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1 Background of the Research
The use of computer vision and image processing in traffic analysis and control has
shown significant growth in recent years. In addition to traditional solutions (such
as traffic counting, accident detection), multi-camera applications based on vehicle
identification and tracking have also emerged [Sanchez et al., 2011].

It is not always possible to identify a vehicle by its license plate number. In
addition to weather conditions, the lack of natural light can cause poor visibility. For
example, reading a remote identifier on low-quality images of cameras in artificially
lit tunnels can be challenging, as a result of noise, lack of color information and low
resolution.

The task falls within the scope of object recognition within computer vision. The
task is object detection when visual identification of an object of known appearance
is required. Object classification is specified as defining the type of an unknown,
segmented object.

In case the task is re-recognizing or re-identifying a previously seen object, the
task is referred to as instance recognition or object matching [Szeliski, 2010].

Over past decades, the problem of pairing objects has been approached in many
ways. There are many examples in the literature of solutions using keypoint based
descriptors [Shi and Tomasi, 1993]; [Lindeberg, 1998]; [Schmid, Mohr, and Bauck-
hage, 2000]; [Lowe et al., 1999]; [Bay et al., 2008], specifically for vehicle recognition
[Guo, Hsu, et al., 2007]; [Guo, Rao, et al., 2008]; [Hou, Wang, and Qin, 2009]; [Choe,
M. W. Lee, and Haering, 2010] as well.

If the image is of poor quality and low resolution, it is not advisable to experiment
with high-level keypoint-based solutions. In this case, pixel-intensity-based solutions
may be used, such as template matching [Brunelli, 2009], Haar-like features [Oren
et al., 1997]; [Papageorgiou, Oren, and Poggio, 1998]; [Viola and Jones, 2001a];
[Viola and Jones, 2001b]; [Yuan and Sclaroff, 2009]; [Rios-Cabrera, Tuytelaars, and
Van Gool, 2012], or using projection features [Betke, Haritaoglu, and Davis, 2000];
[Liu, Collins, and Tsin, 2002]; [S. Lee, Liu, and Collins, 2007]; [Shan, Sawhney, and
Kumar, 2005].

In the publication by [Jelača et al., 2013], a complex model was presented that is
capable to identify vehicles with low error rate on distant, non-overlapping camera
images. The method is based on a four-dimensional projection signature consisting
of the horizontal, vertical, diagonal and antidiagonal projections. The projection
signatures are comparable and their values can be used to calculate the degree of
similarity between objects.

The dimension number of the projection signature can be increased by introduc-
ing multiple projection directions. The Radon Transformation [Radon, 1917], which
became known primarily for its inverse formula [Deans, 1983], can be used to map
to multi-directional image projections. A related mapping is the Trace transforma-
tion [Kadyrov and Petrou, 2001], which gives a generalized form of the Radon. The
Hough transformation [Hough, 1962] is a method for detecting lines and shapes; it
uses rotation-based mapping similar to the Radon [Deans, 1983]; [Ginkel, Hendriks,
and Vliet, 2004].
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The explosive growth of image classification efficiency in recent years [Krizhevsky,
Sutskever, and G. E. Hinton, 2012] which is the result of machine learning; in partic-
ular the rise of deep learning. [Bengio, 2012a]; [Y. LeCun, Bengio, and G. Hinton,
2015]; [Schmidhuber, 2015]; [Goodfellow et al., 2016].

Modern image object recognition is based on convolutional neural networks1,
[Y. LeCun, Boser, et al., 1989]; [Y. LeCun, Bengio, et al., 1995], which is highly
effective at large neuron and layer numbers [Y. A. LeCun et al., 2012]; [Bengio,
2012b]; [Szegedy et al., 2015]; [Karpathy, Li, and Johnson, 2017]. The large number
of elements and the associated large number of training samples require considerable
computational capacity. Deep learning methods have become widespread because
of their parallelization, graphical processors can reduce the necessary training time
to a fraction [Raina, Madhavan, and Ng, 2009].

[Bromley et al., 1994] used an architecture based on convolutional neural net-
works to pair image objects called the Siamese neural network2. The method has
been successfully used for validation of handwritten signatures.

Siamese architectures are used effectively for face-identification [Chopra, Hadsell,
and Y. LeCun, 2005]; [Taigman, Yaniv and Yang, Ming and Ranzato, Marc’Aurelio
and Wolf, Lior, 2014]; [Schroff, Kalenichenko, and Philbin, 2015]; they can also be
used for one-shot learning problems, where few training samples are available [Oriol
Vinyals and Charles Blundell and Timothy P. Lillicrap and Koray Kavukcuoglu and
Daan Wierstra, 2016]; [Koch, Zemel, and Salakhutdinov, 2015].

