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INTRODUCTION 

Formulation of the Studied Scientific Problem 

The focus for this dissertation is on studying mechanical systems of complex dynamics. 

Unmanned aerial vehicles and robotic manipulators are typical examples of complex 

dynamics systems. The difficulty in wide spread studding robotic manipulators lies in 

their relative low availability and high cost. A wide area of robotics research is 

dedicated to aerial platforms, which have very similar dynamics and are more simple to 

build and also commercially available in wide ranges. Versatile flying structures and 

configurations have been developed to allow 3D movements [35], [60]. For example, 

there are blimps, fixed-wing planes, single rotor helicopters, bird-like prototypes, 

quadrotors, hexa-rotors, octa-rotors, etc. Each of these has advantages and drawbacks. 

The vertical take-off and landing (VTOL) requirements exclude some of the 

aforementioned configurations. 

The quadrotor architecture has low dimensions, good manoeuvrability, simple 

mechanics and good payload capability. The main drawback is the relatively high 

energy consumption and difficult precision flight control; however, the trade-off results 

are very positive. This structure can be attractive in several applications, in particular 

for surveillance, for imaging dangerous environments, and for outdoor navigation and 

mapping. The study of kinematics and dynamics helps to understand the flight 

mechanics of the quadrotor and its behaviour [33], [12]. Together with system 

modelling, the definition of the control algorithm structure is very important. Soft 

computing methods can be efficiently applied together with, and even instead of 

conventional controllers [63]. 

Multi-rotors like quad- and hexa-rotors are popular representatives of VTOL unmanned 

aerial vehicles (UAVs) as they are relatively simple to build, while being of versatile 

applicability, also capable of vertical take-off and landing. Also the multi-rotor 

architecture has simple mechanics, high relative payload capability and good 

manoeuvrability. The study of multi-rotor kinematics and flight dynamics is based on 

the physics of aerial platforms - flying bodies, a good description of such can be found 

in [35]. The kinematics and general force and torque dynamics, flight mechanics of any 

symmetric multi-rotor (quad-, hexa- or any other number of rotors) is equivalent. 

This work presents an efficient toolset improvement proposal for multi-rotor aerial 

vehicles control system design. Efficient autonomous navigation and obstacle avoidance 

requires a fast, direct method for calculating time and energy efficient feasible 

trajectories. Efficient control systems in real-life outdoor environment require robust 

adaptive system models. Designing robust fuzzy systems require efficient global and 

precise local optimisation techniques. 

The first part of this theses collection proposes improvements of multi-objective 

stochastic search by a new vector comparison ordered inequality operator and ranking 

method. The efficiency analysis of the new method is presented on well-studied genetic 

algorithms of proven convergence capability and carefully designed, mathematically 

sound, difficult multi-criteria optimisation problems of various Pareto-front form and 

search space density. 

The second part proposes a novel representation of fuzzy-partitions based inference 

systems for universal function approximations. The proposed fuzzy-partition parameter 
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representation of non-linear parameters of these systems makes it possible to be 

subjected to efficient unconstrained optimisations by global search algorithms and fine-

tuning with gradient descent based methods. Linear parameters of these fuzzy-systems 

are best calculated based on singular value decomposition to achieve mean square error 

minimisation. The new multi-objective stochastic search methods introduced in the first 

part are used to find non-dominated fuzzy system solutions where both the fuzzy 

structure complexity, the number of membership functions and rules, and the function 

approximation error, both the absolute maximum error and the mean square sum of the 

error is first globally minimised then locally fine-tuned by a gradient descent method. 

The third part proposes a new method for robust fuzzy-system based modelling of 

complex dynamic systems as robot manipulators and mobile robots, like free flying 

multi-rotors. For the six degree of freedom multi-rotors a special extension is proposed 

for periodic continuous extension of fuzzy systems. This new method follows the grey 

box identification approach, making use of well-known system properties of robotic 

manipulators. My proposal results in a system approximation, which has all the benefits 

of robust fuzzy systems, and also manifests all the analytical properties of dynamic 

models that are used for analysing system and system control properties. Application of 

these fuzzy system based grey box models in classical hard computing control 

techniques is straightforward, as it is possible to explicitly analytically extract all system 

states and their derivatives. 

The fourth part introduces a direct, iteration free single-pass algorithm using simple 

closed formulas, to design time and energy efficient trajectory parametrisations with 

pre-defined time derivative constraints. The method enables designing trajectories tuned 

to system (including control actuator) capabilities and ensuring oscillations free control 

possibilities. The method is presented for both multi-rotor trajectory designs, where 

higher derivative smoothness is a must for efficient control, and it is also presented for 

3D overhead crane trajectory designs to analyse its oscillations free property. 

The fifth part presents a new method for fuzzy-system training data set reduction. 

Research Objectives 

As concluded and highlighted in the introductory chapter for efficient multi-rotor 

autonomous navigation and obstacle avoidance improvement it is necessary to master 

the following design and engineering tools: 

1. Efficient multi-objective search 

My first goal is to define a new operator for comparing two vectors, which can be used 

as basis for an efficient multi-objective ranking method for Genetic Algorithm (GA), 

which performs better than the existing Pareto dominance based algorithms. 

2. Efficient genetic fuzzy system universal function approximation 

My second goal is to define a new method for an efficient unconstrained optimisation of 

Takagi-Sugeno-Kang (TSK) Fuzzy Logic Systems (FLS) subject to both a GA based 

global search and further ANFIS like gradient descent based local fine tuning of fuzzy 

partition antecedent Membership Function (MF) parameters. The MF rule base has to 

remain intact; complete fuzzy partitions have to remain with keeping the pre-defined 

linguistic variable order. The resulting FLS has to be capable of acting as a universal 

function approximation. 
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3. Efficient robust modelling method for autonomous control of complex systems of 

nonlinear dynamics 

My third goal is to define a new efficient robust system dynamics modelling method, 

which results in a system model that can be readily used for efficient autonomous, 

system state model based control of complex nonlinear dynamics systems such as robot 

manipulators (RM) and multi-rotor unmanned aerial vehicles (UAV) navigation 

dynamics. 

4. Efficient trajectory design method for autonomous control of complex nonlinear 

dynamic systems 

My fourth goal is to define a new method for an efficient real-time direct path 

parametrisation design algorithm for generating physically feasible, time-and energy 

optimal, bounded, continuous trajectories that induce no system oscillations. The notion 

of time and energy optimality is not to be used in some mathematics theory manner but 

in real life physically feasible engineering manner. Finding optimal trajectories is 

focused on finding the appropriate parametrisation for the path vector function, given 

the pre-defined feasibility limits on the displacement time derivatives. 

5. Efficient genetic fuzzy system training data set reduction method 

My fifth goal is to define a new method for an efficient genetic fuzzy system (GFS) 

training data set reduction, which will significantly reduce the data set size, while 

maintaining the quality of the identification process, and thus significantly increase the 

identification process performance, independent of the system to be identified. 

Research Hypothesis 

Hypothesis I: there exists a vector comparison method which is capable of guiding a 

multi-objective stochastic search more efficiently than the Pareto dominance relation. 

Hypothesis II: there exists a more suitable parametrisation method for antecedent fuzzy 

partition MF components of a TSK FLS, which is still simple to directly compute and 

optimise without any restrictions, both by stochastic search and/or with gradient descent 

methods; and for every case the formed parameters will inherently satisfy all of the 

required constraints for a stable fuzzy partition antecedent structure, keeping the 

associated linguistic values. 

Hypothesis III.a: the singular value decomposition (SVD) algorithm is efficient enough 

to extract each basic component of a dynamic system described by Euler-Lagrange 
equation, when there are a sufficient number of good quality training samples available. 

Further on the nonlinear inertia component functions can be robustly identified with 

TSK FLSs, while the nonlinear functions describing the centrifugal and Coriolis effects 

can be exactly derived from the identified TSK FLSs for the inertia components. The 

nonlinear parameters of TSK FLSs modelling a Robotic Manipulator (RM) dynamic 

system can be efficiently found by a multi-objective hybrid GA together with gradient 

descent method fine-tuning, while all the linear parameters of the used TSK FLSs, 

including constants of the model can be directly calculated with SVD based robust least 

squares (LS) method. The RM trajectory used for collecting training samples have to be 

sufficiently exciting to reveal all the characteristics of the RM system equation. 
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Hypothesis III.b: it is possible to extend the TSK FLSs in a way that they become 

periodic and of continuous output, even for the 0-2𝜋 transitions of attitude Euler angle 

system inputs. Then for modelling multi-rotor flight dynamics each nonlinear 

component of a flight dynamics formulated by Euler Lagrange approach can be 

identified in a similar manner as stated in my previously described hypothesis III.a for 

RMs. 

Hypothesis IV: system trajectories can be designed in harmony with the system 

dynamics and its actuator characteristics. Such trajectories are energy efficient as no 

oscillations are induced, and they are feasible, time optimal in terms that no trajectory 

exists with faster transients, such that the system can precisely track it with lesser 

energy consumption. These harmonic trajectories are continuous up to the required 

number of time derivatives, and they can be made bounded in their any number of time 

derivatives. For a realistic, feasible control input of multi-rotor UAV the designed path 

has to be such that the sixth time derivative of the body displacement function must be 

continuous and its fourth time derivative transient has to be feasible for the control 

actuator. For a realistic, feasible control input of direct brushless DC electric motor 

(BLDC) actuated systems (RMs, cranes, wheeled vehicles) the designed path has to be 

such that the fourth time derivative of the planned displacement must be continuous, 

while the planned body rotation must be such that the feasible body torque transients are 

proportional to the possible motor torque transients; equivalently the feasible second 

derivative of the body displacement has to be proportional to motor shaft feasible 

angular velocity. 

Hypothesis V: for dynamic system GFS identifications the necessary training data set of 

collected samples along real trajectories can be reduced without significant loss in the 

quality of the identification result, while significantly improving the efficiency of the 

identification process. 

Research Tools and Thesis Validation Methods 

From the first introductory chapter it is obvious that my research is multidisciplinary, as 

such various research and test methods are necessary to test my hypothesis. As my goals 

are more general than finding a single specific method which is only applicable to UAV 

design, but are applicable to wide range of multidisciplinary field, I and not using a 

single UAV example to validate my theses. For each hypothesis I am also using a 

method well matched to the nature and specifics of the problem, so that my results are 

appropriately tested and presented in a general way. 

1. Validating Quality of Multi-objective Search and Optimisation 

The proposal is to be validated on well-studied, mathematically sound GA hard multi-

objective benchmark problems like: 

a) Simple Two Objective Optimisation Problem 

b) Deceptive Multiobjective Optimisation Problem 

c) Multimodal Multiobjective Problem 

d) Convex and Nonconvex Paretooptimal Fronts 

e) Discontinuous Paretooptimal Front 

f) Biased Search Space 
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g) Generalisation of Two Objectives to Four, Eight and Sixteen Objectives 

2. Validating Quality of Genetic Fuzzy System Function Approximation 

The proposal is to be validated on well-studied, mathematically sound, versatile, 

difficult benchmark identification problems of high complexity like: 

a) Predicting Future Values of Chaotic Time Series of Mackey and Glass 

b) Identification of Gas Furnace Model of Box and Jenkins 

c) Identification of Generalised Rastrigin Function 

3. Validating Quality of Complex Nonlinear Dynamics System GFS Modelling 

The proposal is to be validated on well-studied robot manipulator dynamics modelling 

and quadrotor flight dynamics modelling simulations. 

4. Validating Quality of System Trajectory 

The proposal is to be validated on well-studied 3D crane and quadrotor flight trajectory 

design. 

5. Validating Quality of Genetic Fuzzy System Training Data Sets 

The proposal is to be validated on well-studied quadrotor flight dynamics modelling 

simulations.  
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1 QUADROTOR UNMANNED AERIAL VEHICLES 

This chapter describes the system in focus of this research – the multirotor unmanned 

aerial vehicle and the existing major tools used to achieve system control suitable for its 

autonomous navigation and obstacle avoidance. 

As well summarised in [60] [63] rotary wing aerial vehicles have distinct advantages 

over conventional fixed wing aircrafts in surveillance and inspection tasks because they 

can take-off and land in bounded spaces and easily fly above the target. A quadrotor is a 

four-rotor copter. An example of one is shown in Figure 1 [60]. 

Multirotor copters are theoretically dynamically stable, but of poor stability 

augmentation and of limited control authority, thus very difficult to control; suitable 

advanced robust control methods are needed to make them steadily manoeuvrable. 

Although a very sensitive dynamics is not desirable from control stability point of view, 

it is good from the system agility, manoeuvrability point of view. The system 

complexity comes from wide range of changes in the rotorcraft parameters and from 

unpredictable real-life environmental disturbances such as a wind gusts or air density 

variations. 

 
Figure 1. 

3 D motion, commonly used model of the quadrotor [60]. 

1.1 Modelling Multi-rotor Flight Dynamics 

A quadrotor is controlled only by varying rotor speeds, thereby changing the lift forces 

and rotor torques [33], [12]. It is an under-actuated dynamic vehicle with four input 

forces and six outputs coordinates. One of the advantages of using multi-rotor copters is 

the increased payload capacity. Quadrotors are highly manoeuvrable, which allows for 

vertical take-off and landing, as well as flying into hard-to-reach areas. Disadvantages 

are the increased rotorcraft weight and increased energy consumption due to extra 

motors. Since the machine is controlled via rotor speed changes, it is more suitable to 

utilize electric motors. Large helicopter engines, which have a slow response, may not 

be integrated to a multi-rotor system satisfactory without incorporating a proper gear-

box system. 

Unlike typical helicopter models and regular helicopters, which have variable pitch 

angles, a quadrotor has fixed pitch angle rotor blades, and only the speed of individual 
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rotors is controlled in a suitable manner in order to produce the desired lift force, 

rotation torques and vehicle position displacements. 

The quadrotor is satisfactory well modelled with four rotors in a cross configuration as 

presented in Figure 1. This cross structure is usually quite thin and light, however it has 

to show robustness by linking mechanically the motors, which are heavier than the cross 

structure itself. Depending on the mechanical characteristics of the used electromotor 

each propeller can be connected to the motor through a reduction gear. Each propeller 

blade axis of rotation is fixed and they are parallel to each other. Furthermore, they have 

fixed-pitch blades and their airflows point downwards to get an upward lift. These 

considerations point out that the structure is expected to be quite rigid and the only 

characteristics that can dynamically vary are propeller blade rotation speeds. 

As shown in Figure 1 [60], one pair of opposite propeller blades of a quadrotor rotates 

clockwise (rotors 2 and 4), whereas the other pair of blades rotates counter clockwise 

(rotors 1 and 3). This way it is possible to avoid the yaw drift due to reactive torques. 

This configuration also offers the advantage of enabling lateral displacement motions 

without changing the pitch of the propeller blades. Having fixed pitch rotors 

significantly simplifies rotor mechanics and reduces gyroscopic effects. Movement 

direction control of quadrotors is achieved by commanding different speeds to different 

propellers, which in turn produce differential aerodynamic forces, torques and moments. 

For hovering, all four propellers rotate at the same speed. For vertical motion, the speed 

of all four propellers is increased or decreased by the same amount, simultaneously. In 

order to pitch and move laterally in a desired direction, speed of propellers 3 and 1 is 

changed conversely. Similarly, for roll and corresponding lateral motion, speed of 

propellers 2 and 4 is changed conversely. To produce yaw, the speed of one pair of two 

oppositely placed propellers is increased while the speed of the other pair is decreased 

by the same amount. This way, the overall produced thrust is the same, but the 

differential drag moment creates a yawing motion. Since having only four actuators, the 

quadrotor is still an under-actuated six degree of freedom (6 DOF) system. 

To describe the motion of a 6 DOF rigid body it is usual to define two reference frames: 

the earth inertia frame (E-frame), and the body-fixed frame (B-frame) – see Figure 2 

[63]. Equations of motion are more conveniently formulated in the B-frame because the 

inertia matrix is time-invariant, advantage of body symmetry can be taken to simplify 

equations, also measurements taken on-board are easily converted to B-frame and 

control forces are readily available in the B-frame.  

The E-frame (OXYZ) is chosen as the right-hand reference inertia system. Axis Y points 

toward the North, X points toward the East, Z points upwards with respect to the Earth, 

and O is the axis origin. This frame is used to define the linear position (in meters) and 

the angular position (in radians) of the quadrotor. The B-frame (oxyz) is attached to the 

multirotor body centre of mass. Axis x points toward the quadrotor front, y points 

toward the quadrotor left, z points upwards and o is the axis origin. The origin o is 

chosen to coincide with the centre of mass of the quadrotor cross structure. This 

reference is right-hand, too. 
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Figure 2. 

Earth- and Body-frames used for modelling of the quadrotor system [63]. 

The body linear velocity v (m/s), the angular velocity of the body Ω (rad/s), the forces F 

(N) and the torques T (Nm) acting on the body are defined in this frame. The linear 

position of the copter (X, Y, Z) is determined by coordinates of the vector between the 

origin of the B-frame and the origin of the E-frame according to the rotation matrix in 

equation (2). The angular position or attitude of the copter (𝜙, Θ, 𝜓) is defined by the 

orientation of the B-frame with respect to the E-frame. This is given by three 

consecutive rotations about the main axes which take the E-frame into the B-frame. The 

“roll-pitch-yaw” set of Euler angles can be used. The vector that describes the quadrotor 

position and orientation with respect to the E-frame can be written in the form: 

𝒒 = [𝑋 𝑌 𝑍     𝜙 Θ 𝜓]𝑇 ,             (1) 

where: q is the copter system position and orientation vector; X, Y, Z are the E-frame 

translational coordinates; 𝜙, Θ,  𝜓 are the “roll-pitch-yaw” set of Euler angles 

describing the E-frame orientation. 

The rotation matrix between the E- and B-frames we conveniently chose to have the 

following form [8]: 

𝑹 = [

𝑐Ψ𝑐Θ −𝑠Ψ𝑐ϕ + 𝑐Ψ𝑠Θ𝑠ϕ 𝑠Ψ𝑠ϕ + 𝑐Ψ𝑠Θ𝑐ϕ

𝑠Ψ𝑐Θ −𝑐Ψ𝑐ϕ + 𝑠Ψ𝑠Θ𝑠ϕ −𝑐Ψ𝑠ϕ + 𝑠Ψ𝑠Θ𝑐ϕ

−𝑠Θ 𝑐Θ𝑠ϕ 𝑐Θ𝑐ϕ

],          (2) 

where: R is the rotation matrix between the E- and B-frames; s and c are abbreviations 

for the sinus and cosine functions of Euler angles as: 𝑠∗ = sin(*), 𝑐∗ = cos(*). 

The corresponding transfer matrix has the form: 

𝑻 = [

1 𝑠ϕ𝑡Θ 𝑐ϕ𝑡Θ
0 𝑐ϕ −𝑠ϕ

0 𝑠ϕ/𝑐Θ 𝑐ϕ/𝑐Θ

],              (3) 

where: T is the transfer matrix for Euler angle rates between E-frame and B-frame. As 

in the previous case a notation has been adopted: 𝑠∗ =sin(*), 𝑐∗ =cos(*), 𝑡∗ =tan(*). 

The system Jacobian matrix, taking (2) and (3), can be written in the form: 
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𝑱 = [
𝑹 𝟎3𝑥3

𝟎3𝑥3 𝑻
],               (4) 

where: 𝟎3𝑥3 is a 3 by 3 zero-matrix. 

The generalized quadrotor velocity in the B-frame has a form of: 

𝒗 = [�̇� �̇� �̇�     �̇� �̇� �̇�],              (5) 

where: 𝒗 is the generalized quadrotor velocity in the B-frame; �̇�, �̇�, �̇� are the B-frame 

velocities along the appropriate coordinate axis; �̇�, �̇�, �̇� are the “roll-pitch-yaw” rates 

of Euler angles in the B-frame. 

Finally, as the result of this nomenclature the kinematical model of the quadrotor can be 

defined in the following simple vector equation form: 

�̇� = 𝑱 ∙ 𝒗                (6) 

The dynamics of a generic 6 DOF rigid-body system takes into account the mass of the 

body m (kg) and its inertia matrix 𝑴𝑩 (kgm
2
). Two assumptions are commonly made: 

• The first assumption states that the origin of the body-fixed frame is coincident with 

the centre of mass of the body. Otherwise, another point should be taken into account, 

which could make the body equations considerably more complicated without 

significantly improving the model accuracy. 

• The second common simplification assumption specifies that the axes of the B-frame 

coincide with the body principal axes of inertia. In this case the inertia matrix 𝑴𝑩 is 

diagonal and, once again, the body equations become simpler. 

The dynamic model of a quadrotor can be defined in the following matrix form: 

𝑴𝑩�̇� + 𝑪𝑩(𝒗)𝒗 − 𝑮𝑩 = 𝛌,              (7) 

where: 𝑴𝑩 is the system inertia matrix; 𝑪𝑩 represents the matrix of Coriolis and 

centrifugal forces; GB is the gravity matrix; 𝛌 is the generalized force vector including 

forces and torques along body axes. These matrices have known forms as presented in 

[8]. 

A generalized force vector 𝛌 has the form: 

𝛌 = 𝑶𝑩(𝒗)𝛀 + 𝑬𝑩𝛀𝟐              (8) 

where: 𝑶𝑩 is the gyroscopic propeller matrix; 𝑬𝑩 is the movement aerodynamic matrix; 

𝛀 is the propellers’ speed vector as defined below in equation (12). 

𝑶𝑩, the gyroscopic propeller matrix is: 

𝑶𝑩 =

[
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0
�̇� −�̇� �̇� −�̇�

−�̇� �̇� −�̇� �̇�
0 0 0 0 ]

 
 
 
 
 

             (9) 

𝑬𝑩, the movement aerodynamic matrix has the form: 
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𝑬𝑩 =

[
 
 
 
 
 

0 0 0 0
0 0 0 0
𝑏 𝑏 𝑏 𝑏
0 −𝑏 ∙ 𝑙 0 𝑏 ∙ 𝑙

−𝑏 ∙ 𝑙 0 𝑏 ∙ 𝑙 0
−𝑑 𝑑 −𝑑 𝑑 ]

 
 
 
 
 

,           (10) 

where b (Ns
2
) and d (Nms

2
) are the thrust and the drag factors of one propeller blade; l 

(m) is the distance between the quadrotor centre of mass and the propeller blade centre 

of mass. 

Equation (11) defines the overall propeller blades rotation speed (rad/s) used in equation 

(8). 

𝜔 = −𝜔1 + 𝜔2 − 𝜔3 + 𝜔4,            (11) 

where: 𝜔 is the overall propellers’ speed; 𝜔𝑖 is the angular speed of the i
th

 propeller. 

Positive sign is taken for clockwise rotations and negative sign for counter clockwise 

rotations. 

𝛀, the speed vector of propeller blades is defined as: 

𝛀 = [𝜔1 𝜔2 𝜔3 𝜔4]𝑇            (12) 

Equations (1) to (12) take into account the entire quadrotor nonlinear flight mechanics 

model including the most influential aerodynamic effects of rotor blade trust and drag. 

For high speed airplanes, it is common to introduce a new �̂� stability axis, which is 

aligned into the direction of the oncoming air in steady flight. The stability axis is 

projected into the plane made by the X and Z body axes when there is sideslip. The used 

model of quadrotors is not taking into account the sideslip, thus the notion of the 

stability axis is not used. 

High speed aerial platforms in open door environments are highly nonlinear systems 

also subject to many further nonlinear perturbations like: 

i. drag like effects: 

a. blade flapping, 

b. induced drag,  

c. translational drag,  

d. profile drag and  

e. parasitic drag, 

ii. ground effect, 

iii. in vertical descent further nonlinear effects have to be accounted for as: 

a. vortex ring state, 

b. turbulent wake state, 

c. windmill brake state as described in [68]. 
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None of these nonlinear effects are commonly considered when modelling multirotor 

flight dynamics. One feasible approach is to account for these effects as disturbances, 

which have to be compensated by the controller. In my research I am going one step 

further, by accounting for all unknown disturbances already in the system model in 

form of using robust fuzzy systems to initially reduce the effects of all input 

disturbances. 

Precision, robustness and adaptability of the applied dynamic model are the starting 

point to achieve a precise and efficient autonomous control of the system [1]. Fuzzy 

systems are capable of robust modelling and control of complex systems including 

helicopters [71]. 

1.2 Unmanned Aerial Vehicles Path Tracking Control Solutions 

The nonlinear, multivariable and coupled system state and response characteristics 

make the quadrotor difficult to control. In a general approach two loops are used for the 

quadrotor UAV control system: the outer loop is the position controller and the inner 

loop is the attitude controller. The controller of the outer loop for position includes 

information such as instantaneous position and speed. While the inner loop for attitude 

controller includes the orientation attitude posture information. 

The position controller receives as inputs the difference between the desired E-frame 

position (X,Y,Z) and the actual current position; the outputs are the required B-frame 

attitude rotation angles (φ,θ,ψ) to move towards the desired position. The required 

attitude angles are provided for the attitude controller in the inner loop. The attitude 

controller outputs the desired propeller blade rotation speed value to each of the four 

motor controllers, which adjusts the rotation speed of the corresponding motor.  

By studding the available literature one can observe that motor controllers are generally 

taken for granted as mere mathematical tools capable of instantaneously generating any 

desired rotation speed value, their actual physical dynamics is considered neither for 

multirotor control, nor for multirotor trajectory design. One of my major research 

targets is to remedy this deficiency. 

Control mechanisms as proportional-integral-derivative (PID) controller, back stepping 

(computed torque) controller and their fuzzy variants have been also well studied and 

successfully used for decades on many systems including multi-rotors [s1]. 

1.2.1 PID Controllers with Fuzzy Systems Based Adaptive Gain Parameters 

To achieve flight stabilisation and path tracking of quadrotor UAVs, as described in 

[66] and [34] fuzzy logic systems can be used for adaptive tuning of PID controllers. A 

PID controller consists of a proportional, an integral and a derivative feedback control 

action, which represents the current, past and anticipated future errors that cover all the 

time history of the error signal. The relevant PID gains are named KP, KI and KD. By 

adjusting these parameters, the desired performance and stability of the system can be 

achieved. The mathematical representation of PID controller is given as: 

𝒖(𝑡) = 𝐾𝑃𝒆(𝑡) + 𝐾𝐼 ∫ 𝒆(𝑡)𝑑𝑡
𝑡

0
+ 𝐾𝐷

𝑑

𝑑𝑡
𝒆(𝑡),         (13) 

where: u is the control signal; t is the time; e is the error signal; KP, KI and KD are the 

PID gain parameters. 
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PID controllers with fixed gain parameters provide good performance only for 

linearized systems, or in a single selected narrow quasilinear operation range for 

nonlinear systems. To overcome the system nonlinearity control problem fuzzy logic 

systems can be used for adaptive tuning of PID gain parameters [72], [78]. Fuzzy logic 

consists of four components: fuzzification, fuzzy rule base, inference engine, and 

defuzzification: 

• Fuzzification refers to the process of transforming crisp input values into grades of 

membership using linguistic terms of fuzzy sets. 

