LL with it respectively – or the same result could
be achieved by rotating the matrix counter-clockwise, or just switch the indexing
of the algorithm accordingly. The method does not need to be extended to a full
circle, as the projections are equal on the [0;π) and [π; 2π) sections [K2], similarly
as the mirror-effect in the Radon-transform.

The resulting matrix of projected values for vehicle images is visualized in Figure
2.12. The difference compared to the Radon transform is as expected: the sinusoids
of the picture edges are eliminated.

Notable, that the presented method works with squared matrices; however, a
generalization to other two-dimensional rectangular inputs could be defined by small
modifications to the algorithm. In the case of a N ×M sized input, the lengths of
the projection line is given as cos(α)N + sin(α)M . The function used to define the
beginning and length of a given pixel projection needs to be altered likewise.

While it is possible to extend the method accordingly, based on the intended use
case of the technique, N ×N inputs are used in this study.

2.2.1 Memory and computational cost
Although the method provides the necessary results, the performance needs further
investigation. The calculation complexity of the 4D signature defined in Section 1.2
is

T1(N) = O(4N2) = O(N2), (2.18)

because for every projection angle (horizontal, vertical, diagonal and antidiagonal)
every pixel is affected exactly once. This implies that the performance is directly
proportional to the image size. The runtime of the proposed method is

T2(N) = O(StepNumber ·N2) = O(N2) (2.19)

where StepNumber � 4, because this method is defined for multiple directions,
more than 4. While the step size is greater than in the case of the 4D signature, the
computational complexity of calculating a projection vector is N2. As a result, it
can be concluded that the performance of both methods depends on the image size
and the number of projection directions.

By analyzing the memory cost of the method, it can be declared that the 4D
signature uses

2N + 2(2N − 1) = 6N − 2

double-precision floating point numbers to store the four vectors while the presented
method uses StepNumber · S doubles, where StepNumber � 4, N ≤ S ≤

√
2N .

As described earlier, a chosen value for S is less than N causes the compression
of the data, resulting in information loss while greater values result in redundancy.

When using 4D signatures defined in [46], the longest projections are the diag-
onals, as seen in equation (1.4) while the horizontal and vertical sums are almost
half (1.1). The difference of the vector lengths could cause difficulties storing and
handling the data: instead of a matrix, an array of different length arrays should be
used.

24

.
P

HL

LL

.
P

HL

LL

(a)

.
P

HL

LL

.
P

HL

LL

(b)

.
P

HL

LL

.
P

HL

LL

(c)

Figure 2.11. The affected pixels for different bin numbers, and the affected bins for
a single pixel. (a) S = 8, which is equal to the width and height (N) of the matrix.
(b) S = 6, having S < N . (c) S = 15, having S > N , which results in a single pixel
affecting multiple bins.

25

20 40 60 80

20

40

60

80

(a)

180 360

 (degrees)

20
40
60
80

p

(b)

180 360

 (degrees)

-50

0

50

p

(c)

Figure 2.12. A sample output of the defined method. In subfigure (a) is the sample
image, and in subfigure (b) is the result of the proposed method, displayed as an
intensity image, similar to the sinogram. For the sample, S = N resolution was used.
For reference, subfigure (c) shows the result sinogram of the Radon transform, the
same as in Fig. 2.9.

Software implementations of the Radon transform and Hough transform both
use a 2D matrix with the dimension StepNumber ×

⌈√
2
⌉
, meaning that the unused

cells of the matrix are filled with empty data. The main advantage of the proposed
method is that it does not store any empty values [K2], and the memory consumption
is not affected by the image size or projection angle; it only depends on the predefined
resolution and the sampling rate of rotation.

As the input matrix is not modified in the iterations, and there is no depen-
dency between calculation steps, multi-level parallelization of the algorithm can be
achieved.

2.2.2 Properties of the transformation
The method and the Radon-transform both define in a mapping from the two-di-
mensional image to its projections from multiple angles; however, some differences
are present.

First of all, the so-called sinusoid effect is eliminated in case of the presented
MDIPFL transformation. The cause of the sinus form of transformed points in the
representation space is deducted in (2.11f). In case of the MDIPFL method, the
projection lengths are not affected by the rotational angle, having a fixed function
length for all elements of the projection signature.

The behavior of the corner points after transformation can be observed in Figure
2.13. It is clearly visible that the bins at the edges of the projection line are filled
with pixel intensity values of corners at the edges. At the same time, the other two
corners opposite to the projection line are represented as a straight line.

26

100 200 300 400 500

100

200

300

400

500

(a)

90 180

 (degrees)

50

100

150

200

250

300

350

400

450

500

p

0

50

100

150

200

250

(b)

Figure 2.13. The behavior corner region points (subfigure (a)) in the transformation
space of the MDIPFL method (subfigure (b)). Bin number is set to S = N .
Note the straight diagonal lines representing the movement of the two opposite
corners while the other two are projected to the start and end of the projection line.

100 200 300 400 500

100

200

300

400

500

(a)

90 180

 (degrees)

50

100

150

200

250

300

350

400

450

500

p

0

50

100

150

200

250

(b)

Figure 2.14. The output of the MDIPFL method for a unit matrix type image with
maximum intensity values in all positions. The image is shown in subfigure (a) and
the result of the transformation is in subfigure (b).

The effects of transforming a unit matrix using the MDIPFL method results in
a matrix where all values are equally 0.5, independently of the image size or the
resolution.

The phenomena is visualized in Figure 2.14. It is notable, that the operations
with floating point numbers cause rounding errors, which are amplified after nor-
malization.

Horizontal or vertical translation of an object in an image also has a different
effect on the result of the transformation when compared to the Radon transform.
While no sinus wave is present, the horizontal movement of the object (Figure 2.15)
produces two straight lines on domains [0; π2] and [π2 ; π].

The Radon transform has a well-known property of mirroring, meaning that the
projections in the range of [0;π) and [π; 2π) are equal, but inverted, given in (2.7).

The MDIPFL transform has the same property: rotational angles are only rele-
vant on the [0;π) domain, inversion of the projection function is similarly observable.

27

100 200 300 400 500

100

200

300

400

500

(a)
100 200 300 400 500

100

200

300

400

500

(b)
100 200 300 400 500

100

200

300

400

500

(c)
100 200 300 400 500

100

200

300

400

500

(d)

90 180

 (degrees)

20
40
60
80

100

p

0

100

200

(e)

90 180

 (degrees)

20
40
60
80

100

p

0

100

200

(f)

90 180

 (degrees)

20
40
60
80

100

p

0

100

200

(g)

90 180

 (degrees)

20
40
60
80

100

p

0

100

200

(h)

Figure 2.15. The results of horizontal translation when applying the MDIPFL trans-
formation: subfigures (a), (b), (c) and (d) show the input image where the object is
shifted to the right. Subfigures (e), (f), (g) and (h) present the result of transforms
for each input image. The number of bins is set to S = 100.

The projection function for angle α is equal to the projection for angle α+2nπ, where
n ∈ N, defining that the values for domain [0; 2π) are continuously repeating.

Rotation of an object in the image resulted in a circular shifting phenomenon in
the Radon space. As the presented MDIPFL method is also a mapping to projections
for rotational angles, a very similar effect is visible in transformed space (Figure
2.16).

100 200 300 400 500

100

200

300

400

500

(a)
100 200 300 400 500

100

200

300

400

500

(b)
100 200 300 400 500

100

200

300

400

500

(c)

90 180

 (degrees)

20

40

60

80

p

(d)

90 180

 (degrees)

20

40

60

80

p

(e)

90 180

 (degrees)

20

40

60

80

p

(f)

Figure 2.16. The effects of image rotation to the result of the MDIPFL transform.
Subfigure (a), (b) and (c) show the input images, where (a) is the original, (b) (c)
are rotated by 90 degrees and 30 degrees counter-clockwise, respectively. Subfigures
(d), (e) and (f) are the visualized results of the transformation of (a), (b) and (c).

28

Because the resolution is fixed, the width of each bin is dependent on the pro-
jection angle. Therefore, while circular shifting of features in the transform space is
visible, the actual forms are flexible.

As a conclusion, when compared to the Radon transform, the defined method has
a similar computational cost with adjustable memory expense. There are similarities
in the properties, and despite the differences caused by the fixed projection sizes,
the transformation gives a regular description of the contents of the image.

Thesis 1.1 I have designed and implemented a method of mapping multi-directional
projection vectors using fixed bin numbers regardless of the rotation angle. The
memory cost of the result is independent of the image size; it is only affected by the
rotation step number and the number of bins.

Publications pertaining to thesis: [K2], [K4], [K5].

2.3 Data-parallel implementation
The application of a graphics accelerator seems to be the best choice for parallel
processing, as the calculation is based on a large number of elements, and the pro-
cessing of these are more or less independent [64]. The idea of using the architecture
of a massive number of processing units in graphical accelerators to solve computa-
tionally intense cases created General-Purpose computing on Graphical Processing
Units (GPGPU).

The modern graphical processing units (GPU) has thousands of processing ele-
ments grouped into blocks. On a GPU device, a large amount of memory is accessi-
ble. When running a calculation on a GPU, the first step must be the transferring of
the input data from the memory of the host computer to the device memory. This
is the memory transfer time of initializing, which is raised with the time necessary
to move the results back from the graphical processor to the memory of the hosting
computer. These transfer times should be taken into account when designing the
application [65]; it would be clearly wrong to try to access the memory of the host
during the calculation, as it would significantly increase the runtime of the whole
procedure.

Also, the understanding of memory architecture [65] of the board is crucial:
the data transferred from the host is located in the global memory of the device.
However, each multiprocessor also has its own on-chip memory, and the access of
these blocks are performing better than addressing the global memory.

The code implemented on the GPU is referenced as a compute kernel. The design
of the kernel procedures determines the performance of the solution. To achieve the
best performance, optimal breakdown of the task is necessary. The aim is to use all
multiprocessing units, keeping in mind that access to common variables could result
in a race condition.

While there are well-known synchronization methods to deal with shared vari-
ables [66], a data-parallel approach gives the best performance in the case of a
multiprocessor-based implementation, such as the GPU. To achieve such an algo-
rithm, a thorough redesign should be done, giving special attention to the shared
variables and their role in the procedure.

A naive approach to implement the calculation would be based on breaking the
inner for loop into individual threads. In the case of this method (as previously

29

given in Algorithm 1), the outer for loop moves the projection angle, and the inner
for loop calculates the projections pixel-by-pixel.

To parallelize the processing of every iteration of the inner loop, N×N processing
units are necessary, which is given in the case of GPUs. After the parallel computa-
tions are done on all threads, the outer loop could advance and projections could be
calculated for the next angle. The drawback of this approach would be caused by
the fine granularity of the problem: each thread has only a few instructions before
finishing; therefore, the handling of synchronization would waste notable time.

The only possible way to increase performance is to dissolve the outer loop as
well. It is notable, that creating a coarsely granulated solution by rendering multiple
pixels together would still have the problem of synchronization overhead, also the
efficiency could be damaged as a result of possibly unused processing elements.

The correct usage of the memory architecture [65] of the device is crucial: transfer
and access times could have remarkable effects on runtime if designed badly. The
main memory of the device – the global memory – could be accessed by the threads;
however, the access times are better if the less accessible storages, which are assigned
to the blocks (shared memory) or the even less accessible registers belonging to the
threads themselves are used.

The proposed solution to achieve data-parallelism is inspired by the memory
architecture of the GPU. Logical blocks are defined inside the image and, in these
blocks, single threads are assigned to each pixel of the image. These threads will
calculate results for every angle, individually (Alg. 2).

First, the local image parts are copied into the shared memory for each block.
Memory allocations for shared variables are also done. After the initial steps, a block-
-level projection positioning is calculated: taking the border pixels of the block, the
affected line segments are calculated for every rotational angle. The start positions
of these segments are stored in the shared memory of the block.

After the dispositions are calculated, each thread of the block is assigned to each
element of the matrix and the projection positions are calculated. By having the
starting and closing positions of the segment on the projection line, the affected bins
can be recognized. These values of the bins are then proportionally increased by the
value of the actual element.

After the calculation is done, the outcomes are positioned and summarized for
each angle. The results are first summarized thread-safely in the shared memory,
then the results of blocks are accumulated in the global memory, from where the
final results are transferred back to the host.

30

Algorithm 2 Kernel procedure to calculate the image projection for multiple direc-
tions.
procedure MDIPFL_Kernel(blk, IG, N, S,RG)

IS ← getBlock(IG, blk.X , blk.Y)
RS ← new array[]
dispS ← new array[]
for α := 0→ π

2 step StepSize do
LL ← cos(α) ·N
HL ← sin(α) ·N
res ← (LL + HL)/S
[start, end]← positionOf(blk.X , blk.Y + 1, α)
dispS[α]← bstart/resc

end for
for all t ∈ threads do

for αL := 0→ π
2 step StepSize do

LLL ← cos(αL) ·N
HLL ← sin(αL) ·N
resL ← (LLL +HLL)/S
[startL, endL]← gPos(blk.X , blk.Y , t.X, t.Y, αL)
rationalAccumulation(RS, resL, startL, endL, IS[t.X])

end for
end for
summarization(RS, dispS, RG)

end procedure

The proposed method in Alg. 2 uses all three mentioned levels from the memory
architecture: indexes G, S and L indicate that the variables are stored in the global,
shared or local memory, respectively. The following list contains comments and
explanations for each member of the procedure:

• blk: image block identifier

• IG: image in global memory

• N : image size (width & height)

• S: number of bins

• RG: result container in global memory

• blk.X , blk.Y : coordinates of the block

• getBlock(IG, x, y): returns the block starting at x, y from A matrix

• IS: image in shared memory

• RS: results in shared memory

• dispS: precalculated dispositions in block memory

• α: rotation angle

31

• LL,HL: projection line segment lengths

• res: resolution: length of each bin

• positionOf(x, y, α): position of a block with the coordinates of x, y on the
projection line for α rotation

• start, end: starting and ending of the projection on the projection line

• threads: container representing every thread on a block

• t: a single thread

• αL: rotation of a single pixel, iterated locally

• LLL,HLL: projection line segment lengths used by a thread for a specific
rotation

• t.X, t.Y : position of a pixel

• gPos(bx, by, x, y, α): returns the projection position of a pixel referred at x, y
relatively to the block bx, by, for α rotation

• startL, endL: starting and ending position of the projection, handled locally

• rationalAccumulation(RS, rL, start, end, v): accumulates RS with v, hav-
ing rL resolution from start to end using thread safe atomic increment

• summarization(RS, disp, RG): RS values are summarized atomically into RG

based on the dispositions dispS

To further explain the steps of the parallel method, refer to Figure 2.17 for visual
explanation.

As a first step, the image is divided into logical blocks (Figure 2.17a). These
blocks will be handled separately. Each block has an identifier; in the algorithm it
is referred to as coordinates blk.X , blk.Y . The getBlock(IG, blk.X, blk.Y) returns
the selected block from the image. In implementation, this method can be replaced
by a function that returns the indices or boundaries of the selected region.

The selected block is copied to the block’s memory, therefore reducing the on-de-
vice overhead caused by continuous addressing of the global memory. On the shared
memory of the blocks, an array to store the results (RS) and an array to store the
dispositions for each rotational angle (dispS) are declared.

For every rotational angle, the projection segment of the block is defined, and
a disposition is stored (Figure 2.17b). It is easily understandable that projection
position of a single pixel on the image can shift after continuous rotation. This is
similar to the sinusoid phenomena of the Radon transform and the effect is in a
relationship with distance of the pixel from the middle of the image.

The data-parallel processing is done by rendering a thread to a single pixel and
calculating the projections for every angle (Figure 2.17c). These operations are
independent of each other; however, RS is a shared array for storing the results. To
avoid potential faults caused by the possible race condition, an atomic operation is
used for adding. It is notable, that mutual exclusion could also be used; however,

32

.

(a) Logical blocks are identified inside the image. These will be handled separately inside
the GPU.

. . .

(b) For every rotational angle, the global disposition is calculated. The demonstrated
angles from left to right: 30, 45 and 60 degrees.

.

(c) Inside the blocks, the threads are assigned directly to the elements, and the calculation
of their local projections is done simultaneously.

Figure 2.17. Visualized steps of the parallel method for multi-directional projections
with fixed vector length.

33

the overhead of such a synchronization method would have a negative effect on the
performance.

As a final step of the algorithm, the merging of each RS block-level result is done
into the global RG array of results. In this step, the values in the result array are
shifted by the α-dependent relevant dispS offset and added to the corresponding RG

element. As multiple blocks could access the same element simultaneously, atomic
addition is applied similarly as before to avoid a race condition.

2.3.1 Results and evaluation
The sequential algorithm was implemented in the Microsoft .NET environment in
C# language as a console application, and to implement the kernel of the parallel
solution the NVIDIA CUDA environment was used in CUDA C [67] and C++
programming languages.

The following hardware configuration has been used during the tests:

• Processor: Intel Core i7-2600

• Architecture: Sandy Bridge

• Number of cores: 4

• Memory: 16 GB DDR2.

During the testing of the GPU-accelerated implementation, the NVIDIA GeForce
GTX Titan X graphics accelerator was used:

• Number of CUDA cores: 3072

• Memory: 12 GB GDDR5

• Architecture: Maxwell.

The host computer of the graphics accelerator was the same workstation men-
tioned above.

During the tests, different image sizes from 160× 160 to 1600× 1600 pixels were
used. In the parallel solution, the block image size was 16×16, resulting in a number
of 256 parallel threads for each block. The rotation of the line was given in degrees,
starting from 0 to 90, with a step size of five degrees. This resulted in a set of 19
vectors starting with the horizontal, and ending with the vertical projection.

As the results in Table 2.1 show, the difference of processing times for small
images (160 × 160, 320 × 320) is not significant. The runtimes of both solutions
show a linear relationship with the number of pixels, given as O(N2) (Figure 2.18).
However, the processors of the graphics accelerator are able to simultaneously ex-
ecute multiple threads, meaning that multiple pixels are processed parallelly. The
complexity of the GPU accelerated solution is still given as O(N2); however, by
addressing the total number of simultaneously accessible threads as t, the sequential
runtime as T1 and the possible overhead caused by memory transfers, synchroniza-
tion and thread management as Tcost, the parallel runtime can be given as

Tt =
⌈
T1

t

⌉
+ Tcost. (2.20)

34

Table 2.1. Processing of the projection calculation methods on different image sizes
[K4].

Reference size (pixels) CPU runtime (ms) GPU runtime (ms)

160×160 93 125
320×320 363 150
480×480 821 184
640×640 1458 242
800×800 2278 303
960×960 3282 381
1120×1120 4465 485
1280×1280 5830 593
1440×1440 7381 721
1600×1600 9112 856

The visualization of Tt shows linear behavior, with discrete jumps [68] over the
increase of pixel numbers. After the overhead of the preparation and collection
phases is taken into account, the form becomes gradual.

The achieved speedup of t threads is generally formalized as

St = T1

Tt
, (2.21)

where t ≤ N2.
The relatively high runtime compared to the sequential solution for small matri-

ces is caused by the overhead of memory transfer time: while the sequential solution
worked on data in-place, the parallel solution uses the device memory of the graph-
ical processor, for which the data must be transferred from the host memory to the
device memory. It is also worth mentioning that other on-device memory transfers
(allocations in shared memory and copying from global device memory) also require
time, which is not applicable to the sequential method.

As the computational complexity of the sequential algorithm has a squared re-
lationship with the matrix size (as given in (2.19)), the sequential runtime show
similar behavior with increasing image sizes.

The GPU-based solution is able to process multiple pixels simultaneously, having
a gradually increasing effect on the runtime when increasing the image size.

An interesting evaluation of the proposed method is by benchmarking the Radon
transform function of MATLAB and comparing the runtime with the results of the
GPU implementation of the method introduced in [K4] (Table 2.2). The test inputs
and parameters were the same as in the cases above.

It is assumed that the MATLAB function is well-defined and an optimal method
is implemented to reach the highest available computational performance. It is
notable that the Radon function results in more data than the method provided
here; nevertheless, the runtimes are slightly different.

Thesis 1.2 I have designed and implemented the data-parallel version of the multi-
-directional image projection algorithm for graphical processors, which allows accel-
eration proportional to the number of execution units.