2 Research Goals
The primary goal of my research is to analyze the applicability of multi-directional
projection descriptors for object matching. Four-dimensional projection signatures
are well suited for object matching. It can be assumed that the accuracy of the
method can be improved by introducing multiple projection directions.

In the case of Radon transformation, the length of each projection depends on
the size of the input image and the direction of projecting. If the similarity score
is determined from the best fit of the projections of different lengths, then it may
falsely indicate high similarity between different observations.

My goal is to develop a multi-directional image projection method that has a
fixed, predetermined length. This would result in a mapping independent of the
angle of rotation and the size of the image.

Investigating the parallelization capabilities of this method is also an important
task, as modern computer architectures provide a high degree of support for data
parallel execution, even for real-time processing, depending on the task. Typically,
in the case of multidimensional arrays and matrices, the multiprocessors on the
graphics accelerator can be used for parallel execution.

My further goal is to use the developed projection method for image matching,
comparing it with other projection methods in terms of performance, computational
complexity and memory cost.

In the next phase of my research, I examine machine learning-based methods for
object matching and analyze the applicability of Siamese models based on multi-di-

1Convolutional Neural Network, CNN
2Siamese Neural Network, SNN
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rectional projection descriptors. The significance of different projection directions
may vary depending on the type of problem and camera settings. It can also be
assumed that similarity measurement can be performed based on different features
of the parameter space.

A comprehensive experiment is necessary to determine the efficiency of neural
networks based on projection features. To achieve this, it is necessary to develop a
method for generating neural architectures for inputs with different types and sizes.

Thereafter, training and evaluating the large number of neural models is a com-
putationally demanding problem that may be appropriately solved in a distributed
environment. This problem is to design the training of multiple independent models
where parallel efficiency is maximized by structure and scheduling.

Therefore, my goal is to design and implement a complex experiment on mul-
ti-directional image-projection-based object matching using neural networks. As
part of this, I have to solve the problem of generating neural network architectures,
distributed training and evaluation of the models.

3 Methods of Investigation

3.1 Multi-directional Image Projections
The length of the projection section is determined by the size of the input image
and the projection angle. The projection length given by trigonometric functions
using angle α is cosαN + sinαN , where N denotes the width of the squared image.
This section can be divided into S bins with equal length and can be resolved
independently of α angle and N length.

After defining the bins, the value of each examined pixel is added to the value of
the covered bins in proportion to the overlap. The different number of affected bins
should be handled separately. With exactly one affected bin, the intensity value is
added to the bin entirely. With exactly two involved bins, the values are increased
in proportion to the overlap. In the case of multiple affected bins, the fully covered
ones are increased entirely and the partially covered ones are increased in proportion
to the projection. After normalization with the affected element numbers, the scale
becomes uniform.

In a data parallel implementation, it is necessary to consider the architectural
features of the multiprocessor environment. In GPGPU3 programming, it is impor-
tant to minimize the transfer between the host and the memory of the graphical
accelerator to reduce the overhead of transfer time.

The extensive utilization of the GPU4 memory architecture is similarly impor-
tant, as processors access local on-chip memory more efficiently than higher-capacity
global memory.

Eliminating common variables between different threads run by multiprocessors
is an important design step: using common variables can cause computational errors
as a result of the race condition. Classic synchronization-based handling of the
race condition leads to a decrease in efficiency; therefore, the restructuring of the

3General-Purpose Computing on Graphics Processing Units
4Graphics processing units
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algorithm is a better design choice. At the accumulation of the results, reduction or
atomic operations can be applied.

To determine the similarity factor of projection functions, the Pearson correlation
coefficient is calculated. Based on the obtained correlation values, the Euclidean
norm is normalized with the dimension number of the projection signature, which
gives the similarity score.

To determine the effectiveness of the classification, a threshold technique can be
used, where the similarity values calculated for the real pairs in the dataset exceed
exactly 50 or 80 percent. After calculating such thresholds, it is necessary to examine
the proportion of false pairs above the threshold, which are, false positives.

3.2 Siamese Convolutional Neural Networks
Siamese architectured convolutional neural networks consist of two identical convo-
lutional heads in which, in addition to the architecture, the weight and bias values
of the parameters are equal (Figure 3.1).

Convolutional neural networks have a well-known layered architecture. Feature
extraction is based on convolutional layers, and then occasionally pooling layers are
used to reduce the representation size. Prior to the output layer, conventional fully
connected layers are often used. In these network architectures, a variety of design
patterns can be observed, from kernel or window sizes, through the number of filters
to various hyperparameters.

