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1 Introduction

The main purpose of this research is to analyse and measure transient vibra-
tion signals in non-laboratory environment acquired by industrial vibration sensor
mounted on rotating machines. This could be emphasized by the combination of
multiple disciplines, in order to extract information from vibration measurements
in non-laboratory environment in case of transient signals acquired by an indus-
trial vibration sensor mounted on rotating machines. The extracted information
can be used to support more detailed vibration post- or real-time diagnostics of
rotating machines during transient states by providing the basic, pre-processed
time-frequency information.

The transient analysis is an important criterion as rotating machines are pri-
marily used during variable operational states, therefore the reaction of the el-
ements of the construction under variable circumstances needs to be observed.
The industry is moving towards to the direction of alternative drives so besides
Internal-Combustion Engine (ICE), hybrid and pure electric drives begin to re-
ceive much more focus. For this reason, electric motors needed to be kept in mind
while conducting the research. A standard industrial vibration sensor is always
mounted on the rotating machine during the manufacturing process and its signal
can be used for measurements in non-laboratory environment. On the other hand,
cost effective application of this sensor enables to obtain operational conditions
about the construction. However, high frequency ranges could not be analysed
properly due to the bandwidth (30 Hz - 25 kHz) of this type of sensor. There
is a possibility of end-of-line transient testing of the mechanical construction it-
self after manufacturing or using onboard diagnostics after signal evaluation and
preparation obtaining the signal via e.g. On-Board Diagnostics (OBD) protocol.
Therefore, information could be collected about the stationary and transient be-
haviours of the rotating machine during manufacturing tests or daily usage and
it could be utilised for predictive maintenance or malfunction detection.

In summary, a method needed to be developed with the capability to analyse
in low and mid-frequency ranges the stationary and transient vibration measure-
ments derived from rotating machines using an industrial vibration sensor. This
research was inspired based on a previous study cited in reference [1] about the
combination of multiple disciplines such as signal and image processing with the
aim of the research was scheduled to extend the signal processing part and define
a slightly more efficient and scalable method to support the input of rotating
machine diagnostics.
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2 State-of-the-art

Vibration measurement is influential enabling faster and more accurate produc-
tion error and malfunction detection. Various research articles represent basic
vibration-based case studies on theoretical basis [2–4]. These studies apply the
basics of vibration analysis are frequently used in engineering practices in expert
systems. Some parts of these systems were tailored for condition monitoring and
fault diagnosis of rotating machines. Reference [5] represents a complex solu-
tion considering the analysis of multiple rotating elements in one construction
using basic spectrum analysis or amplitude distribution. The expert systems
in [6–8] can be used mainly for condition monitoring and malfunction detection.
In case of condition monitoring tasks, the Device Under Test (DUT) operates
with non-stationary speed (Rotation Per Minute (RPM)), therefore in order to
analyse rotating machines in this transient state, the elementary Time-Freuqency
(TF) domain methods [9, 10] are not appropriate. A higher-level method such as
Wavelet-transformation could be a suitable method to obtain the actual informa-
tion about operational conditions [11, 12]. Furthermore, details about a review
containing the utilization of wavelets for fault diagnosis can be found in [13]. Be-
sides Wavelet-transformation the Short-Time Fourier Transform (STFT) based
methods are often applied [14–17] as well but not only to exclusively vibration
diagnostics and condition monitoring. Nowadays, neural networks are gaining
more space in expert system applications tailored for analysing rotating machines
among different conditions [18,19]. Additionally, Industry 4.0 solutions are gaining
more and more weight, therefore at larger manufacturers (e.g. SKF or Schaeffler)
the integration of vibration diagnostics solutions is a priority research and de-
velopment topic. References [20–22] represent such kind of realized applications,
research directions and results.

