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Károly Széll, PhD
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Elnök:

Tagok:

Titkár:

Nyilvános védés időpontja:
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Chapter 1

Introduction

Rotating machine diagnostics is a part of rotating machine maintenance evolving in a very

diverse and dynamic way which increases the economic and reliability requirements.

As a result of technical progress, condition-dependent and comprehensive maintenance

systems are coming at an accelerating pace. The rotating machines’ specific parameters

are evaluated based on regular or continuous monitoring and measurement from which the

condition and remaining life of the machine are predicted. With this technique, it is possible

to ensure that intervention is required for repairs only in those technically justified cases.

However, at the same time, except for one sudden fault, sufficient time is available to prepare

for repairs.

1.1 Rotating Machine Vibration Diagnostics

Vibration diagnostics is a particular branch of technical diagnostics that deals with measur-

ing and evaluating an equipment’s vibration response to dynamic forces. Vibration measure-

ments and vibration-based diagnostic methods are often used in a wide range for rotating

machines that have made these techniques considered universally approved and accepted

tools for enhancing performance and safety [1]. Vibration diagnostics has several sub-areas

and classifications like

1. Condition monitoring

2. Design optimization

3. Dynamic qualification

1



CHAPTER 1. INTRODUCTION

4. Seismic qualification

5. Machine installation and commissioning

6. Ageing management

7. Vibration isolation

During this research and thesis, the topic built around mainly the sub-area Condition

Monitoring (CM) for which an example system can be seen in Fig. 1.1. The need for an

effective CM and machinery maintenance program is reasonable wherever complex and ex-

pensive equipment is used to ensure business functions and value creation processes. Rotating

machines are a central part of manufacturing procedures and our everyday lives, and their

health and availability directly affect schedules, quality, and costs. Components, including

motors, bearings, gearboxes, etc., are engaged to operate effectively to keep the rotating

machine stable and healthy. For that reason, maintenance is performed by repairing, mod-

ifying, or replacing these components in order to ensure that machines remain in a healthy

condition. [2]. Maintenance can be accomplished using two main approaches: corrective and

preventive maintenance [3]. Vibration analysis can be suitable for both directions though

the focus in this thesis is not to decide which maintenance method is more appropriate or

efficient.

Besides different theoretical approaches and grouping, there are two standards dealing

with vibration protection systems for high value rotating machines, which have to be men-

tioned [4]. The first one is the API 670 standard which describes the minimum requirements

for Machinery Protection System (MPS) that measures general vibration information about

the shaft and casing with supplement position, rotational speed, over-speed, and/or critical

machine temperatures. The second one is the ISO 7919 which describes general requirements

for measurement and evaluation of the vibration of different machine types when the vibra-

tion measurements are made on rotating shafts. The standard consists of multiple parts

depending on the characteristics of the rotating machine.

The main focus of this work is to enhance vibration diagnostics or other science fields

for rotary machinery with the usage and combination of well-known scientific methods and

novel methods to open the possibility for the application in real environments.

2



1.2. ANALYSIS OF STATIONARY AND TRANSIENT SIGNALS

Figure 1.1: An example condition monitoring system (www.pvtvm.com)

1.2 Analysis of Stationary and Transient Signals

In order to introduce the main topic more deeply, fundamental vibration diagnostic theories

and definitions have to be discussed.

Vibration is a periodic back-and-forth motion of the particles of an elastic body or

medium, commonly resulting when almost any physical system is displaced from its equilib-

rium condition and allowed to respond to the forces that tend to restore equilibrium [5]. In

order to process this physical phenomenon quantitative analysis is essential.

Nowadays, such data analysis is not unique and not a special case in the digital world.

The previously mentioned quantitative data has to be measured and evaluated as a physical

signal to achieve this. Signal processing is a key area of knowledge that finds applications

in virtually all aspects of modern life. Signal processing consists of mapping or transforming

information-bearing signals into another form of signals at the output. This mapping defines

3
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CHAPTER 1. INTRODUCTION

a continuous or analogue system if it involves functions representing the input and output

signals. On the other hand, the system is discrete or digital if sequences of numbers represent

its input and output signals. [6].

Such kinds of measured signals can be evaluated differently, with various methods pro-

viding diverse information about the machine under measurement. For analysing vibration,

there are three leading groups which are generally accepted in the science - Time Domain

(TD) analysis, Frequency Domain (FD) analysis and Time-Frequency Domain (TFD). The

dimensional representation of these two approaches is illustrated in Fig. 1.2. The basis of

this chapter is the first five chapter of [7].

Figure 1.2: Illustration of Time Domain and Frequency Domain analysis [7]

The basics of the methods used in each group will be presented in the following subsec-

tions.

1.2.1 Time Domain Analysis

TD analysis is analysing the data over a time section. Electronic signals, market behaviours,

and biological systems are some of the functions that are analysed using time domain analysis.

For an electronic signal, the TD analysis is mainly based on the voltage-time plot or the

current-time plot. In a time domain analysis, the variable is always measured against time.

In the case of vibration measurements, time domain analysis mainly evaluates the measured

vibration represented as voltage.

4



1.2. ANALYSIS OF STATIONARY AND TRANSIENT SIGNALS

When the vibration time function is acquired, different vibration signal specific TD anal-

ysis methods can be applied to extract meaningful information about the machine’s state.

Some examples are represented in Table 1.1.

Table 1.1: Time Domain (TD) method groups with examples

Group Example method

Basic and descriptive statistical values

• Peak
• Peak-to-peak
• Threshold
• RMS
• Crest factor
• Mean
• Mode
• Median
• Skewness
• Variance
• Kurtosis
• Overall vibration
• SPRT

Signal shape metrics
• Envelope
• Dynamic threshold

Time function of basic and descriptive statistical values
• RMS(t)
• Kurtosis(t)

The basic descriptive values are derived from the signal without any calculation or modifi-

cation. These values are the peak and the peak-to-peak amplitude values. In order to extend

the previously mentioned values, basic statistical descriptive values have to be introduced like

Mean, Mode, Root Mean Square (RMS). The representation of these values can be seen in

Fig. 1.3. The descriptive statistical analysis can be extended further with the variance; Skew-

ness; Kurtosis – the statistical moments; standard deviation (at confidence levels 65.5%, 95%

and 99.73%); median; and signal range. After the calculation, the histogram of the loaded

data sequence and the numerical results are displayed. With the simple threshold test, the

number of the signal peaks could be registered, which are higher than the set threshold levels

that can have a negative or positive direction. Crest factor is also a well-known parameter of

a waveform representing the ratio of the peak values and the effective values. As a general

statement, if the signal distribution is tighter than the normal distribution then it concludes

that the mean value and standard deviation could be the same [8, 9]. The equations below

represent the calculation of some of the parameters mentioned above. These are the Crest

5
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factor (Eq. 1.1), Skewness (Eq. 1.2) and Kurtosis (Eq. 1.3).

Figure 1.3: Illustration of signal descriptive values in Time Domain [7]

The Crest factor can be calculated by using

C =
|xpeak|
xRMS

, (1.1)

where xpeak is the absoluate peak and xRMS is the RMS value of the time signal.

The Skewness (third moment of a stochastic process) can be estimated by

α3 =

∑N
i=1(xi − x̃)3

(N − 1)σ3
. (1.2)

The Kurtosis (fourth moment of a stochastic process) can be estimated by

α4 =
1
N

∑n
i=1(xi − x̃)4

( 1
N

∑n
i=1(xi − x̃)2)2

. (1.3)

where x are values in the signal, x̃ is the mean of the signal, N is the number of samples

in the signal and σ is the standard deviation of the signal.

The Sequential Probability Ratio Test (SPRT) invented by [10] is a method which com-

pares the probability density functions using the ratio of two conditioned probabilities. In

the denominator, there is the probability which samples belong to a process with probabil-

ity density of hypothesis H1, while in the nominator, we have the same probability, which

samples belong to probability density of H0 hypothesis [8]

λn = ln
p(x1, x2, ..., xn|H1)

p(x1, x2, ..., xn|H0)
. (1.4)

6



1.2. ANALYSIS OF STATIONARY AND TRANSIENT SIGNALS

The next group can be called signal shape metrics. The improvement of the simple

threshold test, resulted in the dynamic threshold test, which allows us to fit an envelope of

a given resolution to the signal. It can be observed at which time which part of the signal

exceed these limits. This kind of simple envelope test can be useful, e.g. in production lines

where a so-called “gold” product is measured. The resulted signal of that measurement could

be the reference of this envelope test because the other products can be compared to this

gold-reference [8, 11].

The final group worth mentioning is the time function creation of basic and descriptive

statistical values. Let us take an example. In the time-dependent RMS calculations, such

functions could be created, which basis was the simple RMS parameter mentioned in the

descriptive statistical analysis. The first RMS method calculated the average RMS value

without overlapping within a time-segment. From these results, a time-dependent RMS-

average function has been constructed. The second method calculated the simple RMS value

within a time-segment with overlapping. This resulted an RMS(t) function. The average

of the RMS(t) function needed to be equal with the RMS value resulted in the statistical

analysis. The width and the overlapping of the time-windows could be adjusted via input

parameters. [8, 11]. Such a windowing-based time-function creation method can be applied

on any kind of signal; the question is which parameter or scalar value will be the basis of the

calculation - i.e. which value is calculated within a time segment.

A more in-depth description of the TD methods and their background can be found in

Part II, Chapter 3 of [7].

1.2.2 Frequency Domain Analysis

FD analysis is widely used in fields such as control systems engineering, electronics and

statistics for signals or functions that are periodic over time. However, this does not mean

that frequency domain analysis cannot be used in signals that are not periodic.

Vibration signals in practice usually consist of various frequencies and their harmonics.

It cannot be seen immediately by looking at the amplitude-time pattern how many compo-

nents there are, and at which frequencies. When analysing machine vibrations, we usually

find several prominent periodic frequency components directly related to the fundamental

movements of various parts of the machine. With frequency analysis, we are therefore able

to track down the source of undesirable vibration.

7



CHAPTER 1. INTRODUCTION

The frequency representations of these signals in the frequency domain are often per-

formed using Fourier analysis which is generally classified into three types: Fourier series,

Fourier Transform (FT), and Discrete Fourier Transform (DFT). The basic idea of Fourier

analysis was discovered in the 19th century by the French mathematician J. Fourier which

novum was that any periodic function could be expressed as a summation of complex expo-

nential functions. From these types DFT is an important tool in the frequency analysis of

discrete-time signals [12, 13].

More in-depth description about the FD methods and their background can be found

in Part II, Chapter 4 and 5 of [7]. Different types of vibration signal specific FD analysis

methods can be applied to extract meaningful information about the state of the machine.

A primary grouping with some examples can be found in Table 1.2.

Table 1.2: Frequency Domain (FD) method groups with examples

Group Example method

Frequency Domain Methods

• DFT
• Fast Fourier Transform (FFT)
• Frequency envelope
• Higher-Order spectra
• Cepstrum

Time-Frequency Domain Methods

• Short-Time Fourier Transform (STFT)
• Wavelet Transform (WT)
• Empirical Mode Decomposition (EMD)
• Hilbert-Huang Transform (HHT)
• Wigner-Ville Distribution (WD)
• Spectral Kurtosis
• Local Mean Decomposition (LMD)

The basis of this research is partially the FD and the TFD analysis, thus in accordance

with this, more extensive mathematical details about the FT and the spectral representation

types can be found in this thesis in Chapter 2.

1.3 State-of-the-Art

Nowadays, rotating machine manufacturers continuously try to adapt or precept directives

of the competition on the market. The best compromise between the price, the operational

safety, condition monitoring, the fuel consumption, the emission limits and the performance

have to be considered, as the quality of the product. In order to manage this, the research

8



1.3. STATE-OF-THE-ART

and development activities are moving towards facing more automated and reliable solutions

with which the measurement and analysis can give higher quality results. The main subject

of this analysis could be the vibration of rotating machines and analyse the engine’s vibration

with several methods to provide a more reliable and safer operation in Internal Combustion

Engine (ICE) and electrical drives, which are the necessary elements of a vehicle’s drive

chains today [14]. Vibration measurement is fundamental because production defects can be

detected quick and accurate at the end of the production line.

To improve the manufacturing process, ensure the quality of the products, and reduce

costs, it is essential to identify defective automotive parts. For manufacturing processes,

several methods can increase the quality of the products and the process’s reliability. A kind

of the quality assurance is the Total Quality Maintenance (TQM) method discussed in [15].

It claims that implementing a vibration-based maintenance strategy provides possibilities for

acquiring early indications of changes in machinery state, and the vibration-based condition

monitoring solutions became popular in various industries.

Several methods can disclose defects during or after the manufacturing and assembling

processes, such as on-line monitoring systems, off-line production parameter optimisation or

quality assurance procedures [16–18]. A specialised measurement system can be found in [19]

where measurements of vibration and acoustic emission are combined. Some of the condition

monitoring systems use the measurement of vibration and/or emitted noise to classify healthy

and defective products with high efficiency [20].

Different research works represent fundamental vibration-based case studies on a theoret-

ical basis [21,22]. Alternatively, even as examples, articles have demonstrated the stabilising

effect of dry friction in systems which are destabilised by the sampled-data nature of the

applied controller [23–25]. The method was used later to test haptic devices [26, 27]. The

phenomenon can be further generalised to vibrations composed of several vibration compo-

nents [28]. Vibration measurement is influential because production faults or malfunction

can be detected fast and accurate. These studies apply the basics of vibration analysis which

is frequently used in engineering practice in expert systems. Some part of these systems were

sharpened for condition monitoring and fault diagnosis of rotating machines. Reference [29]

represents a complex solution that can consider the analysis of multiple rotating elements in

one construction using basic spectrum analysis or amplitude distribution.

