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Abstract

This dissertation presents the research work carried out on robot navigation. The
introduction and the conclusion of the study are provided in Chapters 1 and 6, respectively.
Chapter 2 presents scientific methods applied in the research work. Chapter 3 is dedicated
to the robot navigation in known and static environment. The robot navigation in
unknown and dynamic environment has been considered in Chapter 4. In Chapter 5,
advanced algorithms are proposed for the obstacle recognition and obstacle avoidance in
unknown and static environments.

The dissertation has covered the robot-navigation-problem in the three main categories
of the environments in which the robot may navigate.

Firstly, the robot navigation in known and static environment is considered in Chapter
3. In Chapter 3, the A* algorithm is implemented in the global path planner of the robot.
The result obtained from the different heuristic functions has been compared. Further,
the Probabilistic Roadmaps (PRM) technique is used to find an obstacle-free-path from
start to goal.
Secondly, the robot navigation in unknown and dynamic environment is taken into

consideration in Chapter 4. In Chapter 4, an algorithm for obstacle avoidance has been
evolved using the bumper hit events of the robot. Further, robot navigation models are
presented using MATLAB-Simulink. The robot navigation models use fuzzy controllers
for obstacle avoidance during robot navigation. For the fuzzy controllers, appropriate
Fuzzy Inference Systems (FISs) are developed and implemented by using Mamdani and
Sugeno types of FISs.
Thirdly, the robot navigation in unknown and static environment is presented in

Chapter 5. In Chapter 5, the main results are presented by a theses group. The theses
group contains three thesis points (5.4.1−5.4.3). The thesis point in 5.4.1 is based on
the proposed algorithm for obstacle recognition. The thesis point 5.4.2 is obtained from
the proposed advanced algorithm possessing obstacle recognition and obstacle avoidance
features. Finally, the “two sample t-test” is applied, for obstacle recognition and avoidance
in robot navigation, to present the thesis point 5.4.3.

The newly proposed concepts, methods and algorithms are tested on simulated Turtlebot
robot in Gazebo simulator. The experimental results for the real Turtlebot robot has
also been included wherever it was possible. As background information, the related
appendices are provided at the end of the dissertation.
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1. Introduction

1.1. Background of the research

Mobile robots have a wide range of applications like space missions, household and office
work, receiving-delivering orders of clients in restaurants, transportation of logistics in
inventories, inspection and maintenance, agriculture, security and defence, operations in
radioactive areas etc. Mobile robots are very useful in the area where either the task
is boring due to the repetitiveness of the same operations or the working environment
is hazardous for the human being. For mobile robots, the navigation from one location
to the other is one of the most desirable operations [1–4]. On the basis of the available
prior information, the navigation environments can be classified into two major types:
known environment and unknown environment. Further, the navigation environments
may or may not change during the navigation task. Generally, for the navigation point of
view, the navigation environments get changes due to the moving obstacles. Therefore, a
navigation environment is considered as static if the obstacles in the path are static. On
contrast, a navigation environment is dynamic if the obstacles are dynamic. Consequently,
the applicable navigation strategies depend on the type of the navigation environment
[5–7].

The navigation process can be subdivided into two parts: global navigation and local
navigation. The global navigation method is used to find globally optimal path on the
basis of prior information like map of the environment. However, in the absence of
sufficient prior information the global navigation strategy is not applicable. Instead of the
prior information, the local navigation is based on the on-line sensory data received from
the sensors mounted on the robot. Therefore, the local navigation methods can also be
applied when the navigation environment is unknown or partially known. In real-world
scenarios, support vector machines based local planner can be efficiently integrated into
an autonomous navigation system [8]. Global path planner and local path planner are the
two main parts of the navigation system of autonomous robot. These two path planners,
in cooperation, make the robot motion optimal and collision free. The global planner
generates a feasible route from the robot’s current location and orientation to the goal
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1. Introduction

location and orientation. The local path planner moves the robot as per the global plan
and dynamically adapts to dynamic environment state [9–12].

In known environments, path planning is the process of finding the best feasible path
from start to goal location [13–16]. In addition, self localization and mapping are among
the challenging tasks [NK-17]. Simultaneous Localization and Mapping (SLAM) yields
a map of the environment and keeps track of the robot in the navigation environment
with various objects [18–20]. SLAM and path planning are necessary for the autonomous
navigation process [21]. A path planning algorithm to calculate convenient motions of
the robot by taking the different optimization criteria like time, energy and distance into
account to overcome unknown and challenging obstacles is proposed in [22]. In known
and static environment, the robot navigation process can have four major steps: making
the map of surrounding world, store the map in computer readable form, find a feasible
path from start to goal in the stored map and then drive the robot on the observed path.
The process of map building includes the following three steps:

(i) Select the appropriate two-dimensional coordinate points in the environment world
covering the whole working area.

(ii) Drive the robot following these selected coordinates, and receive the sensor readings.

(iii) In the occupancy grid framework, mark the free and occupied spaces in the world
by setting the probabilities of occupied spaces as one and the probabilities of free
spaces as zero.

The occupancy grid can be saved and used directly in robot path planning in a convenient
way [23]. Representation of navigation environment as a grid-based space is a necessary
task for robust and accurate motion planning of robot. A two-dimensional occupancy
grid can be constructed using the data of LASER sensor before the execution of the
motion planning function [24]. Many researchers used the occupancy grid representation
of the environment world map in the robot navigation related work as in [25–28]. The
occupancy grid map is computer readable and this map can be supplied to the computer
program to find an obstacle free path. Recently, these concepts are used in [29, 30]. A
minimum cost path can be acquired by applying a classical approach [31]. For a mobile
robot, bacterial potential field method can be used to compute the feasible, optimal and
safe paths in environments with static and dynamic obstacles [32]. For real-time path
planning in a complex and dynamic environment, a biologically inspired two level method
gives the plus of both global and local path finding procedures [33].

Graph-based search algorithms may take larger computation time to find the globally
optimal path because these algorithms exhaustively explore the search space. In this
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case, a heuristic function increases the speed of exploration process by providing the
estimate of the cost of reaching the goal node [34]. Useful heuristic functions for A*
algorithm can be obtained using the various distances given in [35]. In a hierarchical path
planning approach, the A* algorithm finds a geometric path speedily and various path
points can be chosen as sub-goals for the second level. The least-squares policy iteration
algorithm can be used to acquire a near-optimal local planning strategy to generate
smooth trajectories in the second level. Consequently, an optimized path can be found by
sequentially achieving the sub-goals generated in the first level [36, 37]. The global map
should only consider the obstacles which are persistent and larger than a definite area.
Inclusion of many small obstacles in the global map may lead to the larger complexity
of the topological space. Homotopic A* algorithm, as path planner, is presented and
compared with other path planners in [38]. However, the different heuristic functions
are not taken into consideration in the implementation of A* algorithm as global path
planner for the autonomous navigation of mobile robots.
Probabilistic roadmaps technique can be used to find a path from start to the goal

point in occupancy grid map [39]. In PRM technique, the given number of nodes are
created in the free space of occupancy grid and then these nodes are connected to each
other within some threshold connection distance. Further, one path from the available
connected paths from start to goal is selected. The process of sampling and node addition
in PRM is given in [40]. Various path planning strategies can be found in recent research
work [41, 42]. To drive the robot on the given path, a path following algorithm is required.
An implementation of pure pursuit path tracking algorithm with some limitations is
presented in [43].

In unknown environments, the robot navigation becomes more challenging because no
satisfactory information on the environment is available before starting the navigation
process. Therefore, a global navigation path may not be generated. In this case, a local
path from the current position to the goal position may provide a solution. Further,
in the case of robot navigation in known environment, there may be situations where
the obstacles are dynamic. So, the actual positions of the dynamic obstacles may not
be measured accurately in global path planning. Furthermore, the partially known
environment consists of known and unknown obstacles. In the case of unknown and
dynamic environment, the robot needs to avoid the obstacles by using its inbuilt sensors.
A robot can not only avoid the obstacles but also find a globally optimal path by
dynamically altering the locally optimal paths [44, 45]. In these cases, the local path
planning is a suitable option for the navigation purpose [46]. In case of unknown
environment, navigation task needs an approach that can work in uncertain situation [47].
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The information about velocities of the dynamic obstacles is not necessarily required for
the obstacle avoidance in the navigation path [48].

Modern control theory and robotics are advancing greatly due the development of new
technologies [49]. Commonly, there are two steps in the design of the controllers for mobile
robots. Firstly, the data from sensors are computed into high level and meaningful values
of variables. Secondly, some machine learning method is used to produce a controller.
Taking these high level variables as input, the controller outputs the control commands
for the robot [50].

Humans perform the navigation task without any exact computation and mathematical
modelling. The ability of humans to deal with uncertainties can be followed in robot
navigation using the neural network and fuzzy logic. Fuzzy logic gives an abstract
behaviour of the system in an intuitive form even in the absence of precise mathematical
and logical model. In practice, the sensor information is noisy and unreliable. The
sensor inputs to the robot can be mapped into the control actions using fuzzy rules.
Therefore, fuzzy logic is a suitable tool to achieve robust robot behaviour [51]. The
obstacles can be treated as integrated part of the environment. Human-like approaches
to avoid the obstacles can be used in robot navigation [52]. In the environments with
moving and deforming obstacles, a purely reactive algorithm to navigate a mobile robot
mathematically guarantees collisions avoidance [53]. A fuzzy logic based navigation
approach which uses grid based map and a behaviour based navigation method is given
in [54]. However, this approach requires the environmental information in grid map in
advance. In different conditions and uncertainty, an optimal and robust fuzzy controller
for path tracking is presented in [55]. A Mamdani-type fuzzy controller [56] for wheeled
robot can be optimal for trajectory tracking to deal with parametric and non-parametric
uncertainties [57]. Neural networks have the ability to work with imprecise information
and are excellent tools applicable in obstacle avoidance by mobile robots. Reliable
and fault-tolerant control can be obtained with neural control systems [58]. In robot
navigation, neural network can be employed to map the relationships between inputs
and outputs for interpreting the sensory data, obstacle avoidance and path planning.
Although, the neural network method is slow and the learning algorithm used may not
lead to an optimal solution. Thus, the integrated approaches like neuro-fuzzy technique
are much more suitable for the robot navigation task [16]. In complex and unknown
environments, simulation experiments indicate better navigation performance using neuro-
fuzzy approach. Using neuro-fuzzy approach, the parameters of the controller can be
optimized and the structure of the controller can be self-adaptive. To improve automatic
learning and adaptation, ANFIS combines fuzzy logic and neural network. ANFIS can
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be used to predict and model several engineering systems. ANFIS is a fuzzy based model
which is trained using some data set. Consequently, ANFIS computes the best suitable
parameters of membership functions involved in FIS [59, 60].
LASER scanner is one of the most common sensors used to execute SLAM [61–

63]. Using a LASER scan, the Normal Distribution Transform (NDT) can model the
distribution of all two dimensional points around the robot. Two successive LASER
scans can be aligned using NDT to recover the translation and rotational parameters
between the two scan positions. A map can be defined as the collection of LASER
scans along with their global poses [64]. In the process of alignment of two LASER
scans, the point of the LASER scan sample of the second scan in its coordinate frame
is mapped into the first scan coordinate frame. Importantly, this mapping can be said
optimal if the sum of the normal distributions of mapped points of second scan into
first one using the mean and covariance of the NDT of the first scan is maximum. For
autonomous robots [65, 66], a survey on heuristic approaches in robot path planning is
given in [16]. Artificial Neural Network (ANN) can compensate erroneous sensor data.
Moreover, the ANN can be trained during the SLAM [67]. Regardless of the uncertainties
in the sensors observations, robot may navigate safely from start to goal [47]. Using
range finder sensors (e.g. LASER scan sensors), the robot can navigate from start to
goal with obstacle avoidance in unknown and dynamic environments environment [68].
The obstacle size and velocity vector of the unmanned surface vehicles can be used to
achieve the obstacle avoidance. Moreover, fusion of more than one navigation algorithms
can result more accurate outcomes [69]. The issue of obstacle avoidance is treated as
an optimization problem in [70]. Previous experiences during the robot navigation are
helpful to predict the path with obstacle avoidance of static and dynamic obstacles [71].
Various requirements of obstacle avoidance can be satisfied for the changing distance
between robot and the obstacles [72–74].
The combination of several sensor systems is used in mobile robots. For making

navigation decision, sensor fusion is the task of combining the information into a usable
form [75]. The complex task of programming generally prevents the use of industrial
robots to a large extent [76]. In addition, there may be situations in the autonomous
navigation in an unknown environment [77] that certain sensors of the robot do not work
properly or they are removed to minimize programming and system complexity.
The present study begins with the robot navigation task in known environment and

then advances to the robot navigation in unknown environment.
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1. Introduction

1.1.1. Research gaps in the existing solutions

Considering the background of the research (Section 1.1), the research gaps for the
dissertation can be given by the following points

(
(i)− (iii)

)
:

(i) It is evident from the existing research work that the robot navigation task in case
of known-static environment is less-complex than in the case of unknown-dynamic
environment. Therefore, to begin with, classical path planning strategies such as
A* algorithm and PRM can be studied in known-static environment. As yet, no
significant comparison of application of various heuristic functions in A* algorithm
has been done for path planning.

(ii) The existing research has established that the fuzzy logic based techniques are
best suitable for uncertain data. So, in case of unknown-dynamic environment,
fuzzy logic based robot navigation model becomes an exciting research point to be
considered. Thus far, Robot navigation model using Mamdani-type FIS, Sugeno-
types FIS, and ANFIS has not been presented to obtain obstacle avoidance in
simulated as well as real world unknown-dynamic environment.

(iii) A search robot may need to navigate through all around the working area. Hence, to
avoid the repetitive paths in unknown environment, a search robot should recognise
the obstacles visited earlier. Till present, for obstacle recognition and avoidance,
“standard deviation” and the “t-test” have not been applied for a search robot in
unknown environment.

1.2. Dissertation outline

The current chapter (Chapter 1) presents the basis and the state of the art of the study.
Chapter 2 presents the scientific methods applied in the research work. The Section 2.1

gives the details of hardware and software used in the study. In Section 2.2 of the chapter,
mathematical foundations, of applied soft-computing techniques, has been described.
Chapter 3 is about the robot navigation in known and static environment. In this

chapter, two approaches have been implemented for robot navigation. Firstly, A*
algorithm has been applied and the results are compared for different heuristic functions.
Secondly, the robot navigation is performed using the probabilistic road-maps and finding
an optimal path from start to goal.

Chapter 4 is concerned with the robot navigation in unknown and dynamic environment.
This chapter contains three Sections. In the Section 4.1 , an algorithm using the bumper
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events of the robot has been proposed for the obstacle avoidance. A model for robot
navigation using Mamdani-type FIS is presented in Section 4.2. Section 4.3 is about the
robot navigation with obstacle avoidance using fuzzy controller based on Sugeno-type
FIS.
Chapter 5 is based on the robot navigation in unknown and static environments.

There are three sections in this chapter. In Section 5.1, obstacle recognition, during
the robot navigation, is achieved by comparing the standard deviations of the LASER
scans’ distance range vectors. By combining the standard deviations of the distance
range vectors, robot positions and time of scans, an advanced algorithm, for obstacle
avoidance and breaking of the repetitive paths loops, is presented in Section 5.2. Section
5.3 considers t-test to check out the similarity of two readings LASER scan. Consequently,
the outcome of the t-test has been used for obstacle recognition and avoidance during
the robot navigation.

Finally, in Chapter 6, conclusion of the study, applicability of the obtained results, and
future research scope based on the dissertation are provided.
The organisational structure of the dissertation is shown by Fig. 1.1.

Figure 1.1.: Structure of the dissertation.
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2. Hardware, software, and scientific
methods applied in the research work

During the research work efficient combination of the already known algorithms and
scientific methodologies such as A*, probabilistic roadmap search are applied to achieve
the new research results.

2.1. Hardware and software used for experimental set-up

In case of hardware used, the experimental work is carried out on a general purpose laptop
computer containing 4x Intel core i3- 2350M CPU @ 250-GHz and 3952 MB memory. A
real Turtlebot robot is used to for testing the proposed methods. Turtlebot is a wheeled
mobile robot. This robot kit is useful for the researcher due to its low cost and open
source. The main hardware components of Turtlebot are Turtlebot Structure, Turtlebot
Module Plate, Kinect, Robot Operating System (ROS) compatible Netbook, Asus Xion Pro
Live, and Kobuki Base. In addition to the software development kit (SDK), the robotic
software development environment of the Turtlebot provides libraries for the several
useful tools like visualization, control and error handling. To bring up the Turtlebot in
the real system, the ROS command $ roslaunch turtlebot_bringup minimal.launch can
be used in the Ubuntu (Operating System) terminal.
The main software used in the work are as follows:

• The operating system installed on the computer is Ubuntu, version 14.04.5 LTS.
The operating system has been updated to Ubuntu 16.04.4 LTS in Section 5.2.