The method developed to generate convolutional network architectures is based
on three steps:

1. defining the maximum kernel and window sizes based on the size of the input
matrix and the number of convolutional layers;

2. generation of convolutional and pooling layer pairs, having a valid representa-
tion while keeping the maximum memory cost;

3. collecting a certain number of architectures and optimization of the training
batch size for maximum memory utilization.

The Master/Worker design pattern is a convenient structure for training the
generated models in a distributed environment, as the processes are independent of
each other, only the input training data are common.

Input A

Input B

FCN

FCN

FC

FC

Distance

Figure 3.1: The structure of the two-headed Siamese Neural Network. The ful-
ly-convolutional (FCN) layeres are followed by fully-connected (FC) layers. The
parameters of the heads are identical, the outputs are multi-dimensional vectors.
The measured distance of the output vectors give the similarity of the inputs.
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A characteristic property of the pattern is that load balancing is automatic, and
Worker units receive tasks from the work queue on request. Parallel efficiency can
be increased by scheduling, for example, heuristics based on handing out tasks in
descending order of the execution times. While execution times are not known in
advance, they are estimated from the parameters of the architectures.

The matching performance of models can be measured using one-shot classifica-
tion, which takes pairing accuracy into consideration instead of examining measured
semantic distance values. In the latter case, similarity prediction is done by thresh-
olding the distance between the feature vectors, which appears as the output of the
Siamese network. In contrast, in the case of one-shot classification, the reference
object is compared to several objects belonging to different instances, similarly as in
real-life applications. Classification is correct if the distance between the reference
and its real counterpart is minimal compared to other objects.

The models are also comparable in terms of memory cost, which is well approxi-
mated by the number of weight and bias parameters in the model. Multi-objective
optimization can provide optimal models based on classification accuracy and model
memory cost.

If a model m1 is better than model m2 in terms of predicted performance and
in estimated memory usage, then m1 Pareto dominates m2. Elements of the Pare-
to-front are models, that are not dominated by another model, that is, Pareto-opti-
mal in terms of precision and memory cost.

4 New Scientific Results

Thesis group I: Achievements in Multi-directional
Image Projections

Thesis 1.1
I have designed and implemented a method of mapping multi-directional projection
vectors using fixed bin numbers regardless of the rotation angle. The memory cost
of the result is independent of the image size; it is only affected by the rotation step
number and the number of bins.

The computational complexity of the method based on trigonometric functions
in the case of sequential processing is approximately the same as in the previous
methods, determinable using the number of projection directions.

The length of projection slices is fixed even for different mapping directions;
therefore, memory cost is known in advance. In the case of a low number of bins,
the method can be interpreted as compression, providing a mapping with a lower
memory cost than the Radon transformation. A generated output of the method is
shown on Figure 4.1.

Publications pertaining to thesis: [1], [2], [3].
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Figure 4.1: A sample output of the projection method with fixed number of bins.
Subfigure (a) gives the original image, subfigure (b) shows the projection map. For
comparison, subfigure (c) shows the sinogram of the Radon transform.

Thesis 1.2
I have designed and implemented the data-parallel version of the multi-directional
image projection algorithm for graphical processors, which allows acceleration pro-
portional to the number of execution units.

During the design of the solution, I took the specific memory architecture of the
GPU devices into account, and sought to minimize the memory transfers between the
host and the device. In order to avoid a race condition between common variables,
I decided to redesign the algorithm, so it is not necessary to use synchronization to
ensure correctness. When accumulating the results, atomic operations were used to
secure correct behavior.

The algorithm is based on the division of the input matrix into logical blocks,
which are stored in the on-chip memory of the multiprocessor of the GPU. The
blocks are processed simultaneously, and the produced results are accumulated with
the offset calculated from the original position of the blocks.

I compared the runtime of the parallel implementation with the sequential version
and with the GPU-accelerated Radon transformation of MATLAB, where, in both
cases, the mapping to projections was done in a shorter time if the number of bins
was smaller than the image size.

Publications pertaining to thesis: [2], [3].

Thesis 1.3
I evaluated the effectiveness of the fixed vector length multi-directional image projec-
tion method for object matching, comparing the results with similar projection-based,
lower-dimensional image signatures, and concluded that matching accuracy increased
significantly.

I compared the defined method with two- and four-dimensional projection signa-
ture-based matching methods, as well as the Radon transform. Results show that
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the distance between the true and false pairs of similarity scores for methods with a
fixed number of bins is greater than in case of methods based on 2D or 4D projection
signatures. The method was also compared with the higher-dimensional projection
signature Radon transformation with the same result.