In case of the spectrogram it could be an approach to use image evaluation
and processing methods. Reference [23] uses STFT for image to sound conversion.
Zhang et al. [24] operates with the STFT to analyse diffractions. In the condition
monitoring of ICEs obviously the spectral components on the STFT spectrogram
need to be tracked or extracted. Markov models [25] and image processing [26]
were also research guidelines in order to perform this action. Czarnecki et al. [27]
represents new guidelines in spectrogram image processing, which can be the ba-
sis of this and further research works. Besides these, references [28] describes
new research methods in condition monitoring based on spectrograms and image
processing presented before. In addition to these, [29–33] describe research ini-
tiatives and reviews for condition monitoring based on time-frequency domain,
spectrograms and image processing with the extension of tracking methods.
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3 Thesis outline

The thesis starts with an overview of the current state of science in the indicated
topic followed by a more detailed introduction of Frequency Domain (FD) signal
analysis methods. After that the general overview of the Time-Freuquency Do-
main (TFD) methods will come to the fore from which one will be highlighted
- the STFT method which method is the basis of this thesis used for vibration
signal analysis. Therefore, a detailed mathematical background of the STFT will
take place and demonstrated on simulated signals.

Afterwards the image preparation and evaluation methods will be demon-
strated and then further will be used to extract the vibration signal’s frequency
component information of a rotating machine from a spectrogram image.

After that those steps and solutions will be presented which prepares the
main step of the evaluation method to be presented in the dissertation. Image
processing methods generate additional auxiliary content and information on the
spectrogram images which embeds the possibility of further evaluation. The main
target is to obtain the vibration frequency component information from the spec-
trogram image itself which can be achieved by using so-called component tracking
methods. These methods will be introduced during the sections with their calcula-
tion background supplemented by its advantages and disadvantages illustrated on
the example simulated signals. The final part of this chapter will give an overview
about how the obtained information can be transferred back to frequency-time
domain from image-domain in order to support rotary machine diagnostics and
condition monitoring tasks.

In the validation and verification part the simulated signal and real rotating
machine measurement evaluation results will be captured in order to test and
validate the created method. The purpose of this evaluation is to check the
operation of the method and discover the boundaries. Besides the interpretation
of the simulated signal generation, the complete description of the measurement
test rig and used devices will be presented.

The final parts of the thesis will give an outlook about how this research result
can be used in other disciplines and how the complete method can be improved
in the future.
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Thesis 1

Generally, not only stationary signals have to be analysed in frequency domain.
The main problem in the case of transient signals is that the Fourier Transform
(FT) can not represent the signal’s time-variant behaviour. The STFT is a func-
tion based on Discrete Fourier Transform (DFT) that determines the sinusoidal
frequency and phase components of specific sections of a time-dependent contin-
uous signal. In practice, in the production of STFT, a longer time signal is split
into several smaller segments of equal length, on which the discrete Fourier trans-
form is performed one by one. The result gives the frequency spectrum of each
section. The essence and significant advantage of the STFT method lies in the
fact that it can analyse the time and frequency dependence of a signal at the same
time. The equation that mathematically describes the method is shown below as

STFT(t, ω) =

∫
x(τ)γ∗t,ω(τ)dτ =

∫
x(τ)γ∗(τ − t)e−jωτdτ, (1)

where γ∗(τ), called window function, usually has a short duration compared
to the input signal x(t). For this reason, the calculation STFT is also called
a windowed Fourier transform. An approach to the calculation process of the
formula is shown in Fig. 1.

Figure 1: Illustration of the Short-Time Fourier Transform (STFT) [34]

To get the most informative results from the signal, besides the high sampling
frequency of the time signal, it is also necessary to optimize STFT time and fre-
quency resolution. As several rotating elements can be found in a construction,
it was decided to achieve high frequency resolution in a time segment for spec-
trogram creation with the application of an overlapping windowing technique.
During the analysis it was assumed that the time segments are narrow enough
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to be considered as quasi-stationary segments. The calculations of the spectro-
gram in the first analyses were considered time-consuming. The basis memory
management was improved, which means dedicated memory segments were al-
located to perform the Fast Fourier Transform (FFT). Thanks to this, several
FFT calculation can be performed parallel and using the proper indexing, the
reconstruction of the STFT can be achieved. This can be performed because the-
oretically, the windowing is not else than cutting a section from the original time
signal and performing the analysis on this time signal. When the complete signal
is transformed, the results will be collected from the assigned memory addresses
to display the spectrogram image for post-processing purposes. An example of a
simulated time signal and its generated spectrogram can be seen in Fig. 3.
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Figure 2: The block diagram of the improved STFT algorithm