• As ROS, Indigo distribution with version 1.11.20 is considered.

• To simulate the navigation task, Gazebo simulator version 2.2.6 is used till the
Section 5.1. Thereafter, the Gazebo version is updated to 7.0.

• For computer programming purpose, C++ language is used in the Sections 3.1 and
4.1. In the remaining Sections, MATLAB is considered for the programming task.
Section-wise, MATLAB release version related Information is given in Table 2.1.
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2.2. Mathematical foundations of applied soft computing techniques

Table 2.1.: MATLAB releases and Toolboxes used.
Section MATLAB release used Toolboxes used

3.2 R2016b Robotics System Toolbox

4.2 R2016b
Simulink,

Robotics System Toolbox,
Fuzzy Logic Toolbox

4.3 R2016b
Simulink,

Robotics System Toolbox
5.1 R2018a Robotics System Toolbox

5.2 R2018a
Simulink,

Robotics System Toolbox
5.3 R2019a Robotics System Toolbox

2.2. Mathematical foundations of applied soft computing
techniques

Modern soft computing tools, fuzzy logic, artificial neural networks, and neuro-fuzzy
inference systems are also used in our work. The soft computing tools serve as approximate
technical realization of the universal approximators (e.g. [78–80]).

2.2.1. Artificial neural network (ANN)

An artificial neuron (perceptron) mimics the computational function of biological neuron.
Fig. 2.1 shows a model of artificial neuron presented by [81].

Figure 2.1.: Artificial neuron model given by [81].
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2. Hardware, software, and scientific methods applied in the research work

The output (vj) of an artificial neuron can be defined using (2.1).

uj =
n∑

i=1
ωjiai + bj

vj = φ
(
uj
) (2.1)

where,
bj = bias or offset for jth neuron in the layer.
ωji = synaptic weights for jth neuron in the layer.
ai = input to the neuron
Multilayer perceptron (a feedforward neural network) is layered network of artificial

neurons. To obtain parallel computation, a layer of the ANN consists several artificial
neurons. In each layer of this type of Artificial Neural Networks (ANNs), functions of the
artificial neurons are similar. The output of the neurons in a layer is passed to the neurons
of the next layer. This network type is applicable for the approximation of non-linear
multiple variable functions by supervised training that means setting the number of
neurons in the layers, and following that, setting the connection weights and biases by
minimizing the mapping error for the samples used for training. In error backpropagation
[82] learning, the gradient descent method is used for training the network. In our work,
multilayer perceptron, with error backpropagation learning, has been applied.

In other types of ANNs, recurrent neural networks (e.g. Hopfield’s and Elman’s
networks [83, 84]) that can model system’s dynamics, convolutional neural networks
that have come into fashion recently for recognizing typical patterns in various scales
in strongly non-linear processes e.g. in fluid dynamics [85] and work on the basis of
the approximation abilities of the Volterra Polynomials [86], or self-organizing maps as
Kohonen’s network (e.g. [87]) that can learn without supervision. However, these type of
ANNs are not applied in our work.

2.2.2. Fuzzy logic

2.2.2.1. Fuzzy set

Ordinary sets have a limited scope of applicability. In real life problems, the ordinary
set are not well suited to define the membership of objects in case of human thinking.
An ordinary set can also be defined using MF. The membership function of an ordinary
subset Y of the set U (universe of discourse) can be defined as follows:
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χY : U → {0, 1}

χY (x) =

0, x /∈ Y

1, x ∈ Y
(2.2)

This definition of ordinary sets is extended for the fuzzy sets using the membership
function. According to [88], in a fuzzy set, objects have continuum membership function
values. Fuzzy set

(
Ỹ
)
can be defined by (2.3), as follows:

Ỹ =
{(
x, µ

Ỹ
(x)
)

: x ∈ U
}
. (2.3)

where,
(
x, µ

Ỹ
(x)
)
is ordered pair of an element (x) and the actual value of its corre-

sponding membership function
(
µ

Ỹ
(x)
)
. The membership function values range between

zero and one
(
µ

Ỹ
(x) : U → [0, 1]

)
.

Support
(
supp

(
Ỹ
))

and core
(
core

(
Ỹ
))

of Ỹ can be expressed by (2.4) as follows:

supp
(
Ỹ
)

=
{
x ∈ U | µ

Ỹ
(x) > 0

}
,

core
(
Ỹ
)

=
{
x ∈ U | µ

Ỹ
(x) = 1

}
,

(2.4)

Various generalizations of the classical AND, and OR operators are developed for the
fuzzy sets, on the basis of which the fuzzy inference systems can be elaborated. Also,
various generalizations of the classical negation operator (¬) can be elaborated, and the
statements of the De Morgan’s Laws can be maintained for fuzzy sets (e.g. [89–91]).

2.2.2.2. Membership functions

In π-shaped fuzzy sets, the membership function increases from zero to a maximum (≤ 1)
and after reaching maximum it decreases to zero. This type of membership functions are
used to present the fuzzy concepts like: ‘around’, ‘approximately’, ‘close to’.
The well known membership functions for π-shaped fuzzy sets are bell, triangle, and

trapezoid. A triangle membership function can be defined using (2.5).

µ (x) =


0, for (x ≤ p) or (x ≥ q)
x−p
a−p , for p ≤ x ≤ a
q−x
q−a , for a ≤ x ≤ q

(2.5)
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where, the interval [p, q] and the point a are support and core of the MF, respectively.
Fig. 2.2 shows a triangle MF by taking the values of parameters as indicated in its

caption. If the membership occurs at a point then triangle membership function is widely
used. When the membership occurs in domain then the trapezoid membership function
is applicable. Fig. 2.3 represents a trapezoid MF including the values of its parameters.

Figure 2.2.: Triangle MF having support and core as [2, 7] and 5, respectively.

Figure 2.3.: Trapezoid MF by taking support and core intervals as [1, 11] and [4, 8],
respectively.
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The trapezoid membership function can be defined by (2.6).

µ (x) =



0, for (x ≤ p) or (x ≥ q)
x−p
a−p , for p ≤ x ≤ a

1, for a ≤ x ≤ b
q−x
q−b , for b ≤ x ≤ q

(2.6)

where, the intervals [p, q] and [a, b] are support and core of the MF, respectively.
As non-linear membership functions, bell MF and Gaussian MF are widely used.

Figure 2.4.: Generalized bell MF by taking w = 6, s = 8, c = 10.

Figure 2.5.: Gaussian MF having values of the parameters as σ = 2, m = 10.
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The generalised bell membership function is defined in (2.7) as follows:

µ (x) = 1

1 +
∣∣∣x−c

w

∣∣∣2s (2.7)

where,
w defines the width of the MF.
s defines the curve-shape on both sides of the plateau.
c = center of the MF.
Shape of a generalized bell MF, with the values of parameters as w = 6, s = 8, c = 10,

is given in Fig. 2.4.
Gaussian membership function can be defined as given in (2.8).

µ (x) = e
−(x−m)2

2σ2 (2.8)

where, m and σ are the mean and the standard deviation, respectively.

2.2.3. Fuzzy inference system

A model of FIS is presented in Fig. 2.6. In Fig. 2.6, the input and the output are crisp
values.

Figure 2.6.: A model of fuzzy inference system presented in [92].

The inference unit of the fuzzy inference system takes decisions by using the IF. . .THEN
rules provided by the knowledge base. There are the following two main methods of FIS:
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(i) Mamdani FIS [93].

(ii) Takagi-Sugeno FIS (also known as Sugeno FIS) [94].

2.2.3.1. Fuzzification

Fuzzification is a mapping of a point (real-valued) x∗ ∈ U ⊂ R to a fuzzy set Ỹ ∈ U .
The widely used fuzzification methods are singleton fuzzifier, Gaussian fuzzifier, and

triangular fuzzifier.

(i) Singleton fuzzifier:

µ
Ỹ

(x) =

1, if x = x∗

0, otherwise
(2.9)

(ii) Gaussian fuzzifier:

µ
Ỹ

(x) = e
−
(
x1−x

∗
1

c1

)2

? e
−
(
x2−x

∗
2

c2

)2

? . . . ? e
−
(
xn−x∗n
cn

)2

(2.10)

where, {ci, i = 1, . . . , n} are positive constants and the operator ? corresponds to
some “generalized AND operator”. Usually, ? is min or algebraic product.

(iii) Triangular fuzzifier:

µ
Ỹ

(x) =


(

1− |x1−x∗1|
c1

)
? . . . ?

(
1− |xn−x∗n|

cn

)
, if

∣∣xi − x∗i
∣∣ ≥ ci, for i = 1 to n.

0, otherwise

(2.11)

where, ci and ? have the same meaning as in (2.10).

2.2.3.2. Defuzzification

Let Ỹ is a fuzzy set defined over U with its membership function µ
Ỹ

(x) , x ∈ U , and let x∗

denotes the defuzzification of µ
Ỹ

(x). Main methods to obtain x∗ are centroid of gravity,
center of sum method, mean of max method, height method, bisector defuzzification,
smallest of maximum defuzzification, largest of maximum defuzzification, and weighted
average defuzzification method.
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The center of gravity method is given in (2.12).

x∗ =
∫
xµ

Ỹ
(x)dx∫

µ
Ỹ

(x)dx (2.12)

where,
∫
µ

Ỹ
(x)dx is the area bounded by µ

Ỹ
and x∗ represents x-coordinate of the center

of gravity of the area.
If the membership function has n different disjoint peaks then the center of sum

method, defined in (2.13), can be applied.

x∗ =
∑n

i=1 xiAỸi∑n
i=1AỸi

(2.13)

here, A
Ỹi

represents area bounded by the Ỹi and xi denotes geometric center of the area.
Weighted average method is also known as Sugeno defuzzification method. The crisp

output using this method is presented in (2.14).

x∗ =
∑n

i=1 xiµỸi
(xi)∑n

i=1 µỸi
(xi)

(2.14)

where, xi is the middle value of the ith peak, Ỹi(x).

2.2.4. Adaptive neuro-fuzzy inference system (ANFIS)

Neuro-fuzzy systems combine:

(i) the learning and parallel computational abilities of neural networks,

(ii) human-like comprehension and knowledge representation of the fuzzy systems.

Adaptive network is a superset of feed-forward neural networks having supervised learning.
Fuzzy rules of ANFIS are developed using Sugeno FIS [94]. Form of a Sugeno fuzzy rule
for can be given as (2.15).

Rule : If x is Xi and/or y is Xj then z = f(x, y) (2.15)

The function f(x, y), in (2.15), is defined by (2.16) as follows:

f(x, y) =

d, for zero-order Sugeno FIS

ax+ by + c, for first-order Sugeno FIS
(2.16)
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where, {a, b, c} is the set of parameters. x, y are input variables and Xi, Xj are fuzzy
sets for i, j = 1 to n. n represents total number of fuzzy sets for the input and d is a
constant.

Figure 2.7.: A four-rule-ANFIS Structure using the model of [92].

Layer structure of a four-rule-ANFIS (Fig. 2.7) can be given by using ANFIS model of
[92].
The functions of nodes in the layer 1 are similar as given in (2.17):

O
(1)
i = µXi(x) (2.17)

where,
x = input to node i.
Xi = corresponding linguistic label of the node for i = 1 to n.
n = total number of nodes in the layer 1.
µXi = membership function of Xi. According to need, the membership function

(
µXi

)
can be selected from the definitions given in (2.5), (2.6), (2.7), (2.8).
In the layer 2, each node multiplies its input values. The output of a node in layer 2

is defined as (2.18).

ui = µXj (x)× µXk
(y) (2.18)

where, the operator × is generalised AND.
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In case of ANFIS structure given in Fig. 2.7, i = 1 to 4, j = 1, 2, and k = 3, 4.
Output of each node represents rule’s firing strength.
In the layer 3, the output of ith node is ratio of firing strength of ith rule to the sum of

the firing strengths of all rules, as given in (2.19).

vi = ui∑n
k=1 uk

(2.19)

where, n is the total number of rules in the ANFIS.
The output of ith node in the layer 4 is defined in (2.20).

O
(4)
i = vizi, for i = 1 to n. (2.20)

where, n is the total number of rules in the ANFIS structure.
The layer 5 has single node. The output (z) of this layer can be expressed as in (2.21).

z =
n∑

i=1
vifi,

fi = aix+ biy + ci,

(2.21)

where, {ai, bi, ci} is the set of parameters for ith rule, and n is the total number of rules
in the ANFIS structure [92, 94].
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3. Robot navigation with obstacle
avoidance in known and static
environment

3.1. Heuristic approaches in robot navigation

This section presents the implementation of A* algorithm as a global path planner for
the navigation of a Turtlebot robot. A map of the navigation environment has been
developed for a Gazebo simulator’s world. Manhattan distance, octile distance, and
Euclidean distance heuristic functions are used to estimate the cost of moving from a
cell to the goal cell of the environment. Time taken by the global planner, length of the
path covered and the number of cells to visit are presented in tabular form. Mat plots
for global costmap changes are also given using ‘rqt’ tool of ROS.

Considering the different heuristic functions, the A* algorithm has been implemented
for the autonomous navigation of Turtlebot robot. For the local planner, the default
dynamic window approach of ROS is used.
Remaining part of this section is organized as follows: Mathematical background

of A* algorithm and the different heuristic functions used are given in Section 3.1.1.
Section 3.1.2 presents the implementation and results of the study. Finally, Section 3.1.3
is for the summary of the work.

3.1.1. A* algorithm and the heuristic functions

The A* algorithm provides the solution by searching among all possible paths and selects
the path that minimizes f(x1, y1), the sum of the cost of the path from the start node to
the node (x1, y1) and estimated cost of the cheapest path from the node (x1, y1) to the
goal node [34].

f(x1, y1) = g(x1, y1) + h(x1, y1), (3.1)

where, g(x1, y1) is the cost of the path from the start node to (x1, y1), and h(x1, y1) is a
heuristic that estimates the cost of the cheapest path from (x1, y1) to the goal.
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3. Robot navigation with obstacle avoidance in known and static environment

Let |x| represent the absolute value of x and C represent the minimum cost of moving
from one space to adjacent space. Various distance metrics and distances including the
following are given in [35].
The Manhattan distance heuristic function is expressed in (3.2) as follows:

h(x1, y1) = C(|x1 − x2|+|y1 − y2|), (3.2)

The diagonal distance heuristic is defined in (3.3) as follows:

h(x1, y1) = C(|x1 − x2|+|y1 − y2|) + (D − 2C) Min(|x1 − x2| ,|y1 − y2|), (3.3)

In (3.3), Min(|x1 − x2| ,|y1 − y2|) gives the minimum value between the two arguments
and D represents the cost of moving diagonally. The diagonal distance is called octile
distance when C = 1 and D =

√
2.

The Euclidean distance heuristic is given by (3.4).

h(x1, y1) = C
√

(x1 − x2)2 + (y1 − y2)2, (3.4)

3.1.2. Implementation and experimental results

The A* algorithm is implemented in C++ for the three heuristic functions
(
(3.2)− (3.4)

)
given in Section 3.1.1. Methods to create user-defined Gazebo-world and to make commu-
nication between software packages using ROS are provided in Appendices A.1 and A.2,
respectively. An introduction to pre-defined and user-defined ROS nodes is provided in
Appendix A.3. ROS packages based method to create map of the navigation environment
and robot’s autonomous navigation with given map are explained in Appendix A.5.

Using gmapping package of ROS, map of corridor.world (Fig. A.2) is built. Description
about the corridor.world is given in Appendix A.1.2. Fig. 3.1 represents the map of
corridor.world.

Fig. 3.2 represents the global costmap updates for the map presented in Fig. 3.1. The
costmap is a data structure which provides the information of the safe places for the robot
navigation. The costmap uses sensor data from the world to produce an occupancy grid
map. The global costmap is applicable in global navigation. In Fig. 3.2, the description
of variables is as follows:
‘/move_base/global_costmap/costmap_updates/height’ = map height
‘/move_base/global_costmap/costmap_updates/width’ = map width
‘/move_base/global_costmap/costmap_updates/x’ = map’s x origin (in global frame)
‘/move_base/global_costmap/costmap_updates/y’ = map’s y origin (in global frame)
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3.1. Heuristic approaches in robot navigation

here, the measurement unit of the variables is meter.
Due to erroneous sensor data, the height and width of the map produced varies slightly

during the map building process.