• Fuzzy rule base is the main part of fuzzy logic systems. This component is based on if-

then rules. The fuzzy rule base defines how to react to each input combination. 

• Inference engine applies the fuzzy rule base to form the output for defuzzification. 

• Defuzzification is a method to obtain numerical data from the output of a fuzzy rule 

base. 

For a self-tuning fuzzy PID controller the tracking error can be considered as an input 

for two controllers: first time for a classical PID control algorithm to minimize the 

position error, and second time to a fuzzy logic system for adjusting the KP, KI, and KD 

gain parameters of the PID controller equation (13). 

In [66] three fixed position and fixed size triangular membership functions (MFs) were 

used for fuzzification of the error signal as input and for the gain parameter output. A 

fixed set of three fuzzy rules were defined. Results of [66] show that the performance of 

both the classical PID and the fuzzy logic based self-tuning PID control method is 

acceptable in static cases of no load variation. The self-tuning PID control based on 

fuzzy logic is able to compensate for variations in payload and to achieve good path 

tracking. The classical PID control algorithm by itself cannot track the circular path, 

while the self-tuning PID based on fuzzy logic provides a good performance solution 

also for this problem [66]. 

In [34] a wide range of disturbances are modelled. Gravity and buoyancy are combined 

into a single force. The fluid inertia force related to the acceleration of the rotorcraft 

motion is represented by additional mass. In the B-frame the direction of the lift force 

remains constant. While in the inertial system E-frame the driving force of lift is 

decomposed into three directions along the three coordinate axes. The quadrotor craft is 

more susceptible to influences of drag, air resistance during flight because of its large 

surface area. In [34] six fuzzy adaptive controllers are proposed for tuning the gain 

parameters of PID controllers, having one control output for each state variable of 

equation (1). For each fuzzy adaptive controller in [34] seven fixed MFs (of linear Z 

and linear S and of triangular types) are defined for input fuzzification and output 

defuzzification. The fuzzy rule base is defined constant by expert knowledge. Results in 

[34] show that for a quadrotor airship model the fuzzy adaptive PID algorithm has a 

better performance than the classical PID control system. 

1.2.2 Lyapunov Stable Back-stepping Control with an Adaptive Fuzzy Model 

In [15] it is presented how a robust control method with an adaptive fuzzy model can 

overcome wind disturbance, which buffet the vehicle with periodic wind vortices. For 

adaptive-fuzzy altitude control of the roll, pitch, and yaw the nonlinear functions of 

equation (6) are modelled by fuzzy systems. The notation used is as follows – from 

equation (8), where the generalized force is represented as a vector of control inputs to 
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each of the quadrotor motors: 𝛌 = [𝑢1, 𝑢2, 𝑢3, 𝑢4]. From equation (1) a new state vector 

x is derived as 𝒙 = [𝒒, �̇�] so that the system equation (6) becomes of form �̇� = 𝒇(𝒙, 𝒖) 

as: 

�̇� = 𝒇(𝒙, 𝒖) =

(

 
 
 
 
 
 
 
 
 
 

𝑥10

𝑥11

𝑥12

𝑥10𝑥12𝑎1 + 𝑥10𝑎2𝜔 + 𝑏1𝑢2

𝑥5𝑥12𝑎3 + 𝑥5𝑎4𝜔 + 𝑏2𝑢3

𝑥10𝑥5𝑎5 + 𝑏3𝑢4

𝑥9

𝑥7

𝑥8

−𝑔 + 𝑐𝑥1
𝑐𝑥3

𝑢1 𝑚⁄

𝑔(𝑥)𝑢1 𝑚⁄

ℎ(𝑦)𝑢1 𝑚⁄ )

 
 
 
 
 
 
 
 
 
 

,         (14) 

where m is the body mass; system parameters ai and bi are defined as: 

𝑎1 =
𝐼𝑌−𝐼𝑍

𝐼𝑋
, 𝑎2 =  −

𝐽𝑟

𝐼𝑋
, 𝑎3 =

𝐼𝑍−𝐼𝑋

𝐼𝑌
, 𝑎4 =

𝐽𝑟

𝐼𝑌
, 𝑎5 =

𝐼𝑋−𝐼𝑌

𝐼𝑍
, 𝑏1 =

𝑙

𝐼𝑋
, 𝑏2 =

𝑙

𝐼𝑌
, 𝑏3 =

𝑙

𝐼𝑍
,  

𝑔(𝑥) = (𝑐𝑥4
𝑠𝑥5

𝑐𝑥6
+ 𝑠𝑥4

𝑠𝑥6
), ℎ(𝑦) = (𝑐𝑥4

𝑠𝑥5
𝑠𝑥6

− 𝑠𝑥4
𝑐𝑥6

), 

where IX,Y,Z are body inertia terms; Jr is the rotor blade inertia term; 𝑙 is the lever of the 

motor, which is the rotor blade axis distance from the craft centre of mass; and m is the 

mass of the system. 

In [15] the fuzzification encoding of input 𝒙 consists of normalized Gaussian MFs with 

centres placed on a fixed, evenly spaced lattices of widths 𝜎 like 

 Γ𝑖(𝒙) =
exp (−(𝑪𝒊−𝒙)𝑇(𝑪𝒊−𝒙) 𝜎^2⁄ )

∑ exp (−(𝑪𝒊−𝒙)𝑇(𝑪𝒊−𝒙) 𝜎^2⁄ )𝑁
𝑖=1

, where each 𝒄𝒊 is a centre on the lattice and N is the 

number of MFs. The decoding of control outputs is accomplished with one dimensional 

Gaussian MFs of width 𝜎, but with centres that can be changed adaptively. The output 

of the decoding is 𝚪𝑇𝒄 = [Γ1Γ2 …Γ𝑁] ∙ [𝑐1𝑐2 …𝑐𝑁]𝑇 where 𝒄 ∈ ℝ𝑁 is the vector of 

output MF centres. 

According to the standard approximation theory, if the density of the encoding lattice 

points is high enough then the output of the decoding scheme can uniformly 

approximate nonlinear functions in a local region as 𝑥�̇� = Γ𝑖
𝑇(𝒙)𝒄𝑖 + 𝜖𝑖(𝒙)  where         

k = 4, 5, 6 for i = 1, 2, 3. Thus 𝜖𝑖(𝒙) ≤ 𝜖𝑚𝑎𝑥 the approximation error of nonlinear 

functions is bounded. If the actual centres of output MFs are �̂� the error between actual 

and ideal centres is �̃� = 𝒄 − �̂�. 

An obvious conclusion is that the more MFs and corresponding rules we have, the more 

precise our fuzzy system function approximation will be. For real time control 

applicability on the other hand we need as small amount of computations as possible. 

This is the inherent conflict of fuzzy control system identification objectives. 

My research actively targets finding appropriate Pareto-optimal solutions to these multi-

objective optimisation problems. 

Further on by taking filtered tracking errors 𝑧𝑖 = 𝐿𝑥𝑖 + 𝑥(𝑖+3) for i = 1, 2, 3 where L is a 

positive constant, a Lyapunov control function can be defined as 𝑉(𝒛, �̃�) =
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∑ (𝑧𝑖
2 + �̃�𝒊

𝑻�̃�𝒊) 2⁄3
𝑖=1 . Assuming there is a bounded external disturbance, then the 

derivative of V is bounded and Lyapunov stability of the proposed control method is 

presented in [15]. The resulting control is stable, computationally efficient, and 

theoretically robust to disturbance. It achieves high performance while eliminating 

centre drift [15]. 

1.2.3 Direct PD Like Fuzzy Controllers for Position and Altitude Control 

In [56] and [55] a direct fuzzy proportional-derivative (PD) controller approach is used 

for altitude control and path tracking of a quadrotor UAV. To control each three angular 

position error a normalized input/output Sugeno type fuzzy engine was used with three 

MFs on both input and output and a fixed rule base defined by expert knowledge. The 

fuzzy attitude control design proposed in [56] was verified within simulations by 

comparison to a back-stepping approach control design. Path tracking efficiencies are 

very similar for both attitude control systems. In [56] the proposed fuzzy attitude 

control revealed slightly better performance in case of a rapid trajectory direction 

changes. The only significant difference was in the first segment of the flight, where the 

proposed fuzzy solution obtains the desired trajectory much faster than the back-

stepping solution [56]. 

In [50] a PD like fuzzy controller is described for position control to compensate for 

nonlinear disturbance such as the wind. For the position controller of the flying robot, 

there are two inputs to the fuzzy logic controller. The first is e the position error, which 

is the difference between the target position of the robot and its actual position. The 

second input is ė the first derivative of the position error with respect to time. For such a 

setup the fuzzy controller output is the generalized force necessary for moving the body 

to the target position. For the output of fuzzy controller in [50] a simplified fuzzy 

inference method is used with fixed MFs and an expert knowledge based pre-defined 

constant fuzzy rule set. The result in [50] is that the proposed fuzzy controller is more 

suitable for path tracking in outdoor conditions than a simple PD controller. The 

proposed fuzzy controller still presented not very good results for the response and 

steady-state error when a fair wind was blowing, as a fixed MF and constant rule base 

fuzzy system cannot actively adapt to environmental changes. 

In my research I am using mean square error optimal real time adaptable fuzzy rule 

parameters and also the MF parameters can be fine-tuned along gradient descent in an 

outer, not real time update cycle. 

1.2.4 Fuzzy Control System Based Visual Servoing 

Computer vision techniques can provide UAVs with an additional source of information 

to perform visually guided tasks like tracking and visual servoing, inspection, pursuit 

and flying in formations. [51] presents a fuzzy servoing strategy using a real time flying 

object tracking method based on only visual information to generate commands in a 

dynamic “look and move” control architecture. Considering a flying object moving with 

an unknown trajectory in the world space and a flying robot with an attached fixed, 

calibrated, pinhole camera, both having idealized flying dynamics. The control goal is 

to command the flying robot in order to track the target object by keeping it always in 

the camera focus with a fixed separation distance. 

The target is modelled as an ideal spherical surface, the projection point can be 

considered as the image projection of the target’s sphere centroid with coordinates in 

the camera frame. The projected diameter can be used to estimate the distance to the 
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target, because it is inversely proportional to the distance from the camera. In [51] the 

problem of tracking is approached by exploiting the colour characteristic of the target. 

A basic colour is defined to the target by assuming a simple coloured mark to it and 

tracking this mark. 

This process is not always perfect, and changes still occur in colour distributions over 

time. An algorithm that has proven to deal with this issue by dynamically adapting to 

changes in probability distributions is the Continuously Adaptive Mean Shift [7]. This 

algorithm is based in the mean shift originally introduced by Fukunaga and Hostetler 

[25]. 

In [51] two Mamdani fuzzy controllers were used, which are based on visual 

information (previously described) to generate yaw and pitch commands for the UAV. 

All variables of these two controllers are defined using triangular membership 

functions. The complete controller design is fixed, based on expert knowledge. Both 

controllers have two inputs and one output. The controller of the yaw or heading of the 

UAV has for the first input the angle estimation in radians, between the UAV (the 

centre of the image) and the centre of the object to follow. The second input is the 

difference between the last angle estimation and the actual angle. This controller sends 

velocity commands (degrees per seconds) for change of the heading position of the 

aircraft. The second controller acts on the pitch state of the UAV. It takes the data about 

the size of the object in pixels, to follow and to estimate the distance from the target. 

Using for the first input the actual size of the object and for the second input the 

difference between the last size measure and the actual size is taken. The output of the 

controller is velocity commands to go ahead, in the case that the object is far away; stay 

in the same position if the object is near at a predefined safe distance, or go back if it is 

very close to the UAV. 

Real tests on outdoors scenarios demonstrated excellent behaviour of fuzzy controllers, 

which were generating yaw and pitch commands based on visual information, 

performing the action of tracking the target object from a safe distance [51]. 

In [52] the same setup was used as in [51]. A Fuzzy Logic controller based on expert 

knowledge has been developed to automatize the collision avoidance. This controller 

acts changing the heading of the aircraft, keeping the obstacle to avoid at the right side 

(or left) of the image until the object can be overtaken. Excellent results have been 

obtained in real tests using a commercial quadrotor with a quick response and low error 

estimation [52]. 

These visual servoing methods, and common global positioning system (GPS) 

navigations, graph based map tracking global root selections are proven good strategies 

to define the next flight coordinates in a point-to-point control strategy. Research also 

exists on optimally connecting certain pre-defined waypoints with higher ordered 

polynomials or splines, but there are no solutions for completely autonomous real-time 

applicable trajectory planning for arbitrarily waypoints, when desired velocity, 

acceleration and higher order displacement derivatives are prescribed and bounded. 

My research also deals with point-to-point trajectory planning that fulfils these complex 

requirements, along with appreciating system capabilities so that the resulting trajectory 

induces no system state oscillations and it is time and energy optimal in a feasible 

manner. Feasible trajectory optimality is such that it does not exist only mathematically 

on the design board, but it is directly applicable to the system, which is capable of 

exactly tracking the prescribed trajectory along the complete time signal, and there exist 
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no other feasible trajectory, which could be completed in a shorter time manner at lower 

energy costs. 

1.2.5 Fuzzy Controller Performance 

In [63] benchmarking and qualitative evaluation of different autonomous quadrotor 

flight controllers is presented. Three characteristic representatives of frequently used 

flight control techniques are considered: PID, back-stepping and fuzzy. Dynamic 

performances, trajectory tracking precision, energy efficiency and control robustness 

upon stochastic internal and/or external perturbation was considered.  

Two experimental scenarios were considered as characteristic benchmarking 

procedures: dynamic quadrotor flight in a 3D-loop manoeuvre and a typical cruising 

flight along the trajectory introduced by setting waypoints with the pre-defined GPS 

coordinates. In case of fuzzy control six Takagi-Sugeno-Kang fuzzy systems of fixed, 

constant parameters were used, one FLS for each state variable of equation (1). Each 

fuzzy system has two inputs: error and error rate; fuzzification with three fixed 

triangular membership functions; and three singletons were used for output MFs. A 

fixed rule base is defined based on expert knowledge. 

Analysing the simulation results in conclusion that the back-stepping method ensures 

the best control performances, in the sense of trajectory tracking precision. The other 

two concurrent algorithms have slightly better characteristics, in the sense of energy 

efficiency (having lower energy consumption). By increasing of flight speed dynamic 

effects become influential upon the system performances; the back-stepping method is 

more sensitive to changing of flight speed than other two controllers, the PID and the 

fuzzy logic controllers [63]. 

My research goals are set by realising that fuzzy system robustness is required for 

disturbance rejection and precise modelling and classical (back-stepping) control along 

with feasible optimal trajectory planning is required for precision and energy efficiency 

of navigation. 

1.2.6 Adaptive Fuzzy Back-stepping Control 

Research [77] presents an adaptive fuzzy control strategy to solve the problem of 

trajectory tracking for quadrotor unmanned aerial vehicle in the presence of model 

parameter uncertainties and external disturbances. A fuzzy system is employed to 

approximate directly a model based control law developed using back-stepping 

techniques. The adaptive laws for tuning the adjustable parameters of the fuzzy system 

are derived based on the Lyapunov theorem. The stability analysis of the designed 

adaptive fuzzy back-stepping controller is shown by the Lyapunov theory. The 

proposed controller yields asymptotic tracking, robustness in the presence of external 

disturbances affecting the six degrees of freedom, and parameters uncertainties. It is 

proved that all signals in the closed-loop system are semi globally uniformly ultimately 

bounded, and the tracking error converge to a small neighbourhood of the origin. 

Numerical simulation results are provided to illustrate the good tracking performances 

of the proposed adaptive control approach. 

1.3 Conclusions of Analysing Literature on Soft-computing 

Autonomous Multirotor Navigation with Obstacle Avoidance 

Fuzzy systems are capable of robust modelling and control of complex systems like 

multi-rotors. Designing and fine tuning of fuzzy systems is a complex challenge. 
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Gradient descent optimisations are capable of finding only the nearest extremum 

point, often a sub-optimal solution. 

Optimisation methods based on thorough search are excessively computation expensive. 

Various stochastic search optimisation methods based on stochastic gradient descent 

variations like simulated annealing, taboo search; swarm intelligence methods like ant 

colonies, bacterial search; and evolutionary algorithms like genetic algorithms have 

been successfully used for fuzzy system optimisation [32], [16], [2], [9]. Genetic 

algorithms are efficient, well studied simple stochastic optimisation methods of proven 

convergence, capable of global multi-objective search and optimisation of versatile 

complex systems. 

Mathematical model design of complex real systems can readily take the so-called 

black-box common approach, which uses exclusively numerical system input-output 

data pairs for constructing the model. Without deeper understanding of the problem, 

these black box models can easily end up being clumsy and working only in some 

specific setups, without any guaranties for general precision or robustness. 

In contrast to black-box there is white box (also called glass box or clear box) 

modelling, which uses extensive, state of the art physics and mathematics analysis, 

presuming to know all necessary information; still just to end up with only simplified 

models, as real complex nonlinear systems can in the end be only approximated. 

Grey-box modelling builds on both input-output data and also on essential expert 

knowledge; it efficiently incorporates them into the model structure used for system 

identification. Fuzzy logic system (FLS) modelling can be conducted as black-box 

modelling where all the system knowledge is mere input-output data, however when 

expert knowledge is readily available, we should take advantage of it – fuzzy grey-

box modelling is a rational choice. 

Multi-input single-output complete first order Takagi-Sugeno-Kang type FLSs are 

having large number of interdependent nonlinear parameters, whose number is 

proportional to the number of antecedent membership functions. The number of FLS 

linear parameters is even larger, proportional to the product of the number of 

membership functions over each input. Singular value decomposition (SVD) based 

least squares optimization can determine the optimal value of these linear parameters 

[s10], [s11]. 

To overcome the problem complexity of finding good values for the nonlinear 

parameters of a flexible structured FLS, global search and optimization methods as 

genetic algorithm (GA) can be used [88]. Genetic fuzzy system (GFS) optimisation 

problems like system identification inherently require multi-objective approach as not 

just the maximum absolute error and the mean square error of the identification has to 

be simultaneously minimal, but also the system complexity as the number of 

membership functions and number of rules should also be minimized for computation 

efficiency [s4]. Based on the standard approximation theory these objectives are clearly 

competing, thus the required multi-objective optimisation problem is of high 

complexity. 

Angular orientations and induced torques of flying body systems are naturally 

continuous and periodic. It is our [0, 2π) orientation representation that results in a 

discontinuity at full turn when returning to the origin. A proper dynamic model, be it 

fuzzy system based or not, must not have a jump in the output when the input 
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continuously changes between any two posture orientation attitude angles. One possible 

solution is to transform the intuitive 3D Euler angles to quaternions, and perform the 

entire maths in this transformed space. Quaternion solutions may be called elegant, by 

whoever likes them, but are surely not simple and intuitive. For a proper intuitive soft 

computing approach to flying body modelling new efficient tools have to be designed 

[s13]. 

From autonomous multi-rotors it is expected to precisely track the desired path and 

to avoid obstacles [75]. For quadrotor flight efficiency minimizing the energy 

consumption of the system is more beneficial than planning for a minimum time or a 

minimum distance trajectory; a proposal for designing minimum fuel trajectories is 

elaborated in [14]. 

For quad rotors off the shelf, camera based products exist for implementing simple 

visual point-to-point waypoint tracking, where the biggest challenge is agility of the 

quad rotor and precision of path tracking [29]. 

Minimum-snap polynomial trajectories are proven very effective as quadrotor 

trajectories, “since the motor commands and attitude accelerations of the vehicle are 

proportional to the snap, or forth derivative, of the path” – citation from [37]. The rotor 

blade velocity is considered as an arbitrary control input. As 7
th

 order minimum-snap 

polynomial trajectories are discontinuous in displacement crackle, the fifth time 

derivative of displacement, my claim is that this is still a sub-optimal approach. My 

research considers the reality of the rotor blade velocity not being an arbitrary 

theoretical control signal, but a real, electro-mechanical physical system, subject to aero 

dynamical load conditions, and as such having a specific transient behaviour. As I will 

present the second time derivative of the actuator torque has to be continuous; for multi 

rotor flight dynamics this is equivalent to having a continuous displacement pop, the 

sixth time derivative of the body displacement. To achieve feasible energy efficient 

trajectories, one must take into account both the base system and the control actuator 

dynamics. 

To efficiently generate trajectories for agile quadrotor flight through maps of real-

world environments is addressed in [59], where the straight-line route is translated into 

a smooth dynamically feasible polynomial trajectory and iteratively refined by a time 

allocation scheme that naturally performs a trade-off to minimize accelerations while 

attempting to fly at a desired velocity [59]. 

Based on analysis above the ultimate goal of my research is to achieve improvements of 

autonomous multi-rotor navigation with obstacle avoidance. In forthcoming chapters 

the above highlighted essential system design tools are analysed and, possible 

improvements are suggested for the following subjects: 

a.) multi objective search and optimisation 

b.) robust function approximation by fuzzy logic systems using a.) 

c.) complex dynamic system identification by b.) 

d.) optimal feasible trajectory design for c.) 

e.) reduction of d.) to training data set for c.) 
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2 GENETIC ALGORITHMS FOR MULTI-OBJECTIVE 

SEARCH AND OPTIMISATION 

2.1 Literature Synopsis 

A genetic algorithm (GA) is constructed on bases of imitating natural biological 

processes and natural Darwinian evolution [27]. GAs are widely used as a search and 

optimisation tool [28]. Real-life optimisation problems often have multiple objectives. 

The comparison of two vectors in this case is not trivial. Often a simple weighted sum is 

used, but its drawbacks are widely known [13]. 

The principle of multiple criteria, multi-objective optimisation is different from that of a 

single objective optimisation. In single objective optimisation, the goal is to find the 

best design solution, which corresponds to the minimum (or maximum) value of the 

objective function, while in a multiple criteria optimisation of conflicting objectives 

there is no single optimal solution. The interaction among different objectives gives rise 

to a set of compromised solutions, known as Paretooptimal solutions that comprise the 

so called Pareto-front region. Without any further considerations and new preferences 

none of the Paretooptimal solutions of the Pareto-front can be identified in Pareto sense 

to be better than the others. The goal in a multiobjective optimisation is to find as many 

Paretooptimal solutions as possible. Once such solutions are found, it usually requires a 

higher level decision making with other considerations to choose one of them for 

implementation. 

There are two general objectives in a multiple criteria optimisation: 

i.) find solutions close to the true Paretofront and  

ii.) find solutions that are widely different from each other.  

The first task is intended to satisfy all the optimality conditions solution candidates. The 

second task is designed to ensure that no bias exists towards any particular Pareto non-

dominated solution region. 

Evolutionary algorithms are particularly suitable to solve multiobjective optimisation 

problems because they deal simultaneously with a set of possible solutions, the so-

called population. This allows finding an entire set of Pareto optimal solutions in a 

single run of the algorithm, instead of having to perform a series of separate runs as is 

the case in traditional mathematical programming techniques. Evolutionary algorithms 

are less susceptible to the shape or continuity of the Pareto front, whereas these two 

issues are a real concern for other mathematical programming techniques. 

Multiobjective optimisation (also called multi-criteria optimisation, multi-performance 

or vector optimisation) can be defined as the problem of finding a vector of decision 

variables which satisfies constraints and optimises a vector function whose elements 

represent the objective functions. These functions form a mathematical description of 

performance criteria that are usually in conflict with each other. Hence, the term 

“optimise” means finding such a solution that would give the values of all the objective 

functions acceptable to the designer [53]. 

Formally, we can state it as follows: we want to find the vector 

that will satisfy the m inequality constraints  and the p equality 
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constraints: , while optimising the vector function: 

, where  Tnxxxx ,  ...  ,, 21 is the vector of decision 

variables.  

The concept of Pareto optimum was formulated by Vilfredo Pareto in the XIX century 

[54], and constitutes by itself the origin of research in multiobjective optimisation. We 

say that a point Fx *
 is Pareto optimal if for every Fx  we have 

     )()(     )()( ** xfxfIixfxf iiii
Ii

 


 where   means “is no worse than” and 

  means “is better than” [24]. 

In other words, this definition says that 
*x  is Pareto optimal if there exists no feasible 

vector x  that would improve any criterion without causing a simultaneous worsening in 

at least one other criterion. The Pareto optimum almost always gives not a single 

solution, but rather a set of solutions called no inferior or non-dominated solutions. The 

following definitions ensure clear understanding if a set of solutions belongs to a local 

or global Paretooptimal set, similar to the definitions of local and global optimal 

solutions in single objective optimisation problems: 

- Local Paretooptimal non-dominated set: If for every member x in a set P, there 

exist no solution y satisfying the infinity (or any other) norm condition 


xy , 

where   is a small positive number (in principle, y is obtained by perturbing x in its 

close neighbourhood), which dominates any member in the set P, then the solutions 

belonging to the set P constitute a local Paretooptimal non-dominated set. 

- Global Paretooptimal Pareto-front set: If there exists no solution in the search 

space which dominates any member in the set P, then solutions belonging to the set P 

constitute a global Paretooptimal set, the true global Pareto-front. 

There exists a major difference between a nondominated set and a Paretofront set. A 

nondominated set is defined in the context of a sample of the search space. In a sample 

of search points, solutions that are not dominated (according to the above definition of 

Pareto dominance) by any other solutions in the sample space are nondominated 

solutions. A Paretooptimal, Pareto- front set is the ultimate nondominated set, when 

the sample is the entire search space. The optima in the Pareto sense are going to be in 

the boundary of the design region, or in the locus of tangent points of objective 

functions. The region of Pareto-optimal points is called the Pareto-front. In general, it is 

not easy to find an analytical expression of the line or surface that contains these points. 

The common procedure is to find a large enough number of points in the search space 

and compute their corresponding fitness values. When we have a sufficient amount of 

non-dominated solutions, we may proceed to take the final decision [19]. 

Evolutionary algorithms are also capable of find solutions that are widely different from 

each other by applying a suitable niching operator. Due to genetic drift - stochastic 

errors associated with its operators, the genetic algorithm (GA) tends to converge to a 

single solution when used with a finite population [21], this phenomena is present in 

biological systems as well. Holland suggested the use of a “crowding” operator to 

identify situations in which more and more individuals dominate an environmental 

niche, since in those cases the competition for limited resources increases rapidly, 

which will result in lower life expectancies and birth rate. 

pjxh j ,  ...  ,2,10)( 

 Tk xfxfxfxf )(,  ...  ),(),()( 21
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DeJong experimented with such a crowding operator, which was implemented by 

having a newly formed offspring to replace the existing individual more similar to itself. 