As a result of fixed resolution, memory cost is independent of the size of the
image; therefore, it is unnecessary to use a sliding window to find the best fit, thus
reducing potential errors.

Experiments with different resolution projections also show that the performance
of the classification does not decrease even when using a low number of bins, resulting
in an efficient solution in terms of memory cost.

Publications pertaining to thesis: [3].

Thesis group II: Application of Image Projections
as Preprocessing in Siamese Convolutional Neural
Networks

Thesis 2.1
I have developed a method based on backtracking search that provides all of the
suitable convolutional neural network architectures at a given input, layer number,
and memory cost.

After examining modern convolutional design patterns, I defined the require-
ments for the layers, which is the basis of the optimization to be performed. In the
solution, the size of the activation maps is determined layer by layer, followed by
the search for the next layers. Backtracking search eliminates the need to review all
options, as layer combinations that do not lead to a valid solution are skipped.

The algorithm first determines the kernel and window sizes of the convolutional
and pooling layer pairs, and then estimates the expected memory cost of the model
based on the number of parameters. By defining an upper limit for memory cost,
architectures optimized for target hardware can be generated.

After estimating the memory occupancy of the model, the batch sizes used in
batch training can be optimized. With a larger batch size, the runtime of training
is shorter.

Publications pertaining to thesis: [4].

Thesis 2.2
I designed and implemented a Master/Worker model for the analysis of Siamese con-
volutional neural network architectures in a distributed environment, with scheduling
based on the longest processing times. In practical measurements, the parallel effi-
ciency of the processing of the generated neural network architectures was 99.87%.

Distributed training took place in a cluster of computers equipped with graphical
accelerators. I created the parallel solution based on the Master/Worker design
pattern.
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To optimize load balancing, I developed scheduling using LPT5 heuristics based
on complexity estimation. I determined the training complexity of the models based
on the number of trainable parameters and by the size of the batch.

Measurements have verified that the scheduling based on complexity estimation
is effective, with the speedup of the entire process being almost equal to the number
of workstations involved. The relationship between calculated complexities and
measured processing times is strong, with a correlation coefficient of 0.749.

Based on the measured processing times, simulations were performed to investi-
gate the efficiency of scheduling, and I found that automatic load balancing of the
parallel method results in efficiency of over 90%, even with random task assignment;
however, the same property using the presented scheduling is 99.87%.

Publications pertaining to thesis: [5].

Thesis 2.3
I analyzed each of the multidirectional image projection methods, using them as a
preprocessor for input data, to determine the effect on the performance of Siamese
convolutional networks. Based on the results, I concluded that the method based on a
fixed number of bins is Pareto optimal in terms of efficiency and memory requirement
compared to the raw image methods considered as a reference.

During the experiment the Radon, Trace and the transformations I defined were
compared with different parameterizations. Based on the dimensions of the defined
mappings, Siamese convolutional architectures were generated and processed in a
distributed environment.

The object matching accuracy of the trained models was determined using one-shot
classification tests, where the number of objects compared to the reference was
2 ≤ N ≤ 10.

After evaluating the results in terms of accuracy and memory occupancy, I con-
cluded that the method based on fix bin number is a Pareto optimal choice contrast
to the methods based on image input. The results of the comparison is visualized
on Figure 4.2.

Publications pertaining to thesis: [6].

5 Practical Applicability of the Results
Object identification or re-identification 6 is an important field, not restricted to
tracking and matching vehicles as discussed in the dissertation. Common solutions
exist for access control and outdoor camera systems to identify people.

The greatest advantage of the developed method is that it fits perfectly into
today’s IoT7 smart camera systems. Beyond capturing the image, the camera also
processes it: moving objects are detected and segmentation and classification is
done. As the last step, the projection signature of the object can also be computed
and transferred over the network connection to another unit.

5Longest Processing Times
6object reidentification
7Internet of Things
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Figure 4.2: Model performances in terms of parameter number and the accuracy
of the 10-way one-shot classification measured on the validation dataset. Each
model was tested with 10000 validation measurements. The Pareto optimal models
– which are not dominated by any other element – are on the lower left corner as
Pareto-frontier.

The advantage of a fixed number of bins is that the memory cost is indepen-
dent of the input image size, so communication costs can be well determined. If a
low-resolution projection map is produced, the method behaves as compression.

The parallel solution provides fast response times even in case of large images.
The method works well for one-shot classification problems: it is also able to

detect objects that were not encountered earlier during the training phase.
The method of generating neural network architectures developed in the study of

machine learning-based method is capable of generating a structure of any number
of convolutional and pooling layer pairs for any input matrix within a predefined
memory limit. Therefore, the solution is applicable in other cases where more mem-
ory-critical neural architecture may be required.
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