Figure 3: An example simulated signal (left) and the resulted STFT spectro-
gram(right)
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Algorithm enhancement for Short-Time Fourier Transform

The applied window function facilitates the enhancement of the
Short-Time Fourier Transform process of a rotating machine vibration
signal by parallelization of the calculation. The parallelization requires
the definition of a batch of time segments for Fast Fourier Transform,
dedicating a single processor core and allocating dedicated memory
areas to parallelly process the defined time segment.

Related publications: [MG1]

Thesis 2

The novel, multi-discipline evaluation method for evaluating vibration based STFT
spectrograms was derived into three main phases which is visualised with a flow-
chart in Fig. 4. The first part is a sequence of general vibration signal preparation
and evaluation methods followec by the process where the evaluation of the spec-
trogram image derived from the pre-processed signals takes place. The final phase
is a transformation back into the TF domain to describe the operational state and
create a basis for further diagnostics of the rotating machine.
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Figure 4: The flowchart of the novel, multi-discipline evaluation method
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Method steps for information extraction from a greyscale vibration
spectrogram image

Frequency components of the power spectra spectrogram resulted
from the commonly used Short-Time Fourier Transformation method
used in rotating machine diagnostics can be detected using image pro-
cessing methods. Both stationary and transient components in a vi-
bration signal can be detected by converting the spectrogram into a
greyscale image, performing the following sequence of steps.

1. Short-Time Fourier Transformation execution with the enhanced algorithm
with a time resolution, not less than the estimated time period and a fre-
quency resolution as high as possible.

2. Conversion of the resulted spectrogram into a greyscale image.

3. Elimination of noisy and information-irrelevant areas with image manipu-
lation methods.

4. Generation of an auxiliary raster grid on the greyscale image.

5. Edge detection - obtaining the intersection points of possible frequency
ridges and the vertical auxiliary grid lines.

6. Linking the found intersection points with the differential (extreme value-
based) or moving-average prediction (gradient-based) component tracking
algorithm.

7. Conversion of the found frequency ridges found in the greyscale image to
the time-frequency plane.

8. Smoothing the converted results for further evaluations using averaging or
point-by-point windowed filtering.

Related publications: [MG1,MG2,MG3,MG4]
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Thesis Group 3.

The main objective of the research was to find out how to extract information
from spectrograms more efficiently and reliably without losing any kind of infor-
mation. As the spectrogram was able to be corresponded to a map where the
third dimension is represented with colours or colour-densities, it was possible to
correlate it to a Moiré-image. In this aspect the black “Moiré” lines represent
the exact frequency component trends as well as the basis of the next steps of
the research. In the beginning an auxiliary mesh generation and edge detection
are necessary to find those points that can be the part of a frequency component
on the image. In the first step of the detection, the algorithm creates several,
parallel, vertical auxiliary grid lines in the image, based on an adjustable line-
density setting in pixels where the mesh lines intersect the frequency lines (black
lines) therefore rising and falling edges are detectable on the image. Then this an
intersection point can be inserted and this representing one point of a frequency
component. An example for the greyscale export and mesh generation can be
seen in Fig. 5.

Figure 5: An example greyscale spectrogram (left) with mesh generation and edge
detection (right)
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Thesis 3.1

Auxiliary raster grid creation and edge detection on spectrogram

In order to track frequency ridges, the same image preparation
method can be used as for evaluating medical diagnostic Moiré im-
ages. The tracking of frequency components is feasible by averaging
the results of rising and falling edge detection on a created auxiliary
raster grid on a greyscale STFT power spectra spectrogram derived
from vibration signals of rotating machines.