Figure 3.1.: Map of corridor.world using gmapping package of ROS.

Figure 3.2.: Global costmap updates for corridor.world

The costmap allocates an unique ID (Cell ID) to each cell of the occupancy grid
map. The two-dimensional coordinates of the center of a cell are considered as the cell
coordinates of that cell. Tables 3.2−3.4 provide the details of visited cell coordinates,
current and goal cell IDs, global planner time to reach the goal cell from the current cell,
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3. Robot navigation with obstacle avoidance in known and static environment

estimated distance from current cell to goal cell in meters and number of cells to visit
using octile distance, Euclidean distance and Manhattan distance heuristics, respectively.
Goal cell IDs and corresponding goal coordinates used for Tables 3.2−3.4 are given in
Table 3.1.

Table 3.1.: Goal cell IDs and their coordinates used for Tables 3.2−3.4.
Table Number Goal Cell ID Goal Cell Coordinates (X2, Y2)

3.2 78511 (−5.01013,−4.96942)
3.3 77968 (−4.99168,−5.00425)
3.4 78512 (−4.99091,−4.99587)

Table 3.2.: Planner time, path length and number of cells to visit using octile distance
heuristic.

Start Start Planner Path Number of
Cell Cell Time Length Cells
ID Coordinates (Micro-Sec.) (Meters) to visit

89512 (1.04364,−3.95498) 0.973915 6.55208 125
89513 (1.0669,−3.95554) 2.04848 6.57279 125
87336 (1.03579,−4.17968) 1.68727 6.38137 122
81344 (0.610965,−4.70829) 1.15402 5.75355 114
79159 (0.164069,−4.90315) 0.961782 5.22071 105
78605 (−0.326765,−4.98568) 1.75893 4.7 95
78595 (−0.82855,−4.99297) 0.728234 4.2 85
78585 (−1.33259,−4.98773) 0.782637 3.7 75
78575 (−1.83213,−4.98842) 0.650034 3.2 65
78565 (−2.33186,−4.98401) 0.93469 2.7 55
78555 (−2.81918,−4.97933) 0.406216 2.2 45
78545 (−3.30742,−4.98043) 0.688205 1.7 35
78536 (−3.75951,−4.98735) 0.312633 1.25 26
78527 (−4.21368,−4.985) 0.110972 0.8 17
78520 (−4.5861,−4.98205) 0.166721 0.45 10
78516 (−4.7804,−4.98784) 0.062063 0.25 6
78513 (−4.93287,−4.99858) 0.11679 0.1 3
77969 (−4.93267,−5.00009) 0.056646 0.120711 3
77969 (−4.93653,−5.01733) 0.066747 0.120711 3
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3.1. Heuristic approaches in robot navigation

It is clear from the data of the Tables 3.2−3.4 that the planner time taken to move
the robot from current cell to next cell using Manhattan distance heuristic changes
moderately during the navigation. In the case of octile distance heuristic, the global
planner time, taken for cell transitions during the robot navigation, changes swiftly. The
global planner time for robot navigation from one cell to the next cell of the path is
varying largely. Own publication related to Section 3.1 is given in [NK-95].

Table 3.3.: Planner time, path length and number of cells to visit using Euclidean distance
heuristic.

Start Start Planner Path Number of
Cell Cell Time Length Cells
ID Coordinates (Micro-Sec.) (Meters) to visit

89512 (1.03746,−3.95512) 5.70497 6.52279 124
89512 (1.04253,−3.95519) 13.2484 6.52279 124
86792 (1.03515,−4.21765) 12.3271 6.33137 121
82431 (0.594576,−4.64405) 5.09661 5.71569 112
81878 (0.105449,−4.66552) 18.8623 5.24498 103
81868 (−0.379453,−4.66033) 2.29739 4.74498 93
81858 (−0.873481,−4.68571) 2.07009 4.24498 83
81848 (−1.38019,−4.69493) 5.98157 3.74498 73
81838 (−1.87859,−4.68794) 2.93626 3.24498 63
81828 (−2.39392,−4.68642) 4.32241 2.74498 53
81818 (−2.86297,−4.68288) 1.70456 2.24498 43
81809 (−3.33114,−4.68346) 1.44749 1.79497 34
81800 (−3.78121,−4.6896) 2.78576 1.34497 25
80703 (−4.22774,−4.75153) 0.238801 0.853554 16
79607 (−4.62291,−4.86843) 0.285834 0.412133 8
79059 (−4.83649,−4.94868) 0.123107 0.191421 4
78513 (−4.91739,−4.98285) 0.053015 0.0707109 2
78513 (−4.91724,−4.98161) 0.07666 0.0707109 2
78513 (−4.93315,−4.9917) 0.051287 0.0707109 2
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3. Robot navigation with obstacle avoidance in known and static environment

Table 3.4.: Planner time, path length and number of cells to visit using Manhattan
distance heuristic.

Start Start Planner Path Number of
Cell Cell Time Length Cells
ID Coordinates (Micro-Sec.) (Meters) to visit

90056 (1.03149,−3.94109) 1.2466 6.55208 125
90057 (1.06115,−3.94355) 2.02882 6.57279 125
88425 (1.0752,−4.05798) 3.1792 6.42279 122
82433 (0.688094,−4.61363) 5.29837 5.79497 114
80248 (0.239083,−4.84698) 0.971193 5.26213 105
78606 (−0.254425,−4.97342) 1.19347 4.7 95
78052 (−0.750472,−5.00026) 6.06353 4.22071 85
78587 (−1.24928,−4.99091) 0.568116 3.75 76
78577 (−1.746,−4.98364) 0.852299 3.25 66
78567 (−2.23996,−4.98492) 1.33613 2.75 56
78557 (−2.74472,−4.97907) 0.311586 2.25 46
78547 (−3.2144,−4.98195) 0.586167 1.75 36
78538 (−3.67516,−4.98319) 0.280542 1.3 27
78529 (−4.12344,−4.98548) 0.204794 0.85 18
78522 (−4.4943,−4.9849) 0.187987 0.5 11
78518 (−4.67007,−4.98192) 0.196806 0.3 7
78514 (−4.8814,−4.98692) 0.118818 0.1 3
78514 (−4.88038,−4.98649) 0.061638 0.1 3
78514 (−4.87757,−4.99671) 0.121212 0.1 3
77970 (−4.8891,−5.01557) 0.561779 0.120711 3

3.1.3. Summary

The three different heuristic functions are used in the implementation of A* algorithm as
a global path planner for the Turtlebot robot. It is observed that the coordinates of the
cells on the path generated by each of the heuristic function do not differ significantly.
Nevertheless, the time taken by global path planner, with different heuristic function
used, differ significantly. Among the three, the Euclidean distance heuristic produces the
most non-uniform global path planner time for the transition of the robot between the
cells during navigation. On the other hand, octile distance heuristic depicts the most
uniform behaviour for the global path planner time throughout the navigation path.
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3.2. Robot path pursuit using probabilistic roadmaps

3.2. Robot path pursuit using probabilistic roadmaps

A collision free path can be obtained through the path planning using PRM and can be
applied to related research as used in [96–99]. This section presents the implementation
of pure pursuit algorithm using PRM in robot navigation. The map of the robot’s
environment is generated as occupancy grid. In the occupancy grid map, the PRM are
obtained. A desired path from start to end location of the robot navigation is obtained
from PRM.

Rest of the Section is organized as follows: Section 3.2.1 covers the required preliminary
work before obtaining the PRM. Theoretical background of the PRM technique is
described in Section 3.2.2. Section 3.2.3 is for the pure pursuit path tracking of the path
obtained in the previous section. Section 3.2.4 summarizes the work.

3.2.1. Preliminary work

3.2.1.1. Extracting optimal way-points from the environment

In the map building process, the first step is to bring-up the robot in the environment.
Consequently, the coordinates of the environment can be noted down by moving the
Turtlebot using any of the Turtlebot tele-operator. The robot can be driven in the
environment using the tele-operator. In this manner, the desired positional coordinates
of the robot can be obtained and written in a text file for the future use.
A method to write robot positions in a text file is given in Appendix A.6. The way-

points (robot positions), extracted using the method, are input to the robot. Using the
input way-points, the robot visited in the corridor.world (Fig. A.2). Fig. 3.3 depicts the
path visited by the robot during the map building process.
During the map building process, starting from the position (0.0107, 0.0000), the

robot travelled along the yellow coloured line then orderly followed red, green and blue
coloured positions as shown in Fig. 3.3. To obtain map of the environment, the positional
coordinates act as way-points of the path to be followed by the robot.
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3. Robot navigation with obstacle avoidance in known and static environment

Figure 3.3.: Plot of way-points. From the start point (0.0107, 0.0000) to the end point
(0.8779, 0.0150), the robot orderly followed the colour sequence yellow, red,
green and blue.

3.2.1.2. Occupancy grid map of the environment

The map of the environment can be generated as a two-dimensional occupancy grid.
Method to create occupancy grid map using MATLAB is described in Appendix A.7.

For corridor.world as shown in Fig. A.2, the values of width, height, and grid resolution
are taken as 10.2 meter, 7.6 meter and 20, respectively. Initially, the probability values
of all the grid cells are close to 1 indicating that the whole area is occupied and there is
no free space to move the robot. In the process of map building, the robot can be driven
following the path as shown in Fig. 3.3.
Fig. 3.4 shows the occupancy grid map of the corridor.world obtained by using the

given way-points. Before inserting the laser scan reading into the occupancy grid, it is
needed to remember that occupancy grid’s x and y axes start at 0. On the other hand,
the robot’s environment may contain negative values for x and y. Therefore, it is required
to convert the actual coordinates of the environment to the corresponding coordinates in
the occupancy grid map. The corresponding occupancy grid coordinates (X ′ , Y ′) can be
obtained from robot’s environment world coordinates (X,Y ) by using (3.5) as follows:

X
′ = X +|Lx| ,

Y
′ = Y +

∣∣Ly

∣∣ , (3.5)
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where, Lx and Ly are the approximate lowest values of X and Y , respectively.

Figure 3.4.: Occupancy grid map of corridor.world.

In case of corridor.world, the values of Lx and Ly can be taken as −8.3 meter and −3
meter, respectively. For obstacle avoidance, the occupancy grid map must be inflated
up to robot radius. The radius of the Turtlebot robot is taken as 0.20 meters. Fig. 3.5
presents the inflated map of the map shown in Fig. 3.4.

Figure 3.5.: Inflated occupancy grid map.
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3. Robot navigation with obstacle avoidance in known and static environment

3.2.2. Probabilistic roadmaps

Probabilistic roadmaps path planning method has two phases, namely, learning phase
and query phase. In the learning phase, for a given scene, a roadmap (a data structure)
is generated in probabilistic manner. The generated probabilistic roadmap is saved as
an undirected graph. The nodes of the graph represent collision-free configurations of
the robot and the edges of the graph represent feasible paths. Local planner of the
navigation system computes these paths. The learning phase of the PRM is summarized
using Algorithm 1. Initially, the graph G = {NG, EG} is empty.
During the query phase, a query is generated to find a path between two collision

free configurations. Initially, the method generates a path from start and goal to other
two nodes in the roadmap. Consequently, the graph is searched to find the connecting
edges to these two nodes. Eventually, a feasible path from start to goal is received by
concatenating the path segments. It is experienced that this method provides good
results when larger time span is given in learning phase. Various components of the
method can be tailored to increase the efficiency of this method [39]. The method is
applicable to the static environments where the obstacles do not get change.

Algorithm 1 Learning phase of PRM.
1: NG, EG ← {}
2: while true do
3: r ← a randomly selected free configuration
4: Nr ← {r

′ ∈ NG | D(r, r′) ≤ dm}
5: NG ← NG ∪ {r}
6: for all x← Nr, in ascending order of D(r, x) do
7: if P (r, x) & ¬C(r, x) then
8: EG ← EG ∪ (r, x)
9: Update connected components of G.

10: end if
11: end for
12: end while

where,
dm = Maximum threshold distance between r and r′ .
P (r, x) returns whether a path, between r and x, is found by local planner.
C(r, x) returns whether r and x belongs to the same connected component.
D(r, x) is defined in (3.6).

D(r, x) = max
p∈robot

‖p(x)− p(r)‖, (3.6)
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In (3.6),
p represents a point on in the robot.
p(r) = workspace position of p when the robot is at r.
‖p(x)− p(r)‖ = Euclidean distance between p(r) and p(x).
The two important properties of PRM are the number of nodes created on the map

and threshold connection distance between these nodes. The PRM algorithm places
the given number of nodes on the map and connects each node to every other node
within the threshold distance of connections between nodes. Large number of nodes
taken can provide more feasible paths. As a result, it gives more efficient path. However,
increasing the number of nodes in PRM increases the computation time. Therefore,
just enough node in PRM to cover the whole map may be a good solution. The
threshold distance of connections between nodes has direct impact on the number of
connections. Lower threshold connection distance reduces the number of available paths.
Consequently, these available paths are considered to select one final obstacle free path.
A well-suited combination of number of node in the PRM and threshold connection
distance is required for a particular environment map. In general, large number of nodes
and small threshold connection distance enhances the chance of finding an efficient path
in complex environment. In case of simple environment map (i.e. with less number of
obstacles), small number of nodes and large connection distance between nodes can lead
to a solution efficiently.

Figure 3.6.: Instance of PRM with 50 nodes.

The effect of different number of nodes in a PRM can be observed by taking a fixed
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connection distance between the nodes of the PRM. The system is tuned-up with 50
numbers of nodes and the connection distance as 10 meters. Fig. 3.6 presents an instance
of PRM and path. Method to generate probabilistic roadmaps using MATLAB is given
in Appendix A.8.

3.2.3. Path pursuit

A feasible path from starting position to the goal position is obtained using PRM.
Subsequently, the robot can follow the way-points of the path using the pure-pursuit
algorithm [43].
The pure pursuit algorithm calculates the required curvature that can lead the robot

from its current position to the goal position.

Figure 3.7.: Geometry of the pure pursuit algorithm.

The geometry of the pure pursuit algorithm is given in Fig. 3.7. Using Fig. 3.7, the
relation between p, q, r, x, and y can be expressed as (3.7):

p2 = x2 + y2,

q = r − x,

r2 = q2 + y2,

(3.7)

By solving (3.7), the curvature (ρ) of the path arc can be given by (3.8) as follows:

ρ = 1
r

= 2x
p2 , (3.8)
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The curvature of the path arc, obtained in (3.8), determines the steering wheel angle of
the robot.
Following the way-points, the robot can be driven from start to goal using the Algo-

rithm 2. Using ROS, there are two types of velocity commands: linear and angular. The
linear velocity moves the robot in straight line and the angular velocity is used to turn
the robot. The linear velocity of the controller is taken as 0.4 meter per second. The
start and goal positions of the robot in the corridor.world are taken as (0.0107, 0.0000)
and (0.7562, 3.0553), respectively. The initial orientation of the robot is taken as zero.
Own publication related to Section 3.2 is given in [NK-100].

Algorithm 2 The path pursuit algorithm
1: while (Goal not found) do
2: Receive the current pose of the robot in the actual environment:

robot_Pose_actual = [position, orientation];
3: Convert the coordinates of the position in the actual world to the coordinates in

occupancy grid using the formula given in Section 3.2.1. Let us say the position
in occupancy grid as position_o.

4: Compute the robot pose in occupancy grid:
robot_Pose = [position_o, orientation];

5: Compute the Linear and angular velocities (v and ω) using the controller:
[v, ω] = controller(robot_Pose);

6: Send these velocities [v, ω] to the robot.
7: end while

where,
position = (x, y) coordinate word in the actual world.
orientation = Euler angle of the robot
v = Linear velocity to drive the robot
ω = Angular velocity to drive the robot

3.2.4. Summary

The PRM of the map of corridor.world of Turtlebot-Gazebo simulator is tuned up for
the number of nodes taken in PRM and the connection distance between the nodes in
it. The navigation algorithm is applied to the robot in a convenient way using Robotics
System Toolbox of MATLAB.

The limitation of this work is that it is applicable to the environment with static
obstacles. For future research work, there is a scope to extend this work for the dynamic
environment with moving obstacles.
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4.1. Robot obstacle avoidance using bumper event

This section presents an algorithm for robot-navigation using bumper-event of the robot.
This algorithm is implemented on Turtlebot robot in the Gazebo simulator and on a real
Turtlebot robot. The bumper and state fields of robot’s bumper event are studied for
the different command velocities. The experimental results are shown by Mat plots using
ROS tool rqt. In this section, it is assumed that the bump sensor is the only sensor to
handle the obstacles.