Some of these systems are used for condition monitoring and fault diagnosis of rotary

9



CHAPTER 1. INTRODUCTION

machines. In reference [30], a system is presented for engine fault diagnosis from the devel-

opment procedure until the application. In condition monitoring tasks the Device Under Test

(DUT) often operates with non-stationary Rotation Per Minute (RPM). To analyse ICE in

this state, the basic time and frequency domain methods [31] are not quite suitable. Higher

level methods like wavelet transform can be a proper method to obtain basic information

about operational conditions; Wang [32] represents such research works. Besides wavelet

transformation STFT and spectrogram based methods are also commonly used but not only

in vibration diagnostics and condition monitoring. More research works represent that not

only spectrogram analysis in a traditional way can be a good base for vibration and sound

analysis to obtain information but the proper combination of the data evaluation with other

research fields. The expert systems in [33, 34] can be used mainly for condition monitoring

and malfunction detection. In the case of condition monitoring tasks the DUT operates with

non-stationary speed (RPM), so in order to analyse rotating machines in this transient state

the elementary TFD methods [35] are not appropriate. For RPM estimation [36] represents

a novel method which can be used for rotary machines. Multiple directions could be appro-

priate for this estimation like vibration spectra or cepstra, the advantages and disadvantages

of which are described in [37].

Vibration analysis is applied frequently as the basis of expert systems. Some of these

systems are used for condition monitoring, and fault diagnosis of electrical motors [38].

Frequency-based failure analysis is often used to investigate both motors [39] and the at-

tached couplings [40]. A higher level of computer intelligence could be implemented in these

systems with the use of neural networks [41]. Neural networks gain more space in expert sys-

tem applications tailored for analysing rotating machines along different conditions [42, 43].

The combination of the statistical quality control, the vibration analysis [44] can result in

a highly automated and controlled manufacturing process in the future. Vibration-based

measurement systems became very common in the industrial environment nowadays. In

reference [45], the generic methodology to develop an intelligent monitoring system for ma-

chining processes is described, presenting the benefits of using the vibration measurement

in such a system. Yu et al. in [46] represents a vibration measurement experiment based

on the Gaussian mixture model to detect bearing faults after assembly. In reference [47], a

mathematical model based on the response surface-based D-optimal design is proposed for

modelling and analysing tool vibration and surface roughness in the precision end-milling
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process. A real-time implementation of commonly used vibration features (peak amplitude,

root mean square etc.) can be found in [48]. Nowadays, Industry 4.0 solutions are gain-

ing more and more weight, therefore at larger manufacturers (e.g. SKF or Schaeffler) the

integration of vibration diagnostics solutions is a priority research and development topic.

References [49–51] represent such kind of realized applications, research directions and results.

Using a higher level method, like Wavelet-transformation, could be a suitable method

to obtain factual information about operational conditions [52, 53]. A review containing the

utilisation of wavelets for fault diagnosis can be found more detailed in [54]. Besides Wavelet-

transformation the STFT-based methods are also applied frequently [55–58] as well but not

only exclusively for vibration diagnostics and condition monitoring.

In case of the spectrogram it could be an approach to use image evaluation and processing

methods. Reference [59] uses STFT for image to sound conversion. Zhang et al. [60] operates

with the STFT to analyse diffractions. In the condition monitoring of ICEs obviously the

spectral components on the STFT spectrogram need to be tracked or extracted. Markov

models [61] and image processing [62] were also research guidelines in order to perform this

action. [63] represents new guidelines in spectrogram image processing, which can be the

basis of this and further research works. Besides these, references [64] and [65] describes

new research methods in condition monitoring based on spectrograms and image processing

presented before. In addition to these, [66–70] describe research initiatives and reviews for

condition monitoring based on time-frequency domain, spectrograms and image processing

with the extension of tracking methods.

Further researches in literature represent that the traditional spectrogram analysis is

not the only suitable way for information extraction. In the case of spectrograms, it could

be straightforward to apply image evaluation, and processing methods [71]. For condition

monitoring of rotating machines, the possibility can be opened to track spectral components

on a STFT spectrogram. The signal’s resolution can influence this kind of analysis, and the

STFT spectrogram [72].

11
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1.4 Thesis Outline

This research aims to analyse and measure transient vibration signals in a non-laboratory

environment acquired by industrial vibration sensor mounted on rotating machines. The

combination of multiple disciplines in measurement and analysis could enhance the infor-

mation extraction from vibration measurements in case of transient signals. The extracted

information can be used to support more detailed vibration post- or real-time diagnostics

of rotating machines during transient states by providing the primary, pre-processed time-

frequency information.

The transient analysis is an essential criterion as rotating machines are primarily used

during variable operational states; therefore, the reaction of the construction elements under

variable circumstances needs to be observed. The industry moves towards alternative drives,

so besides ICE, hybrid and purely electric drives begin to gain much more focus. For this

reason, electric motors needed to be kept in mind while conducting the research. A standard

industrial vibration sensor is always mounted on the rotating machine during the manufac-

turing process, and its signal can be used for measurements in a non-laboratory environment.

On the other hand, this sensor’s cost-effective application enables to obtain operational con-

ditions about the construction. However, high-frequency ranges could not be adequately

analysed due to the bandwidth (30 Hz - 25 kHz) of this type of sensor. There is a possibility

of end-of-line transient testing of the mechanical construction itself after manufacturing or

using on-board diagnostics after signal evaluation and preparation obtaining the signal via

e.g. On-Board Diagnostics (OBD) protocol. Therefore, the information could be collected

about the rotating machine’s stationary and transient behaviours during manufacturing tests

or daily usage, which could be utilised for predictive maintenance or malfunction detection.

In summary, we are looking for a method with the capability to analyse in low and mid-

frequency ranges the stationary and transient vibration measurements derived from rotating

machines using an industrial vibration sensor. This research was inspired by a study cited

in [73] containing the combination of multiple disciplines such as signal and image processing.

The research aimed to extend the signal processing part and define a more efficient and

scalable method to support the input of rotating machine diagnostics.

12



Chapter 2

Spectrogram Creation

In the first section of Chapter 2 a more detailed introduction of FD signal analysis methods

are introduced. The description starts from the basic FT introducing the spectrum types

and some of the fundamental window types. This will be followed by the general overview

of the TFD methods from which one will be highlighted. It is the STFT method that is the

cornerstone of the current thesis, used for vibration signal analysis. Therefore, a detailed

mathematical background of the STFT will be discussed.

This will be followed by the introduction of the principal research flow. During this in-

troduction, simulated signals will be presented, which will guide the descriptions through the

next three chapters to demonstrate those different steps which ensure obtaining information

from the transient signals.

In the last part of the chapter an algorithm will be proposed to improve the STFT

spectrogram creation step.

2.1 Theoretical Basis

In this section the basics of the frequency domain transformations will be represented. The

section will guide through on how TD signals can be transferred into FD using FT, DFT,

FFT to represent spectral components followed by the summation of different spectra repre-

sentations in various dimensions. Section 2.1 will be closed by the possible transient signal

analysis methods and their comparison. This section is mainly the extraction of the content

of references [7, 74–84,84–88] found during literature research.
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This section will discuss the basic FD analysis methods using references [7, 74, 76, 80, 82]

as a basis, extended by the different spectra types [83]. [7,83] was used a reference guideline

for introduction of the STFT method.

2.1.1 Fourier Transform

The relationship between TD and FD is given by the Fourier series equation, which specifies

that a signal can be written as the sum of sine and cosine functions. About these frequency

elements, it can be said that their multiples are equal to the reciprocal of the original signal’s

period.

f(t) = a0

∞∑
k=0

(ak cos(ωkt) + bk sin(ωkt)) (2.1)

where ωk = kω0 = k2πf0 = 2k π
T0

. The coefficients in Eq. 2.1 are

a0 =
1

T0

∫ T0/2

−T0/2
f(t)dt, (2.2)

ak =
2

T0

∫ T0/2

−T0/2
f(t) cos(kω0t)dt, (2.3)

ak =
2

T0

∫ T0/2

−T0/2
f(t) sin(kω0t)dt. (2.4)

The equation can also be written by combining the parts of the same frequency as

f(t) = A0 +
∞∑
k=1

Ak cos(ωkt+ ϕk), (2.5)

where

A0 = a0 (2.6)

Ak =
ak

cosϕk
= − bk

sinϕk
=
√
a2
k + b2

k (2.7)

ϕk = − tan

(
ak
bk

)
(2.8)
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The f(t) periodic time function is represented by spectral lines described by Ak and

ϕk values. The division between the spectral lines, i.e., the frequency resolution, can be

calculated by the following formula

∆f =
1

T0

. (2.9)

It follows from Eq. 2.9 that the larger the time period (T0) of the reference signal is, the

closer the spectral lines are to each other.

The Fourier transform presented above is only suitable for converting deterministic sig-

nals. An algorithm that can also be applied to non-deterministic signals is obtained by

transforming the periodic case equations. The T0 period for deterministic signals can be ap-

proximated to infinity. In a discrete line spectrum, the ∆f distance between the lines tends

to zero due to the transformation and creates a continuous spectrum from the line spectrum.

The sums in the formulae are replaced by the integral since the spectrum is obtained as

the sum of infinitely small ∆f values. The transformation is resulted into the general FT

(Eq. 2.10) and the inverse FT (Eq. 2.11).

f(t) =

∫ +∞

−∞
F̄(ω)ejωtdf (2.10)

F̄(ω) =

∫ +∞

−∞
f(t)ejωtdf (2.11)

The presented FT, which can be applied in deterministic cases, cannot be easily handled

by computers. Analogue signals must first be made processable, i.e., continuous signals must

be sampled at discrete times. The value measured at each sampling point must be quantised

and transmitted to the processing unit in a given form. The signals transformed in this way

cannot be converted by the Fourier transform shown, so a particular version is used for this

purpose. The algorithm is called DFT.

DFT generates a discrete frequency spectrum from the sampled discrete signals, which

approximates the spectrum of the continuous signal generated by the FT. The DFT only

provides an approximation because not all information about the continuous signal is available

during the transformation since data loss occurs between two sampling times. If the sampling

frequency is high enough, i.e., the time between two measurements is sufficiently short, the

spectrum obtained with DFT is very close to the original.
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The modified form of Eq. 2.11 is

F̄′(ω) = ∆t
+∞∑

n=−∞

f(nδt)ej2πnf∆t . (2.12)

F̄′(ω) is periodic based on ω therefore the spectrum is periodically repeated with 2π
∆t

frequency

F̄′(ω) = F̄′
(
ω + n

2π

∆t

)
. (2.13)

In the production of discrete signals, a prerequisite for correct sampling is to ensure

that overlaps between identical components are avoided in the spectrum produced by the

presented periodic repetitions. This means that only a band-limited signal can be examined

with DFT, i.e. there is an upper-frequency limit determined by the sampling frequency (fs)

and time (∆t). According to the Shannon theorem, the highest testable frequency (fmax) in

the Fourier transform spectrum of the sampled signal is

fmax ≤
1

2∆t

. (2.14)

Examining the analogue signal for a period of tf , sampling at intervals of ∆t, the number

of sampling points is

N =
tf
∆t

. (2.15)

The tf is a characteristic value of time-limited signals, called observation time, or sampling

window. This parameter profoundly affects the other sampling properties, as only a finite

number of measurement points will be available for any sampling time. This also affects the

value of the maximum frequency that can be analysed.

Taking tf into account, the calculation of the following factors in the DFT formula changes

as

ω = N∆ω or fs = N∆m, (2.16)

where

∆ω =
2π

tf
=

2π

N∆t

. (2.17)
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From N number of samples N number of spectral sample can be produced however only N
2

number of components will be independent of each other. As a result the spectrum contains

relevant samples in the frequency range 0...
(
N
2
− 1
)
· ∆ω. In section N

2
· ∆ω the imaginary

part of the spectrum changes sign therefore this section contains redundant information.

The main relationships between ∆t sampling time, fmax boundary frequency, ∆f frequency

resolution and N number of samples are

∆t =
1

2fmax

, (2.18)

fmax =
N∆f

2
, (2.19)

∆f =
1

N∆t

. (2.20)

The form of DFT described above is not directly applicable in practice, since even on mod-

ern computers, mapping the spectrum of simple signals would require so much computation

that the operation would take an unacceptably long time. A very efficient computational

method has been developed that significantly reduces this time, thereby accelerating the

transformation. This is why it was called the Fast Fourier Transform.

FFT is an algorithm for calculating DFT that gives the same result with less computa-

tional effort. It breaks down a series of DFT values into frequency components, which is

useful in many areas, but the process is very time consuming. For N samples, the DFT

calculation would require a N2 operation (multiplication and addition), while for a FFT, the

N log2(N) operation would be required to achieve the same result.

The speed difference can be huge, especially for long data streams, where N can be in the

order of thousands or millions. In practice, the computation time can be reduced by orders

of magnitude, and the rate of improvement is about equal to N
log(N)

. Because of FFT, it is

worth using the DFT algorithm in different areas, such as digital signal processing or solving

differential equations. However, there are limitations to using FFT, as the number of digital

time signals must be two powers, and the frequency range of the analysis depends on the

number of samples and the sampling rate. Despite its drawbacks, it is widespread and is now

used by all spectrum analysis units.

When calculating FFT, the time and frequency information is not directly related to
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the algorithm, so the sampling time is needed to properly represent the data, from which

the distance between the spectrum lines in Hz can be determined by Eq. 2.20. Applying

the appropriate dimension and plotting the result, the spectrum of the analysed signal is

obtained. There are multiple amplitude and phase dimensions to choose from, depending on

the vibration components’ characteristics under study. These possibilities are reviewed in

the following subsections.

2.1.2 Spectrum Types

Before presenting the spectral types, it is required to note that the data generated by FFT

from the vibration signal under study have two components, i.e., they have a real part and an

imaginary part. Therefore, it is always necessary to switch to polar coordinates during the

evaluation. The data generated by FFT will be represented by amplitude and phase values.

The most commonly used amplitude dimensions for plotting Amplitude Spectum (AS)

are peak amplitude (Vpk) and effective amplitude (VRMS).

The peak amplitude specifies the maximum amplitude of the vibration. Its typical ap-

plication is the measurement of vibration displacement and the detection of needle pulses in

vibration acceleration measurement.