Publications pertaining to thesis: [K4], [K5].

35

160 320 480 640 800 960 1,120 1,280 1,440 1,600

0

2,000

4,000

6,000

8,000

10,000

image size (width and height, in pixels)

ru
nt

im
e

(m
s)

CPU
GPU

Radon

Figure 2.18. Comparison of runtimes for different image sizes [K4]. The horizontal
axis displays the width of the squared images in pixels. The vertical axis shows
the runtimes in milliseconds. The CPU and GPU implementations of the presented
method were compared with the runtime of MATLAB’s GPU-accelerated Radon
transform [K4].

Table 2.2. Runtime of the proposed method compared to the Radon transform
function in MATLAB [K4].

Reference size (pixels) GPU (ms) Radon transform (ms)

160×160 125 1425
320×320 150 1432
480×480 184 1450
640×640 242 1475
800×800 303 1529
960×960 381 1571
1120×1120 485 1642
1280×1280 593 1783
1440×1440 721 1825
1600×1600 856 1865

36

2.4 Object matching using multi-directional im-
age projections with fixed bin number

To apply the defined method for object matching, a measurement method and a
similarity scoring must be defined. An adequate evaluation of the hypothesis would
be to apply the previously introduced correlation-based similarity measure of each
projection. The results then can be compared with the 4D (horizontal-vertical-diag-
onal-antidiagonal) signatures, as reference.

The dataset used for evaluating the method consists of 253 manually cropped
and labeled images of 21 different vehicles. The source videos were recorded in the
downtown of Budapest, at night. The artificial light sources resulted in a similar
output as in the case of tunnels [4, 46]. Each image is grayscaled, and contains the
object and parts of the background. Background subtraction methods and other
enhancements were not applied.

The point of view of the detected vehicles are the same; the camera was directed
towards the distancing vehicles. The width and height of the squared images are in
average 100 pixels. Sizes vary from 48× 48 to 150× 150, sparsely with a few larger
(200× 200, 290× 290) instances.

2.4.1 Two- and four-dimensional projections
For reference, the two- and four-dimensional signatures are calculated for the images,
described in Section 1.2. While the method in [46] uses a two-step alignment tech-
nique, for these experiments a coarse alignment is applied using the PCC formula
with a shifting technique (as given in (1.8)).

In Figure 2.19, a sample result of the 4D signature method is visualized: as the
images are of different sizes, the shifting technique is applied to find the best fit over
the longer function. The correlation values for the best fits are

ρV = max
S

ρl(πV 1,πV 2, s) = 0.909,

ρH = max
S

ρl(πH1,πH2, s) = 0.956,

ρD = max
S

ρl(πD1,πD2, s) = 0.697,

ρA = max
S

ρl(πA1,πA2, s) = 0.954.

These values show a strong connection between the compared functions, even in
the case of ρD, where the result is clearly affected by the differences. As the values
are positive, the rectifier defined in (1.9) leaves them unchanged.

The similarity value µ is given as the normalized Euclidean norm of the four
values as

µ =
√

0.9092 + 0.9562 + 0.6972 + 0.9542

2 = 0.885.

If the two-dimensional signature of row and column sums is used, the same score
of similarity would be

µ =
√

0.9092 + 0.9562
√

2
= 0.933.

37

(a)

0 20 40 60 80
column

0.1

0.2

0.3

0.4

0.5

0.6

0.7

no
rm

al
iz

ed
 p

ro
je

ct
io

n

(b)

0 20 40 60 80
row

0.3

0.35

0.4

0.45

0.5

0.55

0.6

no
rm

al
iz

ed
 p

ro
je

ct
io

n

(c)

(d)

0 50 100 150
diagonal

0.1

0.15

0.2

0.25

0.3

0.35
no

rm
al

iz
ed

 p
ro

je
ct

io
n

(e)

0 50 100 150
antidiagonal

0

0.1

0.2

0.3

0.4

no
rm

al
iz

ed
 p

ro
je

ct
io

n

(f)

Figure 2.19. The calculated horizontal, vertical, diagonal and antidiagonal projec-
tions for different observations of the same vehicle. In subfigure (a) and (d) are
images I1 and I2, in subfigures (b) and (c) the normalized vertical and horizontal
projections, and in subfigures (e) and (f) the diagonal and antidiagonal projections
are shown.
Note the difference caused by the blink on the left side of the vehicle on I2. [K5].

Note, that by using the same weights for every projection function, the effects
of extremas in the similarity score are significant.

A sample output for not matching vehicles is shown in Figure 2.20. While it
is clearly understandable that the two objects are not similar, the correlations are
strong, having

µ =
√

0.6872 + 0.9082 + 0.7962 + 0.9442

2 = 0.840

for the 4D signature comparison, and

µ =
√

0.6872 + 0.9082
√

2
= 0.805

for the 2D signature similarity.
The effect is similar to the so-called Anscombe’s quartet datasets [69], pointing

out that the Pearson correlation coefficient does not completely characterize the
relationship of two functions.

The cause of high similarity scores for different vehicles can be explained by the
data itself. While the vehicles are not the same, they are similar in the fact that
both objects are vehicles. Therefore, the basic visual properties for vehicles are
discoverable in their appearance: both have two backlights and a rear windshield
and two rearview mirrors. The shadows caused by the lighting are similar as well,
similarly affecting the projections.

38

(a)

0 20 40 60 80 100 120
column

0.1

0.2

0.3

0.4

0.5

0.6

0.7

no
rm

al
iz

ed
 p

ro
je

ct
io

n

(b)

0 20 40 60 80 100 120
row

0.2

0.3

0.4

0.5

0.6

no
rm

al
iz

ed
 p

ro
je

ct
io

n

(c)

(d)

0 50 100 150 200 250
diagonal

0.1

0.15

0.2

0.25

0.3

0.35
no

rm
al

iz
ed

 p
ro

je
ct

io
n

(e)

0 50 100 150 200 250
antidiagonal

0

0.05

0.1

0.15

0.2

0.25

0.3

no
rm

al
iz

ed
 p

ro
je

ct
io

n

(f)

Figure 2.20. The calculated horizontal, vertical, diagonal and antidiagonal projec-
tions for observations of two different vehicles. In subfigure (a) and (d) are images
I1 and I3 of the vehicles; in subfigures (b), (c), (e) and (f) the normalized vertical,
horizontal, diagonal and antidiagonal projections are shown.
Note the high correlation coefficients for the clearly different functions [K5].

Other explanations can be given based on the behavior of the correlation coeffi-
cient for two very different sized functions, which could be handled by noise filtering
and by rescaling the projection functions.

In Figure 2.21, the results of evaluating all available true pairs in the dataset
are visualized: the horizontal, vertical, diagonal and antidiagonal projections are
calculated for both observations and normalized to fit to the [0; 1] interval. The
correlation coefficients show a strong relationship between the functions; therefore,
the calculated similarity scores are high.

It is also observable in Figure 2.21 that the lowest similarity µ for the same
instances is 0.6 while the largest value is 0.98, which is quite convincing.

When comparing all different vehicles with each other, the results show great
spread, represented in Figure 2.22. It is clear that although true matches have a
high score, the calculated coefficients for false matches show a large spread on the
complete domain of [0; 1].

To further understand the distribution of similarity scores for object matching,
the results for true and false pairs are visualized on a histogram in Figure 2.23.

If a simple classification is done, where it is desired that 50% of the true matches
should pass, the line should be drawn to 0.82 (Table 2.3). However, using this
threshold, 19.29% of the different vehicles would also pass as false positives, which
is way too high.

This is caused by the high variance between the similarity values calculated for
different vehicles: while the minimum value is 0.27, the highest calculated similarity
is 97.69 with a 10.43% standard deviation. The application of the 2D signature

39

(a) (b)

(c)

Figure 2.21. The measured correlation coefficients and calculated similarity scores
in the case of true pairs using the 4D signatures. The scatter plot in subfigure (a)
shows the values of ρH and ρV . In subfigure (b), the diagonal ρD and antidiagonal
ρA correlations are visualized. The µ similarity is presented in subfigure (c) [K5].

Table 2.3. Performance of the 2D and 4D projection signatures for object matching.
Note that the calculated similarity score is very high for the false pairs as well [K5].

2D 4D
Threshold to pass 50% of true matches 0.833 0.820

Portion of false matches above this 22.79% 19.29%
Threshold to pass 80% of true matches 0.740 0.763

Portion of false matches above this 56.75% 48.85%
Median of the similarity values of true matches 0.833 0.820
Median of the similarity values of false matches 0.760 0.761
Minimum of the similarity on true matches 0.479 0.601
Maximum of the similarity on false matches 0.978 0.976

shows the same low results: the threshold should be set to µ ≥ 0.833, resulting in
22.79% false positives.

It is notable that there are a number of methods to deal with high false positive
rates: previously mentioned rescaling and noise removal methods could be applied to
the projection functions. Having an alternative to the Euclidean norm for similarity
scoring could also change the distribution of similarity scores (Figure 2.24). It is
notable, that such changes would result in similar or worse distributions.

Another approach would be to take the significance of each calculated coefficient
into account. A naive method to generate weights could be done by analyzing the
components of the similarity score. Declare P+

H as a set of correlation coefficients

40

(a) (b)

Figure 2.22. The measured correlation coefficients in the case of false pairs using
the 4D signatures. Subfigure (a) shows a scatter diagram of measured ρH horizontal
and ρV vertical correlations. In subfigure (b) is a similar diagram with the diagonal
(ρD) and antidiagonal (ρA) coefficients.
Note the large spread and high amount of very strong similarities. Also, it is notable
that the negative correlations are removed and corresponding values are set to zero
[K5].

Figure 2.23. A histogram of the distribution of the similarities calculated for the
same (red) and different (blue) objects [K5].

calculated from πH horizontal projections for all observation pairs for the same
instances. P+

V , P+
D and P+

A are defined similarly for the correlation values calculated
from the vertical, diagonal and antidiagonal projection vectors.

The averaged correlation values for true pairs are

41

(a) (b) (c)

Figure 2.24. Distributions of similarity scores generated by using alternatives to the
Euclidean norm (Figure 2.23). In the subfigure (a) the average, in (b) the maximum
and in (c) the minimum values were used from the four calculated coefficients.

P+
H = 0.8707

P+
V = 0.7675

P+
D = 0.7241

P+
A = 0.8967,

while the similarly calculated mean of correlations for false pairs are

P−H = 0.7510
P−V = 0.6785
P−D = 0.5838
P−A = 0.8463.

The differences of these averages are

diffH = P+
H − P−H = 0.1197

diff V = P+
V − P−V = 0.0890

diffD = P+
D − P−D = 0.1403

diff A = P+
A − P−A = 0.0504,

from where the proposed weights could be given as

wH = diffH

diffH + diff V + diffD + diff A

= 0.2996

wV = diff V

diffH + diff V + diffD + diff A

= 0.2229

wD = diffD

diffH + diff V + diffD + diff A

= 0.3512

wA = diff A

diffH + diff V + diffD + diff A

= 0.1262

The relatively small differences between the horizontal and vertical projection
significances indicate that the overall score is affected by the error of all projections;

42

Table 2.4. Performance of the multi-directional projections, with bin number set as
N, 2N-1, 25, 50, 100 and 300. As visible, constant bin numbers perform better [K5].

N 2N-1 25 50 100 300
Threshold to pass 50% of true matches 0.819 0.819 0.881 0.875 0.873 0.872

Portion of false matches above this 19.94% 19.84% 5.06% 5.22% 5.24% 5.25%
Threshold to pass 80% of true matches 0.769 0.768 0.804 0.795 0.793 0.792

Portion of false matches above this 48.40% 48.67% 21.26% 21.64% 21.82% 21.85%
Median of the similarity values of true matches 0.819 0.819 0.882 0.875 0.873 0.872
Median of the similarity values of false matches 0.766 0.766 0.697 0.691 0.689 0.688
Minimum of the similarity on true matches 0.573 0.571 0.566 0.557 0.554 0.553
Maximum of the similarity on false matches 0.970 0.970 0.968 0.964 0.962 0.962

a single angle cannot be highlighted. As a result, the effects of weighting would
be minimal. It is also important to point out that the change of data source,
environmental changes, for example, the direction of lighting could prove that an
approach of giving more significance to the diagonal projection over the antidiagonal
is not general.

2.4.2 Multi-directional projections
When applying the defined method for multi-directional projections, several vari-
ables could be set: first, the StepSize between each projection angle should be set.
In the experiments StepSize = 5 degrees (π36 radian) was used.

The resolution of the projection line is also a significant tradeoff variable. Setting
it to a constant number would be ideal. For example, S = 100 could be used, as
it is the average of the image sizes, it will compress less of the data. Also some
redundancy will come up on smaller images. It is also important that the runtime
for the calculation of correlation coefficients shortens significantly, as no sliding
window is needed, as the vector sizes are equal.

The value of S bin number could be dynamic, depending on the value of the
image size. By setting it to N for all images, every projection will have a bin
number aligned to the number of rows and columns. In this case, the comparison of
each projection function is still necessarily done by using a sliding window.

Using a larger dynamic value for bin number reduces the effects of compression.
The method with the least compression of the data is the application of 2N − 1
resolution, which is the exact element number of the diagonal. The results for these
three different settings are shown in Table 2.4.

When the proposed method is used with relative bin numbers, and results are
matched with the technique described before, the pass-rate and the portion of false
positives are nearly the same.

However, when using a fixed number as the projection length for all input images,
results show that the number of false positives reduces significantly. For example,
for bin number 25, the limit which passes through 50% of the true matches is drawn
at µ ≥ 0.881, which is higher than the border set at the two and four-dimensional
signatures. The portion of false matches above this limit is only 5.06%, which is
around four times better than the false positives counted using the 2D and 4D
signatures.

The distribution of similarity scores for a fixed 25 bins is visualized on a histogram
in Figure 2.25. The mean average difference between these calculated similarity

43

Figure 2.25. Histogram of the similarities measured using the multi-directional
projection method, with a fixed bin number of 25, and StepSize set to five degrees.
Red columns show the percentage for the comparison of the same and blue columns
present the calculated values for different objects [K5].

scores and values based on the 4D signature is 0.0939.
It can be concluded, that the high false match rate is caused by the moving

window: as previously discussed, the highest correlation is handled as the best
fitting, which leads to high values.

It is interesting to point out that, as results show, using a higher constant bin
number results in lower accuracy. This is caused by the correlation calculation,
where, in the case of longer vectors, the small differences are summed and result
in weaker coefficients. The phenomena can be explained by the generalization by
compression effect: as the small details are removed, a tolerance to changes is devel-
oped.

As increased bin numbers result in increased memory cost, it is interesting to
examine the performance for different fixed bin numbers. The quasi-optimal reso-
lution number begins at a minimum of 10 bins for all projections (Figure 2.26). It
is clear to conclude that bin numbers below this limit are affected by information
shortage and, therefore, the matching algorithm is closely random.

The memory cost of each method could be given by the total number of ele-
ments of the resulting data structure. For the 2D and 4D signatures, the number
of elements is 2N and 6N − 2, respectively. By using a fixed bin number S, the
number of elements in the case of multiple fixed projections is StepSize · S. For
the exact necessary memory the number representation must be taken into account:
single-precision floating point numbers are stored in 32 bits (4 bytes), double-pre-
cision floating point numbers are stored in 64 bits (8 bytes). In these simulations,
elements were represented as double variables.

As presented in Figure 2.27, the constant memory usage of the method based on
fix bin numbers is cost-efficient in the case of larger image sizes.

For further analysis, it might be interesting to present the top false positives and
false negatives of the method: in Figure 2.28a the falsely excluded vehicle pairs with
the lowest similarity rate are shown, while the couples of different vehicles with the

44

Figure 2.26. The rate of false positives if the threshold is adjusted to a limit where
50% (F50) or 80% (F80) of true matches should pass, for different number of pro-
jection bins [K5].

Image width (pixel)

Number of elements

4D signature

2D signature

36 angles, 25 bins

36 angles, 35 bins

36 angles, 15 bins

200

400

600

800

1000

1200

1400

1600

1800

2000

50 100 150 200 250 300

Figure 2.27. A comparison of memory cost for the 2D and 4D signatures and the
multi-directional method with fixed bin numbers for different image sizes.

45

(a) Images of the same vehicles, de-
tected falsely as negatives. Note the
different poses and blur.

(b) Images of different vehicles, de-
tected as positives. Note the sim-
ilar blinks on the side of the cars,
and that few of them are very much
alike, even the same type.

Figure 2.28. A selection of various false positive and false negative pairs [K5].

highest calculated similarity are in Figure 2.28b.
As Figure 2.28a shows, the low similarity values measured for the same vehicles

are mainly caused by different poses. After empirically evaluating the calculated
similarities, it can be concluded that the correlation of each projection changes as
the projection angle diverts from the vertical direction.

To handle the false negatives caused by the changing view, metainformation
about the vehicle relative position could be used in an appearance model [70] built
upon multiple views of the same instance. A multi-observation appearance model
is introduced in [46] to handle the projection signature changing caused by the
appearing and disappearing parts of the vehicles.

The highest false positives are caused by similar vehicles, blinks, or in few cases
the same or similar type of a vehicle is falsely recognized as the same instance.

To deal with false positives, the projection matching method should be extended.
Significant appearance features should be emphasized by analyzing the curvatures:
there are features of the projections that are present on every rear observation of
vehicles, e.g., the effects of the plate number, rear lights, etc. While these are
available on every projection, the details of these specific features should decide
that two signatures represent the same vehicle or not.

The Radon transform would have been a trivial choice for multi-directional pro-
jections (with varying vector lengths). For reference, the Radon transform was also
applied as a feature descriptor. The method of similarity measurement is the ex-
act same as in the case of the previously introduced 4D signature, the number of
angles was extended to a total of 36, to match the parameters set for the previous
experiments.

46

The results are summarized in Figure 2.29. As it is clearly understandable from
the distribution values, the performance of the method did not improve significantly.
The calculated mean average error between the 4D and the Radon based 36D signa-
tures was 0.0261, which highlights the effect of fixed bin numbers over the application
of multiple angles.

Thesis 1.3 I evaluated the effectiveness of the fixed vector length multi-directional
image projection method for object matching, comparing the results with similar
projection-based, lower-dimensional image signatures, and concluded that matching
accuracy increased significantly.

Publications pertaining to thesis: [K5].

47

(a)

(b)

Figure 2.29. (a) Distribution of calculated similarity scores when using the Radon
transform to produce multi-directional projections. The step size used for rotation
was five degrees. The scores are similar to the previously introduced 4D signa-
ture-based method, visualized in Figure 2.23.
Diagram (b) shows the differences between the two histograms.

48

2.5 Summary
In this chapter, a novel method for multi-directional projection calculation was in-
troduced and analyzed, which mapped the input image to its projections with a
fixed number of bins. The method was inspired by the Radon transform, which was
introduced in Section 2.1.

The designed method was explained in details in Section 2.2: the function was
based on simple trigonometric functions. The properties of the resulting matrix
showed similarities to the sinogram of the Radon transform; for example, the mir-
roring effect can be observed. Other properties of the representation in transform
space made the method applicable as an object descriptor.

The computational complexity was in a linear relationship with the number of
elements, therefore resulting in a squared relationship with image width. At the
same time, the memory cost of the method only depended on the resolution setting,
and the sampling rate used during rotation. In contrast, the length of each projection
when applying the Radon transform was in a relationship with the image size and
the projection angle.

In Section 2.3, the possibility of a parallel implementation was discussed, with a
proposal of a GPU-based algorithm. The runtime of the data-parallel solution was
in linear relationship with the total number of elements. The ability to use multiple
processors resulted in discrete jumps in runtime, when increasing image sizes.

The possibility of small output matrices as a result of controllable parameters of
the projection widths cost less memory, which had small positive effects on overhead
caused by the memory transfer time.

For object matching, the application of projection functions from multiple angles
provided a detailed description of the observations, improving the effectiveness of
pairing. In Section 2.4 methods based and similar to the Radon transform were also
tested and compared to the developed method using fix bin numbers. The effect of
varying bin numbers were also analyzed, and evaluated: it was concluded that small
bin numbers were adequate, resulting in a cost-efficient method.