Related publications: [MG1,MG2,MG3,MG4,MG5,MG6,MG7]

Thesis 3.2

As mentioned before, the black lines indicate a frequency component on the image.
To receive the most reliable result, the method monitors coherent rising and falling
edges and calculates their average vertical pixel coordinate of these. Thus, the
middle of the thicker black line needs to be considered due to dominance of the
frequency component. These intersection points are capable to closely represent
one frequency component visually only but in order to capture a result suitable for
processing, so-called component tracking algorithms needed to be implemented to
link the those coherent points to each other during a horizontal sweep through the
auxiliary grid lines which belong to one frequency component. In order to connect
the detected intersection points so-called tracking algorithms were developed. An
example for the component tracking results can be seen in Fig. 6.

Frequency component tracking on the image

The Differential and the Moving-Average-Predictive Tracking Meth-
ods - which have the same initial and end conditions but their core are
mathematically different - can track frequency ridges on a greyscale
STFT power spectra spectrogram derived from vibration signals of ro-
tating machines.
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Figure 6: Image after the execution of the Moving-Average-Predictive Tracking
Method (MAPTM) method on an example greyscale spectrogram (red - vertical
mesh lines, black - frequency components, green points - found edges, blue - result
of the component tracking)

Differential Tracking Method

The basics of the differential algorithm, which can track frequency ridges on
a greyscale STFT power spectra spectrogram derived from vibration signals of
rotating machines, are described by the following equations. The algorithm cal-
culates the absolute vertical distance between the starting point and the detected
points on the following line of the auxiliary grid as

dn = yi+1,n − yi,j , (2)

where d is the vector of the calculated vertical differences, yi+1,n is the y
coordinate of an intersection point on the i+1 vertical grid line and n is a running
index which iterates over the elements of j. From the calculated differences the
algorithm chooses the minimum absolute value and performs further examination
on the detected Pi+1,j point (in Eq. 3).

Pi+1,j(xi+1,j ; yi+1,j), (3)

where
xi+1 = xi + ∆mesh, (4)

yi+1,j = yi,j + min |d| if min |d| ≤ ε (5)

or
yi+1,j = yi,j if min |d| > ε, (6)
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where Pi+1,j is the closest point based on differences; ∆mesh is the difference
between two vertical mesh lines; min |d| is the minimum absolute value in the d
vector and ε is the tolerance in pixels. If all of the differences in the collected
vector are outside of the ε range the algorithm jumps to the next i vertical line. As
the result of the tracking algorithm the found frequency components are collected
into an fk vector.

Related publications: [MG1,MG3,MG4]

Moving-Average-Predictive Tracking Method

The Moving-Average-Predictive Tracking Method estimates vertically where
the next point of the actual frequency component has to be located on the fol-
lowing grid line and takes it as the initial point of the logic.

P̃i(x̃i; ỹi), (7)

where

x̃i = xi,j , (8)

ỹi = yi,j + δ̃ (9)

where δ̃ is a predictor value, calculated by

δ̃ =

∑i
n=0 Dn

dim(D)
, (10)

where

Di = min |d|, (11)

d̃n = yi+1,n − ỹi, (12)

where Dis the collected minimum absolute difference values along with the points
of a found, complete frequency component.

Then the algorithm performs further examination on the detected Pi+1,j point
(in Eq. 13).

Pi+1,j(xi+1,j ; yi+1,j), (13)

where
xi+1 = xi + ∆mesh, (14)
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yi+1,j = ỹi + min |d̃| if min |d̃| ≤ ε (15)
or

yi+1,j = yi,j if min |d̃| > ε, (16)
where Pi+1,j is the closest point based on differences between the predicted

point and the found points; min |d̃| is the minimum absolute value in the d vector
and ε is the tolerance in pixels. If all of the differences in the collected vector are
outside of the ε range the algorithm jumps to the next i vertical line.