The rest of the Section is organized as follows: In Section 4.1.1, the proposed algorithm
is given. Experimental verification and results are presented in Section 4.1.2. Section 4.1.3
is for the summary of the section.

4.1.1. Bumper-event based algorithm

The Turtlebot mobile base (Kobuki base) is equipped with a bump sensor. When the
bump sensor is hit or pressed by some object, the bumper event is generated. There
are two fields in bumper event: bumper and state. Bumper field can have any value
from LEFT(0), CENTER(1) or RIGHT(2) depending upon the corresponding bump
sensor that has been pressed. The state field can take the values RELEASED(0) or
PRESSED(1). In ROS, there are two types of velocity commands: linear and angular.
The linear velocity moves the robot in straight line and the angular velocity is used to
turn the robot. To minimize the complexity, if the robot does not have any sensor, except
the bump sensor, to avoid the obstacles then the Turtlebot will collide the obstacles in its
way. In this situation, the robot must recover from the collision and move to the other
possible way. For this purpose, Fig. 4.1 presents the proposed algorithm by a flowchart.
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Figure 4.1.: Flowchart of the proposed algorithm.

4.1.2. Implementation and experimental results

The x, y and z components of linear and angular velocities are taken as in Algorithm 3.
In Algorithm 3, the measurement units of linear and angular velocities are meter and
radian, respectively.

For Simulation in Gazebo, a simple maze (only boundaries) is constructed in Gazebo
environment by inserting four jersey barriers and a Turtlebot as shown in Fig. 4.2. The
proposed algorithm is tested in this maze.
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Algorithm 3 The x, y and z components of linear and angular velocities
1: if default velocity then
2: linear.x = 0.1, linear.y = 0, linear.z = 0;
3: angular.z = 0, angular.x = 0, angular.y = 0;
4: else
5: if bumper 0 hit then
6: linear.x = 0, linear.y = 0, linear.z = 0;
7: angular.z = −0.35, angular.x = 0, angular.y = 0;
8: else if bumper 1 hit then
9: linear.x = −0.25, linear.y = 0, linear.z = 0;

10: angular.z = −1.25, angular.x = 0, angular.y = 0;
11: else if bumper 2 hit then
12: linear.x = 0, linear.y = 0, linear.z = 0;
13: angular.z = 0.35, angular.x = 0, angular.y = 0;
14: end if
15: end if

Figure 4.2.: Introductory, simple maze developed in Gazebo simulator.

The bumper hit events for right and centre bumper are shown in Fig. 4.3 . Further,
Fig. 4.4 shows the left and center bumper hit events. The variables used in Fig. 4.3−4.4
are described as follows:

‘/mobile_base/events/bumper/bumper ’ represents bumper field value (‘0’,‘1’,‘2’ for left,
center and right bumper, respectively) of bump sensor of the robot. The information about
the bumper field is available in ROS on the ROS-topic ‘/mobile_base/events/bumper ’.
Similarly, ‘/mobile_base/events/bumper/state’ gives state field value (‘0’ for released and
‘1’ for pressed) available through ROS-topic ‘/mobile_base/events/bumper ’.
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Figure 4.3.: Right and centre bumper hit events.

Figure 4.4.: Left and centre bumper hit events.

Figure 4.5.: Bumper hit events by real Turtlebot.
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Graphical representation and execution of ROS nodes are explained in Appendix A.4.
The implementation of the algorithm with real Turtlebot is similar to the case of Gazebo.
In case of real robot, Fig. 4.5 presents the bumper events generated with left, right and
center bumper values. Variables description for Fig. 4.5 is same as given for Fig. 4.3−4.4.
Own publication concerned to Section 4.1 is presented in [NK-101].

4.1.3. Summary

The implementation of the proposed algorithm shows that the obstacle avoidance task
can be handled by using the bumper events of the Turtlebot. The Turtlebot successfully
recovers from the collisions and follows the new velocity commands. In the case of
autonomous navigation in unknown environment, this algorithm is very useful when other
sensors for obstacle avoidance are got damaged or removed to minimize the complexity.
The main disadvantage of the proposed algorithm is that it does not lead to a collision-free
navigation. Therefore, the other sensors of robot like LASER and camera may get priority
over bump sensor for collision-free navigation. Consequently, the methods based on the
sensors which lead to obstacle avoidance without collisions during navigation can be
taken into consideration for the future work.
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4.2. Robot navigation in unknown environment using fuzzy
logic

In our everyday life we often solve control tasks (i.e. driving a car, controlling the
heating system at home, etc.) without having exact numerical values that are replaced
by qualitative concepts as “very small”, “small”, “approximately zero”, “big”, “very
big”, etc. Following the early ideas on three valued logic developed by Łukasiewicz
in the twenties of the past century [102, 103], it was Lotfi Zadeh who constructed the
mathematically rigorous formulation of the multiple valued logic as fuzzy sets in 1965 [88].
In this formulation the “characteristic function” of a classical subset of a set was replaced
with a membership function that had its value in the interval [0, 1] The generalization of
the “AND” and “OR” operations with classical sets were also elaborated for fuzzy sets
so the control rules (i.e. the recommended actions to be done under certain conditions)
formulated by the use of a common human language were “translated” to the “language”
of fuzzy controllers. Such systems contain a lot of arbitrary functions (from the simple
triangular and trapezoidal systems to Dombi’s “Pliant System” [91, 104]). In many
applications (due to their parametric simplicity) triangular and trapezoidal membership
functions are used (e.g. [105–107]).

In the practice it often occurs that for the development of the models of real physical
systems no “closed analytical formulation” (i.e. the combination of finite number of
certain functions that are available in the form of classical tables and integral tables) is
possible. In such cases the use of “universal approximators” is expedient that means the
application of special sequences and series that can be “cut” at finite number of terms
to achieve some limited precision. The earliest example of function approximations was
given by Weierstraß in 1885 in [108] for the approximation of continuous real valued
functions by polynomials. It was generalized by Stone in 1948 in [109] for other functions
than polynomials. This method has obtained application in fuzzy systems in the nineties
of the past century (e.g. [110]).

Regarding the approximation of multiple variable continuous functions, as a rebuttal of
one of Hilbert’s conjectures published in [111], at first Arnold gave a particular example
for three variable functions in 1957 [112]. In the same year Kolmogorov published a
proof on the possible approximation of continuous functions of arbitrary number of real
variables with single variable real functions in [113]. Kolmogorov’s constructive example
has been refined and simplified in the sixties of the past century by Sprecher [114] and
Lorentz [115, 116]. The neural networks were found as technical realizations of these
function approximators (e.g. [117, 118]).
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The fuzzy systems were found to be universal approximators, too (e.g. [78, 79]) in
which their “scalability” problems (i.e. the strong dependence of the necessary functions
on the number of the independent variables and the necessary precision) were realized,
too (e.g. [80, 119, 120]).
In general, their practical applicability combined with their universal approximator

abilities make the fuzzy and neurofuzzy systems popular in practical applications as
robot navigation.
In the modern software products as in MATLAB’s Fuzzy Logic Toolbox there are

conveniently usable “built in” membership function types the parameters of which easily
can be edited within these systems. So the use of the available “ready” possibilities was
plausible for my purposes. In the 1st step, a simple, primitive, bumpers-based system
was developed in Section 4.1. In the next step, the bumpers-based system is replaced
with a Mamdani-type FIS. The parameters of the Mamdani-type FIS are not set by
“sophisticated methods”. After showing that these “preliminary solutions” are able to
work, a sophisticated ANFIS system is developed with Sugeno-type output in which the
parameters are set by a learning process.

In this section, a model for the robot navigation in unknown environment is presented
using MATLAB-Simulink. The robot navigation is handled by two controllers: pure
pursuit and fuzzy logic controller. The pure pursuit controller computes a direct path
from start to goal position without considering the obstacles in the path. For obstacle
avoidance in robot navigation, the fuzzy logic controller is taken. This fuzzy logic
controller takes the input from the LASER sensor of the robot and gives the change in
the angular velocity as output to the robot to avoid the obstacle. The navigation paths
resulting from the proposed model, with and without obstacles in the paths, are shown
in figures.

The remaining of this section is organized as follows: Section 4.2.1 presents an insight
into using the LASER scan data for obstacle avoidance. The proposed fuzzy controller is
described in Section 4.2.2. Section 4.2.3 presents description about the implementation
of the model in MATLAB-Simulink. The experimental set-up and result are discussed in
Section 4.2.4. Finally, Section 4.2.5 is the summary of the section.

4.2.1. LASER scan data for obstacle avoidance

LASER scan is one of the most popular method to compute the distances of obstacles in
the robot navigation. The LASER sensor messages give ranges of obstacles. The obstacle
ranges and corresponding angles of LASER rays give the locations of the obstacles in
the robot path. A single LASER scan message may contain some hundred ranges from
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right to left in LASER scan area starting from the minimum scan angle in the right side
to the maximum scan angle in the left side of the central LASER ray. For example, in
the Turtlebot robot, a LASER scan message may contain 640 ranges from right to left.
Consequently, there is equal number of scan angles for these ranges. Fig. 4.6 describes
the different locations of the obstacles coming in the way of three different LASER rays.

Figure 4.6.: Positions of obstacles in LASER scan area.

4.2.2. The fuzzy controller

Using the obstacle ranges and corresponding angles, the proposed fuzzy controller turns
the robot in the required direction to avoid the obstacles during the navigation. The
overall fuzzy logic design, membership functions for the fuzzy controller and the required
fuzzy rule base are defined as follows.

4.2.2.1. Fuzzy logic design

The robot publishes LASER scan messages on a topic of ROS. The robot navigation
model programmatically subscribes the LASER scan messages available on that topic
of ROS. In this way, the LASER scan messages, published by the robot, are subscribed
by the robot navigation model in MATLAB-Simulink. These LASER scan messages
are used to detect the distances and locations of the obstacles in the robot navigation
environment. A LASER scan message contains a vector of ranges obtained by the LASER
sensor of the robot. A range is the distance of an obstacle at a particular angle of LASER
scan. Therefore, there is a corresponding angle for each of the range present in the
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ranges vector. The first range of the ranges vector belongs to the minimum angle of the
LASER scan. The other angles corresponding to the ranges can be calculated by using
the specified angle increment of the LASER sensor of the robot.

Figure 4.7.: Fuzzy logic design.

The ranges and angles vectors provide the information of distance and scan angle of
obstacles. Further, the minimum range and its corresponding angle account the closest
obstacles to the robot. If more than one minimum values are present in the ranges vector
then the first minimum value is considered. The function to compute the minimum range
and its corresponding angle is defined in Fig. 4.13. In this manner, the minimum range
and its corresponding angle are provided to the fuzzy controller as the two inputs. As
the only output, the fuzzy controller is providing the change in the angular velocity of
the robot. Fig. 4.7 presents the proposed fuzzy logic design of the fuzzy controller.
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4.2.2.2. Membership functions

For the given FIS, the π-shaped membership functions are used because the fuzzy concepts
like ’around’, ’approximately’, ’close to’, are present.

The membership function for the minimumRange input variable of the fuzzy controller
is divided into two categories named as close and normal. The category ’close’ describes
that the obstacle is close to the robot. In this situation, the robot needs the required
change in its angular velocity so that it can avoid the obstacle in its navigation path
from start to goal. The membership function plots for the input variable minimumRange
is given in Fig. 4.8.

Figure 4.8.: Membership function plots for minimumRange.

The membership functions taken in Fig. 4.8 are defined using (4.1).

µ (x) =



0, for x ≤ p
x−p
a−p , for p < x ≤ a

1, for a < x ≤ b
q−x
q−b , for b < x ≤ q

0 for q < x

(4.1)

where, the set of parameters {p, a, b, q} is same as taken in (2.6).
In Fig. 4.8, the sets of parameter values for the membership functions of close and nor-
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mal are taken as {−3.43,−0.216, 0.404, 1.319} and {1.124, 2.29, 12.5, 18.3}, respectively.
The second input variable of the fuzzy controller is CorrespondingAngle. This angle

gives the information that whether the obstacle is at the right side, left side or at the
central position in respect to the robot. Based on this, there are three categories for
CorrespondingAngle, namely: rightSide, center and leftSide. Fig. 4.9 represents the
membership function plots for the input variable CorrespondingAngle.

In Fig. 4.9, the membership function for center is defined using (4.2). The membership
functions for the remaining two variable in Fig. 4.9 are defined using (4.1).

µ (x) =



0, for x ≤ p
x−p
a−p , for p < x ≤ a
q−x
q−a , for a < x ≤ q

0 for q < x

(4.2)

where, the set of parameters {p, a, q} is same as in (2.5).
In Fig. 4.9, the sets of parameter values for the membership functions of rightSide, center,

and leftSide are considered as {−0.899,−0.565,−0.473,−0.02533}, {−0.0554, 0.00592,
0.06534}, and {0.0455, 0.474, 0.565, 0.899}, respectively.

Figure 4.9.: Membership function plots for CorrespondingAngle.

The fuzzy controller has a single output variable: ChangeInAngularVelocity. The
values for this variable are divided into rightTurn, noTurn and leftTurn categories. The
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membership function plots for the output variable ChangeInAngularVelocity are depicted
in Fig. 4.10. In Fig. 4.10, the membership function for noTurn is given by using (4.2).
For rightTurn and leftTurn, the membership functions are same as presented in (4.1).
In Fig. 4.10, the sets of parameter values for the membership functions of rightTurn,

noTurn, and leftTurn are given as {−6.02,−3.78,−3.17,−0.1929}, {−0.35, 0, 0.35}, and
{0.2214, 3.17, 3.78, 6.02}, respectively.

Figure 4.10.: Membership function plots for ChangeInAngularVelocity.

4.2.2.3. Fuzzy rule base

The fuzzy rules are created on the simple strategy ,like, if the obstacle is close to the left
side of the robot’s LASER scan area then turn the robot to the opposite side (i.e. right
side).

Figure 4.11.: Rule base of the fuzzy controller.

On the other hand, if the obstacle is close to the right-side area of LASER scan then
the robot turns to the left side. However, if the obstacle is close to the central area of
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LASER scan then the fuzzy rule can be left or right biased. For the latter case, the
right biased rule has been considered. Fig. 4.11 presents the fuzzy rule base for the fuzzy
controller of the system.

4.2.3. Implementation of the model in MATLAB–Simulink

The proposed model for robot navigation is presented by Fig. 4.12 as a model in Simulink.
To move the robot from start to goal, two controllers are used in the system. One of
the two controllers is pure pursuit controller which is available in the Simulink library.
The pure pursuit controller takes two inputs: the current pose of the robot and a N × 2
matrix of way points [37] in the navigation path. The matrix of way points is given in
by the constant block of the Simulink library. The pure pursuit block provides three
outputs: linear velocity, angular velocity and target direction. Out of the three outputs
the later one is optional. Here, the first two outputs are taken from the pure pursuit
controller. The pure pursuit controller computes the linear and angular velocity to drive
the robot from current position to the goal position without taking the obstacles into
consideration. Therefore, an additional controller is required for obstacle avoidance.

Figure 4.12.: The model of the system in MATLAB-Simulink.

The proposed fuzzy controller is used for the obstacle avoidance purpose. The two
inputs, minimumRange and CorrespondingAngle, for the fuzzy controller are defined in
the MATLAB function fcn given in the Fig. 4.13. There are two input arguments to the
MATLAB function fcn. The first parameter (r) is associated with ObstaclesRanges vector
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and the second parameter (a) is linked with ObstaclesAngles vector. The fuzzy controller
computes the desired change in angular velocity to avoid the obstacle by using the fuzzy
membership functions and fuzzy rules defined in its fuzzy rule base. The decision of the
nearest obstacle is taken by the function fcn (Fig. 4.13). This function uses LASER
ranges and their corresponding angles.

Figure 4.13.: MATLAB function fcn.

The program instructions used in Fig. 4.13 are described in Table 4.1.

Table 4.1.: Description of the program instructions used in Fig. 4.13.
Instruction(s) Description

1
(r, a) and (minimumRange, CorrespondingAngle)
are input and output parameters, respectively.

2
‘min(r)’ gives the minimum range (j)
and index (k) of the minimum range.

3
The minimum range value (j)
is assigned to ‘minimumRange’.

4 Angle ‘a(k)’ for ‘j’ is assigned to ‘CorrespondingAngle’.

Algorithm 4 The robot navigation algorithm
1: while (True) do
2: Subscribe the LASER scan readings of the robot and set start and goal positions

for it.
3: Compute the required linear and angular velocities for the robot to navigate it

from the current position to goal using pure pursuit path following navigation
algorithm block of Simulink. In addition, compute the change in angular velocity
using the fuzzy controller to avoid the closest obstacle.