After analyzing high similarity scores for different vehicles and low values of
the same instances, it was concluded that the change in poses affected the method
negatively. To deal with the changing view, the matching method should be changed
to have the significant appearance features highlighted.

49

Chapter 3

Application of Multi-directional
Projections in Siamese
Convolutional Neural Networks

To deal with hyper-planes in a 14-dimensional
space, visualize a 3-D space and say ”fourteen”
to yourself very loudly. Everyone does it.

— Geoffrey Hinton,
Introduction to Neural Networks

and Machine Learning

A significant drawback of the similarity score calculation was found in the identi-
cal weighting of the correlation value of each projection. If the average of correlation
coefficients is used, different angles will have the same significance, and the result is
affected by rotation and translation.

An obvious approach to detect and emphasize important angles and parameters
is done by applying a simple machine learning algorithm to learn the significance of
each projection function, which, of course, could be developed using a multi-dimen-
sional support vector machine.

For a more advanced solution, a deep neural network could be applied, where
the input is the result of the projection transformations, represented as 2D function
projections by rotation.

In this chapter, the design, implementation and evaluation of a machine learn-
ing-based approach for multi-directional projection matching is described. In Section
3.1 a brief introduction of tools and methods are given. Based on state-of-the-art
techniques, a simulation is designed to analyze the applicability of projection-based
descriptors. In Section 3.2, a neural architecture generation method is designed
to provide the necessary structure for different signatures. As it is clear that the
training and evaluation of the models on a single workstation would take weeks
or months, a distributed training method is designed and explained in Section 3.3.

50

Finally, in section 3.4, the simulation is performed and results are collected and
evaluated.

3.1 Introduction
The history of neural networks goes back to the 1940s, to the achievements of Warren
S. McCulloch and Walter Pitts [71]. In the next decade, Frank Rosenblatt [72]
introduced the first network, which was capable of training by examples, i.e., the
first examples of supervised learning in neural networks were introduced. For a
thorough summary on the history of neural networks, refer to the work of Jürgen
Schmidhuber [73].

Neurons are simple connected processors: for a received input, they produce an
activation based on weights. Neural networks are built by connecting these elements
and structuring them in a layered architecture.

The expansion of the field and the large increase of machine learning and artificial
intelligence applications are caused by deep learning. Deep learning [74, 75, 76] is
basically a common name for the training of a neural network with a large number
of layers, neurons, and input data. As the computational cost is increased by all
of these factors, the process of training is slow. Parallel programming solutions do
exist, by using widely available GPUs to execute the matrix or tensor operations
[77] of backpropagation [78]. The popularity and accessibility of deep learning on
GPUs both have a huge impact on what we experience today.

In deep learning, the size of the network grew with the size of the dataset. For
a large number of labeled training samples, the training of the network will have a
large computational and memory cost. To handle the increased hardware demands,
small batches of data are used for training instead of using all samples.

The most popular approaches nowadays to classify objects in an image are based
on CNNs [79]. The main idea behind the application of convolution and pooling is
that the structure and neighbourhood of the input image are kept, and structural
information will flow from layer to layer. In most cases, convolutional and pooling
layers are used together to decrease the size of the problem, as the convolving layers
extract the necessary features [80].

3.1.1 Convolutional Neural Network
It is a common term that neural networks are biologically inspired. CNNs are truly
inspired by neuroscience, as the early designs of such architectures are motivated by
the research of David H. Hubel and Torsten N. Wiesel.

The work of Hubel and Wiesel showed [81, 82] that the visual cortexes of cats
contain neurons that are dedicated to responding to visual stimuli. These receptive
fields form a visual nervous system for extensive visual recognition.

In the 1970s, Kunihiko Fukushima designed special neural networks for recogni-
tion. In his paper in 1980 [83], the Neocognitron is introduced. The multilayered
structure of the network is similar to those proposed by Hubel and Wiesel. Neocog-
nitron is capable of visual recognition of visual stimuli, independently of the position
of the patterns.

The architecture of the convolutional neural network is similar to the Neocogni-
tron; however, training of the model was different: before backpropagation, a number

51

of methods were developed to set the weights of the network, but the robustness
was missing from these approaches.

In 1989, researchers of the AT&T Bell Laboratories led by Yann LeCun pro-
posed a method [84] for handwritten ZIP-code recognition, based on the application
of backpropagation. The structure of the network is analogue to the modern un-
derstanding of CNNs [85]. These early applications [75] showed great potential,
achieving practical successes in an era where neural networks were out of favour.

Since the introduction of CNNs, a number of patterns, best practices and obser-
vations of empirical research have been published [86]. These design patterns are
investigated in the following.

Layer types

In a classical CNN architecture, the input layer is followed by a number of convolu-
tional-pooling layers [87]. The convolutional layer is based on a mask in a sliding
window, which is the actual element of the network containing trainable parameters
and weights. The pooling layer does not learn: it is used to decrease the representa-
tion size by selecting the average or maximum values of a given region.

In some cases, the pooling layers are skipped, resulting in two or three consecutive
convolutional layers followed by a single pooling layer [88].

Dense or fully-connected layers are the standard in feed-forward networks. In
several cases, after a number of convolutional and pooling layer pairs the outputs
are flattened, meaning that the three (or higher) dimensional structure is unfolded
into a single layer of elements. Flattening is then followed by a number of dense
layers, until the output layer.

Networks built strictly on convolution (and pooling), without fully connected
parts are referred to as fully-convolutional nets.

Layer hyperparameters

The activation functions in hidden layers are usually rectified linear unit (ReLU)
functions. Other functions, such as sigmoid or tanh, are used in the output layers
to avoid the vanishing gradient problem [78].

Weight initialization methods are usually random. Zero starting values are gen-
erally not advised [89, 78].

Kernel or filter sizes of the convolutional layers are generally (but not necessarily)
squared, where the width and height of the kernel is an odd number [90]. This will
result in a two-dimensional activation map.

Another important parameter of these layers is the filter number: this value
represents the number of activation maps to be defined. In the general structure
of the convolutional network, the kernel sizes decrease layer-by-layer while the filter
number increases. This is easily explained feature extraction: in the early stages,
the learned features are simple edges and corners. Every following layer is able
to extract more complex features, and as there are a greater number of possible
features, a larger number of filters is necessary.

In the case of the pooling layers, the de facto standard is maximum pooling [90];
average or minimum pooling is not popular. The function of the pooling layer is
downsampling by a given window size (this is also referenced as pool size). If pooling
is done too often, it might result in losing some valuable features. So, while it is

52

generally used, the pool sizes are smaller than the filter sizes of convolutional layers,
and as previously described, they are not used as frequently as convolutional layers.

Spatial arrangement is important as well [90]. It is observable that the popular
architectures use the de facto values: for pooling layers, the stride is, by default,
the size of the pool size. This means that the filter is moved exactly by the size
of the pool size. Another important hyperparameter is padding, where, in the case
of pooling, two main techniques are present: same- and valid-padding. The general
method is valid-padding, where the right-most values where the size is smaller than
the pooling size are dropped. In the case of same-padding, these values are included,
resulting in a larger output size. General advice is to architect a structure with
valid-padding, where no cell values are dropped.

In the case of convolutional layers, the default value of stride is 1; therefore,
padding is unnecessary. Interestingly, the usage of stride greater than 1 results in
similar effects as the usage of a pooling layer; however, in this case, a loss of features
could happen.

Number of hidden layers

Yoshua Bengio, one of the pioneers of deep learning, states in [89] that the number
of hidden neurons should be "high enough"; a higher number of layers should not
hurt generalization much.

In all structures, following the convolutional and pooling layers, the output is
falling into fully connected (so-called dense) layers, at least one. These layers follow-
ing each other have a descending neuron number; however, the pyramid-like shape
is unadvised [89]; instead, gradual reduction with equal stages should be used.

3.1.2 Siamese architecture
Convolutional Neural Networks are successfully applied for visual classification prob-
lems, such as binary classification or multiclass classification. The latter is often done
using a softmax function to highlight the output.

If the problem is pairing images instead of classifying them, a method based on
the concept of CNN is used. The so-called Siamese Neural Network [91, 92] has
two input images, whereas the output is one single value: the similarity or semantic
distance of the two (Figure 3.1). The applications of face recognition systems based
on this method are well known [93, 94].

Input A

Input B

FCN

FCN

FC

FC

Distance

Figure 3.1. The basic structure of the "two-headed" Siamese Neural Network. The
fully-convolutional (FCN) layers are followed by fully-connected (FC) layers. These
heads share the same weights, and their outputs are multi-dimensional vectors. The
distance of the output vectors gives the similarity of the inputs [K6].

53

The Siamese structure in neural networks was first introduced by Jane Bromly,
Yann LeCun and associates from the AT&T Bell Labs to solve the matching of
signatures [91].

The proposed architecture is based on two identical sub-networks joined at the
outputs. The loss function is defined by measuring the distance between the two
feature vectors. When applied, the input images of the two signatures are processed
through the network, and in case the distance of features is below a predefined
threshold, the signatures are accepted as pairs while those above are rejected.

In the case of object matching, a Siamese network could be used to compare input
images, and give the probability of the two observations being the same instance.

An interesting fact is that the theory of one-shot learning demonstrates [95,
96] that by using a wide-enough training dataset and a wisely chosen network ar-
chitecture, the network will be able to handle images never seen before. This is
extremely important in real-life applications: given that the training dataset cannot
and should not contain every possible observable instance, the method should be
able to handle objects never seen before; in other words, the model should be able
to learn differences effectively only from a small number of examples.

In summary, a short explanation of CNNs is that the network learns what an
object looks like. A description on SNNs is that the network learns how to spot
differences between multiple similarly looking objects.

3.1.3 Goal
As concluded at the end of Chapter 2, object matching based on multi-directional
projection methods is sensitive to the similarity calculation method. Different pro-
jections having equal significance cause noise in the similarity score, which can be
handled by weighting different angles of projection.

The significance of projection vectors are problem dependent; therefore, a general
solution cannot be given. Instead, an approach to find the most important features
in projection maps can be defined, applying a machine learning-based approach.

The goal of the research defined in this chapter is to analyze the applicability of
multi-directional projection maps as object descriptors for object matching, based
on Siamese architectured neural networks.

For a neural network-based comparator of structured data, a Siamese architec-
tured CNN can be trained, and evaluated. The performance of every model greatly
depends on the architecture and different hyperparameters of the training. There are
methods to find an optimal set of hyperparameters; however, the case of architecture
search is mostly a trial-and-error approach.

Therefore, multiple different architectures should be examined, trained and eval-
uated. To find multiple architectures that meet the requirements defined earlier, a
generator needs to be developed.

After the architectures are generated, the training and evaluation of multiple
methods should be compared. As the task of training a large number of models is
very expensive, parallelizational methods need to be examined.

In summary, to prepare the experiment a Neural Architecture Generation method
should be designed and developed, where the resulting Siamese models should be
trained and evaluated parallelly. The interpretation and analysis of the results, that
is giving the effectiveness of object matching based on projections is the final task.

54

3.2 Neural Architecture Generation
The efficiency of a neural network depends on the architecture and the chosen hy-
perparameters of the elements of the structure [76]. Data scientists and machine
learning engineers struggle to find new methods to enhance the accuracy of the
models [75].

For hyperparameter tuning, there are multiple methods to find the optimal setup;
however, to find the best architecture, there is no exact solution.

One of the available methods is the nowadays very popular solution from the
researchers of Google Brain called NASNet [97]. NASNet, the Neural Architecture
Search NET, is a machine learning-based solution to find the optimal neural network
architecture for a given problem. NASNet is trained on the architectures of the
state-of-the-art models, and as predictions, it outputs suggested neural architectures.
These architectures are then trained and evaluated, and as feedback, the validation
accuracy is given back to the NASNet controller.

Because of the feedback, the NASNet is basically a Recurrent Neural Network
(RNN), which generates and updates neural architectures until a defined precision
is met. As this is basically an action-reward structure, it can be interpreted as a
reinforcement learning solution [98].

The idea of reinforcement learning is based on the individual decision-maker, the
agent, which interacts with the environment [99]. After every action, a reward (or
penalty) is gained. Recent developments show [100] that a machine learning solution
to generate machine learning models is actually working, which makes machine
learning available to those with no knowledge of the underlying structure at all.
Google Brain’s AutoML [101] was introduced in January 2018 and since then, other
developments have been made, introducing transfer learning [74] as well.

If the goal is to find a neural network structure and to tune the hyperparameters
to find an optimal solution without any knowledge of the architecture, it is a great
solution, as the result is a trained model, validated by the accuracy.

In case the task of the data scientist is to analyze the possibility of a given data
preprocessing method, multiple networks and properties should be tested to be able
to conclude the efficiency of the preprocessing method [K7]. For example, principal
component analysis [102] could be used to reduce the input feature vector: this
might result in a model that learns faster and generalizes more effectively. Also,
the result could be underfitting, in the case the parameter number is lower than
necessary.

The goal introduced in this section is to introduce a novel solution to recommend
convolutional neural network architectures based on an algorithm, instead of using
a heuristical approach. While NAS methods find the best architecture and hyper-
parameters by validating the model, this method suggests multiple possible setups
based on the best practices of the widening field of supervised machine learning.

3.2.1 Methodology
Based on the practical recommendations in the previous section, the defined method
[K8] is based on three functions:

1. defining the maximum filter and pool sizes based on the input width and height
and convolutional layer number;

55

2. generation of layers, based on previously defined parameters while the maxi-
mum memory consumption is limited;

3. collecting a given number of model architectures (if necessary the kernel and
pooling sizes are increased continuously) and finally ordering these architec-
tures based on feature numbers and learning rate.

Window sizes

The output size of the sliding window method [90] is calculated using

OW = IW − FW + 2PW
SW

+ 1, (3.1)

where OW represents the output width, and similarly, IW is the input width, FW
is the filter width, PW stands for the padding, finally SW represents the stride. Of
course, the same applies to the height of the output.

This equation stands for convolution and pooling as well. First of all, in the case
of convolution, as defined earlier, the padding is zero while the stride is one. Based
on this, the size of the output after the convolutional filter is

ActivationMapSize = OW ×OH × Fnum, (3.2)
where

OW = IW − CW + 1, (3.3)

OH = IH − CH + 1, (3.4)
where CW and CH are the width and height of the convolutional kernel and Fnum
represents the number of filters.

If a pooling layer is applied following the convolutional layer, then the output
sizes are defined as

OW =
⌊
IW − CW + 1

PW

⌋
, (3.5)

and

OH =
⌊
IH − CH + 1

PH

⌋
, (3.6)

where PW and PH represent the pooling size. Please note that the output size is
still given as in (3.2) while the case of no pooling layers following the convolutional
layer can be handled by setting both PW and PH to one.

Based on these equations and the constraints that

• convolutional kernel size should always exceed the size of the following pooling
layer;

• the input sizes should always be greater than or equal to the kernel size;

• the output neuron number of the last convolutional-pooling layer pair should
be larger than the element number of the following fully connected layer, but
the decrease should not be significant,

56

the maximum sizes for the convolutional filter and pooling layers can be given. To
achieve this, first, the output neuron number for a given number of convolutional
and pooling layer pairs is defined.

Estimate window sizes

The idea is that if layers with the maximum filter and pooling sizes are linked
after each other, the resulting output width and height gives a good approximation
regarding the solvability of the problem. It is important to point out that there
are two outcomes: if the output element number is too high, or one of the output
dimensions length is below one. The implementation of size estimation explained
in Algorithm 3 is based on exception-handling; however, other low-level control
methods (e.g., negative return value) could be used the achieve the same.

Algorithm 3 Function to calculate the output size for a given input image with
the size given as IW and IH . Lnum is the total number of convolutional-pooling layer
pairs. CW , CH , PW and PH gives the maximum sizes of the convolutional kernels
and pooling windows.
function getSize(Lnum, IW , IH , CW , CH , PW , PH)

OW ← IW
OH ← IH
for i← 1 . . . Lnum do

OW ← Floor((OW − CW + 1)/PW)
OH ← Floor((OH − CH + 1)/PH)
if OW < 1 or OH < 1 then

return 0
end if

end for
return OW ·OH

end function

To get the output matrix element number after applying convolutional kernels
with kernel size CW ×CH paired with pooling filter with window size PW ×PH on an
input image sized IW × IH , output size OW ×OH is estimated for every layer-pair.

The values for OW and OH are initially set to match the size of the input and are
updated in a loop iterating through the total number of convolutional-pooling layer
pairs Lnum. The assignment of OW and OH are based on previously given (3.5) and
(3.6).

As a special outcome, the values of output window sizes could become non-
positive, which indicates that the selected convolutional and pooling windows are
oversized.

The goal is to get the first fitting window sizes based on the input parameters:
the method to achieve this is defined in Algorithm 4.

57

Algorithm 4 Method to calculate the maximum window sizes for a given input
image: Lnum is the total number of convolutional-pooling layer pairs. IW and IH
denotes the input size and rCP gives the minimum ratio between convolutional and
pooling window sizes. The GetSize function is defined in Algorithm 3.
function MaxWindowSizes(Lnum, IW , IH , Fnum, rCP , FCsize)

CW ,CH ← 3
PW ,PH ← 1
s ←∞
while s > FCsize do

if not (PW > PH) and (CW < PW · rCP) or (CH < PH · rCP) then
if CW > CH then

CH ← CH + 2
else

CW ← CW + 2
end if

else
if PW > PH then

PH ← PH + 1
else

PW ← PW + 1
end if

end if
s ← getSize(Lnum, IW , IH , CW , CH , PW , PH) · Fnum

end while
return CW , CH , PW , PH

end function

The idea is based on approximation from above: for a given input image size
IW ×IH , the increase of convolutional kernel (CW ×CH) and pooling window (PW ×
PH) sizes results in reduced output element number s. The goal is to select the
highest quartet of window dimensions CW , CH , PW , PH where the output element
number is still valid, i.e., non-zero.

The initial values of convolutional kernel window size are set to 3, while pooling
window sizes are set to 1. Note, that application of a pooling window with size 1×1
would result in an output with the exact same size as the input.

As the algorithm is looking for optima of window dimensions where the value of
s is minimal, the initial value of s is set to positive infinity.

The main loop is based on the condition s > FCsize, where FCsize is the minimal
element number of the fully-connected dense layer following the convolutional parts.
If the condition is met, a possible increase in the parameters could be done.

Based on the relation of convolutional and pooling window sizes referred to as
rCP , eighter CW or CH , eighter PW or PH is increased. If changed, the convolutional
window width and height are always expected to be an odd value, thus it is increased
by two.

After changing the parameters, the previously described GetSize function (Al-
gorithm 3) is called to calculate the number of output elements in the proposed
setup. This element number is multiplied with the minimal number of filters Fnum,
giving the new value of s. Note, that the result of the function is zero, if the

58

application of defined window sizes is invalid.
The steps are repeated until s is minimal or invalid, and the previously selected

parameters are passed as the final results. These are the four values for the maximum
kernel and pool sizes, widths and heights, respectively. It is important to point out,
that this method enables the window sizes to be non-squared, which could be useful
in the case of non-squared inputs.

Finding possible architectures

To generate the actual model architectures, first all possible convolutional and pool-
ing layer pairs are generated into a collection. Basically, this means that for every
possible convolutional kernel size every possible pool size is selected and stored.

Based on the possible layer pairs and Lnum (the number of total layer pairs in
the target architecture), all possible architectures can be generated. It is notable,
that the scale of possible architectures has an exponential relation to the number
of possible layer pairs, so the examination of every single architecture is not recom-
mended.

In this solution, a special backtrack algorithm [103] is applied to find all possible
architectures. In this method, described in Algorithm 5, the classical backtracking
is extended with the collection of every output, which satisfies all the necessary
conditions.

Algorithm 5 Searching for available solutions using a recursive backtracking search
with multiple results.
procedure BackTrack(level, R,All)

tmp ← AllPossibleConvPoolPairs()
for i← 1 . . .SizeOf(tmp) do

if level = 1 or NoCollisions(tmp[i], R[level − 1]) then
R[level]← tmp[i]
if level = SizeOf(R) then

if FinalCheck(R) then
Add(All, R)

end if
else

BackTrack(level + 1, R,All)
end if

end if
end for

end procedure

Backtracking search is a recursive algorithm that collects possible sub-solutions
to an array R. In this case, possible sub-solutions are convolutional-pooling layer
parameters, which are in advance collected to a temporary set tmp.