Related publications: [MG1,MG3,MG4]

Thesis 3.3
After several component ridges were found by the algorithm on the image, the
next step is to convert the results back into TF domain. The bases of this trans-
formation are the parameters exported in-parallel with the grey-scale spectrogram
export in the end of the vibration signal processing. Based on those resolution
parameters the detected lines can be transferred back into exact frequency com-
ponents. The detected lines on the images need to be post processed because
of the frequency resolution problem of the spectrogram and to provide a more
processable form for other rotating machine diagnostic methods. It should be
pointed out that during this step the algorithm eliminates the false frequency line
detections which means, lines without specific ending - do not meet the end of
line criterion mentioned in the previous section - will be removed. It occurs when
the tracked line brakes somewhere along the image or merges into another tracked
line. An example for the back transformation results can be seen in Fig. 7.

Image to TF transformation

The frequency ridges, found after the execution of the component
tracking algorithms on a greyscale STFT power spectra spectrogram
derived from vibration signals of rotating machines, can be transferred
back from the image to the time-frequency domain using the following
parameters of the spectrogram image creation:

(a) Image resolution in pixels

(b) Frequency resolution in pixels

(c) Resolution in pixels

Related publications: [MG1,MG3,MG4]
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Figure 7: Obtained frequency components from an example spectrogram image
after back-transformation (colours represent the found components)

Thesis Group 4.

In order to complete the validation of the method several anaylsis of simulation
signals were performed. The results show that the method works appropriately
when the rotating frequency changes rapidly. In terms of further results, it can be
stated that the system can track and determine the transient frequency compo-
nents, without increasing the time of calculation, in signals with various Signal-
noise Rato (SNR) if SNR is higher than -23 dB. If SNR is lower, the components
on the image will be so blurred that the evaluation will not be reliable. This
threshold was determined by automatically distorting the greyscale spectrogram
images of available, recorded signals on multiple rotating machines until the sys-
tem could clearly distinguish the falling and rising edges.

Thesis 4.1

Frequency component tracking

Rotating machine transient frequency components can be detected
independently of their gradient by evaluating a greyscale STFT spec-
trogram image using image processing and tracking methods in case of
vibration signals with SNR value higher than -23 dB.

Related publications: [MG1]
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The created analysing method was demonstrated on ICE measurements. Dur-
ing these measurements, physical quantities such as vibration, speed of rotation
are recorded with the mentioned standard industrial knock sensor. During the
test of the method on a real application, a 3.0L V6 diesel engine was mounted on
a dynamometer. This engine type is a commonly used construction in passenger
cars on the market. The measurement system represented in Fig. 8 contains the
dynamometer, dynamometer control and fuel consumption measurement. The
fuel consumption measurement system itself controlled fuel temperature. In par-
allel, the intake air has been temperature-controlled as well in order to be able to
repeat the same mass related air to fuel in-cylinder parameters.

Figure 8: The test rig used for validation (1 - Dynamometer, 2 - 3.0 V6 Diesel
engine, 3 - Mounted encoder, 4 - Mounting position of the knock sensor, 5 - KW
system, 6 - Intercooler coolant heat exchanger, 7 - Cooling circuit connection)

Vibration measurement was carried out with a piezoelectric knock sensor
(Siemens 07K-905-377-C, with 1-20 kHz measurement range and 35 ± 8 mV/g
@ 5 kHz accuracy) attached to its designated location on construction. It is ad-
vantageous to use this sensor as it was mounted on the rotating machine during
the manufacturing process, and the construction does not need to be disrupted.
In a particular case, the outcome of this test can state that the analysis without
mounting any additional vibration sensor on the construction can be performed.
In order to acquire the speed of rotation information, an incremental optical
encoder (Kübler 8.5802.2173.1024, with 0-12000 RPM range and 1024/RPM res-
olution) was attached to the crankshaft. For data acquisition, via analogue and
counter input, an NI USB-6361 was used. The analogue channel had a 16-bit res-
olution with a maximum 2 MS/s sampling frequency on a maximum ±10 V range.
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In addition, the counter channel has a 32-bit resolution with a maximum 100 MHz
internal base clock. The measurement and complete analysis were performed with
the above mentioned self-developed software package.