The concept of effective or RMS amplitude is the same as the RMS value used in elec-

tronics. The RMS value of the alternating current is equal to the magnitude of the direct

current that produces the same amount of heat at the same resistance in the same unit of

time as the alternating current. The RMS value is thus proportional to the power of the

signal. Commonly used when measuring vibration velocity and vibration acceleration. The

relationship between RMS and peak amplitude is given by the following equation, which can

also be used to generate spectral scales

VRMS =
Vpk√

2
. (2.21)

We can differentiate the spectra types according to which aspect and properties of the

signal’s frequency components they want to highlight. The first type analyses the essential

factors of the components, i.e., their size and angle. These are called amplitude and phase

spectra. The next large group includes the types that can be used to determine each frequency

component’s energy content based on its size. The variants belonging to this are called Power
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Spectum (PS). In the last category are the types that represent the distribution, i.e., the

density, of each component. Since no such spectrum can be generated for phase values, only

amplitude and power spectral densities are included. Each type is closely related to each

other, as in most cases, they have to be calculated from each other. Their visualisation

depends on how we want to scale the magnitude of the frequency components: linear or

logarithmic.

By default, the spectra take peak amplitude values and give a double-sided representation.

The phenomenon is caused by the fact that the real signals are symmetrical around the

signal with 0 Hz frequency, i.e. when mapping in the frequency range, a sample will have

a positive and a negative value. From the test’s point of view, the negative frequencies’

information is redundant, irrelevant; therefore, the spectrum can be omitted when plotting.

However, it must be taken into account that the energy content of the frequency components

is evenly distributed between the negative and positive phase values. The equations required

to produce single-sided spectral images can be found in Table 2.1.

By switching to simple polar coordinates and plotting the results by frequency, the am-

plitude and phase spectra are obtained. The equations of the transition can be found in

Table 2.1.

Power values in the frequency components can be defined and represented by FFT or

DFT by squaring the components’ amplitude values. The power spectrum is by definition

Sxx(f) = X∗(f)X(f) = |X(f)2|. (2.22)

The equation for calculating the AS for discrete signals

Sxx(i) = |Xn(i)2| =
(

Xn(i)

N

)2

. (2.23)

Using the prescribed equation, the unit of power values for the phase components is the

square of the peak amplitude (V 2
pk).

The power spectrum can also be given by the effective RMS amplitude values, which

provide much more information about the signal. Here the transition takes place using

Table 2.2. The equations prescribed for the single- and double-sided spectral representations

are also valid in this case. When converting to RMS amplitude values, the unit of power for

the frequency components is the RMS amplitude square (V 2
RMS).
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Table 2.1: Summary of the dimensions and calculations of amplitude and phase spectra

Spectrum Scale Equation

Phase rad ϕi = ∠(XN(i)) = arctan
(

ImXN (i)
ReXN (i)

)

A
m

p
li
tu

d
e Vpk

B(i) =

{
XN(0) i = 0

XN(i) i = 1, 2, ..., bN
2
− 1c

A(i) = |B(i)| =
√

[Re[B(i)]]2 + [Im[B(i)]]2

VRMS
C(i) =

{
XN(0) i = 0√

2XN(i) i = 1, 2, ..., bN
2
− 1c

A(i) = |C(i)| =
√

[Re[C(i)]]2 + [Im[C(i)]]2

dBV A(i) = 20 log10(A(i)[Vpk, VRMS])

dBm A(i) = 20 log10

(
A(i)[Vpk,VRMS]√

10−3

)

A
m

p
li
tu

d
e

d
en

si
ty Vpk√

Hz

B(i) =

{
XN(0) i = 0

2XN(i) i = 1, 2, ..., bN
2
− 1c

ASD(i) = B(i)√
∆f ·ENBW

= B(i)√
N ·∆t·ENBW

VRMS√
Hz

C(i) =

{
XN(0) i = 0√

2XN(i) i = 1, 2, ..., bN
2
− 1c

ASD(i) = C(i)√
∆f ·ENBW

= C(i)√
N ·∆t·ENBW

dBV ASD(i) = 20 log10

(
ASD0

[
VRMS√

Hz
,
Vpk√

Hz

])
dBm ASD(i) = 20 log10

(
ASD0

[
VRMS√

Hz
,
Vpk√
Hz

]
√

10−3

)
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The noise level of the measurement is closely related to the bandwidth of the measurement.

When examining the basic noise level of a PS, all narrow-band noise levels in all FFT bands

must be examined. Therefore, the noise level of a given spectrum depends on the value of

∆f for the spectrum, which is determined by the sampling time and the number of sampling

points in the measurement. In other words, the noise level at each frequency line is equal

to the noise level that can be obtained by applying a ∆f Hz filter around that frequency

line. Therefore, by doubling the number of sampling data at a given sampling time, we

can reduce the noise power, which appears in each frequency band. Theoretically, discrete

frequency components have zero bandwidth and cannot be scaled by the number of points

or the frequency range of the FFT.

In order to calculate the signal/noise relationship - Signal-to-Noise Ratio (SNR) - the

power peaks for the frequencies under test have to be compared with the broadband noise

level. The broadband noise level is calculated by summing all power spectra in a band except

the peaks and the zero-frequency component and then dividing the sum by the equivalent

noise width of the window.

The Power Spectral Density (PSD) normalises the spectrum compared to a spectrum

provided by an ideal, generally accepted 1 Hz filter for measuring noise levels. Each frequency

line level is the same as that which would be obtained if the 1 Hz filter were applied around

a given frequency line. Another spectrum can be derived from the power spectrum density

called Amplitude Spectral Density (ASD). The equations needed to determine the two types

of spectra are shown in Table 2.2.

From the definition of the power and amplitude spectrum densities, the spectral char-

acteristics of the measured signal are improved utilising filters (windows). The essence of

the method is that when performing Fourier or spectral analysis, windows can minimise the

truncated waveforms’ interruptions, and the scattering of the spectrum is reduced. The filter

reduces the amplitude of interruptions and thus behaves like a narrow-band low pass filter.

In the windowing process, the given finite length window is multiplied by the measured signal

of finite length. So we have to use filters in our tests, many types of which are known.

An FFT is equivalent to using a series of parallel filters, where the bandwidth of each

filter is equal to ∆Φ. Due to the spreading effect of the smoothing window, the smoothing

window increases the effective bandwidth of the FFT band by a value called Equivalent

Noise-power Bandwidth (ENBW). The peak energy of a given frequency is equal to the sum
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Table 2.2: Summary of the dimensions and calculations of power spectra

Spectrum Scale Equation

P
ow

er

V 2
pk

B(i) =

{
XN(0) i = 0

2XN(i) i = 1, 2, ..., bN
2
− 1c

Sxx(i) = |B(i)|2

V 2
RMS

C(i) =

{
XN(0) i = 0√

2XN(i) i = 1, 2, ..., bN
2
− 1c

Sxx(i) = |C(i)|2
dBV Sxx(i) = 10 log10(Sxx(i)[Vpk, VRMS])

dBm Sxx(i) = 10 log10

(
Sxx(i)[Vpk,VRMS]√

10−3

)

P
ow

er
d
en

si
ty

V 2
pk

Hz

B(i) =

{
XN(0) i = 0√

2XN(i) i = 1, 2, ..., bN
2
− 1c

PSD(i) = |B(i)|2
∆f ·ENBW

= |B(i)|2
N ·∆t·ENBW

V 2
RMS

Hz

C(i) =

{
XN(0) i = 0√

2XN(i) i = 1, 2, ..., bN
2
− 1c

PSD(i) = |C(i)|2
∆f ·ENBW

= |C(i)|2
N ·∆t·ENBW

dBV PSD(i) = 10 log10

(
PSD0

[
VRMS√

Hz
,
Vpk√

Hz

])
dBm PSD(i) = 10 log10

(
PSD0

[
VRMS√

Hz
,
Vpk√
Hz

]
10−3

)
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of the frequency bands adjacent to the peak, increased by a proportionality factor equal

to the ENBW of the smoothing window. The proportionality factor should be taken into

account when performing a calculation based on the power spectrum.

The types of applicable windows and their mathematical details can be found in [74]. The

more-in-depth mathematical introduction of the filtering windows is outside of the scope of

the thesis.

2.1.3 Time-Frequency Domain Analysis for Transient Signal

Evaluation

The FD represents the signal’s spectral components, and the time distribution information

of the spectral components is often included in the phase characteristic of the FT. However,

it is not easy to use this information about the time distribution in the frequency domain.

Besides, the basic assumption when we transform a signal to its frequency domain is that

its frequency components do not change over time, i.e., the signal is stationary. Thus, the

FT in the frequency domain cannot provide a time distribution information of the spectral

components. Most analysis of rotating machines is based on examining the vibrations during

a speed sweep, where machines are either accelerated up from low to high RPM or slowed

down from high to low RPM. This often results in non-stationary signals whose frequency

content changes over time [7].

The time-frequency domain has been used for non-stationary, transient waveform signals.

Therefore several time-frequency analysis techniques have been developed and applied to

machinery condition monitoring: e.g. STFT, WT, HHT which are represented in [7].

The STFT is the first modified version of the FT that allows one to analyse non-stationary

signals in the time-frequency domain. The basic idea of the STFT is that instead of computing

the DFT of the whole signal, the signal is decomposed into shorter segments of equal length

using a time-localised window function. After this, perform the DFT separately on each

windowed segment of the signal, which together forms the time-frequency spectrum of the

signal [7].

Wavelet analysis is another time-frequency domain analysis approach that decomposes

the signal based on a family of ‘wavelets’. The way wavelet analysis localizes the signal’s

information in the time-frequency domain through variable spectrograms makes it an at-
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tractive alternative analysis method to the STFT method for the analysis of non-stationary

signals. Unlike the window used with the STFT, the wavelet families have fixed shapes –

e.g. Haar, Daubechies, Morlets etc. – but the wavelet function is scalable, which means the

WT is adaptable to a wide range of frequency- and time-based resolutions [7]. The mother

wavelet ψ(t) can be expressed mathematically by the following equation

ψs,T (t) =
1√
s
ψ

(
t− T
s

)
, (2.24)

where s represents the scaling parameter, T is the transformation parameter, and t is

the time. The original mother wavelet has s = 1 and T = 0. The three main transforms in

wavelet analysis are the Continous Wavelet Transform (CWT), Discrete Wavelet Transform

(DWT) and Wavelet Packet Transform (WPT) [89]. More details of the similarities and the

differences between the STFT and WT can be read in [90].

More methods and a more in-depth description of the TFD methods themselves can be

found in Part II, Chapter 5 of [7]. The other fundamental part of this research is STFT

analysis, thus in accordance with this, more mathematical details about the STFT can be

found in this thesis in section 2.2.

2.2 Short-Time Fourier Transform

The mathematical background of STFT will be presented at this part which is the basis of

the thesis. The resulted in spectrogram is the common starting point of every further step

introduced in the following main and subsections. This section is mainly the extraction of

the content of references [83, 91–93] found during literature research because the STFT is

commonly used method for transient signal analysis.

Generally, not only stationary signals have to be analysed in frequency domain. The main

problem in the case of transient signals is that the FT can not represent the signal’s time-

variant behaviour. The STFT is a function based on DFT that determines the sinusoidal

frequency and phase components of specific sections of a time-dependent continuous signal.

In practice, in the production of STFT, a longer time signal is split into several smaller

segments of equal length, on which the discrete Fourier transform is performed one by one.

The result gives the frequency spectrum of each section. The results are plotted against

time to obtain the time-dependent frequency spectrum, i.e., the spectrogram. The FFT is
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an excellent mechanism for finding the frequency components of a signal, but its result does

not depend on the time course. The essence and significant advantage of the STFT method

lies in the fact that it can analyse the time and frequency dependence of a signal at the same

time.

In order to introduce the mathematical basis of STFT, we have to start by giving us a

finite, complex, univariate, discrete-time series of length M , i.e., the time signal points are

{Xt}M−1
t=0 . (2.25)

The DFT of the input signal can be calculated as

Dk =
1√
M

M−1∑
j=0

Xjω
−jk
M , (2.26)

where K = 0, 1, ...M − 1 and

ω−jkM = exp

(
i2πl

M

)
= cos

(
2πl

M

)
+ i sin

(
2πl

M

)
. (2.27)

The DFT is basically the same as a least-squares regression applied to signals of different

frequencies in the period M
2

. The method can be used to find the coefficients for the am-

plitude and phase values at which the residual errors are zero. The original signal can be

reconstructed using inverse DFT using the coefficients of the DFT.

In order to ensure that the transformations described above exist, the input signal has to

meet the following condition

Dk =
1√
M

M−1∑
j=0

|Xj| <∞. (2.28)

The STFT can be generated by a DFT applied to a continuous section extracted from

the input signal, where the number of data points is N < M . This interval is called the

window. First the value of (X0...XM−1) of the DFT has to be determined. In the next step,

the window has to move by one time index and perform the DFT transformation again on

the new interval (X1...XN). This step is repeated until the windowing procedure covers the

last N data points from the input signal and the DFT transformation is performed here on

the range (XMN ...XM−1). The calculation of the DFT by definition is
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At
k =

1√
N

N−1∑
j=0

Xj+t−N+1ω
−jk
N . (2.29)

During the generation of STFT, each data point Xj will be taken into account N times in

the DFT calculations. Due to overlapping windowing, the result of STFT is affected by the

time dependence of the input signal. It is noted that in case N = M the STFT resulted in

the same as it is given by DFT. In the case of N = M , of course, STFT is the same as DFT

calculated for the entire data set. The result of Eq. 2.29 is At
k which is a complex valued

matrix CN×M−N+1 The result can therefore be considered as a series of time functions of

complex value of N , which are (M −N + 1) long.

It is noted that t denotes the time dependence of the matrix in its horizontal direction,

while k denotes the frequency dependence vertically.

The calculation method presented above is very time-consuming due to the already known

disadvantage of calculating DFT. Therefore, this time should be reduced to improve usability.