For a network architecture of Lnum consecutive convolutional-pooling layer pairs,
exactly Lnum elements should be tested against each other. These elements are
referred to as level from 1 to Lnum, which is also the size of the array R.

At the very start, the method tries to fit a possible convolutional-pooling pair
to the first layer.

59

The benefit of using a backtracking algorithm is that after applying the first
convolutional-pooling layer pair, every other layer is evaluated after adding, and if a
so-called collision appears, the sub-solution on that given level is rejected, and will
not be examined again in the same state. It is important to point out that a greedy
approach would check every possible solution, wasting steps on invalid architectures.

For collision, the following (previously announced) properties are defined:

• the width or height of the convolutional filter following the last one cannot be
greater than the previous convolutional filter;

• the number of convolutional filters cannot decrease;

• the size of the pooling window cannot increase.

If all conditions are satisfied, then no collisions are given.
Using the backtracking algorithm, the layer pairs are added after each other,

and if the last empty position is fitted, the actual architecture could be stored as
a possible solution; however, before that, a final check is done. This final check
basically verifies the output model size, similarly as defined in Alg. 3, but instead
of having the maximal values, the actual values are used.

Other properties to validate the generated architecture are also applied:

• a general rule is that whenever the output of a layer (convolutional or pooling)
is squared, every following layer’s window must be squared;

• in the case of pooling layers, every architecture is invalidated, where after
applying the pooling layer, the size of the input is not the exact product of
the pooling window dimensions and the output dimensions. As stated before,
valid-padding, where cell values are dropped, is unadvised.

The last step of validation is based on the memory consumption of the model
during training.

Model size estimation

While the memory consumption and training time of a model is not important in
production, to compare input data and to evaluate preprocessing methods, the ac-
tual size of the parameter space and the training time are both important descriptors
of the method.

To provide equal conditions an upper limit is given for the model sizes, and this
upper limit is closed on with the manipulation of the training batch size.

As a rough estimation of the memory consumption of the model, the total mem-
ory cost is defined as

Cost = 4 · TotalParameterNumber · BatchSize, (3.7)

where the TotalParameterNumber is the total number of weights and biases in the
model. The explanation of the multiplier 4 is that these values are stored as floating
point numbers on 32 bits, which means 4 bytes for every parameter.

The weight and bias variable number of the convolutional layers are trivially
given by

60

ParamNum(i)
CONV = F (i)

num ·W ·H · F (i−1)
num + F (i)

num, (3.8)

giving the number of parameters for layer i from the number of filters in the actual
layer multiplied with the size of the kernel, and multiplied with the filter number of
the previous layer. The number of biases is equal to the number of filters, which is
added to the sum. It is notable, that the size of the input image does not affect the
number of trainable parameters.

There are no trainable parameters in pooling layers, so these are skipped during
the estimation. The last elements of the network are in fully connected layers, where
the parameter number is given as

ParamNum(i)
FC = N (i)

num ·N (i−1)
num +N (i)

num, (3.9)

where N (i)
num stands for the number of neurons in the actual layer, whereas N (i−1)

num

gives the same in the previous layer. The total number of weights is given by the
product of the two numbers while the number of bias values are equivalent to the
number of neurons.

To get the parameter number for the first dense layer, the neuron number of the
last convolutional layer has to be defined. As the output matrix with dimensions
OW ×OH ×Fnum is flattened, the result is a vector of processing elements with this
length.

In the case of a fully connected layer and large neuron numbers, this can result
in large memory consumption. For example, if a layer of 4096 neurons is followed
by a layer with 2048 neurons, the total memory consumption calculated only for the
connections between these two layers will result in 32 MB.

To find the optimal batch size, the following algorithm was designed (Algorithm
6): as the last step of validation, the model size is estimated, based on (3.7). If the
size exceeds the limit, the current architecture is invalidated.

Algorithm 6 The estimation of the ideal batch size for training. The minimum
number of training batches is defined as 10; however, this could depend on the
number of training samples in a single epoch. Function RoughEstimation results
in the number of bytes defined in (3.7).
function BatchSizeEstimate(max_mem,min_batch)

b← min_batch
if RoughEstimation(b) < max_mem then

while RoughEstimation(b+ 2) < max_mem do
b← b+ 2

end while
return b

else
return 0

end if
end function

The input parameters for function BatchSizeEstimate are the upper bound-
ary for memory consumption max_mem, and the minimal number of training sam-
ples in a single batch given as min_batch. Supplementary function RoughEsti-

61

mation gives the memory cost of the model with a given total parameter number
in bytes, according to (3.7).

Variable b is initially set to match the minimal number. In case the estimation
with the minimal batch size results in a memory cost above the limitation, the
architecture is rejected. Note, that in Algorithm 6, the signaling of rejection is done
by the return value 0; however, other implementations based on exception handling
or events are also feasible.

If the size is acceptable, the batch size is increased step-by-step to approach the
limit, until it is exceeded. When this happens, the last valid value for b size is used
as output.

Sorting results

As the last step, the eligible architectures should be sorted by pooling sizes increas-
ingly, and by having batch sizes ordered decreasingly. This idea is based on the fact
that pooling may unnecessarily decrease the feature number while, of course, a large
batch number means that the training time is decreased significantly.

It is important to point out, that in order to have an acceptable number of ar-
chitectures, the implemented solution increases the previously calculated maximum
window sizes if the necessary architecture number is not met at the end of an itera-
tion. Of course, a similar effect could be reached by increasing the initial values of
Algorithm 4.

3.2.2 Results
As a proof of concept, the results of the method for a few input sizes are hereby
demonstrated and analyzed.

First, the resulting architectures for an RGB input image sized 100 × 100 for a
total number of convolutional-pooling layer pairs are described in List 3.1. As the
input is an RGB image, the pixel information can be represented as a 3-dimensional
matrix, where the third dimension gives the three planes of red, green and blue
intensity values.

Note the varying convolutional kernel sizes: in the first four architectures, the
first layer starts with a 9× 9 kernel with different settings for the rest of the archi-
tectures. The last six architectures start with a larger 13 × 13 kernel followed by
similarly large windows. This results in a smaller number of output neurons after
flattening; therefore, the parameter number between the first dense layer is smaller,
resulting in less memory cost, allowing a larger batch size.

Results show, that the algorithm rewards those structures, where convolutional
and pooling kernel sizes are as low as possible, and only increases these window sizes,
if there are no other possible solutions. Given so, if the kernel size is increased, the
ordering is given by the batch sizes, which results in less time for epoch processing.

In the case of a non-squared input, the algorithm allows the usage of non-squared
windows as well. For an input with a size of 100×50×1, a few resulting architectures
are described in List 3.2.

Note the different approaches of the algorithm to reduce the size of the repre-
sentation: in some cases, a kernel window with a slight difference in window sizes
is used to slightly reduce the difference between the width and height of the output

62

Input(100×100×3) → Conv(9×9@64) → Pool(2×2) → Conv(7×7@64) → Pool(2×2) → Conv(7×7@64) →
Pool(2×2) → Flatten() → FC(2048), batch size: 18

Input(100×100×3) → Conv(9×9@64) → Pool(2×2) → Conv(7×7@64) → Pool(2×2) → Conv(5×5@64) →
Pool(2×2) → Flatten() → FC(2048), batch size: 14

Input(100×100×3) → Conv(9×9@64) → Pool(2×2) → Conv(7×7@64) → Pool(2×2) → Conv(7×7@64) →
Pool(2×2) → Flatten() → FC(2048) → FC(1024), batch size: 14

Input(100×100×3) → Conv(9×9@64) → Pool(2×2) → Conv(7×7@64) → Pool(2×2) → Conv(5×5@64) →
Pool(2×2) → Flatten() → FC(2048) → FC(1024), batch size: 12

Input(100×100×3) → Conv(13×13@64) → Pool(2×2) → Conv(13×13@64) → Pool(2×2) → Conv(13×13@64) →
Flatten() → FC(1024), batch size: 54

Input(100×100×3) → Conv(13×13@64) → Pool(2×2) → Conv(13×13@64) → Pool(2×2) → Conv(13×13@128) →
Flatten() → FC(1024), batch size: 30

Input(100×100×3) → Conv(13×13@64) → Pool(2×2) → Conv(13×13@64) → Pool(2×2) → Conv(11×11@64) →
Flatten() → FC(2048), batch size: 22

Input(100×100×3) → Conv(13×13@64) → Pool(2×2) → Conv(13×13@64) → Pool(2×2) → Conv(13×13@128) →
Flatten() → FC(2048), batch size: 20

Input(100×100×3)→ Conv(13×13@64)→ Pool(2×2)→ Conv(13×13@128)→ Pool(2×2)→ Conv(13×13@128)→
Flatten() → FC(1024), batch size: 20

Input(100×100×3) → Conv(13×13@64) → Pool(2×2) → Conv(11×11@64) → Pool(2×2) → Conv(11×11@64) →
Flatten() → FC(2048), batch size: 18

List 3.1. The top 10 result architectures for input sizes 100×100×3, for a maximum
number of three convolutional and pooling layer pairs. The arguments given for
Conv and Pool represent the window sizes for the given layer. In the case of
Conv layers, the third number represents the filter number [K8].

activation map. In other cases, non-squared pooling is used to significantly reduce
the contrast between the sides of the output.

The algorithm will always privilege to increase the size of the convolutional kernel
while the pooling windows are kept as small as possible. It is interesting to point
out that the method aims to decrease the difference between the dimensions in the
output of the layers.

It is notable, that in the top five resulting architectures, the filter number keeps
constant through layers. The cause of this effect is that by increasing the number of
filters, the parameter number and the memory usage increases, which is penalized
through the ordering by batch sizes. Therefore, it is suggested that a higher number
of these generated architectures should be applied for the original cause, to compare
preprocessing methods.

Thesis 2.1 I have developed a method based on backtracking search that provides
all of the suitable convolutional neural network architectures at a given input, layer
number, and memory cost.

Publications pertaining to thesis: [K8].

63

Input(100×50×1) → Conv(37×35@64) → Pool(4×4) → Flatten() → FC(2048), batch size: 14

Input(100×50×1) → Conv(37×35@64) → Pool(4×4) → Flatten() → FC(2048) → FC(1024), batch size: 12

Input(100×50×1) → Conv(37×39@64) → Pool(4×3) → Flatten() → FC(2048), batch size: 14

Input(100×50×1) → Conv(37×39@64) → Pool(4×3) → Flatten() → FC(2048) → FC(1024), batch size: 12

Input(100×50×1) → Conv(37×39@64) → Pool(4×4) → Flatten() → FC(2048), batch size: 20

Input(100×50×1) → Conv(13×15@64) → Pool(2×2) → Conv(13×15@64) → Pool(2×1) → Flatten() → FC(2048),

batch size: 14

Input(100×50×1) → Conv(13×15@64) → Pool(2×2) → Conv(13×15@64) → Pool(1×2) → Flatten() → FC(2048),

batch size: 14

Input(100×50×1) → Conv(13×15@64) → Pool(2×2) → Conv(13×15@64) → Pool(2×1) → Flatten() → FC(2048)

→ FC(1024), batch size: 10

Input(100×50×1) → Conv(13×15@64) → Pool(2×2) → Conv(13×15@64) → Pool(1×2) → Flatten() → FC(2048)

→ FC(1024), batch size: 10

Input(100×50×1) → Conv(13×15@64) → Pool(2×2) → Conv(13×15@64) → Pool(2×2) → Flatten() → FC(1024),

batch size: 46

Input(100×50×1) → Conv(9×11@64) → Pool(2×2) → Conv(9×11@64) → Conv(9×9@64) → Flatten() →
FC(2048), batch size: 14

Input(100×50×1) → Conv(9×11@64) → Pool(2×2) → Conv(9×11@64) → Conv(7×9@64) → Flatten() →
FC(2048), batch size: 14

Input(100×50×1) → Conv(9×11@64) → Pool(2×2) → Conv(9×11@64) → Conv(9×9@64) → Flatten() →
FC(2048) → FC(1024), batch size: 12

Input(100×50×1) → Conv(9×11@64) → Pool(2×2) → Conv(9×11@64) → Conv(7×9@64) → Flatten() →
FC(2048) → FC(1024), batch size: 12

Input(100×50×1) → Conv(9×11@64) → Pool(2×2) → Conv(9×11@64) → Pool(2×1) → Conv(9×9@64) →
Flatten() → FC(1024), batch size: 60

Input(100×50×1) → Conv(11×9@64) → Pool(1×2) → Conv(11×9@64) → Conv(11×9@64) → Conv(7×5@64) →
Flatten() → FC(2048), batch size: 14

Input(100×50×1) → Conv(11×9@64) → Pool(1×2) → Conv(11×9@64) → Conv(9×7@64) → Conv(9×7@64) →
Flatten() → FC(2048), batch size: 14

Input(100×50×1) → Conv(11×9@64) → Pool(1×2) → Conv(11×9@64) → Conv(11×9@64) → Conv(7×5@64) →
Flatten() → FC(2048) → FC(1024), batch size: 10

Input(100×50×1) → Conv(11×9@64) → Pool(1×2) → Conv(11×9@64) → Conv(9×7@64) → Conv(9×7@64) →
Flatten() → FC(2048) → FC(1024), batch size: 10

Input(100×50×1) → Conv(11×9@64) → Pool(2×2) → Conv(9×9@64) → Conv(9×7@64) → Conv(9×7@64) →
Flatten() → FC(1024), batch size: 60

Input(100×50×1) → Conv(9×11@64) → Pool(2×1) → Conv(9×11@64) → Conv(9×11@64) → Conv(9×11@64) →
Conv(9×9@64) → Flatten() → FC(1024), batch size: 38

Input(100×50×1) → Conv(9×11@64) → Pool(2×1) → Conv(9×11@64) → Conv(9×11@64) → Conv(9×11@64) →
Conv(7×9@64) → Flatten() → FC(1024), batch size: 36

Input(100×50×1) → Conv(9×11@64) → Pool(2×1) → Conv(9×11@64) → Conv(9×11@64) → Conv(9×11@64) →
Conv(7×9@64) → Flatten() → FC(2048), batch size: 22

Input(100×50×1) → Conv(11×9@64) → Pool(2×1) → Conv(11×9@64) → Conv(11×9@64) → Conv(11×9@64) →
Conv(11×9@64) → Flatten() → FC(2048), batch size: 16

Input(100×50×1) → Conv(9×11@64) → Pool(2×1) → Conv(9×11@64) → Conv(9×11@64) → Conv(9×11@64) →
Conv(7×9@64) → Flatten() → FC(2048) → FC(1024), batch size: 16

List 3.2. The top five result architectures for input sizes 100×50×1, for a maximum
number of 1, 2, 3, 4 and 5 convolutional and pooling layer pairs, respectively [K8].

64

3.3 Distributed training
To be able to decide whether a preprocessing method is effective or not, neural
networks should be trained and evaluated on the same ruleset for each type of input
data, including the raw input data for an end-to-end approach.

This would require a large number of model training and evaluation. As it is
well known, the training of a single model could require large computational power,
which is nowadays handled by GPUs.

The simulation, of course, could be done on a single workstation, by process-
ing models one after the other. However, the runtime of the simulation could be
remarkably reduced by using a distributed environment with a cluster of GPU en-
abled workstations.

3.3.1 Master/Worker pattern
The Master/Worker pattern [66] is a good choice when the parallelizable tasks them-
selves are executed in a message-passing environment. In this case, each process of
the model training and evaluation require a single workstation with an eligible graph-
ical accelerator, no shared memory parallelization is available.

One of the key points of the Master/Worker pattern is that the Master can
generate the tasks while the Workers are already processing them from the bag of
tasks. However, in this case, the task generation can be separated from the functions
of the Master.

The main advantages of using a Master/Worker pattern is that the load balancing
of tasks is automatic: when a Worker finishes, it sends the results to the Master and
asks for a new task, if possible.

The scheduling of the tasks is important to achieve an efficient load-balance:
in the case of the Master/Worker pattern, the Worker instances ask for the next
job, when the processing of the previous task is finished. If the jobs are served in
decreasing order by processing times, the last jobs will take less time resulting in
a finely granulated distribution. This is called the Longest Processing Time [104]
ordering method.

3.3.2 Methodology
To efficiently train and analyze the generated architectures, the models should be
trained concurrently, and the performance evaluation should be done likewise. As
the task is to analyze the applicability of projection-based transforms as image
preprocessing, the actual models are not kept, only information about the validation-
and test accuracy, and processing time is relevant and collected.

It is clear that a Master/Worker parallel design is applicable, since the tasks are
independent of each other, no synchronization is necessary, and the resulting logs of
training and performance analysis can be stored individually.

The main structure of the Master is based on an infinite loop (Algorithm 7).
The Master acts basically as a network server, listening on a given port and address,
waiting for the Worker clients to connect. In case of an incoming connection, the
processing of the request is handled on different threads.

65

In this implementation, a communication based on the TCP1 protocol is used.
The connection and communication between two sides are reliable, which is based
on acknowledging received packets.

Note, that higher-level communication frameworks, for example, implementation
of the MPI2 [105] standard could be applied; however, the benefit over the cost for
this exact problem makes it unnecessary.

Algorithm 7 The algorithm of the Master. For representation purposes, the inner
loop is an infinite loop, which accepts incoming TCP connections on the defined IP
and port; however, in an actual software cancellation can be implemented as well
for to shutdown of the listener.
procedure Master(Ip, Port)

ActualizeNumbers()
while AnyActiveWorkerExists() do

client← Listen(Ip, Port)
new Thread(Process(client))

end while
end procedure

Initially, the task data are loaded, and the number of ongoing and finished train-
ing is checked for each task, referred to as procedure ActualizeNumbers(). In
this system, models are allowed to be trained and evaluated multiple times, possibly
on different Worker instances.

The behavior of the network service is described as a loop, listening on the
predefined port. The function Listen() is, therefore, implemented as blocking
call, where execution waits until an actual client connection is received. In case of a
connection, a new thread is forked and the processing of the client request is started.

The property defined as AnyActiveWorkerExists returns a logical value
based on the number of active Worker instances. If all Workers have terminated,
the Master shuts down as well. In implementation this termination-detection logic
could be replaced by event-based handling.

Note that the mass-creation of threads during runtime could result in a large
overhead caused by thread management costs. The problem can be solved by indi-
rectly mapping tasks to threads, using a task queue, for example a threadpool.

On an accepted incoming TCP connection on the predefined IP and port, the pro-
cedure Process(client) is called to handle the request. The behavior is explained
in more detail in Algorithm 8.

Processing of the client requests is based on the first message sent by the clients.
If the message is "ready", the master selects the next task, and sends the corre-
sponding file. In the case of no available tasks, a so-called poison pill is sent to shut
down the Worker. In other cases, the client is trying to send the results of finished
processing.

To ensure correctness, the task selection and response part is guarded by mutual
exclusion, granting a fixed, non-overlapping execution order of the inner instructions.
It is notable, that this behavior results in some inevitable overhead.

1Transmission Control Protocol
2Message Passing Interface

66

Algorithm 8 Processing of the client requests is based on the first message of the
client: if the client states it is "ready," then a new task is sent to it. In other cases,
the worker is trying to send the results of a process.
procedure Process(client)

msg← client.ReceiveMsg()
if msg = "READY" then

mutex.Lock()
id, task← NextTask()
if task = null then

client.SendMsg("POISONPILL")
else

client.SendMsg(id)
client.SendFile(task)

end if
mutex.Release()

else
id← msg
content← client.ReceiveFile()
StoreFile(id, content)

end if
client.Close()

end procedure

The poison pill is a special task, that is used to shut down Workers in a dis-
tributed environment [66], where the Workers cannot access the task queue to check
for termination. In this case, the Master is responsible for termination detection,
and the Worker is notified when it tries to access the next task.

The algorithm of the Worker is described in details in Algorithm 9.
When the Workers are starting up, connection to the Master server is suspended

for a random waiting time, to evade the flood of requests on the simultaneous launch
of Worker instances. After the necessary sleep, the working loop starts with con-
necting and sending a message to the Master, stating that the station is ready to
process a task. The answer from the Master can be a task or a poison pill; the latter
is handled by shutting down the Worker instance.