Thesis 4.2

Dedicated frequency component determination

Selected rotating machine frequency component can be detected
indirectly using image processing methods by evaluating the power
spectra spectrogram as a greyscale image, resulting from the STFT
method used in vibration diagnostics.

Related publications: [MG1,MG3,MG4]

Thesis 4.3

Parameter optimization possibilities for different types of rotary ma-
chines

The complete process, which is capable of tracking frequency com-
ponents using image processing methods by evaluating the power spec-
tra spectrogram as a greyscale image, can be optimised for different
types of rotating machines. This optimization can be performed us-
ing a custom-developed software package with the fine-tuning of the
parameters of the method steps which are

(a) sampling frequency,

(b) time resolution of the Short-Time Fourier Transform,

(c) frequency resolution of the Short-Time Fourier Transform,

(d) Fourier Transform window width and overlapping,

(e) image resolution,

(f) Brightness-Contrast-Gamma correction values,

(g) auxiliary raster grid resolution,
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(h) edge detection pixel threshold,

(i) tracking algorithm type,

(j) tracking algorithm tolerance.

Related publications: [MG1,MG2,MG8,MG9,MG10]

19



References

[1] L. Rankine, M. Mesbah, and B. Boashash. IF estimation for multicompo-
nent signals using image processing techniques in the time–frequency domain.
Signal Processing, 87(6):1234–1250, June 2007.

[2] M. B. Walter. Mechanical diagnostics-past, present and future. In IEEE Con-
ference on Systems Readiness Technology, ’Advancing Mission Accomplish-
ment’., pages 517–521, September 1990.

[3] A. H. Rawicz and H. X. Jiang. Diagnostic expert-system for mechanical reli-
ability in heavy trucks. In Annual Reliability and Maintainability Symposium
1992 Proceedings, pages 426–431, January 1992.

[4] Csaba Budai, László L. Kovács, József Kövecses, and Gábor Stépán. Effect
of dry friction on vibrations of sampled-data mechatronic systems. Nonlinear
Dynamics, 88(1):349–361, April 2017.

[5] Stephan Ebersbach and Zhongxiao Peng. Expert system development for
vibration analysis in machine condition monitoring. Expert Systems with Ap-
plications, 34(1):291–299, January 2008.

[6] Jian-Da Wu, Mingsian R. Bai, Fu-Cheng Su, and Chin-Wei Huang. An expert
system for the diagnosis of faults in rotating machinery using adaptive order-
tracking algorithm. Expert Systems with Applications, 36(3, Part 1):5424–
5431, April 2009.

[7] Yu Zhang, Chris Bingham, Zhijing Yang, Bingo Wing-Kuen Ling, and Michael
Gallimore. Machine fault detection by signal denoising—with application to
industrial gas turbines. Measurement, 58:230–240, December 2014.

[8] Siliang Lu, Qingbo He, and Jun Wang. A review of stochastic resonance in
rotating machine fault detection. Mechanical Systems and Signal Processing,
116:230–260, February 2019.

[9] X. Song, X. Li, W. Zhang, and W. Zhou. The new measurement algorithm
of the engine speed base on the basic frequency of vibration signal. In 2010
International Conference on Computer, Mechatronics, Control and Electronic
Engineering, volume 5, pages 273–277, August 2010.

[10] Darian M. Onchis, Ruqiang Yan, and Pavel Rajmic. Time–frequency meth-
ods for condition based maintenance and modal analysis. Signal Processing,
96, March 2014.

20



[11] Changting Wang and R. X. Gao. Wavelet transform with spectral post-
processing for enhanced feature extraction [machine condition monitoring].
IEEE Transactions on Instrumentation and Measurement, 52(4):1296–1301,
August 2003.

