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Functional Inequalities on Riemann-Finsler
Manifolds

by

Ágnes Mester

Abstract

The theory of functional inequalities has a fundamental role in analysis, with major im-
plications in mathematical physics and nonlinear partial differential equations. One of
the main questions within this theory is the study of these inequalities on non-Euclidean
spaces, which has as its scope the characterisation of the relationship between the geom-
etry of the studied curved structures and the properties of the corresponding functional
inequalities.

The purpose of this work is to demonstrate how certain geometric properties of Rie-
mannian/ Finsler manifolds affect various functional inequalities that hold on these spaces.
As a result, the main portion of the thesis is concerned with several Sobolev-type inequal-
ities with or without singular terms which are available on different Riemannian/ Finsler
manifolds. The focus of this study is to understand the geometric factors of some nonlinear
phenomena which occur on these curved structures. In order to comprehend better the
particular geometric/ anisotropic framework of these manifolds, a number of Riemannian
and Finsler model spaces are also investigated.

The first part of the thesis is devoted to the study of three Randers-type Finsler man-
ifolds, which serve as model spaces for several examples and counterexamples throughout
the dissertation. The next part concerns compact Sobolev embeddings à la Berestycki-
Lions on noncompact Riemannian manifolds and Randers spaces. Thirdly, a number of
Hardy-type inequalities are studied on Finsler manifolds and, in particular, on Finsler-
Hadamard manifolds.

The primary application of these functional inequalities involves the study of elliptic
partial differential equations. Accordingly, the last part of the thesis presents the ap-
plication of the obtained Sobolev embeddings in order to establish a multiplicity result
concerning an elliptic problem by using variational methods.
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Chapter 1

Introduction

Functional inequalities and Sobolev spaces play an outstanding role in functional and
geometric analysis, mathematical physics, the theory of partial differential equations and
the calculus of variations. Since several functional inequalities represent the manifestation
of certain natural mathematical and physical phenomena, the study of these inequalities
is a remarkable area of mathematics in itself.

A significant class of Sobolev-type inequalities is represented by those available on
non-Euclidean structures. Although these curved spaces are natural extensions of the
standard Euclidean space, the theory of Sobolev spaces and functional inequalities on
these structures is far from being elementary, as the geometry of the ambient space can
have substantial effects on the properties of Sobolev spaces and inequalities in question.

The primary objective of this thesis is to present the effects that certain geometric
aspects of Riemannian/ Finsler manifolds can have on different functional inequalities
available on these spaces. Accordingly, the major part of the dissertation is devoted to
various Sobolev-type inequalities on Riemannian/ Finsler manifolds, with an emphasis on
the interplay between the different sufficient/ necessary geometric conditions regarding the
underlying curved spaces and the corresponding functional inequalities. In addition, we
also explore several Riemannian/ Finsler model spaces, and demonstrate the particular
geometric phenomena associated with these manifolds by a variety of examples and coun-
terexamples. In the last part of the thesis we show the applicability of the theoretical
results in the field of elliptic partial differential equations (in short, PDEs).

The present work is based on the following papers:

[1] C. Farkas, A. Kristály, and Á. Mester. “Compact Sobolev embeddings on non-
compact manifolds via orbit expansions of isometry groups”. Calculus of Variations
and PDE 60.4 (2021), Article no: 128.

[2] Á. Mester and A. Kristály. “A bipolar Hardy inequality on Finsler manifolds”. 2019
IEEE 13th International Symposium on Applied Computational Intelligence and
Informatics (SACI) (2019), pp. 308–313.
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[3] Á. Mester and A. Kristály. “Three isometrically equivalent models of the Finsler-
Poincaré disk”. 2021 IEEE 15th International Symposium on Applied Computational
Intelligence and Informatics (SACI) (2021), pp. 403–408.

[4] Á. Mester, I. R. Peter, and C. Varga. “Sufficient Criteria for Obtaining Hardy In-
equalities on Finsler Manifolds”. Mediterranean Journal of Mathematics 18 (2021),
Article no: 76.

The thesis contains seven chapters. Chapter 2 provides an introduction to the theory
of Riemann-Finsler geometry, outlining the fundamental analogies and differences between
Riemannian and Finsler manifolds.

Chapter 3 is devoted to a specific class of Finsler manifolds called Randers spaces. In
this context, we present the isometry between two well-known Randers models, namely
the 2-dimensional Funk model and the Finsler-Poincaré disk, while also describing their
connections to Riemannian geometry. Then, we introduce a new Randers model in the
form of the Finsler-Poincaré upper half plane, and prove the isometrical equivalence of
the three Finsler manifolds in question. Finally, we discuss some surprising geometric
phenomena which result from the latter isometries. This section is based on Mester and
Kristály [3].

Chapter 4 presents compact Sobolev embeddings à la Berestycki-Lions [18] on non-
compact Riemannian manifolds and Randers spaces. First, we give a general introduction
concerning Sobolev inequalities and continuous and compact embeddings in the Euclidean
setting and on complete Riemannian manifolds. Then, given a noncompact complete
Riemannian manifold (M, g) with certain curvature restrictions, we introduce a so-called
expansion condition concerning a group of isometries G of (M, g) that characterizes the
coerciveness of G in the sense of Skrzypczak and Tintarev [111]. Under this particular ex-
pansion condition, we prove compact Sobolev embeddings of the form W 1,p

G (M) ↪→ Lq(M)

for the full range of admissible parameters (p, q), i.e., in the Sobolev, Moser-Trudinger and
Morrey case, respectively. After this, we consider the case of noncompact Randers-type
Finsler manifolds with finite reversibility constant, which turn out to inherit similar em-
bedding properties as their Riemannian companions; the sharpness of such constructions is
shown by means of the Funk model. This chapter is based on Farkas, Kristály, and Mester
[1].

In Chapter 5 we establish various Hardy-type inequalities on forward complete Finsler
manifolds. Adopting the arguments of D’Ambrosio and Dipierro [38] to the Finslerian
context, we prove − among others − a Caccioppoli inequality, a Gagliardo-Nirenberg in-
equality and a Heisenberg-Pauli-Weyl uncertainty principle. Furthermore, we also obtain
some Hardy inequalities on Finsler-Hadamard manifolds with finite reversibility constant.
Finally, we study a Hardy inequality with multiple singularities on complete Finsler man-
ifolds, obtaining the anisotropic counterpart of a Riemannian multipolar inequality due
to Faraci, Farkas, and Kristály [48]. It turns out that the non-Riemannian properties of
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the ambient Finsler structure play a critical role in the validity of the studied inequalities,
which is manifested by the dependence of the results on the so-called reversibility constant
and uniformity constant of the Finsler manifold in question. This chapter is based on
Mester, Peter, and Varga [4] and Mester and Kristály [2].

Chapter 6 is devoted to the application of the established functional inequalities in
the theory of elliptic PDEs, by means of variational methods. More precisely, we show a
multiplicity result concerning a quasilinear PDE involving the p-Finsler-Laplace operator,
which is defined on a Randers space satisfying certain geometric assumptions. The proof is
based on variational arguments, where the compact Sobolev embedding results established
in Chapter 4 provide the means to verify essential properties of the energy functional
associated with the studied problem, in order to apply certain minimization arguments.
This section elaborates the proof of the multiplicity result given in Farkas, Kristály, and
Mester [1].

Finally, Chapter 7 contains the formulation of the theses which summarize the most
significant contributions of the present work.
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Chapter 2

Preliminaries on Riemann-Finsler
geometry

Riemannian geometry represents an extension of the classical Euclidean geometry, where
the metric of the space is determined by a family of inner products, each defined on one of
the tangent spaces of the underlying differentiable manifold. The mapping which associates
to each point of the manifold a corresponding inner product in a differentiable manner is
called a Riemannian metric. The pioneers of the development of Riemannian geometry
were, among others, Lobachevsky, Bolyai, Gauss, Riemann and Beltrami.

Finsler geometry, in turn, arose from the need to generalize the Riemannian metric to
asymmetric distances in case of anisotropic settings, see Finsler [53], Randers [102] and
Matsumoto [87]. In this case, the metric of the ambient space is determined by the so-
called Finsler structure, which defines Minkowski norms on every tangent space of the
given manifold, all of which vary in a differentiable manner. Since the Minkowski norms
are generally only positively homogeneous, the induced distance function on the space
may not be symmetric. Therefore, Finsler geometry provides an appropriate framework
to study anisotropic phenomena, having several applications in physics and other natural
sciences, see Antonelli, Ingarden, and Matsumoto [9], Bao, Robles, and Shen [17], Caponio,
Germinario, and Sánchez [28], Cheng and Shen [34], Gibbons and Warnick [58], Ishikawa
[65], and references therein.

Note that the Finsler structure also induces a canonical inner product on the underly-
ing differentiable manifold. However, unlike the Riemannian metric, this canonical metric
depends not only on the points of the manifold, but also on the directions in the partic-
ular tangent spaces. Due to this considerable generalization, several reasonable objects
and properties from Riemannian geometry convert to highly nonlinear phenomena in the
case of general Finsler manifolds. On the other hand, many Riemannian notions do have
their well-defined analogues in Finsler geometry, for example, affine connections, covariant
derivatives, curvature, geodesics and distance function.

An expressive example of a Finsler-type geometry is given by Matsumoto’s famous
mountain slope metric, see Matsumoto [87]. In this model, on an inclined plane one
measures the distance between two given points A and B by the time it takes to reach
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point B from point A, having constant velocity. Due to the presence of gravity, it turns
out that the travelling time depends not just on the inclination of the plane, but also
on the direction of movement. This directional dependence generates a non-Riemannian
Finsler geometry, where the indicatrix corresponding to the Finsler norm is a limaçon,
which depends on the angle of the plane and the velocity of the object. Evidently, the
distance function associated to the Matsumoto metric will be asymmetric, meaning that
dF (A,B) 6= dF (B,A) unless A = B.

Another important Finslerian example is the metric defined by the Zermelo navigation
problem, where one seeks time minimizing travel paths of an object having constant velocity
on a given Riemannian manifold under the influence of an external force, such as wind,
see Zermelo [131, 130] and Bao, Robles, and Shen [17]. In this case, the time minimizing
geodesics are determined by a particular type of Finsler structure called Randers metric,
and the induced Finsler manifold will be, in fact, a Randers space. The problem admits
numerous generalizations and applications, see e.g., Caponio, Javaloyes, and Sánchez [29],
Kopacz [71] and references therein.

Last but not least, we should highlight the well-known Finsler-Poincaré disk model,
which simulates the time minimizing trajectories of an object on a circular region. Suppose
that a force field directed towards the center of the disk acts on the body, see Bao, Chern,
and Shen [15, Section 12.6]. In this peculiar model, it turns out that if the magnitude of
the force is sufficiently large, the Finslerian distance from the boundary of the disk to the
center will be finite, however, the distance from the center to the boundary will be infinite.

The purpose of this chapter is to give an overview of the fundamental notions of Finsler
geometry, which are necessary for our further developments. Besides, we summarize the
main analogies and differences between Riemannian manifolds and Finsler manifolds. For
a comprehensive treatment of the subject, see Bao, Chern, and Shen [15], Ohta and Sturm
[99] and Shen [109].

2.1 Riemannian vs. Finsler manifolds

Let M be a connected n-dimensional C∞-differentiable manifold. The tangent bundle of
M is the collection of all vectors tangent to M , i.e.,

TM =
⋃
x∈M
{(x, v) : v ∈ TxM},

where TxM denotes the tangent space of M at the point x.

Definition 2.1.1. The pair (M,F ) is called a Finsler manifold, if F : TM → [0,∞) is a
continuous function such that

(i) F ∈ C∞(TM \ {0});
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(ii) F (x, λv) = λF (x, v), for every λ ≥ 0 and (x, v) ∈ TM ;

(iii) the Hessian matrix

[
gij(x, v)

]
i,j=1,n

=

[
1

2

∂2

∂vi∂vj
F 2(x, v)

]
i,j=1,n

is positive definite for every (x, v) ∈ TM \ {0}, where v =

n∑
i=1

vi
∂

∂xi
in a local

coordinate system (xi)i=1,n.

The function F is called the Finsler structure on M . If, in addition, F (x, λv) = |λ|F (x, v)

holds for all λ ∈ R and (x, v) ∈ TM , then the Finsler structure is symmetric and the
Finsler manifold is called reversible. Otherwise, F is asymmetric and (M,F ) is said to be
nonreversible.

Definition 2.1.2. The pair (M, g) is called a Riemannian manifold, if g is a correspondence
which associates to every point x ∈ M an inner product gx : TxM × TxM → R (i.e., a
symmetric, bilinear, positive definite form), such that the functions gij(x) := gx

(
∂
∂xi
, ∂
∂xj

)
are of class C∞, for all i, j = 1, n. In this case g is called a Riemannian metric.

Note that if (M, g) is a Riemannian manifold, then g induces a symmetric Finsler
structure F : TM → [0,∞) on M by

F (x, v) =
√
gx(v, v), ∀(x, v) ∈ TM.

In this case, it turns out that the Hessian matrices
[
gij(x, v)

]
i,j

=
[
gij(x)

]
i,j

do not depend
on the tangent vector v ∈ TxM , for every x ∈ M . Therefore, every Riemannian manifold
is a reversible Finsler manifold.

In the following, unless otherwise stated, let (M,F ) denote an n-dimensional Finsler
manifold.

2.2 Chern connection, geodesics and flag curvature

Let π∗TM be the pull-back tangent bundle of TM induced by the natural projection
π : TM\{0} →M , i.e., π∗TM is the collection of all pairs (y;w) with y := (x, v) ∈ TM\{0}
and w ∈ TxM . Then π∗TM admits a natural local basis defined by ∂i|y := (y; ∂

∂xi
), and a

canonical inner product induced by the Hessian matrices [gij(x, v)]i,j=1,n, i.e.,

gy(∂i|y, ∂j |y) = g(x,v)(∂i|y, ∂j |y) = gij(x, v), ∀i, j = 1, n.

This naturally induced Riemannian metric g is called the fundamental tensor on π∗TM .
However, in contrast to the Levi-Civita connection in the Riemannian case, the above

fundamental tensor does not induce a unique, metric compatible connection on the Finsler
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manifold (M,F ). Nonetheless, among the connections on the pull-back tangent bundle
π∗TM it is possible to choose a linear, torsion-free and almost metric-compatible connec-
tion called the Chern connection, see Bao, Chern, and Shen [15, Chapter 2]. The Chern
connection induces the notion of covariant derivative and parallelism of a vector field along
a curve. For example, let us denote by DvV the covariant derivative of a vector field V in
the direction v ∈ TxM . Then, a vector field V = V (t) is parallel along a curve γ = γ(t) if
Dγ̇V = 0.

A C∞-differentiable curve γ : [a, b] → M is called a geodesic if its velocity field γ̇

is parallel along the curve, i.e., Dγ̇ γ̇ = 0. The Finsler manifold is said to be forward
(respectively, backward) complete if every geodesic segment γ : [a, b]→M can be extended
to a geodesic defined on [a,∞) (respectively, on (−∞, b]). In particular, (M,F ) is called
complete if it is forward and backward complete.

With the help of the Chern connection, one can also define the Chern curvature tensor
R and the flag curvature K, see Bao, Chern, and Shen [15, Chapter 3]. For a fixed point
x ∈M , let v, w ∈ TxM be two linearly independent tangent vectors and S = span{v, w} ⊂
TxM . Then the flag curvature associated with the flag (S; v) is defined as

K(S; v) =
gy(R(W,V )V,W )

gy(V, V )gy(W,W )− gy(V,W )2
,

where y := (x, v) ∈ TM \ {0}, V := (y; v),W := (y;w) ∈ π∗TM and g is the fundamental
tensor on π∗TM . Note that when (M,F ) is a Riemannian manifold, the flag curvature
reduces to the well-known sectional curvature which depends only on S.

We say that the flag curvature of (M,F ) is bounded from above by some constant c ∈ R
if K(S; v) ≤ c, for every x ∈M and every choice of v, w ∈ TxM ; this is denoted by K ≤ c.
In particular, (M,F ) is called a Finsler-Hadamard manifold if it is a simply connected,
forward complete Finsler manifold having nonpositive flag curvatureK ≤ 0. A Riemannian
Finsler-Hadamard manifold is called a Cartan-Hadamard (or simply, Hadamard) manifold.

The Ricci curvature at the point x ∈M and in the direction v ∈ TxM is defined as

Ricx(v) = F 2(x, v)
n−1∑
i=1

K(Si; v),

where {e1, · · · , en−1,
1

F (x,v)v} is an orthonormal basis of TxM with respect to g, and Si =

span{ei, v}, for every i = 1, n− 1. We say that the Ricci curvature of the manifold (M,F )

is bounded from below by a constant c ∈ R if Ricx(v) ≥ c · F 2(x, v) for all (x, v) ∈ TM ;
we denote this by RicM ≥ c.
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2.3 Hausdorff volume form and distance function

The density function σF : M → [0,∞) is defined by

σF (x) =
ωn

Vole(Bx(1))
,

where ωn and Vole(Bx(1)) denote the Euclidean volume of the n-dimensional Euclidean
unit ball and the set

Bx(1) =
{

(vi) ∈ Rn : F
(
x,

n∑
i=1

vi
∂

∂xi

)
< 1
}
⊂ Rn.

The canonical Hausdorff volume form dvF on (M,F ) is defined as

dvF (x) = σF (x)dx1 ∧ . . . ∧ dxn,

see Shen [109, Section 2.2]. Note that in the thesis we may omit the parameter x for the
sake of brevity.

The Finslerian volume of an open set Ω ⊂M is given by VolF (Ω) =
∫

Ω dvF (x). When
(M,F ) = (M, g) is a Riemannian manifold, the Riemannian measure and Riemannian
volume is denoted by dvg and Volg, while in the particular n-dimensional Euclidean case,
we simply use the notations dx and Vole.

The mean distortion of (M,F ) is defined by

µ : TM \ {0} → (0,∞), µ(x, v) =

√
det
[
gij(x, v)

]
σF (x)

,

while the mean covariation is given by

S : TM \ {0} → R, S(x, v) =
d

dt

(
ln µ

(
γ(t), γ̇(t)

))∣∣∣
t=0

,

where γ is the geodesic with γ(0) = x and γ̇(0) = v. If S(x, v) = 0 on all TM \ {0}, then
we say that (M,F ) has vanishing mean covariation and denote it by S = 0.

The Finslerian distance function dF : M ×M → [0,∞) is defined by

dF (x1, x2) = inf
γ

∫ b

a
F (γ(t), γ̇(t)) dt,

where γ : [a, b]→ M is any piecewise differentiable curve such that γ(a) = x1 and γ(b) =

x2. It is immediate that dF (x1, x2) = 0 if and only if x1 = x2 and that dF verifies the
triangle inequality. However, in general, the Finslerian distance function is not symmetric.
In fact, we have that dF (x1, x2) = dF (x2, x1), for every x1, x2 ∈ M , if and only if (M,F )
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is a reversible Finsler manifold. In particular, the Riemannian distance function dg :

M ×M → [0,∞) is symmetric.
Due to the asymmetry of the distance function dF , one needs to define separately the

forward and backward open geodesic balls of center x0 ∈M and radius ρ > 0, namely,

B+
F (x0, ρ) = {x ∈M : dF (x0, x) < ρ} and B−F (x0, ρ) = {x ∈M : dF (x, x0) < ρ}.

If (M,F ) = (M, g) is a Riemannian manifold, the forward and backward geodesic balls
coincide and are simply given by the Riemannian geodesic ball

Bg(x0, ρ) = {x ∈M : dg(x0, x) < ρ}.

2.4 Polar transform and Legendre transform

The polar transform (or co-metric) F ∗ : T ∗M → [0,∞) is defined as the dual metric of F ,
namely

F ∗(x, α) = sup
v∈TxM\{0}

α(v)

F (x, v)
,

where T ∗M =
⋃
x∈M T ∗xM is the cotangent bundle of M and T ∗xM is the dual space of

TxM .
Since F ∗2(x, ·) is twice differentiable on T ∗xM \ {0}, one can define the Hessian (dual)

matrix [
g∗ij(x, α)

]
i,j=1,n

=

[
1

2

∂2

∂αi∂αj
F ∗2(x, α)

]
i,j=1,n

for every α =

n∑
i=1

αidxi ∈ T ∗xM \ {0} in a local coordinate system (xi)i=1,n.

Using the strong convexity assumption on the Finsler structure F , the Legendre trans-
form J∗ : T ∗M → TM is defined in the following way: for every x ∈M fixed, J∗ associates
to each α ∈ T ∗xM the unique maximizer v ∈ TxM of the mapping

v 7→ α(v)− 1

2
F 2(x, v).

Note that if J∗(x, α) = (x, v), then

F (x, v) = F ∗(x, α) and α(v) = F ∗(x, α)F (x, v). (2.1)

In local coordinates, for every α =

n∑
i=1

αidxi ∈ T ∗xM , one has that

J∗(x, α) =

n∑
i=1

∂

∂αi

(
1

2
F ∗2(x, α)

)
∂

∂xi
.
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2.5 Reversibility and uniformity constants

The reversibility constant of the Finsler manifold (M,F ) is defined by the number

rF = sup
x∈M

rF (x) ∈ [1,∞], where rF (x) = sup
v∈TxM\{0}

F (x, v)

F (x,−v)
,

and it measures how much the manifold deviates from being reversible, see Rademacher
[101]. Note that rF = 1 if and only if (M,F ) is a reversible Finsler manifold. Also, if
rF < ∞, then the forward and backward completeness of (M,F ) are equivalent, and in
this case, we simply say that the Finsler manifold is complete, see Bao, Chern, and Shen
[15, Section 6.6].

The uniformity constant of (M,F ) is defined by the number

lF = inf
x∈M

lF (x) ∈ [0, 1], where lF (x) = inf
v,w,z∈TxM\{0}

g(x,w)(v, v)

g(x,z)(v, v)
,

which measures how much F deviates from being a Riemannian structure, see Egloff [45].
Indeed, lF = 1 if and only if (M,F ) is a Riemannian manifold, see Ohta [98].

By using the definition of lF , it can be proved that

F ∗2(x, tα+ (1− t)β) ≤ tF ∗2(x, α) + (1− t)F ∗2(x, β)− lF t(1− t)F ∗2(x, β − α), (2.2)

for every x ∈ M , α, β ∈ T ∗xM and t ∈ [0, 1], see Ohta and Sturm [99]. Similarly, one can
easily deduce that

lF (x)r2
F (x) ≤ 1, ∀x ∈M.

Therefore, we have the following implication: if lF > 0, then rF <∞.

2.6 Gradient, divergence and Finsler-Laplace operator

Let u : M → R be a function of class C1. The gradient of u is defined as ∇Fu : M → TM ,

∇Fu(x) = J∗(x,Du(x)),

where Du(x) ∈ T ∗xM denotes the differential of u at the point x. Using the properties of
the Legendre transform, it follows that

F ∗(x,Du(x)) = F (x,∇Fu(x)), ∀x ∈M.
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In local coordinates, one has that

Du(x) =
n∑
i=1

∂u

∂xi
(x)dxi and ∇Fu(x) =

n∑
i,j=1

g∗ij(x,Du(x))
∂u

∂xi
(x)

∂

∂xj
,

see Ohta and Sturm [99]. Note that the gradient operator ∇F is usually nonlinear. How-
ever, when (M,F ) = (M, g) is a Riemannian manifold, ∇F reduces to the Riemannian
gradient operator ∇g.

Here we recall the eikonal equation for the distance function dF , see Shen [109, Lemma
3.2.3]. Namely, for every point x0 ∈M , one has

F (x,∇FdF (x0, x)) = F ∗(x,DdF (x0, x)) = DdF (x0, x)(∇FdF (x0, x)) = 1, (2.3)

for all x ∈M \ ({x0} ∪Cut(x0)), where Cut(x0) denotes the cut locus of the point x0, see
Bao, Chern, and Shen [15, Chapter 8].

Let V : M → TM be a differentiable vector field on M . The divergence of V is defined
as divV : M → R,

divV (x) =
1

σF (x)

n∑
i=1

∂

∂xi
(σF (x)V i(x)),

where σF is the density function and V =
∑n

i=1 V
i ∂
∂xi

in a local coordinate system (xi)i=1,n.
In particular, we have the following divergence theorem:∫

M
u(x)divV (x)dvF (x) = −

∫
M
Du(x)

(
V (x)

)
dvF (x), (2.4)

see Ohta and Sturm [99].
For any p ∈ N, p ≥ 2, the p-Finsler-Laplace of a function u ∈ C2(M) is given by

∆F,pu : M → R,
∆F,pu(x) = div

(
F ∗(x,Du(x))p−2 · ∇Fu(x)

)
.

Note that in general, the operator ∆F,p is nonlinear. When p = 2, ∆F := ∆F,2 is simply
called the Finsler-Laplace operator. In particular, for a Riemannian manifold (M,F ) =

(M, g), ∆F = ∆g is the usual Laplace-Beltrami operator, see Hebey [63, p. 9].
The divergence theorem implies that∫

M
v(x)∆F,pu(x) dvF (x) = −

∫
M
F ∗(x,Du(x))p−2 ·Dv(x)

(
∇Fu(x)

)
dvF (x), (2.5)

for all u, v ∈ C∞0 (M).
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2.7 Sobolev spaces on Finsler manifolds

Let 1 ≤ p ≤ ∞ and Ω ⊆M be an open set.
On the Finsler manifold (M,F ), the spaces Lploc(Ω) and W 1,p

loc (Ω) can be defined in a
natural manner, similarly to the Euclidean setting, see Brezis [22, p. 106]. In this case,
these spaces turn out to be independent of the Finsler structure F . The Sobolev spaces on
(M,F ), however, are determined by the choice of F and the measure defined on M . While
it is possible to use an arbitrary measure to define Sobolev spaces (see Ohta and Sturm
[99]), in the thesis we shall use the canonical Hausdorff measure dvF .