Suppose, in the methods described above, the windows move with only one time index. In

that case, two window positions in the given region can be taken into account and used

in the calculation, thus reducing its time requirement. The relationship between the DFTs

calculated for the two windows is given by the following equation

At+1
k = ωkN

(
At
k −

1√
N
Xt−N+1 +

1√
N
Xt+1

)
. (2.30)

The formula can also be written in the following form if the window moves more than

one step (s ≥ 1)

At+s
k = ωksN

(
At
k +

1√
N

s−1∑
j=0

(Xt+1+j −Xt−N+1+j)ω
−jk
N

)
. (2.31)

Once the first matrix At
k was calculated, i.e., the DFT result of Xt−N+1...Xt, this can

be used in the following steps during the DFT calculation of At+s
k , i.e., during the DFT

calculation of (Xt+s−N+1...Xt+s). In the case of s ≥ N , then the two DFT calculations are

independent from each other which means this is not STFT, but a batch of DFT calculations,

and the time required for the calculation is not reduced. The formula takes advantage of the

computational redundancy due to overlapping windows, which reduces the calculation time.

Dénes Gábor used first the STFT calculation for the analysis of speech data in 1946. Due
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to this, STFT is mentioned in the literature in several different forms, such as the windowed

FT, the Gábor-transformation, or the local FT. The form of STFT used in this dissertation

is a special case of the Gábor-transformation. In the latter case, each of the inputs delimited

by each window is weighted by coefficients of different magnitudes cj. The method’s essence

is to highlight as many values in the middle of the window as possible, and the ones at the

edge of the window should play a smaller role. The Gábor-transformation can be described

as

At
k =

1√
N

N−1∑
j=0

(cjXj+t−N+1)ω−jkN . (2.32)

The above-mentioned equation is a much more general form of the STFT calculation,

which can easily be transferred into the same form introduced before, if cj = 1 for every j.

In the above, one interpretation of the STFT calculation was presented that focused on

showing the close relationship with DFT. In the following, another approach is described,

which focuses more on making the result of the FT time-dependent, i.e., using windows.

The primary problem is that the FT does not represent the time-dependent behaviour. In

order to address the deficiency, a simple method can be used in which the signal is compared

with elementary functions that are simultaneously localised in a time and frequency domain.

The equation that mathematically describes the method is shown below as

STFT(t, ω) =

∫
x(τ)γ∗t,ω(τ)dτ =

∫
x(τ)γ∗(τ − t)e−jωτdτ, (2.33)

where γ∗(τ), called window function, usually has a short duration compared to the input

signal x(t). For this reason, the calculation STFT is also called a windowed Fourier transform.

An approach to the calculation process of the formula is shown in Fig. 2.1 and an illustration

of a resultant spectrogram can be seen in Fig. 2.2.

As a first step, the input signal is multiplied by x(t) and the window function γ∗(τ), and

the result x(τ)γ∗(τ−t) has to be Fourier transformed. The window function is valid only for a

small period of time, so the result of the FT only reflects the local frequency properties of the

signal. By moving the window function and repeating the calculation process, we can get an

idea of how the frequency components of the input signal change with time. The result of the

FT will thus be a complex valued function representing the time- and frequency-dependent

phase and amplitude characteristics of the input signal.
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Figure 2.1: Illustration of the Short-Time Fourier Transform (STFT) [81]

Let us assume that the window function at time instance x(τ)γ∗t = 0 , while its FT

for ω = 0 frequency component is symmetric. If the duration and frequency bandwidth of

x(τ)γ∗ are ∆t and ∆ω, then the STFT(t, ω) will represent the behaviour of the signal in the

neighbourhood of the [t−∆t, t+ ∆t]× [ω −∆ω, ω + ∆ω] range.

In order to be able to measure a signal as accurately as possible in a specific time and

frequency range, ∆t and ∆ω limits should be chosen as narrow as possible. However, it

contradicts the requirement that the two coefficients are related to each other through the

FT. The problems with the resolutions will be discussed in the next chapter.

By squaring and plotting the result of STFT, the STFT spectrogram (Eq. 2.34) can

be obtained, which makes it easy to distinguish the diagram from other time-dependent

spectra based on linear techniques. It is the most straightforward and most widely used

time-dependent spectrum representing a signal’s energy distribution over a time-frequency

range. While the result of the STFT calculation is usually complex, the STFT spectrogram

is typically real.

Spectrogram(t, ω) = |STFT(t, ω)|2 (2.34)

In the case of the STFT of discrete-time input signals, the relationships that are already

known can be applied. Using a sample-based windowing technique, the data is split into

equal-sized pieces that overlap each other—the larger the overlap, the smaller the changing
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Figure 2.2: Illustration of a spectrogram (www.ni.com)

effect between them. A FT is performed on each data segment, the complex results are added

to a matrix that captures the time- and frequency-dependent phase and amplitude properties

for each point. The mathematical form of the method is

STFT[k, n] =
L−1∑
i=0

x[i]γ[i− k]W−ni
L , (2.35)

where

STFT[k, n] = STFT(t, ω)|t = kDt, (2.36)

and where

ω =
2πn

LDt

(2.37)

Therefore the result after substitution is

STFT {x[n]} (m, ω) =
∞∑

n=−∞

x[n]w[n−m]e−jωn, (2.38)

where x[n] is the time signal to be transferred, w[n −m] is the window function with a

smaller duration related to the input signal and j is the complex unit.

The magnitude squared of STFT {x[n]} (m, ω) yields the visual representation of the

transformation - the spectrogram itself in this case also using
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Spectrogram {x[n]} (m,ω) = |STFT {x[n]} (m, ω)|2 (2.39)

Any of the previously introduced spectra types in section 2.1.2 can be used for spectrogram

creation. In this research the basis of the spectrogram is always the PSD with the dimension

of
V2

pk

Hz
.

2.2.1 Windowing Criteria and Resolution Issues

During this section, the windowing effect and the time versus frequency resolution optimum

will be discussed. This discussion will involve the basis for eliminating this effect better to

ensure high-quality spectrogram generation. The theoretical basis of this section is based on

references [83,92].

The most important disadvantage of the STFT is that it has fixed resolution in time and

frequency influenced by the windowing process. The reason is that it determines whether

the frequency resolution is appropriate, i.e., those frequency components which are close to

each other can be distinguished from each other; or the time resolution is acceptable, so at

certain times frequency changes can be separated.

The window size applied to the input signal determines the final frequency resolution.

This could lead to better detachment of the frequency components, which are close to each

other. The other circumstance is when the time-resolution is improved. In this case, the

time instants at frequency changes become separable. A wide window creates ideal frequency

resolution and disadvantageous time resolution, while a narrow window has a contrary effect.

These effects are called narrow- and broadband resolution. The differences between these

effects are shown in Fig. 2.3. The figure shows the fundamental difference between narrow-

band (left) and broad-band (right) windows in terms of time and frequency resolutions.

Therefore, when choosing the two parameters, it is crucial which property needs to be in

focus in the end result.

However, the optimum between them can be taken into account when determining the

resolutions. Consider the zero-center window functions, i.e., where time resolution is depen-

dent on γ∗(τ), while its Fourier transform is symmetric for frequency components ω = 0. In

this case, the bandwidth of the two ranges is equal to the normal distribution of the variables,

i.e., ∆t for time and ∆ω for frequency (the range is: [t − ∆t, t + ∆t] × [ω − ∆ω, ω + ∆ω].
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(a) Narrow window (b) Wide window

Figure 2.3: Wide and narrow window types

To reach the optimum, the two parameters must correspond to the so-called uncertainty

inequality, which is as

∆t∆ω ≥
1

2
. (2.40)

The limit of inequality, i.e., the optimum of time and frequency resolution, can be achieved

using Gaussian windows. This is because the zero-centricity of these functions is the most

ideal in both time and frequency domains. Therefore, this window is most often used in

various applications of STFT, but Hanning, Hamming, and triangle functions are also used

[74,94], as their properties are also favourable.

Resolution problems can be examined as a function of sampling- and Nyquist-frequency.

Consider a window of N samples extracted from an arbitrary signal of real value, sampled at

a frequency of fs. As a result of the FT, N complex pairs of values are created on the image.

Since we are talking about a real-valued signal, only half of the result can be considered

useful, since its last half (N
2

points) is the complex conjugate pair in the reverse order of

the first half. The coefficient N
2

thus represents the Nyquist-frequency (fs
2

) and the distance

between each point is fs
N

Hz.

This distance should be reduced to increase the frequency resolution. There is the pos-

sibility of reducing the fs sampling frequency, without influencing the number of N points

in the window. As described, the window size will increase as fewer sampling points will

be available per time unit. The other option is to increase the number of N points in the

window without changing the fs sampling frequency. In this case, we get the same result.

Thus, it can be seen that whichever path is chosen to increase the frequency resolution; it
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Figure 2.4: Illustration of the Time-frequency resolution during STFT [81]

generates a larger window that decreases the time resolution. The phenomenon also applies

backwards, i.e., changing the two parameters in opposite directions has a similar effect on

resolving the time and frequency ranges.

The Nyquist-frequency determines the maximum frequency that can still be processed

for a given signal. The Rayleigh-frequency gives the minimum frequency that can still be

processed by a finite time window for the same signal [95]. Suppose the width of the time

window is tW seconds, at which the minimum resolvable frequency is 1
tW

Hz. It is very

important to determine this parameter in some applications, as valuable information can be

lost during the study (e.g., neural signals).

Another condition is also necessary during the windowing procedure. The process itself

can be determined in a way that the analysed time signal and, consequently, window func-

tions will have some overlapping with each other. This means the STFT calculation of the

given time window will be influenced by the time window in the previous step. The more

overlapping between the used window is, the lower the switching effect between each section

is. To get the most informative results from a signal, it is necessary, besides the time signal’s

high sampling frequency, to optimise STFT time and frequency resolution. Because in a

construction, several rotating elements can be found, we decided to achieve high-frequency

resolution in a time segment for spectrogram creation with the application of an overlapping

windowing technique. During the analysis, it was assumed that the time segments are narrow

enough to be considered quasi-stationary segments. The calculation of the spectrogram in

the first analyses was time-consuming.
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The best results can be achieved with big window overlapping while the data will be pro-

cessed redundant, and the number of points used for FFT calculation can also be increased.

Obviously, the complete algorithm has an upper limit related to the number of points and the

overlapping ratio resulting in memory allocation issues. Using the improved memory man-

agement presented in the next sections, this phenomenon did not occur during the research

work.

After a specific limit, the STFT algorithm ran into an error due to a lack of memory at

the set values. At this moment, it has to be noted that the signal processing software package

was developed using a 32-bit NI LabVIEW 2014 programming environment. It turned out

that the cycles used in the algorithm could not store as much data as would have been

needed. As a workaround for this problem, an enhanced Functional Global Variable (FGV)

was used which is an often-used design pattern. An FGV is basically a non-reentrant function

featuring a while loop that iterates once, and has an un-initialized shift register.

The essence of FGV is that the input data is stored globally in memory, from which

it can then be retrieved later. The basis memory management was improved, which means

dedicated memory segments were allocated to perform the FFT. Thanks to this, several FFT

calculation can be performed parallel and using the proper indexing, the reconstruction of

the STFT can be achieved. This can be performed because theoretically, the windowing is

not else than cutting a section from the original time signal and performing the analysis

on this time signal. When the complete signal is transformed, the results will be collected

from the assigned memory addresses to display the spectrogram image for post-processing

purposes.

Using the above mentioned techniques it possible to implement a subroutine capable of

producing a more stable, reliable, and optimal result than its counterpart found in LabVIEW,

which greatly facilitated subsequent studies. The block diagram of the solution can be seen

in Fig. 2.5

2.3 Simulated Signals for Method Introduction

In the following sections and chapters of the thesis, a novel, multi-discipline evaluation

method will be presented, which is visualised with a flowchart in Fig. 2.6.

The process was separated into three main phases. The thesis is structured in such a way
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Figure 2.5: The block diagram of the improved STFT algorithm

that these main process phases are discussed during the chapters. The first part is a sequence

of general vibration signal preparation and evaluation methods, which was discussed in this

Chapter 2. This is follow by the second part of the process where the evaluation of the

spectrogram image derived from the pre-processed signals takes place (Chapter 3 and first

half of Chapter 4). The final phase is a transformation back into the Time-Freuqency (TF)

domain (presented at the end of Chapter 4) to describe the operational state and create a

basis for further diagnostics of the rotating machine about which Chapter 5 will represent

more details.

In this chapter, simulated vibration signals were used for demonstration and validation

purposes with 52 kS/s sampling. The sampling rate is in accordance with the bandwidth

of the knock sensor used later in real measurements. The signals contain the superposition

of multiple sine waves with defined amplitudes and frequencies, including noise. In order to

check and validate the operation of the method, the simulated signals were extended with

various noise signal conditions in addition to having different RPM gradients. The noise

conditions were interpreted with the SNR and Total Harmonic Distortion (THD) values.

During the analysis, SNR was determined by calculating the ratio of the fundamental tone

RMS level and the noise RMS. In the simulations, an additional goal was to identify the

lowest SNR, enabling the method to remain operational. The RPM gradients were defined

by using practical applications; e.g. acceleration of an electric vehicle or acceleration of a car

equipped with ICE during the 1st gear. Details about the simulated signals used for method

verification are presented in Table 2.3 and 2.4. Table 2.3 contains those setups where the RPM

gradient is changed, and the SNR without harmonics is 5 dB. Table 2.4 contains those setups
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Figure 2.6: The flowchart of the developed method using improved STFT algorithm and
image evaluation

where SNR is varied, and the gradient is fixed with a value of 3000 RPM for 1 second. The

noise content was generated using Gaussian and Uniform White noise signals. The simulated

signal generation was performed by the superposition of different, pre-generated waveforms.