[12] W.-X. Yang and X.-M. Ren. Detecting Impulses in Mechanical Sig-
nals by Wavelets. EURASIP Journal on Advances in Signal Processing,
2004(8):946162, December 2004.

[13] Ruqiang Yan, Robert X. Gao, and Xuefeng Chen. Wavelets for fault diagnosis
of rotary machines: A review with applications. Signal Processing, 96:1–15,
March 2014.

[14] Richard A. Altes. Detection, estimation, and classification with spectro-
grams. The Journal of the Acoustical Society of America, 67(4):1232–1246,
April 1980.

[15] Aled T. Catherall and Duncan P. Williams. High resolution spectrograms
using a component optimized short-term fractional Fourier transform. Signal
Processing, 90(5):1591–1596, May 2010.

[16] Vladimir Dekys, Peter Kalman, Pavel Hanak, Pavol Novak, and Zuzana
Stankovicova. Determination of Vibration Sources by Using STFT. Proce-
dia Engineering, 177:496–501, January 2017.

[17] Ahmad Taghizadeh-Alisaraei and Alireza Mahdavian. Fault detection of
injectors in diesel engines using vibration time-frequency analysis. Applied
Acoustics, 143:48–58, January 2019.

[18] Jian-Da Wu, Peng-Hsin Chiang, Yo-Wei Chang, and Yao-jung Shiao. An
expert system for fault diagnosis in internal combustion engines using prob-
ability neural network. Expert Systems with Applications, 34(4):2704–2713,
May 2008.

[19] Wenli Shang, Xiaofeng Zhou, and Jie Yuan. An intelligent fault diagnosis
system for newly assembled transmission. Expert Systems with Applications,
41(9):4060–4072, July 2014.

[20] Morteza Ghobakhloo. The future of manufacturing industry: a strategic
roadmap toward Industry 4.0. Journal of Manufacturing Technology Manage-
ment, 29(6):910–936, January 2018.

21



[21] Hardik Majiwala, Pankaj Gandhi, and Parag Sanghani. Development of
Decision Support System (DSS) Framework for Predictive Maintenance of
Rolling Element Bearing in the Emerging Era of Industry 4.0. SSRN Scholarly
Paper ID 3167428, Social Science Research Network, Rochester, NY, April
2018.

[22] Diego D’Urso, Ferdinando Chiacchio, Dario Borrometi, Antonio Costa, and
Lucio Compagno. Dynamic failure rate model of an electric motor comparing
the Military Standard and Svenska Kullagerfabriken (SKF) methods. Procedia
Computer Science, 180:456–465, January 2021.

[23] G. Akti and D. Goularas. Frequency component extraction from color images
for specific sound transformation and analysis. In 2012 3rd International Con-
ference on Image Processing Theory, Tools and Applications (IPTA), pages
253–258, October 2012.

[24] J. Zhang, W. Lin, K. M. Jacobs, and X. Hu. Extraction of microsphere
size from diffraction images with an STFT method. In 2012 IEEE Interna-
tional Conference on Virtual Environments Human-Computer Interfaces and
Measurement Systems (VECIMS) Proceedings, pages 213–216, July 2012.

[25] D. Van Cappel and P. Alinat. Frequency line extractor using multiple hidden
Markov models. In IEEE Oceanic Engineering Society. OCEANS’98. Con-
ference Proceedings (Cat. No.98CH36259), volume 3, pages 1481–1485 vol.3,
September 1998.

[26] J. S. Abel, H. J. Lee, and A. P. Lowell. An image processing approach
to frequency tracking (application to sonar data). In [Proceedings] ICASSP-
92: 1992 IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 2, pages 561–564 vol.2, March 1992.

[27] Krzysztof Czarnecki. The instantaneous frequency rate spectrogram. Me-
chanical Systems and Signal Processing, 66-67:361–373, January 2016.