If a task is received, the file describing the architecture is saved, and the training
is started. During training, both standard and error outputs are redirected to a file
stream. The training procedure itself is a loop of training iterations, followed by
evaluations on the validation data; therefore, the log contains information about the
changes of the training loss and the validation loss and accuracy as well.

After training is finished, the Worker reconnects to the Master, and sends the
name which identifies the task instance. After the Master acknowledges, the file is
collected. When the Master confirms the transfer, the Worker cleans the temporary
data about the model and task, and after some time in cooldown, the working loop
starts over.

The cooldown is a necessary idle to allow the operating system of the workstation
to clear caches and free up allocated space in the RAM and in the GPU memory.
It is referred to as cooling down because, during the idle, the temperature of the

67

Algorithm 9 The pseudo language representation of the Worker process. The
workers repeatedly ask for the next neural architecture, and after training and eval-
uation, the results are sent back to the Master. Worker termination is implemented
with the "poison pill" approach.
procedure Worker(Ip, Port, Cooldowntime)

Sleep(Random())
while true do

server← Connect(Ip, Port)
server.SendMsg("READY")
resp← client.ReceiveMsg()
if resp = "POISONPILL" then

return
end if
id← resp
content← server.ReceiveFile()
file← StoreFile(id, content)
server.Close()
log← DoTrainingAndEval(file)
server← Connect(Ip, Port)
server.SendMsg(id)
server.SendFile(log)
server.Close()
CleanTemporaryFiles()
Sleep(Cooldowntime)

end while
end procedure

graphics accelerator does decrease.
Please note that in Algorithm 8 and 9, the defined Send and Receive functions

are necessarily synchronous, blocking calls, in other cases there is a possibility for
deadlock. The communication between the Master and Worker actors are visualized
on a sequence diagram in Figure 3.2.

Scheduling

To minimize the total processing time, the optimal scheduling of tasks should be
done. To do that, the Longest Processing Time [104] heuristics were used, where
the tasks are sorted in descending order by the estimated processing times. It is not
trivial to determine the processing time of a task; however, approximations can be
done.

In the case of the training and evaluation of the neural networks, it is empirically
concluded that the processing time is in a linear relationship with the memory usage
defined as

complexity =
⌈

total number of training pairs
batch size

⌉
· total number of elements. (3.10)

The total number of training pairs divided by the size of batches gives the number

68

Figure 3.2. The sequence diagram of the interactions between the Master and the
Worker instances. After the Master starts, the Workers take new tasks from the
waiting queue, process them, and send the results back. After there is no job left,
the Worker gets notified by a so-called poison pill, and then terminates [K9].

of train iterations. The estimated complexity is obtained by multiplying this number
of iterations with the total number of neurons.

The results and effectiveness of the LPT ordering based on the given runtime
approximation is presented in detail in the next section.

3.3.3 Results and evaluation
The actual problem for object matching was to correctly label a vehicle on differ-
ent views. Multiple methods of projection transformations were analyzed, including
the end-to-end method with raw images. Altogether a total of eight methods were
compared. For each method, a total number of 250 neural architectures were gener-
ated based on the procedure [K8] described earlier in Section 3.2. Between a total
number of one convolutional and pooling layer pair to five, 50–50 architectures were
generated for each case.

69

This resulted in a total number of 2000 architectures, which is the input of the
experiment.

The Master and the Worker clients are implemented in C# language, using the
networking libraries of the .NET framework, while the training and evaluation of the
neural networks are implemented with TensorFlow [106] and Keras [107] libraries of
the Python programming language.

Hardware environment

The distributed training was implemented on a cluster of 25 workstations, with
GeForce GTX 1050 graphics accelerators, with 2 GB onboard memory. The config-
uration of the host computers was the same: Intel i5-6400 CPUs with 4 cores at a
2.7 GHz clock-rate, and 8 GB RAM with maximum clock speed of 2133 MHz. The
network connection between the computers was gigabit ethernet.

The Cooldowntime defined in the Worker procedure in Algorithm 9 was set to
60 seconds.

Processing times

For the total analysis, all 2000 models were trained two times with the same archi-
tectures. While the total training time in a non-distributed environment would have
taken more than 43 days, the distributed system finished with the tasks in less than
two days. Detailed results are in Table 3.1.

In the last stages of the process, when the Master starts to run out of tasks,
Workers are being shut down, one-by-one. The time difference between the first and
last shutdown of Workers indicate the load balance of the processing. In the table
this time is referred to as the longest idle of a given worker.

It is interesting to point out, that the speedup is extremely high, which indicates
the effectiveness of the LPT method. To test this theory, based only on the model
processing times of both measurements, the performance of random scheduling was
calculated. Simulation of 1000 distributions was done. The results are shown in
Table 3.2.

The random scheduling also produced a total runtime below two days; however,
the effectiveness dropped significantly, which is well represented by the longest idle
produced by the worker where the queue first runs out of tasks. While the speedup
is still very high in every case, the main difference is between the load balances. The
longest idle in average was 84 minutes, while in the case of the proposed scheduling,
it was seven minutes (Table 3.1).

The main reason for the success of the scheduling is based on the prediction of
the runtimes for the training of each model. To validate the theory, the correlation
of the estimated complexity and the actual runtimes of the 4000 training process
times were measured, the results are visualized in Figure 3.3.

The correlation of the estimated complexity and the real process times is mea-
sured using the Pearson correlation coefficient. A positive value over 0.5 represents
a strong linear connection between the variables, which, in this case, is 0.749.

As a verification of the assumption behind the complexity measurement, a corre-
lation heatmap is generated from the input parameters and the measured processing
times (Figure 3.4).

70

Table 3.1. The distributed processing of the models was done in two separate runs.
While there is a minimal difference between the results, the speedup and the effi-
ciency in both cases are very high. It is also important to point out that the load
balance of this scheduling is very good, the granularity of the last tasks is fine, caus-
ing a low idle time for the Worker which terminates first. Time values in this table
are represented in a HH:MM:SS format [K9].

Measurement #1 Measurement #2
Sum of times 43 days, 12:51:28 43 days, 10:40:08
Average time per worker 1 day, 17:47:39.52 1 day, 17:42:24.32
Total runtime of training 1 day, 17:50:35 1 day, 17:45:41
Longest idle 00:07:09 00:07:20
Speedup 24.97 24.97
Efficiency 99.88 % 99.87 %
Process times

Minimum 00:06:14 00:06:11
Maximum 03:34:12 03:37:31

Mean 00:31:20.74 00:31:16.80
Median 00:26:38 00:26:33

Standard deviation 00:20:41.11 00:20:39.38

Table 3.2. The results of 1000 simulations of random scheduling. The generated
runtimes are ordered increasingly, and the minimum, maximum and median values
are described in three columns of this table. Time values in this table are represented
in a HH:MM:SS format [K9].

Minimum Median Maximum
Total runtime of training 1 day, 18:02:10 1 day. 18:50:10 1 day, 20:51:15
Longest idle 00:32:47 01:24:13 03:23:23
Speedup 24.85 24.39 23.29
Efficiency 99.42 % 97.57 % 93.17 %

The heatmap shows that there is a strong connection between the runtime of a
task and the estimated memory cost, which confirms the base assumption behind
the score calculation in (3.10).

The connection between the batch size and the runtime is also significant: the
weak negative correlation shows the inverse connection, meaning that the increase
of the number of samples in batches decrease the runtime. It is worth mentioning,
that the increase of batch size on a large scale will have a negative effect on the
performance of the model [108]; therefore, in further research, an upper boundary of
batch sizes should be defined. The problem caused by this effect is a well-researched
field [109]. The approach to overcoming this drawback is based on parallel and
distributed training using multiple GPUs and workstations.

It is interesting, that the number of layers does not have a large impact on the

71

0

1

2

3

Pr
oc

es
s

tim
e

(h
ou

rs
)

0 1,000 2,000 3,000 4,000
0

2 · 107

4 · 107

6 · 107

8 · 107

1 · 108

1.2 · 108

Models

Es
tim

at
ed

co
m

pl
ex

ity
va

lu
e

Figure 3.3. The estimated complexity values and the processing times for each
model, ordered by the estimated value based on (3.10). The thick red line represents
the complexity value, while the thin columns show the processing times for each
model. Although there are some visible diversions between the two, the calculated
correlation is strong, 0.749 [K9].

measured times, which is explained by the small number of convolutional layers
used for this experiment. The large layer number of a deep network clearly has
a significant computational cost factor compared to shallow networks. However, in
our experiments, this effect is not relevant, which is explained by the generally small
number of layers. It is noted, however, that for estimation of the complexity of deep
architectures the layer number should be considered as a significant influence.

By checking the total runtime of the process, and comparing it to the average
runtime, we see that the difference is around three minutes. As pointed out in [110],
the lower boundary to approximate the optimal runtime can be done by simply
dividing the number of processors with the sum of runtimes: it is clear that the
optimal processing time cannot be shorter. There are other relaxations of the lower
bound based on continuous relaxation of this defined limit, as well as measures
based on other heuristics. It is worth mentioning, that based on the knowledge of
the actual processing times, the optimal scheduling can be created; however, the
computational complexity of such algorithms are very high [111].

72

memory paramnum batchsize layernum processtime pred

memory

paramnum

batchsize

layernum

processtime

pred

1 -0.028 -0.013 0.58 0.74 0.79

-0.028 1 -0.88 -0.2 0.19 0.44

-0.013 -0.88 1 0.18 -0.17 -0.35

0.58 -0.2 0.18 1 0.22 0.37

0.74 0.19 -0.17 0.22 1 0.75

0.79 0.44 -0.35 0.37 0.75 1

1.0

0.5

0.0

0.5

1.0

Figure 3.4. Correlation heatmap generated using the input parameters of model
training and the measured processing times from the total of 4000 trainings. pred
represents the predicted complexity based on (3.10).

Thesis 2.2 I designed and implemented a Master/Worker model for the analysis of
Siamese Convolutional neural network architectures in a distributed environment,
with scheduling based on the longest processing times. In practical measurements,
the parallel efficiency of the processing of the generated neural network architectures
was 99.87%.

Publications pertaining to thesis: [K9].

3.4 Results and evaluation
The goal of the research is to determine the usability of multi-directional projections
as objects descriptors for object image matching. For analysis a simulation based
on modern approaches for object matching is proposed.

Multiple methods and several setups are selected and defined for comparison.
The outputs of these methods are two-dimensional matrices representing projection
functions for different angles. From the given input sizes, the method defined in
Section 3.2 generates multiple operable Convolutional architectures for a Siamese
structured neural network.

Based on this method, CNN architectures are generated by the initial information
of the input size and the total number of convolutional and pooling layer pairs.
Multiple values are examined for the number of inner convolutional and pooling
layers.

The method is also able to handle the 3D representation of RGB images, having
the first two dimensions representing the image width and height, and the three
layers in the third dimension represent the red, green and blue color information.
Thus, neural comparator architectures for the original images are also generated.

73

Figure 3.5. A sample frame from the Vehicle ReIdentification dataset provided for
the International Workshop on Automatic Traffic Surveillance, on the 29th IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2016) [112].

The algorithm rewards those structures where convolutional and pooling window
sizes are as low as possible, if feasible, the pooling layer is skipped. Furthermore,
the algorithm estimates the memory consumption of the generated architectures
and optimizes the value of the batch size to the maximum, where a memory limit
is applicable.

As an object re-identification problem, the dataset [112] used for the research
was published in the International Workshop on Automatic Traffic Surveillance, on
the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2016). The image sequences of the dataset are annotated, so the extraction of the
regions of interest was done automatically.

The regions of objects of interest were extracted from the frames of the video,
and the labels were attached according to the annotations provided in the source
files. A sample of the video frame is shown in Figure 3.5.

The original sizes of extracted images were kept and a rescaling of the inputs
was only done if necessary as an initial step of the analyzed transformation.

To increase the efficiency, a cluster of GPU enabled computers were used for
training and evaluation, based on the parallel implementation described in section
3.3.

3.4.1 Data
In those cases, where the number of extracted observations for each viewpoint are
less then 15, the objects are removed from the set. After the filtering of objects with
only a few observations, the final dataset contains a total number of 698 vehicle
instances. The set is split into a training set and a test set using a 9 : 1 ratio,
resulting in a total number of 629 instances for training and 69 for testing. For
every object, a total of 30 observations from two different viewpoints are used.

For the analysis, the results of Radon transform, Trace transform and the hereby
presented transformation with fixed bin numbers were generated. For further refer-
ences, the abbreviation MDIPFL will be used for the method of Multi-Directional

74

Table 3.3. The different input types, by matrix sizes. As MDIPFL works with a
fixed bin size, multiple outputs were generated and tested.

Name Size
Radon-transform 85 x 36 x 1
Radon-transform 136 x 36 x 1
Trace-transform 137 x 72 x 1
MDIPFL transformation 25 x 36 x 1
MDIPFL transformation 50 x 36 x 1
MDIPFL transformation 85 x 36 x 1
MDIPFL transformation 136 x 36 x 1
RGB Image 96 x 96 x 3

Image Projections with Fixed Length, presented in Chapter 2. Table 3.3 contains
the details of each transformation, including the description of the raw unmodified
original images.

Note the two Radon transforms with different matrix dimensions: in the first
case of 85 × 36, the images of observations are scaled to 60 × 60, which after the
transformation for projection angles 0 to 175 with step size of 5 degree results in a
85× 36 matrix. In the other case, 96× 96 sized images were used as inputs for the
Radon transform, resulting in 136× 36 matrices under the same conditions.

The Trace transform by default is not entirely symmetric, the angles of 360
degrees are necessarily analyzed.

For the presented method, multiple resolutions were analyzed: 25 and 50 bins,
and to match the matrix sizes, a 85 and 136 bin numbered transformation was
generated for training.

The raw images are RGB images, resized to 96 × 96. It is notable, that all
presented methods used resized images before the transformation, except the devel-
oped method of fix bin sizes, where the original images could be used, as the output
matrix size is not affected by the input image size.

A complete list of input types, along with the abbreviations used hereafter:
• RGB Image

The original unprocessed colored image resized to 96× 96;

• Radon85
The result of the Radon transform for a 60×60 input image for [0; 180) degrees,
with a step size of 5 degrees;

• Radon136
The result of the Radon transform for a 96×96 input image for [0; 180) degrees,
with a step size of 5 degrees;

• Trace
The result of the Trace transform for a 96×96 input image for [0; 360) degrees,
with a step size of 5 degrees;

• MDIPFL25
The result of the MDIPFL transformation with bin number of 25;

75

Figure 3.6. Sample images from the dataset, from left to right: the original image,
the result of the Radon transform, the MDIPFL transform and the Trace transform,
respectively.

• MDIPFL50
The result of the MDIPFL transformation with bin number of 50;

• MDIPFL85
The result of the MDIPFL transformation with bin number of 85, to match
the output size of Radon85;

• MDIPFL136
The result of the MDIPFL transformation with bin number of 136, to match
the output size of Radon136.

For every transformation (each of them visualized in Figure 3.6), a total of
250 neural architectures were generated, 50 for every conv-pool layer pair number
between 1 and 5.

This resulted in a sum of 2000 architectures, which is the base of the models
trained in a distributed environment. The parallel training and environment are
further explained in Section 3.3.

To fit the GPU memory, the upper limit of the architecture generation was set to
512 MB. During training, machine learning frameworks handle memory differently
[K8]; however, to maximize efficiency in most cases an amount of more than three

76

times the models cost (which is given by the parameter numbers times the size of
batches) is allocated to store input data, feature maps and other temporary variables
of backpropagation along with the network parameters.

A total of 100,000 training pairs were given to the models during the training
of each. This number is more than five times higher than the number of individual
training samples.

During training, a vehicle instance is selected from the dataset, and positive and
negative pairs are generated to fill the batch. After forward and back-propagation,
the trainable parameters are aligned, the next batch is generated.

After training finished, the test set was used to measure the prediction accuracy
of the model, repeatedly. The results were written to the log file, which is collected
by the Master.

The training and analysis of the 2000 models were repeated to confirm the run-
times and performance. As previously stated, the total runtime of the distributed
training was over 41 hours, where the average processing time of a model is around
30 minutes. The effectiveness of the distributed processing is very high, given that
the sequential processing of the same models would have taken more than 40 days.
A detailed description of the runtimes is given earlier on Table 3.1.

3.4.2 Performance
After training the models, the prediction accuracy is measured using multi-way
one-shot classification. The verification procedure is described in [113] and [96] as
a method that demonstrates the discriminative abilities of the model.

Instead of measuring based on an absolute scale, for example distance-based
thresholding, one-shot classification gives the relative performance of the separa-
tional capability. In production, when re-identifying an object, it is possible that
based on some meta-information, a narrow set can be formed of possible instances.
Therefore, it is more realistic to examine accuracy by a method that does not mea-
sure similarity on an absolute scale.

To formalize the method, define x ∈ X test images, and c ∈ C categories, having
a surjective, non-injective mapping for each input x to each c as function

f : X → C,

∀x ∈ X, ∃c ∈ C : f(x) = c.
(3.11)

This represents that every image observation belongs to one of the object in-
stances.

During a test, a random sample image is selected from the test dataset, noted
as x̂. x̂ will be matched against a set of images.

Define a set of N images as {xi}Ni=1, where

∀i @j : f(xi) = f(xj), i 6= j

∃=1i : f(xi) = f(x̂), xi 6= x̂.
(3.12)

This states that none of the images are from the same category and exactly one
image is from the same category as the selected reference image (while the images
are not equal).

The model is tested with the reference image and multiple observations: one from
the same instance, and one or more observations of different objects. For example, a

77

Table 3.4. The measured prediction accuracy for each transformation for 2,4,6,8
and 10-way classification. The models were tested with 10,000 tests and the best
performances were selected for this table.

Type Top accuracy for N-way classification
2 4 6 8 10

RGB Image 94.34 85.47 78.86 72.93 67.31
Radon85 93.22 83.94 75.73 70.74 66.28
Radon136 93.56 84.54 77.20 73.32 67.61
Trace 92.78 80.44 71.36 65.60 58.04

MDIPFL25 94.12 84.76 78.36 72.76 68.92
MDIPFL50 93.77 84.27 75.96 70.08 64.80
MDIPFL85 93.76 83.98 76.91 71.89 67.00
MDIPFL136 93.36 82.81 74.97 69.19 64.13

two-way comparison is done when the reference image is compared to one true and
one false sample, just like a 5-way comparison is where the base image is measured
against one true and four false examples.

The measurement is done by selecting the similarity between the reference and
the elements of the set, defined as

Y = {yi = S(x̂, xi)}Ni=1, (3.13)
where S(a, b) represents predicted similarity of inputs a and b, where 1 represents a
match and 0 means difference.

After calculating the similarity between the reference and all elements in the N
sized set, the category corresponding to the maximum similarity is selected as

c∗ = arg maxc Y, (3.14)
which is then compared to the category of reference x̂. If the highest similarity
is measured with the true pair, as f(x̂) = c∗, the classification is correct. If the
predicted category is different, then the classificator failed.

The accuracy of the model can be measured by counting the correct classifications
during a number of M tests as

Accuracy = Number of correct classifications
M

· 100. (3.15)

The top results of N -way classification are detailed in Table 3.4. It is shown,
that projection-based methods are suitable for neural comparison. Furthermore, in
some cases, these methods outperform classical end-to-end approaches under the
same conditions [K6].

For further analysis, the accuracy of different number of convolutional and pool-
ing layer pairs are compared. In Figure 3.7, the best performances are plotted for
one-shot classification tasks for increasing number of classes.

It is clear that by increasing the number of layers (and, therefore, the total
number of trainable parameters), the models perform better. In the case of a single
convolutional-pooling layer pair, the image-based method performs 15− 20% below

78

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of classes

A
cc
u
ra
cy

(%
)

Top accuracy using 1 hidden layer pair

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of classes

A
cc
u
ra
cy

(%
)

Top accuracy using 2 hidden layer pairs

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of classes

A
cc
u
ra
cy

(%
)

Top accuracy using 3 hidden layer pairs

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of classes

A
cc
u
ra
cy

(%
)

Top accuracy using 4 hidden layer pairs

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of classes

A
cc
u
ra
cy

(%
)

Top accuracy using 5 hidden layer pairs

RGB Image
Radon85
Radon136
Trace

MDIPFL25
MDIPFL50
MDIPFL85
MDIPFL136

Figure 3.7. One-shot classification accuracy for classes N = 1 . . . 10, grouped by
different numbers of hidden convolutional-pooling layer pairs, from 1 to 5, left to
right, respectively.

the top projection based models regardless of the class number. This is mainly
caused by the extremely large convolutional window sizes.