The signals consist of principal unit sine waves and different type of noise waveforms. The

general description of one signal is

f(t) =
N∑
1

(sin(ω1t) + ...+ (sin(ωN))) + G∗(t) + U∗(t), (2.41)

where N is the number of the unit sine waves in the signal, ωN is the frequency of one

sine wave, G∗(t) is the Gaussian White Noise (GWN) time function and U∗(t) is the Uniform

White Noise (UWN) time function.
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Besides, for simulated signal generation, a gradient can be defined, which ensures different

RPM gradient change in the signal in order to simulate different rotating frequency changes.

The basis of the gradient is the ωN value of the unit sine wave, which multiplied or divided

by an integer will result in the start (fstart) and the end (fend) frequencies.

Table 2.3: Main properties with transient info of the simulated signals used for validation

Setup Signal properties Transient info

1 - Ramp down
Unit amplitude sine waves

fstart = 1250; 3750; 8750 and 12500 Hz
length = 2 s

fend = fstart
5

2 - Ramp up
Unit amplitude sine waves

fstart = 250; 750; 1750 and 2500 Hz
length = 2 s
fend = 5fstart

3 - Ramp up
Unit amplitude sine waves

fstart = 50; 150; 500 and 1750 Hz
length = 1 s
fend = 5fstart

4 - Ramp down
Unit amplitude sine waves

fstart = 150; 450; 1500 and 5250 Hz
length = 0.5 s

fend = fstart
3

Table 2.4: Main properties with noise conditions of the simulated signals used for validation

Setup Signal properties Noise info

5 - Ramp up
Unit amplitude sine waves

fstart = 150 and 500
SNR = -22.9 dB
THD = 6.7 dB

6 - Ramp up
Unit amplitude sine waves

fstart = 150 and 500
SNR = -19.1 dB
THD = 1.99 dB

7 - Ramp up
Unit amplitude sine waves

fstart = 150 and 500
SNR = -15.9 dB
THD = -2.37 dB

The best results can be achieved with large window overlapping while the data will be pro-

cessed redundant, and the number of points used for FFT calculation can also be enhanced.

The overlapping conditions are influencing the smoothness of the final results. When the

overlapping factor increases, the computational resource needs will be higher, but the re-

sults will have fewer errors. The influence of the overlapping phenomenon can be an area

for further improvement. The actual recommendation for the overlapping is a constant 1/5

factor, i.e., 1/5 of a time segment will be used redundantly during every STFT operation step

while the frequency resolution - the frequency bin parameter - needs to be close to half of

the sampling frequency. The bin parameter can be determined by the ratio of the sampling

frequency and the length of the FFT. During the validation, the time window is always 0.05 s

wide with a 0.01 s overlapping, and the frequency bin parameter is 26 k. As an example, a

simulated time signal and a generated spectrogram can be seen in Fig. 2.7.
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(a) The simulated time signal

(b) The generated spectrogram

Figure 2.7: Time signal and spectrogram of Simulation Setup 2 in Table 2.3. The colour of
the spectrogram indicates the amplitude values of the vibration components
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2.4 Novel results

In this section those novel results will be summarized which are related to the part of the

research work presented in Chapter 2.

2.4.1 Thesis 1

Algorithm enhancement for Short-Time Fourier Transform

The applied window function facilitates the enhancement of the Short-Time

Fourier Transform process of a rotating machine vibration signal by paralleliza-

tion of the calculation. The parallelization requires the definition of a batch

of time segments for Fast Fourier Transform, dedicating a single processor core

and allocating dedicated memory areas to parallelly process the defined time

segment.

Related publications: [MG1]
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Chapter 3

Spectrogram Image Processing

The main part of the research was to find out how to extract information from spectrograms

fast and reliable without losing any information. The spectrogram can correspond to a map

where the third dimension is represented with colours or colour-densities, we can correlate it

to a Moiré-image. The difference in this aspect is that the black “Moiré” lines represent the

exact frequency component trends which will be the basis of the next steps. Several research

work represents Moiré-image evaluations in [96–100] and references [101–105] were also used

during the creation of Chapter 3.

3.1 Vibration to Image Space

The first step is to transfer the information from vibration to Image space in order to extract

information later. This can be performed by exporting the spectrogram as a greyscale image.

The following sections will discuss the basis of this transformation.

3.1.1 Spectrogram-Moiré Image Analogy

Optical measurement methods of three-dimensional surface metrology became rapid and

practical tools, especially in the field of orthopaedics [97–99, 106–109] where Moiré imaging

(used primarily on spinal deformities) is considered to be capable of measuring and graphically

displaying whole surfaces instantaneously. A new structure arises with more extended periods

by superimposing two similar periodic structures translated or rotated relative to each other.

This one is called the Moiré pattern, and it consists of the Moiré fringes. Simple Moiré
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patterns can be observed when superposing two transparent layers comprising periodically

repeating opaque parallel lines as shown in Fig. 3.1a [100]. The lines of one layer are parallel

to the lines of the second layer.
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(a) Basis of the Moire method
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(b) Superposition of two parallel layers

Figure 3.1: Illustration of the Moiré method [100]

The superposition image does not change if transparent layers with their opaque patterns

are inverted. One of the layers is denoted as the base layer and the other as the revealing

layer (Fig. 3.1a). The superposition image of Fig. 3.1a outlines periodically repeating dark

parallel bands, called Moiré lines. Spacing between the Moiré lines is much larger than the

periodicity of lines in the layers. Light areas of the superposition image correspond to the

zones where the lines of both layers overlap. The dark areas of the superposition image

forming the Moiré lines correspond to the zones where the two layers interleave, hiding

the white background. The labels of Fig. 3.1b show the passages from light zones with

overlapping layer lines to dark zones with interleaving layer lines. The light and dark zones

are periodically interchanging [100]. The main objective of the research was to find out how

to extract information from spectrograms more efficiently and reliably without losing any

information. As the spectrogram was able to correspond to a map where the third dimension

is represented with colours or colour-densities, it was possible to correlate it to a Moiré-image.

In this aspect, the black “Moiré” lines could represent the exact frequency component trends

and the basis of the next steps of the research. There have been numerous studies [96–99]

conducted on Moiré-image evaluations.
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3.1.2 Spectrogram Conversion to Image Space

During the research, in addition to this Moiré-image analogy, vibration information could

be kept lossless as the spectrogram was exported as a greyscale normalised image. The am-

plitude values were normalised along with the black-white pixel values stored in one byte

with integer values between 0 and 255, ensuring the preservation of the information as the

tendency of the TF ridges is important only. The absolute amplitude values will be in the

focus when the inverse transformation from image-space is carried out at the end of the

image evaluation sequence. An additional advantage of this process is the more utilised com-

putational resource usage due to the data compression of the image generation. Unnecessary

information from the spectrogram graph, such as scaling, axes etc., needs to be eliminated

to provide a reliable source for the image evaluation process. Therefore, the images were

produced fixed resolution during the method with 800x800 pixels. Furthermore, it is crucial

to prevent major information loss on the STFT properties as the data from the image-space

needs to be transferred back to the TF domain later on. For later steps the characteristics

and tendency of the frequency lines are needed, not the exact amplitude values. The collected

information was exported to an auxiliary file by the spectrogram image, which contains the

time and frequency range, the time and frequency resolution, the number of pixels in the

time and frequency range, and the amplitude range enabling the spectrogram reproduction

at any time. For example, in Simulation Setup 2 in Table 2.3, the given amount of pixels is

equal to 12.5 Hz, and 0.031 s in the case of a greyscale image. The pixel values represent the

amplitude in V2

Hz
.

3.2 Theoretical Basis

In the previous section, the spectrogram greyscale image was created. In this chapter, image

preparation and evaluation methods will be demonstrated, and then further will be used to

extract the vibration signal’s frequency component information of a rotating machine from

a spectrogram image.

When the STFT was performed, the spectrogram image is available for further analysis.

Before the extraction of frequency components, additional image pre-processing method ap-

plications are recommended to emphasise the relevant information content of the image. In
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image processing, various well-known methods can be applied, such as point-to-point oper-

ations, local or global operations. During the research, the spectrogram was exported from

that part of the signal, which contains the most relevant information about operational states

(e.g. a ramp-up or constant sections) with the possibility of further image manipulation.

In global operations the new brightness of a given pixel depends on all other points in the

image. The starting point for the transformations was the image plane and was performed

only on those visible pixels. However, global operations are based on a range of plane

functions where the components change the amplitude and phase components, which affects

the whole picture. In the studies, the Fourier transform of the image was determined. By

filtering, amplifying and attenuating the individual components of the obtained result, the

images were changed according to the requirements for the test. However, the changes take

effect only if we perform the inverse Fourier transform on the data afterwards. The result

is the changed image. The methods allow for a deeper examination of objects. However,

this method has the greatest computational requirement among the operations since all the

image points play a role. The time required for the calculation can be reduced by using the

fast Fourier transform.

In local operation solutions the new brightness of a given pixel is affected by its orig-

inal brightness and the specified environment (for example, 3 × 3 pixels). The point thus

determines the new brightness and its environment and the used transformation method.

Operations include convolution-based rank filtering. Convolution means the weighted sum

of the brightness of a pixel and the points around it. The method makes it possible to clean

noise-laden images, highlight and sharpen edges with the help of various operators (windows).

The computational requirements of the operations are proportional to the number of pixels

and the size of the pixel environment, i.e., N2P 2 (assuming an image of NxN pixels and a

test environment of PxP pixels).

Finally, in point-by-point operations, the new brightness of a given pixel is only affected

by the original brightness of that point, i.e., the result is independent of the other pixels, and

their results are collected in a table. When examining points in an image, the results for that

point are retrieved and assigned from this table. In a broader sense, these transformations

include creating new images created by arithmetic or logic operations based on the brightness

values of points at two positions in two images of the same size. These include histogram

transformations, including inversion, elimination, and colouring. The computational require-
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ment of the operations is proportional to the number of pixels, i.e., N2 (assuming an image

of NxN pixels).

In the following section, example methods for these three operation type will be discussed

which are the histogram manipulations and filterings.

3.2.1 Image Histogram Manipulation

An important method of examining images is to analyse their histogram. The histogram

shows the frequency of occurrence of each value. In this case, it can be found out which

colour appears most or least in the given image. Based on the information, the pixels’ values

can be manipulated to display, for example, a smaller amount of a point of the selected colour

in the image, thereby improving its contrast.

Two histogram-based studies were performed during the research. In the first case, con-

trast enhancement can be performed on the image, i.e. a histogram compensation. In this

case, knowing the image histogram, the correction method makes the brightness codes evenly

distributed. The use of the method is advantageous for less contrasting images, i.e. the in-

tensity values are concentrated in a minor part of the intensity range.

During the second case, which is the so-called binarisation method, the pixels of a given

image are transformed so that, in the end, they can only take one of two values. After

the transformation, the essential darker parts are highlighted, while the irrelevant parts are

suppressed.

However, the images used to test the methods showed that the method is not necessarily

suitable for the correction and analysis of spectrograms. This is because the vibration signals

are usually too noisy for the image generated during binarisation to detect time-dependent

changes. The edges representing these are blurred with the noise and could not be highlighted

or analysed.

(a) Original image (b) Histogram Correction (c) Binarisation

Figure 3.2: Illustration of Histogram correction and binarisation on a greyscale spectrogram
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For the above reasons, a third possibility was chosen in which three factors are influencing

the contrast of the image. This is the Brightness-Contrast-Gamma (BCG) correction method.

By adjusting the brightness, the brightness of the image can be increased or decreased, while

by changing the contrast, the brightness ratio between the light and dark parts can be

adjusted. Gamma is a correction value that allows changing the brightness of pixels and the

sharpness of their colours. In the rest of the research, this BCG correction method was used.

Examples of the different histogram manipulation results on a greyscale spectrogram image

can be seen in Fig. 3.2 while Fig. 3.3 and Fig. 3.4 represent some corner cases of the BCG

correction.

(a) Original image (b) Low Brightness

(c) Low Contrast (d) Low Gamma

Figure 3.3: Illustration of low Brightness-Contrast-Gamma correction parameter effects on a
greyscale spectrogram

3.2.2 Image Filtering

In image processing, filtering can be considered as a mask or window-based transformation.

During the process, each pixel changes depending on what points are in its vicinity. The size

of the original one and the image obtained after filtering are the same in all cases. The method

goes through each pixel one by one, one after the other. The masks used for filtering are

represented by matrices, the values of which are called weights. These are usually quadratic
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(a) Original image (b) High Brightness

(c) High Contrast (d) High Gamma

Figure 3.4: Illustration of high Brightness-Contrast-Gamma correction parameter effects on
a greyscale spectrogram

matrices of an odd size, thus having a centre, an origin. In the simplest case, these masks are

linear, i.e., the given pixel is replaced by a linear combination of its surroundings according

to the weights of the mask. In this case, the matrix is also called a convolution kernel or

mask, as shown in Eq. 3.1.

∣∣∣∣∣∣∣∣
1 7 3

1 2 5

10 9 8

∣∣∣∣∣∣∣∣⊗
∣∣∣∣∣∣∣∣
1 1 1

1 8 1

1 1 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
0 0 0

0 60 0

0 0 0

∣∣∣∣∣∣∣∣ (3.1)

For the evaluation and analysis of different filtering methods, references [105, 110–113]

were used. See these references for more detailed information.

The exported greyscale spectrograms were contaminated with noise. From the point of

view of image processing, eliminating them is an common challenge. At the beginning of the

research, it was unknown which method could produce the best result, so several methods

were examined which are represented in Fig. 3.5.
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(a) Original image (b) Low-pass filtering

(c) Convolutional filtering with Gradient-kernel (d) Convolutional filtering with Laplace-kernel

(e) Convolutional filtering with Smoothing-kernel (f) Convolutional filtering with Gauss-kernel

Figure 3.5: Illustration of filtering methods on a greyscale image

• Low-pass filter: When a low-pass filter is used, high-frequency parts of the frequency

range are damped or eliminated, causing the image to be blurred. Testing of the option

revealed that the processability of the spectrograms could not be significantly improved.