[28] Renata Klein, Eyal Masad, Eduard Rudyk, and Itai Winkler. Bearing di-
agnostics using image processing methods. Mechanical Systems and Signal
Processing, 45(1):105–113, March 2014.

[29] Thierry Pun. A new method for grey-level picture thresholding using the
entropy of the histogram. Signal Processing, 2(3):223–237, July 1980.

[30] P J Kootsookos. A Review of the Frequency Estimation and Tracking Prob-
lems. page 38, February 1999.

22



[31] Markos Markou and Sameer Singh. Novelty detection: a review—part 1:
statistical approaches. Signal Processing, 83(12):2481–2497, December 2003.

[32] H. C. So. A comparative study of three recursive least-squares algorithms for
single-tone frequency tracking. Signal Processing, 83(9):2059–2062, September
2003.

[33] Chuan Li, Vinicio Sanchez, Grover Zurita, Mariela Cerrada Lozada, and
Diego Cabrera. Rolling element bearing defect detection using the gener-
alized synchrosqueezing transform guided by time–frequency ridge enhance-
ment. ISA Transactions, 60:274–284, January 2016.

[34] R.X. Gao and R. Yan. Non-stationary signal processing for bearing health
monitoring. International Journal of Manufacturing Research, 1(1):18, 2006.

23



24



List of Related Publications

[MG1] Gabor Manhertz and Akos Bereczky. STFT Spectrogram Based Hybrid
Evaluation Method For Rotating Machine Transient Vibration Analysis.
Mechanical Systems and Signal Processing, 154:1–16, 2021.

[MG2] Gábor Manhertz and Ákos Bereczky. Development of a vibration ex-
pert system to analyze and predict malfunctions in internal-combustion
engine. In Proceedings of ARES ’14, pages 24–29, 2014.

[MG3] Gábor Manhertz, Dániel Modok, and Ákos Bereczky. Evaluation of
short-time fourier-transformation spectrograms derived from the vibra-
tion measurement of internal-combustion engines. In 2016 IEEE Interna-
tional Power Electronics and Motion Control Conference (PEMC), pages
812–817, 2016.

[MG4] Gábor Manhertz, Dániel Modok, and Ákos Bereczky. Frekvenciakom-
ponensek Követése Short-Time Fourier-Transzformáció Spektrogramon
Képfeldolgozási Módszerekkel. In Tavaszi Szél 2016 / Spring Wind 2016,
volume III, pages 239–250, 2016.

[MG5] Petra Balla, Gábor Manhertz, and Ákos Antal. Computerized Evaluation
of Digital Orthopedic Moiré Pictures. Recent Innovations in Mechatron-
ics, 1(1-2):1–7, 2014.

[MG6] Petra Balla, Gábor Manhertz, and Ákos Antal. Diagnostic moiré image
evaluation in spinal deformities. OPTICA APPLICATA; 03/2016; ISSN
1429-7507, 2016.

[MG7] Petra Balla, Gábor Manhertz, and Ákos Antal. Spineline detection with
image evaluation. Recent Innovations in Mechatronics, 2(1-2):1–8, 2015.

[MG8] Gábor Manhertz, Gábor Gárdonyi, and Gábor Pór. Managing measured
vibration data for malfunction detection of an assembled mechanical cou-
pling. The International Journal of Advanced Manufacturing Technology,
75(5):693–703, 2014.

[MG9] Gábor Manhertz and Ákos Antal. The effect of air-fuel equivalence ratio
change on the vibration components of an internal-combustion engine.
Recent Innovations in Mechatronics, 2(1-2):1–6, 2015.

25



[MG10] Gábor Manhertz. Légfelesleg-tényező változásának hatása belsőégésű mo-
tor rezgésösszetevőire. In Tavaszi Szél 2014 / Spring Wind 2014, volume
VII, pages 446–459, 2014.

26


	List of Acronyms
	Introduction
	State-of-the-art
	Thesis outline
	Bibliography
	List of Related Publications