The similarity between two individuals was measured in the genotype, by counting the 

number of bits along each chromosome that were equal in the two individuals being 

compared. DeJong used two parameters in his model: generation gap (G) and crowding 

factor (CF). The first parameter indicates the percentage of the population that is 

allowed to reproduce. The second parameter specifies the number of individuals 

initially selected as candidates to be replaced by a particular offspring [21]. 

In [Goldberg, 1987] a different approach is elaborated, where the population was 

divided in different sub-populations according to the similarity of the individuals in two 

possible solution spaces: the decoded parameter space (phenotype) and the gene space 

(genotype). They defined a sharing function as )( ijd  follows: 

shijsh
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)( , where normally 1 , and ijd  is a metric indicative of 

the distance between designs i and j, and sh  is the sharing parameter which controls 

the extent of allowed nice sharing. The fitness of a design i is then modified as: 
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, where M is the number of designs located in vicinity of the i
th

 

design. Deb and Goldberg proposed a way of estimating the parameter sh  in the 

phenotypic space as: 
psh

q

r
  where  is the volume of 

a p dimensional sphere, where p refers to the number of variables  

encoding in the i
th

 individual design of the GA. In phenotypic sharing  the distance 

between two individuals is measured in decoded parameter space, and can be calculated 

with a simple Euclidean distance in a p dimensional space. In genotypic sharing  is 

defined as the Hamming distance between the strings and sh  is the maximum number 

of different bits allowed between the strings to form separate niches in the population. 

The experiments performed in [17] showed sharing as a better way of keeping diversity 

than crowding, and indicated that phenotypic sharing was better than genotypic sharing. 

2.1.1 Sum–dominance Vector Comparison Method 

The simplest GA objective vector comparison method is basically the one-norm 

distance from the origin. One popular way of formulating this approach is the weighted 

average objective function method, where the sum of objectives is multiplied by 

individual preference, weight factors and directly used as the scalar merit value for 

fitness calculation. It has been well studied in many publications; its drawbacks are well 

known [13]. 

For the sake of representation uniformity with my thesis I’m giving here one possible 

alternative formulation to this method: let’s define a dominance relation <s(a, b) (or 

briefly a <s b) between two vectors of n elements a = (ai) and b = (bi), for i=1..n, n 

∈ ℕ+, where each i
th

 element type has a well-defined scalar ‘<’ (less than) strict partial 

order binary endorelation and also the equivalence relation ‘=’ is defined. 
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Vector a sum-dominates vector b, or briefly: a <s b if and only if ∑ 𝑎𝑖 < ∑ 𝑏𝑖𝑖  𝑖 , for 

i=1..n. 

We can define a measurement value for <s(a, b) as d<s(a, b) = ∑ (𝑏𝑖𝑖 − 𝑎𝑖). 

This method is valid only if all objective functions are in the same range (normalised to 

the same interval of [0,1] for example). This can be easily achieved as we are 

investigating a finite number of individual results when determining the fitness of an 

individual in the population. 

2.1.2 Sum–dominance Vector Comparison Method 

A general multi-objective optimisation problem consists of a number of scalar 

minimisation objectives where every scalar objective function fi(x) is to be minimised 

simultaneously, where x is a p dimensional vector of parameters. As maximisation can 

be easily transformed to minimisation, the generality of the previous statement stands. 

For minimisation a vector x
(1)

 Pareto-dominates x
(2)

, when no scalar component of x
(2)

 is 

less than the appropriate scalar component of x
(1)

, and at least one component of x
(1)

 is 

strictly smaller than the appropriate component of x
(2)

. 

Up to date Pareto-comparison based methods are proven to be the most efficient multi-

objective optimisation methods. Pareto based comparison [54] is the bases of a few 

popular methods like NSGA (Non-dominated Sorting GA) [18] and MOGA (Multi-

Objective GA) [24]. 

2.1.3 Overview of MOGA – Block Type Non-dominance Ranking 

MOGA is the rank based fitness assignment method introduced in [23]. Consider an 

individual xi at generation t, which is dominated by pi
t
 individuals in the current 

population. Its current position, individual’s rank can be given by: rank(xi; t) = 1 + pi
t
. 

All non-dominated individuals are assigned rank 1. Concerning fitness assignment, one 

should note that not all ranks would necessarily be represented in the population at a 

particular generation. The traditional assignment of fitness according to rank is 

extended as follows:  

1. Sort population according to rank. 

2. Assign fitness values to individuals by interpolating from the best (rank 1) to the 

worst (rank n) in the usual way, according to some function, usually linear but not 

necessarily. 

3. Average the fitness values of individuals with the same rank, so that all of them will 

be sampled at the same rate. Note that this procedure keeps the global population fitness 

constant while maintaining appropriate selective pressure, as defined by the function 

used.  

The fitness assignment method just described appears as an extension of the standard 

assignment of fitness according to rank, to which it maps back in the case of a single 

objective case, or that of noncompeting objectives [24]. 

As the representation of this method for two objective functions forms blocks of 

individuals that dominate one possible solution, we shall refer to this ranking method as 

the Block-type ranking. Note that the basis of comparing two vectors in the original 

MOGA algorithm is the Pareto-comparison. 



30 

2.1.4 Overview of NSGA – Slice Type Non-dominance Ranking 

NSGA is the following algorithm: Before the selection is performed, the population is 

ranked on the basis of an individual's Pareto non-domination. The non-dominated 

individuals present in the population are first identified from the current population. 

Then, all these individuals are assumed to constitute the first non-dominated front in the 

population and assigned a large dummy fitness value. 

The same fitness value is assigned to give an equal reproductive potential to all these 

non-dominated individuals. These non-dominated individuals are ignored temporarily to 

process the rest of population in the same way to identify individuals for the second 

non-dominated front. These new set of points are then assigned a new dummy fitness 

value which is kept smaller than the minimum dummy fitness of the previous front. 

This process is continued until the entire population is classified into a number of fronts. 

The population is then reproduced according to the assigned dummy fitness values. 

Since individuals in the first front have the maximum fitness value, they always get 

more copies than the rest of population. This method was intended to search for non-

dominated regions or Pareto optimal fronts [18]. A slightly improved variant NSGA-II 

was developed in [20], where both rank (order of dominated precedence of the front to 

which the solution belongs) and within the same rank the distance from the Pareto front 

is used for fitness value assignment. 

As the representation of this method for two objective functions forms slices of non-

dominated individuals, we shall refer to this ranking method as the Slice-type ranking. 

Note that the basis of comparing two vectors in the original NSGA algorithm is the 

Pareto-comparison. 

2.1.5 Overview of Pareto-dominance 

Pareto-dominance is the classic method for comparing two GA individual’s objective 

vectors: 

 a = [ai] Pareto-dominates b = [bi] (a <P b) if every ai component of a is no 

worse than the corresponding bi and there exists at least one aj such that it is better than 

the corresponding bj. 

 No measurement of the amount of Pareto-domination exists. 

Pareto dominance is not a complete order binary relation, as there is no clear Pareto 

dominance results for every a and b vectors. Pareto comparison of vectors of n elements 

can decide if one vector clearly dominates the other only for limited cases. 

Without loss of generality we can assume for minimisation that each vector component 

is normed in the interval of ai, bi ∈ [0,1]. Thus in case for n=2 we can assume the 

average random solution objective value is b = [0.5, 0.5]. This means that we can 

deduce Pareto dominance a <P b of vector a = [a1, a2] only for ai≤0.5, which is only ¼ 

of the complete base vector space, similarly for ai≥0.5 we can deduce b <P a, which 

includes another ¼ of the complete base vector space. 

Obviously in the observed general average case for two objectives, based on Pareto 

dominance we can draw conclusions only for half of the search space; for the other half 

of the space we cannot conclude any Pareto based relation. 
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Extending this observation to n dimensional vectors, for an average vector the Pareto 

dominance relation can yield results only for 1/2
(n-1)

 part of the search space. We can 

observe that this “Pareto indecisiveness” grows exponentially with the dimension of the 

search space. 

Notice that in [27] GA efficiency compared to random search it is proved to be of order 

O(n
3
), where n stands for the number individuals in the population. Also a rule of thumb 

instruction is defined that the size of the population is proportional to the complexity of 

the problem. 

Without loss of generality we can assume that the problem complexity for multi-

objective optimisations is proportional to the number of objective functions - for a 

minimalistic approach we assume only linear O(n) complexity dependence. In this case 

of a n-objective GA relaying on Pareto dominance in the ranking operator hinders the 

search efficiency to n
3
/2

(n-1)
 as presented in Figure 3. 

 
Figure 3. 

Efficiency degradation of n-objective GA relaying on Pareto dominance comparison. 

By my Hypothesis I this paper will propose and present the validity of a new general 

vector comparison operator, suitable for applications in any scientific field, including 

stochastic search, including evolutionary algorithms. The new method provides more 

information when comparing two vectors than the classic Pareto-based comparison, thus 

the GA convergence is faster, more efficient in its search. 

2.1.6 Validating Quality of Multi-objective Search and Optimisation 

Various stochastic search and optimisation methods based on stochastic gradient 

descent variations like simulated annealing, taboo search; swarm intelligence methods 

like ant colonies, bacterial search; and evolutionary algorithms like genetic algorithms 

have been successfully used for fuzzy system optimisation [32], [16], [2], [9]. Genetic 

algorithms are efficient, well studied simple stochastic optimisation methods of proven 

convergence, capable of global multi-objective search and optimisation of versatile 

complex systems. Capabilities and performance characteristics of properly formed GAs 

are defined in [27] so the effect on the GA performance becomes obvious if any 

supplementary operator – like a new vector comparison or a new niching operator is 

included into a simple GA. 

This paper will prove the validity of a new general vector comparison operator, suitable 

for applications in any mathematical or engineering field, including stochastic search, 

and evolutionary algorithms. For a relation to be a proper strict inequality relation it 

must have the properties of irreflexivity, antisymmetry and transitivity. I shall 



32 

mathematically prove these traits by analysing basic set cardinality properties of my 

proposed vector comparison operators. These new vector comparison methods provide 

more information when comparing two vectors than the classic Pareto-based 

comparison, thus the GA is faster, more efficient in its search. 

Many benchmark problems were designed to test the effectiveness of a multi-objective 

GA. Of the most interest to us, thus what I will use is the analytically designed GA hard 

multi-objective function set presented in [79]; I have also used their generalisation to 4, 

8 and 16 objectives. To have a clear, familiar simple baseline I have also implemented a 

single objective GA, which minimises the sum of 42, 84, 168 and 336 parameters – 

since the 2, 4, 8 and 16 multi-objective problems use this many parameters in total. 

2.1.6.1 Simple Two Objective Optimisation Problem 

According to [79] a simple two objective optimisation problem can be defined as: 

Minimize f1(x) = f1(x1, x2,…, xm), 

Minimize f2(x) = g(xm+1,…, xN)
.
h(f1(x1,…, xm),g(xm+1,…, xN)).       (15) 

 
Figure 4. 

Four hyperbolic lines (f1f2 = c) with c1 < c2 < c3 < c4 are shown. 

The most simple case is where f1 = x1 and g(x2) (>0) is a function of x2 only, and h = 

g/f1. The first objective function f1 is a function of x1 only and the function f2 is a 

function of both x1 and x2. In the function space (that is, a space with (f1; f2) values), the 

above two functions obey the following relationship: f1(x1; x2) 
.
 f2(x1; x2) = g(x2). 

For a fixed value of g(x2) = c, a f1 – f2 plot becomes a hyperbola (f1f2 = c) as shown for a 

5 objective case in Figure 4, where 4 objectives f2,3,4,5 are competing with the first 
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objective f1, along a Pareto-front like f1fi = ci, for i=2,3,4,5. Results of the optimisation 

that correspond to the smallest achievable c are the global, Pareto-optimal solutions. 

For the general case of (15) the Global Pareto-optimal solutions are: 0 x1 1 and xi = 0 

for i = 2, 3,…,N. In [79] the proposal is N=20. 

2.1.6.2 Deceptive Multiobjective Optimisation Problem 

A deceptive g function is defined over binary alphabets, thereby making the search 

space discontinuous. Let us say that the following multiobjective function is defined 

over l bits, which is a concatenation of N substrings of variable size li such that sum(li) 

= l:  

Minimise f1 = 1 + u(l1), 

Minimise f2 = sum(g(u(li)) / (1+u(l1)),           (16) 

where u(l1) is the unitation of the first substring of length l1. 

The first function f1 is a simple onemin problem, where the absolute minimum solution 

is to have all 0s in the first sub-string. A one is added to make all function values strictly 

positive. 

 
Figure 5. 

10 000 randomly generated individuals and the true deceptive two objectives Pareto-

front. 

The function g(l1) is defined as g(u(l1)) = 2 + u(l1); if u(l1) < l1, or g(u(l1)) = 1; if u(l1) = 

l1. 

This makes the true attractor (with all values of one in the substring) to have worst 

neighbours and with a function value g(l1) = 1 and the deceptive attractor (with all 0s in 
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the substring) to have good neighbours and with a function value g(0) = 2. Since, most 

of the substrings lead towards the deceptive attractor, GAs may find difficulty to 

converge to the true attractor (all 1s) as in Figure 5. Since each g function has two 

minima (one true and another deceptive), there are a total of 2
N
-1 local minima, of 

which only one is global. Global Pareto-optimal solutions are: 0 u(x1 li and u(xi) = li 

for i = 2, 3,…,N. In [79] the proposal is N=20. 

2.1.6.3 Multimodal Multiobjective Problem 

When the function g(x2) is multimodal with local x2 and global x2 minimum solutions, 

the corresponding two objective problem also has local and global Paretooptimal 

solutions corresponding to solutions (x1; x2) and (x1; x2), respectively. The 

Paretooptimal solutions vary in x1 values. 

 
Figure 6. 

10 000 randomly generated individuals and the true multi-modal 2 objectives Pareto-

front. 

We create a multi-modal, two objective optimisation problem by choosing a multi-

modal g(x2) function: 

Minimize f1(x) = f1(x1, x2,…,xm), 

Minimize f2(x) = g(xm+1,…,xN)
.
h(f1(x1,…,xm),g(xm+1,…,xN)), 

h = g/f1, where 

g(x2,…,xN ) = 1+ 10(N-1) + sum(xi
2
 – 10cos(2xi)).         (17) 

Global Pareto-optimal solutions are: 0 x1 1 and xi = 0 for i = 2, 3,…,N as in Figure 6. 

In [79] the proposal is N=20. 
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To highlight the specifics, where the difficulty lies with optimisations along a multi-

modal Pareto front, please observe the magnified part of the search space of the solution 

distribution in Figure 7. 

 
Figure 7. 

A magnified portion of the true multi-modal Pareto-front. 

2.1.6.4 Convex and Nonconvex Paretooptimal Fronts 

We choose the following function for h:  

Minimize f1(x) = f1(x1, x2,…,xm), 

Minimize f2(x) = g(xm+1,…,xN)
.
h(f1(x1,…,xm),g(xm+1,…,xN)), where 

h(f1, g) = 1 – (f1/g)

, if f1g; and 0 otherwise.         (18) 

With this function, we may allow 0f1, g may be any function 0<g. The global 

Paretooptimal set corresponds to the global minimum of g function. The parameter  is 

a normalisation factor to adjust the range of values of functions f1 and g. To have a 

significant Paretooptimal region,  may be chosen as f1,max/gmin, where f1,max and 

gmin are the maximum value of the function f1 and the minimum (or global optimal) 

value of the function g, respectively. 

The above function can be used to create multiobjective problems having convex 

Paretooptimal set by setting   1.  

Global Pareto-optimal solutions are: 0 x1 1 and xi = 0 for i = 2, 3,…,N as in Figure 8. 

In [79] the proposal is to use N=20 in equation (18), which results in a suffitienty 

versatile search space. 
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Figure 8. 

10 000 randomly generated individuals and the true convex two objectives Pareto-front. 

Note that when  > 1, the resulting Paretooptimal front is nonconvex. It is important 

to note that when  > 1 is used, the classical weighted sum method cannot find any 

intermediate Paretooptimal solution by using any weight vector. 

Although there exist other methods (such as  perturbation method or goal 

programming method), they require problem knowledge and, moreover, require 

multiple application of the single objective optimiser. 

Global Pareto-optimal solutions are: 0 x1 1 and xi = 0 for i = 2, 3,…,N as presented in 

Figure 9. In [79] the proposal is to use N=20 in equation (18), which results in a 

suffitienty versatile search space. 
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Figure 9. 

10 000 randomly generated individuals and the true non-convex two objectives Pareto-

front. 

2.1.6.5 Discontinuous Paretooptimal Front 

We have to relax the condition for h being a monotonically decreasing function of f1 to 

construct multiobjective problems with a discontinuous Paretooptimal front. In the 

following, we show one such construction where the function h is a periodic function of 

f1: 

Minimize f1(x) = f1(x1, x2,…,xm), 

Minimize f2(x) = g(xm+1,…,xN)
.
h(f1(x1,…,xm),g(xm+1,…,xN)), 

h(f1, g) = 1 – (f1/g)

- (f1/g)sin(2qf1)          (19) 

where g may be any function 0<g. The parameter q is the number of discontinuous 

regions in an unit interval of f1. Since the h (and hence f2) function is periodic to x1 (and 

hence to f1), we generate discontinuous Paretooptimal regions. 

Global Pareto-optimal solutions are: 0 x1 1 and xi = 0 for i = 2, 3,…,N as in Figure 

10. In [79] the proposal is N=20. 
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Figure 10. 

10 000 randomly generated individuals and the true discontinuous two objectives 

Pareto-front along the non-dominated region. 

2.1.6.6 Biased Search Space 

The function g makes a major role in introducing difficulty to a multiobjective 

problem. Even though the function g is not chosen to be a multimodal function nor to 

be a deceptive function, with a simple monotonic g function the search space can have 

adverse density of solutions towards the Paretooptimal region. Consider the following 

function for g: 

Minimize f1(x) = f1(x1, x2,…,xm), 

Minimize f2(x) = g(xm+1,…,xN)
.
h(f1(x1,…,xm),g(xm+1,…,xN)), 

h = g/f1, where              (20) 

g(xm+1,…xN) = gmin + (gmax - gmin ) ((sum(xi) – sum(xi,min)) / (sum(xi,max) – sum(xi,min)))
 

where gmin and gmax are minimum and maximum function values that the function g may 

take. The values of xi,max and xi,min are minimum and maximum values of variable xi. It 

is important to note that the Paretooptimal region occurs when g takes the value gmin. 

The parameter  controls the biasness in the search space. If  < 1 then the density of 

solutions increases while getting further away from the Paretooptimal front. 

Global Pareto-optimal solutions are: 0 x1 1 and xi = 0 for i = 2, 3,…,N as in Figure 

11. In [79] the proposal is N=20. 
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Figure 11. 

10 000 randomly generated individuals and the true biased two objectives Pareto-front. 

Random search methods are likely to face difficulty in finding the Paretooptimal front 

in the case with  close to zero, mainly due to the low density of solutions towards the 

Paretooptimal region. 

Although multiobjective GAs, in general, will progress towards the Paretooptimal 

front, a different scenario may emerge. Although for values of  greater than one, the 

search space is biased towards the Paretooptimal region, the search in a multiobjective 

GA with proportionate selection and without mutation or without elitism is likely to 

slow down near the Paretooptimal front. In such cases, the multiobjective GAs may 

prematurely converge to a front near the true Paretooptimal front. This is because the 

rate of improvement in g value near the optimum (x20) is small with 1. 

Nevertheless, a simple change in the function g with a change in  suggested above will 

change the landscape drastically and multiobjective optimisation algorithms may face 

difficulty in converging to the true Paretooptimal front. 

2.1.6.7 Generalisation of Two Objectives to Four Objectives 

The idea is to simply introduce a third function f3 that is similar to the first one f1 but 

having different domains. The fourth function f4 is chosen to be similar to the second 

function f2, but also having different domains. Thus a general 4 objective problem is: 

Minimize f1(x) = f1(x1, x2,…, xm), 
Minimize f2(x) = g(xm+1,…, xN)

.
h(f1(x1,…, xm),g(xm+1,…, xN)), 

Minimize f3(x) = f1(xN+1, xN+2,…, xN+m),          (21) 
Minimize f4(x) = g(xN+m+1,…, xN+N)

.
h(f3(xN+1,…, xN+m),g(xN+m+1,…, xN+N)), 
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where function f1, g and h can be chosen identically as in equations (15)-(20). With the 

same approach we can duplicate the four objective problems to eight competing 

objectives and further on to 16 competing objectives. 

2.2 New Scientific Achievements 

2.2.1 New Vector Comparison Operators 

New methods for comparing two GA objective vectors are introduced in my publication 

[s2]. Two proper strict inequality operators are formulated in my first thesis, and also an 

additional comparison method is proposed. 

2.2.1.1 Quantity-dominance Vector Inequality Operator 

My idea behind the definition of a new vector comparison algorithm, named quantity-

dominance is to extend the Pareto-dominance relation in a way that a domination 

decision could be also made for vectors, which are not comparable by Pareto 

dominance, while a human heuristic would name a clear preference. For example in 

case of maximisation problem solutions (1,1,0,1) and (0,0,1,0), where each scalar 

defines a normed merit of preference for maximisation the three out of four loci 

‘perfect’ solution is clearly a better choice than a single loci of ‘perfect’ solution. 

To introduce the quantity-dominance definition for a minimisation problem, let’s define 

a dominance relation <n(a, b) (or briefly a <n b) between two vectors of n elements: a = 

(ai) and b = (bi), for i=1..n, n ∈ ℕ+, where each i
th

 element type has a well-defined 

scalar ‘<’ (less than) strict partial order binary endorelation and also the equivalence 

relation ‘=’ is defined. 

Let’s define a helper function #n<(a, b), which for vectors a and b defines two values 

(ga, la) = #n<(a, b), where ga, la ∈ ℕ0 and ga is equal to the cardinality of set Gab={ ai | bi 

< ai }, i=1..n; and la is equal to the cardinality of set Lab={ aj | aj < bj }, j=1..n. 

THESIS I.a - DEFINITION: 

For a minimisation problem vector a quantity-dominates vector b, or briefly:        

a <n b if and only if ga < la. 

We can define a measurement value for <n(a, b) as d<n(a, b) = la−ga. 

The defined dominance measurement is 0 for a = b and for cases when no clear 

dominance can be determined. The same measurement value can be defined for Pareto-

dominance as well. We can observe that quantity-dominance is a natural extension of 

Pareto-dominance, as the definition of quantity-dominance will degrade to the definition 

of Pareto-dominance if instead of condition ga < la we take a more strict criterion for 

dominance like: vector a Pareto-dominates vector b, or briefly: a <p b if and only if la > 

1 AND gb = 0. 

Notice that la > 1 AND gb = 0 implies ga < la, this means that if a Pareto-dominates b 

then a will also quantity-dominate b, so quantity-dominance is an extension of Pareto-

dominance. 

Let’s prove that the quantity-dominance operator <n(a, b) (a <n b) is a strict partial 

order binary endorelation, by proving that it is irreflexive, antisymmetric and transitive. 

First of all, let us conclude that without loss of generality we can discard any K number 

of scalar components of vectors a’ and b’, such that ak = bk: 
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- for K = n we have the trivial case of a’ = b’; for K = n-1 we have a case of scalar 

comparison a < b or b < a, which is a trivial, well defined problem, as by definition 

each scalar component has a well-defined scalar ‘<’ (less than) strict partial order binary 

endorelation; 

- for K < n-1 we have an new vector comparison problem a < b where a and b are 

vectors of n-k scalars, such that for every ai, bi scalar component of a’, b’ it holds that 

either aj < bj or bi < ai, so the a’, b’ dominance question is equivalent to the a, b 

dominance question for any a’ and b’ with any number of ak = bk components 

additional to aj < bj or bi < ai. 

Reflexivity 

To test the reflexivity property we observe <n(a, a), where we have (ga, la) = #n<(a, a). 

By the definition of <n we have ga = # Gaa=#{ ai | ai < ai } = 0 and la = # Laa = #{ ai | ai 

< ai } = n, for i=1..n. Since ga = la, so we have ga ≮ la, which by definition means that 

vector a does NOT quantity-dominate itself. Thus we can conclude that the operator 

<n(a, b) is irreflexive. 

Symmetry 

To test the symmetry property of quantity-dominance, without loss of generality we 

only analyse cases a ≠ b, we observe <n(a, b) and <n(b, a) where we have (ga, la) = 

#n<(a, b) and (gb, lb) = #n<(b, a). 

By the definition of <n(a, b) and <n(b, a) we have: 

ga = # Gab = #{ ai | bi < ai }, #{ aj | aj < bj } = # Lab = la 

lb = # Lba = #{ bj | bj < aj }, #{ bi | ai < bi } = # Gba = gb 

We can observe that lb = ga, gb = la. Let’s assume a <n b, which is by definition 

equivalent to ga < la. Then from our observation we have: lb < gb, which implies gb ≮ lb 

what is by definition equivalent to b ≮n a, for cases when a <n b. Thus we can conclude 

that to the operator <n(a, b) is antisymmetric. 

Notice that based on the already proven irreflexive property we can even relax the a ≠ b 

condition for the antisymmetric property. 

We can also introduce a corresponding operator >n(b, a) for gb > lb, such that a >n b 

<=> b <n a, which has the same general properties as <n(a, b). 

Transitivity 

For testing the transitivity property we observe <n(a,b), <n(b,c) and <n(c,a), where we 

have (gab, lab) = #n<(a, b), (gbc, lbc) = #n<(b ,c) and (gca, lca) = #n<(c,a). Though this 

transitivity analysis makes only sense for a ≠ b ≠ c, we must accept to have any number 

of aj = bj and bk = ck. 

Let’s introduce a second helper function #n=(a, b) for vectors a and b, which defines one 

value ea = #n=(a, b), where ea ∈ ℕ0 and ea is equal to the cardinality of set Eab={ ai | ai = 

bi }, i=1..n. 

Let’s perform a grouping of our vector indexes into sets I0,1,2,3,4,5,6 in the following 

manner: 
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Gab = { ai | bi < ai };       Gbc = { bi | ci < bi };         Gca = { ci | ai < ci }; 

LEab = { ai | ai ≤ bi };      LEbc = { bi | bi ≤ ci };       LEca = { ci | ci ≤ ai }; 

Let’s have <n(a, b), so that Gab contains all those ai for which bi < ai, where i ∈ Iab = 

I0∪I1∪I2∪I3 and LEab contains all those ai for which ai < bi or ai = bi, where i ∈ Iba = 

I4∪I5∪I6.  

Notice #Gab = #(I0∪I1∪I2∪I3), #LEab = #(I4∪I5∪I6), where #LEab = #Lab + #Eab. Since 

by definition of <n(a, b) we have gab < lab, for any eab it will also hold that gab < lab+eab, 

so #Gab < #LEab. 

Let’s also have <n(b,c), so that Gbc contains all those bi for which ci < bi, where i ∈ Ibc = 

I0∪I2∪I3∪I4 and LEbc contains all those bi for which bi <= ci, where i ∈ Icb = I1∪I5∪I6. 