• Convolutional filter: For convolutional filters, four different types of kernels can be

chosen. In each case, a pre-built matrix of 3× 3, 5× 5, or 7× 7 elements can be used

to filter the image.

Gradient-kernel: Using a gradient filter, we approximate the x and y gradients

of the derivatives taken at points in the image as surfaces by the difference quotient.

With the method, significant intensity changes and edges can be detected because it

eliminates homogeneous areas.
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Laplace-kernel: Laplace filters are based on the second derivative of x and y at a

given point. In practice, the method is the difference between the smoothed and the

original version of the image, due to which it reacts significantly to changes in intensity,

i.e., edges and errors.

Smoothing-kernel: Smoothing filters are determined by the average of the points

in the vicinity of a given point. Accordingly, the window contains only positive values.

The degree of smoothing is determined in each case by the size of the mask used.

Smoothing kernels act as a low-pass filter and can be used to eliminate various noises

and blur images. The downside is that it also removes fine detail from the image.

Gauss-kernel: Gaussian filters work similarly to smoothing kernels, except that they

are calculated differently. The modified value of a given pixel can be derived from the

pixel’s weighted average in its vicinity in the former case. The degree of smoothing is

determined here by the distribution. The values of the mask are circularly symmetrical

or close to zero at its edge.

• N th order filter: The N th order filter also corresponds to a low-pass filter. The point

is that the modified value of a given pixel is given by the points around it, where the

basis of the study is a quadratic matrix of odd size defined by us. The covered points

are queued by the filter based on their values, and the N th value of this queue will be

selected as the new value of the examined pixel. The total light intensity of the image

can be adjusted by selecting N since selecting a high-value result in a lighter image

and vice versa.

• Morphological filter: By applying morphological filtering, the shape of different regions

can be changed by increasing the light areas at the expense of the dark ones, which can

also be realised backwards. Different types of filters smooth the image based on the

patterns and increase the contrast in the border areas.

Some results showed that quality improvement could be achieved using morphological fil-

ters; therefore, further evaluation was performed in this filtering family. Briefly, the following

morphological filter types were evaluated which are represented in Fig. 3.6.
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(a) Original image (b) Erosion filtering

(c) Dilatation filtering (d) Opening filtering

(e) Closing filtering (f) Auto-median filtering

Figure 3.6: Illustration of morphological filtering methods on a greyscale image

• Erosion filter: During erosion, the brightness of pixels surrounded by lower intensity

points is reduced.

• Dilatation filter: Dilatation has the opposite effect to erosion, i.e., it increases the

brightness of the pixels if the intensity of the points around is higher. In the process,

brighter regions expand at the expense of darker ones.

• Opening filter: Opening consists of the successful running of two processes, i.e., the

execution of erosion is followed by dilatation. The method essentially removes bright

spots that are in a dark environment and smooths out individual borders. However, in

the process, the size and shape of each region do not change significantly, as erosion

and dilation are morphological opposites of each other.
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• Closure filter: Closure is the opposite of opening because the same two processes take

place only in reverse order. The course of dilatation erosion removes dark spots found

in light environments and smooths out individual borders.

• Auto-median filter: The Auto-Median function occurs as a double combination of open-

ings and closures, resulting in simpler regions with less details.

It can be seen that the different morphological filters have their advantages and disad-

vantages as well. It was not the scope of the actual research to determine which filtering

method is the best solution for vibration signal evaluation because it depends on the signal

under evaluation, the setup on the measurement system and the characteristics of the applied

sensor.

As a summary, it can be said that the information content of the image can be high-

lighted better if a low-pass or convolutional filter with Gauss-kernel or morphological dilata-

tion/erosion filter was applied on the spectrogram. Additionally, the combination of these

filters by executing them one after the other can enhance the results also.

3.3 Proposed Spectrogram Image Preparation

Before moving forward in the evaluation steps, additional image pre-processing methods are

recommended to be applied on the spectrogram. With these, the necessary information about

the frequency components could be better emphasised. During our research, the spectrogram

was exported from that part of the signal, which contains the most relevant information

about operational states (e.g. a ramp-up or constant sections), but the image may have to

be manipulated further.

With the intention to accomplish this manipulation, the following image processing meth-

ods were utilised. Based on our basic research, we can recommend the order and parameters

of the used methods, whereas the influence of the recommended order and parameters on the

final results requires further research. The evaluation started with BCG correction using pa-

rameters B = 171, C = 56, G = 1.51 followed by a histogram correction and a convolutional

6 × 6 Gaussian filter. Additionally, several other methods could be applied like low-pass,

morphological, erosion, dilatation filtering, image binarisation and so on, to improve image

quality. More-in-depth details can be found in references [112, 114, 115] about the generally
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Figure 3.7: Exported greyscale spectrogram of Simulation Setup 6 in Table 2.4.

used filters and correction techniques applied in image processing. An example image after

correction methods can be seen in Fig. 3.7.

It has to be highlighted that this sequence of steps is general, but the parameters depend

on the vibration signal itself because of the possible different sampling frequency rates and

various types of noises. The parameter optimisation of these steps to ensure signal quality

independence is outside of the scope of this paper. It can be assumed that filtering and signal

conditioning was performed correctly before STFT image creation.

The methods, presented so far, reduced the amount of noise on the image and highlighted

the essential details of the image better.

3.4 Edge Detection

After the image preparation is performed, the evaluation of the content can come. During

this evaluation additional image related actions will have to be executed in order to obtain

the frequency components from the spectrogram. As a pre-requirement for the next steps, we

have to declare that frequency component intersections do not exist because fk frequencies

of every rotating part of the construction depend on the primary f(n) RPM.

In the beginning, auxiliary mesh generation and edge detection are necessary to find those

points which can be part of a frequency component on the image. The algorithm creates

several parallel, vertical auxiliary grid lines in the image in the first step of the detection,

based on an adjustable line-density setting in pixels. These mesh lines intersect the frequency

lines (black lines), so rising and falling edges will be detectable on the image.
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With a rare mesh, the ridges can be lost. They can flow into each other, making them

difficult to process. Their intensity may vary along each edge, so there may be sections that

can not be detected. In the case of a dense mesh, such sections can distract from finding

an otherwise visible edge. The effect described above is shown in Fig. 3.9 and Fig. 3.8. For

the above-specified greyscale spectrograms an auxiliary mesh with a resolution of 10 pixels

or more is optimal.

Figure 3.8: Rare vertical auxiliary mesh lines (red - vertical mesh lines, black - frequency
components, green points - found edges)

Figure 3.9: Dense vertical auxiliary mesh lines (red - vertical mesh lines, black - frequency
components, green points - found edges)

In order to find the edges where mesh lines and frequency components intersect each other

on the spectrogram image, it is cardinal to determine from which direction we are looking

for them. With a setting called edge polarity, it can be specified where the edge detection

starts along a given line. In most cases, the boundary between a light and a dark area marks

the edge of a shape. In the present case, a detected point indicates the edge of the edge,

which also has another side, for test purposes that can be selected which boundary point of

the found shape to display along the mesh line passing through it. The test is most optimal

when the lower edges (Rising Edges) are displayed when searching for rising edges, while the

upper points are displayed when searching for rising edges. The effect described above is

shown in Fig. 3.10a and Fig. 3.10b. It is important to note that in the case of an image from

which a polygonal area has been removed, the masked section’s boundary may also interfere

with detection.

Another important setting for filtering edges is the pixel strength of the searched element.

In essence, it can be specified how significant the intensity of the areas should be to qualify
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(a) Detecting rising edges (b) Detecting falling edges

(c) Detection with high intensity difference (d) Detection with low intensity difference

Figure 3.10: Edge detection with different setups – (red - vertical mesh lines, black - frequency
components, green points - found edges)

it for a light and dark area border. From this, it can be concluded that using low intensity

threshold values will result in irrelevant points, while significant edges may be lost at high

intensity threshold values. The effect described above is shown in Fig. 3.10c and Fig. 3.10d.

As an optimal auxiliary mesh generation result for one Simulation Setup can be seen in

Fig. 3.11.

Figure 3.11: Generating vertical auxiliary mesh lines on the spectrogram image obtained from
Simulation Setup 2 in Table 2.3 (red - vertical mesh lines, black - frequency components, green
points - found edges)

As it was mentioned before, the black lines indicate a frequency component on the image.

The method checks coherent rising and falling edges to get the most reliable result and

calculates the average vertical pixel coordinate. Thus, if the black line is thicker, the frequency

component is dominant, the middle of this line can be found. After this, an intersection point

can be inserted, representing one point of a frequency component. These intersection points
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are only visually capable of representing one frequency component. In order to capture a

processable result, so-called component tracking algorithms were implemented. These can

link those coherent points to each other during a horizontal sweep through the auxiliary

grid lines, which belong to one frequency component. These methods will be introduced in

Chapter 4.
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Chapter 4

Vibration Information Extraction

from Spectrogram Image

During the previous chapters, the STFT method and the spectrogram creation was in the

foreground, followed by the theoretical basis of image processing and the used image prepa-

ration methods for frequency ridge evaluation.

The main target is to obtain the vibration frequency component information from the

spectrogram image, which can be achieved using so-called component tracking methods.

These methods will be introduced during the sections with their calculation background

supplemented by their advantages and disadvantages illustrated on the example simulated

signals discussed in Chapter 2.

The final part of this chapter will give an overview of how the obtained information can

be transferred back to the frequency-time domain from the image domain to support rotary

machine diagnostics and condition monitoring tasks.

The main content of Chapter 4 is based on the relevant references [11,116,117].

4.1 Component Tracking Methods

The following sections will contain the theoretical description of the component tracking

methods extended with test and evaluation on simulated signals.
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4.1.1 Differential Method

In order to connect the detected intersection points, first, the so-called Differential Tracking

Method (DTM) was developed.

The detectable intersection points (j = 0...M) along a vertical grid line and a frequency

component line in the spectrogram are represented by green dots, the mentioned grid lines

i = 0...N shown in red in Fig. 4.1. The connection of these points starts with a point along

the first vertical line (Fig. 4.1a). These points are handled as an initial point Pi,j(xi,j; yi,j) of

a new frequency component on the image where x is the pixel coordinate along the horizontal

axis, and y is the pixel coordinate along a grid line.

(a) Step one

n

(b) Step two

+1

|d|

(c) Step three (d) Step four

Figure 4.1: The steps of the DTM – (grey - spectrogram lines, red – vertical mesh lines,
green – found intersection points with spectrogram lines, light green – indicator of the initial
point, orange - tolerance range, blue - found segment of a frequency component)

After finding the initial points, the algorithm calculates the vertical distance between

(Fig. 4.1b) the starting point and the detected points on the following line of the auxiliary

grid as
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dn = yi+1,n − yi,j, (4.1)

where d is the vector of the calculated vertical differences, yi+1,n is the y coordinate of

an intersection point on the i + 1 vertical grid line and n is a running index which iterates

over the elements of j. From the calculated differences the algorithm chooses the minimum

absolute value and performs further examination on the detected Pi+1,j point (in Eq. 4.2).

If Pi+1,j in Fig. 4.1c is inside a pre-defined ε tolerance range, the software assumes that

this is the next element of the currently analysed k frequency component. This tolerance

range (indicated with orange in Fig. 4.1c) is based on pixel values related to the frequency

resolution of the STFT spectrogram creation method. This correspondence can be made

based on the available vertical frequency and image pixel resolution from the greyscale image

export. If all of the differences in the collected vector are outside of the ε range the detection

of the k frequency component ends, then the algorithm jumps to the next i vertical line.

The same routine is executed if along a grid line edges were not detected. If the calculated

difference value is between the tolerance limits, the logic saves this point as the new element

of the frequency component indicated with blue in Fig. 4.1d. These above-mentioned steps

are described by the following equations

Pi+1,j(xi+1,j; yi+1,j), (4.2)

where

xi+1 = xi + ∆mesh, (4.3)

yi+1,j = yi,j + min |d| if min |d| ≤ ε (4.4)

or

yi+1,j = yi,j if min |d| > ε, (4.5)

where Pi+1,j is the closest point based on differences; ∆mesh is the difference between

two vertical mesh lines; min |d| is the minimum absolute value in the d vector and ε is the

tolerance in pixels. As the result of the tracking algorithm the found frequency components

are collected into an fk vector.

After the previous step, the algorithm restarts with the last Pi+1,j point as an initial

point and analyses the intersection points on the following line of the grid. In the next
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iteration, those points on the upcoming grid line, which were not taken into account in

the previous step, become initial points. This searching process will be repeated until the

algorithms examine all grid lines one after the other until the image’s border or the next

found intersection point is outside of ε tolerance. When every vertical line was analysed,

the results will be represented as found frequency components. If any intersection occurs

between the found frequency components during evaluation, the algorithm will terminate

the execution and returns with the intersection information. The operation of the algorithm

can be influenced significantly by two customisable, independent parameters. The first is the

above-mentioned adjustable line-density setting in pixel values; the second is the tolerance

range during the differential search.

Tests showed that a too dense (mesh line density is 1 pixel) or too rare grid (mesh line

density is higher than 20) provide bad results, which means the components detected by the

algorithm were distorted or false. During the evaluation, the resolution was 5 pixels, ensuring

that the change of rotating speed does not influence the tracking method using the defined

image resolution.

4.1.2 Moving-Average-Predictive Tracking Method

As a next step, the previously introduced differential method was improved further. The so-

called Moving-Average-Predictive Tracking Method (MAPTM) method in Fig. 4.2 estimates

vertically where the next point of the actual frequency component has to be located on the

following grid line and takes it as the initial point of the logic.

P̃i(x̃i; ỹi), (4.6)

where

x̃i = xi,j, (4.7)

ỹi = yi,j + δ̃, (4.8)

where δ̃ is a predictor value, calculated by

δ̃ =

∑i
n=0 Dn

dim(D)
, (4.9)
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where

Di = min |d|. (4.10)

This logic is represented in Fig. 4.2b. In other words, the improved method is a gradient-

based probability estimation, but the main algorithm steps remain the same.