The Sobolev spaces on Ω associated with (M,F ) and dvF are defined as

W 1,p
F (Ω) =

{
u ∈W 1,p

loc (Ω) :

∫
Ω
F ∗p(x,Du(x))dvF (x) <∞

}
.

It can be proved that W 1,p
F (Ω) is the closure of C∞(Ω) with respect to the (generally

asymmetric) norm

‖u‖
W 1,p
F (Ω)

=

(∫
Ω
F ∗p(x,Du(x)) dvF (x) +

∫
Ω
|u(x)|p dvF (x)

) 1
p

, (2.6)

which is also equivalent with the norm

(∫
Ω
F ∗p(x,Du(x)) dvF (x)

) 1
p

+

(∫
Ω
|u(x)|p dvF (x)

) 1
p

. (2.7)

Therefore, we may use the two norms interchangeably.
The space W 1,p

0,F (Ω) ⊂ W 1,p
F (Ω) is defined as the closure of C∞0 (Ω) with respect to the

norm ‖·‖
W 1,p
F (Ω)

. In the case p = 2, we use the notationsH1
F (Ω) := W 1,2

F (Ω) andH1
0,F (Ω) :=

W 1,2
0,F (Ω). Clearly, when (M,F ) = (M, g) is a Riemannian manifold, the Sobolev spaces

W 1,p
F (Ω) and W 1,p

0,F (Ω) coincide with the Sobolev spaces W 1,p
g (Ω) and W 1,p

0,g (Ω) associated
with the Riemannian metric g, see Hebey [63].

Since F is not necessarily symmetric, the Sobolev norms (2.6) (or (2.7)) are gener-
ally asymmetric norms as well, turning the Sobolev spaces (W 1,p

F (Ω), ‖ · ‖
W 1,p
F (Ω)

) and

(W 1,p
0,F (Ω), ‖ · ‖

W 1,p
F (Ω)

) into asymmetric normed (or seminormed) spaces. Nevertheless, one
can define the symmetric counterparts of the above Sobolev norms, by using the sym-
metrized Finsler structure associated with F , i.e., Fs : TM → [0,∞),

Fs(x, v) =

(
F 2(x, v) + F 2(x,−v)

2

) 1
2

, ∀(x, v) ∈ TM.
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In this case, the symmetric norms ‖ · ‖
W 1,p
Fs

(Ω)
induced by Fs are defined as

‖u‖
W 1,p
Fs

(Ω)
=

(∫
Ω
F ∗s

p(x,Du(x)) dvF (x) +

∫
Ω
|u(x)|p dvF (x)

) 1
p

.

Then, due to Farkas, Kristály, and Varga [50], we have the following result.

Theorem 2.7.1. (Farkas, Kristály, and Varga [50, Theorem 1.1]) Let (M,F ) be a com-
plete n-dimensional Finsler manifold with rF < ∞ and Ω ⊆ M an open domain. Then
(W 1,2

0,F (Ω), ‖ · ‖
W 1,2
Fs

(Ω)
) is a reflexive Banach space. Moreover, the norms ‖ · ‖

W 1,2
Fs

(Ω)
and

‖ · ‖
W 1,2
F (Ω)

are equivalent, in particular, one has that

(
1 + r2

F

2

)− 1
2

‖u‖
W 1,2
F (Ω)

≤ ‖u‖
W 1,2
Fs

(Ω)
≤

(
1 + r−2

F

2

)− 1
2

‖u‖
W 1,2
F (Ω)

, ∀u ∈W 1,2
0,F (Ω).

Therefore, if (M,F ) is a complete Finsler manifold with finite reversibility constant,
then, for any open domain Ω ⊆ M , (W 1,2

0,F (Ω), ‖ · ‖
W 1,2
F (Ω)

) is a reflexive biBanach space
(i.e., complete asymmetric normed space, see Cobzaş [36]), since its associated normed
space (W 1,2

0,F (Ω), ‖ · ‖
W 1,2
Fs

(Ω)
) satisfies the properties enumerated in Theorem 2.7.1. More-

over, the former result is sharp in the sense that there exist complete Finsler-Hadamard
manifolds having rF =∞ such that the associated Sobolev spaces W 1,2

0,F (M) not only lack
completeness, but they do not even admit a vector space structure, see Farkas, Kristály,
and Varga [50] and Kristály and Rudas [81]; obviously, in these cases the norms ‖·‖

W 1,2
Fs

(M)

and ‖ · ‖
W 1,2
F (M)

are not equivalent.
Using relations (2.4) and (2.5), the divergence operator and the p-Finsler-Laplace oper-

ator can be defined in a distributional sense as well. For this let V : Ω→ TM be a vector
field. By definition, we say that V ∈ L1

loc(Ω) if the function F (V ) : Ω→ [0,∞), F (V )(x) =

F (x, V (x)) satisfies that F (V ) ∈ L1
loc(Ω). Then, for every vector field V ∈ L1

loc(Ω), the
divergence of V is defined as divV : Ω→ R, such that∫

Ω
ϕ(x)divV (x)dvF (x) = −

∫
Ω
Dϕ(x)

(
V (x)

)
dvF (x), (2.8)

for every test function ϕ ∈ C∞0 (Ω), see Ohta and Sturm [99].
Similarly, for every function u ∈ W 1,p

loc (Ω), 2 ≤ p < ∞, the p-Finsler-Laplace operator
is defined as∫

M
ϕ(x)∆F,pu(x) dvF (x) = −

∫
M
F ∗(x,Du(x))p−2 ·Dϕ(x)

(
∇Fu(x)

)
dvF (x), (2.9)

for all ϕ ∈ C∞0 (M).
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2.8 Comparison theorems

We conclude this chapter with some comparison principles, which play a crucial role when
studying the global geometry of the Finsler manifold (M,F ).

In order to present these results, for any c ∈ R fixed, let sc, ctc : (0,∞) → R be the
functions defined as

sc(t) =


sin(
√
ct), if c > 0,

t, if c = 0,

sinh(
√
−ct), if c < 0,

and ctc(t) =


√
c cotan(

√
ct), if c > 0,

1
t , if c = 0,
√
−c cotanh(

√
−ct), if c < 0.

The Laplacian comparison principle for the Finslerian distance function reads as follows.

Theorem 2.8.1. (Laplacian comparison theorem, Wu and Xin [124, Theorem 5.1]) Let
(M,F ) be a complete n-dimensional Finsler manifold with S = 0 and flag curvature bounded
from above, i.e., K ≤ c for some c ∈ R. If r : M → R, r(x) = dF (x0, x) denotes the
distance function from a fixed point x0 ∈M , then

∆F r(x) ≥ (n− 1)ctc(r(x)),

for every point x ∈M \ ({x0} ∪ Cut(x0)).

Next, for any fixed numbers c ∈ R, n ∈ N∗ and ρ > 0, let

Vc,n(ρ) = nωn

∫ ρ

0
sn−1
c (t)dt

be the volume of the Riemannian geodesic ball of radius ρ > 0 in the n-dimensional space
form having constant sectional curvature c (i.e., either the hyperbolic space Hn

c when c < 0,
or the Euclidean space Rn when c = 0, or the n-dimensional sphere Snc when c > 0), see do
Carmo [30, Chapter 8] and Chavel [33, Chapter III]. Then, for every x ∈M , one has that

lim
ρ� 0

VolF (B+
F (x, ρ))

Vc,n(ρ)
= lim

ρ� 0

VolF (B−F (x, ρ))

Vc,n(ρ)
= 1, (2.10)

see Shen [110].
Finally, let us recall the following Bishop-Gromov-type volume comparison results on

Finsler manifolds.

Theorem 2.8.2. (Volume comparison theorem I, Shen [110, Theorem 1.1]) Let (M,F )

be a complete n-dimensional Finsler manifold with S = 0 and RicM ≥ (n − 1)c for some
c ∈ R. Then the function

ρ 7→
VolF (B+

F (x, ρ))

Vc,n(ρ)
, ρ > 0
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is non-increasing, for every x ∈M . In particular, by (2.10), one has that

VolF (B+
F (x, ρ)) ≤ Vc,n(ρ), for all ρ > 0 and x ∈M. (2.11)

Theorem 2.8.3. (Volume comparison theorem II, Wu and Xin [124, Theorem 6.1]) Let
(M,F ) be a complete n-dimensional Finsler manifold with S = 0 and K ≤ c for some
c ≤ 0. Then the function

ρ 7→
VolF (B+

F (x, ρ))

Vc,n(ρ)
, ρ > 0

is non-decreasing, for every x ∈M . In particular, from (2.10) it follows that

VolF (B+
F (x, ρ)) ≥ Vc,n(ρ), for all ρ > 0 and x ∈M. (2.12)
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Chapter 3

Three isometrical models of Finsler
manifolds

In this chapter we present three isometrically equivalent examples of Finsler manifolds, all
of which belong to a particular class called Randers spaces. Roughly speaking, a Randers
metric shows up as the perturbation of a Riemannian metric with a linear form. Therefore,
Randers spaces represent a natural layer of generalization between Riemannian manifolds
and general Finsler manifolds.

Due to the particular form of a Randers metric, the different geometric quantities of
the ambient space turn out to be explicitly computable, making Randers spaces one of the
most fundamental non-Riemannian family of Finsler manifolds. For mathematicians, they
supply a collection of models for studying various non-Riemannian objects and quantities
such as curvature, geodesics and connections, see Cheng and Shen [34] or Bao, Chern,
and Shen [15, Chapter 11]. For those interested in the natural sciences, Randers spaces
demonstrate a great potential of applicability in optics, thermodynamics, mathematical
ecology and economics, see Antonelli, Ingarden, and Matsumoto [9], Dehkordi [39], Gibbons
and Warnick [58] and references therein. In particular, they have received much attention
lately among geometers due to their connection to the famous Zermelo navigation problem,
see Zermelo [131, 130].

In what follows, first we review the definition of Randers spaces. Then we present three
different Randers models and discuss their fundamental geometric properties, as well as
their connection to Riemannian geometry. Finally, we prove that these spaces are actually
all isometrically equivalent, and describe some interesting consequences of this property.
This chapter summarizes the results of Mester and Kristály [3].

3.1 Randers spaces: definition and properties

Randers spaces were first studied by Randers [102], motivated by the necessity to model
asymmetrical metrics and other anisotropic phenomena in physical applications. Randers
metrics represent one of the simplest class of Finsler structures, as they are defined as an
adequate perturbation of a Riemannian metric.
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We say that the pair (M,F ) is a Randers space if (M, g) is a Riemannian manifold and
the Finsler structure F : TM → R is defined by

F (x, v) =
√
gx(v, v) + βx(v), ∀x ∈M, v ∈ TxM, (3.1)

where βx denotes a 1-form on M such that

|βx|g :=
√
g∗x(βx, βx) < 1, ∀x ∈M.

Here g∗ denotes the co-metric of g, i.e., g∗x is defined as the inverse of the symmetric,
positive definite matrix gx. In the above case F is called a Randers metric.

Evidently, every Riemannian manifold can be regarded as a Randers space with βx =

0,∀x ∈M . Furthermore, it can be shown that every Randers space is a Finsler manifold,
see Bao, Chern, and Shen [15, Section 1.3 C]. Also, the Finsler metric F from (3.1) is
symmetric if and only if βx = 0,∀x ∈ M , which means that (M,F ) coincides with the
original Riemannian manifold (M, g). Finally, it can be proved that every Randers space
can be obtained as the solution to the Zermelo navigation problem for a suitable choice of
g and βx, see Bao and Robles [16], Bao, Robles, and Shen [17], and Shen [108].

Due to the particular form of the Randers metric F from definition (3.1), several
geometric notions of the corresponding manifold can be explicitly calculated. For example,
the polar transform of F is given by

F ∗(x, α) =

√
g∗2x (α, βx) + (1− |βx|2g)|α|2g − g∗x(α, βx)

1− |βx|2g
, ∀(x, α) ∈ T ∗M. (3.2)

The Hausdorff volume form dvF on the Randers space (M,F ) is

dvF (x) =
(
1− |βx|2g

)n+1
2 dvg, (3.3)

where dvg denotes the canonical Riemannian volume form induced by the Riemannian
metric g, and n is the dimension of M , see Cheng and Shen [34].

The reversibility constant of (M,F ) is given by

rF = sup
x∈M

rF (x), where rF (x) =
1 + |βx|g
1− |βx|g

, (3.4)

while the uniformity constant associated with F is

lF = inf
x∈M

lF (x), where lF (x) =

(
1− |βx|g
1 + |βx|g

)2

, (3.5)

see Yuan and Zhao [128].
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Clearly, we have rF = 1 (and lF = 1, respectively) if and only if βx = 0,∀x ∈ M , i.e.,
(M,F ) = (M, g) is a Riemannian manifold.

3.2 Models of Randers spaces

In this section we present three explicit examples of Randers spaces, which turn out to be
isometrically equivalent.

There exist two fundamental analytical models of Randers spaces in the literature:

(F): the Finslerian Funk model (see Cheng and Shen [34, Example 2.1.2] and Shen [109,
Example 1.3.4]), which is defined as the perturbation of the well known Riemannian
Beltrami-Klein disk (see Loustau [86, Section 6.2]);

(P): the Finsler-Poincaré disk (see Bao, Chern, and Shen [15, Section 12.6]) which is the
Finslerian counterpart of the usual Riemannian Poincaré disk model (see Loustau
[86, Section 8.1]).

Despite the popularity of these two Finsler models, the relationship among them is
rarely discussed. This is even more peculiar if one considers the fact that these two Ran-
ders spaces are actually isometrically equivalent, meaning that there exists an isometric
diffeomorphism between the two manifolds. To our knowledge, this equivalence is not well
established in the literature. In fact, we found only one paper referring to the isometry
map given in polar coordinates from the 2-dimensional Finsler-Poincaré disk onto the Funk
model, in the context of Zermelo’s navigation problem, see Bao and Robles [16, p. 240].
Therefore, a side objective of the present chapter is to describe in more detail the isometry
between the models (F) and (P).

However, what is even more intriguing is that, as it turns out, there exists a third
model which is isometric to the previous two. This phenomenon can be suspected from
the properties of the hyperbolic model spaces. It is well known that the Riemannian
counterparts of the models (F) and (P), i.e., the Beltrami-Klein disk and the Poincaré
disk, are all isometric to the Poincaré upper half plane, see Cannon et al. [26]. Considering
this fact, we introduce a new 2-dimensional analytic Finsler model, namely

(H): the Finsler-Poincaré upper half plane, which turns out to be precisely the Randers-
type perturbation of the Riemannian hyperbolic upper half plane model, see Loustau
[86, Section 8.2] or Stahl [114, Chapter 4].

In what follows, we present in detail the three Randers models in question, then we
prove the isometrical equivalence of the three models. For simplicity of presentation, we
restrict ourselves to dimension 2.
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In the sequel we use the following notations:

• D = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1} denotes the 2-dimensional Euclidean open unit
disk;

• H = {(x1, x2) ∈ R2 : x2 > 0} represents the Euclidean upper half plane;

• | · | and 〈·, ·〉 denote the standard Euclidean norm and inner product on R2.

3.2.1 The Funk model

The Finslerian Funk model is given by the pair (D, FF ), where the Funk metric FF :

D× R2 → R is defined as

FF (x, v) =

√
(1− |x|2)|v|2 + 〈x, v〉2

1− |x|2
+
〈x, v〉

1− |x|2
, (3.6)

for all (x, v) ∈ TD, see Cheng and Shen [34, Example 2.1.2] or Shen [109, Example 1.1.2
& 1.3.4].

Therefore, the Funk metric FF can be viewed as the perturbation of the norm

(αF )x(v) =

√
(1− |x|2)|v|2 + 〈x, v〉2

1− |x|2
(3.7)

with the 1-form
(βF )x(v) =

〈x, v〉
1− |x|2

. (3.8)

In fact, by omitting the 1-form (βF )x in definition (3.6), we recover the Riemannian
Klein metric on the unit disk D. This metric induces the well-known Beltrami-Klein model,
which is a hyperbolic model space of constant sectional curvature −1, where the geodesics
are Euclidean straight lines in D, see Loustau [86, Section 6.2].

It can be proved that (D, FF ) is a non-reversible Randers space having constant negative
flag curvature −1

4 , see Shen [109, Example 9.2.1]. Furthermore, it turns out that

|(βF )x|αF = |x| < 1, ∀x ∈ D, (3.9)

see Kristály and Rudas [81, Section 2.2], therefore, relation (3.4) implies that the reversibil-
ity constant of the manifold is rFF = +∞. In particular, this results in the asymmetry of
the induced distance function dFF , e.g., we have that

lim
x→∂D

dFF (x, 0) = ln 2 but lim
x→∂D

dFF (0, x) = +∞,

see Cheng and Shen [34, Example 2.1.2] or Shen [109, Example 1.1.2]. Note that the
trajectories traced out by the geodesics of the Funk model coincide with the ones of the
Beltrami-Klein disk, see Figure 3.1.
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Figure 3.1: The pictorial representation of the Funk model (D, FF ): the
geodesics are straight lines (chords) with ideal endpoints on the boundary

∂D, see Shen [109, Example 9.2.1].

3.2.2 The Finsler-Poincaré disk

The Finsler-Poincaré metric on the open disk D is defined as FP : D× R2 → R,

FP (x, v) =
2|v|

1− |x|2
+

4〈x, v〉
1− |x|4

, (3.10)

for every (x, v) ∈ TD.
The Finsler manifold (D, FP ) is called the Finsler-Poincaré disk, comprehensively in-

vestigated by Bao, Chern, and Shen [15, Section 1.3 E & 12.6]. Again, the metric FP can
be constructed as the perturbation of the norm

(αP )x(v) =
2|v|

1− |x|2
(3.11)

with the 1-form
(βP )x(v) =

4〈x, v〉
1− |x|4

. (3.12)

Direct calculations yield that

|(βP )x|αP =
2|x|

1 + |x|2
< 1, ∀x ∈ D,

therefore (D, FP ) is a non-reversible Randers space with rFP = +∞ (see formula (3.4)).
Furthermore, one can prove that the Finsler-Poincaré disk is only forward complete, having
constant negative flag curvature −1

4 , see Bao, Chern, and Shen [15, Section 12.6]
Omitting (βP )x in (3.10) results in the usual Riemannian Poincaré model, which is

another fundamental hyperbolic manifold of constant sectional curvature −1, see Loustau
[86, Section 8.1]. It turns out that the geodesics of (D, FP ) trajectory-wise coincide with
their Riemannian counterparts: namely, they consist of Euclidean circular arcs which
intersect the boundary ∂D at Euclidean right angles, and Euclidean straight lines that
contain the origin, see Figure 3.2. However, the distance function dFP induced by the
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Finsler-Poincaré metric is highly asymmetrical, in particular, we have that

lim
x→∂D

dFP (x, 0) = ln 2 but lim
x→∂D

dFP (0, x) = +∞,

see Bao, Chern, and Shen [15, Section 12.6].

Figure 3.2: The pictorial representation of the Finsler-Poincaré disk model
(D, FP ): the geodesics are straight lines going through the origin with ideal
endpoints on the boundary ∂D, or circular arcs perpendicular to the bound-

ary, see Bao, Chern, and Shen [15, Section 12.6].

3.2.3 The Finsler-Poincaré upper half plane

Inspired by the previous Randers-type generalizations of the Beltrami-Klein disk and the
Poincaré ball, we introduce the Finslerian counterpart of the Riemannian hyperbolic upper
half plane (also referred to as the Poincaré half-plane model).

Let us define the Finsler metric FH : H× R2 → R by

FH(x, v) =
|v|
x2

+
〈w(x), v〉
x2(4 + |x|2)

, (3.13)

for all (x, v) ∈ TH, where H denotes the Euclidean upper half plane and

w(x) = (2x1x2, x
2
2 − x2

1 − 4), ∀x = (x1, x2) ∈ H.

Then we call the pair (H, FH) the Finsler-Poincaré upper half plane. In turns out that
(H, FH) is a Randers space, composed of the term

(αH)x(v) =
|v|
x2

(3.14)

and the 1-form
(βH)x(v) =

〈w(x), v〉
x2(4 + |x|2)

. (3.15)
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Indeed, αH actually corresponds to the Lobachevsky metric of the Riemannian upper
half plane, another standard hyperbolic model space with negative sectional curvature −1,
see do Carmo [30, p. 73] or Loustau [86, Section 8.2].

Secondly, by direct calculation, one can show that

|(βH)x|αH =
|w(x)|

4 + |x|2
< 1, ∀x ∈ H.

Moreover, we have that

sup
x∈H
|(βH)x|αH = lim

x∈H
x2↘0

|w(x)|
4 + |x|2

= lim
x∈H
x2↘0

4 + x2
1

4 + |x|2
= 1,

which yields that rFH = +∞ (see relation (3.4)), i.e., (H, FH) is non-reversible.
Regarding the geodesics of the newly constructed space, we can say the following:

due to Bao, Chern, and Shen [15, p. 298], we know that if βH is a closed 1-form, then
the Finslerian geodesics are trajectory-wise identical to the geodesics of the underlying
Riemannian manifold.

Since
∂

∂x2

(
2x1x2

x2(4 + |x|2)

)
=

∂

∂x1

(
x2

2 − x2
1 − 4

x2(4 + |x|2)

)
,

it follows that βH is closed, therefore the trajectories of the geodesics of (H, FH) and the
Riemannian upper half plane coincide, see Figure 3.3.

Figure 3.3: The pictorial representation of the Finsler-Poincaré upper half
plane (H, FH): the geodesics are straight Euclidean lines perpendicular to
the x-axis and circular arcs intersecting the x-axis at Euclidean right angles

(i.e., half-circles whose center is on the x-axis).

In conclusion, the Finsler manifold (H, FH) is indeed the Randers-type perturbation
of the Poincaré upper half plane, in the same fashion as the correspondences presented
in Sections 3.2.1 & 3.2.2. Because of this analogous construction, one can prove that the
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Finsler-Poincaré upper half plane defined by (3.13) is isometrically equivalent with the
Funk model (3.6) and the Finsler-Poincaré disk (3.10). In order to put into context this
result, we remark that Rutz and McCarthy [107] also considered a small perturbation of the
Riemannian hyperbolic upper half plane, however, the metric obtained was not equivalent
with the well-known models from Sections 3.2.1 or 3.2.2.

3.3 An isometry result

Theorem 3.3.1. The Funk model (D, FF ), the Finsler-Poincaré disk (D, FP ) and the
Finsler-Poincaré upper half plane (H, FH) are isometrically equivalent.

Before presenting the proof of Theorem 3.3.1, the following definition is in order:

Definition 3.3.1. Let (M1, F1) and (M2, F2) be two Finsler manifolds. If f : M1 → M2

is a diffeomorphism such that

F1(x, v) = F2(f(x), Dfx(v)), ∀(x, v) ∈ TM1, (3.16)

where Dfx denotes the differential of f at the point x, then f is an isometry between
(M1, F1) and (M2, F2), and the manifolds (M1, F1) and (M2, F2) are said to be isometric.

Remark 3.3.1. Note that if f is an isometry between (M1, F1) and (M2, F2), then f is
distance preserving in the following sense: if we consider the Finslerian distance functions
dF1 and dF2 associated with the metrics F1 and F2 on M1 and M2, respectively, then the
condition (3.16) implies that

dF1(x, y) = dF2(f(x), f(y)), ∀x, y ∈M1.

Due to this property, we may call the manifolds (M1, F1) and (M2, F2) isometrically equiva-
lent, meaning that there exists a distance preserving diffeomorphism between the respective
spaces.

In the following subsections, we will prove Theorem 3.3.1 by giving the explicit form
of the isometry functions between the Randers spaces in question.

3.3.1 Equivalence of (D, FP ) and (D, FF )

Proposition 3.3.1. Let us consider the diffeomorphism

f : D→ D, f(x) =
2x

1 + |x|2
,

and its inverse
f−1 : D→ D, f−1(x) =

x

1 +
√

1− |x|2
.
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Then f is an isometry between the Finsler-Poincaré disk (D, FP ) and the Funk model
(D, FF ).

Proof. It is enough to show that

FP (x, v) = FF (f(x), Dfx(v)), ∀(x, v) ∈ TD,

where Dfx denotes the differential of f at the point x.
Based on the definitions (3.6) – (3.8), we need to calculate the terms

(αF )f(x)(Dfx(v)) =

√
(1− |f(x)|2)|Dfx(v)|2 + 〈f(x), Dfx(v)〉2

1− |f(x)|2
(3.17)

and
(βF )f(x)(Dfx(v)) =

〈f(x), Dfx(v)〉
1− |f(x)|2

. (3.18)

Given a point x = (x1, x2) ∈ D, the differential function Dfx is determined by the
Jacobian

Jf(x) =
2

(1 + |x|2)2

[
1 + |x|2 − 2x2

1 −2x1x2

−2x1x2 1 + |x|2 − 2x2
2

]
.

Then, for every v ∈ TxD ∼= R2, we have

Dfx(v) =
2

(1 + |x|2)2

[
v1(1 + |x|2)− 2x1〈x, v〉
v2(1 + |x|2)− 2x2〈x, v〉

]
.