Notice #Gbc = #(I0∪I2∪I3∪I4), #LEbc = #(I1∪I5∪I6), and by definition of >n(b, c) we 

have gbc < lbc + ebc. 

To come to a contradiction let’s assume that for <n(a, b) and <n(b, c) it is possible to 

have <n(c, a). Let’s again perform the separation of indexes for Gca to contain all those 

ci for which ai > ci, where i ∈ Ica = I0∪I1∪I2∪I6 and LEca to contain all those ci for which      

ci <= ai, where i ∈ Iac = I3∪I4∪I5.  

Notice #Gca = #(I0∪I1∪I2∪I6) and #LEca = #( I3∪I4∪I5).  

Now we observe: 

#I0 = #{ i | ai > bi  ∧  bi > ci  ∧  ci > ai } = 0, 

since by definition the ‘<’ operator used for vector elements is a well-defined scalar ‘<’ 

(less than) strict partial order binary endorelation, so it is transitive. 

#I1 = #{ i | bi ≥ ai  ∧ ci ≥ bi  ∧ ci > ai } = n1 

#I2 = #{ i | bi ≥ ai  ∧ bi > ci  ∧ ci > ai } = n2 

#I3 = #{ i | bi ≥ ai  ∧ bi > ci  ∧ ai ≥ ci } = n3 

#I4 = #{ i | ai > bi  ∧ bi > ci  ∧ ai ≥ ci } = n4 

#I5 = #{ i | ai > bi  ∧ ci ≥ bi  ∧ ai ≥ ci } = n5 

#I6 = #{ i | ai > bi  ∧ ci ≥ bi  ∧ ci > ai } = n6 

So we have n4 + n5 + n6 = gab < lab = n1 + n2 + n3 and n2 + n3 + n4 = gbc < lbc = n1 + n5 

+ n6. Through summing up these two inequalities we can conclude n4 < n1. 
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Also by this index separation we have gca =n1 + n2 + n6; lca = n3 + n4 + n5 and our 

assumption is that it is possible to have gca < lca <=> n1 + n2 + n6 < n3 + n4 + n5, but it 

is not possible! Since by substituting and summing up equations for inequalities gab < 

lab and gca < lca it would conclude that n6 < n3, and doing the same for gbc < lbc with gca 

< lca would conclude that n2 < n5, but this is not possible! Since then we would have 

simultaneously n4 + n5 + n6 = gab < lab = n1 + n2 + n3 and from summing up the 

inequalities from our conclusions n4 + n6 + n2 < n1 + n3 + n5, which is equivalent to 

have at the same time both n5 < n2 and n2 < n5, and that is clearly not possible. So our 

assumption is false that it is possible to have <n(c, a) for <n(a, b) and <n(b, c), thus we 

can conclude that <n is transitive. 

By this it is proven that the quantity-dominance operator >n(a,b) (a >n b) is a 

strict partial order binary endorelation. 

2.2.1.2 Quality–dominance Vector Inequality Operator 

My idea behind the definition of quality-dominance is to further extend the quantity-

dominance relation in a way that a decision could be made also for vectors, which are 

not comparable by quantity-dominance, but a human heuristic would name a clear 

preference like for example in case of maximisation problem solutions (0.9,0,0,0.9) and 

(0,0.1,0.1,0). 

Let’s define a dominance relation <q(a, b) (or briefly a <q b) between two vectors of n 

elements a = (ai) and b = (bi), for i=1..n, n ∈ ℕ+, where each i
th

 element type has a 

well-defined scalar ‘<’ (less than) strict partial order binary endorelation and also the 

equivalence relation ‘=’ is defined. 

Let’s define a helper function #q<(a, b), which for vectors a and b defines two values 

(ga, la) = #q<(a, b), where ga, la ∈ ℕ0 and ga is equal to the cardinality of set Gab={ ai | bi 

< ai }, i=1..n; and la is equal to the cardinality of set Lab={ aj | aj < bj }, j=1..n. 

THESIS I.b - DEFINITION: 

For a minimisation problem vector a quality-dominates vector b, or briefly: a 

<q b if ga < la or in case of ga = la a quality-dominates vector b if ∑ (𝑎𝑖 − 𝑏𝑖)𝑖 <
∑ (𝑏𝑗 − 𝑎𝑗)𝑗 , where i is such that 𝑎𝑖 ∈ 𝐺𝑎𝑏 and j is such that 𝑎𝑗 ∈ 𝐿𝑎𝑏. 

We can define a measurement value for <q(a, b) as            

d<q(a, b) = {
𝑙𝑎 − g𝑎 ,   for g𝑎 < 𝑙𝑎

∑
(𝑏𝑗−𝑎𝑗)

𝑙𝑎
− ∑

(𝑎𝑖−𝑏𝑖)

g𝑎
,   for g𝑎 = 𝑙𝑎𝑖𝑗

, where i is such that 𝑎𝑖 ∈ 𝐺𝑎𝑏 and j is 

such that 𝑎𝑗 ∈ 𝐿𝑎𝑏. 

The defined dominance measurement is 0 for a = b and for cases when no clear 

dominance can be determined. Notice that for cases of 𝑔𝑎 = 𝑙𝑎 we have actually a more 

simple equivalent formula for d<q(a, b) = ∑
(𝑏𝑗−𝑎𝑗)

𝑙𝑎
− ∑

(𝑎𝑖−𝑏𝑖)

g𝑎
= ∑

(𝑏𝑘−𝑎𝑘)

𝑙𝑎
𝑘𝑖𝑗 , for 

k=1..n. 

Reflexivity 

To test the reflexivity property we observe <q(a, a), where we have (ga, la) = #q<(a, a). 

By the definition of <q we have ga = # Gaa=#{ ai | ai < ai } = 0 and la = # Laa = #{ ai | ai 

< ai } = 0, for i=1..n. Since ga = la = 0, and ∑ (𝑎𝑖 − 𝑎𝑖)𝑖 = 0 so we have ga ≮ la and 
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∑ (𝑏𝑖 − 𝑎𝑖)𝑖 ≯ 0, which by definition means that vector a does NOT quality-dominate 

itself. Thus we can conclude that the operator <q(a,b) is irreflexive. 

Symmetry 

To test the symmetry property we observe <q(a, b) and <q(b, a) for a ≠ b, where we 

have (ga, la) = #q<(a, b) and (gb, lb) = #q<(b, a). We can also define 𝑞𝑏 = ∑ (𝑏𝑖 − 𝑎𝑖),𝑖  

 𝑞𝑎 = ∑ (𝑏𝑗 − 𝑎𝑗)𝑗 , where i is such that 𝑎𝑖 ∈ 𝐺𝑎𝑏 and j is such that 𝑎𝑗 ∈ 𝐿𝑎𝑏. 

By the definition of <q(a,b) we observe two general cases: 

 for cases of ga < la we have simple quantity-dominance, for which I have already 

proven the antisymmetric property. 

 for cases of ga = la we have ∑ (𝑎𝑖 − 𝑏𝑖)𝑖 < ∑ (𝑏𝑗 − 𝑎𝑗)𝑗 , which is equivalent to 

𝑞𝑎 < 𝑞𝑏, that implies that 𝑞𝑏 ≮ 𝑞𝑎 and ∑ (𝑏𝑗 − 𝑎𝑗)𝑗 ≮ ∑ (𝑎𝑖 − 𝑏𝑖)𝑖 , so that ≮q(a,b).  

This means that b ≮n a when a <q b, thus we can conclude that the operator <q(a,b) is 

antisymmetric. 

Notice that based on the already proven irreflexive property we can relax the a ≠ b 

condition for the antisymmetric property.  

We can also introduce operator >q(b,a) for gb>lb, such that a <q b <=> b >q a, which has 

the same general properties as <q(a,b). 

Transitivity 

For testing the transitivity property we observe <q(a, b), <q(b, c) and <q(c, a), where we 

have (gab, lab) = #q>(a, b), (gbc, lbc) = #q>(b, c) and (gca, lca) = #q>(c, a), and 𝑞𝑎𝑏 =
∑ (𝑎𝑖 − 𝑏𝑖),𝑖  𝑞𝑏𝑎 = ∑ (𝑏𝑗 − 𝑎𝑗)𝑗 ,  𝑞𝑎𝑐 = ∑ (𝑎𝑖 − 𝑐𝑖),𝑖  𝑞𝑐𝑎 = ∑ (𝑐𝑗 − 𝑎𝑗),  𝑞𝑐𝑏 =𝑗

∑ (𝑐𝑖 − 𝑏𝑖),𝑖  𝑞𝑏𝑐 = ∑ (𝑏𝑗 − 𝑐𝑗)𝑗 , where 𝑎𝑖 ∈ 𝐺𝑎𝑏 and 𝑎𝑗 ∈ 𝐿𝑎𝑏, 𝑐𝑖 ∈ 𝐺𝑎𝑐 and 𝑐𝑗 ∈ 𝐿𝑎𝑐, 

𝑏𝑖 ∈ 𝐺𝑏𝑐 and 𝑏𝑗 ∈ 𝐿𝑏𝑐. This makes only sense for a ≠ b ≠ c. 

By the definition of <q(a, b), <q(b, c) and <q(c, a) we observe two general cases: 

 for cases of gab < lab and gbc < lbc, we have simple quantity-dominance, for 

which I have already proven the transitivity property. 

 for cases of gab = lab or gbc = lbc we need to analyse the less than ‘<’ relation 

between scalar values of  𝑞𝑥𝑦, where 𝑥, 𝑦 ∈ {𝑎, 𝑏, 𝑐}. By definition we have a well-

defined scalar ‘<’ (less than) strict partial order binary endorelation, which means that 

the transitivity property is fulfilled for all 𝑞𝑥𝑦. 

This means that <q(a, b) is also transitive. 

By this it is proven that the quality-dominance operator >q(a,b) (a >q b) is a 

strict partial order binary endorelation. 

2.2.1.3 Any–dominance Vector Comparison Method 

My idea behind the definition of any-dominance for GAs objective vector comparison is 

to define a comparison method, which uses the most detailed information on two 

objective vectors – both their quantity-dominance and the sum-dominance results. 
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Let’s define a dominance relation <a(a, b) (or briefly a <a b) between two vectors of n 

elements a = (ai) and b = (bi), for i=1..n, n ∈ ℕ+, where each i
th

 element type has a 

well-defined scalar ‘<’ (less than) strict partial order binary endorelation and also the 

equivalence relation ‘=’ is defined. 

THESIS I.c - DEFINITION: 

For a minimisation problem vector a any-dominates vector b, or briefly: a <a b 

if and only if (a <q b OR a <s b). 

We can define a measurement value for <a(a, b) as            

d<a(a, b) = 
𝑙𝑎−𝑔𝑎+ ∑ (𝑏𝑖𝑖 −𝑎𝑖)

2𝑛
, where i=1..n. 

This method is valid only if all scalar components ai and bi are in the same range 

(normalised to the closed interval of [0,1] for example). For GAs this normalisation can 

be simply achieved as we are investigating a finite number of objective vectors when 

determining the fitness of an individual in the population. 

2.2.1.4 Non-dominance Measurement Based Ranking 

Measurement based ranking in multi-objective GAs is a new possibility in rank 

assignment, which is made possible by the definition of measurements in my Thesis I.a, 

I.b, I.c. In analogy to MOGA – Block Type Non-dominance Ranking introduced in [23] 

we can calculate with all bi
t
 individuals, by which the observed vector is dominated; but 

instead of the pure number of such vectors, I’m proposing to sum up the measurements 

of being dominated. 

THESIS I.d - DEFINITION: 

At generation t the non-dominance measurement based rank of the i
th

 

individual ai
t
 in a GA population, which is dominated by bj

t
 individuals in the current 

population is the i
th

 individual current position; the individual’s rank can be defined as: 

 ranki(ai
t
) = sum of the non-dominated comparison measurements for every 

other bj
t
 individual of generation t in correlation to the i

th
 individual. 

rank(ai
t
) = ∑ 𝒅<∗(𝒃𝒋

𝒕, 𝒂𝒊
𝒕)𝑛

𝑗=1 , where ‘*’ can stand for any comparison method: 

{‘s’, ’P’, ’n’, ’q’ or ’a’}. 

2.2.1.5 Dominance Based Ranking 

In analogy to MOGA – Block Type Non-dominance Ranking introduced in [23] we can 

calculate with all bi
t
 individuals, but not those that dominate the observed vector, but 

with those, which are dominated by the observed vector. 

THESIS I.e - DEFINITION: 

At generation t the dominance based rank of the i
th

 individual ai
t
 in a GA 

population is the count of all bj
t
 individuals in the current population, which are 

dominated by ai
t
 is the i

th
 individual current position; the individual’s rank can be 

defined as: 

 ranki(ai
t
) = 1 + sum of the dominated bj

t
 individuals of generation t in 

correlation to the i
th

 individual. 
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rank(ai
t
) = 1+#Lab=1+#{ ai

t
 | ai

t
 <* bj

t
 }, where ‘*’ can stand for any comparison 

method: {‘s’, ’P’, ’n’, ’q’ or ’a’}. 

2.2.1.6 Dominance Measurement Based Ranking 

Similarly to non-dominance measurement based ranking we can sum up the 

measurements of dominance for each dominated bj
t
 individual in the current population 

t. 

THESIS I.f - DEFINITION: 

At generation t the dominance measurement based rank of the i
th

 individual ai
t
 

in a GA population, which dominates all bj
t
 individuals in the current population is the 

i
th

 individual current position, the individual’s rank can be defined as: 

 ranki(ai
t
) = sum of the dominated comparison measurements for every other 

bj
t
 individual of generation t in correlation to the i

th
 individual. 

rank(ai
t
) = ∑ 𝒅<∗(𝒂𝒊

𝒕, 𝒃𝒋
𝒕)𝑛

𝑗=1 , where ‘*’ can stand for any comparison method: 

{‘s’, ’P’, ’n’, ’q’ or ’a’}. 

2.2.2 Implementation of New Multi-objective Genetic Algorithms 

The first key question is the coding of the possible solutions to the problem, which will 

evolve through a number of generations. Fundamental schemata theory suggests that 

small alphabets are good, because they maximise the number of schema available for 

genetic processing, so binary coding is implemented [27]. In order to avoid Hamming 

cliffs Gray code is used. To set equal grounds to all methods the very same initial 

population of 25 random individuals is used for every GA of the same number of 

objectives. 

Low probability mutation is an important part of every GA, but to exclude its random 

possible improvement effect, I am not using any mutations for these experiments, where 

I want to concentrate only on effects of using different objective vector comparisons 

and ranking methods. 

As chromosomes are simply the concatenated bit strings of all the parameters with fixed 

position for every gene, high probability (0.8) simple two point crossover will ensure 

low disruptiveness and high rate of inheritance during the reproductive phase. 

Stochastic universal sampling having minimal spread and zero bias is used for selection 

with a rather low selection pressure. Continuous exploration of the search space is 

achieved along with consistent convergence by the combination of genetic operators in 

this manner. 
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There are 5 vector comparison methods implemented and tested in this paper: 

1. **PGA denotes the classical Pareto-comparison. 

2. **NGA denotes the new quantitative comparison. 

3. **QGA denotes the new quality comparison. 

4. **DGA denotes the classical sum difference comparison. 

5. **AGA denotes the result of (Q or D) comparison. 

where ** can be substituted by MO, MM, DO, DM and NS according to the used rank 

assignment cases, as presented in Table I. Summary of examined GA variations. 

There are 5 ranking methods tested in this paper: 

1. MO*GA denotes the “block-type” multi-objective non-dominance ranking 

method proposed in [23]. 

2. NS*GA denotes the “slice-type” multi-objective non-dominance ranking method 

proposed in [18]. 

3. MM*GA denotes my proposal of a simple scalar ranking of non-dominance 

measurement, which is made possible for multi objective vector comparisons by the 

definition of my Thesis I.d. 

4. DO*GA denotes my proposal of “block-type” multi-objective dominance ranking 

method by the definition of my Thesis I.e. 

5. DM*GA denotes my proposal of a simple scalar ranking of dominance 

measurement, which is made possible for multi objective vector comparisons by the 

definition of my Thesis I.f. 

where * can be substituted by P, N, Q, D and A according to the used comparison 

method as listed in Table I. Summary of examined GA variations. 

Table I below summarizes the nomenclature and types of tested GAs. 

GA-type Rank assignment Comparison method 

MO(P)GA [23] Block-type non-dominance Pareto 

MONGA Block-type non-dominance Quantity 

MOQGA Block-type non-dominance Quality 

MODGA Block-type non-dominance Sum Difference 

MOAGA Block-type non-dominance Quality or Sum Difference 

NS(P)GA [18] Slice-type non-dominance Pareto 

NSNGA Slice-type non-dominance Quantity 

NSQGA Slice-type non-dominance Quality 

NSDGA Slice-type non-dominance Sum Difference 

NSAGA Slice-type non-dominance Quality or Sum Difference 

MMPGA Measurement-based non-dominance Pareto 

MMNGA Measurement-based non-dominance Quantity 

MMQGA Measurement-based non-dominance Quality 

MMDGA Measurement-based non-dominance Sum Difference 

MMAGA Measurement-based non-dominance Quality or Sum Difference 

 Continued on the next page  
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GA-type Rank assignment Comparison method 

DOPGA Block-type dominance Pareto 

DONGA Block-type dominance Quantity 

DOQGA Block-type dominance Quality 

DODGA Block-type dominance Sum Difference 

DOAGA Block-type dominance Quality or Sum Difference 

DMPGA Measurement-based dominance Pareto 

DMNGA Measurement-based dominance Quantity 

DMQGA Measurement-based dominance Quality 

DMDGA Measurement-based dominance Sum Difference 

DMAGA Measurement-based dominance Quality or Sum Difference 

Table I. Summary of examined GA variations. 

There were 6 minimisation problems previously described as equations (15)-(20) for 2 

objectives. Also six of each of 4, 8, and 16 objective minimisation problems were 

constructed as described in (21), every one of these six multi-objective problems 

corresponds to one specific type of problems described in (34-39). To have a clear, 

familiar simple baseline I have also included a simple single objective problem, where 

the goal is to minimise the sum of parameters; I have used 4 such sets with the same 

number of parameters as the 2, 4, 8, and 16 objectives problems have; so the baseline 

goal is to minimises the sum of 42, 84, 168 and 336 parameters. 

Each GA was tested 25 times on each test function; the total of 17500 GA runs was 

executed, and the average of these results is used for the result evaluation. The number 

of generations was limited to the maximum of 50, but a GA run could have stopped 

earlier, when saturation has occurred. The condition for saturation was a lower than 

0.1% relative change of the mean value of all objective values over the entire 

population. 

2.2.3 Results of Multi-objective Genetic Algorithm Evaluations 

First of all I would like to point out the well-known disadvantage of the NS ranking 

method [18] – its computation complexity is O(N
3
). The computation complexity of the 

MO ranking [23], and all my proposed rankings MM, DO and DM is O(N
2
). To have a 

feel of what it means in this particular set of experiments, notice that when an MO, 

MM, DO or DM evaluation of a population takes 0.5 seconds, then the same evaluation 

for NS takes 3.5 seconds. For this particular setup of 25 individuals this is not a real 

problem, but for a population of 1000 individuals, the 7 seconds of O(N
2
) genetic 

operator evaluations turns into half an hour of NS O(N
3
) nightmare for each generation. 

Results in Tables II-V below are the averages of 17500 experiments performed for all 

the six types of GA hard functions (34-39) and the simple single objective function. The 

same round is performed for all 2, 4, 8 and 16 objectives problems. 

2.2.3.1 Results of Vector Comparison Method Analysis 

Table II below presents the results for each tested vector comparison method – named 

in the first column: P as proposed in [54], A (Thesis I.c), D the classical average of 

weighted sum method, N (Thesis I.a), Q (Thesis I.b). The second column is for the 

number of generations required to find the final result. The third column presents the 

percentage of non-dominated individuals in the final generation. The fifth column 

contains the average distance of each free parameter of each individual in the final 

generation. The fifth column contains average of the non-dominated (minimal) 
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distances of each free parameter of each non-dominated individual in the final 

generation. 

Comparison 

method 

Average of 

evaluated 

generations 

Average of  

non-dominated 

individuals% 

Average of 

Pareto-front 

mean distance 

Average of 

Pareto-front 

minimal distance 

P 17.3 75.47 0.414 0.0064 

A 14.5 85.89 0.393 0.0066 

D 14.5 86.02 0.395 0.0068 

N 16.8 78.69 0.398 0.0065 

Q 15.1 81.39 0.398 0.0065 

Table II. Performance of vector comparison methods. 

All GAs, no matter which vector comparison method is used, efficiently find the 

proximity of the true Pareto-front. Precision wise we can conclude that all tested vector 

comparison methods, the two classical (P and D) and my three new proposals (A, N and 

Q) are in average equally precise when it comes to locating the true Pareto-front. 

By looking at the number of generations required to find the result we can conclude that 

all my proposed new vector comparison methods (A, N, Q) outperform the Pareto 

comparison by 20%. 

By looking at the percentage of non-dominated individuals in the final generation we 

can again conclude that all my proposed new vector comparison methods (A, N, Q) 

outperform the Pareto comparison by 5-15%. 

By this analysis I conclude that my Thesis I.a, I.b and I.c are proven valid. 

2.2.3.2 Results of Ranking Method Analysis 

Table III below presents the results for each tested ranking method named in the first 

column: DM (Thesis I.f), DO (Thesis I.e), MM (Thesis I.d), MO as proposed in [23], 

NS as proposed in [18]. The other columns contain the same categories as Table II. 

Ranking 

method 

Average of 

evaluated 

generations 

Average of  

non-dominated 

individuals% 

Average of 

Pareto-front 

mean distance 

Average of 

Pareto-front 

minimal distance 

DM 14.4 86.26 0.400 0.0067 

DO 14.3 84.76 0.399 0.0066 

MM 17.1 76.66 0.401 0.0068 

MO 16.3 80.12 0.398 0.0066 

NS 16.1 79.67 0.400 0.0062 

Table III. Performance of ranking methods. 

All GAs, no matter which ranking method is used, efficiently find the proximity of the 

true Pareto-front. For all non-dominated individuals having some 0.0065 for the average 

value of minimal distances from the Pareto front means that in average each of the 150 

free parameters (40, 80, 160 and 320 free parameters for 2, 4, 8, and 16 objectives 

problems) arrives no further than 0.00005 (5e-05) to the theoretical optimum. This is 

quite a good result for a GA as small as 25 individuals running for 15 generations 

(which takes in average 8 seconds) – especially if we keep in mind that these 

optimisation problems are mathematically constructed to be hard to evaluate for GAs. 



50 

Looking at the population average distances from the Pareto front we see no significant 

differences between any of the ranking methods. 

Precision wise we can conclude that all tested ranking methods, the two classical (MO 

and NS) and my three new proposals (MM, DO and DM) are in average equally precise 

when it comes to locating the true Pareto-front. 

The number of generations required to find the result is the measurement of the 

performance of a GA. Obviously the dominance based ranking methods: DO (Thesis 

I.e) and DM (Thesis I.f) outperform the other ranking methods by 20%. 

The measurement of efficiency of a GA is how many individuals of the final generation 

are non-dominated. The dominance based ranking methods: DO (Thesis I.e) and DM 

(Thesis I.f) outperform the other ranking methods by 5-10%. 

By this analysis I conclude that my Thesis I.e and I.f are proven valid, while my 

Thesis I.d is not sufficiently supported by these results. 

2.2.3.3 Results of Multi-objective Genetic Algorithms Analysis 

Table IV below presents the results for each tested multi-objective GA named in the 

first two columns: first column naming the vector comparison method the second 

column naming the ranking method. The other columns contain the same categories as 

Table II and III. 

Compar. 

method 

Ranking 

method 

Average of 

evaluated 

generations 

Average of  

non-dominated 

individuals% 

Average of 

Pareto-front 

mean distance 

Average of 

Pareto-front 

minimal 

distance 

P DM 14.1 85.57 0.415 0.0065 

P DO 14.1 85.99 0.414 0.0066 

P MM 19.7 69.75 0.414 0.0063 

P MO 19.2 68.15 0.413 0.0063 

P NS 19.6 67.90 0.415 0.0064 

A DM 14.5 86.59 0.392 0.0070 

A DO 14.5 86.29 0.393 0.0071 

A MM 14.6 84.32 0.392 0.0068 

A MO 14.6 87.82 0.393 0.0066 

A NS 14.3 84.43 0.397 0.0057 

D DM 14.5 87.01 0.394 0.0070 

D DO 14.4 85.53 0.394 0.0065 

D MM 14.5 85.54 0.395 0.0065 

D MO 14.5 85.30 0.394 0.0073 

D NS 14.5 86.73 0.397 0.0066 

N DM 14.3 84.91 0.404 0.0063 

N DO 14.1 82.11 0.402 0.0060 

N MM 19.0 75.55 0.397 0.0075 

N MO 18.8 75.54 0.395 0.0063 

N NS 17.8 75.33 0.395 0.0065 

  Continued on the next page  
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Compari

son 

method 

Ranking 

method 

Average of 

evaluated 

generations 

Average of  

non-dominated 

individuals% 

Average of 

Pareto-front 

mean distance 

Average of 

Pareto-front 

minimal 

distance 

Q DM 14.6 87.21 0.395 0.0066 

Q DO 14.5 83.87 0.394 0.0068 

Q MM 17.9 68.13 0.408 0.0068 

Q MO 14.4 83.79 0.395 0.0066 

Q NS 14.2 83.98 0.396 0.0057 
      

 min 14.1 67.90 0.392 0.0057 

 max 19.7 87.82 0.415 0.0075 

 average 15.6 81.49 0.400 0.0066 

 stdev 2.0 6.63 0.008 0.0004 

Table IV. Performance of multi-objective GAs. 

The last four rows of table IV present the minimum, maximum, average values and 

standard deviation of numerical values in columns 3 to 6. Highlighted with bold-italic 

typeset is the average and better than average values, highlighted with underlined bold 

typeset are the (almost) non-dominated values. Plain underlined typeset highlights some 

combinations I will refer to in my summary below. 

It is not possible to name a single, Pareto optimal multi-objective GA. If ones goal is to 

reach the best solutions in a small population or in cases where the evaluation of an 

individual is numerically intensive, so the O(N
3
) cost of NS ranking is not a big 

handicap, then one may go with this type of ranking, but my proposal is to use instead 

of the usual Pareto comparison either my quality based comparison (Thesis I.b) or even 

better the “any of quality or sum difference” comparison method (Thesis I.c) – these 

two GAs are highlighted with underlined italic typeset. On the other hand for hybrid 

GAs, where the final fine tuning of individuals is anyhow for a more efficient gradient-

descent method my proposal is to use either the DO (Thesis I.e) or DM (Thesis I.f) 

ranking method, since they are the most efficient ones; my preference is quantity based 

comparison (N - Thesis I.a) and dominance ranking (DO – Thesis I.e) GA. 