A more detailed summary of classification accuracy for different methods and
layer numbers can be found in appendix A.1.

The processing times of each input type regarding the number of hidden layers
is visualized in Figure 3.8.

The significant increase in processing time is clear for raw image inputs: this is
caused by the relatively large matrix size, causing memory cost, ultimately resulting
in lower batch sizes. As a given number of training pairs should be used during
training, low batch sizes increase the necessary iterations, therefore the runtime as
well.

The large deviation in runtimes is caused by the difference in window sizes.
Because of the memory limit (and minimal batch size), some of the generated archi-
tectures simply would not fit in the device memory; therefore, training is unadvised,
or not possible. To deal with this, the generator method tries to increase the window
sizes until the necessary number of architectures are found.

As previously explained, the memory cost of the model is an important measure
in the implementation of machine learning solutions. To analyze the usability of pro-
jection-based preprocessing methods, both prediction accuracy and memory storage
need should be optimized.

As an exact ratio of importance between the two cannot be given, multi-objective
optimization [114] is used to give the best results based on the objective functions.

The objective functions are defined as

ferr(m) = 100− Accuracy(m) (3.16)

79

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of layer pairs

A
ve
ra
ge

p
ro
ce
ss

ti
m
e
(h
ou

rs
)

RGB Image
Radon85
Radon136
Trace

MDIPFL25
MDIPFL50
MDIPFL85
MDIPFL136

Figure 3.8. Average processing times of models grouped by input types and the
number of hidden layers. Each bar represents the average processing time of the
training 50 models twice. Error bars illustrate the standard deviation.

and

fmemory(m) = ParameterNumber(m), (3.17)
where m stands for the model.

By defining ferr as the error rate, and fmemory with the parameter number of the
model, optimization is done by pursuing to minimize the results by each objective.

The Pareto frontier [114] represents a set of multiple parameterizations, where
each of the elements are Pareto efficient. An element is described as Pareto efficient
– and therefore part of the Pareto frontier – if it is not Pareto dominated by any
other points.

To define dominancy using the functions above, notations m1 and m2 will be
used for two different, m1 6= m2 models. Dominancy of m1 over m2 is given as

V = {err, memory}
m1 � m2 : ∀i ∈ V : fi(m1) ≤ fi(m2), ∃j ∈ V : fj(m1) < fj(m2).

(3.18)

Based on dominancy, the elements of the Pareto frontier are given as

∀m ∈M @m′ ∈M : m 6= m′,m′ � m, (3.19)
that is, the elements in the Pareto frontier are allmmodels, which are not dominated
by (i.e., no dominator element exists) any other m′ elements of set of all models M .

80

These elements are also referred to as Pareto optimal results.
Note that, based on this definition, elements with equal values are not dominating

each other. For example,

m1 ∈M,m2 ∈M
ferr(m1) = ferr(m2)

fmemory(m1) = fmemory(m2)
therefore, based on the strict definition in (3.18),

m1 � m2,

m2 � m1.

If no other elements are dominating m1 and m2, both are parts of the Pareto
frontier.

The results of the multi-objective optimization are visualized in Figure 3.9. The
figures show that the optimal results for both ferr and fmemory are, in most cases,
based on MDIPFL transformations. These Pareto optimal solutions also include
some models based on the original images, and few are built on the Radon transform.

It is notable, the figures also point out the fact that some of the neural architec-
tures generated were not able to learn from the given examples, as the error rates for
2, 4, 6, 8, 10-way classifications were at 50%, 75%, 83.3%, 87.5%, 90%, respectively.

CNN architectures with the highest 10-way one-shot classification accuracy are
listed in Appendix A.2. For every input type, the top five architectures are illus-
trated.

Thesis 2.3 I analyzed each of the multidirectional image projection methods, using
them as a preprocessor for input data, to determine the effect on the performance of
Siamese convolutional networks. Based on the results, I concluded that the method
based on a fixed number of bins is Pareto optimal in terms of efficiency and memory
requirement compared to the raw image methods considered as a reference.

Publications pertaining to thesis: [K6].

81

0 2M 4M 6M 8M 10M 12M 14M
0

20

40

60

Number of parameters

E
rr
o
r
ra
te

(%
)

2-way classification

0 2M 4M 6M 8M 10M 12M 14M

20

40

60

80

Number of parameters

E
rr
o
r
ra
te

(%
)

4-way classification

0 2M 4M 6M 8M 10M 12M 14M

20

40

60

80

Number of parameters

E
rr
o
r
ra
te

(%
)

6-way classification

0 2M 4M 6M 8M 10M 12M 14M
20

40

60

80

100

Number of parameters

E
rr
o
r
ra
te

(%
)

8-way classification

0 2M 4M 6M 8M 10M 12M 14M

40

60

80

100

Number of parameters

E
rr
o
r
ra
te

(%
)

10-way classification

RGB Image
Radon85
Radon136
Trace

MDIP25
MDIP50
MDIP85
MDIP136

Result
Pareto optimal

Figure 3.9. The results visualized by the number of parameters for the model and
the validation error rate. Each model was tested with 10,000 validation examples.
The Pareto optimal results – values that are not dominated by any other result –
are visualized in the bottom left corners as the Pareto frontier [K6].

82

3.5 Summary
To analyze the usability of multi-directional projection-based methods for object
image matching, a complex and computationally intense experiment was designed,
implemented, and evaluated.

The key idea behind the trials was to apply machine learning for matching,
which – in the case of images and other structured inputs – is done by Siamese
architectured Convolutional Neural Networks.

For a comprehensive measurement, state-of-the-art CNN design patterns were
analyzed, and based on the observations a technique to generate fully-convolutional
heads was given in Section 3.2. The described method uses a backtracking search
algorithm to find multiply possible solutions that satisfy the requirements. During
the search for possible architectures a memory consumption limit is kept, which, in
result, creates the practical benefit of possible targeting of different hardware. As
a result, beside commercially available personal computers with graphical acceler-
ators, large multi-GPU systems, or even small IoT devices with additional neural
accelerators can be used as target architectures.

In this experiment, the generated architectures were trained in a distributed
environment, on a cluster of GPU enabled computers. The training was managed in
a Master/Worker setup, with a special LPT-based scheduling using a computational
cost approximation described in section 3.3. The implementation is very effective,
the achieved efficiency was nearly the same as the number of workstations.

The speedup is thoroughly analyzed in Section 3.3: in short, the achieved effi-
ciency is extremely high, the total parallel processing time requires 4% of time when
compared to the sequential method.

For training, the elements of the dataset were transformed using multiple projec-
tion transformations, including the MDIPFL transformation presented in Chapter
2. For testing purposes, the original images were also included in the simulations.

To measure the accuracy, N-way one-shot classification tasks were used with a
multiple size of test image sets, to show the discriminative abilities of the trained
models.

After evaluating the results in terms of accuracy, processing time and memory
consumption (described in Section 3.4), it is concluded that the method based on a
fixed number of bins is Pareto optimal in terms of efficiency and memory requirement
compared to the raw image methods.

83

Chapter 4

Conclusion

Young man, in mathematics you don’t understand
things. You just get used to them.

— John von Neumann

This dissertation presented a method for object image matching using multi-di-
rectional image projection transformation with a fixed number of bins. This method
is analyzed and compared to other similar techniques, and finally transposed into a
modern machine learning-based framework.

The achieved results are summarized in a total of 6 theses, grouped into two
coherent thesis groups.

Thesis group I: Achievements in Multi-directional
Image Projections

Thesis 1.1
I have designed and implemented a method of mapping multi-directional projection
vectors using fixed bin numbers regardless of the rotation angle. The memory cost
of the result is independent of the image size; it is only affected by the rotation step
number and the number of bins.

The fixed number of bins result in a fixed vector length independent of the pro-
jection angle. Using a fixed resolution for different sized images result in projection
maps with equal size, which results in a constant memory cost.

84

The properties of the mapping show similarities to the Radon transform, which
served as an inspiration.

Publications pertaining to thesis: [K2], [K4], [K5].

Thesis 1.2
I have designed and implemented the data-parallel version of the multi-directional
image projection algorithm for graphical processors, which allows acceleration pro-
portional to the number of execution units.

The data-parallel solution is designed for GPU implementation. The method
uses multiple levels of the GPU device memory architecture, resulting in an efficient
solution where runtime is in a linear relationship with the number of elements.
However, the ability of simultaneous processing of elements results in a speedup
proportional to the number of execution units.

Publications pertaining to thesis: [K4], [K5].

Thesis 1.3
I evaluated the effectiveness of the fixed vector length multi-directional image projec-
tion method for object matching, comparing the results with similar projection-based,
lower-dimensional image signatures, and concluded that matching accuracy increased
significantly.

The defined method is compared with two- and four-dimensional projection sig-
nature-based matching methods, as well as the Radon transform. With a fixed
resolution, the memory cost does not depend on the size of the image. Also, it is
identified, that performance is not harmed by using small bin numbers; therefore, a
compression is achieved.

Publications pertaining to thesis: [K5].

Thesis group II: Application of Image Projections
as Preprocessing in Siamese Convolutional Neural
Networks

Thesis 2.1
I have developed a method based on backtracking search that provides all of the
suitable convolutional neural network architectures at a given input, layer number,
and memory cost.

The method generates CNN architectures based on the analyzed convolutional
design patterns, while keeping a low memory cost. The algorithm calculates window
sizes for decent convolutional and pooling layer pairs. Also, the memory cost of
the model is estimated and the training batch size is optimized to the available
maximum.

As a result, even small IoT devices with additional neural accelerators with less
memory can be used as target architectures for generation.

Publications pertaining to thesis: [K8].

85

Thesis 2.2
I designed and implemented a Master/Worker model for the analysis of Siamese con-
volutional neural network architectures in a distributed environment, with scheduling
based on the longest processing times. In practical measurements, the parallel effi-
ciency of the processing of the generated neural network architectures was 99.87%.

The distributed training was done in a cluster of workstations with graphical ac-
celerators. Measurements show, that the complexity approximation-based schedul-
ing is very effective, resulting in a speedup near the number of workstations.

Publications pertaining to thesis: [K9].

Thesis 2.3
I analyzed each of the multidirectional image projection methods, using them as a
preprocessor for input data, to determine the effect on the performance of Siamese
convolutional networks. Based on the results, I concluded that the method based on a
fixed number of bins is Pareto optimal in terms of efficiency and memory requirement
compared to the raw image methods considered as a reference.

Finally, the results of the designed simulation were evaluated. The architec-
tures were generated for multiple transformations based on the defined method.
After training in the distributed environment, the results were analyzed in terms of
one-shot classification accuracy, processing time and memory cost.

It is concluded that the MDIPFL method is Pareto optimal in terms of efficiency
and memory cost; therefore, the method is well suited for low memory hardware.

Publications pertaining to thesis: [K6].

Further research
Based on the original ideas described in [46], multiple observations of the same in-
stance could be used to increase performance. This could be done as simply as
storing multiple projection signatures from the same instances in case of one-shot
tasks, or an appearance model could be built by combining the collected observa-
tions.

To further improve the comparison of projection signatures, analyzing the camera
position and properties should be done. Assuming that the camera is fixed, image
rectification would improve the performance. Necessary camera properties could be
calculated based on calibration methods.

Further plans include the analysis of the defined method for object recognition
and matching for other types of data, for example, facial recognition and matching.
Person identification based access control systems and surveillance are widely used
for security.

As the defined method is memory efficient, the use of multi-core IoT devices
should be analyzed. Industrial cameras are able to detect regions of interest, segment
or even preprocess the recorded images before transfer. Therefore, a system based
on IoT Smart Cameras [1] could be applied.

86

When designing a system using multiple smart cameras, instead of the classic
centralized server-client model, a distributed environment of peer-to-peer connected
smart devices should be examined [115]. Such a structure would result in greater
territorial coverage with less constructional costs; in addition, the communication
bottleneck to the main computer would be removed.

The machine learning-based approach is feasible. With further optimization of
the training process, and hyperparameter tuning, the performance could be further
enhanced. It is also concluded, that the method can be applied for one-shot learning
tasks.

The efficiency of training can be increased by implementing a triplet loss tech-
nique [116]. In this case, the model would be trained with three representations: the
reference, the least similar true pair, and the most similar false pair. As a result, the
significant features of discrimination would be learned. As the selection of samples
is based on a pre-training similarity measurement, the challenge of this method is
to keep the runtime in an acceptable range [117].

The process can be further optimized by examining the possibilities in distributed
training of models. The current state-of-the art techniques are based on batch
division and gradient averaging. Initially, the models with equal parameters are
distributed along multiple workstations. During training, the batches are divided
and scattered between the nodes where the segments are used for a training loop.
After the processing of batches is finished, the gradients are collected by a main
node [118], averages are computed, and weights are updated on all nodes.

The memory transfer cost has a serious drawback on the efficiency of the method
even on a single host multi-GPU environment with dedicated connection between the
graphics accelerators. In distributed environments with multiple hosts, the negative
effect of transfer times are even more significant.

State-of-the-art approaches [119, 120] of distributed deep learning use the Ring-
AllReduce algorithm, removing the centralized averaging of gradients instead a ring
topology-based reduction is used to pass gradients in a circle, updating all nodes to
have the same model parameters.

As the projection descriptors show invariant properties, the application of trans-
fer learning should be examined. Transfer learning is a method where pre-trained
models are reused for different tasks. A very popular example is the VGG-16 model
[121], which is trained on the ImageNet dataset, and is used for base architectures
for different tasks. The most common approach is to remove the last few layers
of the VGG-16 architecture and replace them with output layers fitting the actual
problem description. The parameters of the VGG model remain unchanged during
training; therefore, they act as a feature mapping for input images.

In case of projection maps, the effects of transferring knowledge when using
pre-trained networks should be considered. Possible gains are higher performance
and efficiency during training.

87

Bibliography

[1] Bernhard Rinner and Wayne Wolf. “An Introduction to Distributed Smart
Cameras”. In: Proceedings of the IEEE 96.10 (2008), pp. 1565–1575.

[2] Chih-Chang Yu, Hsu-Yung Cheng, and Yi-Fan Jian. “Raindrop-Tampered
Scene Detection and Traffic Flow Estimation for Nighttime Traffic Surveil-
lance”. In: IEEE Transactions on Intelligent Transportation Systems 16 (3
2015), pp. 1518–1527.

[3] Angel Sanchez et al. “Video-Based Distance Traffic Analysis: Application to
Vehicle Tracking and Counting”. In: Computing in Science and Engg. 13.3
(2011), pp. 38–45. issn: 1521-9615. doi: 10.1109/MCSE.2010.143.

[4] Reyes Rios-Cabrera, Tinne Tuytelaars, and Luc Van Gool. “Efficient Multi-
camera Vehicle Detection, Tracking, and Identification in a Tunnel Surveil-
lance Application”. In: Comput. Vis. Image Underst. 116.6 (2012), pp. 742–
753. issn: 1077-3142. doi: 10.1016/j.cviu.2012.02.006.

[5] A. E. Abdel-Hakim and A. A. Farag. “Color segmentation using an Eigen
color representation”. In: 2005 8th International Conference on Information
Fusion 2 (2005). doi: 10.1109/ICIF.2005.1592043.

[6] Vedran Jelača et al. “Real-time vehicle matching for multi-camera tunnel
surveillance”. In: Proceedings of SPIE, Real-Time Image and Video Process-
ing. Vol. 7871. Jan. 2011, p. 8.

[7] Johann Radon. “Über die Bestimmung von Funktionen durch ihre Integral-
werte längs gewisser Mannigfaltigkeiten”. In: Berichte über die Verhand-
lungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig,
Mathematisch-Physische Klasse (1917), pp. 262–277.

[8] Johann Radon. “On the Determination of Functions from Their Integral Val-
ues along Certain Manifolds”. In: Medical Imaging, IEEE Transactions on
5 (1986), pp. 170–176. issn: 0278-0062. doi: 10.1109/TMI.1986.4307775.

[9] Richard Szeliski. Computer Vision: Algorithms and Applications. 1st. New
York, NY, USA: Springer-Verlag New York, Inc., 2010. isbn: 1848829345,
9781848829343.

[10] Joseph L Mundy. “Object recognition in the geometric era: A retrospective”.
In: Toward category-level object recognition. Springer, 2006, pp. 3–28.

[11] Szabolcs Sergyán. “Content based image retrieval in database of segmented
images”. In: Proceedings of 4th Slovakian-Hungarian Joint Symposium on
Applied Machine Intelligence. 2006, pp. 380–388.

88

https://doi.org/10.1109/MCSE.2010.143
https://doi.org/10.1016/j.cviu.2012.02.006
https://doi.org/10.1109/ICIF.2005.1592043
https://doi.org/10.1109/TMI.1986.4307775

[12] MM El-Gayar, H Soliman, et al. “A comparative study of image low level fea-
ture extraction algorithms”. In: Egyptian Informatics Journal 14.2 (2013),
pp. 175–181.

[13] Zoltan Kato and Ting-Chuen Pong. “A Markov random field image segmen-
tation model for color textured images”. In: Image and Vision Computing
24.10 (2006), pp. 1103–1114.

[14] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. Upper
Saddle River, N.J.: Prentice Hall, 2008. isbn: 9780131687288 013168728X
9780135052679 013505267X.

[15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2015, pp. 3431–3440.

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolu-
tional networks for biomedical image segmentation”. In: International Con-
ference on Medical image computing and computer-assisted intervention.
Springer. 2015, pp. 234–241.

[17] Chee Sun Won. “Feature extraction and evaluation using edge histogram de-
scriptor in MPEG-7”. In: Pacific-Rim Conference on Multimedia. Springer.
2004, pp. 583–590.

[18] Chris Fields. “How Humans Recognize Objects: Segmentation, Categoriza-
tion and Individual Identification”. In: Frontiers in psychology 7 (2016),
p. 400.

[19] Hans P Moravec. “Toward Automatic Visual Obstacle Avoidance”. In: In-
ternational Conference on Artificial Intelligence (5th: 1977: Massachusetts
Institute of Technology). 1977.

[20] Christopher G Harris, Mike Stephens, et al. “A combined corner and edge
detector”. In: Alvey vision conference. Vol. 15. 50. 1988, pp. 147–151.

[21] Jianbo Shi and Carlo Tomasi. Good features to track. Tech. rep. Cornell
University, 1993.

[22] Tony Lindeberg. “Feature detection with automatic scale selection”. In: In-
ternational journal of computer vision 30.2 (1998), pp. 79–116.

[23] Cordelia Schmid, Roger Mohr, and Christian Bauckhage. “Evaluation of
interest point detectors”. In: International Journal of computer vision 37.2
(2000), pp. 151–172.

[24] David G Lowe et al. “Object recognition from local scale-invariant features”.
In: Proceedings of the International Conference on Computer Vision. 2.
1999, pp. 1150–1157.

[25] Herbert Bay et al. “Speeded-up robust features (SURF)”. In: Computer
vision and image understanding 110.3 (2008), pp. 346–359.

[26] PM Panchal, SR Panchal, and SK Shah. “A comparison of SIFT and SURF”.
In: International Journal of Innovative Research in Computer and Commu-
nication Engineering 1.2 (2013), pp. 323–327.

89

[27] Yanlin Guo et al. “Robust Object Matching for Persistent Tracking with
Heterogeneous Features”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 29.5 (2007), pp. 824–839. issn: 0162-8828. doi: 10.
1109/TPAMI.2007.1052.

[28] Yanlin Guo et al. “Matching vehicles under large pose transformations using
approximate 3D models and piecewise MRF model”. In: IEEE Conference
on Computer Vision and Pattern Recognition. IEEE. 2008, p. 8.

[29] Tingbo Hou, Sen Wang, and Hong Qin. “Vehicle Matching and Recognition
under Large Variations of Pose and Illumination”. In: Computer Vision and
Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Com-
puter Society Conference on. IEEE, 2009, pp. 24–29. isbn: 978-1-4244-3994-2.
doi: 10.1109/CVPRW.2009.5204071.