Expressing the terms

1− |f(x)|2 =
(1− |x|2)2

(1 + |x|2)2
,

|Dfx(v)|2 =
4

(1 + |x|2)4

[
(1 + |x|2)2|v|2 − 4〈x, v〉2

]
,

〈f(x), Dfx(v)〉 = 4
1− |x|2

(1 + |x|2)3
〈x, v〉,

then substituting them into (3.17) and (3.18) yields

(αF )f(x)(Dfx(v)) =
(1 + |x|2)2

(1− |x|2)2
·

·

√
4(1− |x|2)2

(1 + |x|2)6
[(1 + |x|2)2|v|2 − 4〈x, v〉2] + 16

(1− |x|2)2

(1 + |x|2)6
〈x, v〉2

=
(1 + |x|2)2

(1− |x|2)2
· 2(1− |x|2)

(1 + |x|2)2
|v|

=
2|v|

1− |x|2
= (αP )x(v)
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and

(βF )f(x)(Dfx(v)) =
(1 + |x|2)2

(1− |x|2)2
· 4 1− |x|2

(1 + |x|2)3
〈x, v〉

=
4〈x, v〉
1− |x|4

= (βP )x(v),

which concludes the proof.

3.3.2 Equivalence of (D, FF ) and (H, FH)

Proposition 3.3.2. Let us consider the diffeomorphism

g : D→ H, g(x) =

(
2x2

1 + x1
,
2
√

1− |x|2
1 + x1

)

with its inverse function

g−1 : H→ D, g−1(x) =

(
4− |x|2

4 + |x|2
,

4x1

4 + |x|2

)
.

Then g is an isometry between the Funk model (D, FF ) and the Finsler-Poincaré upper half
plane (H, FH).

Proof. We prove that

FF (x, v) = FH(g(x), Dgx(v)), ∀(x, v) ∈ TD.

By relations (3.14) and (3.15), for all x ∈ D and v ∈ TxD, one has

(αH)g(x)(Dgx(v)) =
|Dgx(v)|
2
√

1−|x|2
1+x1

(3.19)

and
(βH)g(x)(Dgx(v)) =

〈w(g(x)), Dgx(v)〉
2
√

1−|x|2
1+x1

· (4 + |g(x)|2)
, (3.20)

where w(y) = (2y1y2, y
2
2 − y2

1 − 4), ∀y = (y1, y2) ∈ H (see definition (3.13)).
The Jacobian matrix of g is given by

Jg(x) = − 2

(1 + x1)2

 x2 −(1 + x1)
x1−x2

2+1√
1−|x|2

x2(1+x1)√
1−|x|2

 ,
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therefore, we have that

|Dgx(v)| = 2

1 + x1
·

√
(1− |x|2)|v|2 + 〈x, v〉2

1− |x|2
,

for every x ∈ D and v ∈ TxD ∼= R2.
Using (3.19), it follows that

(αH)g(x)(Dgx(v)) =
1 + x1

2
√

1− |x|2
· 2

1 + x1
·

√
(1− |x|2)|v|2 + 〈x, v〉2

1− |x|2

=

√
(1− |x|2)|v|2 + 〈x, v〉2

1− |x|2
= (αF )x(v).

For the expression in (3.20), we use the following calculations:

w(g(x)) =

(
8
x2

√
1− |x|2

(1 + x1)2
,−8
|x|2 + x1

(1 + x1)2

)
,

4 + |g(x)|2 =
8

1 + x1
, and

〈w(g(x)), Dgx(v)〉 =
16〈x, v〉

(1 + x1)2
√

1− |x|2
.

Hence, we obtain

(βH)g(x)(Dgx(v)) =
1 + x1

2
√

1− |x|2
· 1 + x1

8
· 16〈x, v〉

(1 + x1)2
√

1− |x|2

=
〈x, v〉

1− |x|2
= (βF )x(v),

which completes the proof.

3.3.3 Equivalence of (H, FH) and (D, FP )

Proposition 3.3.3. Let us consider the diffeomorphism

h : H→ D, h(x) =

(
4− |x|2

|x|2 + 4x2 + 4
,

4x1

|x|2 + 4x2 + 4

)
,

and its inverse

h−1 : D→ H, h−1(x) =

(
4x2

|x|2 + 2x1 + 1
,

2− 2|x|2

|x|2 + 2x1 + 1

)
.

Then h is an isometry between the Finslerian upper half plane (H, FH) and the Finsler-
Poincaré disk (D, FP ).
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Proof. It is enough to prove that

FH(x, v) = FP (h(x), Dhx(v)), ∀(x, v) ∈ TH.

From (3.11) and (3.12), we have

(αP )h(x)(Dhx(v)) =
2|Dhx(v)|
1− |h(x)|2

(3.21)

and
(βP )h(x)(Dhx(v)) =

4 〈h(x), Dhx(v)〉
1− |h(x)|4

. (3.22)

The Jacobian of h can be written as

Jh(x) =
−4

(|x|2 + 4x2 + 4)2

[
2x1(x2 + 2) (x2 + 2)2 − x2

1

x2
1 − (x2 + 2)2 2x1(x2 + 2)

]
.

First we do some preliminary computations: for every x = (x1, x2) ∈ H and v =

(v1, v2) ∈ TxH ∼= R2, one has

1− |h(x)|2 =
8x2

|x|2 + 4x2 + 4
,

1 + |h(x)|2 = 2
|x|2 + 4

|x|2 + 4x2 + 4
,

1− |h(x)|4 =
16x2(|x|2 + 4)

(|x|2 + 4x2 + 4)2
,

|Dhx(v)| = 4|v|
|x|2 + 4x2 + 4

,

and

〈h(x), Dhx(v)〉 =
−4

(|x|2 + 4x2 + 4)3
·
{

(x2
1 − (x2 + 2)2)

(
4x1v1 − (4− |x|2)v2

)
+ 2x1(x2 + 2)

(
(4− |x|2)v1 + 4x1v2

)}
= 4 · 2x1x2v1 + (x2

2 − x2
1 − 4)v2

(|x|2 + 4x2 + 4)2
.

Substituting these expressions into (3.21) and (3.22), it follows that

(αP )h(x)(Dhx(v)) =
|v|
x2

= (αH)x(v)
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and

(βP )h(x)(Dhx(v)) = 16 · 2x1x2v1 + (x2
2 − x2

1 − 4)v2

(|x|2 + 4x2 + 4)2
· (|x|2 + 4x2 + 4)2

16x2(|x|2 + 4)

=
2x1x2v1 + (x2

2 − x2
1 − 4)v2

x2(|x|2 + 4)
= (βH)x(v),

which concludes the proof.

Remark 3.3.2. (i) For the previous isometries we have that

h−1 = g ◦ f,

i.e., the following diagram is commutative:

(ii) Theorem 3.3.1 is a natural extension of the isometrical equivalence of the Riemannian
hyperbolic model spaces, more precisely, the Beltrami-Klein disk, the usual Poincaré
disk and the Poincaré upper half plane, see Cannon et al. [26, p. 69]. In fact,
the diffeomorphisms f, g and h coincide with the respective isometries between the
Riemannian counterparts of the three models. This is also illustrated by the proofs
of Propositions 3.3.1–3.3.3, where the norms αF , αP , αH and the 1-forms βF , βP , βH
turn out to be the pullbacks of one another by the corresponding isometries.

3.4 Consequences

An important byproduct of the isometry result given in Theorem 3.3.1 is the fact that all
the metric related properties which hold on one particular model can be easily transferred
to the other two manifolds by the appropriate isometry functions.

To give an interesting example, let us consider the first eigenvalue associated to the
Finsler-Laplace operator ∆F on the spaces (D, FF ), (D, FP ) and (H, FH), respectively.

Given a general Finsler manifold (M,F ), the first Dirichlet eigenvalue associated to
−∆F (also called the fundamental frequency) is defined as

λ1,F (M) = inf
u∈H1

0,F (M)\{0}

∫
M
F ∗2(x,Du(x))dvF (x)∫
M
u2(x)dvF (x)

,
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where H1
0,F (M) = W 1,2

0,F (M) is the Sobolev space defined on the manifold (M,F ), see
Section 2.7.

According to Kristály [75, Theorem 1.3], in case of the Finslerian Funk model (D, FF ),
we have that

λ1,FF (D) = 0.

Combining this with the isometries given in Propositions 3.3.1 and 3.3.2, we can prove
the gapless character of the first eigenvalue for the Randers spaces (D, FP ) and (H, FH).

Corollary 3.4.1. In case of the Finsler-Poincaré disk (D, FP ) and the Finsler-Poincaré
upper half plane (H, FH), we have

λ1,FP (D) = λ1,FH (H) = 0.

These assertions are in sharp contrast with the result of McKean [90], which states that
for every complete, n-dimensional, simply connected Riemannian manifold (M, g) having
sectional curvature bounded above by −κ2(κ > 0), one has the following spectral gap:

λ1,g(M) ≥ (n− 1)2

4
κ2.

In particular, in the case of the n-dimensional hyperbolic space (Hn, gh) of constant cur-
vature −κ2(κ > 0), one has

λ1,gh(Hn) =
(n− 1)2

4
κ2,

see Chavel [33, p. 46]. Accordingly, the first Dirichlet eigenvalue of the Beltrami-Klein
disk, the Riemannian Poincaré disk and the hyperbolic upper half plane is precisely 1

4 .
In conclusion, Corollary 3.4.1 provides new examples of simply connected, noncompact

Finsler manifolds having constant negative flag curvature, such that their first Dirichlet
eigenvalue vanishes. Considering the fact that the models in question represent some of the
simplest non-Riemannian Finsler manifolds, these Randers spaces highlight the anisotropic
phenomena that can occur in Finslerian settings.
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Chapter 4

Sobolev-type inequalities without
singular terms

Sobolev-type inequalities − or more generally, functional inequalities − play a crucial role
in the theory of functional analysis, partial differential equations, mathematical physics,
geometric analysis and calculus of variations. Indeed, the modern theory of nonlinear PDEs
and boundary value problems (in short, BVPs) relies heavily on the theory of Sobolev
spaces, since these are the natural function spaces in which one seeks the solution of such
problems. Accordingly, there is a huge body of literature on Sobolev spaces and their
applications; for a comprehensive presentation of the topic see the works of Adams and
Fournier [5], Brezis [22], Evans [47], Maz’ya [89] and references therein.

Within this theory, a prominent class of Sobolev-type inequalities is provided by the
ones defined on curved spaces. The systematic study of such relations originated in the
1970s with the works of Aubin [10, 12] and Cantor [27]. In fact, a particularly important
incentive regarding this direction turned out to be the famous AB-program of Aubin [12],
which had as its objective the determination of the best constants within such Sobolev
inequalities on complete Riemannian manifolds. Since then, the study of functional in-
equalities on non-Euclidean structures has become a very active research area of geometric
analysis.

It turns out that the properties of such inequalities deeply depend on the geometry of
the ambient space, resulting in several surprising phenomena and challenging questions.
Nevertheless, in the case of Riemannian manifolds, the theory of Sobolev spaces has un-
dergone great development since the 1970s; for a comprehensive presentation of this topic,
see Druet and Hebey [42], Hebey [63] and subsequent references. Moreover, the field has
also established the grounds for new, thriving areas of research such as geometric analysis
and optimal transport on general metric measure spaces, see Lott and Villani [85], Sturm
[116, 117] and Villani [121].

Very recently, there has been a growing effort to extend the theory of Sobolev spaces
and functional inequalities to Finsler manifolds, see e.g., Kristály [72], Kristály and Repovš
[80], Ohta [96, 97], Ohta and Sturm [99] and Yuan, Zhao, and Shen [129]. However, due to
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the generally anisotropic nature of the Finsler metric, the adaptation of the standard Rie-
mannian methods to the Finslerian setting requires critical analysis and careful attention,
since several Riemannian objects and properties convert to highly nonlinear phenomena in
the Finslerian framework, sometimes yielding unexpected results.

In this chapter, we first review some fundamental Sobolev inequalities available in the
Euclidean space and on complete Riemannian manifolds. Then, we highlight some gen-
eral, geometric conditions which are sufficient for obtaining compact Sobolev embeddings
on not necessarily compact Riemannian manifolds. Next, we prove the validity of compact
Berestycki-Lions-type embeddings for the full admissible range of Sobolev exponents on
complete noncompact Riemannian manifolds which verify certain curvature restrictions
and a so-called expansion condition. Finally, we consider the case of noncompact Randers
spaces having finite reversibility constant, which turn out to inherit similar embedding
properties as their Riemannian companions. We show the sharpness of the latter embed-
ding results by a counterexample on the Finslerian Funk model. This chapter is based on
Farkas, Kristály, and Mester [1].

4.1 Sobolev embeddings in the Euclidean case: a short
overview

In the case of the Euclidean space Rn, the classical Sobolev inequality was first obtained
by Sobolev [113]. Later, a more straightforward proof was given by Gagliardo [55] and,
independently, by Nirenberg [95].
Theorem 4.1.1. (Gagliardo-Nirenberg-Sobolev inequality) Let n ≥ 2 and 1 ≤ p < n.
Then there exists a constant Cn,p > 0 depending only on n and p such that

(∫
Rn
|u|p∗dx

) 1
p∗

≤ Cn,p
(∫

Rn
|∇u|pdx

) 1
p

, ∀u ∈W 1,p(Rn), (4.1)

where p∗ := np
n−p denotes the critical Sobolev exponent of p.

In particular, inequality (4.1) directly implies the continuous Sobolev embedding

W 1,p(Rn) ↪→ Lp
∗
(Rn),

for any 1 ≤ p < n, which in turn yields the validity of the embeddingsW 1,p(Rn) ↪→ Lq(Rn),
for all q ∈ [p, p∗], see, e.g., Brezis [22, Chapter 9.3].

Another spectrum of the Sobolev inequalities is given by the so-called Morrey inequality,
which originates in the work of Morrey [92] and is directed towards the case p > n.
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Theorem 4.1.2. (Morrey inequality) Let n ≥ 2 and n < p < ∞. Then there exists a
constant Cn,p > 0 depending only on n and p such that for every u ∈W 1,p(Rn), one has

|u(x)− u(y)| ≤ Cn,p|x− y|1−
n
p

(∫
Rn
|∇u|pdx

) 1
p

, a.e. x, y ∈ Rn. (4.2)

In particular, the validity of inequality (4.2) results in the continuous Sobolev embed-
ding

W 1,p(Rn) ↪→ L∞(Rn)

whenever p > n, see Brezis [22, Theorem 9.12].
By complementing the previous embedding results with the limiting case p = n (see

Brezis [22, Corollary 9.11]), one can obtain the full depiction of Sobolev embeddings in Rn

(see Brezis [22, Corollary 9.14]).

Theorem 4.1.3. (Sobolev embedding theorem) Let Ω ⊆ Rn be an open set of class C1

with bounded boundary (n ≥ 2). If the parameters p, q satisfy one of the conditions

(i) 1 ≤ p < n and p ≤ q ≤ p∗;

(ii) p = n and p ≤ q <∞;

(iii) n < p <∞ and q =∞,

then W 1,p(Ω) ↪→ Lq(Ω) with continuous embedding.

Furthermore, in the case when Ω is bounded, most of the previous embeddings turn
out to be compact, in the following sense (see Brezis [22, Theorem 9.16]).

Theorem 4.1.4. (Rellich-Kondrachov theorem) Let Ω ⊂ Rn be bounded and of class C1

where n ≥ 2. If the parameters p, q satisfy one of the conditions

(i) 1 ≤ p < n and 1 ≤ q < p∗;

(ii) p = n and p ≤ q <∞;

(iii) n < p <∞ and q =∞,

then the embedding W 1,p(Ω) ↪→ Lq(Ω) is compact.

The compactness properties of the Sobolev embeddings turn out to be very important
when applying them in the study of elliptic PDEs. Unfortunately, when Ω is unbounded
− even if it has finite volume and smooth boundary − the aforementioned compact injec-
tions usually do not remain true, see, e.g., Adams and Fournier [5, Theorem 4.46]. For
example, in the case when Ω = Rn, the dilation and translation of functions preclude such
compactness results.
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However, certain symmetry conditions may recover compactness. Indeed, in the case
1 ≤ p ≤ n, it can be proved that the embedding W 1,p

rad(Rn) ↪→ Lq(Rn) is compact whenever
p < q < p∗, where

W 1,p
rad(Rn) =

{
u ∈W 1,p(Rn) : u(ξx) = u(x), for all ξ ∈ O(n)

}
stands for the subspace of radially symmetric functions of W 1,p(Rn), O(n) denoting the
orthogonal group of Rn, see Berestycki and Lions [18], Lions [84], Cho and Ozawa [35],
and Ebihara and Schonbek [44]. Furthermore, this compactness result also holds in the
Morrey-Sobolev case, i.e., the embedding W 1,p

rad(Rn) ↪→ L∞(Rn) is compact whenever 2 ≤
n < p < ∞, see Kristály [73]. In the following, these compactness results are referred to
as Berestycki-Lions-type embeddings.

Geometrically, the argument behind the Berestycki-Lions compactness is based on a
careful estimate of the functions at infinity. First, one can observe that the maximal number
of mutually disjoint balls having a fixed radius and centered on the orbit {ξx : ξ ∈ O(n)}
tends to infinity whenever |x| → ∞. This expansiveness property of the balls combined
with the fact that the Lebesgue measure is invariant with respect to translations implies
that the radially symmetric functions rapidly decay to zero at infinity. This aspect is crucial
to recovering compactness of Sobolev embeddings on unbounded domains, see Ebihara
and Schonbek [44], Kristály [73] and Willem [123]. Moreover, this argument is in full
concordance with the initial approach of Strauss [115].

4.2 Geometric conditions for compact embeddings

A natural extension of the Euclidean Sobolev embeddings is given by the Sobolev inequali-
ties on Riemannian manifolds. In this setting, it turns out that the phenomena concerning
Sobolev spaces are much more intricate, and the geometric properties of the ambient space
play a critical role in the validity of certain Sobolev inequalities or embeddings. For a
comprehensive treatment of the subject see the monograph of Hebey [63].

First, as someone may expect, compact Sobolev embeddings do remain valid on com-
pact Riemannian manifolds. Concerning this, below we summarize the following results
from Hebey [63, Theorems 2.6, 2.7 & 2.9].

Theorem 4.2.1. (Sobolev embeddings & Rellich-Kondrachov theorem on compact Rie-
mannian manifolds) Let (M, g) be an n-dimensional compact Riemannian manifold, n ≥ 2.
If the parameters p, q satisfy one of the conditions

(i) 1 ≤ p < n and 1 ≤ q ≤ p∗;

(ii) p = n and 1 ≤ q <∞;

(iii) n < p <∞ and q =∞,
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then the embedding W 1,p
g (M) ↪→ Lq(M) is continuous.

Moreover, the embeddingW 1,p
g (M) ↪→ Lq(M) is compact, with the condition that q 6= p∗

in case (i).

On the other hand, the situation is quite different in the case of noncompact manifolds.
For instance, it can be proved that for any integer n ≥ 2, there exists an n-dimensional
complete, noncompact Riemannian manifold (M, g) − possibly with finite volume − such
that for any p ∈ [1, n), W 1,p

g (M) 6⊂ Lp
∗
(M), which precludes any continuous or compact

embedding, see Hebey [63, Propositions 3.4 & 3.5]. These counterexamples illustrate that
in order to guarantee Sobolev embeddings in the noncompact setting, one needs to make
additional assumptions regarding the geometry of the ambient space, see, e.g., Aubin [12]
and Cantor [27].

It turns out that there are two main classes of complete, noncompact Riemannian
manifolds which support continuous Sobolev embeddings: Cartan-Hadamard manifolds
(or simply, Hadamard manifolds, which are simply connected, complete Riemannian man-
ifolds with nonpositive sectional curvature), and Riemannian manifolds with bounded ge-
ometry (i.e., complete noncompact Riemannian manifolds with Ricci curvature bounded
from below and positive injectivity radius).

In the case of Hadamard manifolds, one has the following Sobolev-type inequalities,
see Hebey [63, Lemma 8.1 & Theorem 8.3].

Theorem 4.2.2. (Sobolev embeddings on Cartan-Hadamard manifolds) Let (M, g) be an
n-dimensional Cartan-Hadamard manifold with n ≥ 2. If the parameters p, q satisfy one
of the conditions

(i) 1 ≤ p < n and q = p∗;

(ii) n < p <∞ and q =∞,

then there exists a constant Cn,p > 0 depending only on n and p such that

‖u‖Lq(M) ≤ Cn,p‖∇gu‖Lp(M), for all u ∈W 1,p
g (M). (4.3)

In particular, the continuous embedding W 1,p
g (M) ↪→ Lq(M) holds.

In case (i), the sharp form of the Sobolev inequality (4.3) is also available whenever
the so-called Cartan-Hadamard conjecture holds, see Muratori and Soave [93]. In this case,
the best constant in (4.3) is exactly the optimal Euclidean constant of (4.1) obtained by
Talenti [118]. The Cartan-Hadamard conjecture represents the isoperimetric inequality on
Hadamard manifolds, with the optimal Euclidean isoperimetric constant; currently, the
conjecture is proved in dimensions n = 2, 3, 4, see Weil [122], Kleiner [66] and Croke [37],
and is an open question for n ≥ 5. Regarding case (ii), sharp Morrey-Sobolev inequali-
ties can also be proved on Cartan-Hadamard manifolds whenever the Cartan-Hadamard
conjecture is true, see Kristály [77].
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On Riemannian manifolds with bounded geometry the following embedding results
hold, see Hebey [63, Proposition 3.6 & Theorem 3.4].

Theorem 4.2.3. (Sobolev embeddings on Riemannian manifolds with bounded geome-
try) Let (M, g) be an n-dimensional Riemannian manifold with bounded geometry. If the
parameters p, q satisfy one of the conditions

(i) 1 ≤ p < n and q = p∗;

(ii) n < p <∞ and q =∞,

then W 1,p
g (M) ↪→ Lq(M) with continuous embedding.

This bounded geometry condition can be slightly relaxed by assuming the existence of
a lower bound for the volume of small balls, which is uniform with respect to their center,
see Varopoulos [120]. Regarding this direction, Balogh and Kristály [14] obtained sharp
Sobolev inequalities in case (i) on complete Riemannian manifolds having nonnegative
Ricci curvature and so-called Euclidean volume growth, while Kristály, Mester, and Mezei
[78] studied sharp Morrey-type inequalities in case (ii) in such geometric settings.

Concerning compact embeddings for radially symmetric functions, Hebey and Vaugon
[64] established Berestycki-Lions-type results on complete Riemannian manifolds, assuming
several geometric conditions regarding the ambient space and its isometry subgroup in
question (see also Hebey [63, Theorems 9.5 & 9.6]). In order to sketch these results, let
(M, g) be a complete n-dimensional Riemannian manifold, and let Isomg(M) denote the
isometry group of the manifold (M, g). Note that Isomg(M) is a Lie group with respect to
the compact open topology and it acts differentiably on M , see Myers and Steenrod [94].
Suppose thatG is a compact subgroup of Isomg(M). For any x ∈M , letOxG = {ξx : ξ ∈ G}
denote the G-orbit of the point x, where ξx := ξ(x) denotes the action of the element ξ ∈ G
on x. Then, under certain assumptions on the geometry of (M, g) and on the G-orbits of
M , it can be proved that the embedding W 1,p

G (M) ↪→ Lq(M) is compact for a suitable
range of the parameters p, q which depends on the orbits of G. Here, W 1,p

G (M) denotes
the set of G-invariant functions of W 1,p

g (M), i.e.,

W 1,p
G (M) =

{
u ∈W 1,p

g (M) : u ◦ ξ = u for all ξ ∈ G
}
,

which turns out to be a closed subspace of W 1,p
g (M), since G is a compact subgroup of

Isomg(M).
Skrzypczak and Tintarev [111] identified more general geometric conditions that are

behind the compactness of the Sobolev embeddings of type W 1,p
G (M) ↪→ Lq(M) in the

case when 1 < p < n, n being the dimension of M (see also Tintarev [119]). Namely,
they introduce the notion of coercive group action, and show that the coerciveness of
the subgroup G provides a sufficient (and, under certain geometric assumptions on the
underlying manifold, even necessary) condition for compactness.
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A continuous action of a group G on a complete Riemannian manifold (M, g) is coercive
(see Skrzypczak and Tintarev [111, Definition 1.2] or Tintarev [119, Definition 7.10.8]), if
for every t > 0, the set

Ot := {x ∈M : diamOxG ≤ t}

is bounded, see Figure 4.1

(a) The action of SO(3) in R3

is coercive
(b) The planar rotation action of SO(2) in R3 is

not coercive

Figure 4.1: Examples of coercive and non-coercive group actions in the
Euclidean space (R3, e)

On the one hand, if (M, g) is an n-dimensional Riemannian manifold with bounded
geometry, and G is a compact connected subgroup of Isomg(M), the coercive property of
G turns out to be equivalent with the compactness of the embeddings W 1,p

G (M) ↪→ Lq(M)

when 1 < p < n and p < q < p∗, see Tintarev [119, Theorem 7.10.12].
On the other hand, if (M, g) is an n-dimensional Cartan-Hadamard manifold, the

situation is slightly more nuanced. Again, let G be a compact connected subgroup of
Isomg(M) such that FixM(G) 6= ∅, where

FixM (G) = {x ∈M : ξx = x for all ξ ∈ G}

denotes the fixed point set of the subgroup G on M . Skrzypczak and Tintarev prove that
the coerciveness of G is equivalent with the fact that the set FixM(G) contains a single
point of M , see Skrzypczak and Tintarev [111, Proposition 3.1]. Then, from one of these
conditions they conclude the compactness of the embeddingsW 1,p

G (M) ↪→ Lq(M) for every
1 < p < n and p < q < p∗.