There are numerous publications referring to and some fewer even proving or 

presenting that the simple weighted average based ‘sum of fitness’ evaluation of a true 

multi-objective problem, especially for the non-convex cases is not to be used as it does 

not find all the possible solutions [13, 18, 19, 20, 23, 24, 47, 53, 79]. These studies omit 

to calculate with the effect of fitness sharing (or niching) in GAs. Please take a look at 

Figures 21-23 and table VI below. These results are for a non-convex (CO) objective 

function as in equation (18) for  = 2, which was presented in Figure 9 of chapter 

2.1.6.4. 

The ‘D’ - simple “sum of objective value differences” comparison method, equivalent 

to the weighted average objective value with unit weights, actually outperforms the 

Pareto comparison in all observed criteria. GAs using the ‘D’ based ranking methods 

outperform the ‘P’ based GAs in number of performance (number of generations 

needed for the final result 14.7 vs. 16.5), efficiency (88.44% vs. 75.8% of the final 

population is non-dominated) and precision (3.6e-3 vs. 3.9e-3 for the minimal distance 

from the true Pareto optimum) as presented in Table V.  
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non-convex 

objective: 

Comparison 

method 

Average of 

evaluated 

generations 

Average of  

non-dominated 

individuals% 

Average of 

Pareto-front 

mean distance 

Average of 

Pareto-front 

minimal distance 

P 16.5 75.80 0.390 0.0039 

A 14.7 90.57 0.359 0.0039 

D 14.7 88.44 0.360 0.0036 

N 15.1 86.45 0.367 0.0036 

Q 15.2 85.58 0.362 0.0038 

Table V. Performance of vector comparison methods for the non-convex (CO) objective 

function (18) for  = 2. 

By looking at Figure 12 we see no issues with the actual distribution of the non-

dominated individuals (as single dominated individual is lost in the ‘upper left corner’) 

all non-dominated solutions are neatly aligned along the true Pareto-front; both ends of 

the concave domain are represented. 

Figure 12. 

CO objective values of the final generation D.DO.GA. 
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By looking at Figure 13 we see a textbook example of a fast, exponential GA 

convergence. 

Figure 13. 

Evolution, convergence of mean objective values D.DO.GA for CO objectives. 

Figure 14 presents a neat dynamics in the evolution of the number of non-dominated 

individuals expressed as their relative percentage compared to the complete population 

size. 

 

Figure 14. 

Evolution, convergence of non-dominated solutions D.DO.GA for CO objectives. 
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Figure 15 presents an exponential dynamics in the saturation of individuals (in the non-

dominated niche – the proximity of the true Pareto-front), expressed as the relative 

percentage of individuals in the final (non-dominated) niche compared to the complete 

population size. 
 

Figure 15. 

Evolution, convergence of niche saturation around non-dominated solutions D.DO.GA 

for CO objectives. 
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3 UNIVERSAL FUNCTION APPROXIMATION BY 

FUZZY SYSTEMS 

3.1 Literature Synopsis 

Mathematical model design of complex real systems is a must for many scientific and 

engineering tasks. The so-called black-box common approach to modelling uses 

exclusively numerical system input-output data pairs for the construction of the 

mathematical model. Grey-box modelling incorporates some expert knowledge into the 

model structure used for identification of the system. Fuzzy modelling can only be 

conducted as black-box modelling when all the knowledge of the system is mere input-

output data, however when expert knowledge is also available, it should be used – fuzzy 

grey-box modelling is a preferable choice [70]. 

Expert knowledge is valuable in the initial stage but system adaptability, automatic fine-

tuning of the human provided knowledge in the context of other automatically derived 

rules is a tough but necessary challenge to cope with a continuously changing system 

environment. Preserving linguistic value natural meaning and ordering of membership 

function defining variables imposes numerous hard constraints on the parameters that 

are used for forming the membership functions associated with a linguistic value. 

Without constraints the readability and common sense interpretability of the model is 

lost as linguistic value low must precede medium which comes before large even after 

automatic fine tuning [76]. 

There are many applications when the completeness of the model is required; we must 

ensure that the model output corresponds to the real system output for any real input 

signal. Forming fuzzy partitions is also important in numerous applications where 

certain properties of the fuzzy logic system have to be ensured [30]. The necessity of 

uniformly covering the complete input space and having for every antecedent a rule 

consequent derived from the provided input-output data establishes another set of 

constraints on the set of membership function defining parameters. Forming fuzzy-

partitions by antecedent membership functions ensures that there cannot be a numerical 

input within the defined input range that will not result in firing at least one rule 

consequent of the fuzzy model. Keeping the specific properties of fuzzy-partitions (that 

will be described in the next chapter) imposes another set of hard constraint on the 

parameters of membership functions. 

This paper will present a novel method for fuzzy identification based on a new simple 

method for representing all the nonlinear parameters and unconstrained tuning of fuzzy 

systems that for rule antecedents have Zadeh-type membership functions forming fuzzy 

partitions. The method is also capable of dynamically defining and changing the fuzzy 

system complexity by discarding unnecessary membership functions and corresponding 

rules. The method is validated on well-studied, widely used proven benchmark systems 

used for measuring the performance of fuzzy modelling. 

3.1.1 Fuzzy System Modelling by Zadeh-formed Membership Functions 

The identification method to be proposed is applicable to any type of fuzzy logic 

systems (FLSs) that use Zadeh-formed membership functions (MFs). For example let us 

consider Takagi-Sugeno-Kang (TSK) type FLSs having n inputs and 1 output. These 

FLSs can be formulated as: 

𝑓(𝒙) = ∑ 𝜔𝑙(𝒙) ∙ 𝑦𝑙(𝒙)𝑀
𝑙=1 /∑ 𝜔𝑙(𝒙)𝑀

𝑙=1           (22) 
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where: M is the number of Rules, x is the vector of n input variables, yl is a scalar 

function of n input variables, and y is most commonly either a constant for Wang type 

FLSs or a linear function of inputs for the first order TSKs. Thus yl is defined by one or 

(n + 1) parameters respectively. 

The antecedent, the premise part of a fuzzy rule is: 

𝜔𝑙(𝒙) = ∏ 𝜇𝐹𝑙(𝑖)(𝑥𝑖)
𝑛
𝑖=1             (23) 

where: )(
)( iilF x  is the membership function of the i

th
 input variable in the l

th
 rule that 

defines the linguistic value Fl(i).  

The linguistic form of the l
th

 rule from the previously described first order TSK FLS is 

[76]: 

IF (x1 is F l(1)) and (x2 is F l(2)) and (xn is F l(n)) THEN )0(

1

)( l

n

j

jjll cxcy 


,  (24) 

In the focus of this paper are Zadeh-formed MFs. They are the second order polynomial 

Z-, the S-, and the 𝜋-functions (named after their shape) defined respectively as: 
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,       (25) 

where: 
4321 bbbb   are the parameters defining the MFs.  

When there is more than one value x such that the degree of membership of x is equal to 

one, the interval where the 𝜇𝑘(𝑥, 𝑏) = 1 (the interval [b2, b3] for 𝑚𝑓𝜋 type 𝜇𝑘) is called 

the plateau of the 𝜇𝑘 MF. 

When having for example three naturally ordered linguistic values l ∈ {a, b, c} (for 

example a = ‘low’, b = ‘medium’, c = ‘large’) constraints on bi parameters to preserve 

this ordering are: 

444

323232
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ccbbaa
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bbb
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.           (26) 
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3.1.2 Fuzzy Partitions 

When a linguistic variable can be assigned K different linguistic values, each described 

by a MF 𝜇𝑘(𝑥, 𝑏) such that for every input x it holds that ∑ 𝜇𝐾
𝑘=1 𝑘

(𝑥, 𝑏) = 1, the MFs 

are said to form a fuzzy-partition. 

By imposing these restrictions on all linguistic variables of the FLS and additionally 

assuming that the rule base is complete in the sense that it covers the whole input 

domain, it immediately follows that the TSK model structure (22) simplifies to [30]: 

𝑓(𝒙) = ∑ 𝜔𝑙(𝒙, 𝒃) ∙ 𝑦𝑙(𝒙, 𝒄)𝑀
𝑙=1 .           (27) 

Automatic fine tuning all the bi parameters of a TSK FLS that satisfies all of the above 

constraints is a significant problem. The search space is large and usually deceptive, so 

global stochastic optimisation processes are needed like GAs. FLSs evolved by GAs are 

called Genetic Fuzzy Systems (GFSs). 

As GAs are not efficient in finding the exact optimum, the application of gradient 

decent methods is required as post processing the GA results. 

By my Hypothesis II this paper will propose and present the validity of a novel method 

that will simplify the bi parameter optimisation of fuzzy systems like equation (27), 

while preserving all the required constraints and properties as described above. All 

linear ci parameters of equation (24) will be determined by a singular value 

decomposition (SVD) based robust least squares (LS) method. 

3.1.3 Validating Quality of Genetic Fuzzy System Function Approximation 

Function identification results on the below listed benchmark systems achieved by the 

proposed method are compared to the basic nearest neighbourhood clustering method 

(NNC), the table look-up method (TAB) and the adaptive-network-based fuzzy 

inference systems method (ANFIS) that are described in [31]. Further on results 

achieved by various other methods from the literature are also cited for comparison. 

3.1.3.1 Chaotic Time Series of Mackey and Glass 

The Mackey-Glass chaotic time series is a well-known identification benchmark 

system. The delay-differential equation used is: 

 �̇�(𝑡) =
𝑎𝑥(𝑡−𝑑)

1+𝑥𝑐(𝑡−𝑑)
− 𝑏𝑥(𝑡)            (28) 

The benchmark set is generated using the parameters a = 0.2, b = 0.1, c = 10, d = 17 and 

x(t<0) = 0.8. The selection of d = 17 results in a quasi-periodic series with a 

characteristic period Tc   50 [30]. The equation is integrated up to t = 5500, with points 

from t = 200 to t = 3200 used for training and points from t = 5000 to t = 5500 used for 

testing as in Figure 16. 
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Figure 16. 

The Mackey-Glass chaotic time series. 

Since the Mackey-Glass time series is chaotic, it is difficult to predict for values of T 

greater than its characteristic period Tc of approximately 50. In the literature a number 

of different prediction points have been tried: T   {1, 6, 84}. For approaches that use as 

input a time window of past values it is common to use the four delays t, t-6, t-12 and t-

18 [36]. 

3.1.3.2 Gas Furnace Model of Box and Jenkins 

The Gas Furnace model is the so-called J data series from the well-known Box-Jenkins 

identification benchmark data set [6]. Using a time-discrete formulation, the dynamics 

of the system is represented by the relationship: 

𝑦(𝑡 + 1) = 𝑓(𝑢(𝑡 − 2), 𝑦(𝑡)),            (29) 

where y(t) and the corresponding u(t) values are provided as 296 input-output data pairs 

as a benchmark data set [30] as in Figure 17. 

The complete, correct Box-Jenkins gas furnace system input-output benchmark data set 

is listed in Appendix I. Because of the very limited sample data set size the complete set 

is used for training and testing as well. 
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Figure 17. 

The furnace model of Box and Jenkins. 

3.1.3.3 Generalised Rastrigin Function 

The generalised Rastrigin function is a strongly multi-modal function of two inputs: 

𝑦(𝑥, 𝑧) = 𝑥2 + 𝑧2 − cos(18𝑥) − cos (18𝑧).          (30) 

Figure 18. 

The generalised Rastrigin function training data set. 



60 

A set of 1681 (x, z) input vectors have been generated by taking 41 uniformly 

distributed values from the closed interval [-1, 1] as in Figure 18. The test series is a 

randomly formed set of 168 input vectors from the same range [30]. 

3.2 New Scientific Achievements 

A new method for representing Zadeh-type fuzzy partitions for efficient unconstrained 

function identification is introduced in my publication [s3]. In my second thesis for the 

nonlinear membership parameters of fuzzy partitions I introduce a simple, minimal 

number of parameters, such that standard unconstrained tuning is made possible without 

a loss of linguistic meaning, as in MF ordering. 

3.2.1 New Minimalistic Parametrisation of Zadeh-type Fuzzy Partitions for 

Function Identification by Unconstrained Tuning 

As described in [s3] the nature of Zadeh-formed MFs is such that simply making equal 

the last two parameters of the preceding MF to the first two parameters of the 

succeeding MF we easily form fuzzy partitions. This way a fuzzy partition of K MFs is 

defined by 2(K-1)+1parameters. Let our input space be normalised (xmin=0 and xmax=1). 

If we do not want to allow any plateaux, parameter b2 must be equal to b3 in (25), thus 

the number of parameters for a fuzzy partition consisting of K pieces of Zadeh-type 

MFs is further reduced to the minimum of (K-1). 

If we take into consideration all of the constraints (26) we end up with a series of 

strictly ordered parameters:  

b1<b2<…<bK-1.              (31) 

Let us add two more constraints, which are possible as the input space is normalised:  

0<b1 and bK-1<1.              (32) 

Let us define the first MF to be: 

),0,( 1bxmfz ,              (33) 

and the K
th

, the last one, to be: 

)1,,( 1Kbxmfs .             (34) 

Let us define the general intermediate k
th

 MF to be: 

),,,,( 11  kkkk bbbbxmf              (35) 

for k = 2, …,(K-1). This way the ordered series of (K-1) parameters (31) together with 

border conditions (32) are the minimal number of parameters to define a fuzzy-partition 

of Zadeh-formed MFs, which can represent any such partition. 

This minimal number of nonlinear parameters is a very important issue for optimisation 

as over parameterised systems are hard to optimise. The only problem now remains to 

be that when we are tuning these interdependent bk nonlinear parameters of a FLS 

having an n dimensional input space, we must comply with  

n

i iK
1

pieces of hard 

constraints. Although there are a number of constrained optimisation methods it is 

obvious that an unconstrained optimisation method would be more efficient. My 

proposal is to represent the bk parameters in a different manner. 
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THESIS II - DEFINITION: 

For a minimal independent parametrisation of Zadeh-type MF based fuzzy 

partitions, that can be optimised without any constraints, let us consider K pieces of 

rational, positive or zero parameters as: 

KRa ...,,1,0    .             (36) 

Let us form the bk nonlinear parameters of Zadeh-type MFs forming fuzzy-

partitions for a FLS as: 

 


Kk

j jk aab
11   ,            (37) 

then for every k = 1, …, K all the constraints (31) and (32) are automatically fulfilled for 

every 𝑏𝑘 from (37) without any further restrictions on 𝑎𝜅. 

Notice that for cases when an 
a  = 0 we obtain 𝑏𝑘 = 0, thus the fuzzy partition is 

reduced by one MF. In cases when there is only a single 
a  > 0 the fuzzy system 

degrades to a simple linear equation. And finally in the case where all 
a  = 0 the fuzzy 

partition degrades to a constant, and the fuzzy system becomes indifferent to that input 

channel; it becomes independent of the corresponding input variable. 

These 𝑎𝜅 parameters can be fine-tuned with any gradient descent based method; also the 

Jacobian of the FLS can be calculated with regards to 𝑎𝜅 for advanced nonlinear least 

squares data fitting methods. 

Further, an ANFIS like optimisation of all FLS parameters (linear least square (LS) for 

consequent and gradient based optimisation for antecedent parameters) can be directly 

applied to tune all the 𝑎𝜅 parameters of the FLS. Only a little bit of extra preliminary 

symbolic derivation is required – we must in addition to the usual derivatives evaluate 

abk  and chain it to 
kbe  in the well-known 

kb  equation (38) to acquire the 

amount of modification of the 𝑎𝑘 parameter from the identification error e [31]. 

2)(/  
k kkk bebeb

           (38) 

3.2.2 Implementation of the New Genetic Fuzzy System Parametrisation 

The proposed fuzzy-partition representation has been incorporated into a multi-

objective genetic algorithm. One chromosome consists of the number of MFs for every 

input and the corresponding parameters as in equation (36) for every possible MF 

partition of each input. The population size is then times the number of parameters, for 

parameter coding I am using binary Grey-coded chromosomes. Chromosomes are 

subjects to a DONGA (N.DO) multi-objective genetic algorithm from Table I (Table 

IV), described in chapter 2.2.2. 

The objective functions I have used are: 

- maxE: the maximum absolute error of the identification,  

- MSE: the mean squared error of the identification,  

- RuleN: the number of used fuzzy rules for the identification divided by the 

maximum possible number of rules for the selected design 
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- RankW: that is calculated from the matrix rank of 𝑾(𝒙, 𝒃), the FLS identification 

linear equation of consequents 𝒄, based on equation (27) as: 

𝑓(𝒙) = ∑ 𝜔𝑘(𝒙, 𝒃𝒌) ∙ 𝑦𝑘(𝒙, 𝒄𝒌)
𝑀
𝑘=1 = ∑ 𝜔𝑘(𝒙, 𝒃𝒌) ∙ (∑ 𝑐𝑘,𝑗 ∙ 𝑥𝑗 + 𝑐𝑘,0

𝑛
𝑗=1 )𝑀

𝑘=1 =

 𝑾(𝒙, 𝒃) ∙ 𝒄, which is normed to the theoretically maximal possible rank of the 

same FLS structure. 

Based on the transformation of equation (27) to the 𝑓(𝑥) =  𝑊(𝑥, 𝑏) ∙ 𝑐 format, we split 

the identification into 2 problems. One nonlinear problem of finding the 

optimal 𝑊(𝑥, 𝑏), which is defined as a function of system input 𝑥 and the nonlinear MF 

𝑏𝑘 parameters of equation (25) – my Thesis II is the proposed simple solution to this 

problem by transforming 𝑎𝜅 to 𝑏𝑘, after which any nonlinear unconstrained optimisation 

can be applied to 𝑎𝜅 parameters. The second part of the problem is a simple linear 

equation issue, which is best solved by the SVD decomposition method as: 𝑐 =
𝑉𝑆−1𝑈𝑇 ∙ 𝑊(𝑥, 𝑎𝜅) for the SVD decomposition of 𝑊(𝑥, 𝑎𝜅) = 𝑈𝑆𝑉𝑇. 

For the applied GA chromosomes are evaluated through the following eight steps: 

1. Ki the number of MFs for each of the n inputs is decoded from the chromosome. 

2. 
a  parameters are decoded from the chromosome. 

3. All required parameters of Zadeh-formed MFs of equation (25) that form fuzzy 

partitions are calculated as proposed in (37). 

4. All possible antecedents are formed from the MFs and their numerical values are 

evaluated as in equation (23). 

5. Corresponding fuzzy rule consequent parts yl(x) for all numerical inputs are 

evaluated by a singular value decomposition (SVD) based LS method from equation 

(27). 

6. Parameters from Step 2. are further optimised by a simple gradient decent based 

method for no more than  

n

i iK
1

steps, where n is the dimension of the input space and 

Ki is the number of used MFs. For every iteration Step 4. is repeated. 

7. The resultant fuzzy system is evaluated. 

8. The maxE, MSE, RuleN/maxRuleN, RankW/maxRankW of the identification is 

calculated, where maxRuleN = ∏ 𝐾𝑖
𝑛
𝑖=1 , and maxRankW = maxRuleN∙(n+1). 

To increase the efficiency of the GA, the chromosome defining a fuzzy system is 

updated with its optimised MF parameter values after each evaluation. 

3.2.3 Results of the New Function Identification with the New Genetic Fuzzy 

System Parametrisation 

Results of benchmark system identifications are presented in Tables VI-X. In the first 

column of every table the identification method is named. The second column points 

out the complexity of the identified model – the number of rules for FLSs. Identification 

mean square error (MSE) values of test samples are in the third column. The fourth 

column presents the processing effort, the time duration of completing a process (for a 

current mid-level PC one tick corresponds to one second). 

My proposed identification based on Thesis II can be used in multiple schemas. It can 

be used for a fast and efficient direct fuzzy identification, where uniform fuzzy 
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partitions (𝑎𝜅 = 1, ∀𝜅) are used, and only the linear parameters ck of the FLS equation 

(27) are calculated by the SVD method – such results are presented in rows named 

“LinLSzFLS”. These uniform fuzzy partitions can be further subject to gradient descent 

based nonlinear optimisation, where the uniform 𝑎𝜅 parameters are locally optimised – 

such results are presented in rows named “NonlinLSzFLS”. Further on the non-linear 

𝑎𝜅 parameters of fuzzy partitions can be pre-optimised by GA – such results are 

presented in rows named “GAzFLS”; results of GA optimisation are the average values 

of 10 runs. 

Each method can be used for different number of MFs – the number of MFs is marked 

in brackets after the name of the identification method. Notice that not all possible MF 

combinations have to be used for fuzzy rules of the system – there can be incomplete 

systems, where certain rules are omitted, thus the number of rules can less than the 

product of MFs. Notice that such incomplete rule bases can be acceptable for simple 

data fitting, but in case of control engineering this means incompletes of the training 

data, thus there can be no uniform precision guaranty for the identified system model – 

as the model response is not defined for untrained input space areas. The nearest 

neighbourhood clustering, the table lookup and the ANFIS method I took from the 

standard Matlab2015 Fuzzy toolbox implementation; the other reference numbers are 

from literature. 

Method Number of rules MSE of test data Effort [tics] 

LinLSzFLS (3 MFs) 81 8.6503e-8 4.5569e-1 

NonlinLSzFLS (3 MFs) 81 5.4159e-8 2.8114e+1 

GAzFLS (3 MFs) 

Average of 10 runs 

76 2.8242e-8 8.8100e+2 

GAzFLS (4 MFs) 

Best of 10 runs 

152 2.6197e-7 3.758e+3 

NNC 67 1.3464e-3 8.1477 

TAB 301 9.6185e-5 6.2069 

ANFIS 199 2.2074e-8 5.508e+3 

Linear Predictor [26] na 3.27e-2 - 

MLP [26] 25 1.02e-2 - 

Table VI. Mackey-Glass chaotic time series, equation (28) – predicting y(t+1) 

Method Number of rules MSE of test data Effort [tics] 

LinLSzFLS (3 MFs) 81 1.4304e-6 5.1010e-1 

NonlinLSzFLS (3 MFs) 81 1.1090e-6 2.8381e+1 

GAzFLS (3 MFs)  

Average of 10 runs 

74 5.1280e-7 1.2020e+3 

GAzFLS (4 MFs)  

Best of 10 runs 

174 5.3702e-7 3.822e+3 

NNC 67 2.3841e-3 8.1092 

TAB 301 3.155.e-4 6.3051 

ANFIS 214 2.1694e-7 6.207e+3 

Linear Predictor [26] - 7.17e-1 - 

MLP [26] 25 5.11e-2 - 

DCS-LLM [26] 200x200 5.50e-3 - 

BGALR [26] 150 2.37e-1 - 

SOM [26] 35x35 4.80e-3 - 

Table VII. Mackey-Glass chaotic time series, equation (28) – predicting y(t+6). 
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Method Number of rules MSE of test data Effort [tics] 

LinLSzFLS (3 MFs) 81 1.8246e-4 4.5911e-1 

NonlinLSzFLS (3 MFs) 81 1.3383e-4 5.6149e+1 

GAzFLS (3 MFs)  

Average of 10 runs 

73 7.9297e-5 1.2130e+3 

GAzFLS (4 MFs)  

Best of 10 runs 

149 1.1172e-4 2.767e+3 

NNC 67 1.1107e-2 8.4509 

TAB 301 3.289e-3 6.3102 

ANFIS 241 1.3625e-6 7.745e+3 

Linear Predictor [26] - 1.5035 - 

MLP [26] 25 4.60e-1 - 

DCS-LLM [26] 200x200 3.00e-2 - 

BGALR [26] 150 2.64e-1 - 

SOM [26] 35x35 2.20e-2 - 

Table VIII. Mackey-Glass chaotic time series, equation (28) – predicting y(t+84). 

Method Number of rules MSE of test data Effort [tics] 

LinLSzFLS (3 MFs) 9 1.3212e-1 1.1693e-1 

NonlinLSzFLS (3 MFs) 9 1.2818e-1 1.0157 

GAzFLS (7 MFs)  

Average of 10 runs 

37 8.5986e-2 1.0e+2 

NNC 36 7.6222e-1 6.0726e-1 

TAB 52 2.5163e-1 1.5032e-1 

ANFIS 38 4.5166e-1 6.0334 

Box&Jenkins [30] na 7.10e-1 - 

Yoshinari, 

Pedrycz&Hirota [30] 

na 2.99e-1 - 

Lee, Hwang&Shih [30] na 2.11e-1 - 

Wang&Langri [30] na 6.6e-2 - 

Nakoula [30] na 1.75e-1 - 

Table IX. The furnace model of Box and Jenkins, equation (29) – system modelling. 

Method Number of rules MSE of test data Effort [tics] 

LinLSzFLS (9 MFs) 81 5.964e-4 2.9100e-1 

NonlinLSzFLS (9 MFs) 80 7.469e-4 2.0366e+1 

GAzFLS (9 MFs)  

Average of 10 runs 

81 8.5168e-4 1.006e+2 

NNC 99 4.7453e-1 3.8081 

TAB 100 5.7492e-1 9.2975e-1 

ANFIS 464 8.6129e-6 6.592e+3 

GFIM [30] 253 2.102e-1 - 

GFIM [30] 73 1.1183 - 

Table X. The generalised Rastrigin function, equation (30) – function approximation. 

The ANFIS method produces exceptionally precise approximations with large number 

of rules, and requires a significant computation effort (for a current mid-level i5 CPU 

based PC 7200 ticks corresponds to 2 hours of computation). The drawback of this 

method is that each consecutive fine tuning also requires similar significant 
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computational effort, thus real-time adaptability of ANFIS based systems can not 

directly be performed. 

The newly proposed ‘LinLSzFLS’ method provides exceptionally fast results, while the 

identification precision is already very good, second only to ANFIS and my other two 

proposed fuzzy identification methods, the ‘NonlinLSzFLS’ and the ‘GAzFLS’, albeit 

all these more precise methods are significantly more time consuming, up to 10 000 

times slower. 

The performance of getting good results within half a second on a current mid-level PC 

the newly proposed ‘LinLSzFLS’ method provides a feasible update strategy even for 

real time applications. 

The newly proposed ‘NonlinLSzFLS’ method is a gradient descent extension of the 

‘LinLSzFLS’, as such it is some 100 times slower, while it results in less than 50% 

improvements. 

Figure 19. 

Test error with test target data and FLS identification result of my proposed method for 

Mackey-Glass chaotic time series – predicting y(t+84). 
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Results with the proposed ‘GAzFLS’ method are in average achieved within 15 GA 

generations. Rules with a pure zero consequent part were discarded. 

The ANFIS and the ’GAzFLS’ are in by far the most time consuming methods, suitable 

for offline design methods only, but in return they can find an order of magnitude more 

precise results. 