4: Compute the resultant angular velocity by adding the angular velocity from the
pure pursuit path following block and change in angular velocity from fuzzy
controller obtained in step 2.

5: Publish linear and the resultant angular velocities to navigate the robot.
6: end while

At a time, A LASER scan message from the robot gives the distance ranges in the
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robot view area. The function fcn returns the first minimum range and its corresponding
angle. Since, the function fcn selects the first minimum rage out of the scan message,
therefore, the possible ambiguity in selecting the nearest obstacle may be addressed by
the method. This first minimum range and its angle are taken as input to the membership
function. Using the membership function, the robot need to change its ongoing direction
only when any obstacle is close enough in the path.

The process robot navigation, from start to goal, can be summarized as in Algorithm 4.

4.2.4. Experimental set-up and results

To test the method, the default world (playground.world) of the turtlebot_gazebo package
of ROS is used with customization of having two spot lights. The playground.world
contains five different objects which can act as obstacles during robot navigation task.
Therefore, these obstacles can play good role for testing the method.

Figure 4.14.: The Gazebo’s playground.world.

Fig. 4.14 shows the Gazebo-world consisting an instance of each of the five models: a
mobile_base (turtlebot), a bookshelf, a jersey_barrier, a unit_cylinder_1, a cube_20k, a
Dumpster and a ground_plane_0.
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The mobile_base is heading towards positive X-axis direction. Two spot lights are
taken in the figure to show the start and goal positions of robot navigation. The first
spot light (circumscribing mobile base) from the top consists of the start point and the
second spot light towards bottom contains the goal position of the navigation path. The
coordinates of the start and goal points supplied to the system are (0.0107, 0.0000) and
(0.5642,−5.8318), respectively.

The execution of the model, as given in Fig. 4.12, on the Gazebo-world taken in
Fig. 4.14, drives the robot from start to goal by avoiding the first obstacle, a cube_20k,
on the right side and then avoiding the second obstacle, a Dumpster, on its left side
during the navigation from the start to goal.

Figure 4.15.: Robot paths with and without obstacles. The blue path is observed in the
presence of the obstacles and the red path is received in the absence of the
obstacles.

The fuzzy controller provides the left turn in the presence of cube on the left side and
the required right turn to avoid the Dumpster on left. This navigation path is shown
by blue color in the Fig. 4.15. If the two obstacles in the navigation path, a cube_20k
and a Dumpster, in the Gazebo world as given in Fig. 4.14, are deleted then there is no
obstacle in the navigation path of the robot from start to goal. In this case, the fuzzy
controller gives the change in angular velocity near to zero and therefore the pure pursuit
controller drives the robot towards the goal directly as shown by the red path in the
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Fig. 4.15. Own publications pertaining to Section 4.2 are given by [NK-121, NK-122].

4.2.5. Summary

The proposed fuzzy controller provides the required change in angular velocity to avoid
obstacles on each side of LASER scan area. Further, it can be noted from the Fig. 4.15
that the turns are smooth. Therefore, there are very little chance to stuck at the turns in
the robot navigation path on either side. Further, the proposed system does not need any
information about the obstacles before starting the navigation from start to goal. Hence,
the system is suitable for the navigation in unknown environment where the obstacles
are not known in advance or the positions of the obstacles are changing with time.

The given fuzzy controller is right turn biased for the obstacles present on the centre of
LASER scan area. Future research work may remove the left turn or right turn biasing
from the fuzzy controller.
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4.3. Robot navigation with obstacle avoidance in unknown
environment using adaptive neuro-fuzzy inference system

In this section, a robot navigation model is constructed in MATLAB-Simulink. This
robot navigation model makes the robot capable for the obstacles avoidance in unknown
environment. The navigation model presented in this section is based on the navigation
model proposed in Section 4.2.3. Using the Mamdani-type FIS of Section 4.2.2, training
data, of input and output mapping, is collected. This training data is supplied to the
ANFIS to obtain a Sugeno-type FIS. The navigation model, using the Sugeno-type FIS,
is implemented on the simulated as well as real robot.
The remaining part of this section is organized as follows: The model for the robot

navigation is presented in Section 4.3.1. Section 4.3.2 describes the FIS for the fuzzy
controller taken in the model. Results are given in Section 4.3.3. Summary of the section
is presented in Section 4.3.4.

4.3.1. Robot navigation model in MATLAB-Simulink

The robot navigation model is presented using MATLAB-Simulink software. In this
model, the navigation task is accomplished by the following two controllers:

(i) The pure pursuit controller,

(ii) The fuzzy based controller (as described in Section 4.2).

Fig. 4.16 describes the details of the presented robot navigation model. This model
contains four subsystems as follows:

(i) Subscribing topic: ‘/odom’,

(ii) Subscribing topic: ‘/scan’,

(iii) Goal Distance Checking,

(iv) Publishing topic: ‘mobile_base/commands/velocity’.

The Subscribing topic: ‘/odom’ subsystem, in the given model, subscribes the /odom
topic of the ROS to obtain current pose of the robot. A typical message vector on
/scan topic contains distance ranges of obstacles in the scan area. In two dimensional
state, the scan area is of ’V’ shape. From right to left, a single LASER scan may
contain some hundred ranges. Using minimum angle of scan and angle increment, the
corresponding angle to each range in a message can be find out. The obstacle ranges and
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their corresponding angles of scan, together, give the locations of the obstacles in the
robot path. The Subscribing topic: ‘/scan’ subsystem is subscribing the ROS topic /scan
to get the vectors of ranges.

Figure 4.16.: Robot navigation model in Simulink.
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The goal distance (p) between the goal position (x, y) and current position (x′, y′) of
the robot can be expressed by (4.3) as follows:

p =
√

(x− x′)2 + (y − y′)2. (4.3)

Before sending the new velocity commands to the robot, the Goal Distance Checking
subsystem checks the distance of goal from the current position of the robot. If the
distance between the goal and the robot is less than or equal to the given value (in our
case, it is 0.1 meter) then the new velocity commands will not be given to robot. As a
result, the robot navigation process gets completed and, therefore, terminated. Robot is
subscribing the topic /mobile_base/commands/velocity of ROS which is being published
by the subsystem Publishing topic: ‘/mobile_base/commands/velocity’.

In addition to the four subsystems, the remaining blocks of the model are as follows:

(i) two constant blocks named as Waypoints and Goal,

(ii) a Mux block,

(iii) a Pure Pursuit path following algorithm block,

(iv) two MATLAB functions,

(v) a fuzzy logic for obstacle avoidance block.

The Waypoints constant block is to contain a N × 2 matrix of way points of navigation
path. In case of unknown environment, it is considered that only start and goal positions
of the robot are known, initially. The Goal constant block contains a two dimensional
coordinates of goal position. The Mux block is combining the two inputs (minimumRange
and CorrespondingAngle received from the MATLAB Function block) in a single output
link. So that, these two input values can be passed to the fuzzy controller block by a
single link. The Pure Pursuit block is used to compute the required linear and angular
velocities to drive the robot using inputs from way-points of the path and current pose
of the robot. Since the navigation environment is considered as unknown, the way-points
of the feasible path are unknown except the two points: start and goal. The function
fcn in MATLAB Function block computes the minimum range and its corresponding
angle of scan from the vectors of ObstaclesRanges and ObstaclesAngles received from
Subscribing topic: ‘/scan’ subsystem block. The MATLAB function in the Training data
writing block is used to write the data in three separate columns for minimum range, its
corresponding angle and the output from the fuzzy controller. This training data can
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be used to train a FIS using ANFIS model. The block named Fuzzy Logic for Obstacle
Avoidance is a fuzzy logic controller block.

The published linear velocity is same as linear velocity given by the pure pursuit
block. Since the pure pursuit block does not consider the obstacles in the path, the
angular velocity is needed to be adjusted before its publication on the ROS. This required
adjustment in the angular velocity is obtained by the Fuzzy Logic for Obstacle Avoidance
block. The published angular velocity (ω) can be stated by (4.4) as follows:

ω = ω1 + ω2. (4.4)

where, ω1 is the angular velocity (i.e. AngVel) provided by path pursuit controller. ω2 is
the output (i.e. d(AngularVelocity)) of the fuzzy logic controller.

4.3.2. Sugeno-type FIS for the Fuzzy Controller

The training data, received from the execution of the navigation model with Mamdani-
type FIS in its fuzzy controller, are given as input to ANFIS to find the Sugeno-type FIS.
The received Sugeno-type FIS is shown in Fig. 4.17.

Figure 4.17.: Sugeno-type FIS obtained using ANFIS.
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The ‘and’ and ‘or ’, the rule connecting operators, are taken as product and probabilistic-
OR (algebraic sum), respectively. The defuzzification method is weighted average method
as defined in (2.14). Fig. 4.18 depicts the plot between the training data and FIS output.

Figure 4.18.: Training data and FIS output in neuro-fuzzy designer.

After training, the number of rules and output membership functions are six each.
It is observed that for the given number of input variables, output variable(s) and
input membership functions for each input variable, the ANFIS has generated input
membership functions, rules and output functions.

Fig. 4.19–4.20 presents the resultant input membership functions. The input variables,
input1 and input2, are auto generated names after the training through ANFIS and
correspond to the input variables of Mamdani-type FIS presented in Fig. 4.7. Similarly,
the output variable, output, is corresponding to the output variable of the Mamdani-
type FIS (given by Fig. 4.7). It can be observed from the Fig. 4.19 and Fig. 4.20
that the type of the membership functions is generalized bell membership function
as defined in (2.7). Here, the sets of parameters {w, s, c} for the membership func-
tions of in1mf1, in1mf2, in2mf1, in2mf2, in2mf3 are received as {0.1289, 3.503, 0.5833},
{1.644, 2.8, 3.134}, {0.1479, 2.086,−0.3496}, {0.03622, 2.272, 0.004019}, {0.09114, 2.076,
0.3323}, respectively.
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Figure 4.19.: Membership function plots for input1 in Sugeno-type FIS.

Figure 4.20.: Membership function plots for input2 in Sugeno-type FIS.
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Figure 4.21.: Sugeno-type fuzzy rules received using ANFIS.

Fig. 4.21 presents the rule editor of the Sugeno FIS obtained. The function of the only
output variable in the Sugeno-type FIS is defined using (2.16). In our study, zero-order
Sugeno-type FIS is obtained. For rules from 1 to 6 (in Fig. 4.21), the values of the output
are observed as 2.405,−2.303,−2.528,−0.005126, 0.04744, 0.01124, respectively.
The rules in the Fig. 4.21 are auto generated rules after the successful training from

the ANFIS model. It can be noted that the number of rules of this Sugeno-type FIS is
different from the number of rules used in the Mamdani-type FIS given by Fig. 4.7.

4.3.3. Results

The robot navigation model (as given in Section 4.3.1) is tested on the simulated world
shown by Fig. 4.22. This simulated world has been constructed by using the Gazebo
simulator. In the simulated world of Fig. 4.22, three spot lights are used to show one
starting and two goal positions. Using the robot navigation model, presented in Fig. 4.16,
the simulated Turtlebot robot navigates from the starting position to each goal positions
(i.e. goal 1 and goal 2), successfully. During its navigation from start to goal 1 or
goal 2, the robot avoids the obstacles present in each of the path. In our case, the two
dimensional coordinates of the start, goal 1 and goal 2 positions are given as (0.0007,
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0.0000), (5.9500, 0.9015) and (7.1586, 2.0189), respectively.

Figure 4.22.: Paths followed by the robot in simulated world.

In addition, at start, the robot is heading towards positive X-axis direction. In the
navigation model (presented by Fig. 4.16), the fuzzy logic controller block provides the
required change in the angular velocity for obstacle avoidance. Consequently, the robot
avoids the obstacles encountered in the path. The paths followed by the robot, using
Mamdani and Sugeno-type FISs, are shown using different colours (defined in Table 4.2).

Table 4.2.: Coloured paths and FISs used in the Fig. 4.22.
Path, Goal, and FIS Colour

Path to “Goal 1” using Mamdani-type FIS Blue
Path to “Goal 2” using Mamdani-type FIS Red
Path to “Goal 1” using Sugeno-type FIS Green
Path to “Goal 2” using Sugeno-type FIS Black

The proposed model for the robot navigation is implemented on real Turtlebot robot
equipped with Microsoft Kinect XBOX 360 sensor. Robot path from starting position
to the goal position, in a real world environment, is presented by Fig. 4.23. The linear
velocity of the robot is taken as 0.5 meter per second. It is evident from Fig. 4.23 that
the robot has to avoid obstacles on both of its sides during its drive from start to goal.
In addition, some of the portion of the corridor is fenced by the iron railing instead of
solid brick wall fence. Therefore, this real environment is an excellent case for testing the

56



4.3. Robot navigation with obstacle avoidance in unknown environment using adaptive
neuro-fuzzy inference system

proposed navigation model and FISs.

Figure 4.23.: Path followed by real robot in real world environment.

The Sugeno-type FIS is used as the FIS of the fuzzy controller block of the robot
navigation model. It is clear from the path that the robot takes turn whenever the fence
wall or railing comes in the path, otherwise, the robot directly navigates towards the
goal. Own publication pertaining to Section 4.3 is provided in [NK-123].

4.3.4. Summary

The ranges and the types of input membership functions of Sugeno-type fuzzy inference
systems can be successfully obtained using ANFIS model. Further, the number of required
rules and the number of output membership functions generated from the ANFIS model
differ from the Mamdani-type FIS. It can be noted from the results that the robot follows
the same paths using Mamdani and Sugeno FIS except few situations. The FIS generated
through the simulator are capable of obstacle avoidance in real world environment for
the real robot. For better results, it has been observed through rigorous experimental
work that the linear velocity of the real robot should be close to the linear velocity taken
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for the simulated robot.
Therefore, in addition to the static obstacles avoidance, the avoidance for dynamic

obstacles is achieved under the reasonable conditions that the speed of motion of this
obstacle is much smaller than that of the robot, and its size is limited in comparison
with that of the whole workspace.
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during robot navigation in unknown
static environment

To perform LASER scan matching and obstacle recognition during robot navigation, this
chapter considers that the environment, in which the robot is navigating, is static or at
least very slowly varying.

5.1. Robot navigation with obstacle recognition using LASER
sensor

Feature extraction technique is used by many of the researchers for providing new
scientific contributions in image processing and pattern recognition (e.g. [124–126]).
The complexity of the object matching task rises for similar objects [127]. In obstacle
avoidance, feature extraction method is used to find the path points in [128]. Objects can
be extracted using the video sequence of camera mounted on a robot. Using video camera,
a keypoint-based method, to produce map of the environment, is given by [129]. However,
using video camera for feature extraction of the objects during the robot navigation is
computationally expensive [130]. In addition, feature selection in high-dimensional data
is a complex task [131]. For the robot navigation including obstacle detection and/or
search related operations, feature extraction techniques can be applied. A task-based
selection of features is given in [132]. Mobile robots can be controlled using distance
and angle features of the image of targets [133]. Frequently appearing objects can be
classified as edges, corners or planes. A feature extraction method using neural network
is applied to classify the objects in [134]. Schemes for motion related feature extraction
using range images are presented in [135]. Using the LASER ranges, methodologies
for feature extraction are described in [136–138]. However, the state-of-the-art feature
extraction methods yet not considered standard deviation of the similar objects for
obstacle recognition purpose. In addition, to keep the computation cost realistic, feature
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extraction on the LASER range data can be considered.
Robot navigation in unknown and static environments may result in aimless wandering,

corner traps and repetitive path loops. To address these issues, this section presents the
solution by comparing the standard deviation of the distance ranges of the obstacles
appeared in the robot navigation path. For the similar obstacles, the standard deviations
of distance range vectors, obtained from the LASER range finder sensor of the robot
at similar pose, are very close to each other. Therefore, the measurements of odometer
sensor are also combined with the standard deviation to recognize the location of the
obstacles. An algorithm, with obstacle detection feature, is presented for robot navigation.
The algorithm checks the similarity of the distance range vectors of the obstacles in
the path and uses this information in combination with the odometer measurements to
identify the obstacles and their locations. The experimental work is carried out using
Gazebo simulator.

In this section, the scan range vectors are compared to detect the previously occurred
obstacles on the same locations of the navigation path.

The remaining section is organized as follows: The Section 5.1.1 provides the problem
definition and solution. Section 5.1.2 is dedicated to the experimental results and
discussion. The summary of the section is provided in Section 5.1.3.