In the light of these works, the purpose of the present chapter is twofold. First, we
state the compact Sobolev embeddings of type W 1,p

G (M) ↪→ Lq(M) for the full admissible
range of parameters, giving the Morrey counterpart (i.e., n < p <∞) of the Sobolev case
1 < p < n described above. Secondly, we provide an alternative characterization of the
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coerciveness condition described by Skrzypczak and Tintarev, by studying the expansion of
geodesic balls. This provides a more intuitive description of the geometric phenomena that
allow Berestycki-Lions-type compactness; in addition, it connects the coercive property
to the original approach of Strauss [115]. We distinguish two cases depending on the
curvature of the ambient space, i.e., when (M, g) is a Hadamard manifold, or a Riemannian
manifold with bounded geometry. Finally, we generalize the obtained compactness results
to noncompact Randers spaces.

In order to present our results, let us introduce the following definitions. Given n ∈ N
with n ≥ 2, we say that (p, q) ∈ (1,∞) × (1,∞] is an n-admissible pair whenever one of
the following conditions holds:

(S): 1 < p < n and p < q < p∗ = np
n−p (Sobolev case);

(MT): p = n and p < q <∞ (Moser-Trudinger case);

(M): n < p <∞ and q =∞ (Morrey case).
Let (M, g) be a complete n-dimensional Riemannian manifold, G a compact connected

subgroup of Isomg(M), and x ∈ M a point on M . We denote by m(x, ρ) the maximal
number of mutually disjoint geodesic balls with radius ρ on the orbit OxG, i.e.,

m(x, ρ) = sup {k ∈ N : ∃ξ1, . . . , ξk ∈ G such that Bg(ξix, ρ) ∩Bg(ξjx, ρ) = ∅, ∀i 6= j} ,
(4.4)

where Bg(y, ρ) = {z ∈M : dg(y, z) < ρ} is the usual geodesic ball inM and dg : M×M →
[0,∞) is the distance function induced by the Riemannian metric g.

For ρ > 0 and x0 ∈M fixed, we introduce the following expansion condition:

(EC)G m(x, ρ)→∞ as dg(x0, x)→∞.

Clearly, condition (EC)G is independent of the choice of x0.
By using the above expansion condition, we are able to give a characterization of the

coercive action of the subgroup G.

4.3 Compact Sobolev embeddings on Hadamard manifolds

This section presents compact embeddings of isometry-invariant Sobolev functions on
Hadamard manifolds. In order to do this, let C (M) be the space of continuous func-
tions u : M → [0,∞) having compact support D ⊂M , where D is smooth enough, u is of
class C2 in D and has only non-degenerate critical points in D. Based on classical Morse
theory and density arguments, in this chapter we shall consider test functions u ∈ C (M)

in order to handle Sobolev inequalities.
Let u ∈ C (M) and Ω ⊂ supp(u) ⊂ M be an open set. Similarly to Druet, Hebey,

and Vaugon [43], we may associate to the restriction of u to Ω, namely u|Ω, its Euclidean
rearrangement function

u∗ : Be(0, RΩ) ⊂ Rn → [0,∞),
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where Be(0, RΩ) denotes the Euclidean open geodesic ball with center in the origin and
radius RΩ. The function u∗ is radially symmetric, non-increasing in |x|, and for every
t ≥ infΩ u is defined by

Vole({x ∈ Be(0, RΩ) : u∗(x) > t}) = Volg({x ∈ Ω : u(x) > t}). (4.5)

Here, Vole denotes the usual n-dimensional Euclidean volume and RΩ > 0 is chosen such
that Volg(Ω) = Vole(Be(0, RΩ)) = ωnR

n
Ω.

The following rearrangement properties are crucial in our further arguments.

Lemma 4.3.1. Let (M, g) be an n(≥ 2)-dimensional Hadamard manifold. Let u ∈ C (M)

be a nonzero function, Ω ⊂ supp(u) ⊂ M be an open set, and u∗ : Be(0, RΩ) → [0,∞) its
Euclidean rearrangement function. Then the following properties hold:

(i) Volume-preservation: Volg(supp(u)) = Vole(supp(u∗));

(ii) Cavalieri principle: for every q ∈ (0,∞], ‖u‖Lq(Ω) = ‖u∗‖Lq(Be(0,RΩ));

(iii) Pólya-Szegő inequality: for every p > 1, we have

‖∇gu‖Lp(Ω) ≥
C(n)

nω
1
n
n

‖∇u∗‖Lp(Be(0,RΩ)), (4.6)

where C(n) > 0 is the Croke-constant (see Croke [37]), i.e., C(2) = 1 and

C(n) = (nωn)1− 1
n

(
(n− 1)ωn−1

∫ π
2

0
cos

n
n−2 (t) sinn−2(t) dt

) 2
n
−1

, when n ≥ 3.

Note that C(n) ≤ nω
1
n
n for every n ≥ 3, while equality holds if and only if n = 4.

The proof of the above lemma relies on suitable application of the co-area formula
combined with the weak form of the isoperimetric inequality on Hadamard manifolds (for
a similar proof, see Druet, Hebey, and Vaugon [43], and Kristály [77]).

Next, we prove the following Rellich-Kondrachov-type embedding, which is an expected
result based on Aubin [11, Chapter 2]:

Lemma 4.3.2. Let (M, g) be a complete n-dimensional Riemannian manifold. If R > 0,
then the embedding W 1,p

g (Bg(y,R)) ↪→ Lq(Bg(y,R)) is compact for every y ∈M and every
n-admissible pair (p, q).

Proof. Since Bg(y,R) ⊂ M is compact (due to the Hopf-Rinow theorem), the Ricci cur-
vature is bounded from below (see Bishop and Crittenden [19, p. 166]) and the injectivity
radius is positive on Bg(y,R) (see Klingenberg [67, Proposition 2.1.10] or Bao, Chern, and
Shen [15, Chapter 8]).
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Thus, we are in the position to use Hebey [63, Theorem 1.2]. Accordingly, for every
ε > 0 there exists a harmonic radius rH > 0, such that for every z ∈ Bg(y,R) one can find
a harmonic coordinate chart ϕz : Bg(z, rH)→ Rn such that ϕz(z) = 0 and the components
(gjl) of g in this chart satisfy

1

1 + ε
δjl ≤ gjl ≤ (1 + ε)δjl

as bilinear forms. Therefore, it follows that

1√
1 + ε

dg(z, x) ≤ |ϕz(x)| ≤
√

1 + εdg(z, x), for all x ∈ Bg(z, rH). (4.7)

Now let 0 < ρ < rH . Since Bg(y,R) is compact, there exists L ∈ N and z1, . . . , zL ∈

Bg(y,R) such that Bg(y,R) ⊆
L⋃
j=1

Bg(zj , ρ). For every zj ∈ Bg(y,R), j = 1, L, denote by

Uzj := Bg(zj , ρ) ∩Bg(y,R) and Ωzj := ϕzj
(
Uzj
)
⊂ Rn,

thus
{
Uzj
}
j=1,L

is a finite covering of Bg(y,R).

First observe that for any j ∈ {1, . . . , L} and u ∈W 1,p
g (Bg(y,R)), on account of (4.7),

we have that∫
Uzj

|∇gu|p + |u|pdvg ≥
(

1√
1 + ε

)n+p
(∫

Ωzj

|∇(u ◦ ϕ−1
zj )|p + |u ◦ ϕ−1

zj |
pdx

)
. (4.8)

We first focus on the (S) admissible case. Observe that∫
Uzj

|u|qdvg ≤ (1 + ε)
n
2

∫
Ωzj

|u ◦ ϕ−1
zj |

qdx. (4.9)

Now, by the Euclidean continuous Sobolev embedding (see Theorem 4.1.3), for every
j ∈ {1, . . . , L} there exists a constant CS,j such that

(∫
Ωzj

|u ◦ ϕ−1
zj |

qdx

) 1
q

≤ CS,j

(∫
Ωzj

|∇(u ◦ ϕ−1
zj )|p + |u ◦ ϕ−1

zj |
pdx

) 1
p

. (4.10)
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Therefore, by (4.8), (4.9) and (4.10) we have that

‖u‖Lq(Bg(y,R)) ≤
L∑
j=1

‖u‖Lq(Uzj ) ≤ (1 + ε)
n
2q

L∑
j=1

‖u ◦ ϕ−1
zj ‖Lq(Ωzj )

≤ (1 + ε)
n
2q

L∑
j=1

CS,j‖u ◦ ϕ−1
zj ‖W 1,p(Ωzj )

≤ (1 + ε)
np+nq+pq

2pq

L∑
j=1

CS,j‖u‖W 1,p
g (Uzj )

≤ (1 + ε)
np+nq+pq

2pq

L∑
j=1

CS,j · ‖u‖W 1,p
g (Bg(y,R))

,

which proves the validity of the continuous Sobolev embedding

W 1,p
g (Bg(y,R)) ↪→ Lq(Bg(y,R))

in the case (S). Now we prove that the previous embedding is compact. To do this,
let (uk)k∈N be a bounded sequence in W 1,p

g (Bg(y,R)), and denote ujk = uk|Uzj for every
j ∈ {1, . . . , L}. Using (4.8), we have that for every j = 1, L, the sequence ũjk = uk ◦ ϕ−1

zj

is bounded in W 1,p(Ωzj ). By the Rellich-Kondrachov theorem one gets that there exists a
subsequence of (ũjk)k which is a Cauchy sequence in Lq(Ωzj ). Let (um)m be a subsequence
of (uk)k such that for any j = 1, L, (ũjm)m is a Cauchy sequence in Lq(Ωzj ). Thus, applying
(4.9), for any m1,m2 we obtain that

‖um1 − um2‖Lq(Bg(y,R)) ≤
L∑
j=1

‖ujm1
− ujm2

‖Lq(Uzj ) ≤ (1 + ε)
n
2q

L∑
j=1

‖ũjm1
− ũjm2

‖Lq(Ωzj ),

hence (um)m is a Cauchy sequence in Lq(Bg(y,R)), which proves the claim.
The (MT) admissible case can be proved analogously, replacing (4.10) with the Eu-

clidean Sobolev embedding when p = n (see Theorem 4.1.3).
Finally, in the (M) case, we have that

sup
x∈Bg(y,R)

|u(x)| = max
j=1,L

‖u‖C0(Uzj ) = max
j=1,L

‖u ◦ ϕ−1
zj ‖C0(Ωzj ). (4.11)

Again, by Theorem 4.1.3, for each j ∈ {1, . . . , L} there exists a constant C0,j such that

‖u ◦ ϕ−1
zj ‖C0(Ωzj ) ≤ C0,j · ‖u ◦ ϕ−1

zj ‖W 1,p(Ωzj ),
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thus this inequality together with (4.8) and (4.11) yields that

sup
x∈Bg(y,R)

|u(x)| ≤ max
j=1,L

C0,j‖u ◦ ϕ−1
zj ‖W 1,p(Ωzj )

≤ max
j=1,L

C0,j(1 + ε)
n+p
2p ‖u‖

W 1,p
g (Uzj )

≤ max
j=1,L

C0,j · (1 + ε)
n+p
2p ‖u‖

W 1,p
g (Bg(y,R))

, (4.12)

which proves again that the continuous embedding holds. Now we prove that this injection
is compact. To do this, consider a bounded set A ⊂ W 1,p

g (Bg(y,R)) , i.e., there exists
M > 0 such that ‖u‖p

W 1,p
g (Bg(y,R))

≤ M for all u ∈ A. Hence, by using (4.12), it follows
that there exists C2 > 0 such that ‖u‖

C0(Bg(y,R))
≤ MC2 for all u ∈ A. Thus by the

Arzelà-Ascoli theorem (see Aubin [12, Theorem 3.15]), we get that A is precompact in
C0(Bg(y,R)), which concludes the proof.

Now we are in the position to prove the following compact embedding result on Cartan-
Hadamard manifolds:

Theorem 4.3.3. Let (M, g) be an n-dimensional Hadamard manifold, and let G be a
compact connected subgroup of Isomg(M) such that FixM(G) 6= ∅. Then the following
statements are equivalent:

(i) G is coercive;

(ii) FixM (G) is a singleton;

(iii) (EC)G holds.

Moreover, from any of the above statements it follows that the embedding W 1,p
G (M) ↪→

Lq(M) is compact for every n-admissible pair (p, q).

Note that the equivalence between (i) and (ii) in Theorem 4.3.3 is proved by Skrzypczak
and Tintarev [111, Proposition 3.1], from which they conclude the compactness of the
embedding W 1,p

G (M) ↪→ Lq(M) for the admissible case (S); for a similar result in the case
(MT), see Kristály [76]. Accordingly, the purpose of Theorem 4.3.3 is to characterize
the coerciveness of G by the expansion condition (EC)G, as well as to complement the
admissible range of parameters with the Morrey case (M).

Proof of Theorem 4.3.3. (i)⇐⇒ (ii) This equivalence can be found in Skrzypczak and
Tintarev [111, Proposition 3.1].

(ii) =⇒ (iii) Let FixM (G) = {x0}, x0 ∈M . Without loss of any generality, it is enough
to prove that m(γ(t), ρ) → ∞ as t → ∞ for every unit speed geodesic γ : [0,∞) → M

emanating from x0 = γ(0), i.e., γ(t) = expx0
(ty) for some y ∈ Tx0M with |y|gx0

= 1, where
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gx0 and | · |gx0
denote the inner product and norm on Tx0M induced by the Riemannian

metric g.
We notice that Oγ(t)

G contains infinitely many elements for every t > 0. Indeed, Oγ(t)
G

is a connected submanifold of M whose dimension is at least 1; if its dimension would be
0 for some t0 > 0, by connectedness, Oγ(t0)

G would be a singleton, i.e.,

γ(t0) ∈ FixM (G) = {x0} = {γ(0)},

which is a contradiction. Therefore, cardOγ(t)
G = +∞ for every t > 0.

If for a fixed t0 > 0, we choose different elements ξi ∈ G, i ∈ N such that ξiγ(t0) ∈
Oγ(t0)
G , then we also have (ξi ◦ γ)(t) = ξiγ(t) ∈ Oγ(t)

G for every i ∈ N and t > 0; the
latter statement immediately follows from the fact that ξi ∈ G, i ∈ N are isometries, thus
t 7→ (ξi ◦ γ)(t) are also geodesics of unit speed emanating from x0.

Let us transplant the geodesic balls Bg(ξiγ(t), ρ) ⊂ M , i ∈ N, into the tangent space
Tx0M by the exponential map expx0

, i.e., exp−1
x0

(Bg(ξiγ(t), ρ)) ⊂ Tx0M , i ∈ N.
We claim that

exp−1
x0

(Bg(ξiγ(t), ρ)) ⊂ Bx0
ρ (exp−1

x0
(ξiγ(t))) =: Bt

i(ρ), i ∈ N, (4.13)

where Bx0
ρ (v) = {z ∈ Tx0M : |v − z|gx0

< ρ} ⊂ Tx0M for any v ∈ Tx0M. To see this,
let i ∈ N and t ∈ [0,∞) be arbitrarily fixed. Take an element z ∈ exp−1

x0
(Bg(ξiγ(t), ρ)),

thus z̃ := expx0
(z) ∈ Bg(ξiγ(t), ρ). If z = exp−1

x0
(ξiγ(t)), we have nothing to prove.

Otherwise, consider the geodesic triangle uniquely determined by the points x0, ξiγ(t) and
z̃, respectively. Since (M, g) is a Hadamard manifold, the Rauch comparison principle (see
e.g. do Carmo [30, Proposition 2.5, p. 218]) implies that

| exp−1
x0

(ξiγ(t))− z|gx0
= | exp−1

x0
(ξiγ(t))− exp−1

x0
(z̃)|gx0

≤ dg(ξiγ(t), z̃) < ρ,

which concludes the proof of (4.13). Since the geodesics ξi ◦ γ are mutually different for
any i ∈ N, the angle between any two vectors exp−1

x0
(ξiγ(t)) ⊂ Tx0M is positive and it does

not depend on the value of t > 0. Let αij ∈ (0, π] be the angle between vi := exp−1
x0

(ξiγ(t))

and vj := exp−1
x0

(ξjγ(t)), i 6= j.
Geometrically, the semilines τ 7→ τvi ⊂ Tx0M , τ > 0, move away in Tx0M from each

other, independently of t > 0. Accordingly, it turns out that larger values of t > 0 imply
more mutually disjoint balls of the form Bt

i(ρ). More precisely, if we define

m̃(t, ρ) = sup
{
k ∈ N : Bt

i(ρ) ∩Bt
j(ρ) = ∅,∀i 6= j with i, j ∈ {1, . . . , k}

}
,
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we claim that m̃(t, ρ)→∞ as t→∞. To prove this, for every k ≥ 2, let

tk := max

{
ρ

sin
(αij

2

) : i, j ∈ {1, . . . , k}, i 6= j

}
.

Let t1 = 0. By the latter definition, it turns out that m̃(t, ρ) ≥ k whenever t ≥ tk. Let us
observe that the sequence (tk)k is nondecreasing and lim

k→∞
tk = +∞. The former statement

is trivial, while the limit follows from the fact that the sequence of wi := vi
|vi|gx0

, i ∈ N
(belonging to the unit sphere of Tx0M with center 0 ∈ Tx0M) has a convergent subsequence,
say (wil)l; in particular, the sequence of angles (αilil+1

)l converges to 0, which implies the
validity of the required limit.

Now, let (tkl)l be a strictly increasing subsequence of (tk)k with tk1 = t1 = 0, and let
f : [0,∞)→ [0,∞) be defined by

f(s) = tkl + (s− l)(tkl+1
− tkl),

for every s ∈ [l, l+1), l ∈ N. It is clear that f is strictly increasing and lim
s→∞

f−1(s) = +∞.
By the above construction, for every t > 0, there exists a unique l ∈ N such that tkl ≤ t <
tkl+1

.
In particular, it follows that l = f−1(tkl) ≤ f−1(t) < f−1(tkl+1

) = l + 1, thus

f−1(t)− 1 < l ≤ kl ≤ m̃(t, ρ).

The above relation immediately implies that m̃(t, ρ)→∞ as t→∞.
On the other hand, by (4.13) and the fact that expx0

is a diffeomorphism, it turns out
that

Bg(ξiγ(t), ρ) ∩Bg(ξjγ(t), ρ) = ∅, ∀i 6= j with i, j ∈ {1, . . . , m̃(t, ρ)}.

Therefore, we have that
m(γ(t), ρ) ≥ m̃(t, ρ), (4.14)

and the aforementioned limit concludes the proof.
(iii) =⇒ (ii) Let us assume that the set FixG(M) is not a singleton, i.e., there exists

x0, x1 ∈ FixG(M) such that δ := dg(x0, x1) > 0. Since M is a Hadamard manifold, there
exists a unique minimal geodesic γ : R → M , parametrized by arc-length, and passing
through the points x0 and x1. Let x2 ∈ Imγ \ {x0} be such that dg(x1, x2) = δ and
t0 < t1 < t2 with xi = γ(ti), i ∈ {0, 1, 2}. Fix an arbitrary element ξ ∈ G; in particular,
t 7→ γ̃(t) := (ξ ◦ γ)(t) is also a geodesic.

It is clear that γ̃(t2) = ξx2 and due to the fact that x0, x1 ∈ FixG(M), it turns out
that γ̃(ti) = ξxi = xi, i ∈ {0, 1}. Therefore, by the uniqueness of the geodesic between
x0 and x1, it follows that γ̃(t) = γ(t) for every t ∈ [t0, t1]. Since Riemannian manifolds
are non-branching spaces, it follows in fact that γ̃ ≡ γ, thus ξx2 = x2; since ξ ∈ G was
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arbitrary, we obtain that x2 ∈ FixG(M) and dg(x0, x2) = dg(x0, x1) + dg(x1, x2) = 2δ.
By repeating this argument, one can construct a sequence of points (xn)n ⊂M such that
xn ∈ FixG(M) and dg(x0, xn) = nδ, n ∈ N. In particular, dg(x0, xn)→∞ as n→∞ and,
since xn ∈ FixG(M) for every n ∈ N, it follows that m(xn, ρ) = 1, which is a contradiction.

(iii) =⇒ compact embeddings. Based on the equivalence (ii) ⇐⇒ (iii) proved above,
the compactness of the embeddings W 1,p

G (M) ↪→ Lq(M) in the admissible cases (S) and
(MT) follow by Skrzypczak and Tintarev [111]. It remains to consider the admissible case
(M), i.e., to prove the compactness of W 1,p

G (M) ↪→ L∞(M) whenever n < p <∞.
To achieve this, we first claim that for every ρ > 0 fixed, one has

inf
y∈M

S(y, ρ)−1 > 0, (4.15)

where for every y ∈ M arbitrarily fixed, S(y, ρ) is the embedding constant defined by the
embedding

W 1,p
g (Bg(y, ρ)) ↪→ C0(Bg(y, ρ)),

i.e.,

S(y, ρ)−1 = inf
u∈W 1,p

g (Bg(y,ρ))\{0}

(∫
Bg(y,ρ)

|∇gu|pdvg +

∫
Bg(y,ρ)

|u|pdvg

) 1
p

sup
x∈Bg(y,ρ)

|u(x)|
, (4.16)

see Lemma 4.3.2. Clearly, we have S(y, ρ) > 0. To prove (4.15), for y ∈ M arbitrarily
fixed, let u ∈W 1,p

g (Bg(y, ρ))\{0} be a nonnegative function. By Lemma 4.3.1/(iii) it turns
out that (∫

Bg(y,ρ)
|∇gu|p dvg

) 1
p

≥ C(n)

nω
1
n
n

(∫
Be(0,ρ̃y)

|∇u∗|p dx

) 1
p

,

where u∗ : Be(0, ρ̃y)→ [0,∞) denotes the Euclidean rearrangement of u; in particular, we
have

Volg(Bg(y, ρ)) = Vole(Be(0, ρ̃y)) = ωn · ρ̃ny (4.17)

and
sup

x∈Bg(y,ρ)

|u(x)| = sup
x∈Be(0,ρ̃y)

|u∗(x)| = u∗(0).

On the other hand, by the Bishop-Gromov-type comparison principle (see Theorem 2.8.3)
together with (4.17), one can see that ρ ≤ ρ̃y. Therefore, Be(0, ρ) ⊆ Be(0, ρ̃y) and
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W 1,p(Be(0, ρ̃y)) ⊆W 1,p(Be(0, ρ)). Accordingly,

S(y, ρ)−1 = inf
u∈W 1,p

g (Bg(y,ρ))\{0}

(∫
Bg(y,ρ)

|∇gu|pdvg +

∫
Bg(y,ρ)

|u|pdvg

) 1
p

sup
x∈Bg(y,ρ)

|u(x)|

≥C(n)

nω
1
n
n

inf
u∗∈W 1,p(Be(0,ρ̃y))\{0}

(∫
Be(0,ρ̃y)

|∇u∗|pdx+

∫
Be(0,ρ̃y)

|u∗|pdx

) 1
p

sup
x∈Be(0,ρ̃y)

|u∗(x)|

≥ C(n)

nω
1
n
n

inf
u∗∈W 1,p(Be(0,ρ))\{0}

‖u∗‖W 1,p(Be(0,ρ))

u∗(0)

=
C(n)

nω
1
n
n

inf
u∗∈W 1,p(Be(0,ρ))\{0}

‖u∗‖W 1,p(Be(0,ρ))

sup
x∈Be(0,ρ)

|u∗(x)|
> 0.

Since the last expression does not depend on y ∈M , we conclude the proof of (4.15).
Now, let (uk)k∈N ⊂W 1,p

G (M) be a bounded sequence and ρ > 0 be an arbitrarily fixed
number. Then, up to a subsequence, uk ⇀ u in W 1,p

G (M). Since G is a subgroup of
Isomg(M), for every ξ1, ξ2 ∈ G, by a change of variables, one has

‖uk − u‖W 1,p
g (Bg(ξ1y,ρ))

= ‖uk − u‖W 1,p
g (Bg(ξ2y,ρ))

.

Therefore, on account of the definition of m(y, ρ) (see (4.4)), we have that

‖uk − u‖W 1,p
g (Bg(y,ρ))

≤
‖uk − u‖W 1,p

g (M)

m(y, ρ)
.

By using Lemma 4.3.2 and the latter inequality, we obtain

‖uk−u‖C0(Bg(y,ρ))
≤ S(y, ρ)

m(y, ρ)
‖uk−u‖W 1,p

g (M)
≤ S(y, ρ)

m(y, ρ)

(
sup
k∈N
‖uk‖W 1,p

g (M)
+ ‖u‖

W 1,p
g (M)

)
.

According to (iii) and relation (4.15) we have that

lim
dg(x0,y)→∞

S(y, ρ)

m(y, ρ)
= 0,

thus for every ε > 0 there exists Rε > 0 such that

sup
dg(x0,y)≥Rε

‖uk − u‖C0(Bg(y,ρ)) < ε, for every k ∈ N.

On the other hand, uk ⇀ u in W 1,p
G (M), thus by the Rellich-Kondrachov-type result (see
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Lemma 4.3.2) it follows that uk → u in C0
(
Bg(y,Rε)

)
, hence there exists kε ∈ N such

that
‖uk − u‖C0(Bg(y,Rε)) < ε, for all k ≥ kε.

The previous two inequalities yield that uk → u in L∞(M), which concludes the proof.

Remark 4.3.1. (i) The quantity m(x, ρ) from definition (4.4) can be easily estimated
on nonpositively curved space forms. Indeed, for instance, if n = 2 and G = O(2),
x0 = 0, then for ρ > 0 small enough, one has m(x, ρ) ∼ π|x|

ρ as |x| → ∞ in the

Euclidean case R2, and m(x, ρ) ∼ π
ρ
|x|

1−|x|2 as |x| → 1 in the Riemannian Poincaré
disk D = {x ∈ R2 : |x| < 1} with constant sectional curvature −1, see Section 3.2.2.