The precision of my proposed fuzzy identification method is superb, even the y(t+84) 

prediction of the Mackey-Glass chaotic time series as in Figure 19 is extraordinary, 

while the number of rules is small. 

By these results my proposal for a successful fuzzy identification strategy is to take the 

‘GAzFLS’ method as an off-line preliminary identification method, apply the results 

while keeping a continuous real-time ‘LinLSzFLS’ update mechanism in place for 

continuous fine tuning with fresh measurements, thus ensuring adaptability of the 

system. 

By this analysis I conclude that my Thesis II is proven valid.  
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4 GENETIC FUZZY MODELLING OF COMPLEX 

SYSTEM DYNAMICS 

There are two popular, well studied complex nonlinear systems for which we will 

examine the applicable soft computing system identification, complex dynamics 

modelling tools – a general robot manipulator dynamics model and its special case the 

multi-rotor flight dynamics model. 

4.1 Literature Synopsis 

4.1.1 Modelling Robot Manipulator Dynamics 

In my research the modelling of robot manipulators (RMs) dynamics, mapping the 

position, velocity and acceleration of joints to forces and torques exerted to the structure 

is based on the Lagrange formulation, which ensures the appropriate structure of the 

dynamic model that is commonly used in control algorithms. 

RMs are known to be highly nonlinear multi-input multi-output systems. To preserve 

the known structure of the Lagrange formulation, common to all system equations of 

RMs and other dynamic systems such as navigation dynamics of missiles and 

aeroplanes, I have chosen the grey-box modelling approach. 

Forces exerted to joints of the RM are the sum of four components modelling 

consequently the torque resulting from the inertia (H), the Coriolis effects and 

centrifugal forces (C), the gravity forces (g) and the viscose friction (f). Individual 

knowledge of all these components is important for precise, model based robot control 

algorithms, yet it is impossible to directly, explicitly measure these components in any 

general real life system. When designing a grey-box model advantage can be taken of 

other commonly known facts of robotics like H and g are nonlinear functions of joint 

positions and the driving torque 𝜏 is linear in the joint accelerations. The centrifugal and 

Coriolis effects are quadratic in the joint velocities and nonlinear in the joint positions 

and f is linear in joint velocity [80]. 

The dynamic model identification method uses the measured resultant torque and joint 

variables along suitably chosen paths for every joint. The application of Lagrange 

dynamic equations for a robot manipulator in the joint space formulates the resultant 

torque 𝜏𝑖 acting on the i
th

 joint for all the p joints of the RM as a function of following 

vectors: 

∑ (𝑫𝑖𝑗(𝒒) ∙ �̈�𝑗)
𝑝
𝑗=1 + ∑ ∑ (�̇�𝒋 ∙ 𝑫𝑖𝑗𝑘(𝒒) ∙ �̇�𝑘)

𝑝
𝑘=1

𝑝
𝑗=1 + 𝑫𝑖(𝒒) + 𝑓𝑖 = 𝜏𝑖      (39) 

where: q is the vector of joint positions; �̇� are joint velocities; �̈� are joint accelerations; 

∑ (𝑫𝑖𝑗(𝒒) ∙ �̈�𝑗)
𝑝
𝑗=1  is commonly referred to as 𝑯 ∙ �̈� or 𝕁 ∙ �̈� the inertia matrix 

component of the torque; ∑ ∑ (�̇�𝒋 ∙ 𝑫𝑖𝑗𝑘(𝒒) ∙ �̇�𝑘)
𝑝
𝑘=1

𝑝
𝑗=1  is commonly referred to as 𝑪 ∙ �̇� 

or ℂ ∙ �̇�, describing the centrifugal forces and the Coriolis effects; 𝑫𝑖(𝒒) is commonly 

referred to as g the gravitational force component; 𝑓𝑖 stands for the viscous friction; and 

𝜏𝑖 is the resultant torque acting on the i
th

 joint – identities in the common robotics 

notation are: 

𝐻𝑖𝑗 = 𝐷𝑖𝑗(𝒒), 𝐶𝑖𝑘 = ∑ �̇�𝑗 ∙ 𝐷𝑖𝑗𝑘(𝒒)𝑝
𝑗=1 , 𝑔𝑖 = 𝐷𝑖(𝒒), 𝑓𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑖,       (40) 
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where: 𝐷𝑖𝑗 , 𝐷𝑖𝑗𝑘 , 𝐷𝑖   are in general, highly nonlinear scalar functions of q, the joint 

position vector. They may contain sin(*) and cos(*) functions of joint positions and/or of 

their products and sums defined by the geometry of the RM.  

There are well known general relations that can be used to reduce the number of 

unknown elements, like 𝐷𝑖𝑗𝑘 are the Christoffel symbols of 𝐷𝑖𝑗 [80]: 

𝐷𝑖𝑗𝑘 =
1

2
(
𝜕𝐷𝑖𝑗

𝜕𝑞𝑘
+

𝜕𝐷𝑖𝑘

𝜕𝑞𝑗
−

𝜕𝐷𝑗𝑘

𝜕𝑞𝑖
) , 𝐷𝑖𝑗𝑘 = 𝐷𝑖𝑘𝑗 , 𝐷𝑘𝑖𝑗 = −𝐷𝑗𝑖𝑘 , 𝐷𝑘𝑗𝑘 = 0, ∀𝑖, 𝑘 ≥ 𝑗, (41) 

It should be well noted that direct measurement of any single sub-component from 

equation (40) is not possible. The only information on the output of the system joint is 

the resultant torque (39). The identification of all nonlinear functions under these terms 

is a considerable problem. 

By my Hypothesis III.a this paper will propose and present the validity of a new method 

that will identify the RM dynamics through finding the 𝐷𝑖𝑗 nonlinear functions of 

equation (39) as TSK FLSs, while calculating 𝐷𝑖𝑗𝑘 nonlinear functions as in equation 

(41). All linear parameters of the system will be determined by SVD based robust LS 

method. Nonlinear parameters will be evolved by multi-objective GA and fine-tuned by 

a gradient descent method. 

4.1.2 Modelling Multi-rotor Flight Dynamics 

The complete dynamics of an aircraft, taking into account aero-elastic effects, flexibility 

of wings, internal dynamics of engines, and the whole set of changing environmental 

variables is quite complex and somewhat unmanageable for the purpose of autonomous 

control engineering [10]. This paper deals with the flight dynamics of multi-rotors. 

Multi-rotor UAV manoeuvres are controlled by varying angular speeds of its propellers. 

Each rotor blade produces a thrust and a torque, whose combination generates the main 

trust, the yaw torque, the pitch torque, and the roll torque acting on the multi-rotor. 

Motors produce a force proportional to the square of the angular speed and the angular 

acceleration of the rotor; the acceleration term is commonly neglected as the speed 

transients are short thus exerting no significant effects. Motors of a multi-rotor can only 

turn in a fixed direction, so the produced force can be always presumed positive. 

Motors are set up so that opposites form pairs rotating in the same direction 

(clockwise/counter-clockwise), while their neighbouring motors are rotating in the 

opposite direction (counter-clockwise/clockwise). This arrangement is chosen so that 

gyroscopic effects and aerodynamic torques are cancelled in trimmed flight. The main 

trust is the sum of individual trusts of each motor. The pitch torque is a function of 

difference in forces produced on one pair of motors, while the roll torque is a function 

of difference in forces produced on other pair of motors. The yaw torque is sum off all 

motor reaction torques due to shaft acceleration and blades drag. The motor torque is 

opposed by a general aerodynamic drag. 

For a full navigation dynamic model of a multi-rotor system both (i) the centre of mass 

position vector of 𝝃 = (𝑥, 𝑦, 𝑧) in fixed frame coordinates and (ii) the orientation Euler 

angles: roll, pitch, yaw angles (ϕ,θ,ψ) around body axes X, Y, Z are considered. Using 

the Euler-Lagrange approach it can be shown how the translational forces 𝑭𝜉 , applied to 

the rotorcraft due to main trust, can be fully decoupled from the yaw, pitch and roll 

torques τ as defined by equations (24-25). 
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𝑚 ∙ (�̈� + 𝑔 ∙ [0 0 1]𝑇) = 𝑭𝜉            (42) 

where: �̈� is the second time derivative (acceleration) of the E-frame coordinates of the 

rotorcraft centre of mass 𝝃 = (𝑥, 𝑦, 𝑧), 𝑚 is the multi-rotor mass; 𝑔 is the gravitational 

constant, which is acting only along the third axis 𝑧; 𝑭𝜉 is the vector of translational 

forces. 

𝕁(𝒒) ∙ �̈� + ℂ(𝒒, �̇�) ∙ �̇� = 𝝉            (43) 

where: 𝕁 is a 3x3 matrix, called the inertia matrix, ℂ is also a 3x3 matrix that refers to 

Coriolis, gyroscopic and centrifugal terms, 𝒒 = [𝜙, 𝜃, 𝜓] is the state vector of Euler 

angles, its time derivatives are 𝑑𝒒/𝑑𝑡 = �̇� = [�̇�, �̇�, �̇�] and 𝑑�̇�/𝑑𝑡 = �̈� = [�̈�, �̈�, �̈�].  

For the scope of this research we shall address only equation (43) as that is the complex 

nonlinear challenging part of the multi-rotor flight dynamics model to be identified. 

Equation (43) can be analysed as three resultant torques τi acting along the [ϕ, θ, ψ] axes 

for i,j,k∈(ϕ, θ, ψ) as:  

∑ (𝐷𝑖𝑗𝑗 (𝒒) ∙ �̈�𝑗) + ∑ ∑ (�̇�𝑗 ∙ 𝐷𝑖𝑗𝑘(𝒒) ∙ �̇�𝑘) = 𝜏𝑖𝑘𝑗          (44) 

The similarity with RM dynamics equation (39) is obvious, the first component of 

equation (44) is the inertia matrix part expansion, the second is the Coriolis matrix term 

expansion, whose components are highly nonlinear functions containing 𝑠𝑖𝑛(𝒒) and 

𝑐𝑜𝑠(𝒒)  components, and also their products and sums defined by the rigid body system 

geometry as described in [67]. 

There are general relations that can be used for reducing the number of unknown inertia 

and Coriolis components: 𝕁 is symmetric and ℂ is defined by Christoffel symbols of 𝕁: 

𝐷𝑖𝑗𝑘 = (𝜕𝐷𝑖𝑗/𝜕𝑞𝑘 + 𝜕𝐷𝑖𝑘/𝜕𝑞𝑗 − 𝜕𝐷𝑗𝑘/𝜕𝑞𝑖)/2         (45) 

These properties result in further inherent relations as: 

𝐷𝑖𝑗 = 𝐷𝑗𝑖 , 𝐷𝑖𝑗𝑘 = 𝐷𝑖𝑘𝑗 , 𝐷𝑘𝑖𝑗 = −𝐷𝑗𝑖𝑘 , 𝐷𝑘𝑗𝑘 = 0, ∀𝑖, 𝑘 ≥ 𝑗        (46) 

It should be noted that direct measurement of any single 𝐷𝑖𝑗𝑘 or 𝐷𝑖𝑗  component of 

equation (44) is not possible. Measurable data vector pairs are (𝒒,̈ 𝝉) angular 

accelerations as system input and resultant torques proportional to rotation speed of 

motors as system output.  

Determining all 𝐷𝑖𝑗𝑘  and 𝐷𝑖𝑗  nonlinear functions is a considerable grey-box 

identification problem, but when achieved the model is usable in efficient robust and 

precise model based control implementations, as this model preserves all �̈�, �̇�  state 

variables in an explicit form. 

By my Hypothesis III.b this paper will propose and present the validity of a new 

method that will identify the multi-rotor flight dynamics equation (44) 𝐷𝑖𝑗 components 

by specially constructed continuous and periodic TSK FLSs, while calculating 𝐷𝑖𝑗𝑘 

nonlinear functions as in equation (45). For modelling multi-rotor flight dynamics I 

propose to extend the definition of TSK FLSs in a way that they become periodic and of 

continuous output, even for the attitude Euler angle system inputs 0-2π transitions. 
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4.1.3 Validating Quality of Complex Nonlinear Dynamic System Genetic Fuzzy 

System Modelling 

4.1.3.1 SCARA Robot Manipulator as Modelling Test System 

The proposed fuzzy system identification method is tested for a SCARA type RM 

described in chapter 4.1.1. The training data set is reduced to 179 points [s12] as 

proposed in my Thesis V. The input space is normalised to the unit hyper-cube. The 

fuzzy-partition representation has been incorporated into a multi-objective hybrid 

genetic algorithm [s4] as proposed im my Thesis I. 

One chromosome consists of only four 𝑎𝑘 integer Zadeh-type MF parameters as 

proposed im my Thesis II. One parameter defines a complete fuzzy partition of three 

MFs. There are only two Dijs (D11 and D12) that are nonlinear functions of only two 

inputs q2 and q4 [s11]. These four 𝑎𝑘 parameters are all that is required to model the 

nonlinearity of a SCARA RM. The remaining twelve linear parameters of the RM and 

the two times twenty seven linear parameters of the two TSK FLSs having two inputs, 

nine rules each is determined by the LS method. 

4.1.3.2 Quadrotor Unmanned Aerial Vehicles as Modelling Test System 

The proposed continuous periodic fuzzy system identification method is tested for a 

multi-rotor system simulation from [35] as described in chapter 1.1 and 4.1.2 with 

parameter values listed in Table XI. The identification method optimizes bk parameters 

of the continuous periodic FLS (cpFLS) based multi-rotor model in a manner that the 

torque output of the fuzzy model best fits the multi-rotor system simulation torque 

output along a reduced data set trajectory. The genetic fuzzy system identification 

method is based on my Thesis I and II. 

The training data set is collected from a simulation along a trajectory with defined 

sinusoid pop for (x,y,z) and ψ defined so that position changes simultaneously along a 

main diagonal of a cube, while performing a full circle rotation in yaw motion. The used 

trajectory generation method is based on my Thesis VI. Roll ϕ and pitch θ is calculated 

by equation (54). For the cpFLSs input variables ϕ and θ are converted to [0, 2π) by 

eliminating unnecessary 2kπ extensions, then transformed by the “seesaw” function of 

equation (47) and finally normalized to the [0, 1] closed interval for cpFLS inputs. The 

training data set is reduced by my Thesis V. 

parameter value unit 

gravity constant, g 9.81 m/s2 

mass, m 6 kg 

torque lever, l 0.3 m 

trust factor, k 121.5e-6  

drag factor, b 2.7e-6  

body inertia along axes X, IXX 0.6 kgm2 

body inertia along axes Y, IYY 0.6 kgm2 

body inertia along axes Z, IZZ 1.2 kgm2 

simulation time, T 55 s 

Table XI. Parameters of quad-rotor system dynamics. 
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4.2 New Scientific Achievements 

4.2.1 New Genetic Fuzzy System Grey-box Modelling of Complex Dynamics 

Systems 

As described in [s4], [s5], [s10], [s11] my proposed identification method for a general 

Robot Manipulator (RM) Dynamics equation (39) identification is to use Zadeh-formed 

membership functions (MFs) as in equation (25) for antecedents as in equation (23) in a 

Takagi-Sugeno-Kang (TSK) type FLS having n inputs and 1 output as defined in (27). 

MF nonlinear parameters are represented as in equation (37). Centrifugal and Coriolis 

components are calculated from the Inertia component as in equation (41). 

This chapter relays heavily on many complex equations described in chapters 3 and 4.1 

– I have repeated here the bare equations to support a brief background overview for my 

Thesis III.a: 

∑ (𝑫𝑖𝑗(𝒒) ∙ �̈�𝑗)
𝑝
𝑗=1 + ∑ ∑ (�̇�𝒋 ∙ 𝑫𝑖𝑗𝑘(𝒒) ∙ �̇�𝑘)

𝑝
𝑘=1

𝑝
𝑗=1 + 𝑫𝑖(𝒒) + 𝑓𝑖 = 𝜏𝑖 (39) 

𝑓(𝒙) = ∑ 𝜔𝑙(𝒙) ∙ 𝑦𝑙(𝒙)𝑀
𝑙=1 .       (27) 

)0(

1

)( l

n

j

jjll cxcy 


        (24) 

𝜔𝑙(𝒙) = ∏ 𝜇𝐹𝑙(𝑖)(𝑥𝑖)
𝑛
𝑖=1        (23) 

where each MF 𝜇𝑘(𝑥, 𝒃) is chosen from equations (25) in such a manner that for every 

input x it holds that ∑ 𝜇𝐾
𝑘=1 𝑘

(𝑥, 𝑏) = 1, the MFs are said to form a fuzzy-partition. A 

common partition scheme is to start with mfz, and finish with mfs, while having 

arbitrary number of 𝑚𝑓𝜋s in-between. 
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,        (37) 

𝐷𝑖𝑗𝑘 =
1

2
(
𝜕𝐷𝑖𝑗

𝜕𝑞𝑘
+

𝜕𝐷𝑖𝑘

𝜕𝑞𝑗
−

𝜕𝐷𝑗𝑘

𝜕𝑞𝑖
) , 𝐷𝑖𝑗𝑘 = 𝐷𝑖𝑘𝑗 , 𝐷𝑘𝑖𝑗 = −𝐷𝑗𝑖𝑘 , 𝐷𝑘𝑗𝑘 = 0, ∀𝑖, 𝑘 ≥ 𝑗,(41) 
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THESIS III.a - DEFINITION: 

(Robot manipulator) Complex system dynamics equation (39) can be precisely 

identified by approximating its 𝑫𝑖𝑗 inertia, Di gravity and fi friction components 

with FLSs as: 

𝑫𝑖(𝒒) and 𝑫𝑖𝑗(𝒒) =   ∑ ((∏ 𝜇𝐹𝑙(𝑖)
(𝑞𝑖, 𝒃𝒍)

𝑛
𝑖=1 ) ∙ (∑ 𝑐𝑙(𝑗) ∙ 𝑞𝑗

𝑛
𝑗=1 + 𝑐𝑙(0)))

𝑀
𝑙=1 , and 

             𝑓𝑖(𝑞𝑖) =   ∑ (𝜇𝐹𝑓(𝑖)(𝑞𝑖, 𝒃𝑓) ∙ (𝑐𝑓(𝑖) ∙ 𝑞𝑖 + 𝑐𝑓(0)))
𝐹
𝑓=1  

where n is the number of position state variables (number of RM joints); M and F is the 

designed number of FLS rules; qi is the i
th

 position state variable (RM joint position); 

𝑐𝑙(𝑗) and 𝑐𝑓(𝑖) are the linear parameters to be identified; 𝒃𝒍 and 𝒃𝒇 are vectors of 

nonlinear parameters of Zadeh MF formed fuzzy partitions as in equation (25). 

Components of 𝒃𝒍, 𝒃𝒇 are formed as equation (36), (37) in my Thesis II: 

 


Kk

j jk aab
1 *,1 *,*,   , *0, ...,,1, KRal               (37) 

where K* corresponds to Kl and Kf, the designed number of input membership functions 

of fuzzy partition for Dij, Di and fi FLS antecedents. 

Dynamics equation (39) 𝑫𝑖𝑗𝑘 components are to be expressed from the FLS 

form of 𝑫𝑖𝑗 inertia components by applying Christoffel symbols as: 

𝐷𝑖𝑗𝑘 =
1

2
(
𝜕𝐷𝑖𝑗

𝜕𝑞𝑘
+

𝜕𝐷𝑖𝑘

𝜕𝑞𝑗
−

𝜕𝐷𝑗𝑘

𝜕𝑞𝑖
) , 𝐷𝑖𝑗𝑘 = 𝐷𝑖𝑘𝑗 , 𝐷𝑘𝑖𝑗 = −𝐷𝑗𝑖𝑘 , 𝐷𝑘𝑗𝑘 = 0, ∀𝑖, 𝑘 ≥ 𝑗, (41) 

𝐷𝑖𝑗 = 𝐷𝑗𝑖 , 𝐷𝑖𝑗𝑘 = 𝐷𝑖𝑘𝑗 , 𝐷𝑘𝑖𝑗 = −𝐷𝑗𝑖𝑘 , 𝐷𝑘𝑗𝑘 = 0, ∀𝑖, 𝑘 ≥ 𝑗          (46) 

For 𝑎, 𝑏, 𝑐 ∈ {𝑖, 𝑗, 𝑘} we have 
𝜕𝐷𝑎𝑏(𝒒)

𝜕𝑞𝑐
= ∑ (

𝜕(∏ 𝜇𝐹𝑙(𝑖)
(𝑞𝑖,𝒃𝒍)

𝑛
𝑖=1

𝜕𝑞𝑐
∙ (∑ 𝑐𝑙(𝑗) ∙ 𝑞𝑗

𝑛
𝑗=1 +𝑀

𝑙=1

𝑐𝑙(0)) + (∏ 𝜇𝐹𝑙(𝑖)
(𝑞𝑖, 𝒃𝒍)

𝑛
𝑖=1

𝜕(∑ 𝑐𝑙(𝑗)∙𝑞𝑗
𝑛
𝑗=1 +𝑐𝑙(0))

𝜕𝑞𝑐
 ). 

The (RM) system dynamics equation (39) can now be stated as:                     

𝜏𝑖 = ∑ 𝐴𝑖𝑗(�̈�, �̇�, 𝒒, 𝑎𝑖𝑗𝑙𝜅) ∙ 𝑐𝑖𝑙(𝑗)
𝑁
𝑗=1 , and the complete body dynamics is now of the 

form: 𝝉 = 𝑨(�̈�, �̇�, 𝒒, 𝒂𝜿) ∙ 𝒄, where 𝜏𝑖 is the i
th

 body torque; 𝒒 is the body position 

system state, �̇� is its first time derivative and �̈� is its second time derivative; 𝐴𝑖𝑗 is a 

very complex nonlinear equation to write down, while relatively simply expressed by 

the stated FLS identification procedure. 

Linear system parameters 𝑐∗ – components of vector c are to be calculated by 

SVD decomposition based LS optimal method as: 𝒄 = 𝑽𝑺−𝟏𝑼𝑻 ∙ 𝝉 for SVD 

decomposition of 𝑨(�̈�, �̇�, 𝒒, 𝒂𝜿) = 𝑼𝑺𝑽𝑻. 

Nonlinear system parameters 
*,a  – components of vector 𝒂𝜿 are to be identified 

with a global stochastic search method, like GAs of my Thesis I, and fine-tuned by a 

gradient descent method. 

4.2.2 Implementation of the New Genetic Fuzzy System Grey-box Modelling of 

Robot Manipulator Dynamics 

My inertia base function choice to form H- the inertia matrix components is multi-input 

single-output complete first order Takagi-Sugeno-Kang (TSK) type FLSs, having 
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membership functions (MFs) in form of Zadeh type fuzzy partitions [s3]. Components 

of C - the Coriolis effects and centrifugal forces I evaluate as the Christoffel symbols of 

FLSs forming H- the inertia matrix; for simplicity I take the friction to be a mere 

constant. The nonlinear parameters of Zadeh type fuzzy partitions I identify by a multi-

objective hybrid evolutionary optimisation method [s4]. The number of nonlinear 

parameters is reduced to its minimum, the number of fuzzy partitions - FLS inputs is 

defined by the geometry of the RM, thus cannot be reduced without significant loss in 

modelling precision. 

A gradient-descent method is used for fine tuning all the nonlinear parameter of the 

dynamic model. The SVD based LS optimal calculation method is used for finding the 

linear parameters of every fuzzy system (40), also to their required Christoffel symbols 

(41) and the remaining linear parameters of the RM equation (39) [s5]. 

4.2.3 Results of the New Genetic Fuzzy System Grey-box Robot Manipulator 

Modelling 

The result of a quick, small evolutionary search is a chromosome of (37522, 32020, 

65333, 53411) for the four nonlinear
Ka  parameters. Linear parameters of the dynamic 

model are listed in Table XII below. The first column names the parameter, the second 

contains its exact value, results of geometrical an mechanical analysis of joints and its 

configuration. The third column contains an earlier result [s10], where the Dijk 

components were identified as simple FLSs, independent of Dij. Result of the proposed 

method is listed in the fourth column of Table XII. Table XIII Contains the parameters 

of MFs forming Zadeh-type fuzzy partitions. Table XIV lists all the linear parameters 

that form consequent parts of all nine rules of both FLSs for D11 and D12. 

The identification error of torque acting on joints 1-4 is presented in Figure 20. 

 Exact LSQ [s11] SVD [s5] 

D11 Func11 FLS11 FLS11 

D12 Func12 FLS12 FLS12 

D14 0.004 1.1315 0.0098776 

D22 1.1454 0.19586 1.1388 

D24 0.004 -0.25933 0.005855 

D33 130.2521 130.2521 130.2521 

D44 0.409 -0.45519 0.40839 

D112 f(Func11) FLS112 f(FLS11) 

D114 0 0.0022199 0 

D214 0 0.00024719 0.023923 

D3 67.1985 67.1985 67.1985 

f1 14.5031 14.5031 14.5031 

f2 13.8 13.7869 13.5866 

f3 3948.9 3948.9 3948.9 

f4 13.4 13.4001 13.4008 

Table XII. Linear parameters of the dynamic model. 
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Figure 20. 

SVD based SCARA RM torque identification error in [Nm] for joints 1,2,3 and 4. 
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 b1 b2 b3 

11zMF11(q2) 0 0.5725 - 

11MF12(q2) 0 0.5725 1 

11sMF13(q2) 0.5725 1 - 

11zMF21(q4) 0 0.48862 - 

11MF22(q4) 0 0.48862 1 

11sMF23(q4) 0.48862 1 - 

12zMF11(q2) 0 0.99693 - 

12MF12(q2) 0 0.99693 1 

12sMF13(q2) 0.99693 1 - 

12zMF21(q4) 0 0.81503 - 

12MF22(q4) 0 0.81503 1 

12sMF23(q4) 0.81503 1 - 

Table XIII. Nonlinear parameters 11xMFxx for FLS11 and 12xMFxx for FLS12. 

 

 c0 c1 c2 

11y11(q2, q4) 1.5836 -0.31855 0.0059997 

11y12(q2, q4) -0.072244 0.014675 -0.033884 

11y13(q2, q4) 1.5836 -0.31855 0.0059997 

11y21(q2, q4) 0.43328 -0.25865 0.10659 

11y22(q2, q4) 0.95086 -0.42537 -0.80804 

11y23(q2, q4) 0.43328 -0.25865 0.10659 

11y31(q2, q4) 1.5836 -0.31855 0.0059997 

11y32(q2, q4) -0.072244 0.014675 -0.033884 

11y33(q2, q4) 1.5836 -0.31855 0.0059997 

12y11(q2, q4) 0.3856 0.15897 -0.0065901 

12y12(q2, q4) 0.098905 -0.43382 0.022196 

12y13(q2, q4) 0.3856 0.15897 -0.0065901 

12y21(q2, q4) -0.79427 -0.34648 0.0096337 

12y22(q2, q4) 0.12912 0.77157 -0.053574 

12y23(q2, q4) -0.79427 -0.34648 0.0096337 

12y31(q2, q4) 0.3856 0.15897 -0.0065901 

12y32(q2, q4) 0.098905 -0.43382 0.022196 

12y33(q2, q4) 0.3856 0.15897 -0.0065901 

Table XIV. Linear parameters of rule consequent 11yxx for FLS11 and 12yxx for FLS12. 