(a) Step one

n

(b) Step two

(c) Step three (d) Step four

Figure 4.2: The steps of the MAPTM – (grey - spectrogram lines, red – vertical mesh lines,
green – found intersection points with spectrogram lines, light green – indicator of the initial
point, orange - tolerance range, blue - found segment of a frequency component)

The algorithm collects in the D that information from the k found frequency component

line what the previous difference values during the component tracking were and calculates

the average of this vector in every iteration. This is the so-called δ̃ predictor value. In the

next step, shown in Fig. 4.2c, the vertical coordinate of P̃ is adjusted with this predictor

value. During the first iteration, d̃i always has a value of zero. Based on this corrected initial

point, the logic sweeps through the points like the differential method on the next grid line.

That Pi+1,j point will be the next element of the frequency line of which vertical d̃i difference

value from vector d̃ is inside the ε tolerance. Like mesh dependency and stop criterion,
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every other property of this tracking algorithm is the same as what mentioned above in the

differential method. This MAPTM method is based on the following equations.

d̃n = yi+1,n − ỹi (4.11)

Pi+1,j(xi+1,j; yi+1,j), (4.12)

where

xi+1 = xi + ∆mesh, (4.13)

yi+1,j = ỹi + min |d̃| if min |d̃| ≤ ε (4.14)

or

yi+1,j = yi,j if min |d̃| > ε, (4.15)

where Pi+1,j is the closest point based on differences between the predicted point and the

found points; min |d̃| is the minimum absolute value in the d̃ vector and ε is the tolerance in

pixels. If all of the differences in the collected vector are outside of the ε range the detection

of the k frequency component ends and the algorithm jumps to the next i vertical line.

In Fig. 4.3 an evaluated spectrogram image derived from Simulation Setup 2 in Table 2.3

can be seen after executing the MAPTM method. This method with the averaged edge

detection is more precise due to its logical behaviour. [70] represents a closely similar method,

but in this research, the image itself was used to transfer the tendency information with

greyscale representation. This simplified and accelerated the evaluation process; besides, it

made it possible to directly represent the 2-D TF representation described in the next section.

Figure 4.3: Spectrogram image after the execution of the MAPTM method in case of Sim-
ulation Setup 2 in Table 2.3 (red - vertical mesh lines, black - frequency components, green
points - found edges, blue - result of the component tracking)
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4.2 Image to Vibration Space

After the algorithm found several component ridges on the image, the next step is to convert

the results back into the TF domain. The bases of this transformation are the parameters

exported parallel with the greyscale spectrogram export at the end of the vibration signal

processing. Based on those resolution parameters, the detected lines can be transferred

back to exact frequency components. The detected lines on the images need to be post-

processed because of the frequency resolution problem of the spectrogram and to provide a

more processable form for other rotating machine diagnostic methods. It should be pointed

out that during this step, the algorithm eliminates the false frequency line detections, which

means, lines without specific ending - do not meet the end of line criterion discussed in the

previous section - will be removed. It occurs when the tracked line breaks somewhere along

with the image or merges into another tracked line.

The basis of the post-process method is a sliding windowed logic - which was also used

during the STFT spectrogram creation to split into segments as the input for the DFT - where

the input parameters are the window width and the overlap in seconds. The values of these

parameters are the same used as time resolution parameters during the STFT spectrogram

creation to ensure that time lag or distortion cannot influence the results.

Figure 4.4: Obtained frequency components from the spectrogram image after back-
transformation (colours represent the found components) in case of Simulation Setup 2 in
Table 2.3

The next step is the main post-process algorithm. A point-by-point smoothing method

can estimate whether the detected frequency component is constant or variable over time by

calculating the primary gradient of the signal. Therefore, similar to the above interpreted

predictive tracking algorithm, a prediction value was applied. Hence, the same predictive
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method was used for post-processing to obtain the transient frequency component results

extended with sliding windowing. Fig. 4.4 demonstrates the operation of the method by an

example of the frequency components of a simulated signal as a result after image evaluation

and back transformation with the point-by-point smoothing. These results can be used for

condition or fault analysis when the construction of the rotating machine is well known. In

this case, the extracted frequency components can be corresponded to the relevant machine

elements.

As a summary, Fig. 4.5 represents the main steps of the proposed hybrid method evalu-

ating a simulated signal.

(a) STFT spectrogram

1

(b) Greyscale spectrogram

(c) Component tracking (d) Information extraction

Figure 4.5: Demonstration of the hybrid method steps on the signal of Simulation Setup 2
in Table 2.3
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4.3 Novel Results

In this section those novel results will be summarized which are related to the part of the

research work presented in Chapter 4.

4.3.1 Thesis 2

Method steps for information extraction from a greyscale vibration spectrogram

image

Frequency components of the power spectra spectrogram resulted from the

commonly used Short-Time Fourier Transformation method used in rotating ma-

chine diagnostics can be detected using image processing methods. Both station-

ary and transient components in a vibration signal can be detected by converting

the spectrogram into a greyscale image, performing the following sequence of

steps.

1. Short-Time Fourier Transformation execution with the enhanced algorithm with a time

resolution, not less than the estimated time period and a frequency resolution as high

as possible.

2. Conversion of the resulted spectrogram into a greyscale image.

3. Elimination of noisy and information-irrelevant areas with image manipulation meth-

ods.

4. Generation of an auxiliary raster grid on the greyscale image.

5. Edge detection - obtaining the intersection points of possible frequency ridges and the

vertical auxiliary grid lines.

6. Linking the found intersection points with the differential (extreme value-based) or

moving-average prediction (gradient-based) component tracking algorithm.

7. Conversion of the found frequency ridges found in the greyscale image to the time-

frequency plane.
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8. Smoothing the converted results for further evaluations using averaging or point-by-

point windowed filtering.

Related publications: [MG1,MG2,MG3,MG4]

4.3.2 Thesis Group 3.

The following theses are mainly related to the previously presented thesis, describing the

order of steps of the hybrid method. In addition to the general description of the process,

however, a few steps should be highlighted that form an essential part of the method.

Thesis 3.1

Auxiliary raster grid creation and edge detection on spectrogram

In order to track frequency ridges, the same image preparation method can

be used as for evaluating medical diagnostic Moiré images. The tracking of

frequency components is feasible by averaging the results of rising and falling

edge detection on a created auxiliary raster grid on a greyscale STFT power

spectra spectrogram derived from vibration signals of rotating machines.

Related publications: [MG1,MG2,MG3,MG4,MG5,MG6,MG7]

Thesis 3.2

Frequency component tracking on the image

The Differential and the Moving-Average-Predictive Tracking Methods - which

have the same initial and end conditions but their core are mathematically differ-

ent - can track frequency ridges on a greyscale STFT power spectra spectrogram

derived from vibration signals of rotating machines.
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Differential Tracking Method

The basics of the differential algorithm, which can track frequency ridges on a greyscale

STFT power spectra spectrogram derived from vibration signals of rotating machines, are

described by the following equations. The algorithm calculates the absolute vertical distance

between the starting point and the detected points on the following line of the auxiliary grid

as

dn = yi+1,n − yi,j, (4.16)

where d is the vector of the calculated vertical differences, yi+1,n is the y coordinate of

an intersection point on the i + 1 vertical grid line and n is a running index which iterates

over the elements of j. From the calculated differences the algorithm chooses the minimum

absolute value and performs further examination on the detected Pi+1,j point (in Eq. 4.17).

Pi+1,j(xi+1,j; yi+1,j), (4.17)

where

xi+1 = xi + ∆mesh, (4.18)

yi+1,j = yi,j + min |d| if min |d| ≤ ε (4.19)

or

yi+1,j = yi,j if min |d| > ε, (4.20)

where Pi+1,j is the closest point based on differences; ∆mesh is the difference between

two vertical mesh lines; min |d| is the minimum absolute value in the d vector and ε is the

tolerance in pixels. If all of the differences in the collected vector are outside of the ε range

the algorithm jumps to the next i vertical line. As the result of the tracking algorithm the

found frequency components are collected into an fk vector.

Related publications: [MG1,MG3,MG4]
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Moving-Average-Predictive Tracking Method

The Moving-Average-Predictive Tracking Method estimates vertically where the next

point of the actual frequency component has to be located on the following grid line and

takes it as the initial point of the logic.

P̃i(x̃i; ỹi), (4.21)

where

x̃i = xi,j, (4.22)

ỹi = yi,j + δ̃ (4.23)

where δ̃ is a predictor value, calculated by

δ̃ =

∑i
n=0 Dn

dim(D)
, (4.24)

where

Di = min |d|, (4.25)

d̃n = yi+1,n − ỹi, (4.26)

where D is the collected minimum absolute difference values along with the points of a found,

complete frequency component.

Then the algorithm performs further examination on the detected Pi+1,j point (in Eq. 4.27).

Pi+1,j(xi+1,j; yi+1,j), (4.27)

where

xi+1 = xi + ∆mesh, (4.28)

yi+1,j = ỹi + min |d̃| if min |d̃| ≤ ε (4.29)

or

yi+1,j = yi,j if min |d̃| > ε, (4.30)
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where Pi+1,j is the closest point based on differences between the predicted point and the

found points; min |d̃| is the minimum absolute value in the d vector and ε is the tolerance in

pixels. If all of the differences in the collected vector are outside of the ε range the algorithm

jumps to the next i vertical line.

Related publications: [MG1,MG3,MG4]

Thesis 3.3

Image to TF transformation

The frequency ridges, found after the execution of the component tracking

algorithms on a greyscale STFT power spectra spectrogram derived from vibra-

tion signals of rotating machines, can be transferred back from the image to the

time-frequency domain using the following parameters of the spectrogram image

creation:

(a) Image resolution in pixels

(b) Frequency resolution in pixels

(c) Resolution in pixels

Related publications: [MG1,MG3,MG4]
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Chapter 5

Validation and Verification of the

Hybrid Method

The main content of Chapter 5 is based on publications [11,116–120].

5.1 Developed Software Application

During the development of such an expert system, it was essential to look after the scalabil-

ity and the maintainability besides resource requirements. In order to meet these primary

conditions, a software package was developed within NI LabVIEW 2014 programming envi-

ronment. LabVIEW was chosen because it is a traceable, modular graphical programming

language, and its Sound and Vibration toolkit has several functions which could ease the

development process.

The developed program, which block diagram can be seen in Fig. 5.1, had two main mod-

ules: data acquisition and data analysis related to the data analysing module, it was possible

to load, analyse measured signals and export results generated by vibration diagnostic meth-

ods. The methods implemented in the software will be presented in the next section. The

software was developed based on modular and scalable way that facilitates integrating new

methods.

The measurements could be performed by as many channels as the data acquisition card

could accept. According to this, it is able to select the desired channel(s) of the measured

signal wanted to be loaded. The loaded signal was stored in the background; therefore,
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Settings

Hardware setting

Sampling  
frequency

Measurement  
file path

Acquisitioning

Continous  
monitoring

Continous  
logging

Data Acquisition Module Data Evaluation Module

Loaded analysis
settings

Loading measurement
files

Time Domain
analysis
methods

Frequency
Domain
analysis
methods

Time-
Frequency
Domain
analysis
methods

Data and Result
collection control

Window and method
control

Signal
preparation

Temporary storage

Loaded signals

Internal-Combustion Engine Analysing System with Integrated Vibration Evaluation Methods

Figure 5.1: Software block diagram

several signals could be loaded parallel.

It is cardinal in terms of the data management of the analysing algorithms to share the

time signal and its spectra. To make sure that the computer’s memory will not be overloaded

and the calculations of the methods are not time consuming, dynamic data sharing has been

implemented. The system stored and managed the loaded measured signals to be analysed

in a central database free to access all diagnostic algorithms. After preparing a signal (or

spectra), the system copied it to another database that contained the analyse-ready signals.

The sharing between the algorithms could be done manually or automatically. The diagnostic

methods could be operated in parallel because of the window management of the system

(every method had a separate window). To export the results of the methods, an exporting

control software has been developed. This checks which method’s window is opened, and its

results will be saved into the desired file format (one or more extension could be selected

too). All saved files contained the current date and the identifier of the measured signal. It

can be selected whether only the results should be saved or the graphs and their data during

the process. Besides the results, the input parameters of the algorithms will be saved into

the file in all cases.

To make it possible to analyse ICE ’s vibration components, mathematical vibration

diagnostic methods were tested. These methods made it possible (after the preparation of

the measured signal) to calculate such numerical indicators which could give information
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about the engine’s condition. A later research plan is to use these parameters to predict

malfunctions.

5.2 Validation on the Simulated Signals

In order to complete the validation of the method, the evaluations shown in Fig. 5.2 and

Fig. 5.3 were performed. The results show that the method works appropriately when the

rotating frequency changes rapidly. In terms of further results, it can be stated that the

system can track and determine the transient frequency components, without increasing

the time of calculation, in signals with various SNR if SNR is higher than -23 dB. If SNR is

lower, the components on the image will be so blurred that the evaluation will not be reliable.

This threshold was determined by automatically distorting the greyscale spectrogram images

of available, recorded signals on multiple rotating machines until the system could clearly

distinguish the falling and rising edges. E.g. in Fig. 5.3c and Fig. 5.3e one detected ridge,

and the related image-frequency ridge started to fluctuate slightly around 0.8 s. The reason

is that the high background noise is contaminating the frequency ridge on the spectrogram

in Fig. 5.3a at this time section. With decreased SNR value, this contamination will affect

the evaluation more and more.