(ii) Relation (4.14) can be viewed as a comparison of the maximal number of mutually
disjoint geodesic balls with radius ρ on (M, g) and on the Euclidean space (Rn, e),
respectively. In fact, m̃(t, ρ) is related to the particular inner product given by gx0 ,
which is equivalent to the usual Euclidean metric e. This comparison result can
be efficiently applied for every Hadamard manifold. In particular, in the usual n-
dimensional Euclidean space, a simple covering argument shows that

m̃(t, ρ) = ω
(
V −1

cap(2ρ/t)
)

as t→∞, 1

where Vcap(r) denotes the area of the spherical cap of radius r > 0 on the unit
(n− 1)-dimensional sphere. For instance, when n = 3, we have

m̃(t, ρ) = ω
(
sin−2(ρ/t)

)
as t→∞.

4.4 Compact Sobolev embeddings on Riemannian manifolds
with bounded geometry

This section provides the counterpart of Theorem 4.3.3 in the case of Riemannian manifolds
with bounded geometry:

Theorem 4.4.1. Let (M, g) be an n-dimensional Riemannian manifold with bounded ge-
ometry, and let G be a compact connected subgroup of Isomg(M). Then the following
statements are equivalent:

(i) G is coercive;

(ii) (EC)G holds;

(iii) the embedding W 1,p
G (M) ↪→ Lq(M) is compact for every n-admissible pair (p, q);

(iv) the embedding W 1,p
G (M) ↪→ Lq(M) is compact for some n-admissible pair (p, q).

1f(t) = ω(g(t)) as t→∞ if there exist c, δ > 0 such that |f(t)| ≥ c|g(t)| for every t > δ.
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In Theorem 4.4.1, the equivalence between condition (i) and the compactness of the
embedding W 1,p

G (M) ↪→ Lq(M) for every n-admissible pair (p, q) in the case (S) is well-
known by Tintarev [119, Theorem 7.10.12]; in addition, Górka [59] and Gaczkowski, Górka,
and Pons [54] proved that a slightly stronger form of (EC)G implies (iii) in the admissible
case (S) by using a Strauss-type argument. Thus, the novelty of Theorem 4.4.1 is the
equivalence of the expansion condition (EC)G not only with the coerciveness of G but also
with the validity of the compact embeddings in the full range of n-admissible pairs (p, q).

Proof of Theorem 4.4.1. (i) =⇒ (ii) Let us assume by contradiction that (EC)G fails, i.e.,
there exist K ∈ N and a sequence (xk)k∈N ⊂M such that

m(xk, ρ) ≤ K for every k ∈ N and dg(x0, xk)→∞ as k →∞.

We are going to prove that xk ∈ O4(K+1)ρ for every k ∈ N, which will imply in particular
that O4(K+1)ρ is unbounded, contrary to our assumption. We recall that Ot = {x ∈ M :

diamOxG ≤ t}, t > 0.
In order to prove the claim, it suffices to show that diamOxkG ≤ 4(K+1)ρ for every k ∈

N. To do this, let k ∈ N be fixed and mk := m(xk, ρ) ≤ K. By the definition of m(xk, ρ),
there exist ξi := ξki ∈ G, i ∈ {1, ...,mk}, such that Bg(ξixk, ρ) ∩ Bg(ξjxk, ρ) = ∅,∀ i 6= j,
i, j ∈ {1, ...,mk}, and the number mk ∈ N is maximal with this property.

If we pick an arbitrary element ξ ∈ G, it follows that there exists i ∈ {1, ...,mk}
such that dg(ξxk, ξixk) < 2ρ. If this is not the case, i.e., dg(ξxk, ξixk) ≥ 2ρ for every
i ∈ {1, ...,mk}, it follows that Bg(ξxk, ρ) ∩ Bg(ξixk, ρ) = ∅,∀i ∈ {1, ...,mk}, i.e., one can
find one more element ξmk+1 ∈ G with the disjointedness property, i.e., Bg(ξixk, ρ) ∩
Bg(ξjxk, ρ) = ∅,∀ i 6= j, i, j ∈ {1, ...,mk + 1}, which contradicts the maximality of mk =

m(xk, ρ). Accordingly,

diamOxkG ≤ 4ρ+ diam{ξixk : i ∈ {1, ...,mk}}.

We claim that {ξixk : i ∈ {1, ...,mk}} ⊂ Bg(ξ1xk, 2mkρ); clearly, we may put any
element ξi ∈ G, i ∈ {1, ...,mk} instead of ξ1 ∈ G in the right hand side of the above
inclusion. We observe that for mk = 1 the claim trivially holds. Thus, let mk ≥ 2. Assume
the contrary, i.e., there exists i0 ∈ {2, ...,mk} such that ξi0xk /∈ Bg(ξ1xk, 2mkρ), that is

dg(ξi0xk, ξ1xk) ≥ 2mkρ.

We now fix a geodesic segment γ̃ : [0, 1] 7→ OxkG joining the points ξ1xk ∈ OxkG and
ξi0xk ∈ O

xk
G ; this can be done due to the fact that OxkG is a complete connected submanifold

of (M, g) (as a closed submanifold of the complete Riemannian manifold (M, g)), see do
Carmo [30, Corollary 2.10, p. 149]). Since dg(γ̃(0), γ̃(1)) = dg(ξ1xk, ξi0xk) ≥ 2mkρ, by a
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continuity reason, we may fix 0 < t1 < ... < tmk−1 < 1 such that

dg(ξ1xk, γ̃(tj)) = 2jρ for every j ∈ {1, ...,mk − 1}.

This particular choice clearly shows that Bg(γ̃(tj), ρ) are situated in some concentric annuli
with the same width; more precisely,

Bg(γ̃(tj), ρ) ⊂ Bg(ξ1xk, (2j + 1)ρ) \Bg(ξ1xk, (2j − 1)ρ), j ∈ {1, ...,mk − 1}.

Beside the above property, by dg(ξi0xk, ξ1xk) ≥ 2mkρ, we also have that

Bg(γ̃(1), ρ) ∩Bg(ξ1xk, (2mk − 1)ρ) = ∅.

Combining all these constructions, it follows that the balls

Bg(γ̃(0), ρ) = Bg(ξ1xk, ρ), Bg(γ̃(t1), ρ), ..., Bg(γ̃(tmk−1), ρ) and Bg(γ̃(1), ρ) = Bg(ξi0xk, ρ)

are mutually disjoint sets, whose centers belong to Imγ̃ ⊂ OxkG . Since the number of these
balls is mk + 1, this contradicts again the maximality of mk = m(xk, ρ).

Accordingly,
diamOxkG ≤ 4ρ+ 4mkρ ≤ 4(K + 1)ρ,

which concludes the proof.
(ii) =⇒ (iii) We shall focus first on the Morrey case (M), i.e., we assume that n < p <

∞ and q =∞; afterward we discuss the cases (S) and (MT).
Similarly to (4.15), we are going to prove that for every fixed ρ > 0 one has

inf
y∈M

S(y, ρ)−1 > 0, (4.18)

where S(y, ρ) is the embedding constant in W 1,p
g (Bg(y, ρ)) ↪→ C0(Bg(y, ρ)), see (4.16).

Similarly to the proof of Lemma 4.3.2, we have that for any ε > 0 there exists a
harmonic radius rH > 0, such that for any y ∈ M , one can find a harmonic coordinate
chart ϕ : Bg(y, rH)→ Rn, such that ϕ(y) = 0, and the components (gjl) of g in this chart
satisfy

1

1 + ε
δjl ≤ gjl ≤ (1 + ε)δjl

as bilinear forms. Fix ρ < rH , then it is obvious that

Be

(
0,

ρ√
1 + ε

)
⊆ Ωy := ϕ (Bg(y, ρ)) ⊆ Be(0,

√
1 + ερ) ⊂ Rn. (4.19)
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Combining (4.8) with (4.19), we have that

S(y, ρ)−1 = inf
u∈W 1,p

g (Bg(y,ρ))\{0}

(∫
Bg(y,ρ)

(|∇gu|p + |u|p)dvg

) 1
p

sup
x∈Bg(y,ρ)

|u(x)|

≥ (1 + ε)
−n+p

2p inf
u∈W 1,p

g (Bg(y,ρ))\{0}

(∫
Ωy

(|∇(u ◦ ϕ−1)|p + |u ◦ ϕ−1|p)dx

) 1
p

sup
x∈Ωy

|u ◦ ϕ−1(x)|

≥ (1 + ε)
−n+p

2p inf
f∈W 1,p(Ωy)\{0}

‖f‖W 1,p(Ωy)

‖f‖C0(Ωy)

.

Let f∗ : Ω∗y → [0,∞) be the symmetric decreasing rearrangement of the function f (see
Lieb and Loss [83, Section 3.3]), thus Vole(Ωy) = Vole(Ω

∗
y) and

inf
f∈W 1,p(Ωy)\{0}

‖f‖W 1,p(Ωy)

‖f‖C0(Ωy)

≥ inf
f∗∈W 1,p(Ω∗y)\{0}

‖f∗‖W 1,p(Ω∗y)

‖f∗‖C0(Ω∗y)

= inf
f∗∈W 1,p(Ω∗y)\{0}

‖f∗‖W 1,p(Ω∗y)

f∗(0)
.

Since Be
(

0, ρ√
1+ε

)
⊆ Ω∗y ⊆ Be(0,

√
1 + ερ) ⊂ Rn, we have that

W 1,p

(
Be

(
0,

ρ√
1 + ε

))
⊇W 1,p(Ω∗y) ⊇W 1,p(Be(0,

√
1 + ερ)).

Hence

inf
f∗∈W 1,p(Ω∗y)\{0}

‖f∗‖W 1,p(Ω∗y)

f∗(0)
≥ inf

f∗∈W 1,p
(
Be

(
0, ρ√

1+ε

))
\{0}

‖f∗‖
W 1,p

(
Be

(
0, ρ√

1+ε

))
‖f∗‖

C0

(
Be

(
0, ρ√

1+ε

)) > 0,

meaning that inf
y∈M

S(y, ρ)−1 > 0, which concludes the proof of (4.18).

Now, let (uk)k∈N ⊂ W 1,p
G (M) be a bounded sequence and ρ > 0 be an arbitrarily

fixed number. Then, up to a subsequence, uk ⇀ u in W 1,p
G (M). Similarly to the proof of

Theorem 4.3.3, we obtain

‖uk−u‖C0(Bg(y,ρ))
≤ S(y, ρ)

m(y, ρ)
‖uk−u‖W 1,p

g (M)
≤ S(y, ρ)

m(y, ρ)

(
sup
k∈N
‖uk‖W 1,p

g (M)
+ ‖u‖

W 1,p
g (M)

)
.

Due to the validity of (EC)G and relation (4.18), we have that

lim
dg(x0,y)→∞

S(y, ρ)

m(y, ρ)
= 0,
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thus for every ε > 0 there exists Rε > 0 such that

sup
dg(x0,y)≥Rε

‖uk − u‖C0(Bg(y,ρ)) < ε, for every k ∈ N.

Since uk ⇀ u in W 1,p
G (M), by the Rellich-Kondrachov-type result (see Lemma 4.3.2) it

follows that uk → u in C0
(
Bg(y,Rε)

)
, hence there exists kε ∈ N such that

‖uk − u‖C0(Bg(y,Rε)) < ε, for all k ≥ kε.

The previous two inequalities yield that uk → u in L∞(M), ending the proof in the
admissible case (M).

Now let us fix an arbitrary n-admissible pair (p, q) from (S) or (MT). A suitable
modification of the above argument, based on Lemma 4.3.1/(ii), implies that

S(y, ρ)−1 := inf
u∈W 1,p

g (Bg(y,ρ))\{0}

(∫
Bg(y,ρ)

(|∇gu|p + |u|p)dvg

) 1
p

(∫
Bg(y,ρ)

|u|qdvg

) 1
q

> 0.

The latter inequality together with the validity of (EC)G implies that

lim
dg(x0,y)→∞

S(y, ρ)

m(y, ρ)
= 0.

The rest is analogous as before, by using the Rellich-Kondrachov compactness result from
Lemma 4.3.2.

(iii) =⇒ (iv) Trivial.
(iv) =⇒ (i) We follow the argument presented in Skrzypczak and Tintarev [112, The-

orem 4.3]. In fact, the proof in the admissible case (S) is given in Tintarev [119, Theorem
7.10.12]. Since the case (MT) can be similarly discussed as (S), we restrict our proof to
the remaining admissible case (M).

Suppose that G is not coercive, thus there exists a point x0 ∈M , a number R > 0 and
a sequence (xk)k∈N∗ ⊂ M , such that OxkG ⊂ Bg(xk, R) and dg(x0, xk) → ∞ as k → ∞.
Let r ∈ (0, inj(M,g)) and let us replace (xk)k with a renumbered subsequence such that the
distance between any two terms in the sequence will be greater than 2(R + r). We define
a sequence of functions (fk)k∈N∗ by

fk(x) =

∫
G

(r − dg(ξx, xk))+ dξ,

where the Haar measure of G is normalized to the value 1, and u+ = max{0, u}. It is easy
to see that fk ∈ W 1,p

G (M) for every k ∈ N∗ and any fixed p ∈ (n,∞). Indeed, since the
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support of fk is a subset of Bg(ξ−1xk, r) for all k ∈ N∗, by an elementary computation
using (2.3) and the volume-estimate (2.11), it follows that

‖fk‖W 1,p
g (M)

≤ C(p, r, n),

where C(p, r, n) > 0 is independent of k. Therefore, (fk)k is bounded in W 1,p
G (M).

On the one hand, since the supports of the functions fk are disjoint sets, we have that

‖fl − fk‖L∞(M) = ‖fl‖L∞(M) + ‖fk‖L∞(M) ≥ 2 inf
k∈N∗

‖fk‖L∞(M), ∀l 6= k.

On the other hand,

Volg(Bg(xk, R+ r))‖fk‖L∞(M) ≥
∫
M
fk(x) dvg =

∫
M

∫
G

(r − dg(ξx, xk))+ dξ dvg(x)

=

∫
G

∫
M

(r − dg(ξx, xk))+ dvg(x) dξ

x:=ξ−1y
=

∫
G

∫
M

(r − dg(y, xk))+ dvg(y) dξ

=

∫
M

(r − dg(y, xk))+ dvg(y)

≥ r

2
Volg

(
Bg

(
xk,

r

2

))
.

Since (M, g) is a Riemannian manifold with bounded geometry, then Volg is doubling on
(M, g), thus

‖fk‖L∞(M) ≥ C̃(r,R, n),

where C̃(r,R, n) > 0 does not depend on k. Thus (fk)k is not a Cauchy sequence in
L∞(M), which is a contradiction.

As a consequence of Theorem 4.4.1, we can prove the following corollary, which is
related to the results obtained by Hebey and Vaugon [64] (see also Hebey [63, Theorems
9.5 & 9.6]):

Corollary 4.4.2. Let (M, g) be a complete n-dimensional noncompact Riemannian man-
ifold with Ricci curvature bounded from below and positive injectivity radius, and let G be
a compact connected subgroup of Isomg(M) such that FixM (G) = {x0} for some x0 ∈ M .
Assume that there exists κ = κ(G,n) > 0 such that for every y ∈ M with dg(x0, y) ≥ 1,
one has

Hl(OyG) ≥ κ · dg(x0, y), (H)

where l = l(y) = dimOyG ≥ 1 and Hl denotes the l-dimensional Hausdorff measure. Then
the embedding W 1,p

G (M) ↪→ L∞(M) is compact for every n < p <∞.

Proof. Let y ∈ M be arbitrarily fixed such that dg(x0, y) ≥ 1, and consider the elements
ξi ∈ G, i = 1, . . . ,m(y, ρ) which appear in the definition of m(y, ρ) in (4.4) for ρ > 0 small
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enough. Let also l = l(y) = dimOyG. Notice that by the connectedness of G, we have l ≥ 1.
We claim that

Hl(OyG) ≤ m(y, ρ) sup
i
Hl(Bg(ξiy, kρ) ∩ OyG), (4.20)

for every k > 2 independent of y. To see this, it is sufficient to prove that

OyG ⊆
⋃
i

(
Bg(ξiy, kρ) ∩ OyG

)
.

Let x ∈ OyG be arbitrarily fixed. First, if x ∈
⋃
i

(
Bg(ξiy, ρ) ∩ OyG

)
, we have nothing to

prove. If x /∈
⋃
i

(
Bg(ξiy, ρ) ∩ OyG

)
, then there exists i0 ∈ {1, . . . ,m(y, ρ)} such that

dg
(
x, ∂

(
Bg(ξi0y, ρ) ∩ OyG

))
< ρ.

Indeed, if the contrary holds, then Bg(x, ρ) ∩ Bg(ξiy, ρ) = ∅, ∀i = 1, . . . ,m(y, ρ), thus
Bg(x, ρ) is a new ball in the definition of m(y, ρ), contradicting the maximality of m(y, ρ).
Therefore, dg(x, ξi0y) < 2ρ, which means that x ∈ Bg(ξi0y, kρ)∩OyG for every k > 2, which
proves (4.20).

We also notice that since FixM (G) = {x0}, one has that OyG ⊂ ∂Bg(x0, dg(x0, y)).
Indeed, if x = ξy ∈ OyG then dg(x0, x) = dg(x0, ξy) = dg(ξx0, ξy) = dg(x0, y). Thus
OyG is an l-dimensional submanifold of ∂Bg(x0, dg(x0, y)), l ≤ n − 1. Therefore, a slight
modification of Gallot, Hulin, and Lafontaine [56, Theorem 3.98] gives that for every
i = 1, . . . ,m(y, ρ),

Hl(Bg(ξiy, kρ) ∩ OyG) ≤ klωlρl(1 + o(ρ)) as ρ→ 0,

whenever k > 2 is kept small (e.g., k = 3). To see this, we explore that expξiy : TξiyM →M

is a local diffeomorphism at 0 ∈ TξiyM with d(expξiy)0 = id, while for small ρ > 0 one has
exp−1

ξiy
(Bg(ξiy, kρ) ∩ OyG) = Be(0, kρ) ∩ exp−1

ξiy
(OyG), and 0 < Hl(exp−1

ξiy
(OyG)) <∞.

Now, if we fix ρ ∈ (0, 1) from the usual range (see Gallot, Hulin, and Lafontaine [56]),
it follows by (4.20) that

Hl(OyG) ≤ m(y, ρ)kl+1ωlρ
l.

Hypothesis (H) and the latter estimate imply that κ ·dg(x0, y) ≤ m(y, ρ)kl+1ωlρ
l. By using

this inequality, one can obtain an estimate independent of l = l(y), namely

κ · dg(x0, y) ≤ m(y, ρ)knωn−1ρ.

Letting dg(x0, y)→∞ immediately implies that m(y, ρ)→∞, thus the expansion condi-
tion (EC)G holds. Applying Theorem 4.4.1 concludes the proof.

Let us provide two explicit examples where hypothesis (H) holds.
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Example 4.4.1. Let Sym(n,R) be the set of symmetric n× n matrices with real values,
P(n,R) ⊂ Sym(n,R) be the cone of symmetric positive definite matrices, and P(n,R)1 be
the subspace of matrices in P(n,R) with determinant one. The set P(n,R) is endowed
with the scalar product

〈U, V 〉X = Tr(X−1V X−1U) for all X ∈ P(n,R), U, V ∈ TX(P(n,R)) ' Sym(n,R),

where Tr(Y ) denotes the trace of Y ∈ Sym(n,R). One can prove that (P(n,R)1, 〈·, ·〉)
is a Riemannian manifold (with non-constant sectional curvature). On the other hand,
since the scalar curvature of the Riemannian manifold (P(n,R)1, 〈·, ·〉) is constant, more
precisely, S = −1

8n(n−1)(n+2), see Andai [8] and Moakher and Zéraï [91], it follows that
its Ricci curvature is bounded from below.

The special linear group SL(n) leaves P(n,R)1 invariant and acts transitively on
it. Moreover, for every σ ∈ SL(n), the map [σ] : P(n,R)1 → P(n,R)1 defined by
[σ](X) = σXσT is an isometry, where σT denotes the transpose of σ. If G = SO(n),
we can prove that FixP(n,R)1

(G) = {In}, where In is the identity matrix; for more de-
tails, see Kristály [76]. On the other hand, the metric function on P(n,R) is given by

dP (X,Y ) =

√
Tr
(

ln2
(
X−

1
2Y X−

1
2

))
, see Kristály [74].

For simplicity, fix n = 2, and consider the following positive definite symmetric matrix

X =

(
a b

b c

)
, where a, c > 0 and ac− b2 = 1.

Thus

OXG =

{
Xξ : ξ =

(
cos θ sin θ

− sin θ cos θ

)
, θ ∈ [0, 2π]

}
.

One can see that

H1
(
OXG
)

= 2π
√
a2 + 2b2 + c2 and dP (I2, X) =

√
Tr
(
ln2 (X)

)
=

√
ln2(λ1) + ln2(λ2),

where λ1 and λ2 are the positive eigenvalues of the matrix X. Since
√
a2 + 2b2 + c2 =√

λ2
1 + λ2

2, by using a Bernoulli-type inequality, it turns out that H1
(
OXG
)
≥ κdP (I2, X),

with κ := π, which proves the validity of (H).

Example 4.4.2. LetG = O(d1)×· · ·×O(dk) with di ≥ 2, i = 1, . . . , k, and d1+· · ·+dk = d.
Let y = (y1, . . . , yk) ∈ Rd1 × · · · × Rdk . It is clear that OyG = Sd1−1

|y1| × · · · × S
dk−1
|yk| , where

Sα−1
r denotes the sphere with radius r > 0 in Rα. Let I(y) = {i ∈ {1, . . . , k} : |yi| 6= 0}.
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Then l = l(y) =
∑
i∈I(y)

(di − 1) and

Hl(OyG) =
∑
i∈I(y)

Hdi−1(Sdi−1
1 )|yi|di−1 ≥ 2π

∑
i∈I(y)

|yi|di−1 = 2π

k∑
i=1

|yi|di−1.

Now, let |y1|+ · · ·+ |yk| = c ≥ 1. By the scaling yi := czi, one has |z1|+ · · ·+ |zk| = 1 and

k∑
i=1

|yi|di−1 ≥ c
k∑
i=1

|zi|di−1.

Note that the continuous function (z1, . . . , zk) 7→
k∑
i=1

|zi|di−1 attains its minimum on the

simplex |z1|+ · · ·+ |zk| = 1, and this minimum is strictly positive, say mG > 0 (otherwise,
if mG = 0, we would have all variables equal to zero, which is a contradiction). Summing
up, it follows that

Hl(OyG) ≥ 2πcmG = 2πmG(|y1|+ · · ·+ |yk|) ≥ 2πmG|y|,

thus G satisfies the condition (H).

4.5 Compact Sobolev embeddings on Randers spaces

At this point, the next natural step of generalization is the study of similar compact embed-
ding results on noncompact Finsler manifolds. It turns out that in non-Riemannian Finsler
settings the phenomena concerning Sobolev spaces may change dramatically. For instance,
there exist noncompact Finsler-Hadamard manifolds (M,F ) such that the Sobolev space
W 1,2
F (M) over (M,F ) does not even admit a vector space structure, see Farkas, Kristály,

and Varga [50], Kristály and Rudas [81] and Section 2.7. Therefore, the extension of
Theorems 4.3.3 and 4.4.1 in the general Finsler case is not possible.

Despite such counterexamples, it can be proved that similar compactness results to
Theorems 4.3.3 & 4.4.1 can be established on Randers spaces having finite reversibility
constant (see Section 3.1).

In the following let (M,F ) be an n-dimensional Randers space and IsomF (M) be the
isometry group of (M,F ). In this case, IsomF (M) is a closed subgroup of the isometry
group of the underlying Riemannian manifold (M, g), see Deng [40, Proposition 7.1]. If G
is a subgroup of IsomF (M), then W 1,p

F,G(M) stands for the subspace of G-invariant Sobolev
functions of W 1,p

F (M), i.e.,

W 1,p
F,G(M) =

{
u ∈W 1,p

F (M) : u ◦ ξ = u for all ξ ∈ G
}
.
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Finally, for any y ∈ M , let mF (y, ρ) denote the maximal number of mutually disjoint
geodesic Finsler balls with radius ρ on the orbitOyG. Then, one has the following embedding
theorem.

Theorem 4.5.1. Let (M,F ) be an n-dimensional Randers space endowed with the Finsler
metric F : TM → R,

F (x, v) =
√
gx(v, v) + βx(v), ∀(x, v) ∈ TM, (4.21)

such that (M, g) is either a Cartan-Hadamard manifold or a Riemannian manifold with
bounded geometry. Suppose that sup

x∈M
|βx|g < 1. Then the following results hold:

(i) For every n-admissible pair (p, q) the embedding W 1,p
F (M) ↪→ Lq(M) is continuous.

(ii) Let G be a compact connected subgroup of IsomF (M) such that mF (y, ρ) → ∞ as
dF (x0, y) → ∞ for some x0 ∈ M and ρ > 0. Then the embedding W 1,p

F,G(M) ↪→
Lq(M) is compact for any n-admissible pair (p, q).

Proof. (i) For the sake of brevity let us introduce the notation

a := sup
x∈M
|βx|g < 1.