[30] Tae Eun Choe, Mun Wai Lee, and Niels Haering. “Traffic Analysis with Low
Frame Rate Camera Networks”. In: Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2010 IEEE Computer Society Conference on.
IEEE, 2010, pp. 9–16. isbn: 978-1-4244-7030-3. doi: 10.1109/CVPRW.2010.
5543801.

[31] R. Brunelli. Template Matching Techniques in Computer Vision: Theory
and Practice. Wiley, 2009.

[32] Michael Oren et al. “Pedestrian detection using wavelet templates”. In: 1997,
pp. 193–199.

[33] Constantine P Papageorgiou, Michael Oren, and Tomaso Poggio. “A gen-
eral framework for object detection”. In: Sixth International Conference on
Computer Vision (IEEE Cat. No. 98CH36271). IEEE. 1998, pp. 555–562.

[34] Paul Viola and Michael Jones. “Robust real-time object detection”. In: In-
ternational journal of computer vision 4.34-47 (2001), p. 4.

[35] Paul Viola and Michael Jones. “Rapid Object Detection using a Boosted
Cascade of Simple Features”. In: Computer Vision and Pattern Recogni-
tion, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on. Vol. 1. IEEE. 2001, pp. 511–518.

[36] Quan Yuan and Stan Sclaroff. “Is a detector only good for detection?” In:
2009 IEEE 12th International Conference on Computer Vision. IEEE. 2009,
pp. 1066–1073.

[37] Herbert J Ryser. “Combinatorial properties of matrices of zeros and ones”.
In: Classic Papers in Combinatorics. Springer, 2009, pp. 269–275.

[38] Gábor T. Herman and Attila Kuba. Discrete Tomography: Foundations,
Algorithms, and Applications. Springer Science & Business Media, 1999.
isbn: 978-1-4612-7196-3.

[39] Gábor T. Herman and Attila Kuba. Advances in Discrete Tomography and
Its Applications. Advances in Discrete Tomography and Its Applications Ap-
plied and Numerical Harmonic Analysis. Birkhauser, 2007. isbn: 0817636145.

[40] Stanley R. Deans. The Radon Transform and Some of Its Applications. New
York: John Wiley and Sons, 1983.

90

https://doi.org/10.1109/TPAMI.2007.1052
https://doi.org/10.1109/TPAMI.2007.1052
https://doi.org/10.1109/CVPRW.2009.5204071
https://doi.org/10.1109/CVPRW.2010.5543801
https://doi.org/10.1109/CVPRW.2010.5543801

[41] Margrit Betke, Esin Haritaoglu, and Larry S Davis. “Real-time multiple
vehicle detection and tracking from a moving vehicle”. In: Machine vision
and applications 12.2 (2000), pp. 69–83.

[42] Yanxi Liu, Robert Collins, and Yanghai Tsin. “Gait sequence analysis using
frieze patterns”. In: European Conference on Computer Vision. Springer.
2002, pp. 657–671.

[43] Judith N Cederberg. A course in modern geometries. Springer Science &
Business Media, 2013.

[44] Seungkyu Lee, Yanxi Liu, and Robert Collins. “Shape variation-based frieze
pattern for robust gait recognition”. English (US). In: 2007 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR’07.
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. 2007. isbn: 1424411807. doi: 10.1109/CVPR.
2007.383138.

[45] Ying Shan, Harpreet S. Sawhney, and Rakesh Kumar. “Vehicle Identifica-
tion between Non-Overlapping Cameras without Direct Feature Matching”.
In: 10th IEEE International Conference on Computer Vision (ICCV’05) 1
(2005), pp. 378–385.

[46] Vedran Jelača et al. “Vehicle matching in smart camera networks using
image projection profiles at multiple instances”. In: Image and Vision Com-
puting 31 (2013), pp. 673–685.

[47] Richard A. Newcombe et al. “KinectFusion: Real-time Dense Surface Map-
ping and Tracking”. In: Proceedings of the 2011 10th IEEE International
Symposium on Mixed and Augmented Reality. ISMAR ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 127–136. isbn: 978-1-4577-2183-0.
doi: 10.1109/ISMAR.2011.6092378.

[48] Dmitry Chetverikov et al. “The trimmed iterative closest point algorithm”.
In: Object recognition supported by user interaction for service robots. Vol. 3.
IEEE. 2002, pp. 545–548.

[49] Patrick J. Drew et al. “Rapid Determination of Particle Velocity from Space-
time Images Using the Radon Transform”. In: Journal of computational
neuroscience 29.1-2 (2010), pp. 5–11. doi: 10.1007/s10827-009-0159-1.

[50] David V Stark et al. “SDSS-IV MaNGA: characterizing non-axisymmetric
motions in galaxy velocity fields using the Radon transform”. In: Monthly
Notices of the Royal Astronomical Society 480.2 (2018), pp. 2217–2235.

[51] Yu Jeffrey Gu and Mauricio Sacchi. “Radon transform methods and their
applications in mapping mantle reflectivity structure”. In: Surveys in geo-
physics 30.4-5 (2009), pp. 327–354.

[52] Fritz John. “Bestimmung einer Funktion aus ihren Integralen über gewisse
Mannigfaltigkeiten”. In: Mathematische Annalen 109.1 (1934), pp. 488–520.

[53] Philomena Mader. “Über die Darstellung von Punktfunktionen imn-dimen-
sionalen euklidischen Raum durch Ebenenintegrale”. In:Mathematische Zeit-
schrift 26.1 (1927), pp. 646–652.

91

https://doi.org/10.1109/CVPR.2007.383138
https://doi.org/10.1109/CVPR.2007.383138
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1007/s10827-009-0159-1

[54] L. A. Shepp and B. F. Logan. “The Fourier reconstruction of a head section”.
In: IEEE Transactions on Nuclear Science 21 (1974), pp. 21–43.

[55] Gene R. Gindi and Arthur F. Gmitro. “Optical feature extraction via the
Radon transform”. In: Optical Engineering 23 (1984), pp. 499–506.

[56] Il Yong Chun, Ben Adcock, and Thomas M. Talavage. “Non-convex com-
pressed sensing CT reconstruction based on tensor discrete Fourier slice
theorem”. In: Engineering in Medicine and Biology Society (EMBC), 2014
36th Annual International Conference of the IEEE (2014), pp. 5141–5144.

[57] R. Clackdoyle, F. Noo, and M. S. Ould Mohamed. “Filtered-Backprojection
Reconstruction Formula for 2D Tomography with Bilateral Truncation”.
In: Nuclear Science Symposium Conference Record, 2006. IEEE 5 (2006),
pp. 2895–2899.

[58] Xueling Zhu et al. “A Wavelet Multiscale De-Noising Algorithm Based on
Radon Transform”. In: Wavelet Transforms and Their Recent Applications
in Biology and Geoscience (2012), pp. 189–206.

[59] Alexander Kadyrov and Maria Petrou. “The trace transform and its applica-
tions”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
23.8 (2001), pp. 811–828.

[60] Paul VC Hough. Method and means for recognizing complex patterns. US
Patent 3,069,654. Dec. 1962.

[61] M. van Ginkel, C.L. Luengo Hendriks, and L.J. van Vliet. A short introduc-
tion to the Radon and Hough transforms and how they relate to each other.
Tech. rep. QI-01-2004, 2004.

[62] Richard O. Duda and Peter E. Hart. “Use of the Hough Transformation to
Detect Lines and Curves in Pictures”. In: Commun. ACM 15.1 (Jan. 1972),
pp. 11–15. issn: 0001-0782. doi: 10.1145/361237.361242.

[63] Ronny Ramlau and Otmar Scherzer. “The first 100 years of the Radon
transform”. In: Inverse Problems 34.9 (July 2018). doi: 10.1088/1361-
6420/aacf27.

[64] André R. Brodtkorb, Trond R. Hagen, and Martin L. SæTra. “Graphics
Processing Unit (GPU) Programming Strategies and Trends in GPU Com-
puting”. In: J. Parallel Distrib. Comput. 73.1 (Jan. 2013), pp. 4–13. issn:
0743-7315. doi: 10.1016/j.jpdc.2012.04.003.

[65] David B. Kirk and Wenmei W. Hwu. Programming Massively Parallel Pro-
cessors: A Hands-on approach. Morgan Kaufmann, 2010.

[66] Timothy G Mattson, Beverly Sanders, and Berna Massingill. Patterns for
parallel programming. Pearson Education, 2004.

[67] NVIDIA. CUDA C Programming Guide. NVIDIA Corporation, 2014.
[68] Sándor Szénási and Imre Felde. “Using multiple graphics accelerators to

solve the two-dimensional inverse heat conduction problem”. In: Computer
Methods in Applied Mechanics and Engineering 336 (2018), pp. 286–303.
issn: 0045-7825. doi: doi.org/10.1016/j.cma.2018.03.024.

[69] F. J. Anscombe. “Graphs in Statistical Analysis”. In: The American Statis-
tician 27.1 (1973), pp. 17–21. doi: 10.1080/00031305.1973.10478966.

92

https://doi.org/10.1145/361237.361242
https://doi.org/10.1088/1361-6420/aacf27
https://doi.org/10.1088/1361-6420/aacf27
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/doi.org/10.1016/j.cma.2018.03.024
https://doi.org/10.1080/00031305.1973.10478966

[70] Omar Javed, Khurram Shafique, and Mubarak Shah. “Appearance Modeling
for Tracking in Multiple Non-Overlapping Cameras”. In: Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 2. CVPR ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 26–33. isbn: 0-7695-2372-2. doi: 10.1109/
CVPR.2005.71.

[71] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics
5.4 (1943), pp. 115–133.

[72] Frank Rosenblatt. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386.

[73] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In:
Neural networks 61 (2015), pp. 85–117.

[74] Yoshua Bengio. “Deep learning of representations for unsupervised and
transfer learning”. In: Proceedings of ICML Workshop on Unsupervised and
Transfer Learning. 2012, pp. 17–36.

[75] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (2015), p. 436.

[76] Ian Goodfellow et al. Deep learning. Vol. 1. MIT press Cambridge, 2016.
[77] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. “Large-scale Deep Un-

supervised Learning Using Graphics Processors”. In: Proceedings of the 26th
Annual International Conference on Machine Learning. ICML ’09. Mon-
treal, Quebec, Canada: ACM, 2009, pp. 873–880. isbn: 978-1-60558-516-1.
doi: 10.1145/1553374.1553486.

[78] Yann A LeCun et al. “Efficient BackProp”. In: Neural networks: Tricks of
the trade. Springer, 2012, pp. 9–48.

[79] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Proceedings of the
25th International Conference on Neural Information Processing Systems.
NIPS’12. Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 1097–1105.

[80] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. “Convolutional
networks and applications in vision”. In: Circuits and Systems (ISCAS), Pro-
ceedings of 2010 IEEE International Symposium on. IEEE. 2010, pp. 253–
256.

[81] David H Hubel and Torsten N Wiesel. “Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex”. In: The Journal
of physiology 160.1 (1962), pp. 106–154.

[82] David H Hubel and Torsten N Wiesel. “Receptive fields and functional ar-
chitecture in two nonstriate visual areas (18 and 19) of the cat”. In: Journal
of neurophysiology 28.2 (1965), pp. 229–289.

[83] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position”. In:
Biological cybernetics 36.4 (1980), pp. 193–202.

93

https://doi.org/10.1109/CVPR.2005.71
https://doi.org/10.1109/CVPR.2005.71
https://doi.org/10.1145/1553374.1553486

[84] Yann LeCun et al. “Backpropagation applied to handwritten zip code recog-
nition”. In: Neural computation 1.4 (1989), pp. 541–551.

[85] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images,
speech, and time series”. In: The handbook of brain theory and neural net-
works 3361.10 (1995).

[86] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Em-
bedding”. In: Proceedings of the 22nd ACM international conference on Mul-
timedia. ACM. 2014, pp. 675–678.

[87] Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas. “Systematic evalua-
tion of Convolution Neural Network advances on the ImageNet”. In: Com-
puter Vision and Image Understanding 161 (2017), pp. 11–19.

[88] Christian Szegedy et al. “Going Deeper with Convolutions”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 1–9.

[89] Yoshua Bengio. “Practical Recommendations for Gradient-Based Training
of Deep Architectures”. In: Neural networks: Tricks of the trade. Springer,
2012, pp. 437–478.

[90] Andrej Karpathy, FF Li, and J Johnson. “CS231n: Convolutional Neural
Networks for Visual Recognition, 2016”. In: URL http://cs231n. github. io
(2017).

[91] Jane Bromley et al. “Signature verification using a" siamese" time delay
neural network”. In: Advances in neural information processing systems.
1994, pp. 737–744.

[92] Sumit Chopra, Raia Hadsell, and Yann LeCun. “Learning a similarity metric
discriminatively, with application to face verification”. In: Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Con-
ference on. Vol. 1. IEEE. 2005, pp. 539–546.

[93] Taigman, Yaniv and Yang, Ming and Ranzato, Marc’Aurelio and Wolf, Lior.
“DeepFace: Closing the Gap to Human-Level Performance in Face Verifica-
tion”. In: Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition. CVPR ’14. Washington, DC, USA: IEEE Computer So-
ciety, 2014, pp. 1701–1708. isbn: 978-1-4799-5118-5. doi: 10.1109/CVPR.
2014.220.

[94] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet: A Uni-
fied Embedding for Face Recognition and Clustering”. In: Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 2015 abs/1503.03832 (2015).

[95] Oriol Vinyals and Charles Blundell and Timothy P. Lillicrap and Koray
Kavukcuoglu and Daan Wierstra. “Matching Networks for One Shot Learn-
ing”. In: (2016). Ed. by D. D. Lee et al., pp. 3630–3638.

[96] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural
Networks for One-shot Image Recognition”. In: ICML 2015 Deep Learning
Workshop. 2015.

94

https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1109/CVPR.2014.220

[97] Barret Zoph et al. “Learning transferable architectures for scalable image
recognition”. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2018, pp. 8697–8710.

[98] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement
learning”. In: International Conference on Learning Representations. 2017.

[99] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement
Learning. 1st. Cambridge, MA, USA: MIT Press, 1998. isbn: 0262193981.

[100] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural Architec-
ture Search: A Survey”. In: Journal of Machine Learning Research 20.55
(2019), pp. 1–21.

[101] Jia Li and F Li. “Cloud AutoML: Making AI accessible to every business”.
In: (2018). url: https://www.blog.google/products/google-cloud/
cloud-automl-making-ai-accessible-every-business/.

[102] Ian Jolliffe. “Principal component analysis”. In: International encyclopedia
of statistical science. Springer, 2011, pp. 1094–1096.

[103] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2009.
[104] Michael L Pinedo. Scheduling: theory, algorithms, and systems. Springer,

2016.
[105] William Gropp et al. Using MPI: portable parallel programming with the

message-passing interface. Vol. 1. MIT press, 1999.
[106] Martín Abadi et al. “Tensorflow: A system for large-scale machine learn-

ing”. In: 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16). 2016, pp. 265–283.

[107] Francois Chollet et al. Keras: The Python Deep Learning library. Astro-
physics Source Code Library. 2018.

[108] Yann LeCun. @ylecun on Twitter. https://twitter.com/ylecun/status/
989610208497360896. 26 Apr 2018.

[109] Dominic Masters and Carlo Luschi. “Revisiting small batch training for deep
neural networks”. In: arXiv preprint arXiv:1804.07612 (2018).

[110] Mauro Dell’Amico and Silvano Martello. “Optimal scheduling of tasks on
identical parallel processors”. In: ORSA Journal on Computing 7.2 (1995),
pp. 191–200.

[111] Alessandro Agnetis et al. “Multiagent scheduling”. In: Berlin Heidelberg:
Springer Berlin Heidelberg. doi 10.1007 (2014), pp. 978–3.

[112] Dominik Zapletal and Adam Herout. “Vehicle Re-Identification for Auto-
matic Video Traffic Surveillance”. In: International Workshop on Automatic
Traffic Surveillance (CVPR 2016). Las Vegas, US: IEEE Computer Society,
2016, pp. 1–7. isbn: 978-0-7695-4989-7.

[113] Brenden M Lake, Ruslan R Salakhutdinov, and Josh Tenenbaum. “One-shot
learning by inverting a compositional causal process”. In: Advances in Neu-
ral Information Processing Systems 26. Ed. by C. J. C. Burges et al. Curran
Associates, Inc., 2013, pp. 2526–2534.

95

https://www.blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/
https://www.blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/
https://twitter.com/ylecun/status/989610208497360896
https://twitter.com/ylecun/status/989610208497360896

[114] Kaisa Miettinen. Nonlinear multiobjective optimization. Vol. 12. Springer
Science & Business Media, 2012.

[115] Giuseppe Amato et al. “Deep learning for decentralized parking lot occu-
pancy detection”. In: Expert Systems with Applications 72 (2017), pp. 327–
334.

[116] De Cheng et al. “Person Re-Identification by Multi-Channel Parts-Based
CNN With Improved Triplet Loss Function”. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2016.

[117] Alexander Hermans, Lucas Beyer, and Bastian Leibe. “In defense of the
triplet loss for person re-identification”. In: arXiv preprint arXiv:1703.07737
(2017).

[118] He Ma, Fei Mao, and Graham W Taylor. “Theano-mpi: a theano-based
distributed training framework”. In: European Conference on Parallel Pro-
cessing. Springer. 2016, pp. 800–813.

[119] Xianyan Jia et al. “Highly scalable deep learning training system with
mixed-precision: Training imagenet in four minutes”. In: arXiv preprint
arXiv:1807.11205 (2018).

[120] Alexander Sergeev and Mike Del Balso. “Horovod: fast and easy distributed
deep learning in TensorFlow”. In: arXiv preprint arXiv:1802.05799 (2018).

[121] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

96

Publications related to the
dissertation

[K1] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. “Performance Mea-
surement of a General Multi-Scale Template Matching Method”. In: Pro-
ceedings of INES 2015. 19th IEEE International Conference on Intelligent
Engineering Systems (Bratislava, Slovakia, Sept. 3–5, 2015). IEEE, 2015,
pp. 153–158.

[K2] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. “Application and prop-
erties of the Radon transform for object image matching”. In: Proceedings
of SAMI 2017. IEEE 14th International Symposium on Applied Machine
Intelligence and Informatics (Herlany, Slovakia, Jan. 26–28, 2017). IEEE,
2017, pp. 353–358.

[K3] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. “Parallelization Meth-
ods of the Template Matching Method on Graphics Accelerators”. In: Pro-
ceedings of CINTI 2015. 16th IEEE International Symposium on Computa-
tional Intelligence and Informatics (Budapest, Hungary, Nov. 19–21, 2015).
IEEE, 2015, pp. 161–164.

[K4] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. “A Novel Method
for Robust Multi-Directional Image Projection Computation”. In: Proceed-
ings of INES 2016. 20th IEEE International Conference on Intelligent En-
gineering Systems (Budapest, Hungary, June 30–July 2, 2016). IEEE, 2016,
pp. 239–243.

[K5] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. “Multi-Directional
Image Projections with Fixed Resolution for Object Matching”. In: Acta
Polytechnica Hungarica 15.2 (2018), pp. 211–229.

[K6] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. “Multi-Directional
Projection Transformations for Machine Learning based Object Matching”.
In: SACI 2019 : IEEE 13th International Symposium on Applied Computa-
tional Intelligence and Informatics. 2019, pp. 269–274.

[K7] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. “Vehicle Image Match-
ing Using Siamese Neural Networks with Multi-Directional Image Projec-
tions”. In: 12th IEEE International Symposium on Applied Computational
Intelligence and Informatics, SACI 2018, Timisoara, Romania, May 17-19,
2018. 2018, pp. 491–496.

97

[K8] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. “A novel method for
Convolutional Neural Architecture Generation with memory limitation”.
In: Proceedings of SAMI2019. IEEE 17th World Symposium on Applied Ma-
chine Intelligence and Informatics (Herlany, Slovakia, Jan. 24–26, 2019).
IEEE, 2019, pp. 229–234.