5.1.1. Problem definition and solution

During robot navigation in unknown environment, the robot may trap in a loop and
may repeat the same path again and again. This may be due to the presence of static
obstacles. To deal with this type of problem, there is a need to find a method which can
recognize the previously occurred obstacles in successive repetition of the path. So that,
the robot can be directed to reverse the angular velocity applied so far. In this way, the
robot will come out of the repetitive navigation path loop.
The LASER scanning is a reliable method for obstacles range finding. Generally, the

LASER scanner produces a vector of ranges (R) of obstacles. If there are n number of
readings in a scan then R can be expressed by (5.1) as follows:

R = [dk], for k = 1 to n. (5.1)

where, dk is the kth distance range in R.
Standard deviations of two range vectors can be compared to find the similarity between

them. If the standard deviations of the two scan range vectors are close enough then
there is the possibility that these scans belong to the same obstacle.
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Algorithm 5 Obstacle recognition using LASER sensor and odometer
1: Create vectors: U, V, X, Y, T, S;
2: Initialize: Rmax, count,Dt, c, Ts, Tf , σt, Pt, vc, ωc, vb;

(The description of variables and initialized values can be found in Table 5.1.)
3: while (Time < Tf ) do
4: Receive scan reading from robot;

R← scan ranges received;
5: for i← 1 to length of R do
6: if R(i) == NaN then
7: R(i)← Rmax;
8: end if
9: end for

10: count← count+ 1;
11: Collect odometer readings at the time of scan;

X(count)← X coordinate from odometer;
Y(count)← Y coordinate from odometer;

12: Dmin ← minimum of R;
13: if Dmin < Dt then
14: c← c+ 1;
15: σR ← standard deviation of R;
16: S(c)← σR;
17: U(c)← X coordinate from odometer;
18: V(c)← Y coordinate from odometer;
19: T(c)← time of scan;
20: for j ← 1 to (length of S− 1) do
21: Dj,c ←

√
(U(c)−U(j))2 + (V(c)−V(j))2 ;

22: σr ←
∣∣(S(c)− S(j))

∣∣;
23: if (σr < σt and Dj,c < Pt) then
24: Match found between scans j and c.

Record corresponding scan times and positions of robot with
respect to j and c.;

25: end if
26: end for
27: v ← −|vb|;
28: ω ← ωc;
29: else
30: v ← vc;
31: ω ← 0;
32: end if
33: Send v, ω to robot;
34: end while

Further, the standard deviation, in combination of the robot position coordinates, can
be used to confirm that the scan ranges belong to the same obstacle. To achieve this
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solution, the Algorithm 5 is presented.
Standard deviation (σR) of R can be expressed by (5.2) as given below:

σR =

√∑n
k=1(dk − d)2

n
. (5.2)

where, d is the mean, defined by (5.3), of R.

d = 1
n

n∑
k=1

dk. (5.3)

5.1.2. Experimental results and discussion

The numerical values of the variables, initialized in Algorithm 5, are presented in Table 5.1.
The robot is driven, using Algorithm 5, in the Gazebo world as given by Fig. 5.1.

-3 -2 -1 0 1 2 3

X (meters)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Y
 (

m
e

te
rs

)

Figure 5.1.: Simulated world in Gazebo.

In the beginning, in Fig. 5.1, the Turtlebot is located at the centre of the world and
heading towards positive X-axis. In Fig. 5.1, coordinate axes and their measurement
marker are added to provide the understanding of the coordinate positions in the Gazebo
world. The Gazebo world is constructed by using brick boxes of the dimensions 3× 1× 3
from the model database of the Gazebo simulator. Purposely, the Gazebo world is
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5.1. Robot navigation with obstacle recognition using LASER sensor

constructed using only one model so that the same type of obstacle encountered each time
to increase the complexity in differentiating the obstacles and their respective locations.

Table 5.1.: Description of variables and initialized values

Variable Description Initialized Value

Rmax
Maximum range of
the LASER scanner

Default

count a counter variable 0

Dt
Threshold distance

between robot and obstacles
0.6 (meter)

c a counter variable 0
Ts Starting time 0
Tf Finish time 80 (seconds)

σt
Threshold difference

between σ of two scans
0.0005

Pt
Threshold distance

between two positions
0.2 (meter)

vc Constant forward linear velocity 0.5 (meter/sec.)
ωc Constant Angular velocity −0.6 (radian/sec.)
vb Constant backward linear velocity −0.02 (meter/sec.)
v Published linear velocity -
ω Published angular velocity -

U
Vector of X coordinates of poses

when obstacles are near
-

V
Vector of Y coordinates of poses

when obstacles are near
-

X
Vector of X coordinates

of all poses
-

Y
Vector of Y coordinates

of all poses
-

T
Vector of time

at which scans performed
-

S
Vector of standard deviations

scan range vectors
-
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In addition, the maze structure is kept closed so that the robot can be forced to follow
a repeated path in a loop.
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Figure 5.2.: Robot path generated from odometer measurements.
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Figure 5.3.: Standard deviation of scan ranges.

Robot is driven at a constant forward linear velocity and zero angular velocity until
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5.1. Robot navigation with obstacle recognition using LASER sensor

any closed obstacle is encountered. In this navigation process, if any obstacle is close
enough to the robot then a backward linear velocity and a constant non zero angular
velocity is provided to the robot. Using Algorithm 5, the robot navigates in a path loop.
Fig. 5.2 shows the resultant path of the robot. It is clear from Fig. 5.2 that robot is
driven in a navigation loop so that it can observe the same obstacles more than once.
During the navigation process, the obstacle distances are measured by LASER scan
ranges. For Turtlebot, a LASER scan message contains a vector of 640 range readings of
the scan area from right to left. If robot pose is same, each time, the LASER scan of an
obstacle produces same vector of ranges.
To find the similarity between two vectors of ranges, standard deviations of the two

vectors are compared. Fig. 5.3 presents the standard deviations of the range vectors
of different scans performed during the navigation of the robot. Fig. 5.3 depicts that
there are periodic spikes which are due to the similarity of the obstacles and repetitive
path loop. Further, the pattern of the graph in the periods is found very similar to each
other because of the similarity of the obstacles. Subsequently, it can be inferred that the
standard deviations of the similar obstacles are observed close to each other. However, in
addition to the standard deviation, the odometer measurements, for the robot locations
during the navigation, are used to determine the location of the obstacles. Further, on
the basis of the standard deviations and odometer measurements, it can not be identified
that either the obstacle was visited by the robot previously or the obstacle is encountered
first time during the navigation. For this reason, there is the need for additional method
to recognize that whether any particular obstacle is found first time or it is repeated.
The occurrence number (i.e. first time encountered or repeated) of an obstacle can be
described on the basis of the time of the scan. Obviously, the standard deviations and
robot positions of two nearby scans at very short time of difference will not vary largely.
On the other hand, if the standard deviations of the distance range vectors of any two
scans and the robot positions received from the odometer at the time of scans are very
close to each for both of the scans and the time difference between the two scans is larger
than a threshold value then it can be said that the obstacle is same and the occurrence
of this obstacle is the repeated one.

Table 5.2 presents the positions of the robot and their corresponding times with respect
to scan range matches. It can be observed from the Table 5.2 that using standard
deviations and robot positions, the similarity between the two scan range vectors are
found either at times with short difference or at times where the time interval is larger.
The matches at short and large time intervals indicate about the occurrence time of the
obstacles. For example, the first row of Table 5.2 indicates that the match between the
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range vectors is found at the scan times 10.23 (seconds) and 10.46 (seconds). Thus, the
time interval (Time2− Time1) between these scans is less than a second.

Table 5.2.: LASER scan range vectors matches and robot positions

Time1 Time2 Scan Robot Robot
(Sec.) (Sec.) Numbers Position Position

Matched at Time1 at Time2
10.23 10.46 35, 37 (1.59, -1.11) (1.59, -1.11)
19.08 21.28 48, 63 (-1.66, -0.99) (-1.67, -0.93)
21.73 21.84 64, 65 (-1.69, -0.86) (-1.70, -0.81)
26.32 26.44 69, 70 (-1.64, 1.05) (-1.64, 1.05)
28.68 28.8 85, 86 (-1.60, 1.05) (-1.55, 1.06)
37.62 38.64 95, 103 (1.59, 1.01) (1.57, 1.02)
37.17 39.66 92, 107 (1.59, 1.01) (1.61, 0.89)
9.68 44.91 31, 113 (1.59, -1.12) (1.51, -1.07)
9.68 45.13 31, 115 (1.59, -1.12) (1.51, -1.08)
10.56 45.13 38, 115 (1.60, -1.11) (1.51, -1.08)
44.91 45.13 113, 115 (1.51, -1.07) (1.51, -1.08)
8.97 45.24 26, 116 (1.59, -1.08) (1.51, -1.07)
46.12 46.3 122, 123 (1.52, -1.06) (1.52, -1.06)
19.24 55.1 49, 133 (-1.66, -0.99) (-1.63, -1.08)
21.13 56.32 62, 141 (-1.65, -0.97) (-1.68, -1.08)
19.61 56.7 52, 143 (-1.66, -0.99) (-1.68, -1.08)
19.77 56.84 53, 144 (-1.65, -0.99) (-1.68, -1.08)
19.88 56.97 54, 145 (-1.65, -0.99) (-1.68, -1.08)
20.66 57.41 60, 148 (-1.64, -1.00) (-1.67, -1.09)
55.74 58.29 137, 154 (-1.69, -1.07) (-1.67, -1.10)
26.61 64.17 71, 159 (-1.64, 1.05) (-1.59, 1.03)
64.17 64.4 159, 161 (-1.59, 1.03) (-1.59, 1.03)
26.84 64.57 73, 162 (-1.64, 1.04) (-1.59, 1.03)

Keeping in mind the forward linear velocity of the robot (i.e. 0.5 meter/seconds),
it is clear that the scans were performed at nearly same time, therefore, the match is
found between the first appearance of the obstacle and this is not the case of repetition.
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Similarly, the last row of the Table 5.2 presents the time interval between the scans as
37.73 (seconds). Therefore, on the basis of robot’s linear and angular velocities it can
be deduced that the occurrence of the obstacle at Time2 (at last row) is repeated in
navigation path loop.

5.1.3. Summary

Using the standard deviation of laser scan range vectors, the similarity of obstacles is
examined in unknown static environment. In addition to the standard deviation, the
robot position is also used to identify whether the obstacle position is same as of some
earlier position during the navigation path loop. Time interval between the scans plays
an important role in the detection of the repetitive occurrences of the obstacles. Using
the standard deviation of LASER scan range vectors, robot positions and time of scan,
the angular velocity can be reversed to break the path loop.
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5.2. Obstacle recognition and avoidance during robot
navigation in unknown static environment

In this Section, firstly, a model for robot navigation in unknown environment is presented
in MATLAB-Simulink. This model is applicable for obstacle avoidance during the
robot navigation. However, the first model is unable to recognize the re-occurrences
of the obstacles during the navigation. Secondly, an advanced algorithm, based on the
standard deviations of LASER scan range vectors, is proposed and implemented for robot
navigation. The standard deviations of the LASER scans, robot positions and the time of
scans with similar standard deviations are used to obtain the obstacle recognition feature.
In addition to the obstacle avoidance, the second algorithm recognises the re-appearances
of the obstacles in the navigation path. Further, the obstacle recognition feature is used
to break the repetitive path loop in the robot navigation. The experimental work is
carried out on the simulated Turtlebot robot model using the Gazebo simulator.
Remaining part of this section is structured as follows: a robot navigation model to

navigate a robot in unknown environment is presented in Section 5.2.1. Section 5.2.2
proposes an advanced solution for obstacle avoidance using obstacle recognition. The
results are given in Section 5.2.3. Section 5.2.4 is for the summary of the section.

5.2.1. Robot navigation model and problem definition

A robot navigation model with obstacle avoidance is given in Fig. 5.4. In Fig. 5.4, the
Odom Subscriber block is subscribing the /odom topic of the ROS. Using the Odom
Subscriber block the given navigation model is receiving the positions of the robot during
the navigation. The ‘/scan’ Subscriber block of the navigation model is subscribing the
/scan topic of the ROS. On the other hand, the robot is publishing its pose on the
ROS topic /odom and LASER scan messages on the ROS topic /scan. Therefore, the
robot positions and its LASER sensor readings are available to the robot navigation
model presented by Fig. 5.4. The Publish geometry_msgs/Twist block is publishing
the linear and angular velocities, computed by the given model, on the ROS topic
mobile_base/commands/velocity. On the other side, the robot subscribes the ROS topic
mobile_base/commands/velocity, therefore, the robot is capable of receiving the linear
and angular velocities published by the given model. The Path positions data Writing
block contains a MATLAB function to write the robot positions in a text file for the
future use.

The Algorithm 6 is used in MATLAB Function block of the Fig. 5.4. The input param-
eters of the function defined in Algorithm 6 are corresponding to the input parameters of
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MATLAB Function block of Fig. 5.4 from Msg to DT, respectively in that order.

Figure 5.4.: Robot navigation model in Simulink.

The robot navigates on a repetitive path using the negative or positive angular velocity.
The rest of the blocks in the model are self explanatory.
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Algorithm 6 Obstacles avoidance algorithm
1: function fcn(M,X, Y, vc, vb, ωc, Dt)
2: Receive scan reading from robot;
3: R← scan ranges received from M ;
4: Dmin ← min(R)
5: if (Dmin < Dt) then
6: ω ← ωc;
7: v ← −|vb|;
8: else
9: ω ← 0;

10: v ← vc;
11: end if
12: Store X,Y ;
13: return ω, v;
14: end function

Figure 5.5.: Simulated Turtlebot robot in a Gazebo world.

The robot navigation model (Fig. 5.2.1), using the Algorithm 6 in its MATLAB
Function block, is executed with the simulated Turtlebot robot in Gazebo world depicted
by Fig. 5.5. The Gazebo world is constructed in the Gazebo simulator using the Gray_wall
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available in the model database. To increase the complexity, the Gazebo world is kept
closed so that the robot can navigate in a path loop. In addition, the Gazebo world is
built by a single type of walls so that the complexity of the obstacle recognition may be
raised. Initially, the Turtlebot robot model is present at the (0, 0) coordinate position
and heading towards the positive X-axis direction. For better visibility and identification
of the robot in the Gazebo world, a spot light is taken into consideration.
Following the Algorithm 6, the robot follows a straight path (i.e. with zero angular

velocity) in the forward direction until it finds any obstacle closer than a threshold
distance. When the robot finds any nearby obstacle (closer than threshold distance) then
it is instructed to spin in left (using positive angular velocity) or right (using negative
angular velocity) side of its heading direction. However, in either of the cases (i.e. left or
right spins) the robot traps in a repetitive navigation path loop and continue to navigate
on almost same path loop. In this situation the other possible paths remain unexplored.
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Figure 5.6.: Repetitive paths followed by robot (using the proposed model given in
Fig. 5.4) in Gazebo world.

The navigation path followed by the robot is shown in Fig. 5.6. In fact, in Fig. 5.6,
the robot navigation path plot is combined with the Gazebo world (given in Fig. 5.5) to
make the navigation path more understandable with respect to the coordinate system
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point of view as well. In Fig. 5.6, the upper path loop (i.e. in positive Y coordinates) is
with positive angular velocity. On the other-hand, the lower path loop (i.e. in negative
Y coordinates) is received by using negative angular velocity.

In the situation explained by Fig. 5.6, the robot will repeatedly follow the same path
loop and will not turn to the other possible paths. However, for the searching robots, it
may be required to explore the whole area. To overcome from the problem, an advanced
solution is presented by Algorithm 7 in the Section 5.2.2 ahead.

5.2.2. Advanced algorithm for obstacle avoidance with obstacle recognition

For obstacle range detection, the LASER scan is a trustworthy technique. Typically, a
LASER scan contains n numbers of distance range readings. The distance range vector
(R), of a LASER scan, can be defined by following (5.1).

Table 5.3.: Variables’ descriptions for Algorithms 6−8.
Variable Description

Tc Current time of the system

V
Y coordinates vector of positions

when closer obstacles

U
X coordinates vector of positions

when closer obstacles
v Linear velocity of robot

Y
Y coordinates vector

of all positions

X
X coordinates vector

of all positions
ω Angular velocity of robot

S
Standard deviations vector

of scan ranges

T
Vector

of scans times

Standard deviation (σR) of R can be expressed as in (5.2). The standard deviation of
the LASER scans of the similar objects will produce same results. Therefore, the standard
deviation values of LASER scans of objects can be used to identify and differentiate the
objects scanned. Using standard deviations, the Algorithm 7 gives the solution of the
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problem of repetitive paths (as discussed in Section 5.2.1) and breaks the repetitive path
loop in robot navigation.