Recall that the volume form on the Randers space (M,F ) is given by (3.3), Section 3.1.
Therefore, one has that

(1− a2)
n+1

2 dvg ≤ dvF (x) ≤ dvg. (4.22)

Next, by using the definition of the polar transform of F , see (3.2), we obtain that

F ∗(x, α) ≤

√
|αx|2g · |βx|2g + (1− |βx|2g)|αx|2g + |αx|g · |βx|g

1− |βx|2g

=
|αx|g(1 + |βx|g)

1− |βx|2g
=
|αx|g

1− |βx|g
≤ |αx|g

1− a
, ∀(x, α) ∈ T ∗M. (4.23)

On the other hand,

F ∗(x, α) =
|αx|2g√

g∗2x (αx, βx) + (1− |βx|2g)|αx|2g + g∗x(αx, βx)

≥
|αx|2g√

|αx|2g · |βx|2g + (1− |βx|2g)|αx|2g + |αx|g · |βx|g

=
|αx|g

1 + |βx|g
≥ |αx|g

1 + a
, ∀(x, α) ∈ T ∗M. (4.24)
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Combining (4.22), (4.23) and (4.24), it follows that for every function u ∈ W 1,p
F (M), we

have
(1− a2)

n+1
2

(1 + a)p
‖u‖p

W 1,p
g (M)

≤ ‖u‖p
W 1,p
F (M)

≤ 1

(1− a)p
‖u‖p

W 1,p
g (M)

, (4.25)

i.e., the Sobolev norms ‖ · ‖
W 1,p
F (M)

and ‖ · ‖
W 1,p
g (M)

are equivalent. Therefore, based on
the continuous embeddings on the Riemannian manifold (M, g) (see Theorems and 4.2.2
and 4.2.3), we obtain that there exists a constant Cn,p > 0 such that

‖u‖Lq(M) ≤ Cn,p
1 + a

(1− a2)
n+1
2p

‖u‖
W 1,p
F (M)

,

for all u ∈W 1,p
F (M) and for any n-admissible pair (p, q).

(ii) First of all, according to Deng [40, Proposition 7.1], G is a closed subgroup of the
isometry group Isomg(M) of the Riemannian manifold (M, g). Secondly, since

(1− a)dg(x0, y) ≤ dF (x0, y) ≤ (1 + a)dg(x0, y),

the expansion condition mF (y, ρ) → ∞ as dF (x0, y) → ∞ implies that m
(
y, ρ

1+a

)
→ ∞

as dg(x0, y) → ∞. This means that condition (EC)G holds on the Riemannian manifold
(M, g), which, in turn, yields the validity of the compact embeddings W 1,p

G (M) ↪→ Lq(M)

by Theorems 4.3.3 & 4.4.1.
Now, let (uk)k∈N be a bounded sequence inW 1,p

F,G(M). From (4.25), it follows that (uk)k

is bounded in W 1,p
G (M), thus, by the aforementioned compactness results, there exists a

subsequence (ukl)l which converges strongly to a function u in Lq(M), for any n-admissible
pair (p, q). This completes the proof.

Note that the assumption sup
x∈M
|βx|g < 1 in Theorem 4.5.1 is equivalent to the finite-

ness of the reversibility constant of (M,F ) (see (3.4), Section 3.1). Let us emphasize
that this condition is indispensable for the validity of the continuous Sobolev embeddings
W 1,p
F (M) ↪→ Lq(M). Indeed, the following example demonstrates that the continuous (and

therefore, compact) Sobolev embeddings do not necessarily hold on Randers spaces having
infinite reversibility constant.

Example 4.5.1. Let n ≥ 2 and Bn = {x ∈ Rn : |x| < 1} be the n-dimensional Euclidean
open unit ball. Consider the Funk metric F : Bn × Rn → R given by

F (x, v) =

√
(1− |x|2)|v|2 + 〈x, v〉2

1− |x|2
+
〈x, v〉

1− |x|2
,

which defines the n-dimensional Finslerian Funk model (Bn, F ), see Cheng and Shen [34,
Example 2.1.2], and Shen [109, Example 1.3.4]. In fact, in the particular case n = 2 we
recover the 2-dimensional Funk model (D, FF ) presented in Section 3.2.1.
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Recall that (Bn, F ) is a noncompact Randers space with constant negative flag cur-
vature −1

4 , i.e., a Finsler-Hadamard manifold. Furthermore, the underlying Riemannian
manifold is the Beltrami-Klein model having constant negative sectional curvature −1,
which is a Cartan-Hadamard manifold. Nevertheless, the reversibility constant of (Bn, F )

is rF = +∞, see (3.9).
Regarding the distance function on the Funk model, we have that

dF (0, x) = − ln(1− |x|),

for all x ∈ Bn, see Cheng and Shen [34, Example 2.1.2].
Now, let (p, q) be any n-admissible pair and consider the function u : Bn → R defined

by

u(x) = e
dF (0,x)

t

(
1− e−dF (0,x)

)
=

|x|
(1− |x|)

1
t

,

where t > 0 is a parameter. A direct calculation yields that

Du(x) =
1

t
e
dF (0,x)

t

[
1 + (t− 1)e−dF (0,x)

]
DdF (0, x).

By applying (2.3), we obtain that F ∗(x,DdF (0, x)) = 1 for a.e. x ∈ Bn, thus

‖u‖p
W 1,p
F (Bn)

=

∫
Bn
e
p·dF (0,x)

t

(
1− e−dF (0,x)

)p
dvF (x)

+

(
1

t

)p ∫
Bn
e
p·dF (0,x)

t

[
1 + (t− 1)e−dF (0,x)

]p
dvF (x).

Since dvF (x) = dx (see Kristály and Rudas [81, Section 2.2]), it follows that

‖u‖p
W 1,p
F (Bn)

= ωn−1

∫ 1

0

sp

(1− s)
p
t

· sn−1ds + ωn−1

(
1

t

)p ∫ 1

0

(t− (t− 1)s)p

(1− s)
p
t

sn−1ds

≤ ωn−1

∫ 1

0
sn−1(1− s)−

p
t ds + ωn−1

∫ 1

0
sp+n−1(1− s)−

p
t ds

= ωn−1

[
B
(
n, 1− p

t

)
+ B

(
p+ n, 1− p

t

)]
,

where B denotes the Beta function.2

In the (S) & (MT) admissible cases, we have that

‖u‖qLq(Bn) = ωn−1B
(
q + n, 1− q

t

)
.

2The Beta function is a special function defined as B(α, β) =
∫ 1

0
sα−1(1 − s)β−1ds, for every α, β > 0,

see Rudin [106, Theorem 8.20]. Note that when α ≤ 0 or β ≤ 0, the integral is divergent.
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By choosing t := p+q
2 , it turns out that

1− p

t
= 1− 2p

p+ q
> 0 and 1− q

t
= 1− 2q

p+ q
< 0.

Therefore, we obtain that ‖u‖
W 1,p
F (Bn)

< +∞, whereas ‖u‖Lq(Bn) = +∞, which means that

u ∈W 1,p
F (Bn) \ Lq(Bn).

In the case (M), let t := p2

n > 1. Since p > n, it follows that

1− p

t
= 1− n

p
> 0, thus ‖u‖

W 1,p
F (Bn)

< +∞.

However, it is clear that ‖u‖L∞(Bn) = +∞, hence u ∈W 1,p
F (Bn) \ L∞(Bn).

In conclusion, the space W 1,p
F (Bn) cannot be continuously embedded into Lq(Bn) for

any n-admissible pair (p, q), thus no further compact embedding can be expected.

Example 4.5.1 demonstrates that the theory of Sobolev spaces on Finsler manifolds
cannot be treated analogously to the Riemannian case. Indeed, although the Funk model is
a Finsler-Hadamard manifold of Randers-type, none of the continuous Sobolev embeddings
are valid on the space because the reversibility constant is infinite. Due to the isometry
result proved in Theorem 3.3.1, it follows that these unexpected phenomena are all valid
on the Finsler-Poincaré ball and the Finsler-Poincaré upper half plane, all being Finsler-
Hadamard manifolds (see Chapter 3). This is in sharp contrast with the Riemannian case,
see Theorem 4.2.2.

Moreover, one can see that the underlying problem is much deeper, since the Sobolev
spaces W 1,p

F (Bn) defined on the Funk ball may not even be vector spaces, see Kristály and
Rudas [81]. Considering the isometry result from Theorem 3.3.1, this is also in concordance
with the counterexample provided in Farkas, Kristály, and Varga [50] regarding the non-
vector space structure of W 1,2

F (D) on the 2-dimensional Finsler-Poincaré disk (D, FP ).
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Chapter 5

Sobolev-type inequalities with
singular terms

This chapter concerns Hardy inequalities, which belong to the family of Sobolev-type in-
equalities having singular terms. Other important examples include the Rellich inequality,
Hardy-Sobolev-Maz’ya inequality, Hardy-type inequalities with multiple singularities, as
well as several interpolations and improvements such as the Hardy-Rellich, Caffarelli-Kohn-
Nirenberg or Brezis-Marcus inequality, etc. Many of these inequalities play a central role
in the study of elliptic PDEs with singular potentials, while others have fundamental im-
plications in quantum mechanics. Due to their significance, these inequalities have been
objects of intense study, see, e.g., Balinsky, Evans, and Lewis [13], Brezis and Marcus [23],
Brezis and Vázquez [24], Caffarelli, Kohn, and Nirenberg [25], Ghoussoub and Moradifam
[57], Maz’ya [88] and Rellich [103].

After a short overview on the classical Hardy inequality in Rn, we revisit a condition
obtained by D’Ambrosio and Dipierro [38], which turns out to be sufficient for the validity of
several Hardy-type inequalities on complete Riemannian manifolds. Then, we extend these
results to forward complete Finsler manifolds. We also review a class of Hardy inequalities
available on Finsler-Hadamard manifolds which have finite reversibility constant. Finally,
we investigate a Hardy inequality with multiple singularities in the Finslerian setting. This
chapter summarizes the results of Mester, Peter, and Varga [4] and Mester and Kristály
[2].

5.1 The classical Hardy inequality: a short overview

The classical Hardy inequality in Rn usually refers to the relation∫
Rn
|∇u(x)|pdx ≥

(
n− p
p

)p ∫
Rn

|u(x)|p

|x|p
dx, ∀u ∈ C∞0 (Rn), (5.1)

where n ≥ 2, p ∈ (1, n), and the constant
(n−p

p

)p is sharp and can only be attained by the
zero function. The latter result has its origin in the work of Hardy [61], where he proved an
initial, one-dimensional version of (5.1). For a detailed historical summary regarding the
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original form of the Hardy inequality and its related results, we refer to Kufner, Maligranda,
and Persson [82] and Hardy, Littlewood, and Pólya [62].

Since then, a rich theory has been developed around Hardy’s classical inequality, pro-
ducing an abundance of refinements, generalizations and modifications, with multiple appli-
cations in mathematical analysis and quantum mechanics. For a comprehensive treatment
of the subject in the euclidean setting see Balinsky, Evans, and Lewis [13].

Due to the recent advances in geometric analysis, extensive efforts have been made to-
wards the generalization of these Hardy inequalities to curved spaces. The first significant
result was achieved in this direction by Carron [31], where he gave a sufficient condition for
proving weighted L2-type Hardy inequalities on complete noncompact Riemannian man-
ifolds. This was followed by a series of refinements and improvements considering Hardy
inequalities on Riemannian manifolds, see, e.g., D’Ambrosio and Dipierro [38], Kombe and
Özaydin [70, 69], Xia [125] and Yang, Su, and Kong [126]. Various results were also ex-
tended to Finsler manifolds, see Farkas, Kristály, and Varga [50], Kristály and Repovš [80],
Yuan, Zhao, and Shen [129], and Zhao [132].

In both cases, it turns out that the studied phenomena significantly depend on the geo-
metric properties of the ambient space. For example, in the case of a Riemannian manifold,
the curvature of the underlying structure plays an essential role in the development of such
inequalities. Moreover, in the Finslerian case, besides the influence of the curvature, one
may also need to take into account the non-Riemannian nature of the Finsler structure,
which can be measured by the so-called reversibility constant and uniformity constant.

Accordingly, the purpose of the present chapter is the study of different Hardy-type
inequalities on Finsler manifolds, by exploring the geometric and technical conditions which
enable (or, in some cases, inhibit) such investigations.

5.2 Weighted Hardy inequalities on Finsler manifolds

D’Ambrosio and Dipierro [38] established a sufficient criteria in order to prove certain
weighted Hardy inequalities on a complete Riemannian manifold (M, g). Namely, if Ω ⊂M
is an open set, ρ is a nonnegative function on Ω and p > 1, then, by assuming that ρ is
p-superharmonic on Ω in weak sense, one can obtain the following inequality:∫

Ω
|∇gu(x)|p dvg ≥

(
p− 1

p

)p ∫
Ω

|u(x)|p

ρ(x)p
|∇gρ(x)|p dvg, ∀u ∈ C∞0 (Ω).

By expanding the technique applied by D’Ambrosio and Dipierro [38], we prove Hardy
inequalities involving a weight function on forward complete, not necessarily reversible
Finsler manifolds. In addition, we recover and complement some of the results derived by
Zhao [132]. In order to avoid technicalities, we consider the case p = 2, obtaining L2-type
Hardy inequalities. The results may be extended to any p > 1 by applying appropriate
changes to the proofs.
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In the remainder of this chapter let (M,F ) be a forward complete n-dimensional Finsler
manifold and let Ω ⊂M be an open set.

We say that a function ρ ∈W 1,2
loc (Ω) is p-superharmonic (p ≥ 2) on Ω in weak sense if∫

Ω
F ∗(x,Dρ(x))p−2 ·Dϕ(x)

(
∇Fρ(x)

)
dvF (x) ≥ 0,

for every nonnegative test function ϕ ∈ C∞0 (Ω). By the divergence theorem (2.9), this in
turn is equivalent with the fact that −∆F,pρ ≥ 0 on Ω in weak sense. Note that for p = 2,
we simply say that ρ is superharmonic, meaning that −∆Fρ ≥ 0 on Ω in the distributional
sense. It turns out that this superharmonicity condition provides a sufficient criteria in
order to prove several weighted Hardy-type inequalities on (M,F ).

First we recall the following lemma, which will be a crucial tool in our further develop-
ments. For the proof we follow Zhao [132, Theorem 3.1]. In the remainder of this chapter
we omit the parameter x ∈M for the sake of brevity.

Lemma 5.2.1. Let (M,F ) be a forward complete n-dimensional Finsler manifold and let
Ω ⊂M be an open set. Let X ∈ L1

loc(Ω) be a vector field and fX ∈ L1
loc(Ω) a nonnegative

function such that the following properties hold:

(i) fX ≤ −divX;

(ii) F 2(X)
fX

∈ L1
loc(Ω).

Then we have

4

∫
Ω

F 2(x,X)

fX
F ∗2(x,Du) dvF ≥

∫
Ω
u2fX dvF , ∀u ∈ C∞0 (Ω).

Proof. By applying relation (2.8) and the Hölder inequality, we obtain∫
Ω
u2fX dvF ≤ −

∫
Ω
u2divX dvF =

∫
Ω
D(u2)(X) dvF

≤ 2

∫
Ω
|u| · |Du(X)| dvF ≤ 2

∫
Ω
|u|F (x,X)F ∗(x,Du) dvF

≤ 2

(∫
Ω
u2fX dvF

) 1
2
(∫

Ω

F 2(x,X)

fX
F ∗2(x,Du) dvF

) 1
2

,

which completes the proof.

By the appropriate choice of the vector field X and the function fX , we obtain the
following weighted Hardy inequality. In particular, by assuming that the reversibility
constant of (M,F ) is finite, we deduce the quantitative analogue of Zhao [132, Theorem
4.1].
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Theorem 5.2.2. Let (M,F ) be a forward complete Finsler manifold and let Ω ⊂M be an
open set. Let ρ ∈W 1,2

loc (Ω) be a nonnegative function and θ ∈ R a constant, such that

(i) −(1− θ)∆Fρ ≥ 0 on Ω in weak sense;

(ii) F ∗2(Dρ)
ρ2−θ , ρθ ∈ L1

loc(Ω).

If θ ≤ 1, then∫
Ω
ρθF ∗2(x,Du) dvF ≥

(1− θ)2

4

∫
Ω
ρθ
u2

ρ2
F ∗2(x,Dρ) dvF , ∀u ∈ C∞0 (Ω),

whereas if θ > 1 and rF < +∞, then∫
Ω
ρθF ∗2(x,Du) dvF ≥

(1− θ)2

4r2
F

∫
Ω
ρθ
u2

ρ2
F ∗2(x,Dρ) dvF , ∀u ∈ C∞0 (Ω).

Proof. The proof is based on Lemma 5.2.1. Notice that the case θ = 1 is trivial.
Let α ∈ (0, 1), ρα = ρ+α > 0 on Ω, and define the vector field X and the function fX

on Ω as

X = (1− θ)∇Fρα
ρ1−θ
α

and fX = (1− θ)2F
∗2(Dρα)

ρ2−θ
α

. (5.2)

Since ρθ ∈ L1
loc(Ω), 1

ρα
≤ 1

α and Dρα = Dρ, it follows that X and fX ∈ L1
loc(Ω).

If θ < 1, by direct calculation we obtain

F 2(x,X)

fX
= ρθα

F ∗2(x, (1− θ)Dρα)

(1− θ)2F ∗2(x,Dρα)
= ρθα, (5.3)

whereas when θ > 1 and rF < +∞, we can write

F 2(x,X)

fX
= ρθα

F ∗2(x, (1− θ)Dρα)

(θ − 1)2F ∗2(x,Dρα)
= ρθα

F ∗2(x,−(θ − 1)Dρα)

F ∗2(x, (θ − 1)Dρα)
≤ r2

Fρ
θ
α. (5.4)

In both cases it turns out that F 2(X)
fX

∈ L1
loc(Ω).

It remains to prove that fX ≤ −divX in weak sense, for which we proceed similarly to
Zhao [132, Theorem 4.1]. We sketch the proof for completeness.

Let ϕ ∈ C∞0 (Ω) be arbitrarily fixed with ϕ ≥ 0, K = suppϕ ⊂ Ω, and let U ⊂ M

be an open set such that K ⊂ U and U ⊂ Ω is compact. Let k ∈ N, k > α, and define
ρkα = inf{ρα, k}.

Let us consider the function ln ρkα ∈ L2
loc(Ω). Then we have that ln ρkα ∈ W 1,2

F (U),
thus there exists a sequence (φn)n∈N ⊂ C∞(U) such that α ≤ φn ≤ k, φn → ρkα a.e. on Ω

and∫
U
| lnφn − ln ρkα|2dvF → 0,

∫
U
F ∗2

(
Dφn
φn
− Dρkα

ρkα

)
dvF → 0 as n→∞. (5.5)
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By using the functions Ψn = ϕ

φ1−θ
n
∈ C∞0 (Ω), Ψn ≥ 0 as test functions in (i), we obtain

(1− θ)2

∫
Ω

Dφn(∇Fρ)

φ2−θ
n

ϕ dvF ≤ (1− θ)
∫

Ω

Dϕ(∇Fρ)

φ1−θ
n

dvF . (5.6)

Case 1. If θ < 1, letting n→∞, then k →∞ in (5.6) yields

(1− θ)2

∫
Ω

F ∗2(x,Dρα)

ρ2−θ
α

ϕ dvF ≤ (1− θ)
∫

Ω
Dϕ

(
∇Fρα
ρ1−θ
α

)
dvF , (5.7)

i.e., fX ≤ −divX in weak sense on Ω. Applying Lemma 5.2.1 and relation (5.3), then
letting α→ 0 completes the proof.
Case 2. Suppose θ > 1. For the second integral of (5.6) we have∣∣∣∣Dϕ(∇Fρ)

φ1−θ
n

∣∣∣∣ ≤ F ∗(Dϕ) F (∇Fρ) kθ−1 ≤ C F (∇Fρ) kθ−1 ∈ L1(U),

so we may apply the dominated convergence theorem.
For the first integral in inequality (5.6) we can write

Dφn(∇Fρ)

φn
2−θ = φθn

Dφn
φn

(
∇Fρ
φn

)
.

By using the dominated convergence theorem and relation (5.5), it follows that

∇Fρ
φn

−→ ∇Fρ
ρkα

in L2(U)

and
φθn F

∗
(
Dφn
φn

)
≤ kθF ∗

(
Dφn
φn

)
−→ kθF ∗

(
Dρkα
ρkα

)
in L2(U).

Hence the sequence φθn
Dφn
φn

is bounded in L2(U), so up to a subsequence, it is weakly
convergent in L2(U). Because of the pointwise convergence

φθn
Dφn
φn

−→ ρθkα
Dρkα
ρkα

a.e. on Ω,

it follows that the convergence holds in weak sense, too.
Thus, if we let n→∞ in (5.6), eventually for a subsequence, we get

(1− θ)2

∫
Ω

Dρkα(∇Fρ)

ρ2−θ
kα

ϕ dvF ≤ (1− θ)
∫

Ω

Dϕ(∇Fρ)

ρ1−θ
kα

dvF . (5.8)
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In order to pass to the limit k →∞, for the latter integral we can write∣∣∣∣∣Dϕ(∇Fρ)

ρ1−θ
kα

∣∣∣∣∣ = ρ
θ
2
kαDϕ

(
ρ
θ−2

2
kα ∇Fρ

)
≤ (ρα)

θ
2F ∗(Dϕ)F

(
ρ
θ−2

2
α ∇Fρ

)
≤ C(ρα)

θ
2 (ρα)

θ−2
2 F

(
∇Fρ

)
∈ L1(U),

since ρα > 0 and (ρα)
θ−2

2 F (∇Fρ), (ρα)
θ
2 ∈ L2(U) , so we can use the dominated conver-

gence theorem. For the first integral of relation (5.8) we have

Dρkα(∇Fρ)

ρ2−θ
kα

ϕ =
Dρkα(∇Fρ)

ρ2−θ
kα

χ{ρα≤k}ϕ =
Dρα(∇Fρ)

ρ2−θ
α

χ{ρα≤k}ϕ =
F 2(∇Fρ)

ρ2−θ
α

χ{ρα≤k}ϕ.

If θ ∈ (1, 2], the previous expression is dominated by the function C F 2(∇F ρ)
α2−θ ∈ L1(U),

so we can apply the dominated convergence theorem.
For θ ∈ (2,∞), the sequence of nonnegative functions

(
F 2(∇F ρ)

ρ2−θ
α

χ{ρα≤k}ϕ
)
k∈N

is mono-
tone increasing, so we may use the monotone convergence theorem.

Thus, by letting k →∞ in (5.8), we obtain

(1− θ)2

∫
Ω

Dρ(∇Fρ)

ρ2−θ
α

ϕ dvF ≤ (1− θ)
∫

Ω

Dϕ(∇Fρ)

ρ1−θ
α

dvF ,

which is equivalent to (5.7), since Dρ(∇Fρ) = F ∗2(Dρ) by (2.1). Applying Lemma 5.2.1
and inequality (5.4), we obtain that

4r2
F

∫
Ω
ρθα F

∗2(x,Du) dvF ≥ (1− θ)2

∫
Ω
ρθα
u2

ρ2
α

F ∗2(x,Dρα) dvF , ∀u ∈ C∞0 (Ω).

Now we pass to the limit α→ 0. For the former integral we can use Fatou’s lemma, while
for the latter integral we can write ρθαF 2(∇Fu) ≤ C(ρ+ 1)θ ∈ L1(U), so we can apply the
dominated convergence theorem.

On the one hand, in the particular case θ = 0 Theorem 5.2.2 yields the following Hardy
inequality.

Corollary 5.2.3. Let (M,F ) be a forward complete Finsler manifold and let Ω ⊂ M be
an open set. If ρ ∈ W 1,2

loc (Ω) is a nonnegative function such that ρ is superharmonic on Ω

in weak sense, and F ∗2(Dρ)
ρ2 ∈ L1

loc(Ω), then

∫
Ω
F ∗2(x,Du) dvF ≥

1

4

∫
Ω

u2

ρ2
F ∗2(x,Dρ) dvF , ∀u ∈ C∞0 (Ω).

On the other hand, by choosing θ = 2 + q, q > −1, we obtain the following Caccioppoli
inequality.
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Corollary 5.2.4. Let (M,F ) be a complete Finsler manifold with rF <∞, and let Ω ⊂M
be an open set. If ρ ∈W 1,2

loc (Ω) is a nonnegative function such that ∆Fρ ≥ 0 on Ω in weak
sense, and q > −1 such that ρqF ∗2(Dρ) and ρ2+q ∈ L1

loc(Ω), then∫
Ω
ρ2+qF ∗2(x,Du) dvF ≥

(1 + q)2

4r2
F

∫
Ω
u2ρqF ∗2(x,Dρ) dvF , ∀u ∈ C∞0 (Ω).

Finally, in the remainder of this section we establish Hardy inequalities on Finsler-
Hadamard manifolds having finite reversibility constant, by defining the weight function ρ
in Theorem 5.2.2 with the help of the Finslerian distance function dF . For this, let (M,F )

be a Finsler-Hadamard manifold with rF < ∞, and let S denote the mean covariation of
(M,F ). For an x0 ∈M arbitrarily fixed point let us denote by r : M → R, r(x) = dF (x0, x)

the distance function from the point x0 on M . Note that as (M,F ) is a Finsler-Hadamard
manifold, we have Cut(x0) = ∅.

By applying Theorem 5.2.2 to a weight function defined with the help of the distance
function r, we obtain the following Hardy inequality, which can be considered the quanti-
tative version of the result given by Zhao [132, Theorem 1.2].

Theorem 5.2.5. Let (M,F ) be an n-dimensional Finsler-Hadamard manifold with n ≥ 3,
rF <∞ and S = 0. If α ∈ (−∞, 1), then for every u ∈ C∞0 (M) we have∫

M
rα(2−n)F ∗2(x,Du) dvF ≥

(n− 2)2(1− α)2

4r2
F

∫
M
rα(2−n)u

2

r2
dvF .

Proof. Let Ω = M \ {x0} be an open set, and define ρ = r2−n : Ω → [0,∞), where
n = dimM ≥ 3. We shall apply Theorem 5.2.2 with the weight function ρ.