[K9] Gábor Kertész, Sándor Szénási, and Zoltán Vámossy. “Distributed train-
ing and evaluation of projection-based descriptors in Siamese Neural Net-
works”. In: Proceedings of the Sixth International Conference on Parallel,
Distributed, GPU and Cloud Computing for Engineering. 2019, Paper 25,
1–12. doi: 10.4203/ccp.112.25.

98

https://doi.org/10.4203/ccp.112.25

Other, non-related publications

[KX1] Gabor Kertesz and Eva Hajnal. “Irisz Project: A Web Application for the
Introduction of University Students to the Labor Market”. In: International
Symposium on Applied Informatics and Related Areas : AIS 2013 Szekesfe-
hervar, Magyarorszag : Óbudai Egyetem, (2013). 2013, pp. 125–129.

[KX2] Gabor Kertesz and Eva Hajnal. “Special Issues in the Development of a
Large User Based Web Application”. In: Proceedings of the IEEE 12th In-
ternational Symposium on Applied Machine Intelligence and Informatics
(SAMI 2014) Budapest, Magyarorszag : IEEE Hungary Section, (2014).
2014, pp. 141–145.

[KX3] Gábor Kertész and Zoltán Vámossy. “Current challenges in multi-view com-
puter vision”. In: 10th IEEE Jubilee International Symposium on Applied
Computational Intelligence and Informatics, SACI 2015, Timisoara, Roma-
nia, May 21-23, 2015. 2015, pp. 237–241.

[KX4] Gábor Kertész and Zoltán Vámossy. “A Brief Review of Recent Advances in
Multi-View Computer Vision”. In: Scientific Bulletin of Politechnica Uni-
versity of Timisoara - Transactions on Automatic Control and Computer
ScienceE 61(75) (2016), pp. 73–78. issn: 1224-600X.

[KX5] Gabor Kertesz et al. “Multiprocessing of an individual-cell based model
for parameter testing”. In: 11th IEEE International Symposium on Applied
Computational Intelligence and Informatics, SACI 2016, Timisoara, Roma-
nia, May 12-14, 2016. 2016, pp. 491–496.

[KX6] Sandor Szenasi et al. “Comparison of Road Accident Black Spot Searching
Methods”. In: IEEE 18th International Symposium on Computational In-
telligence and Informatics (CINTI 2018) Budapest, Magyarorszag : IEEE
Hungary Section, (2018). 2018, pp. 247–250.

[KX7] Sandor Szenasi et al. “Road Accident Black Spot Localisation using Mor-
phological Image Processing Methods on Heatmap”. In: IEEE 18th Inter-
national Symposium on Computational Intelligence and Informatics (CINTI
2018) Budapest, Magyarorszag : IEEE Hungary Section, (2018). 2018, pp. 251–
256.

[KX8] Bence Danko and Gabor Kertesz. “Recognition of the Hungarian Finger-
spelling Alphabet using Convolutional Neural Network based on Depth
Data”. In: IEEE 18th International Symposium on Computational Intelli-
gence and Informatics (CINTI 2018) Budapest, Magyarorszag : IEEE Hun-
gary Section, (2018). 2018, pp. 41–46.

99

[KX9] Bence Danko and Gabor Kertesz. “Recognition of the Hungarian finger-
spelling alphabet using Recurrent Neural Network”. In: SAMI 2019 : IEEE
17th World Symposium on Applied Machine Intelligence and Informatics.
2018, pp. 251–256.

100

Appendix A

Other resources

A.1 One-shot classification accuracy

Table A.1. Top measured one-shot classification accuracy for different inputs during
N-way classification for one hidden convolutional-pooling layer pair.

2 3 4 5 6 7 8 9 10
RGB Image 78,68 67,26 58,34 52,58 48,51 45,73 41,96 38,68 37,13
Radon85 80,99 69,32 62,52 56,82 53,53 49,51 46,51 42,81 40,49
Radon136 80,29 69,19 61,01 54,43 49,31 45,88 43,42 40,58 37,74
Trace 77,64 64,96 55,72 50,14 43,41 40,03 36,41 33,58 30,93
MDIPFL25 92,12 85,42 80,37 75,92 71,23 68,11 64,57 61,62 58,80
MDIPFL50 91,90 85,41 78,46 75,38 71,48 68,69 64,83 61,94 58,87
MDIPFL85 91,02 85,21 79,56 75,23 70,63 66,50 63,62 61,84 58,61
MDIPFL136 82,48 72,34 65,09 59,53 55,44 52,24 48,68 46,52 44,01

Table A.2. Top measured one-shot classification accuracy for different inputs during
N-way classification for 2 hidden convolutional-pooling layer pairs.

2 3 4 5 6 7 8 9 10
RGB Image 85,87 76,13 70,44 65,21 61,74 58,21 55,18 53,69 50,72
Radon85 80,32 68,04 59,84 52,50 48,14 43,59 40,93 39,21 36,84
Radon136 78,42 66,67 60,36 54,92 49,74 45,91 44,84 40,23 39,06
Trace 82,83 72,41 64,01 56,88 52,51 46,72 42,88 40,20 37,57
MDIPFL25 92,68 86,42 81,43 77,98 73,20 70,87 66,74 64,39 61,44
MDIPFL50 93,77 89,01 83,08 79,33 75,96 72,59 69,20 66,50 63,49
MDIPFL85 87,98 78,77 72,07 67,10 61,30 56,97 53,70 50,63 47,06
MDIPFL136 90,39 82,18 76,20 70,90 66,03 62,38 58,36 56,07 52,30

101

Table A.3. Top measured one-shot classification accuracy for different inputs during
N-way classification for 3 hidden convolutional-pooling layer pairs.

2 3 4 5 6 7 8 9 10
RGB Image 94,34 89,10 85,47 80,38 78,86 74,70 72,93 69,21 67,31
Radon85 80,43 68,63 59,39 53,13 47,42 43,31 39,98 37,58 34,52
Radon136 82,70 71,18 63,19 57,94 53,57 49,92 46,41 45,03 42,53
Trace 88,33 79,97 73,33 67,37 63,30 58,44 54,10 51,26 48,04
MDIPFL25 91,73 84,44 80,04 74,96 71,89 67,79 64,84 61,97 58,68
MDIPFL50 93,62 88,43 84,27 79,11 75,90 73,19 70,08 67,89 64,80
MDIPFL85 89,67 82,11 76,14 69,91 65,99 61,04 57,52 54,06 51,81
MDIPFL136 92,11 85,79 80,80 76,67 73,32 68,78 65,92 62,66 60,01

Table A.4. Top measured one-shot classification accuracy for different inputs during
N-way classification for 4 hidden convolutional-pooling layer pairs.

2 3 4 5 6 7 8 9 10
RGB Image 93,01 87,20 82,58 77,36 75,34 71,96 67,21 65,32 62,88
Radon85 93,22 87,27 83,47 78,68 75,22 72,73 68,81 66,52 64,11
Radon136 93,56 88,74 84,54 81,74 77,20 74,24 73,32 70,07 67,61
Trace 92,78 86,10 80,44 74,94 71,36 68,08 65,60 60,31 58,04
MDIPFL25 91,17 83,96 78,28 73,07 70,03 65,92 62,56 59,61 56,91
MDIPFL50 90,29 82,93 76,78 71,56 67,94 63,43 60,87 56,82 53,84
MDIPFL85 92,99 87,28 82,66 78,67 75,20 71,66 69,03 66,07 63,60
MDIPFL136 93,36 87,07 82,81 78,66 74,97 72,13 69,19 66,72 64,13

Table A.5. Top measured one-shot classification accuracy for different inputs during
N-way classification for 5 hidden convolutional-pooling layer pairs.

2 3 4 5 6 7 8 9 10
RGB Image 93,86 87,99 83,41 79,53 77,00 73,31 69,71 67,58 64,68
Radon85 92,78 87,89 83,94 79,40 75,73 73,39 70,74 68,22 66,28
Radon136 90,42 83,66 78,06 72,11 68,27 64,97 61,22 57,37 54,83
Trace 89,11 81,09 74,44 68,43 63,60 58,56 54,77 50,57 48,38
MDIPFL25 94,12 89,03 84,76 81,59 78,36 76,01 72,76 70,70 68,92
MDIPFL50 92,44 86,29 81,16 77,04 73,93 69,87 66,50 63,82 61,12
MDIPFL85 93,76 88,19 83,98 81,29 76,91 74,39 71,89 68,73 67,00
MDIPFL136 90,43 83,79 78,01 72,99 69,43 65,68 61,66 59,62 56,66

102

A.2 Generated neural architectures

Input(96×96×3) → Conv(13×13@64) → Pool(2×2) → Conv(7×7@64) → Pool(2×2) → Conv(7×7@64) →
Pool(2×2) → Flatten() → FC(2048) → FC(1024) →, batch size:: 18 Input(96×96×3) → Conv(9×9@64) →
Pool(2×2) → Conv(9×9@64) → Pool(2×2) → Conv(9×9@64) → Conv(5×5@128) → Conv(3×3@128) → Flatten()

→ FC(2048)→, batch size:: 24 Input(96×96×3)→ Conv(9×9@64)→ Pool(2×2)→ Conv(9×9@64)→ Pool(2×2)→
Conv(9×9@64) → Conv(5×5@64) → Flatten() → FC(2048) →, batch size:: 24 Input(96×96×3) → Conv(9×9@64)

→ Pool(2×2)→ Conv(9×9@64)→ Pool(2×2)→ Conv(9×9@64)→ Conv(5×5@64)→ Conv(5×5@256)→ Flatten()

→ FC(1024) →, batch size:: 56 Input(96×96×3) → Conv(9×9@64) → Pool(2×2) → Conv(9×9@64) → Pool(2×2)

→ Conv(9×9@64) → Conv(5×5@64) → Conv(3×3@128) → Flatten() → FC(1024) →, batch size:: 42

List A.1. The top 5 architectures in terms of 10-way one-shot classification accuracy
for RGB Image input sizes of 96×96×3. The arguments given for Conv and Pool
represent the window sizes for the given layer. In case of Conv layers, the third
number represents the filter number.

Input(85×36×1) → Conv(9×11@64) → Pool(1×2) → Conv(7×5@64) → Conv(5×5@64) → Conv(3×3@64) →
Conv(3×3@64) → Flatten() → FC(2048) →, batch size: 14 Input(85×36×1) → Conv(7×7@64) → Pool(1×2)

→ Conv(7×5@64)→ Conv(7×5@64)→ Conv(7×5@64)→ Conv(5×3@64)→ Flatten()→ FC(2048)→, batch size:

16 Input(85×36×1) → Conv(9×11@64) → Pool(1×2) → Conv(7×5@64) → Conv(7×5@64) → Conv(3×5@64) →
Flatten() → FC(2048) →, batch size: 14 Input(85×36×1) → Conv(9×11@64) → Pool(1×2) → Conv(9×9@64)

→ Conv(5×3@64) → Conv(5×3@64) → Flatten() → FC(2048) → FC(1024) →, batch size: 12 Input(85×36×1)

→ Conv(9×11@64) → Pool(1×2) → Conv(7×7@64) → Conv(5×3@64) → Conv(3×3@64) → Conv(3×3@64) →
Flatten() → FC(2048) →, batch size: 14

List A.2. The top 5 architectures in terms of 10-way one-shot classification accuracy
for Radon85 input sizes of 85× 36× 1. The arguments given for Conv and Pool
represent the window sizes for the given layer. In case of Conv layers, the third
number represents the filter number.

Input(136×36×1) → Conv(9×11@64) → Pool(2×2) → Conv(5×7@64) → Conv(5×5@64) → Conv(5×3@64) →
Flatten() → FC(2048) →, batch size: 18 Input(136×36×1) → Conv(9×11@64) → Pool(2×2) → Conv(7×7@64) →
Conv(5×5@64)→ Conv(5×3@64)→ Flatten()→ FC(2048)→, batch size: 18 Input(136×36×1)→ Conv(9×11@64)

→ Pool(2×2) → Conv(9×7@64) → Conv(5×5@64) → Conv(5×3@64) → Flatten() → FC(2048) →, batch size: 18

Input(136×36×1) → Conv(9×11@64) → Pool(2×2) → Conv(7×5@64) → Conv(7×5@64) → Conv(5×5@64) →
Flatten() → FC(2048) →, batch size: 20 Input(136×36×1) → Conv(9×11@64) → Pool(2×2) → Conv(7×7@64) →
Conv(5×5@64) → Conv(3×3@64) → Flatten() → FC(2048) →, batch size: 18

List A.3. The top 5 architectures in terms of 10-way one-shot classification accuracy
for Radon136 input sizes of 136×36×1. The arguments given for Conv and Pool
represent the window sizes for the given layer. In case of Conv layers, the third
number represents the filter number.

103

Input(137×72×1) → Conv(15×13@64) → Pool(3×2) → Conv(15×13@64) → Conv(9×9@64) → Conv(9×9@64) →
Flatten() → FC(1024) →, batch size: 42 Input(137×72×1) → Conv(9×11@64) → Pool(3×2) → Conv(9×11@64)

→ Conv(9×11@64) → Conv(9×11@64) → Flatten() → FC(1024) →, batch size: 52 Input(137×72×1) →
Conv(15×13@64) → Pool(3×2) → Conv(13×13@64) → Conv(11×11@64) → Conv(9×7@64) → Flatten()

→ FC(1024) →, batch size: 44 Input(137×72×1) → Conv(15×13@64) → Pool(3×1) → Conv(13×13@64)

→ Conv(13×13@64) → Conv(9×7@64) → Conv(9×7@64) → Flatten() → FC(1024) →, batch size: 36

Input(137×72×1) → Conv(15×13@64) → Pool(3×2) → Conv(13×13@64) → Pool(1×2) → Conv(7×9@64) → Flat-

ten() → FC(1024) →, batch size: 52

List A.4. The top 5 architectures in terms of 10-way one-shot classification accuracy
for Trace input sizes of 137 × 72 × 1. The arguments given for Conv and Pool
represent the window sizes for the given layer. In case of Conv layers, the third
number represents the filter number.

Input(25×36×1)→ Conv(7×5@64)→ Conv(7×5@64)→ Conv(5×5@64)→ Conv(5×3@128)→ Conv(5×3@128)→
Flatten()→ FC(2048)→, batch size: 22 Input(25×36×1)→ Conv(7×5@64)→ Conv(7×5@64)→ Conv(5×5@64)→
Conv(5×3@64)→ Conv(5×3@128)→ Flatten()→ FC(2048)→, batch size: 22 Input(25×36×1)→ Conv(7×5@64)

→ Conv(7×5@64)→ Conv(5×3@64)→ Conv(5×3@64)→ Conv(5×3@128)→ Flatten()→ FC(2048)→, batch size:

20 Input(25×36×1) → Conv(7×5@64) → Conv(7×5@64) → Conv(7×5@64) → Conv(5×5@64) → Conv(3×3@128)

→ Flatten()→ FC(2048)→, batch size: 24 Input(25×36×1)→ Conv(5×7@64)→ Conv(5×7@64)→ Conv(5×7@64)

→ Conv(5×7@64) → Conv(5×5@64) → Flatten() → FC(2048) →, batch size: 22

List A.5. The top 5 architectures in terms of 10-way one-shot classification accuracy
for MDIPFL25 input sizes of 25×36×1. The arguments given for Conv and Pool
represent the window sizes for the given layer. In case of Conv layers, the third
number represents the filter number.

Input(50×36×1)→ Conv(9×11@64)→ Pool(1×2)→ Conv(5×7@64)→ Conv(5×7@64)→ Flatten()→ FC(2048)→
FC(1024)→, batch size: 18 Input(50×36×1)→ Conv(9×11@64)→ Pool(1×2)→ Conv(5×7@64)→ Conv(5×7@64)

→ Flatten() → FC(2048) →, batch size: 28 Input(50×36×1) → Conv(11×9@64) → Pool(2×2) → Conv(9×9@64)

→ Pool(2×1) → Flatten() → FC(2048) → FC(1024) →, batch size: 18 Input(50×36×1) → Conv(11×9@64) →
Conv(9×9@64) → Conv(9×7@64) → Conv(9×7@64) → Conv(5×7@64) → Flatten() → FC(1024) →, batch size:

52 Input(50×36×1) → Conv(27×27@64) → Pool(3×2) → Flatten() → FC(2048) → FC(1024) →, batch size: 18

List A.6. The top 5 architectures in terms of 10-way one-shot classification accuracy
for MDIPFL50 input sizes of 50×36×1. The arguments given for Conv and Pool
represent the window sizes for the given layer. In case of Conv layers, the third
number represents the filter number.

Input(85×36×1) → Conv(9×7@64) → Pool(1×2) → Conv(7×7@64) → Conv(7×5@64) → Conv(5×3@64) →
Conv(3×3@64) → Flatten() → FC(2048) →, batch size: 16 Input(85×36×1) → Conv(9×11@64) → Pool(1×2)

→ Conv(7×5@64)→ Conv(5×5@64)→ Conv(5×3@64)→ Conv(5×3@64)→ Flatten()→ FC(2048)→, batch size:

16 Input(85×36×1) → Conv(9×11@64) → Pool(1×2) → Conv(7×7@64) → Conv(7×5@64) → Conv(5×3@64) →
Flatten() → FC(2048) →, batch size: 14 Input(85×36×1) → Conv(9×11@64) → Pool(1×2) → Conv(7×5@64) →
Conv(5×5@64) → Conv(5×3@64) → Conv(5×3@64) → Flatten() → FC(2048) →, batch size: 16 Input(85×36×1)

→ Conv(7×7@64) → Pool(1×2) → Conv(5×5@64) → Conv(5×5@64) → Conv(5×5@64) → Conv(5×3@64) →
Flatten() → FC(2048) →, batch size: 14

List A.7. The top 5 architectures in terms of 10-way one-shot classification accuracy
for MDIPFL85 input sizes of 85×36×1. The arguments given for Conv and Pool
represent the window sizes for the given layer. In case of Conv layers, the third
number represents the filter number.

104

Input(136×36×1) → Conv(9×11@64) → Pool(2×2) → Conv(5×5@64) → Conv(5×5@64) → Conv(3×5@64) →
Flatten() → FC(2048) →, batch size: 18 Input(136×36×1) → Conv(9×11@64) → Pool(2×2) → Conv(7×5@64) →
Conv(7×5@64)→ Conv(5×5@64)→ Flatten()→ FC(2048)→, batch size: 20 Input(136×36×1)→ Conv(9×11@64)

→ Pool(2×2) → Conv(9×7@64) → Conv(7×5@64) → Conv(3×3@64) → Flatten() → FC(2048) →, batch size:

18 Input(136×36×1) → Conv(9×11@64) → Pool(2×2) → Conv(9×7@64) → Conv(9×7@64) → Flatten() →
FC(2048) →, batch size: 18 Input(136×36×1) → Conv(9×11@64) → Pool(2×1) → Conv(9×11@64) → Pool(2×1)

→ Conv(9×7@64) → Conv(7×5@64) → Conv(5×5@64) → Flatten() → FC(1024) →, batch size: 58

List A.8. The top 5 architectures in terms of 10-way one-shot classification accuracy
for MDIPFL136 input sizes of 136 × 36 × 1. The arguments given for Conv and
Pool represent the window sizes for the given layer. In case of Conv layers, the
third number represents the filter number.

105

	Abstract
	Kivonat
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Object matching
	Color-based segmentation and matching
	Keypoints and feature descriptors
	Template matching
	Haar-like features

	Projection features
	4D signature calculation
	Projection-based object matching

	Goal of the research

	Multi-directional image projections
	Introduction
	The Radon-transform
	Properties of the Radon-transform
	Other related transformations

	Multi-directional projections with fixed bin number
	Memory and computational cost
	Properties of the transformation

	Data-parallel implementation
	Results and evaluation

	Object matching using multi-directional image projections with fixed bin number
	Two- and four-dimensional projections
	Multi-directional projections

	Summary

	Application of Multi-directional Projections in Siamese Convolutional Neural Networks
	Introduction
	Convolutional Neural Network
	Siamese architecture
	Goal

	Neural Architecture Generation
	Methodology
	Results

	Distributed training
	Master/Worker pattern
	Methodology
	Results and evaluation

	Results and evaluation
	Data
	Performance

	Summary

	Conclusion
	Bibliography
	Publications related to the dissertation
	Other, non-related publications
	Other resources
	One-shot classification accuracy
	Generated neural architectures