The mean square error is 0.05, the maximal absolute error is 2.44 Nm and there are no 

more than nine such points where the error is greater than three times the standard 

deviation of the error. The relative value of the maximal error is 2.83%, 2.23%, 0%, 

0.66% for RM joints 1, 2, 3 and 4 respectively. These results are of more than 

satisfactory precision for an advanced computed torque (aka. back tracking) model 

based control algorithm implementation. 

By this analysis I conclude that my Thesis III.a is proven valid. 
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4.2.4 New Continuous Periodic Fuzzy Logic Systems 

As described in [s6], [s13], [s14] my proposal is to transform the general FLS equation 

(27) to form a continuous periodic FLS (cpFLS). Such cpFLSs are ready to be used for 

modelling systems which are inherently continuous and periodic, for example the 

orientation angle input based torque function of a multi-rotor dynamics in equation (43). 

For physical systems in the Euclidian space orientation angles are naturally defined on 

the [0, 2π) interval. Any angular value α below 0 or above 2π is equivalent to a value 

β=α±2kπ, where k is such an ordinary number that β∈ [0,2π). For orientation angles 

selection of the origin is arbitrary and transition between two orientation angles is 

continuous and smooth, as in having a continuous first derivative. As orientation angle 

of 2π is equivalent to angle 0 the transition from 2π-ε to 0+ε also has to be continuous. 

For FLSs defined by equation (27) we can make the input space continuous and 

periodic over the [0, 2π) interval by applying a simple piecewise linear “seesaw” 

function transformation as in Figure 21, whose output is in [-1,1] as defined by: 

�̂� = {

2 ∗ (𝜋 − 𝑞)/𝜋, 3 ∗ 𝜋/2 < 𝑞 > 𝜋/2
2 ∗ (𝑞 − 𝜋)/𝜋, 𝑞 > 3 ∗ 𝜋/2
2 ∗ (𝑞)/𝜋, 𝑒𝑙𝑠𝑒

          (47) 

Figure 21. 

The piecewise linear “seesaw” function. 

With transformation (47) of the cpFLS input space we make sure that there is no 

discontinuity between angular cpFLS inputs of any two values, we simply force critical 

2π-ε input values to become equal to 0+ε for all 𝜀 < 𝜋/2. This step is needed to ensure 

the output space 𝑦𝑙(𝒒) consequence part can become continuous over the 𝒒 ∈[0, 2π) 

input space even for full circle rotations. 

We also have to make the antecedent fuzzy partition “circular” by combining the first 

𝜇𝑧 and the last 𝜇𝑠 MF of the partition as defined in equation (25) into a single virtual 

𝜇𝜋 MF to be substituted into equation (23), so that fuzzy rules applied to the first z-MF 

equally apply to the last s-MF. We achieve this by making all the linear parameters of 

the last rule for each fuzzy partition in equation (27) equivalent to the first rule of the 
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same partition as 𝑐𝑗𝐾𝑖
= 𝑐𝑗𝐾1

, where n is the number of cpFLS inputs, and each input is 

covered by a fuzzy partition of Ki MFs for i=1..n. 

By this procedure we have ensured to have a continuous periodic fuzzy system (cpFLS) 

such that for ∀𝒒 ∈ ℝ𝑛, ∀𝑘 ∈ ℤ and any arbitrary small 𝜺 there is a similarly small 𝜇(𝜺) 
for which we have: 

𝑐𝑝𝐹𝐿𝑆(𝒒 ± 2𝑘𝜋) =  𝑐𝑝𝐹𝐿𝑆(𝒒), 𝑐𝑝𝐹𝐿𝑆(𝒒 ± 𝜺) = 𝑐𝑝𝐹𝐿𝑆(𝒒) ± 𝜇(𝜺),      (48) 

Table XV presents the linear parameter triplets for all 25 fuzzy rule consequents 

𝒄𝒍 = (𝑐0𝑙𝑐1𝑙𝑐2𝑙), of equation (27) for a TSK FLS interpretation of a cpFLS with n=2 

inputs, where each antecedent is a Zadeh formed fuzzy partition of 5 MFs.  

 𝜇𝑧11 𝜇𝜋12 𝜇𝜋13 𝜇𝜋14 𝜇𝑠15 

𝜇𝑧21 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟏 

𝜇𝜋22 𝒄𝟔 𝒄𝟕 𝒄𝟖 𝒄𝟗 𝒄𝟔 

𝜇𝜋23 𝒄𝟏𝟏 𝒄𝟏𝟐 𝒄𝟏𝟑 𝒄𝟏𝟒 𝒄𝟏𝟏 

𝜇𝜋24 𝒄𝟏𝟔 𝒄𝟏𝟕 𝒄𝟏𝟖 𝒄𝟏𝟗 𝒄𝟏𝟔 

𝜇𝑠25 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟏 

Table XV. TSK FLS-like interpretation of cpFLS linear parameter triplets. 

In the compact cpFLS interpretation form of the same fuzzy system as in Table XV, we 

have to consider only linear parameter triplets for 16 unique fuzzy rule consequents as 

presented in Table XVI, where 𝜇𝜋𝑗𝑖 for i>0 are equivalent to Table XV MFs of the 

same index, and 𝜇𝜋𝑗0(𝑞) = 𝜇𝑧𝑗1(𝑞) + 𝜇𝑠𝑗5(𝑞) for j=1,2. 

Triplets 𝒄𝒍 in Table XVI are equivalent to triplets of matching index from Table XV. 

 𝜇𝜋10 𝜇𝜋12 𝜇𝜋13 𝜇𝜋14 

𝜇𝜋20 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 

𝜇𝜋22 𝒄𝟔 𝒄𝟕 𝒄𝟖 𝒄𝟗 

𝜇𝜋23 𝒄𝟏𝟏 𝒄𝟏𝟐 𝒄𝟏𝟑 𝒄𝟏𝟒 

𝜇𝜋24 𝒄𝟏𝟔 𝒄𝟏𝟕 𝒄𝟏𝟖 𝒄𝟏𝟗 

Table XVI. The compact cpFLS interpretation. 

THESIS III.b - DEFINITION: 

All FLSs that for antecedent use Zadeh-type MF based fuzzy partitions, whose 

last (smf) and first MF (zmf) can form a single continuous MF (𝜋mf), and the 

consequent part of rules is a constant (like in Mamdani FLS) or a continuous function of 

the input signal (like a TSK FLS), can be made continuous and periodic fuzzy logic 

system (cpFLS) as in equation (48) by: 

1. applying equation (47) as a preliminary transformation to the input signal 

2. making all parameters 𝑐𝑗𝐾𝑖
 (like c5,10,15,20,25 and c21,22,23,24,25 in Table XV) of 

fuzzy rule consequents whose premise includes the smf (like 𝜇𝑠1,5 and 𝜇𝑠25 in Table 

XV) identical to 𝑐𝑗𝐾1
 parameters (like c1,6,11,16,1=21 and c1,2,3,4,1=5 in Table XV) of rule 

consequents for the matching zmf of the same input. 
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4.2.5 New Genetic Fuzzy System Grey-box Modelling of Multi-rotor Flight 

Dynamics 

As described in [s6], [s13], [s14] my proposal is to use continuous periodic FLS 

(cpFLS) for modelling systems which are inherently continuous and periodic, for 

example the orientation angle input based torque function of a multi-rotor dynamics in 

equation (43). 

THESIS III.c - DEFINITION: 

(Multi-rotor) flight dynamics can be precisely identified by continuous and 

periodic fuzzy logic systems by taking system components for cpFLSs (my Thesis 

III.b) as in equations (39), (46), (50), (51), (52) for 𝒒 = (ϕ, θ, ψ), by applying the 

identification method as equation (53), which is detailed in my Thesis III.a as: 

∑ (𝑫𝑖𝑗(𝒒) ∙ �̈�𝑗)
𝑝
𝑗=1 + ∑ ∑ (�̇�𝒋 ∙ 𝑫𝑖𝑗𝑘(𝒒) ∙ �̇�𝑘)

𝑝
𝑘=1

𝑝
𝑗=1 + 𝑫𝑖(𝒒) + 𝑓𝑖 = 𝜏𝑖,        (39) 

𝐷13(𝜃) = 𝑓1(𝜃), 𝐷22(𝜙) = 𝑓2(𝜙), 𝐷23(𝜙, 𝜃) = 𝑓3(𝜙, 𝜃), 𝐷33(𝜙, 𝜃) = 𝑓4(𝜙, 𝜃),(50) 

𝐷11 = 𝐼𝑥𝑥, 𝐷12 = 0,𝐷21 = 𝐷12, 𝐷31 = 𝐷13, 𝐷32 = 𝐷23,          (51) 
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𝛿𝐷23

𝛿𝜃
,

𝐷133 = −
1

2

𝛿𝐷33

𝛿𝜙
, 𝐷223 = −

1
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𝛿𝜃
, 𝐷312 =

1

2
(
𝛿𝐷23

𝛿𝜙
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𝛿𝐷13

𝛿𝜃
)
          (52) 

𝐷𝑖𝑗 = 𝐷𝑗𝑖 , 𝐷𝑖𝑗𝑘 = 𝐷𝑖𝑘𝑗 , 𝐷𝑘𝑖𝑗 = −𝐷𝑗𝑖𝑘 , 𝐷𝑘𝑗𝑘 = 0, ∀𝑖, 𝑘 ≥ 𝑗,          (46) 

(𝕁∗(𝒒, 𝒂𝜿) ∙ �̈� + ℂ∗(𝒒, �̇�, 𝒂𝜅) ∙ �̇�) ∙ 𝒄 = 𝑨(𝒒, �̇�, �̈�, 𝒂𝜅) ∙ 𝒄 = 𝝉,          (53) 

For such a flight dynamics system model the minimal number of 𝒂𝜅 nonlinear 

parameters is 24 and the number of c linear parameters is 113 to achieve a good quality 

model, when the fi friction components are neglected; Di gravity components for a free 

flying object are non-existent. 

In analogy to my Thesis III.a, linear flight dynamics system parameters 𝑐∗ – 

components of vector c are to be calculated by SVD decomposition based LS optimal 

method as: 𝒄 = 𝑽𝑺−𝟏𝑼𝑻 ∙ 𝝉 for SVD decomposition of 𝑨(�̈�, �̇�, 𝒒, 𝒂𝜿) = 𝑼𝑺𝑽𝑻. 

Nonlinear system parameters 
*,a  – components of vector 𝒂𝜿 are to be identified 

with a global stochastic search method, like GAs of my Thesis I, and fine-tuned by a 

gradient descent method. 

4.2.6 Implementation of New Genetic Continuous Periodic Fuzzy System Grey-

box Modelling 

As proposed in [s5] we identify Dij components of the dynamic model in equation (44) 

as FLSs defined by equations (24) to (27), where the FLS general input variable 𝒒 will 

be substituted for appropriate state variables of (ϕ, θ, ψ). 

Instead of simple TSK FLSs we will use cpFLSs. Where the Dij inertia matrix 

components are modelled by cpFLSs, forming the Dijk components as Christoffel 

symbols is to be expressed by partial derivatives of equation (27) like:  

𝜕𝑓(𝒒)/𝜕𝑞𝑖 = ∑ (𝜕𝜔𝑙(𝒒)/𝜕𝑞𝑖 ∙ 𝑦𝑙(𝒒) +𝑀
𝑖=1 𝜔𝑙(𝒒) ∙ 𝜕𝑦𝑙(𝒒)/𝜕𝑞𝑖),       (49) 
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The unknown four inertia matrix components of torques defined in equation (43), which 

have to be identified for a 3DOF rigid body rotational motion model, are: 

𝑫13(𝜃) = 𝑓1(𝜃),𝑫22(𝜙) = 𝑓2(𝜙),𝑫23(𝜙, 𝜃) = 𝑓3(𝜙, 𝜃), 𝑫33(𝜙, 𝜃) = 𝑓4(𝜙, 𝜃), (50) 

Based on the multi-rotor system structure and inertia matrix symmetry the remaining 

inertia components are known to be: 

𝐷11 = 𝐼𝑥𝑥, 𝐷12 = 0,𝑫21 = 𝑫12, 𝑫31 = 𝑫13, 𝑫32 = 𝑫23,        (51) 

where 𝐼𝑥𝑥 is the constant multi-rotor body inertia around the x axis. 

Based on equation (46) the following Coriolis term matrix Dijk components can be 

calculated by equations (49): 
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        (52) 

The remaining Dijk components are trivial identities as defined in equation (46). This 

way we can model the complete multi-rotor rotation dynamics as defined in equation 

(43) by only 1 linear constant and 4 cpFLSs, where 2 cpFLSs are functions of a single 

input, and 2 are functions of 2 inputs. 

We have for these fuzzy systems 6 Zadeh type fuzzy partitions. Each partition consists 

of 1 𝜇𝑧-, 1 𝜇𝑠-, and 3 𝜇𝜋-type MFs as presented by equations (25) and (37), such a fuzzy 

partition is defined by 3 nonlinear 𝑎𝑖 parameters; 6 partitions totalling in 24 nonlinear 

𝒂𝜅 parameters. 

These 4 cpFLSs consist of 2 times 4 rules for single input functions an 2 times 16 rules 

yl as defined in equation (27) for two input functions. Each rule consequent yl is defined 

by 2 (single input case) or 3 (two inputs case) cil linear parameters, these 4 cpFLSs total 

in 112 linear parameters. The grand total for our model is 24 nonlinear 𝒂𝜅 and 113 

linear c parameters. 

Linear parameters are best directly evaluated by a singular value decomposition (SVD) 

based least squares (LS) fitting method. We first substitute equations (16, 18, 20, 48) to 

(51, 52, 53) and all to (43) expressed as (53), then we express all the 113 linear 𝒄 

parameters as: 

(𝕁∗(𝒒, 𝒂𝜿) ∙ �̈� + ℂ∗(𝒒, �̇�, 𝒂𝜅) ∙ �̇�) ∙ 𝒄 = 𝑨(𝒒, �̇�, �̈�, 𝒂𝜅) ∙ 𝒄 = 𝝉,        (53) 

For SVD decomposition of 𝑨(𝒒, �̇�, �̈�, 𝒂𝜅) = 𝑈 ∙ 𝑆 ∙ 𝑉𝑇 we obtain 𝒄 = 𝑉 ∙ 𝑆−1 ∙ 𝑈𝑇 ∙ 𝝉. 

The used training data is from calculated roll and pitch motions based on my Thesis IV, 

as presented in Figure 22. The simulated resultant torque full training data set is 

presented in Figure 23; its size is reduced for calculations based on my Thesis V. 
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Figure 22. 

Smooth roll, pitch and yaw motions of the multirotor. 
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Figure 23. 

Smooth resultant torques – full training set before reduction. 
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The list of nonlinear cpFLS parameters consists of six times four integer parameters for 

defining six fuzzy partitions having five MFs each, where each partition consists of 

three classical π-type MFs and for the cpFLS setup one virtual π-type MF composed by 

one Z-type MF at the beginning of the input interval and one S-type MF in the end of 

the input interval as in equation (25). These six fuzzy partitions serve as antecedents for 

the four fuzzy systems like in equation (27) and (48), used for identifying Dij, ij=(13, 

22, 23, 33) as defined in equations (44)-(46) and (49)-(52). 

The unknown linear parameter D11 of the multi-rotor model as in equation (53), together 

with 112 linear parameters of the four TSK FLSs (2 FLSs with 5 MFs on one input, 

each rule with 2 c parameters, plus 2 FLSs with 5 MFs on both of the 2 inputs, each rule 

with 3 c parameters) of equations (43) are first substituted to (27) and (49), then based 

on (45), (46) and (44) to (50), (51) and (52), that they can be determined by the SVD-

based LS method from equation (43) expressed as (53). 

Concluded from equation (25) and (37) six fuzzy partitions (antecedent part of 2 FLSs 

with 1 input, plus 2 FLSs with 2 inputs are covered by 6 independent fuzzy partitions) 

are represented by a vector of six times four  parameters, which are optimized by a 

multi-objective hybrid genetic algorithm as detailed in [s9]. Chromosomes are evaluated 

and subjected to a local gradient based search. Chromosome values are updated with the 

result of fine-tuning after each evaluation, so the GA does not waste time on local 

optimization; only global search capabilities of the GA are utilized.  

The GA is set to work on a population of 200 chromosomes, divided into 5 

subpopulations, with migration rate 0.2 taking place after each 5 completed generations. 

Chromosomes are comprised of 24 Gray-coded integers, each consisting of 16 bits. The 

initial population is set up in a completely random manner. Crossover rate, generation 

gap and insertion rate is set to 0.8, selection pressure is 1.5. In each generation 4% of 

individuals are subject to mutation, when 1% of the binary genotype is mutated. 

Matrix of the linear equation ℚ(𝒒, �̇�, �̈�) from equation (53) is pre-processed, as FLSs 

like equation (27) and their partial derivatives like equation (49) are substituted as 

defined by equations (50)-(52). Unknown linear parameters are D11 and the 112 c 

parameters of fuzzy rule consequents. 

Evaluation of each individual is conducted as follows: 

(a) Convert coded ai values from the chromosome to bk by equation (37). 

(b) Evaluate all MFs, and antecedents which will comprise six fuzzy partitions from 

each of six bk quadruplets by equations (23) and (25). Also evaluate antecedent 

derivatives of equation (49).  

(c) Calculate the matrix coefficients of linear equations ℚ(𝒒, �̇�, �̈�) by values of 

triggered MFs and their partial derivatives.  

(d) Linear components [D11, c] of equations (27), (43) and (49) are calculated by SVD 

decomposition as in (53).  

(e) Fine-tune ai parameters, for example by the Matlab “lsqnonlin” function, while re-

calculating steps (a)-(d) for each ai tuning iteration.  

(g) Re-insert optimized ai parameters into the evaluated chromosome.  
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For the multi-objective rank assignment described in [s2], the objective vector is created 

from: 

(i) the mean square of the identified torque error,  

(ii) the maximum absolute torque identification error and  

(iii) the condition number of the matrix of the linear equation.  

Stochastic universal sampling is used for selecting the next generation without explicit 

elitism. To speed up the GA processing, a database of evaluated chromosomes and their 

objective vectors is created, so only unique new individuals are evaluated in each 

generation. 

4.2.7 Results of New Genetic Continuous Periodic Fuzzy System Grey-box 

Modelling of Multi-rotor Flight Dynamics 

Results of the identification process - averages of 10 simulations for each training data 

set size are presented in Table XVII. For identification quality comparison to the new 

cpFLS model [s6], results of a simple FLS model, described in [s9] are also presented. 

Results of a selected non dominated model are followed by the average values and the 

variance of 10 runs of each method and parametrization, as defined in the first 4 rows. 

FLS type FLS[s9] cpFLS cpFLS cpFLS cpFLS cpFLS 

Training points 5487 5487 2743 1170 685 685 

Population # 500 500 500 500 500 75 

Generation # 200 200 200 200 200 25 

MSE selected 0,0007 0,0008 0,0009 0,0009 0,0008 0,0008 

maxE selected 0,1531 0,1771 0,1786 0,1648 0,1952 0,2080 

Cond selected 2707,1 5506,4 3399,4 4145,9 4262,2 3032,0 

MSE mean 0,0008 0,0009 0,0010 0,0010 0,0012 0,0011 

MSE variance 0,0001 0,0001 0,0001 0,0002 0,0003 0,0002 

maxE mean 0,1845 0,1977 0,2912 0,2329 0,2968 0,2408 

maxE variance 0,0324 0,0330 0,2568 0,0540 0,1020 0,0382 

Cond mean 3815,5 7342,8 5651,6 6953,7 5368,1 5202,9 

Cond variance 1701,2 8493,5 5259,3 5274,6 2434,5 2039,3 

Table XVII. Maximum error, mean square error and condition number results. 

Convergence of applied multi objective GAs of population size (Population#) 200, (or 

75) is achieved in <200, (or <25) generation evaluations (Generation#), when the 

typical mean square error (MSE) is <1e-3, the typical maximum torque error (maxE) is 

<0.2 Nm, which means that the typical relative error is <10%. 

For fuzzy partitions defined by non-dominated chromosomes the typical condition 

number (Cond) of 𝑨(𝒒, �̇�, �̈�, 𝒂𝜿) the matrix of linear equations is ~5000. 

There is neither significant quality, nor identification performance degradation when 

using the new cpFLS compared to the simple FLS method described in [s9]. While the 

most significant benefit of smooth output transitions for (2kπ-ε) – (0+ε) input space 

changes of continuous periodic FLSs cannot be achieved by a simple TSK FLS. 

In average there is no significant difference in the identification quality for any of the 

reduced or the full data set. The only real, significant difference is the time required for 

evaluation, which is proportional to the increased speed of singular value 
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decompositions of different sized samples. The 685 point sample set reduced to 1/8
th

 of 

the full set is significantly faster evaluated than any other larger set. 

Further on the proposed GA setup method is robust enough to compensate for a 

significant reduction of the GA size parameters as well. The identification result is still 

very good when reducing the population size to 75 and generations evaluated to 25, 

which result in a (500*200)/ (75*25)≈5000% fold GA execution time gain. 

Numerical values representing ai of equation (37) for the selected typical non-

dominated chromosome are:  

[3157  31387  59087  34526  61856  23999  31983  5100  21985  53525  13592  15164  

41416  52669  17091  8246  27195  36846  42384  27934  32215  55957  57320  

24610], which defines fuzzy partition MF parameters by equation (37) as: 

bi i=1,2,3 for cpFLS modelling D13: [0.024633, 0.26954, 0.7306]. 

bi i=1,2,3 for cpFLS modelling D22: [0.50315, 0.69836, 0.95851]. 

bi i=1,2,3 for D23: [0.21085, 0.72421, 0.85457; 0.34681, 0.78784, 0.93095]. 

bi i=1,2,3 for D33: [0.20241, 0.47664, 0.79209; 0.18939, 0.51835, 0.85532]. 

The graphical representation of a fuzzy partition antecedents defined by this 

chromosome is shown in Figure 24a and Figure 24b. 

The torque identification error along the complete training data set for a cpFLS based 

quad-rotor model defined by the selected non-dominated chromosome is presented in 

Figure 25. 

The cpFLS identified torque is continuous as there are no discontinuities in the absolute 

error, and the identification error is minor, having MSE <1e-3. 

By this analysis I conclude that my Thesis III.b and III.c are proven valid. 
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Figure 24a. 

Antecedent fuzzy partition for D12, D22. 
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Figure 24b. 

Antecedent fuzzy partition for D23, D33. 



87 

 
Figure 25. 

Absolute identification error for each roll, pitch yaw motion torque in [Nm].  



88 

5 OPTIMAL SYSTEM TRAJECTORY DESIGN 

5.1 Literature Synopsis 

Optimal trajectory design is still a challenging task, though it is usually considered well 

formulised since Pontryagin’s work in the early ‘60s [58]. For all differentially flat 

systems state variables q as part of the complete trajectory (𝒒, �̇�, �̈�,) are directly 

influenced by the desired path of the system [4]. 

5.1.1 Basic Approaches to Optimal Trajectories 

The basic trajectory design problem to solve is: moving from point A to point B. In 

general, there are set boundaries on the trajectory in terms of allowed geometrical 

regions or obstacles, velocity, acceleration or even jerk (third time derivative of 

displacement) limits are defined. 

Usually time optimality and/or energy optimality requirements are associated with a 

planned movement along a chosen path. The pure theoretical approach starts with 

finding possible 3D geometric path curves from point A to point B. The exact time 

optimal solution is then selecting the shortest geometric displacement curve 𝑠 and 

traveling along this path with 𝑣𝑚𝑎𝑥 the maximum allowed velocity for the shortest time 

of  𝑡𝑓 = 𝑠/𝑣𝑚𝑎𝑥. See Figure 26, where for a very modest vmax = 0.08m/s an up to 8
’
g’ (8 

times 9.81m/s
2
) acceleration is required, not to mention the jerk of ~10

5
m/s

3
… 

We must never overlook that the kinematic results have to be applied to actually 

moving not a virtual point, but a body of mass 𝑚, while we have real actuator outputs as 

the means of control instead of arbitrary mathematical signals. 

Figure 26. 

Instantaneous vmax trajectory components. 

For moving a body of mass 𝑚, such a time optimal trajectory, where an instant jump-

start is demanded with 𝑣𝑚𝑎𝑥 maximum speed from point A, and then it is planned to 

have an abrupt stop to zero velocity at time 𝑡𝑓 in point B is, is just physically not 

feasible; obviously, there must be an acceleration and a deceleration period – we cannot 

physically generate mathematical Dirac force impulses having extremely precise 

integral value. This realization was adopted in „bang-bang” trajectory plans – see Figure 
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27, where the first part of the trajectory was planned for 𝑎𝑚𝑎𝑥 constant maximal 

acceleration until reaching 𝑣𝑚𝑎𝑥, then traveling with 𝑣𝑚𝑎𝑥 for the appropriate distance, 

and finally decelerating with a constant maximal deceleration −𝑎𝑚𝑎𝑥 to reach the target. 

Notice the jerk Dirac impulse of 10m/s
3
 despite a very modest speed and barely existing 

acceleration levels. 

Figure 27. 

Acceleration bang-bang trajectory components. 

These “bang-bang” trajectories were dubbed „time optimal” trajectories, though 

obviously for 𝑎𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥/(𝑡𝑓/2) we get √𝑠/𝑎𝑚𝑎𝑥 > 𝑠/𝑣𝑚𝑎𝑥 , so actually they are no 

longer ‘theoretically optimal’ in the pure mathematical sense. 

My comment after analysing Figure 27 is: notice the Dirac impulse of 10m/s
3
 in the jerk 

component at 𝑡0, 𝑡𝑓 and an even larger at time instance 𝑡𝑓/2. These „bang-bang” 

trajectories imply that we plan for using discontinuous force actions, as we have 

initially  𝐹(𝑡0) = 0, then in the next infinitesimally close time 𝐹(𝑡0 + 𝜀) = 𝐹𝑚𝑎𝑥 = 𝑚 ∙
𝑎𝑚𝑎𝑥; also when reaching the target this trajectory design plans for an instant drop from 

𝐹(𝑡𝑓 − 𝜀) = −𝐹𝑚𝑎𝑥 to 𝐹(𝑡𝑓) = 0. Even a more significant discontinuity is planned for 

𝐹(𝑡𝑓/2 − 𝜀) = 𝐹𝑚𝑎𝑥 and then 𝐹(𝑡𝑓/2 + 𝜀) = −𝐹𝑚𝑎𝑥, which is also not feasible in real 

life dynamics of non-rigid bodies, even if undergraduate studies comfortably operate 

with similar kinematic models. So I claim that these, and many other ‘optimal’ 

trajectories – as I will show – are not ‘feasibly optimal’ in the engineering sense, as no 

actuator coupled system can precisely track them. 