Clearly, we have ρ(x) > 0 for every x ∈ Ω. By using the definition of the reversibility
constant rF and the eikonal equation (2.3), we obtain that

F ∗2(Dρ) = (n− 2)2r2−2nF ∗2(−Dr) ≤ (n− 2)2r2
F r2−2n ∈ L1

loc(Ω), (5.9)

thus ρ ∈W 1,2
loc (Ω).

Applying relation (2.3) again yields

∆Fρ = (2− n) div(r1−n∇F r)

= (2− n)
(
(1− n)r−nDr(∇F r) + r1−n∆F r

)
= (2− n) r−n(1− n+ r∆F r).

By using the Laplacian comparison principle for the Finslerian distance function (see
Theorem 2.8.1), it follows that ∆F r ≥ n−1

r on Ω, thus

−(1− α)∆Fρ = (n− 2)(1− α) r−n(1− n+ r∆F r) ≥ 0 on Ω.
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Similarly to (5.9), one can prove that F ∗2(Dρ)
ρ2−α and ρα ∈ L1

loc(Ω) , thus we can apply
Theorem 5.2.2, which yields∫

Ω
rα(2−n)F ∗2(x,Du) dvF ≥

(n− 2)2(1− α)2

4

∫
Ω
rα(2−n)u

2

r2
F ∗2(x,−Dr) dvF ,

for every u ∈ C∞0 (Ω). Finally, from relation (2.3) we obtain

F ∗2(x,−Dr) ≥ 1

r2
F

F ∗2(x,Dr) =
1

r2
F

, (5.10)

for every x ∈ Ω, and, since the set {x0} has null Lebesgue measure, the proof is complete.

Note that by choosing α = 0 in Theorem 5.2.5, we recover the Hardy inequality obtained
by Farkas, Kristály, and Varga [50, Proposition 4.1]:

Corollary 5.2.6. Let (M,F ) be an n-dimensional Finsler-Hadamard manifold with n ≥ 3,
rF <∞ and S = 0. Then∫

M
F ∗2(x,Du) dvF ≥

(n− 2)2

4r2
F

∫
M

u2

r2
dvF , ∀u ∈ C∞0 (M). (5.11)

Remark 5.2.1. (i) Theorem 5.2.5 and Corollary 5.2.6 represent the Finslerian general-
ization of the classical Hardy inequality (5.1) for p = 2 on Finsler-Hadamard man-
ifolds. One can see that the obtained relations strongly depend on the geometry of
the Finsler structure, which is manifested by the assumption S = 0 and the finite
reversibility condition rF < ∞. Moreover, the reversibility constant turns out to be
embedded in the constant of the previous Hardy inequalities.

(ii) If (M,F ) is a reversible Finsler-Hadamard manifold, i.e., rF = 1, the constant (n−2)2

4

in (5.11) is sharp and never achieved, see Farkas, Kristály, and Varga [50]. On the
other hand, note that if we let rF → ∞, inequality (5.11) becomes trivial. The
sharpness of the constant (n−2)2

4 r2
F

in the general case rF > 1 is an open question.

Finally, we present the following logarithmic Hardy inequality:

Theorem 5.2.7. Let (M,F ) be an n-dimensional Finsler-Hadamard manifold with n ≥ 2,
rF <∞ and S = 0, and consider a fixed number α ∈ R\{1}. If α < 1 define Ω := r−1(0, 1),
while if α > 1 set Ω := r−1(1,+∞). Then we have∫

Ω
| ln r|αF ∗2(x,Du) dvF ≥

(1− α)2

4r2
F

∫
Ω
| ln r|α u2

(r ln r)2
dvF , ∀u ∈ C∞0 (Ω). (5.12)

Proof. Let ρ = (α− 1) ln r : Ω→ R. Clearly, in both cases α < 1 and α > 1 we have ρ > 0

on Ω. Moreover, similarly to the proof of Theorem 5.2.5, we can show that ρ ∈ W 1,2
loc (Ω)

and F ∗2(Dρ)
ρ2−α , ρα ∈ L1

loc(Ω).
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Using the eikonal relation (2.3) and the Laplace comparison theorem (Theorem 2.8.1),
we obtain that

−(1− α)∆Fρ = (α− 1)div(∇Fρ) = (α− 1)2 div

(
1

r
∇F r

)
= (α− 1)2

(
− 1

r2
+

∆F r

r

)
≥ (α− 1)2 n− 2

r2
≥ 0 on Ω,

so we can apply Theorem 5.2.2. If α > 1, relation (2.3) yields (5.12). If α < 1, Theorem
5.2.2 implies∫

Ω
(− ln r)αF ∗2(x,Du) dvF ≥

(1− α)2

4

∫
Ω

(− ln r)α
u2

(r ln r)2
F ∗2(x,−Dr) dvF ,

for every u ∈ C∞0 (Ω). Applying relation (5.10) completes the proof.

In particular, setting α = 0 and Ω := r−1([0, 1)), and noting that the set {x0} has null
Lebesgue measure yields∫

Ω
F ∗2(x,Du) dvF ≥

1

4r2
F

∫
Ω

u2

(r ln r)2
dvF , ∀u ∈ C∞0 (Ω).

5.3 Gagliardo-Nirenberg inequality and uncertainty principle
on Finsler manifolds

In the following we present a generalization of Lemma 5.2.1, which induces a weighted
Gagliardo-Nirenberg inequality and a Heisenberg-Pauli-Weyl uncertainty principle. In the
remainder of this section let (M,F ) be a forward complete Finsler manifold and Ω ⊂ M

an open set.

Lemma 5.3.1. Let X ∈ L1
loc(Ω) be a vector field on Ω and fX ∈ L1

loc(Ω) a nonnegative
function such that fX ≤ −divX and F 2(X)

fX
∈ L1

loc(Ω). Then we have∫
Ω
|u|sF q(x,X) dvF ≤

≤ 4
1
p

(∫
Ω

F 2(x,X)

fX
F ∗2(x,Du) dvF

) 1
p

(∫
Ω

F qp
′
(x,X)

fp
′−1
X

|u|
ps−2
p−1 dvF

) 1
p′

, (5.13)

for every function u ∈ C∞0 (Ω) and every real numbers q ∈ R, s > 0 and p, p′ > 1 such that
1
p + 1

p′ = 1.
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Proof. By applying the Hölder inequality and Lemma 5.2.1, we get∫
Ω
|u|sF q(x,X) dvF =

∫
Ω
|u|

2
p f

1
p

X F q(x,X) f
− 1
p

X |u|
s− 2

p dvF

≤
(∫

Ω
|u|2fX dvF

) 1
p

(∫
Ω
F qp

′
(x,X) f

− p
′
p

X |u|p
′(s− 2

p
)

dvF

) 1
p′

≤ 4
1
p

(∫
Ω

F 2(x,X)

fX
F ∗2(x,Du) dvF

) 1
p

(∫
Ω

F qp
′
(x,X)

fp
′−1
X

|u|
ps−2
p−1 dvF

) 1
p′

,

where 1
p + 1

p′ = 1.

Let us define the function w : Ω→ R, w(x) = F (x,X)√
fX(x)

.

Choosing p = 1 + 2
tz , t, z > 0 in (5.13) yields

(∫
Ω
|u|sF q(x,X) dvF

) 1
s

≤ 2
q
s

(∫
Ω
w2F ∗2(x,Du) dvF

) r
2
(∫

Ω
wtz|u|z dvF

) 1−r
z

, (5.14)

for all u ∈ C∞0 (Ω), where

1

s
=
r

2
+

1− r
z

,
1

q
=

1

2
+

1

tz
, and r =

t

1 + t
∈ (0, 1),

while setting q = 0 in (5.13) implies

∫
Ω
|u|sdvF ≤ 4

1
p

(∫
Ω
w2F ∗2(x,Du) dvF

) 1
p

(∫
Ω

1

fp
′−1
X

|u|
ps−2
p−1 dvF

) 1
p′

, (5.15)

for every u ∈ C∞0 (Ω), where s > 0 and p, p′ > 1 such that 1
p + 1

p′ = 1.
As before, the proper choice of X and fX in relations (5.14) and (5.15) implies a

Gagliardo-Nirenberg inequality and an uncertainty principle. More specifically, by defining
X and fX as in the proof of Theorem 5.2.2 (see relation (5.2)) and setting θ = 0, we obtain
that w2 = 1, thus inequalities (5.14) and (5.15) yield the following theorems.

Theorem 5.3.2. Let ρ ∈W 1,2
loc (Ω) be a nonnegative function such that ρ is superharmonic

on Ω in weak sense. If q ∈ R, s, z > 0 and r ∈ (0, 1), then

(∫
Ω
|u|sF

∗q(x,Dρ)

ρq
dvF

) 1
s

≤ 2
q
s

(∫
Ω
F ∗2(x,Du) dvF

) r
2
(∫

Ω
|u|z dvF

) 1−r
z

for every u ∈ C∞0 (Ω), where

1

s
=
r

2
+

1− r
z

and
1

q
=

1

2
+

1− r
rz

.
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Theorem 5.3.3. Let ρ ∈W 1,2
loc (Ω) be a nonnegative function such that ρ is superharmonic

on Ω in weak sense. Let s > 0 and p, p′ > 1 such that 1
p + 1

p′ = 1. Then for every
u ∈ C∞0 (Ω) we have

∫
Ω
|u|s dvF ≤ 4

1
p

(∫
Ω
F ∗2(x,Du) dvF

) 1
p

(∫
Ω

ρ2(p′−1)

F ∗2(p′−1)(x,Dρ)
|u|

ps−2
p−1 dvF

) 1
p′

.

On the one hand, taking q = 1 and s = 2 in Theorem 5.3.2 yields r = 1
2 and z = 2,

thus we obtain the following weighted Gagliardo-Nirenberg inequality:

Corollary 5.3.4. Let ρ ∈W 1,2
loc (Ω) be a nonnegative function such that ρ is superharmonic

on Ω in weak sense. Then∫
Ω
u2F

∗(x,Dρ)

ρ
dvF ≤ 2

(∫
Ω
F ∗2(x,Du) dvF

) 1
2
(∫

Ω
u2 dvF

) 1
2

, ∀u ∈ C∞0 (Ω).

On the other hand, setting p = s = 2 in Theorem 5.3.3 implies the following weighted
Heisenberg-Pauli-Weyl uncertainty principle:

Corollary 5.3.5. Let ρ ∈W 1,2
loc (Ω) be a nonnegative function such that ρ is superharmonic

on Ω in weak sense. Then∫
Ω
u2 dvF ≤ 2

(∫
Ω
F ∗2(x,Du) dvF

) 1
2
(∫

Ω
u2 ρ2

F ∗2(x,Dρ)
dvF

) 1
2

,∀u ∈ C∞0 (Ω).

Remark 5.3.1. (i) Note that when (M,F ) = (M, g) is a Riemannian manifold, the
Finsler-Laplace operator ∆F and the gradient ∇F reduce to the Laplace-Beltrami
operator ∆g and the Riemannian gradient operator ∇g. Furthermore, by the Riesz
representation theorem, one can identify the tangent space TxM with its dual space
T ∗xM , and the Finsler metrics F and F ∗ reduce to the norm | · |g induced by the
Riemannian metric g. Therefore, the results presented in Section 5.2 and 5.3 extend
the functional inequalities obtained by D’Ambrosio and Dipierro [38] to the class of
forward complete, not necessarily reversible Finsler manifolds.

(ii) Let (M,F ) = (Rn, e) be the standard n-dimensional Euclidean space. If we de-
fine the weight function to be the Euclidean norm, i.e., ρ(x) = |x|, then we have
|∇ρ(x)| = 1, ∀x ∈ Rn \ {0}, hence Corollaries 5.3.4 and 5.3.5 coincide with the
classical Gagliardo-Nirenberg inequality and the Heisenberg-Pauli-Weyl uncertainty
principle in the Euclidean setting.
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5.4 Bipolar Hardy inequality on Finsler manifolds

One of the most challenging directions of extension regarding the classical Hardy inequality
(5.1) is the study of so-called multipolar Hardy inequalities. Such problems are motivated
by their application in molecular physics, quantum cosmology and combustion models, see,
Bosi, Dolbeault, and Esteban [21], Felli, Marchini, and Terracini [51], Guo, Han, and Niu
[60] and references therein.

The optimal multipolar counterpart of the unipolar inequality (5.1) in the case p = 2

on the n-dimensional Euclidean space was given by Cazacu and Zuazua [32], namely∫
Rn
|∇u|2dx ≥ (n− 2)2

m2

∑
1≤i<j≤m

∫
Rn

∣∣∣∣ x− xi|x− xi|2
− x− xj
|x− xj |2

∣∣∣∣2u2dx, ∀u ∈ C∞0 (Rn),

(5.16)
where x1, . . . , xm ∈ Rn represent pairwise distinct poles, m ≥ 2, n ≥ 3, and the constant
(n−2)2

m2 is sharp.
This result was extended to complete Riemannian manifolds by Faraci, Farkas, and

Kristály [48], as follows. Let (M, g) be an n-dimensional complete Riemannian manifold
with n ≥ 3, and consider the set of pairwise distinct poles {x1, . . . , xm} ⊂ M , m ≥ 2.
Then the following multipolar Hardy inequality holds:∫

M
|∇gu|2gdvg ≥

(n− 2)2

m2

∑
1≤i<j≤m

∫
M

∣∣∣∣∇gdidi
− ∇gdj

dj

∣∣∣∣2
g

u2dvg

+
n− 2

m

m∑
i=1

∫
M

di∆gdi − (n− 1)

d2
i

u2dvg, ∀u ∈ C∞0 (M), (5.17)

where di := dg(xi, ·) denotes the Riemannian distance from the pole xi ∈ M , i = 1,m. In
addition, the constant (n−2)2

m2 is sharp in the bipolar case, i.e., when m = 2.
Regarding the role of the last term in inequality (5.17), a few remarks are in order (for

the full analysis see Faraci, Farkas, and Kristály [48]):

• if the Ricci curvature of the manifold satisfies Ric(M,g) ≥ c0(n− 1)g for some c0 > 0,
then it can be proved that the term in question is negative. Therefore, the last
expression suitably modifies the counterpart of the flat setting given by (5.16) in
order to hold true on positively curved spaces.

• in the negatively curved case, by using the Laplace comparison principle given by
Theorem 2.8.1, one can prove that the last term in (5.17) provides stronger inequality
when stronger curvature assumption is given.

• if (M, g) = (Rn, e) is chosen to be the standard n-dimensional Euclidean space, then
di(x) = |x − xi|, for all x ∈ Rn, where | · | denotes the Euclidean norm. Hence, the
last expression in (5.17) vanishes, and we obtain (5.16).
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In the spirit of these studies, the purpose of this section is to investigate multipolar
Hardy inequalities on complete, not necessarily reversible Finsler manifolds. Once again, we
arrive to the conclusion that the obtained results are strongly influenced by the geometric
properties of the given Finsler structure, expressed in terms of the reversibility constant
rF and uniformity constant lF .

Our first result reads as follows.

Theorem 5.4.1. Let (M,F ) be a complete n-dimensional Finsler manifold with n ≥ 3 and
lF > 0, and consider the set of pairwise distinct poles {x1, . . . , xm} ⊂ M , where m ≥ 2.
Then (

2−
l2F
r2
F

)∫
M
F ∗2(Du)dvF ≥ (lF − 2)

(n− 2)2

m2

∫
M
F ∗2

( m∑
i=1

Ddi
di

)
u2dvF

+ lF
n− 2

m

∫
M

div
(
J∗
( m∑
i=1

Ddi
di

))
u2dvF (5.18)

holds for every nonnegative function u ∈ C∞0 (M), where di(x) := dF (x, xi) denotes the
Finslerian distance from the point x to the pole xi, i = 1,m.

Proof. First, let us remark that the condition lF > 0 implies the fact that rF < ∞, see
Section 2.5. We start by deducing some relations which will be necessary for our arguments.
For any x ∈M and α, β ∈ T ∗xM , we have the following inequalities:

• by applying (2.2) for t = 1
2 , we obtain

F ∗2(x, α+ β) ≤ 2F ∗2(x, α) + 2F ∗2(x, β)− lFF ∗2(x, β − α). (5.19)

• due to the strict convexity of F ∗2, one can derive that

F ∗2(x, β − α) ≥ F ∗2(x, β)− 2α(J∗(x, β)) + lFF
∗2(x,−α). (5.20)

• since rF <∞, we have

F ∗(x,−α) ≥ F ∗(x, α)

rF
. (5.21)

Combining relations (5.19) − (5.21) yields

F ∗2(x, α+ β) ≤
(

2−
l2F
r2
F

)
F ∗2(x, α) + (2− lF )F ∗2(x, β) + 2lF α(J∗(x, β)), (5.22)

for all x ∈M and α, β ∈ T ∗xM .
Now consider the pairwise distinct poles x1, . . . , xm ∈ M where m ≥ 2, and let di :=

dF (·, xi) denote the Finslerian distance to the pole xi, i = 1,m. Also, let u ∈ C∞0 (M) be
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a nonnegative function on M . Applying (5.22) with the choices

α = Du and β =
n− 2

m
u

m∑
i=1

Ddi
di

,

then integrating over M results in

0 ≤
∫
M
F ∗2

(
Du+

n− 2

m
u

m∑
i=1

Ddi
di

)
dvF

≤
(

2−
l2F
r2
F

)∫
M
F ∗2(Du)dvF + (2− lF )

(n− 2)2

m2

∫
M
F ∗2

( m∑
i=1

Ddi
di

)
u2dvF

+ lF
n− 2

m

∫
M
D(u2)

(
J∗
( m∑
i=1

Ddi
di

))
dvF .

Using the divergence theorem (2.4) completes the proof.

Remark 5.4.1. Note that Theorem 5.4.1 represents indeed the Finslerian counterpart of
the Riemannian inequality (5.17).

When (M,F ) = (M, g) is a Riemannian manifold, we have lF = rF = 1, while the
operators ∇F and ∆F coincide with ∇g and ∆g, respectively. Moreover, the tangent space
TxM and its dual space T ∗xM can be identified, and the Finsler metrics F and F ∗ are
in fact the norm | · |g associated to the Riemannian metric g. Thus the Hardy inequality
(5.18) reduces to the following expression:∫

M
|∇gu|2gdvg ≥ −

(n− 2)2

m2

∫
M

∣∣∣∣ m∑
i=1

∇gdi
di

∣∣∣∣2
g

u2dvg +
n− 2

m

m∑
i=1

∫
M

div
(∇gdi

di

)
u2dvg.

(5.23)

Now we expand the first term of the right hand side. First of all, by using the eikonal
equation (2.3), one has∣∣∣∣∇gdidi

− ∇gdj
dj

∣∣∣∣2
g

=
1

d2
i

+
1

d2
j

− 2
g(∇gdi,∇gdj)

didj
,

for every i, j ∈ {1, . . . ,m}.
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Then, using the ’expansion of the square’ method and the eikonal equation again, we
obtain ∣∣∣∣ m∑

i=1

∇gdi
di

∣∣∣∣2
g

=

m∑
i,j=1

g

(
∇gdi
di

,
∇gdj
dj

)

=

m∑
i=1

1

d2
i

+ 2
∑

1≤i<j≤m

g(∇gdi,∇gdj)
didj

= m
m∑
i=1

1

d2
i

−
∑

1≤i<j≤m

∣∣∣∣∇gdidi
− ∇gdj

dj

∣∣∣∣2
g

.

On the other hand, considering the second term of the right hand side of (5.23), we
have

div
(∇gdi

di

)
=
di∆gdi − 1

d2
i

, for all i = 1,m.

Substituting the expressions above, then rearranging the terms yields that (5.23) is
equivalent to relation (5.17).

Therefore, Theorem 5.4.1 extends the multipolar Hardy inequality obtained by Faraci,
Farkas, and Kristály [48, Theorem 1.1] to the class of complete Finsler manifolds, provided
that the uniformity constant lF is nonzero.

Applying Theorem 5.4.1 by choosing m = 2 results in the following bipolar Hardy
inequality:

Theorem 5.4.2. Let (M,F ) be a complete n-dimensional Finsler manifold with n ≥ 3

and lF > 0. If x1, x2 ∈M,x1 6= x2, then∫
M
F ∗2(Du)dvF ≥

lF (2− lF )

2−
(
lF
rF

)2 (n− 2)2

4

∫
M
F ∗2

(Dd2

d2
− Dd1

d1

)
u2dvF

+
lF

2−
(
lF
rF

)2 n− 2

2

∫
M

div

(
J∗
(Dd1

d1
+
Dd2

d2

))
u2dvF

− 2− lF
2−

(
lF
rF

)2 (n− 2)2

2

∫
M

( 1

d2
1

+
1

d2
2

)
u2dvF (5.24)

holds for every nonnegative function u ∈ C∞0 (M).

Proof. Let x1, x2 ∈ M be two distinct poles and d1, d2 : M → [0,∞) the associated
distance functions. By using (5.19) and the eikonal equation (2.3), we obtain

F ∗2
(
x,
Dd1

d1
+
Dd2

d2

)
≤ 2

(
1

d2
1

+
1

d2
2

)
− lFF ∗2

(
x,
Dd2

d2
− Dd1

d1

)
, (5.25)

for a.e. x ∈ M . Applying Theorem 5.4.1 in the case m = 2, then using the inequality
above completes the proof .
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Remark 5.4.2. The proof of an expanded form of inequality (5.18) appears to be a
difficult problem to solve. This can be contributed to the fact that the Legendre transform
J∗ associated to the Finsler metric F is usually not linear. Furthermore, the ’expansion
of the square’ method cannot be applied due to the lack of an appropriate inner product.
Therefore, the sensible approach is to use suitable estimates, such as inequality (2.2) or
(5.25), but such approximations do not produce the desired results in the multipolar case.
Nevertheless, to our knowledge Theorems 5.4.1 and 5.4.2 seem to be the first contributions
considering multipolar Hardy inequalities in the Finslerian setting.

Regarding the role of the constants lF and rF in the previous inequalities, we remark
the following example.

Example 5.4.1. Let (Bn, F ) be the n-dimensional Euclidean open unit ball endowed with
the Funk metric, see Section 3.2.1 or Example 4.5.1. In this case, we have that rF = +∞
and lF = 0 (see relation (3.9)), thus both inequalities (5.18) and (5.24) reduce to trivial
statements. This particular example indicates the importance of the condition lF > 0 in
Theorems 5.4.1 and 5.4.2.
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Chapter 6

Application to partial differential
equations

The primary application of functional inequalities manifests in the theory of partial dif-
ferential equations. When studying different elliptic PDEs and the associated BVPs via
variational methods, the appropriate Sobolev inequalities and embedding results provide
a tool to analyze the energy functional associated with the given problem. This way, one
can verify essential properties of the energy functional such as sequential lower semicon-
tinuity or the Palais–Smale condition. These conditions in turn enable us to prove exis-
tence/uniqueness/multiplicity results by applying certain minimization and/or minimax
arguments, see e.g., Willem [123].

Due to the unusual phenomena which can result from the anisotropic nature of the
Finsler metric, the adaptation of the standard variational methods in the case of Finsler
manifolds requires careful analysis and increased attention. Various elliptic PDEs associ-
ated with the Finsler-Laplace operator have been studied on Minkowski spaces, see Alvino
et al. [6], Farkas, Fodor, and Kristály [49], Ferone and Kawohl [52], as well as on more
general Finsler manifolds, see Farkas, Kristály, and Varga [50], Kristály and Rudas [81]
and Ohta and Sturm [99].

Accordingly, this chapter offers a demonstration of the application of the Sobolev in-
equalities and embeddings proved in Chapters 4 & 5, by presenting a multiplicity result
concerning an elliptic problem defined on a Randers space (M,F ). This chapter is based
on Farkas, Kristály, and Mester [1].

6.1 Elements from the theory of calculus of variations

The theory of calculus of variations pertains to the optimization of functionals. Therefore,
variational methods can be translated to many other fields of science, as several problems
arising in applications can be formulated as a minimization/maximization problem. In
the particular case of PDEs, it can be proved that a weak solution of an elliptic problem
coincides with a minimum point of the so-called energy functional associated to the given
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problem. This idea enables us to treat the PDE from an entirely different perspective, by
using variational approaches.

In the following, without the sake of completeness, we recall some fundamental varia-
tional principles that will be utilized in the applications. For a comprehensive treatment
of the subject, see Kristály, Rădulescu, and Varga [79] or Willem [123].

Let (X, ‖ · ‖) be a real Banach space and X∗ the dual space of X. We start off with
some definitions.

Definition 6.1.1. We say that a sequence (un)n∈N ⊂ X converges weakly to u ∈ X if
lim
n→∞

L(un) = L(u) for every linear functional L ∈ X∗. In this case, we use the notation
un ⇀ u in X.

Definition 6.1.2. A functional f : X → R is said to be sequentially weakly lower semi-
continuous (s.w.l.s.c.) if for every weakly convergent sequence (un)n∈N ⊂ X such that
un ⇀ u in X, one has f(u) ≤ lim inf

n→∞
f(un).

Definition 6.1.3. A functional f : X → R is coercive if for every sequence (un)n∈N ⊂ X

with lim
n→∞

‖un‖ =∞, it follows that lim
n→∞

f(un) =∞.

Definition 6.1.4. A function f ∈ C1(X,R) satisfies the Palais-Smale condition at level
c ∈ R (denoted by (PS)c-condition) if every sequence (un)n∈N ⊂ X satisfying

lim
n→∞

f(un) = c and lim
n→∞

‖f ′(un)‖ = 0

has a convergent subsequence.
We say that f ∈ C1(X,R) satisfies the Palais-Smale condition (shortly, (PS)-condition)

if it satisfies the Palais-Smale condition at every level c ∈ R.