Algorithm 7 Obstacles recognition and avoidance algorithm
1: Create vectors: Y, S, U, T, V, X;
2: Initialize: Dt, Rm, c, e, g, Td, Tf , Tt, Ts, Pt, ωc, σt, vb, vc;

(Definition and initialization of variables can be found in Table 5.4.)
3: while ((Tc − Ts) ≤ Tf ) do
4: Read LASER scan from robot;
5: R← Distance range vector received from robot;
6: for j ← 1 to length (R) do
7: if (R(j) is not defined) then
8: R(j)← Rm;
9: end if

10: end for
11: Dmin ← min(R);
12: Y(g)← Y coordinate of the robot position;
13: X(g)← X coordinate of the robot position;
14: g ← g + 1; ;
15: if (Dmin < Dt) then
16: V(c)← Y coordinate of the robot position;
17: U(c)← X coordinate of the robot position;
18: Compute σR using (5.2);
19: S(c)← σR;
20: T(c)← time at which scan is performed;
21: c← c+ 1;
22: for k ← 1 to (length (S)− 1) do
23: Td ←

∣∣T(k)−T(c)
∣∣;

24: σr ←
∣∣(S(c)− S(k))

∣∣;
25: Dc,k ←

√
(V(c)−V(k))2 + (U(c)−U(k))2 ;

26: if
(
Dc,k < Pt & σr < σt & Td > Tt

)
then

27: e← e+ 1;
28: Call Procedure REVVEL(e);
29: end if
30: end for
31: ω ← ωc;
32: v ← −|vb|;
33: else
34: ω ← 0;
35: v ← vc;
36: end if
37: Drive the robot using v, ω;
38: end while
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At the statement 28 of the Algorithm 7, there is a call to the REVVEL(e) procedure.
The REVVEL(e) procedure is explained in Algorithm 8.

Table 5.3 presents the variables’ descriptions which are taken through Algorithms 6−8.

Algorithm 8 Procedure to reverse the angular velocity of the robot
1: procedure REVVEL(e)
2: if (e == 1) then
3: ωc ← −ωc;
4: T1 ← current time;
5: end if
6: T2 ← current time
7: if (T2 − T1 > Td) then
8: e← 0;
9: end if

10: end procedure

According to the statement 26 of the Algorithm 7, if the standard deviations, robot
positions of the two scans are similar and the time difference between the two scans is
larger than a threshold value then this is the re-occurrence of an obstacle.

5.2.3. Experimental results

The numerical values of the variables, initialized in Algorithms 6−8, are presented in
Table 5.4. Fig. 5.7 shows the resultant path of the robot.
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Figure 5.7.: Path followed by robot using advanced Algorithms 7−8.
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It is clear from the Fig. 5.7 that robot, using the proposed algorithm, reverses the
angular velocity on the re-appearance of the obstacles. In the Fig. 5.7, the initialized
angular velocity is negative ( See the value of ωc in Table 5.4). As a result, the robot
navigates towards the negative Y coordinates and re-visits back to the position near
about (1, 1.5) coordinate position. After reaching at this point, the robots completes
its one cycle of the path in the negative Y-axis coordinates. Here, the robot detects
the re-visit to the obstacle using the standard deviations, position of itself and the time
difference between the scans with similar standard deviations. At this position (i.e. near
about (1, 1.5) coordinates position), the angular velocity of the robot reverses and the
robot starts the spin in the opposite side (i.e. left side). In this manner, the robot
does not enter the previous navigation path loop and heads towards the positive Y-axis
coordinates.

Table 5.4.: Initialization of variables for the Algorithms 6−8.
Variable Description Initialized Value

Tf Finishing time 190 (seconds)
Td Time difference of scans 10 (seconds)
Tt Time threshold 10 (seconds)
Ts Time of start 0

Dt
Distance threshold

of robot and obstacles
0.6 (meter)

Pt
Distance threshold
of two positions

0.2 (meter)

σt
Threshold fluctuation

of σ of scans
0.0005

ωc Angular velocity of robot −0.6 (radian/sec.)
vb Backward linear velocity −0.02 (meter/sec.)
vc Forward linear velocity 0.5 (meter/sec.)
e a counter variable 0
g a counter variable 0
c a counter variable 0

Rm
Maximum distance range

of LASER sensor
Default
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5.2.4. Summary

A model for robot navigation in unknown environment has been proposed and imple-
mented. The Algorithm 6 is capable of obstacle avoidance with repetitive path results. By
implementing the Algorithm 7 in combination of the procedure given by Algorithm 8, the
robot comes out of the repetitive path and successfully reverses its angular velocity when
the same obstacle is found on the next iteration of the path loop. The re-appearances
of obstacles are successfully recognized and avoided. Moreover, the obstacle recognition
is used to drive the robot to the yet unexplored path. In spite of the similar obstacles
in the navigation path, the re-occurrences of the obstacles has been detected using the
robot positions and the time of LASER scans performed.
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5.3. Obstacle recognition and avoidance using two-sample
t-test

In Section 5.2, the Algorithm 7 has presented a solution for obstacle recognition and
avoidance using the difference of the standard deviations of LASER-scan distance-range-
vectors. In Algorithm 7, the statement 26 is stated as follows:

if (Dc,k < Pt & σr < σt & Td > Tt) then

here, the if condition composes logical “AND” of three conditions. The second condition
(σr < σt) of if compares the difference of standard deviations (σr) of two LASER-scan
distance-range-vectors with an arbitrary constant value (σt). However, setting the value
of (σt) is problem specific. Therefore, there is research scope to standardise the condition
(σr < σt).

Various statistical techniques are presented in literature (e.g. [139]). Two independent
samples can be compared for similarity on various aspects using t-test [140]. In this
section, the comparison of LASER-scan distance-range-vectors is standardised using
t-test.

The remaining of the section is structured in following manner: Section 5.3.1 describes
Student’s t statistics. The t-test for single-mean is explained in Section 5.3.2. Section
5.3.3 presents t-test to compare the means of two independent samples. Application
of two-sample t-test in obstacle recognition and avoidance is provided in Section 5.3.4.
Section 5.3.5 consists experimental results acquired by applying the algorithm based on
the two-sample t-test. Finally, the summary of the section is given in the Section 5.3.6.

5.3.1. The Student’s t

For a sample: {d1, d2, d3....., dn}, William Sealy Gosset (who used the pseudonym as
“Student” [141]) presented the statistics t as follows:

t =

(
d− µ

)√
n

σS
. (5.4)

where, n is the size of the sample. The mean
(
d
)
and standard deviation (σS) of the

sample are defined in (5.3) and (5.5), respectively. µ is the mean of the population.

σS =

√∑n
k=1(dk − d)2

n− 1 . (5.5)
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The statistics t, defined in (5.4), is known as “Student’s t” having (n− 1) degree of
freedom

(
df

)
.

5.3.2. t-Test for single mean

The steps for the t-test are as follows:

(i) Set-up the null-hypothesis (H0) as follows:
H0 : “There is no significant difference between the sample-mean and mean of the
population.”

(ii) Compute the value of t using (5.4).

(iii) Compare the computed value of t with the critical value of t (say tc) at the desired
level of significance.
If
(
|t| 6 tc

)
then H0 may be accepted and if

(
|t| > tc

)
then H0 is rejected.

For different values of df , the critical values of t (i.e. tc), at 1% and 5% levels of
significance, are tabulated in Appendix A.2.

5.3.3. t-Test for difference of two means

Consider two independent samples (x and y), given in (5.6), as follows:

x = {dx1 , dx2 , dx3 , ......, dxn1
}.

y = {dy1 , dy2 , dy3 , ......, dyn2
}.

(5.6)

Following [142], the statistics t can be defined by (5.7).

t = dx − dy

σS
√

1
n1

+ 1
n2

. (5.7)

where, n1 and n2 are the sizes of the x and y samples considered in (5.6), respectively.
The means

(
dx and dy

)
of the two samples (x and y, respectively) can be computed

using (5.3). The value of σS is given by (5.8).

σS =

√√√√√ 1
n1 + n2 − 2

 n1∑
i=1

(dxi − dx)2 +
n2∑

j=1
(dyj − dy)2

. (5.8)

here,
df = n1 + n2 − 2. (5.9)
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In this case, the significance of t is tested by following steps:

(i) Set-up the null-hypothesis (H0) as follows:
H0 : “The means

(
dx and dy

)
of the two samples do not differ significantly.”

(ii) Compute the value of t using (5.8).

(iii) Same as step (iii) of Section 5.3.2.

5.3.4. Obstacle recognition and avoidance using t-test

To apply t-test in obstacle recognition and avoidance, the statements 19, 24, and 26 of
the Algorithm 7 can be replaced with the statements given in (5.10), (5.11), and (5.12),
respectively.

S(c)← R (5.10)

h← tTestNk
(
S(c),S(k)

)
(5.11)

if ( Dc,k < Pt & h = 0 & Td > Tt) then (5.12)

where, “tTestNk” is name of the procedure (defined in Algorithm 9). The distance
range-vectors, S(c) and S(k), are the two input arguments for a call to the procedure.
The procedure returns “1” if the t-test rejects the null-hypothesis (H0). On contrary,
the procedure returns “0” if the t-test accepts the null-hypothesis.

Algorithm 9 Procedure to perform t-test on two independent range-vectors x and y.
1: procedure tTestNk(x, y)
2: n1 ← size of x
3: n2 ← size of y
4: df ← n1 + n2 − 2
5: tc ← tabulated value (Appendix A.9) corresponding to df and level of significance.
6: dx ← 1

n1

∑n1
i=1 dxi

7: dy ← 1
n2

∑n2
j=1 dxj

8: Compute σS using equation (5.8).
9: Compute t using equation (5.7).

10: if
(
|t| > tc

)
then

11: Return 1
12: else
13: Return 0
14: end if
15: end procedure
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The procedure in Algorithm 9 has two input parameters, x and y, pertaining to the
input arguments, S(c) and S(k), in it’s call at the modified Algorithm 7 using (5.10) −
(5.12).

5.3.5. Experimental results and discussion

To obtain the results of application of t-test in Algorithm 7, the Gazebo-world as taken in
Fig. 5.5 has been considered. Moreover, the starting position of the robot is nearly (0, 0)
(same as in Fig. 5.5). The t-test is used to find out the similarity of two LASER-scan
distance-range-vectors at 5% level of significance.
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Figure 5.8.: Robot path based on the applied t-test.

Fig. 5.8 presents the robot navigation path by applying the t-test on LASER-scan
distance-range-vectors. The following two main observations can be noted down from
the Fig. 5.7−5.8:

(i) Similar to the Algorithm 7 (without modifications for t-test) in Section 5.2, the
Algorithm 7 (applying t-test) in Section 5.3 successfully detects the similarity of
the obstacle wall. As a result, the robot avoids to enter the repetitive path loop.

(ii) Using the t-test, the Algorithm 7 reverses the angular velocity, first time, around
the position (1,−0.5) (see Fig. 5.8). On the other hand, without modifications for
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t-test the Algorithm 7 reverses the angular velocity of the robot, first time, nearby
the position (1,−1.5) (see Fig. 5.7).

Using t-test the Algorithm 7 can early detect the first repetition of similar obstacle wall
because the t-test is based on standard statistical technique to compare two samples. In
this way, there is no need to compare the difference of two LASER-scan distance-range-
vectors with some arbitrary constant value like σt in statement 26.

5.3.6. Summary

Similarity of LASER-scan distance-range-vectors has been found out using two sample
t-test. Two distance-range-vectors are considered as similar if computed value of the t-
statistics is not greater than the tabulated critical value of t. Importantly, the comparison
between the computed t-statistics and tabulated critical value of t is based on the degree
of freedom and level of significance.
The “Algorithm for obstacle detection and obstacle avoidance” (proposed in Section

5.2) has been modified using the t-test. As a result, the requirement of comparing “the
difference of two LASER-scan distance-range-vectors” with “an arbitrary small value”
has been removed.
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5.4. Theses group: Robot navigation with obstacle recognition in
unknown static environment having rectangular obstacles

5.4.1. Thesis point-Robot navigation in unknown static environment
with obstacle recognition using LASER sensor

The standard deviations of LASER scan distance-range-vectors are
suitable for detecting similar obstacle configurations.

Own publication concerned to the thesis point 5.4.1: [NK-143, NK-144, NK-
145].

5.4.2. Thesis point-Obstacle recognition and avoidance during robot
navigation in unknown static environment

In some situations, if similar standard deviations of two LASER
scans appears at similar locations and the time difference between
the two scans is larger than a threshold value then the path loops
can be broken by reversing the angular velocity of the robot.

Own publication concerned to the thesis point 5.4.2: [NK-146].

5.4.3. Thesis point-Application of t-test for obstacle recognition and
avoidance in robot navigation

Using t-test, similarity of two LASER-scan distance-range-vectors
can be checked without comparing the difference of the distance-
range-vectors with an arbitrary value. Consequently, the outcome
of the t-test can be used for obstacle detection and avoidance.

Own publication concerned to the thesis point 5.4.3: [NK-147].
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6. Conclusion, applicability, and future
research scope

6.1. Conclusion

This dissertation has presented solutions for robot navigation in known and unknown
environments. Firstly, the robot navigation in known and static environment has been
considered. Secondly, the robot navigation in unknown and dynamic environment has been
presented. Thirdly, obstacle recognition for obstacle avoidance during robot navigation
in unknown static environment has been explored. A theses group, consisting three thesis
points (5.4.1−5.4.3), has been proposed.

In known and static environment, A* and probabilistic raodmaps approaches for path
planning in known and static environment are explored. To find a path from start
to goal, the performance of A* algorithm is analysed using Manhattan, octile, and
Euclidean distance heuristics. Using probabilistic roadmaps approach, robot simulations
are performed to investigate the number of nodes in the PRM and distance between the
nodes.

In unknown and dynamic environment, three different methodologies have been used to
investigate the robot navigation . Firstly, an algorithm based on robot’s bumper events
has been proposed for the robot navigation. The algorithm can be useful when the other
sensors, of the robot, with higher efficiencies are not working. Secondly, a fuzzy controller
with Mamdani-type FIS has been presented. Using this Mamdani-type FIS, a robot
navigation model having obstacle avoidance functionality has been developed. Thirdly,
an ANFIS based Sugeno-type FIS has been proposed to obtain a robot navigation model.
In unknown static environment, an algorithm for the obstacle recognition using the

standard deviations of distance range vectors, received from the laser scanner of the robot
during the robot navigation, is provided. The algorithm for the obstacle recognition set
the foundation for the thesis point in 5.4.1. Further, the obstacle recognition is used
for the obstacle avoidance to achieve the thesis point 5.4.2. Finally, the thesis point
5.4.3, based on the application of t-test in obstacle recognition and avoidance, has been
presented.
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6.2. Applicability of the results and future research scope

Main results of the study are provided from Chapter 3 to Chapter 5 of the dissertation.
Applicability of the results, presented in the dissertation, can be summarized in the
points

(
(i.) to (iii.)

)
as follows:

(i.) In Chapter 3, the path planning methodologies are taken for static environment only.
Therefore, the results presented in this Chapters are applicable in those industrial
or household robot navigation operations where the surrounding environment of
the robot remains unchanged during the navigation task.

(ii.) In Chapter 4, the robot navigation models have been presented for unknown
dynamic environment. Hence, the results of the Chapter can be suitable for the
mobile robot navigation operations in the areas where the surroundings may get
change during the navigation task.

(iii.) The results presented in Chapter 5 are applicable to the search robots in indoor
static environments.

The future research possibilities can be summarized in the following points
(
(i)− (iii)

)
:

(i) In Chapter 3, heuristic functions have been applied to execute the A* algorithm.
However, if heuristic overestimates the cost of reaching the goal then the heuristic
will not be able to find a path to the goal. Future research work can lead to the
solution to the overestimation case of the heuristic functions.

(ii) In Chapter 4, if obstacle(s) is/are close enough during robot navigation then the
robot has been directed using the following instructions (a.−c.):

(a.) if obstacle(s) is/are encountered at the left side of the robot vision then turn
towards right.

(b.) if obstacle(s) is/are encountered at the right side of the robot vision then

turn towards left.

(c.) if obstacle(s) is/are encountered at the center of the robot vision then turn
right.

In case of the instruction ‘c.’, the present work can be right or left turn biased.
Therefore, further research can remove the left or right turn bias in this case.