In literature, several ridge detection method can be found which process non-stationary

signals and support fault diagnosis. Accordingly, at the end of this chapter, it can not

be neglected to compare the introduced method briefly with some examples. References

[121–123] discuss enhanced order based ridge detection where the basic vibration evaluation

method is the STFT as well. In these studies, the complete method is performed in the TF

domain, and cost function based decisions were inserted to identify the frequency ridges and

detect malfunctions. In contrast, in our presented approach, ridge detection is performed in

image space because amplitude information can be compressed by greyscale normalisation

without losses to gain computational resources, and the method can also be customised

on real-time systems. Tacholess solutions, presented in [124–126], are also suitable for ridge

detections. These researches imply STFT and order-based representations and demodulation

and resampling techniques for larger frequency ridge changes. Compared to these methods,

the actually discussed approach in this thesis, does not require resampling or demodulation

due to the intermediate image processing steps which operate with pixels. The presented

71



CHAPTER 5. VALIDATION AND VERIFICATION OF THE HYBRID METHOD

ridge detection process is enhanced to find the frequency ridges of the complete constructions

instead of focusing on one part of a rotating machine. Peeters et al. [127] investigates seven

different instantaneous angular speed estimation methods, namely signal demodulation and

tracking in a time-frequency representation of the signal. In comparison, the presented

approach also has several parameters which have to be adjusted manually during analysis,

but there is no clear information about the SNR limits with which the methods can operate

reliably. In addition, in terms of speed, our method provides results around every 10 seconds

and opens the possibility to deploy as a real-time application easier due to the image space

analysis. This speed can be improved further by software engineering the image processing

part without influencing the reliability of our method. This means that the two main parts

of the method - signal processing and image processing - can be separated for optimisation

independent of each other. As a disadvantage, it can be highlighted, compared to the studies

mentioned above, that our proposed method is not adaptive at the moment, but in terms of

further development, the algorithm’s parameters could be fine-tuned automatically easily. In

addition, the TF results obtained by the introduced image processing based method could be

forwarded to those malfunction diagnosis methods, which were presented in many references

in order to support condition monitoring.

(a) Results of Setup 3 - high RPM gradient (b) Results of Setup 4 - low RPM gradient

Figure 5.2: Evaluation results on simulated signals with different RPM gradient introduced
in Table 2.3
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(a) Greyscale TFD image of Setup 5 - low SNR (b) Greyscale TFD of Setup 6 - high SNR

(c) Evaluated image of Setup 5 - low SNR (d) Evaluated image of Setup 6 - high SNR

(e) Results of Setup 5 - low SNR (f) Results of Setup 6 - high SNR

Figure 5.3: Evaluation results on simulated signals with different SNR ratio introduced
in Table 2.4 (colours in the greyscale image: red - vertical mesh lines, black - frequency
components, blue - result of the component tracking).
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5.3 Method Verification

During the validation part of the research, real measurement evaluation results were captured

as well in order to test and validate the created method on an existing rotating machine

construction. This evaluation aims to check the operation of the method and observe what

sort of frequency component information can be obtained.

The created analysing method will be demonstrated on an ICE measurement, and its

details are summarised in Table 5.1. During these measurements, physical quantities such

as vibration, speed of rotation are recorded with the mentioned standard industrial knock

sensor. During the test of the method on a real application, a 3.0L V6 diesel engine was

mounted on a dynamometer. This engine type is a commonly used construction in pas-

senger cars on the market. The measurement system represented in Fig. 5.4 contains the

dynamometer, dynamometer control and fuel consumption measurement. The fuel consump-

tion measurement system itself controlled fuel temperature. In parallel, the intake air has

been temperature-controlled as well in order to be able to repeat the same mass related air

to fuel in-cylinder parameters.

Figure 5.4: The test rig used for validation (1 - Dynamometer, 2 - 3.0 V6 Diesel engine, 3 -
Mounted encoder, 4 - Mounting position of the knock sensor, 5 - KW system, 6 - Intercooler
coolant heat exchanger, 7 - Cooling circuit connection)

Vibration measurement was carried out with a piezoelectric knock sensor (Siemens 07K-

905-377-C, with 1-20 kHz measurement range and 35± 8 mV/g @ 5 kHz accuracy) attached

to its designated location on construction. It is advantageous to use this sensor as it was
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mounted on the rotating machine during the manufacturing process, and the construction

does not need to be disrupted. In a particular case, the outcome of this test can state that

the analysis without mounting any additional vibration sensor on the construction can be

performed. In order to acquire the speed of rotation information, an incremental optical

encoder (Kübler 8.5802.2173.1024, with 0-12000 RPM range and 1024/RPM resolution) was

attached to the crankshaft.

For data acquisition, via analogue and counter input, an NI USB-6361 was used. The

analogue channel had a 16-bit resolution with a maximum 2 MS/s sampling frequency on

a maximum ±10 V range. In addition, the counter channel has a 32-bit resolution with

a maximum 100 MHz internal base clock. The measurement and complete analysis were

performed with the above mentioned self-developed software package.

Table 5.1: Test measurement description for method validation

Name Type

DUT 3.0 V6 Diesel engine
Dynamometer Eddy-current; Borghi & Saveri FE-350S

Fuel consumption meas. system AVL-7030 Fuel Balance
Physical quantities Axial vibration, Crankshaft speed
Used sensor type Knock sensor, Encoder

Derived quantities Vibration, Revolution

Measured transient Mixed states (Ramp-down section from
behaviour 4200 RPM to 2000 RPM and

a constant section)

The measurement was defined to record the axial vibration signal of the engine and

the crankshaft speed as a reference during a deceleration phase from 4200 RPM to 2000

RPM. After reaching steady-state, a constant 2000 RPM section was recorded as well. The

dynamometer was externally controlled to ensure that the gradient of the rotating speed and

the gradient of the torque is constant during the time. This definition guaranteed that the

measured signal for validation will contain different gradient states and steady-state as well

in order to study the operation of the method.

The intention was to track transient frequency components on the spectrogram image

in various operational conditions with the proposed method using an industrial knock sen-

sor. During the signal analysis, the signal and image processing methods had the following

parameters. In order to produce the spectrogram, after applying a low-pass filter for the
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0-1 kHz range, a 2.8 s long transient signal section was cut out. The STFT was performed

using a 0.15 s Hanning-window with 0.03 s sliding based on a 30000 point DFT calculation.

The application of these parameters produced a maximal 1.26 Hz frequency resolution and

0.004 s time resolution. In the case of internal combustion engines, it is adequate because

ECU’s crankshaft revolution control always has an inaccuracy around ±3− 5 % RPM. The

analysis in the mentioned frequency range is optimal because the bandwidth of the sensor

and the mechanical conditions of the construction can be observed in this range.

In spectrogram image evaluation, it is always necessary to improve the quality of the im-

age to ensure the reliable the detection of white-black transitions. To accomplish this, after

performing an image cut action to eliminate the frequency suppression section generated by

the low-pass filter, BCG correction using parameters B = 171, C = 56, G = 1.51 was ap-

plied. It was followed by a histogram correction and a convolutional 6×6 Gaussian filter with

additional low-pass image filtering to get the best separation of the edges of the frequency

components in the greyscale image. These steps and parameters are in accordance with the

parameters used for the simulated signal evaluation in section 3.4 and section 3.3. The in-

tersection point detection of the image evaluation was carried out based on the averaging

method with a 5-pixel resolution of the vertical auxiliary grid lines followed by the MAPTM

component tracking method. Following the back-transformation of the detected frequency

components into the TF domain, smoothing was performed with the point-by-point win-

dowing based on the same parameters presented in section 4.2 to obtain more reliably the

constant and variable parts of the signal.

The summarised results of the analysis are presented in Fig. 5.5. The images demonstrate

each step of the evaluation method. Furthermore, Fig. 5.5a demonstrates that how the ICE

engine control unit (ECU) performs the stepwise control from 4200 RPM to the 2000 RPM

steady-state. The method can track the components between ramped and constant states

with high reliability in the highlighted frequency range. This can be stated based on Fig. 5.5b.

Although few false detections appear, those tracked lines will be eliminated based on the end

line criteria presented in section 4.2. The raw, tracked frequency component ridges presented

in Fig. 5.5c show that the detected frequency lines do not have a constant slope due to the

stepwise RPM control of the machine. This means that the presented hybrid method can

detect the frequency components on the spectrogram image independently from the rate

of change of the RPM. By executing the frequency line smoothing as the final step, the
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(a) The generated spectrogram from the signal
(b) MAP component tracking algorithm execution

(c) Raw results transferred back to TF domain (d) Final results after smoothing algorithm

Figure 5.5: Results of the evaluation method carried out on a real diesel engine operating in
transient states
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final results (Fig. 5.5d) in the TF domain were achieved. This data can be used for further

analysis in order to extract outcomes on the condition of the rotating parts in the machine.

In Fig. 5.5a, the harmonics in the TF domain can be observed clearly, and the diagnosis

result can be directly concluded by combining the structure parameters of the drivetrain.

Therefore, it is not necessary to extract the image-frequency ridges in this case, but the

importance of this setup was to demonstrate and validate the operation of the method on

a real rotating machine. Difficulty might arise when the extracted instantaneous frequency

ridges are background noises and not fundamental harmonics. This method was prepared

for industrial application and assumed that basic structural information about the rotating

machine is available. Thus, detected noise and actual harmonic ridges are separable based

on the details of the mechanical construction.
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5.4 Novel Results

In this section those novel results will be summarized which are related to the part of the

research work presented in Chapter 5.

5.4.1 Thesis Group 4.

The following thesis are mainly grouped around the application of the method. The verifi-

cation showed that the hybrid method can be applied to the following cases.

Thesis 4.1

Frequency component tracking

Rotating machine transient frequency components can be detected indepen-

dently of their gradient by evaluating a greyscale STFT spectrogram image using

image processing and tracking methods in case of vibration signals with SNR

value higher than -23 dB.

Related publications: [MG1]

Thesis 4.2

Dedicated frequency component determination

Selected rotating machine frequency component can be detected indirectly

using image processing methods by evaluating the power spectra spectrogram as

a greyscale image, resulting from the STFT method used in vibration diagnostics.

Related publications: [MG1,MG3,MG4]
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Thesis 4.3

Parameter optimization possibilities for different types of rotary machines

The complete process, which is capable of tracking frequency components

using image processing methods by evaluating the power spectra spectrogram

as a greyscale image, can be optimised for different types of rotating machines.

This optimization can be performed using a custom-developed software package

with the fine-tuning of the parameters of the method steps which are

(a) sampling frequency,

(b) time resolution of the Short-Time Fourier Transform,

(c) frequency resolution of the Short-Time Fourier Transform,

(d) Fourier Transform window width and overlapping,

(e) image resolution,

(f) Brightness-Contrast-Gamma correction values,

(g) auxiliary raster grid resolution,

(h) edge detection pixel threshold,

(i) tracking algorithm type,

(j) tracking algorithm tolerance.

Related publications: [MG1,MG2,MG8,MG9,MG10]
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Future Improvements

The method presented in this thesis served the purpose of highlighting several disciplines

that can help each other to solve a given problem. As a result, there might be various

opportunities in order to improve the process.

In terms of further development, first of all, during STFT creation the Variable Frequency

Resolution Short-Time Fourier Transformation (VFR-STFT) represented in [128,129], could

be introduced with which the frequency and time resolution of the STFT could be manipu-

lated along one Fourier-transformation as well.

As the complete method was built up by using well-defined steps, an automation process

could be tailored to dynamically evaluate measurements right after acquisition. Starting

with the STFT creation, parameters could be fine-tuned automatically because the sampling

frequency and the length of the relevant signal section is known. Additionally, the windowing

parameters could be adjusted based on these information which could result in a better,

cleaner spectrogram.

Image export could be emphasised as well by automatic greyscale export and with vari-

able resolution options. This solution could highlight those parts of the spectrogram which

contain interesting sections. This step could be supplemented by a spectrogram versus image

resolution benchmark.

In case of image preparation the BCG parameters could be dynamically changed using

image vectors or matrices as the function of the original STFT amplitude values. The mesh

generation could be executed automatically by setting the density based on the time res-

olution of the spectrogram. The component tracking algorithms could also provide better

results if the resolution of the auxiliary mesh and the tolerance value would be varied as the
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function of the sampling frequency and the original STFT frequency resolution. Moreover,

the tracking algorithm parameters could be fine-tuned using neural networks or other deep

learning algorithms if several measurement would be available.

Last, but not least the complete method could be reworked on code level in a way to

make it possible for real-time data processing because the evaluation of a section could be

paralleled and the spectrogram creation and image processing is a bit-wise operation. Meeting

these challenges will pave the way towards the deployment of the complete method in real-

time or Field-Programmable Gate Array (FPGA) environment in industrial applications for

condition monitoring purposes.

82



BIBLIOGRAPHY

Bibliography

[1] Jyoti Kumar Sinha. Vibration Analysis, Instruments, and Signal Processing. CRC Press,

December 2014.

[2] S. Nandi, H.A. Toliyat, and X. Li. Condition Monitoring and Fault Diagnosis of Electrical

Motors—A Review. IEEE Transactions on Energy Conversion, 20(4):719–729, December

2005.

[3] Ling Wang, Jian Chu, and Jun Wu. Selection of optimum maintenance strategies based

on a fuzzy analytic hierarchy process. International Journal of Production Economics,

107(1):151–163, May 2007.

[4] Horst Kuemmlee, Thomas Gross, and Josef Kolerus. Machine vibrations and diagnostics

the world of ISO. In Industry Applications Society 60th Annual Petroleum and Chemical

Industry Conference, pages 1–13, September 2013.

[5] Dale Hoiberg. Encyclopedia Britannica. Encyclopædia Britannica Inc., 15 edition, 2009.

[6] Isabela F. Apolinário and Paulo S. R. Diniz. Chapter 1 - Introduction to Signal Processing

Theory. In Paulo S. R. Diniz, Johan A. K. Suykens, Rama Chellappa, and Sergios

Theodoridis, editors, Academic Press Library in Signal Processing, volume 1 of Academic

Press Library in Signal Processing: Volume 1, pages 3–28. Elsevier, January 2014.

[7] Asoke Nandi and Hosameldin Ahmed. Condition Monitoring with Vibration Signals:

Compressive Sampling and Learning Algorithms for Rotating Machine. Wiley, 1 edition,

December 2019.
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[119] Gábor Manhertz and Ákos Antal. The effect of air-fuel equivalence ratio change on the

vibration components of an internal-combustion engine. Recent Innovations in Mecha-

tronics, 2(1-2):1–6, 2015.
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