Combining the Palais-Smale condition with Ekeland’s variational principle (see Ekeland
[46]) one can obtain the following fundamental critical point result:

Theorem 6.1.1. (Willem [123, Corollary 2.5]) Let (X, ‖ · ‖) be a Banach space and f ∈
C1(X,R) be bounded from below. If f satisfies the (PS)c-condition at level c = infX f ,
then c is a critical value of f, i.e., there exists a point u ∈ X such that f(u) = c and
f ′(u) = 0.

Another key critical point result is the celebrated mountain pass theorem, whose orig-
inal version can be formulated as follows.

Theorem 6.1.2. (Ambrosetti and Rabinowitz [7]) Let (X, ‖ · ‖) be a Banach space and
f ∈ C1(X,R). Suppose that

inf
‖u−u0‖=ρ

f(u) ≥ α > max{f(u0), f(u1))}
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for some α ∈ R and u0 6= u1 ∈ X with 0 < ρ < ‖u0−u1‖. If f satisfies the (PS)c-condition
at level

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = u0 and γ(1) = u1},

then c is a critical value of f with c ≥ α.

The next theorems concern multiplicity results à la Ricceri [104, 105]. We first remark
the well-known three critical points theorem of Pucci and Serrin [100], which is in fact a
consequence of a mountain pass-type result.

Theorem 6.1.3. (Pucci and Serrin [100]) Let (X, ‖ · ‖) be a Banach space. If a function
f ∈ C1(X,R) satisfies the (PS)-condition and it has two different local minimum points,
then f has at least three distinct critical points.

Regarding the stability of the previous three critical points, the following result can be
formulated.

Theorem 6.1.4. (Ricceri [105]) Let (X, ‖ · ‖) be a separable and reflexive real Banach
space, and let Φ,Ψ : X → R be two continuously Gâteaux differentiable functionals such
that Φ is sequentially weakly lower semi-continuous and its Gâteaux derivative admits a
continuous inverse on X∗, while the Gâteaux derivative of Ψ is compact. Let I ⊆ R be an
interval such that

lim
‖u‖→∞

(Φ(u)− λΨ(u)) = +∞

for all λ ∈ I. Furthermore, assume that there exists a continuous concave function h : I →
R such that

sup
λ∈I

inf
u∈X

(Φ(u)− λΨ(u) + h(λ)) < inf
u∈X

sup
λ∈I

(Φ(u)− λΨ(u) + h(λ)).

Then, there exists an open interval J ⊆ I and a number µ > 0, such that for each λ ∈ J ,
the equation Φ′(u)− λΨ′(u) = 0 admits at least three distinct solutions in X whose norms
are less than µ.

A refinement of the previous theorem is given by the following critical point result of
Bonanno [20].

Theorem 6.1.5. (Bonanno [20]) Let (X, ‖ · ‖) be a separable and reflexive real Banach
space, and let Φ,Ψ : X → R be two continuously Gâteaux differentiable functionals such
that Φ(u) ≥ 0 for every u ∈ X. Furthermore, assume that there exist u0, u1 ∈ X and ρ > 0

such that

(1) Φ(u0) = Ψ(u0) = 0,
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(2) ρ < Φ(u1),

(3) sup
Φ(u)<ρ

Ψ(u) < ρ
Ψ(u1)

Φ(u1)
.

Further, put

a = ζρ

(
ρ

Ψ(u1)

Φ(u1)
− sup

Φ(u)<ρ
Ψ(u)

)−1

,

where ζ > 1, and assume that the functional Φ − λΨ is sequentially weakly lower semi-
continuous, satisfies the (PS)-condition, and

(4) lim
‖u‖→∞

(Φ(u)− λΨ(u)) = +∞ for every λ ∈ [0, a].

Then, there exists an open interval J ⊂ [0, a] and a number µ > 0, such that for each
λ ∈ J , the equation Φ′(u)− λΨ′(u) = 0 admits at least three distinct solutions in X whose
norms are less than µ.

The next section demonstrates the application of the above variational principle by
giving a multiplicity result for an elliptic PDE on a Randers space.

6.2 Multiple solutions for an elliptic PDE on Randers spaces

In this section let us consider a complete, n-dimensional Randers space (M,F ) with the
Finsler structure F : TM → R,

F (x, v) =
√
gx(v, v) + βx(v), (x, v) ∈ TM, (6.1)

where g is a Riemannian metric and βx is a 1-form onM . Recall that |βx|g =
√
g∗x(βx, βx) <

1, for every x ∈M , where g∗ is the co-metric of g.
We consider the following parameter-dependent elliptic problem, where the leading

term is given by the p-Finsler-Laplace operator ∆F,p, i.e.,−∆F,pu(x) = λα(x)h(u(x)), x ∈M,

u ∈W 1,p
F (M),

(Pλ)

where n < p < ∞, λ is a positive parameter, α ∈ L1(M) ∩ L∞(M), and h : R → R is

a continuous function. For each s ∈ R, let H(s) =

s∫
0

h(t) dt. We assume the following

properties:

(A1) there exists s0 > 0 such that H(s) > 0, ∀s ∈ (0, s0];

(A2) there exist C > 0 and 1 < w < p such that |h(s)| ≤ C(1 + |s|w−1), ∀s ∈ R;
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(A3) there exists q > p such that

lim sup
s→0

H(s)

|s|q
<∞.

Then we can prove the following multiplicity result regarding problem (Pλ):

Theorem 6.2.1. Let (M,F ) be an n-dimensional Randers space endowed with the Finsler
metric (6.1) such that a := sup

x∈M
|βx|g < 1 and g is a Riemannian metric, where (M, g)

is a Hadamard manifold with sectional curvature bounded above by −κ2, κ > 0. Suppose
that G is a compact connected subgroup of IsomF (M) such that FixM (G) = {x0} for some
x0 ∈ M . Let n < p < ∞ and λ > 0 a parameter. If h : R → R is a continuous function
verifying (A1) − (A3) and α ∈ L1(M)∩L∞(M) is a nonzero, nonnegative function which
depends on dF (x0, ·) and satisfies

sup
R>0

essinf
dF (x0,x)≤R

α(x) > 0,

then there exists an open interval Λ ⊂ [0, λ∗] and a number µ > 0, such that for every
λ ∈ Λ, problem (Pλ) admits at least three distinct solutions in W 1,p

F,G(M) having W 1,p
F (M)-

norms less than µ.

The proof is based on variational arguments, combining the compact embedding from
Theorem 4.5.1 with the multiplicity result of Theorem 6.1.5. We divide the proof into
several steps.

First, by Dirichlet’s principle, one can associate the energy functional with problem
(Pλ) for every λ > 0 , namely

Eλ : W 1,p
F (M)→ R, Eλ(u) = Φ0(u)− λΨ0(u),

where Φ0,Ψ0 : W 1,p
F (M)→ R,

Φ0(u) =
1

p

∫
M
F ∗p(x,Du(x)) dvF (x) and Ψ0(u) =

∫
M
α(x)H(u(x)) dvF (x).

The functional Eλ is well-defined and of class C1 on W 1,p
F (M). Furthermore, we have that

E′λ(u)(v) =

∫
M
Dv(∇Fu)(x)F ∗p−2(x,Du(x)) dvF (x)− λ

∫
M
α(x)h(u(x))v(x) dvF (x),

for all u, v ∈ W 1,p
F (M). Hence, it turns out that E′λ(u) = 0 if and only if u ∈ W 1,p

F (M) is
a weak solution of the problem (Pλ). Therefore, it suffices to study the critical points of
the functional Eλ.

Since (M,F ) is a Randers space with sup
x∈M
|βx|g < 1, the reversibility constant rF is

finite, see (3.4). Then, by Theorem 2.7.1, we have that W 1,p
F (M) forms a separable and
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reflexive Banach space with the associated symmetric norm ‖ · ‖
W 1,p
Fs

(M)
, while the norms

‖ · ‖
W 1,p
F (M)

and ‖ · ‖
W 1,p
Fs

(M)
are equivalent, see Section 2.7.

In order to apply Theorem 6.1.5, we need some auxiliary results. First, we study the
properties of the energy functional Eλ.

Lemma 6.2.2. Under the conditions of Theorem 6.2.1, the functional Eλ is coercive and
bounded below.

Proof. Using a McKean-type inequality on the Riemannian manifold (M, g) (see for in-
stance Yin and He [127, Theorem 0.6]), we have that

λp1,g(M) := inf
u∈W 1,p

g (M)\{0}

∫
M
|∇gu|pdvg∫
M
|u|p dvg

≥
(

(n− 1)κ

p

)p
,

which yields that∫
M
|∇gu|pdvg ≥

(n− 1)pκp

pp + (n− 1)pκp
‖u‖p

W 1,p
g (M)

, ∀u ∈W 1,p
g (M).

Using (4.22), (4.24), and denoting c(n, a, p, κ) := (1−a2)(n+1)/2

(1+a)p · (n−1)pκp

pp+(n−1)pκp , we obtain that∫
M
F ∗p(x,Du(x)) dvF (x) ≥ c(n, a, p, κ)‖u‖p

W 1,p
g (M)

, ∀u ∈W 1,p
g (M). (6.2)

From (A2), it follows that there exist C, c∞ > 0 and 1 < w < p such that

Eλ(u) ≥ c(n, a, p, κ)

p
‖u‖p

W 1,p
g (M)

− λC‖α‖L1(M)

(
c∞‖u‖W 1,p

g (M)
+ cw∞‖u‖wW 1,p

g (M)

)
,

for every u ∈W 1,p
g (M). Since p > w, the claim clearly follows.

Lemma 6.2.3. Under the conditions of Theorem 6.2.1, we have that Eλ is G-invariant,
i.e., for every ξ ∈ G and u ∈W 1,p

F (M) one has Eλ(ξu) = Eλ(u).

Proof. We start with the G-invariance of the functional Φ0. Since (ξu)(x) = u(ξ−1x), by
the chain rule, one has

p · Φ0(ξu) =

∫
M
F ∗p(x,D(ξu)(x)) dvF (x)

=

∫
M
F ∗p(x,D(u(ξ−1x))) dvF (x)

=

∫
M
F ∗p(x,Du(ξ−1x)dξ−1

x ) dvF (x)

=

∫
M
F ∗p(ξy,Du(y)dξ−1

ξy ) dvF (ξy), (6.3)
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where in the last step we used a change of variable ξ−1x = y. First, since ξ ∈ G, it follows
that dVF (ξy) = dVF (y). On the other hand, due to Deng and Hou [41], we have that

F (ξx, dξx(v)) = F (x, v),

for every ξ ∈ G, x ∈ M and v ∈ TxM . Then, by the definition of the polar transform, we
have that

F ∗(ξy,Du(y)dξ−1
ξy ) = sup

w∈TξyM\{0}

(
Du(y)dξ−1

ξy

)
(w)

F (ξy, w)
(w := dξy(z), z ∈ TyM)

= sup
z∈TyM\{0}

Du(y)dξ−1
ξy (dξy(z))

F (ξy, dξy(z))
= sup

z∈TyM\{0}

Du(y)(z)

F (y, z)

= F ∗(y,Du(y)). (6.4)

Combining (6.3) and (6.4), we get the desired G-invariance of the functional Φ0.
Now, for the functional Ψ0, we can write

Ψ0(ξu) =

∫
M
α(x)H((ξu)(x)) dvF (x)

=

∫
M
α(x)H(u(ξ−1x)) dvF (x) (y := ξ−1x)

=

∫
M
α(ξy)H(u(y)) dvF (ξy).

Since FixM (G) = {x0} and α ∈ L1(M) ∩ L∞(M) depends on dF (x0, ·), it follows that for
every ξ ∈ G and u ∈W 1,p

F (M), we have Ψ0(ξu) = Ψ0(u), which concludes the proof.

Having in our mind Theorems 4.5.1 and 6.1.5, we restrict the energy functional Eλ to
the space W 1,p

F,G(M). Since G is a compact connected subgroup of IsomF (M), W 1,p
F,G(M)

forms a closed linear subspace of W 1,p
F (M), see Kobayashi and Ôtani [68]. Therefore,

W 1,p
F,G(M) turns out to be a separable and reflexive Banach space as well. For simplicity,

in the following we use the notations

Eλ := Eλ|W 1,p
F,G(M)

, Φ := Φ0|W 1,p
F,G(M)

and Ψ := Ψ0|W 1,p
F,G(M)

.

Since Eλ is G-invariant, the principle of symmetric criticality of Palais (see Kobayashi
and Ôtani [68] and Kristály, Rădulescu, and Varga [79, Theorem 1.50]) implies that the
critical points of Eλ are also critical points of the original functional Eλ. Therefore, it is
enough to find critical points of Eλ.

Lemma 6.2.4. Under the assumptions of Theorem 6.2.1, Eλ satisfies the Palais–Smale
condition on W 1,p

F,G(M).
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Proof. Let (uk)k be a sequence in W 1,p
F,G(M) such that the sequence (Eλ(uk))k is bounded

and ‖E ′λ(uk)‖∗ → 0 when k → ∞. Since Eλ is coercive, the sequence (uk)k is bounded in
W 1,p
F,G(M). Therefore, up to a subsequence, uk ⇀ u in W 1,p

F,G(M) for some u ∈ W 1,p
F,G(M).

Hence, due to Theorem 4.5.1 and Theorem 4.3.3, it follows that uk → u strongly in L∞(M).
In particular, we have that

E ′λ(u)(u− uk)→ 0 and E ′λ(uk)(u− uk)→ 0 as k →∞. (6.5)

On the one hand, it is easy to verify that∫
M

(Du(x)−Duk(x))
(
∇Fu(x)F ∗p−2(x,Du(x))−∇Fuk(x)F ∗p−2(x,Duk(x))

)
dvF (x)

= E ′λ(u)(u− uk)− E ′λ(uk)(u− uk) + λ

∫
M
α(x)[h(uk)− h(u)](uk(x)− u(x)) dvF (x).

On the other hand, we have∣∣∣∣∫
M
α(x)[h(uk)− h(u)](uk(x)− u(x)) dvF (x)

∣∣∣∣ ≤
≤ 2‖α‖L1(M) ·max{|h(s)| : |s| ≤ ‖u‖L∞(M) + 1}‖uk − u‖L∞(M). (6.6)

The mean value theorem implies that for all x ∈M ,

(Du(x)−Duk(x))(∇Fu(x)F ∗p−2(x,Du(x))−∇Fuk(x)F ∗p−2(x,Duk(x)))

≥ lFF ∗p(x,Du(x)−Duk(x)),

where lF is the uniformity constant associated to F (see (3.5)). Since (M,F ) is a Randers
space with sup

x∈M
|βx|g < 1, it follows that lF > 0, therefore uk → u in W 1,p

F,G(M), which

proves the claim.

Lemma 6.2.5. Under the assumptions of Theorem 6.2.1, the functional Eλ is sequentially
weakly lower semi-continuous.

Proof. Since Φ is a norm-type functional, it follows that Φ is sequentially weakly lower semi-
continuous. Therefore, it suffices to prove that Ψ is sequentially weakly continuous. To
this end, consider a sequence (uk)k in W 1,p

F,G(M) which converges weakly to u ∈W 1,p
F,G(M),

and suppose that
lim
k→∞

Ψ(uk) 6= Ψ(u).

Therefore, due to Theorem 4.5.1 and Theorem 4.3.3, there exist ε > 0 and a subsequence
of (uk)k, denoted by (um)m, such that um → u in L∞(M) and

0 < ε ≤ |Ψ(um)−Ψ(u)|, for every m ∈ N.
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Thus, by the mean value theorem (see also (6.6)), for each m ∈ N there exists θm ∈ (0, 1)

such that

0 < ε ≤
∣∣Ψ′(u+ θm(um − u))(um − u)

∣∣
≤
∫
M
α(x)

∣∣h(u(x) + θm(um(x)− u(x)))
∣∣ · |um(x)− u(x)| dvF (x)

≤ ‖α‖L1(M) max{|h(s)| : |s| ≤ ‖u‖L∞(M) + 1} · ‖um − u‖L∞(M).

Note that the last term tends to 0, which yields a contradiction.

Now, we are in the position to prove Theorem 6.2.1.

Proof of Theorem 6.2.1. Let s0 > 0 be given by condition (A1). Recall that

sup
R>0

essinf
dF (x0,x)≤R

α(x) > 0,

thus we may choose an R > 0 such that αR := essinf
dF (x0,x)≤R

α(x) > 0. Then, for a fixed

r < R
1− a
1 + a

, where 0 ≤ a = sup
x∈M
|βx|g < 1, let us define the function us0,R,r : M → R,

us0,R,r =


0, x ∈M \BF (x0, R);

s0
R−r (R− dF (x0, x)), x ∈ BF (x0, R) \BF (x0, r);

s0, x ∈ BF (x0, r).

Since a < 1, recall that the reversibility constant of (M,F ) is rF < ∞, see (3.4).
Therefore, by the eikonal identity (2.3), we have that 1

rF
≤ F ∗(x,−DdF (x0, x)) ≤ rF .

Hence, it follows that(
s0

R− r

)p 1

rpF

(
VolF (BF (x0, R))−VolF (BF (x0, r))

)
≤
∫
M
F ∗p(x,Dus0,R,r(x)) dvF (x)

≤
(

s0

R− r

)p
rpFVolF (BF (x0, R)).

Since 0 ≤ us0,R,r(x) ≤ s0, for all x ∈M , using hypothesis (A1) yields that

Ψ(us0,R,r) =

∫
M
α(x)H(us0,R,r(x)) dvF (x) =

∫
BF (x0,R)

α(x)H(us0,R,r(x)) dvF (x)

≥
∫
BF (x0,r)

α(x)H(us0,R,r(x)) dvF (x) = H(s0)αRVolF (BF (x0, r)) > 0.

On the one hand, by (A3), we may fix s1 ∈ (0, 1] and C1 > 0 such that

H(s) ≤ C1|s|q, whenever |s| < s1.
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On the other hand, by (A2), we have that

|H(s)| ≤ C(1 + |s|w−1)|s| ≤ C 1 + sw−1
1

sq−1
1

|s|q, for all |s| ≥ s1.

Choosing C2 = max

{
C1, C

1+sw−1
1

sq−1
1

}
, we obtain that

H(s) ≤ C2|s|q, ∀s ∈ R.

Therefore,

Ψ(u) =

∫
M
α(x)H(u(x)) dvF (x) ≤ C2‖α‖L1(M)c

q
∞‖u‖

q

W 1,p
g (M)

(6.7)

for some c∞ > 0. Now, we claim that

lim sup
ρ→0

sup

{
Ψ(u) :

∫
M
F ∗p(x,Du(x)) dvF (x) < pρ

}
ρ

≤ 0. (6.8)

To prove the previous assertion, first observe that by (6.2), we have that

sup

{
Ψ(u) :

∫
M
F ∗p(x,Du(x)) dvF (x) < pρ

}
ρ

≤
sup

{
Ψ(u) : c(n, a, p, κ)‖u‖p

W 1,p
g (M)

< pρ

}
ρ

.

By applying (6.7), it follows that

sup

{
Ψ(u) : c(n, a, p, κ)‖u‖p

W 1,p
g (M)

< pρ

}
ρ

<
C2‖α‖L1(M)c

q
∞
(

pρ
c(n,a,p,κ)

) q
p

ρ
→ 0

when ρ→ 0, where we used the fact that q > p, thus relation (6.8) holds.
Then, we may choose ρ0 > 0 such that

ρ0 <
1

p
c(n, a, p, κ)‖us0,R,r‖

p

W 1,p
g (M)

≤ 1

p

∫
M
F ∗p(x,Dus0,R,r(x)) dvF (x),

and
sup

{
Ψ(u) :

∫
M
F ∗p(x,Du(x)) dvF (x) < pρ0

}
ρ0

<
Ψ(us0,R,r)

Φ(us0,R,r)
.

Now we shall apply Theorem 6.1.5 to the functionals Φ,Ψ : W 1,p
F,G(M)→ R. Let u0 = 0,

u1 = us0,R,r and ρ = ρ0. First, observe that the conditions (1), (2) and (3) of Theorem
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6.1.5 are satisfied. Furthermore, define

a = (1 + ρ0)

(
Ψ(us0,R,r)

Φ(us0,R,r)
− sup {Ψ(u) : Φ(u) < ρ0}

ρ0

)−1

.

Taking into account Lemmas 6.2.2, 6.2.4 and 6.2.5, we obtain that all the assumptions
of Theorem 6.1.5 are verified. Thus, there exists an open interval Λ ⊂ [0, a] and a number
µ > 0, such that for each λ ∈ Λ, the equation E ′λ(u) = Φ′(u)− λΨ′(u) = 0 admits at least
three distinct solutions in W 1,p

F,G(M) having W 1,p
F (M)-norms less than µ. By the principle

of symmetric criticality, this concludes the proof.
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Chapter 7

Summary

In this chapter we formulate the theses which describe the main contributions of the present
dissertation.

1 Three isometrical models of Finsler manifolds

Main result: A new isometric model of the Finsler-Poincaré disk.

1.1 Thesis

The Finsler-Poincaré upper half plane introduced by [3] represents the Finslerian Randers-
type generalization of the Riemannian hyperbolic upper half plane.

1.2. Thesis

The Finsler-Poincaré disk model, the 2-dimensional Funk model and the Finsler-Poincaré
upper half plane are isometrically equivalent, see [3]. This isometry result represents
a natural extension of the isometrical equivalence of the Riemannian hyperbolic model
spaces, more precisely, the Riemannian Poincaré disk, the Beltrami-Klein disk and the
Poincaré upper half plane model.

1.3. Thesis

In the case of the Finsler-Poincaré disk, the 2-dimensional Funk model and the Finsler-
Poincaré upper half plane, the first eigenvalue associated to the Finsler-Laplace operator
turns out to be zero, see [3]. This gapless character of the fundamental frequency is in
sharp contrast with the Riemannian spectral gap property proved by McKean [90].
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2 Sobolev-type inequalities without singular terms

Main results: Compact embeddings on noncompact Riemannian manifolds and Randers
spaces.

2.1. Thesis

Given a noncompact complete Riemannian manifold (M, g), we introduce an expansion
condition concerning the action of a compact connected group G which represents a sub-
group of the isometry group of (M, g), see [1]. Then, in the case when (M, g) is either a
Cartan-Hadamard manifold or a manifold with bounded geometry, the previous expansion
condition characterizes the coerciveness of G in the sense of Skrzypczak and Tintarev [111].

2.2. Thesis

If (M, g) is either a Cartan-Hadamard manifold or a Riemannian manifold with bounded
geometry and G is a compact connected subgroup of the isometry group of (M, g), then
compact Berestycki-Lions-type Sobolev embeddings hold for the full range of admissible
parameters (i.e., Sobolev, Moser-Trudinger and Morrey case) whenever the above expan-
sion condition is satisfied, see [1].

2.3. Thesis

Randers spaces with finite reversibility constant inherit similar compact embedding prop-
erties whenever the underlying Riemannian manifold is either Cartan-Hadamard manifold
or has bounded geometry, and the group of isometries G satisfies a similar expansion
condition, see [1]. Moreover, the finiteness of the reversibility constant turns out to be
an indispensable condition for the validity of the continuous Sobolev embeddings. This
property is demonstrated by the counterexample given on the n-dimensional Funk model,
where the continuous Sobolev embeddings fail to hold for each admissible parameter pair,
rendering the compact embeddings unattainable, see [1].

3 Sobolev-type inequalities with singular terms

Main results: Hardy-type inequalities on Finsler manifolds.

3.1. Thesis

If (M,F ) is a forward complete Finsler manifold, then the superharmonicity of a certain
nonnegative weight function ρ provides a sufficient condition for several weighted Hardy-
type inequalities on (M,F ), which form the Finslerian counterparts of the results due to
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D’Ambrosio and Dipierro [38]. In this setting, we obtain − among others − a weighted
Hardy inequality, a weighted Gagliardo-Nirenberg inequality and a weighted Heisenberg-
Pauli-Weyl uncertainty principle, see [4].

3.2. Thesis

In the case of a Finsler-Hadamard manifold (M,F ) with finite reversibility constant and
vanishing mean covariation, [4] establishes the generalization of the classical Euclidean
Hardy inequality, which features the Finslerian distance function from an arbitrarily fixed
point x0 ∈ M and the reversibility constant of (M,F ). This construction represents the
quantitative version of the inequality given by Zhao [132, Theorem 1.2] and the general-
ization of the result due to Farkas, Kristály, and Varga [50, Proposition 4.1].

3.3. Thesis

Given a complete Finsler manifold with nonzero uniformity constant (thus finite reversibil-
ity constant), in [2] we prove a bipolar Hardy inequality featuring two singularities, which
represents the Finslerian generalization of the Riemannian multipolar inequality proved by
Faraci, Farkas, and Kristály [48] and the Euclidean version due to Cazacu and Zuazua [32];
the constants appearing in the bipolar Hardy inequality are dependent on the reversibility
constant and uniformity constant of (M,F ).

4 Application to partial differential equations

Main result: Multiplicity result concerning an elliptic problem defined on a Randers space
with finite reversibility constant.

4.1. Thesis

The obtained Sobolev-type inequalities provide means for studying elliptic PDEs via vari-
ational methods. In particular, we prove a multiplicity result concerning a quasilinear
problem defined on a Randers space with finite reversibility constant, where the leading
term is given by the p-Finsler-Laplace operator. More precisely, under certain growth
conditions, the studied parameter-dependent quasilinear elliptic PDE has three distinct
solutions for parameters small enough, see [1]. The stability of the solutions is ensured by
a Ricceri-type critical point theorem due to Bonanno [20].
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