(iii) In Chapter 5, novel methodologies for obstacle recognition and avoidance have been
presented for static environment only. Therefore, the proposed methodologies can
further be developed for the dynamic environments too.
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A. Appendices

A.1. Simulated Turtlebot robot in Gazebo simulator

The Gazebo simulator helps to create virtual environment for the simulations. Gazebo
can be used for robot simulation. It can efficiently simulate and visualize the robotic
acts in a three-dimensional environment. Robot simulation using different types of robot
models in indoor and outdoor environment is possible in Gazebo. Simulated Turtlebot
robot model can be used in Gazebo simulator with the help of turtlebot_gazebo package
of ROS.

A.1.1. Creating user-defined Gazebo-world

To create user defined Gazebo-world files, user can insert various models of different
shapes available in the Gazebo simulator by drag and drop. Various options like: insert,
delete, selection, rotation, translation etc., are available to customize the user defined
Gazebo-world. User can create the Gazebo-world from scratch. However, creating user
defined world from the scratch may require to define many of the Physics properties like
friction. Therefore, in quick manner, the inbuilt Gazebo-world files of the turtlebot_gazebo
package may be edited to get customized Gazebo-world so that most of the Physics
properties need not to be set again.

A.1.2. Pre-defined Gazebo-worlds in turtlebot_gazebo package

The turtlebot_gazebo package of ROS provides a convenient way to bring a simulated
Turtlebot robot within the Gazebo simulator. There are three inbuilt Gazebo-world files in
the turtlebot_gazebo package namely: corridor.world, empty.world and playground.world.

ROS command to launch Gazebo simulator containing simulated Turtlebot is as follows:
$ roslaunch turtlebot_gazebo turtlebot_world.launch world_file:=path

where, Path is the full path of the source Gazebo-world file. The last field of the com-
mand, world_file:=path, of the command is optional. If the parameter world_file:=path
is not provided in the above command then the default world file, playground.world, will
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be opened. By editing the predefined Gazebo-worlds, users can create and save their own
Gazebo-world files [NK-101].
Fig. A.1 shows the command to bring-up the corridor.world (Fig. A.2) in ROS.

Figure A.1.: Command to bring-up the corridor.world in ROS.

Figure A.2.: The corridor.world in Gazebo.

A.2. Communication between software packages using ROS

To execute robotic operations, generally, several robot controlling software packages
(i.e. nodes) need to communicate between each other. ROS provides a mechanism for
the communication among these nodes. This communication mechanism is known as
publisher-subscriber mechanism. In the publisher-subscriber mechanism, a node can
send a message to any other node in the system on a topic of the ROS. The sender and
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receiver, of a message, nodes are called publisher and subscriber, respectively. A list of
ROS topics is provided in Fig. A.3.

Figure A.3.: An instance of ROS topics list.

For navigation related tasks, the /mobile_base/commands/velocity, /scan, and /odom
ROS topics are useful in following manner:

(i) The linear and angular velocities commands can be given to the robot by publishing
geometry_msgs/Twist message on the topic /mobile_base/commands/velocity of
ROS.

(ii) The robot publishes its LASER sensor scan ranges-vector on /scan topic in ROS.
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(iii) The robot publishes its position and orientation, in the environment, on the /odom
topic of the ROS. Therefore, the position coordinates and orientation of the robot,
in the navigation environment, can be received by subscribing the ROS topic /odom.

A.3. Pre-defined and user-defined ROS nodes

Pre-defined ROS packages and their node can be used using roslaunch command. For
example, the keyboard_teleop node of turtlebot_teleop can be used to navigate the
Turtlebot by the keyboard of the computer. The turtlebot_teleop node can be executed
by using the command as given in Fig. A.4. In Fig. A.4, the description of the command
is as follows:
roslaunch = A ROS package containing roslaunch tools.
turtlebot_teleop = A ROS package containing keyboard_teleop.launch file.
keyboard_teleop.launch = the launch file to bring up the keyboard tele-operator node.

Figure A.4.: Turtlebot tele-operator command.

The user-defined nodes can also be linked with the ROS to perform the desired
operations on or by the robot by publishing or subscribing the available topics. In
this way, The robot and the robot navigation model can communicate with each other
through ROS using publisher-subscriber strategy. The user defined nodes can be created
in the ROS using a computer programming language. In case of C/C++ programming
languages, the user defined nodes can be developed with the help of catkin workspace
in ROS. The MATLAB software also provides a convenient way to create, compile, and
execute a user node in ROS.

A.4. Graphical representation and execution of ROS nodes

The ROS nodes and the associated topics can be represented graphically with the help of
the rqt package. The rqt is a cross-platform application framework of ROS. It implements
the graphical user interface (GUI) tools. Some basic plugins of rqt package are: rqt_bag,
rqt_console, rqt_graph, rqt_logger_level, rqt_plot. The rqt_bag provides a GUI plugin
for recording and managing bag files. The rqt_console provides a GUI plugin to display
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the messages being published to rosout topic. The logger level of ROS nodes can be
configured using rqt_logger_level. The rqt_graph is used to find the ROS graph of the
system. The rqt_plot plugin constructs the two-dimensional plots for the given ROS
topics.

Figure A.5.: The Teki_test_node in case of the Gazebo Simulator.

Figure A.6.: The Teki_test_node in case of real robot.
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A user defined node (named as Teki_test_node) has been developed to implement the
algorithm proposed in Section 4.1.1.
In case of Gazebo simulator, the node graph of the system is presented in Fig. A.5.

Similarly, Fig. A.6 shows the node graph of the system in the case of real Turtlebot.
In the node graph, the nodes are represented by ellipses and the topics are enclosed
by rectangles. An arrow, directed from a topic to a node, represents that the topic is
subscribed by the node. On the other hand, an arrow pointing towards a topic from a
node shows that the topic is published by the node.
The velocity commands to move the Turtlebot can be published in the form of

geometry message: Twist on the ROS topic /mobile_base/commands/velocity. Our node,
Teki_test_node, is publisher on the topic /mobile_base/commands/velocity. In “C++”,
The publisher instruction is as follows:

ros::Publisher pub=nh.advertise<geometry_msgs::Twist>...
...(“/mobile_base/commands/velocity”,1000);
where, pub is user defined name of Publisher object, the nh is user defined node handle

and 1000 is the user defined buffer size. The bumper event can be subscribed in the form
of Kobuki message BumperEvent using the ROS topic /mobile_base/events/bumper. The
topic /mobile_base/events/bumper can be subscribed using the ROS command:
ros::Subscriber bumper = nh.Subscribe(“/mobile_base/events/bumper”, 1, callback);
where, callback is the user defined name of the callback function, bumper is user defined

name of the object, 1 is user defined buffer size and nh is the user given name of the
node handle. The callback function of the subscriber can be called by using the ROS
function ros::spinOnce() or ros::spin();. The ros::spin() function blocks the execution of
the program only for callback function call and in this situation the publisher related
task cannot be executed outside the definition of the callback function. To publish
the messages outside of the callback function definition, we can use ros::spinOnce() for
callback function call. In this study, the ros::spinOnce() function is used for the callback
function call, so that, the twist messages can be published outside the callback function
definition as well.

A.4.1. Executing user-defined node with simulated robot

The following two main steps are needed to execute our node (Teki_test_node) in the
Gazebo:

(i) Bring up Turtlebot in our own Gazebo-world using the ROS command in a terminal.

(ii) In a new terminal execute the following series of commands:
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$ cd catkin_ws (to enter into the catkin_ws directory)
$ catkin_make (to compile our code)
$ source devel/setup.bash (to set environment variables)
$ rosrun nkt Teki_test_node (to execute our node, here nkt is name of user created
package)

A.4.2. Executing user-defined node with real robot

The same C++ code is applicable to the real Turtlebot without any change. The following
two main steps have to be performed to executed our node (Teki_test_node) in the
system with real robot:

(i) Bring up the real Turtlebot in the system using the ROS command in a terminal.

(ii) In a new terminal execute the same series of commands as given above in step (ii)
of the Section A.4.1 for Gazebo simulator.

However, if we are using the same terminal which we have used in step (ii) with Gazebo
then we will already be in the catkin working directory. Further, there is no change in the
C++ code, so, we do not need to compile the code again. Furthermore, the environment
variables are already set. Therefore, if we are using the same terminal in which we have
executed our node previously then the following one command is sufficient:
$ rosrun nkt Teki_test_node

where, nkt is the name of our package and Teki_test_node is the name of our node.

A.5. Map of the navigation environment

A.5.1. Building map of the environment using ROS package

LASER-based solution is provided by the gmapping package of ROS. The gmapping
package can be executed as a ROS node: slam_gmapping. The environment map can be
built and saved by taking the following steps:

(i) In a Ubuntu terminal, execute the slam_gmapping ROS node using the following
command for real Turtlebot or simulated Turtlebot in Gazebo simulator.
For real Turtlebot:
$ roslaunch turtlebot_navigation gmapping_demo.launch
For simulated Turtlebot in Gazebo simulator:
$ roslaunch turtlebot_gazebo gmapping_demo.launch
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(ii) In a new Ubuntu terminal, execute rviz, a three-dimensional visualization tool of
ROS, to visualize the map building process. The following command brings up the
rviz:
$ roslaunch turtlebot_rviz_launchers view_navigation.launch

(iii) Save the map for future use. For this, the following command is required to be
executed in a new terminal of Ubuntu:
$ rosrun map_server map_saver -f Path

Where, Path is the full path of the destination file. Now, close all the Ubuntu terminals
opened above. The map file is saved with .yaml file name extension. The slam_gmapping
generates two-dimensional occupancy grid map using laser and pose data of mobile robot.

A.5.2. Turtlebot’s autonomous navigation with given map

The prior saved map can be used to help the autonomous navigation of mobile robot.
The following are the steps for the real Turtlebot and in Gazebo simulator:

(i) In a Ubuntu terminal, start the Turtlebot using the following command.
For real Turtlebot:
$ roslaunch turtlebot_bringup minimal.launch
The turtlebot_bringup gives roslaunch scripts for starting the base functionality of
the TurtleBot.
For simulated Turtlebot in Gazebo simulator:
$ roslaunch turtlebot_gazebo turtlebot_world.launch Path

Fig. A.2 shows the visualization of an inbuilt Gazebo-world, corridor.world, of
the turtlebot_gazebo package. To exemplify the practical effects of using different
distance metrics in the A* algorithm, the relatively simple environment visualized
in Fig. A.2 was chosen because the outcomes of using different distance metrics can
be received quickly. In addition, the corridor.world has at least two compulsory
turns for any path from bottom left corner to top right corner. In this way, the
performance of the algorithms can also be observed at the turns.

(ii) Open a new terminal in Ubuntu. The following command passes the generated and
saved map file to the Turtlebot.
For real Turtlebot:
$ roslaunch turtlebot_navigation amcl_demo.launch Path
For simulated Turtlebot in Gazebo simulator:
$ roslaunch turtlebot_gazebo amcl_demo.launch Path
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where, Path is the map file’s path. The default map of playground.world will be
passed if we do not provide the Path in the command in this step. There is an
alternative method to provide the value to the Path argument of this command. In
this alternative method, we can configure TURTLEBOT_MAP_FILE environment
variable using the following command:
$ export TURTLEBOT_MAP_FILE = Path

(iii) Open rviz in the new terminal by using the following command:
$ roslaunch turtlebot_rviz_launchers view_navigation.launch
The map of the environment, passed by Step (ii) above, will be shown in rviz.

A.5.3. Creating user-defined global planner

The following steps are required to create an user-defined global planner to navigate the
simulated Turtlebot in Gazebo simulator:

(i) Creating a new package in catkin (the build system of ROS) workspace. In general
terms, the catkin workspace is a folder inside computer where we can build, install,
and modify catkin packages.

(ii) Writing the header file and path planner class in the src folder of this package
adhering to the BaseGlobalPlanner interface of the nav_core package of the ROS.

(iii) Registering our planner as BaseGlobalPlanner plugin by writing the following
statement in the .cpp file of path planner class:
PLUGINLIB_EXPORT_CLASS...
...(our planner classname, nav_core::BaseGlobalPlanner)
For the above statement, we also need to include pluginlib/class_list_macros.h
header file.

(iv) Adding the global planner library to the CmakeLists.txt file of our package.

(v) Creating a plugin description file with .xml filename extension.

(vi) Registering plugin with ROS package system. We can verify that whether our
planner is available now in nav_core package of ROS by executing the following
command in the Ubuntu terminal:
$ rospack plugins –attrib=plugin nav_core
If everything is fine our global planner will be displayed in the list of all available
planners in the nav_core package.
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(vii) Open the move_base.launch.xml file of the Turtlebot and add the following state-
ment:
<param name=“base_global_planner” value = “our global planner class name”/>

A.6. Writing robot positions in a text file

Fig. A.7 provides a MATLAB code for writing the positions of robot in a text file. The
descriptions for the programming instructions, of Fig. A.7, are given in Table A.1.

Figure A.7.: Program to receive odometer information from robot.

In our work, the text file containing some of the initial way-points are depicted in
Fig. A.8. Each row of the data in Fig. A.8 contains x and y coordinates (of a robot
position) separated by a space, respectively.

Table A.1.: Description of the program instructions used in Fig. A.7.
Instruction(s) Description

1 starts the global ROS node.
2 subscribes the ‘/odom’ topic of ROS.
3 receives robot position using the message on ‘/odom’.

4− 7 find x, y, z coordinates of the current position of the robot.
8 stores x, y coordinates of the current position of the robot.

9− 11 file operations to write the robot position in a text file.
12 shuts down the global ROS node.
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Figure A.8.: Data file of way-points received from program given in Fig. A.7.

A.7. Creating occupancy grid map using MATLAB

The following instructions create an occupancy grid:
map = robotics.OccupancyGrid(W, H, R)
where, W, H and R represent width (in meters), height (in meters) and grid resolution

per meter respectively. This instruction creates a probability occupancy grid. The
following MATLAB instruction can be used to insert laser scan reading of robot in
occupancy grid:
insertRay(map, pose, ranges, angles, maxrange)

where,
map = occupancy grid.
pose = [robot’s current position, robot’s current orientation].
ranges = length of the laser beam received in scan.
angles = angle of the laser beam received in scan.
maxrange = maximum range of the laser scan.
In the map building process, the number of way-points to be travelled and the maxrange

parameter of insertRay have to be adjusted for the considered environment. It is observed
that large number of way-points needs smaller maxrange and smaller number of way-
points suits with larger maxrange. For the way-points taken as in Fig. 3.3, one of the
appropriate maxrange is 2.5 meters.
The following lines of MATLAB code inflate the map:
robot_radius = 0.20;
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map_Inflated = copy(map);
inflate(map_Inflated, robot_radius);
The inflated map is now saved in the object variable map_Inflated. For the future use,

this occupancy grid map can be saved as a .mat (a MATLAB file format) file.

A.8. Generating probabilistic roadmaps in MATLAB

To find the probabilistic roadmaps, the occupancy grid map of the environment can be
imported to the MATLAB workspace by specifying the full path of the .mat file as follow:
filePath = ‘/home/neerendra/nkcorridor.mat′;

and then followed by the load instruction as below:
load(filePath);

where, /home/neerendra/nkcorridor.mat is the full path of nkcorridor.mat in computer
system.

Probabilistic roadmaps, within the inflated map, can be generated using the following
MATLAB instruction:
prm = robotics.PRM(map_Inflated);
The following line of instruction can find the desired path:
path = findpath(prm, startpoint, goalpoint); .
where, startpoint and goalpoint are the coordinates of the start location and goal

location of the path.

A.9. Critical values of t for t-test

For different values of degree of freedom
(
df

)
, the critical values of t (tc), used for the

t-test (Section 5.3), are given in Table A.2. In the Table A.2, t1 and t5 represent tc at
1% and 5% levels of significance, respectively [139, 141, 142].
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Table A.2.: Critical values of t at 1% and 5% levels of significance.
df t1 t5 df t1 t5

1 63.66 12.71 19 2.86 2.09
2 9.92 4.30 20 2.84 2.09
3 5.84 3.18 21 2.83 2.08
4 4.60 2.78 22 2.82 2.07
5 4.03 2.57 23 2.81 2.07
6 3.71 2.45 24 2.80 2.06
7 3.50 2.36 25 2.79 2.06
8 3.36 2.31 26 2.78 2.06
9 3.25 2.26 27 2.77 2.05
10 3.17 2.23 28 2.76 2.05
11 3.11 2.20 29 2.76 2.05
12 3.06 2.18 30 2.75 2.04
13 3.01 2.16 40 2.70 2.02
14 2.98 2.14 60 2.66 2.00
15 2.95 2.13 80 2.64 1.99
16 2.92 2.12 100 2.63 1.98
17 2.89 2.11 120 2.62 1.98
18 2.88 2.10 > 120 2.58 1.96
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