Please, take a step back, and analyse what are control engineers actually trained for: 

when control engineering faces these ‘optimal’ trajectories – or any other not feasible 

trajectory, the best what can be done is to apply fast and strong enough control loops so 

that the controlled system transient period is acceptably small, while the overshoot and 

the settling time also remains “controlled” – as obviously, these trajectories induce 

vibrations, significant system state oscillations. When analysing such control signals 

well noticeable are the immense energy spikes used for achieving, or at least trying to 

achieve these fast, discontinuous transients, compensating for overshoots and the 

resulting vibrations, oscillations after the rise time – be it mechanical or electrical in 

nature. These effects are unwanted – they increase wear and reduce the life span of 
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physical systems, in applications like crane transport the oscillations are just 

uncomfortable and reduce the task duration, in certain applications like remote brain 

surgery end effector oscillations are absolutely not acceptable, and in extreme cases of 

high speed vehicles they are source of catastrophic accidents. 

A lot of research effort has been put into studying and dampening, controlling 

vibrations. Vibrations are highly undesirable for any precise path tracking. Be it cranes 

or robotic manipulators (RMs) – the lowest vibration levels were identified to 

correspond to the magnitude of the second time derivative of the induced torque, while 

an appropriately constructed trajectory can decrease oscillations and energy 

consumption by a factor of 10, – as presented in [73]. 

Soon after introducing optimal trajectory planning, it had been realised that also the 

control effort can and should be minimised. First minimum acceleration trajectories had 

been devised aiming for a minimal force action, later special cost functions had been 

adopted to consider the direct control energy effort. In [58] Pontryagin defined the 

mathematical theory of optimal processes. To minimize the total used energy 𝐸𝑡𝑓 of 

moving mass 𝑚 from A to B, a cost function like 𝐸𝑡𝑓 = ∫ 𝑷𝒂𝒃𝒔(𝑡)𝑑𝑡
𝑡𝑓
0

 is devised by 

cumulating the absolute value of the instantaneous applied power 𝑷𝒂𝒃𝒔(𝑡) =
|𝑭(𝑡)𝒗(𝑡)| + |𝝉(𝑡)𝝎(𝑡)| through which the product of the absolute acceleration and 

velocity function profile of the shortest geometric path is minimized. Since 𝑷𝒂𝒃𝒔(𝑡) =
∑ 𝑚𝑖 ∙ |𝒂𝒊(𝑡)| ∙ 𝒗𝒊(𝑡)𝑖  this minimization process is like looking for the minimal 

acceleration trajectory, which results in a polynomial trajectory of order 3, with a 

discontinuity in acceleration for 𝑡 = 0 and 𝑡 = 𝑡𝑓.  

Figure 28. 

Minimal acceleration trajectory components. 

A minimal acceleration trajectory is presented in Figure 28 - notice the considerable 

jerk Dirac impulse of 24m/s
3
 despite a very modest speed and acceleration levels. 
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Figure 29. 

Minimal torque trajectory components. 

A minimal torque trajectory is presented in Figure 29 - notice the high jerk Dirac 

impulse of 90m/s
3
 despite a very modest speed and acceleration levels. 

Despite these advanced optimal trajectories system vibrations remained to be a 

substantial issue and targeted by myriads of research effort. Research had pointed out 

that vibrations are in correlation with the jerk. Experiments on train passenger comfort 

have proven that jerk levels higher than 3m/s
3
 are already unacceptable [82]. 

The first time derivative of acceleration, which is the third time derivative of the 

displacement is called jerk 𝒋 = 𝑑3𝒔/𝑑𝑡3 = �⃛�(𝑡). Polynomial trajectories of order 5 can 

be designed as minimum jerk trajectories – as in Figure 30. The construction of minimal 

jerk trajectories, like for the previously mentioned minimum acceleration and minimum 

energy trajectories, is by minimization of a cost function; in case of minimum jerk, it 

is: 𝑪(𝑠) =
1

2
∫ �⃛�(𝑡)2𝑑𝑡

𝑡𝑓
0

. 

Calculus of variation or Hamiltonian with Lagrange functions is one of the common 

tools to solve this mathematical problem, where a perturbation function 𝜹(𝑡) is added 

with a constant multiplier 𝛼 in the form of 𝒔(𝑡) + 𝛼 ∙ 𝜹(𝑡), such that for boundary 

conditions the perturbation and its derivatives are 0 like 𝜹(𝑥) = �̇�(𝑥) = �̈�(𝑥) = 𝜹(𝑥) =
0 for 𝑥 = 0 and 𝑥 = 𝑡𝑓. Based on calculus of variations, instead of minimizing the 

function 𝑪(𝒔(𝑡) + 𝛼 ∙ 𝜹(𝑡)) =
1

2
∫ (�⃛�(𝑡) + 𝛼 ∙ 𝜹(𝑡))2𝑑𝑡

𝑡𝑓
0

, the zero point of its partial 

derivative for 𝛼 = 0 is calculated like 𝜕𝑪(𝑠 + 𝛼𝛿)/𝜕𝛼|𝛼=0  =  ∫ (�⃛�(𝑡) + 𝛼 ∙
𝑡𝑓
0

𝜹(𝑡)) ∙ �⃛�(𝑡)𝑑𝑡|
𝛼=0

 = ∫ �⃛�(𝑡) ∙ 𝜹(𝑡)𝑑𝑡
𝑡𝑓
0

. 

Using boundary conditions the result is − ∫ 𝒔(𝟔)(𝑡) ∙ 𝜹(𝑡)𝑑𝑡 = 0
𝑡𝑓
0

, which per the 

calculus of variations is equivalent to the requirement of having the sixth derivative of 

the displacement equal to zero: 𝒔(𝟔)(𝑡) = 0. Knowing all the boundary conditions of the 

trajectory 𝒔(𝑥) = 𝑠0, �̇�(𝑥) = 𝑣0, �̈�(𝑥) = 𝑎0 at 𝑥 = 0, and similarly for 𝑥 = 𝑡𝑓; the 

𝑎, 𝑏, 𝑐, 𝑑, 𝑒 parameters can be calculated as a polynomial trajectory 𝒔(𝑡) =  𝑎 + 𝑏𝑡 +
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𝑐𝑡2 + 𝑑𝑡3 + 𝑒𝑡4 + 𝑓𝑡5, �̇�(𝑡) = 𝑏 + 2𝑐𝑡 + 3𝑑𝑡2 + 4𝑒𝑡3 + 5𝑓𝑡4, �̈�(𝑡) = 2𝑐 + 6𝑑𝑡 +
12𝑒𝑡2 + 20𝑓𝑡3. A minimal jerk trajectory is presented in Figure 30. 

Figure 30. 

Minimal jerk trajectory components. 

For such trajectories jerk 𝒋(𝑡0) = �⃛�(𝑡 = 0) = 6𝑑, obviously starts with an instantaneous 

jump from 0 to 6𝑑, also at the final moment 𝑡 = 𝑡𝑓 there is also a discontinuous a jump 

from a non-zero to 0 value of the jerk. As we have previously discussed: this induces 

oscillations. A sudden jerk induces vibrations; in case of vehicles like elevators, high 

speed trains, roller coasters the ride is very uncomfortable at those points. 

5.1.2 Multi-Rotor Unmanned Aerial Vehicle Flight Trajectory 

Multi-rotors like quad- and hexa-rotors are popular representatives of UAVs as they are 

relatively simple to build and easy to control, while being of versatile applicability, 

capable of vertical take-off and landing. Also the multi-rotor architecture has simple 

mechanics, high relative payload capability and good manoeuvrability. The study of 

multi-rotor kinematics and dynamics is based on the physics of aerial platforms [68]. 

The kinematics with the general force and torque dynamics of any symmetric multi-

rotor (quad- or hexa- rotors) is the equivalent 6 DOF dynamic system of mass m moved 

against the gravity acceleration g. Generalised translational forces: 𝑚(�̈� + 𝑔[0 0 1]𝑇) =

𝑭𝜉; and the generalised body torques are: 𝑱(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� = 𝝉𝑩, where in analogy 

with robotic manipulators: 𝑱�̈� is the inertia matrix; 𝑪�̇� is the Coriolis term;and the state 

vector 𝒒 is composed of the Euler angles for roll, pitch and yaw 𝒒 = [𝝓, 𝜽,𝝍].  
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The roll and pitch of a multi-rotor UAV can be calculated from the path curve vector 

function as (x(t),y(t),z(t)) and the required yaw motion ψ(t) as presented in [35] like: 

𝝓 = 𝑎𝑠𝑖𝑛 (
�̇�𝑠𝑖𝑛𝝍−�̇�𝑐𝑜𝑠𝝍

�̈�2+�̈�2+(�̈�+𝑔)2
), 𝜽 = 𝑎𝑡𝑎𝑛 (

�̇�𝑐𝑜𝑠𝝍−�̇�𝑠𝑖𝑛𝝍

(�̈�+𝑔)
)         (54) 

Equation (54) highlights that compared to RMs, 3D cranes and any directly actuated 

system, multi-rotor UAVs introduce yet another layer of complexity: their torque 

dynamics is similar to RMs, while they are propelled by a lift force of rotating blades 

fixed to the body 𝑧 axes. Paths [𝛏(𝑡), 𝝁(𝑡)] = [(𝒙(𝑡), 𝒚(𝑡), 𝒛(𝑡)), 𝝍(𝑡)] defined along 

earth coordinate �⃗�, �⃗�, 𝑧 axes extended with the desired yaw rotation angle 𝜓(𝑡) translate 

to body rotation coordinates 𝝁(𝑡) = (𝝋(𝑡), 𝜽(𝑡), 𝝍(𝑡)) as defined by equation (54)  

where  𝝋(𝑡) = 𝝋(�̈�(𝑡), �̈�(𝑡), �̈�(𝑡)),  and  𝜽(𝑡) = 𝜽(�̈�(𝑡), �̈�(𝑡), �̈�(𝑡)), which means 

 𝝁(𝑡) =  𝝁 (�̈�(𝑡)).  

Figure 31. 

Minimal snap trajectory components. 

Thus, from the torque equation we can conclude 𝝉𝑩(𝑡) = 𝝉𝑩(𝛏(𝟒)), where 𝛏(𝟒) =
𝑑4𝒇(𝒕)/𝑑𝑡4 is the fourth time derivative of the displacement curve vector function f(t). 

This means that we have the body torque being a function of the displacement snap, the 

fourth time derivative of the displacement. This is the point where [37] draws the 

conclusion to use minimum snap trajectories. Minimum-snap polynomial (x,y,z) 

trajectories are proven good for quadrotors, “since the motor commands and attitude 

accelerations of the vehicle are proportional to the snap, the fourth time derivative, of 

the path” [37]. A minimal snap trajectory is presented in Figure 31; for the sake of some 

further analysis, please notice the snap discontinuity at t0 and tfinal time instances. 
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Notice that the control signal (commonly the torque output of an electric motor) is not a 

virtual mathematical quantity to be optimised without constraints. The actuators are real 

physical systems of studied characteristics, dynamical properties and physical 

limitations. 

Researches like [81] and [48] are pointing out that applying input shaping instead of 

direct step change in the control signal, for example in BLDC rotor speed control, 

results in both the unwanted oscillations reduction and the energy consumption 

reduction; also the responsiveness of the system can be increased - when there are no 

current spikes, much less energy used [74]. 

There are multiple approaches for multi-rotor UAV trajectory planning, starting from 

simple path plotting up to complete trajectory generation: [5], [49], [65].  

[51] describes the possibility of defining the major path milestones by visual fuzzy 

servoing, also any map based three search algorithms can be applied to define the next 

major target point during a flight mission.  

To facilitate both time and energy efficiency of flight the major path milestones are best 

connected with continuous curvature functions f(s) [22]. 

5.1.3 Electric Motors as Actuators 

For BLDC actuators it is common to merely associate the torque with the electric 

current in the actuator 𝒊𝒆(𝑡) ≈ 𝑐𝑜𝑛𝑠𝑡2 ∙ 𝝉𝑩𝒊(𝑡). Whereas the complete electrical 

equation of an electric motor is: 

𝒗𝒆(𝑡) = 𝐿𝑒
𝒅𝒊𝒆

𝒅𝒕
(𝑡) + 𝑅𝑒𝒊𝒆(𝑡) + 𝐾𝑏𝝎(𝑡)          (55) 

where 𝒗𝒆(𝑡) is the armature voltage; 𝒊𝒆(𝑡) is the armature electric current, 𝝎(𝑡) is the 

rotation velocity of the rotor; 𝐿𝑒, 𝑅𝑒 are the electrical inductance and resistance of the 

armature; 𝐾𝑏 is the back EMF parameter.  

The even more determinative characteristic of an electro motor actuator is defined by 

the torque equation as: 

 𝐾𝜏𝒊𝒆(𝑡) − 𝝉𝑳(𝑡) = 𝐽𝑀
𝒅𝝎

𝒅𝒕
(𝑡) + 𝛾𝑀𝝎(𝑡),          (56) 

where 𝝉𝑳 is the load torque; 𝐾𝜏 is the torque constant; 𝐽𝑚 is the motor inertia; and 𝛾𝑀 is 

the rotor friction coefficient. 

The motor load torque for a rotor blade propeller application is: 

 𝝉𝑳(𝑡) = 𝐽𝑅
𝒅𝝎

𝒅𝒕
(𝑡) + 𝐾𝑑𝝎2(𝑡).           (57) 

where 𝐾𝑑 is the rotor drag parameter and 𝐽𝑅 is the rotor blade inertia. Further on from 

equations (55)-(57) we can conclude: 

𝒅𝒊𝒆

𝒅𝒕
(𝑡) =

1

 𝐾𝜏
((𝐽𝑀 + 𝐽𝑅)

𝒅𝟐𝝎

𝒅𝒕𝟐
(𝑡) + (𝛾𝑀 + 2𝐾𝑑𝝎)

𝒅𝝎

𝒅𝒕
(𝑡)),        (58) 

For electro-motor torque actuated mechanical systems like common cranes, RMs or 

multi-rotor UAVs cost functions like 𝐸𝑡𝑓 = ∫ 𝝉𝒂𝒃𝒔(𝑡)𝑑𝑡
𝑡𝑓
0

 are also used to minimize the 

total torque, the used actuator electric energy; as  in a stationary state of the actuators it 
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is common to use a simplified motor torque model, where the applied current is linearly 

proportional to the resulting torque 𝒊𝒆(𝑡) ≅ 𝑐𝑜𝑛𝑠𝑡 ∙ 𝝉(𝑡) [3].  

5.1.4 Often Neglected System and Actuator Characteristics, Effects of Infeasible 

Trajectories 

Anti-swing control of cranes is still a popular research subject, since their construction 

simplicity, thus availability along wide industrial practical applicability. Very advanced 

control mechanisms, including input shaping have been studied; the primary goal is to 

move the pendulum like system efficiently, keeping the pendulum system oscillations at 

minimum, so that the payload mass swing – trajectory tracking error is at minimum 

[11]. 

The dynamic model of an RM or even that of a 3D crane [11] has a quite complex 

torque equation like 𝛕(t) = 𝑯(𝒒) ∙ �̈� + �̇�𝑇 ∙ 𝑪(𝒒, �̇�) ∙ �̇� + 𝑮(𝒒), with highly nonlinear 

𝑯(𝒒), 𝑪(𝒒), 𝑮(𝒒) functions, where joint variables 𝒒 = 𝒒(𝑠) themselves are not trivially 

deducted through the systems construction geometry along the end effector path 𝐬, so 

solutions to energy optimal trajectories come only either in flavours of drastic 

reductions to linear approximations of the RM dynamics, or in flavours of numerical 

iterative methods. In the end linear approximation results for RMs are in general sub-

optimal, while numerical iterative solutions are far from real time usability. 

Even for the simplest direct electro-motor actuator considering the armature electric 

current 𝒊𝒆(𝑡) ≅ 𝑐𝑜𝑛𝑠𝑡1 ∙ 𝝉(𝑡) = 𝑐𝑜𝑛𝑠𝑡2 ∙ 𝒂(𝑡) model, the discontinuity in jerk 𝒋(𝑡) =
�̇�(𝑡) =  𝑑𝒂(𝑡)/𝑑𝑡 means a discontinuity in 𝒊�̇�(𝑡) = 𝑑𝒊𝒆(𝑡)/𝑑𝑡 and by equation (55) that 

would translates to armature voltage 𝒗𝒆(𝑡) discontinuity, which is not possible in real 

life.  

Approaching from a different direction we can conclude the same: if we accept the 

paradigm of not planning for bang-bang trajectories because of discontinuity of the third 

derivative of the linear displacement (�̇�(𝑡)), we have to accept the same for the rotation 

displacement (�̈�(𝑡)) as well. By equation (58) we conclude that armature current 

change 𝒊�̇�(𝑡) is continuous and then by (55) 𝒗𝒆(𝑡) is also continuous. 

Vibration levels in RMs have been identified as induced even by discontinuities in the 

second derivative of the torque. Now this must not come as a surprise, being aware of 

these described voltage and current discontinuity circumstance and equation (58), we 

can conclude that �̈�(𝑡) ≅ 𝑐𝑜𝑛𝑠𝑡1 ∙ �̈�𝒆(𝑡) ≅ 𝑐𝑜𝑛𝑠𝑡2 ∙ 𝑑2(𝝎(𝑡)2)/𝑑𝑡 = 𝑐𝑜𝑛𝑠𝑡2 ∙ (2�̇�2 +
2𝝎�̈�). We have the angular position of the actuator rotor, which is a real physical body 

with mass that cannot be accelerated in a discontinuous manner. 

The applied mechanical force or torque 𝑴𝑩(𝑡) ≈ 𝑚 ∗ �̈�(𝑡)2 excreted onto the body is 

proportional to the second time derivative of the linear position or rotation angle �̈�(𝑡) of 

the body. As the body is driven by a rotor blade, 𝝎(𝑡) is proportional to  �̈�, the body 

angular acceleration. We must be open to conclude that in reality no discontinuities can 

physically occur, not even in the fourth time derivatives of a displacement neither for 

the controlled system, nor for the control actuator – see equations (55), (58). 

My major point is that for limiting the actuator torque vibrations, it must not be 

considered only as a mathematical problem of limiting |�⃛�|, the absolute value of the 

jerk. It is time to realize that in trajectory planning not the extent of discontinuity in a 

physical quantity is the problem, but the existence of such discontinuity itself is 

unacceptable or at least a sub-optimal approach. 
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I would like to highlight that in [37] the rotor blade velocity is considered as an 

arbitrary control input. As 7
th

 order minimum-snap polynomial trajectories are 

discontinuous in displacement crackle, the fifth time derivative of displacement, my 

claim is that this is still a sub-optimal approach. The rotor blade velocity is not an 

arbitrary theoretical control signal, but a real, electro-mechanical physical system, 

subject to aero dynamical load conditions. 

We can directly conclude that what can be realised for RMs, the same applies to UAVs: 

the second time derivative of the actuator torque has to be continuous. From equations 

(43) and (54) this requirement is equivalent to having a continuous displacement pop, 

𝑝(𝑡) = 𝛏(𝑡)(6) the sixth time derivative of the [(𝒙(𝑡), 𝒚(𝑡), 𝒛(𝑡))] displacement. This 

realisation of mine is the baseline for my fourth hypothesis. 

By my Hypothesis VI this paper presents a novel direct path construction real-time 

algorithm for generating physically feasible, time-and energy optimal, bounded, 

continuous trajectories that can reach any target displacement with a known minimal 

error. These trajectories can be designed to arbitrary smoothness – depending on system 

requirements; they are to be designed smooth up to the 5
th

 time derivative of 

displacement for multi-rotor UAV trajectories. The term (n times) smooth is used as in 

being equivalent to having continuous (n
th

) time derivative. 

5.1.5 Validating Quality of System Trajectory 

The system path can be defined as a parametrised vector function f(s), where the nature 

of parametrisation defines the trajectory characteristics as 𝒒 = 𝒇(𝑠), �̇� = 𝒇′(𝑠)�̇�, �̈� =
𝒇′′(𝑠)�̇�2 + 𝒇′(𝑠)�̈�. For these systems, the primary trajectory design challenge is to find 

such efficient parametrisations that the required system constraints are fulfilled. 

The defined boundary conditions of the trajectory, the limits of q displacement time 

derivatives have to be satisfied. The corresponding limits on maximum values for time 

derivatives of the displacement parametrisation s have to be obeyed. Continuity and 

smoothness of every trajectory component s has to be ensured up to the predetermined 

order (for 
𝑑5𝑠

𝑑𝑡5 ; which is 5 in case of multi-rotors). The term (n times) smooth is used as 

in being equivalent to having continuous (n
th

) time derivative. 

5.1.5.1 Multi-rotor Test Flight Trajectory 

To evaluate the effect of a trajectory to the multi-rotor flight dynamics we will observe 

plots of the roll and pitch angle, the resulting body torques, the required rotor angular 

velocities and accelerations. Effects of discontinuities in different time derivatives will 

be presented. A comparison will be presented for the proposed new harmonic trajectory 

and the classical trajectories. 

The term (n times) smooth is used as in being equivalent to having continuous (n
th

) time 

derivative. For any signal n times smoothness can be validated by excluding the 

occurrence of discontinuities in the (n+1)
st
 time derivative or even more obviously by 

excluding occurrence of impulses in the (n+2)
nd

 or higher time derivatives. 

5.1.5.2 3D Overhead Crane Test Trajectory 

3D cranes are the most obvious tools to present systems state oscillations. The most 

simple and obvious way to present trajectory induced system oscillations is to analyse 

an up-scaled crane system – with a longer pendulum length, so that all oscillation sings 

are notably present as either the payload trajectory tracking error or in the state space 
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rate of change; for a crane it is the second time derivative of payload position that will 

magnify the presence of trajectory induced oscillations in a feed forward control system. 

The used benchmark 3D overhead crane is described in [11]. 

Anti-swing control of cranes is still a popular research subject, since their construction 

simplicity, thus availability along wide industrial practical applicability. Very advanced 

control mechanisms, including input shaping have been studied; the primary goal is to 

move the pendulum like system efficiently, keeping the pendulum system oscillations at 

minimum, so that the payload mass swing – trajectory tracking error is at minimum 

[11]. 

Crane system state oscillation effects will be presented for the proposed new harmonic 

trajectory and the classical trajectories. Trajectory feasibility and oscillatory properties 

of a crane system are most obviously presented by inspecting the actual system state 

variables and their planned trajectory – for an optimal feasible trajectory the actual 

system variable changes will match the planned state trajectory, obviously without any 

unwanted, unplanned oscillations. 

5.2 New Scientific Achievements 

5.2.1 New Feasible Optimal Harmonic Trajectories of Bounded, Smooth Time 

Derivatives 

In [37] the rotor blade velocity is considered as an arbitrary control input. As 7
th

 order 

minimum-snap polynomial trajectories are discontinuous in displacement crackle, fifth 

derivative of displacement, my claim in [s14], [s15] is that this is still a sub-optimal 

approach; again: the rotor blade velocity is not an arbitrary theoretical control signal, 

but a real, electro-mechanical physical system, subject to aero dynamical load 

conditions. 

The goal of this paper is to present a new method for flexible and efficient real-time 

direct path parametrisation, which is capable of generating physically feasible, time-and 

energy optimal, bounded, continuous trajectories with minimal induced oscillations; a 

method even usable for autonomous navigation. The notion of time and energy 

optimality is not used in mathematics theory manner, but in real life, physically feasible 

engineering manner [s14], [s15]. 

The process of finding optimal trajectories is in this paper focused on finding the 

appropriate parametrisation for the path vector function f(t), given the pre-defined 

feasibility limits on the displacement time derivatives, in conjunction with the effects of 

the path curvature. 

The defined boundary conditions of the trajectory have to be satisfied. The defined 

limits on maximum values for arbitrary time derivatives of the displacement have to be 

obeyed. 

Continuity and smoothness of every trajectory component has to be ensured up to the 

predetermined order: six times smooth in case of multi-rotors, four times smooth in case 

of cranes and RMs. 

As described in [s14] and [s15], to have realistic, feasible torques along a trajectory, 

which are efficiently controllable without chattering, we need smooth torque changes. 

For indirect rotor-blade propulsion systems (ships, multi-rotors) we have the propulsion 

motor force or torque 𝑴𝑴(𝑡) ≈ 𝑐𝑜𝑛𝑠𝑡 ∙ 𝝎(𝑡)2 proportional to the square of the rotor 
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angular velocity. The applied mechanical force or torque 𝑴𝑩(𝑡) ≈ 𝑚 ∗ �̈�(𝑡)2 excreted 

onto the body is proportional with the second derivative of the linear position or rotation 

angle �̈�(𝑡) of the body. As the body is driven by a rotor blade, 𝝎(𝑡) is proportional 

to  �̈�, the body angular acceleration. 

In reality no discontinuities can physically occur, not even in third time derivatives of a 

displacement neither for the controlled system, nor for the control actuator. 

For a realistic, feasible control input of direct BLDC actuated systems (RMs, cranes, 

wheeled vehicles) the designed path has to be such that the planned snap (𝜉(4)) must be 

continuous and proportional to the third derivative of the motor shaft rotational 

displacement . Ultimately for a feasible trajectory for the body rotation we must obey 

that the feasible body torque transients are proportional to the possible motor torque 

transients; equivalently the feasible second derivative of the body displacement 

𝜉(2)(𝑡) has to be proportional to motor shaft possible 𝜔(𝑡). On top of the allowed 

trajectory transient behaviour there are requirements on its smoothness as well. To be 

able to optimally control an electric motor with either 𝒗𝒆(𝑡) or 
𝒅𝒊𝒆

𝒅𝒕
(𝑡), the 

𝒅𝟐𝝎

𝒅𝒕𝟐
(𝑡) signal 

has to be continuous; equivalently 𝜉(4)(t), snap, the fourth time derivative of body 

displacement has to be continuous. 

After algebraic manipulations of equations (55)-(58) by Laplace transformations we can 

conclude: 

𝐼𝑒 =
𝑉𝑒−𝐾𝑏𝑊

𝑅+𝐿𝑠
              (59) 

by notation (𝐽𝑀 + 𝐽𝑅) = 𝐽, 𝐾𝑇 = 𝐾𝑏 = 𝐾, 𝐵 = 𝐿𝑒𝐽, 𝐶 = 𝑅𝑒𝐽 + 𝐿𝑒𝛾𝑀, 𝐷 = 𝐿𝑒𝐾𝑑 we get: 

−𝐵𝑠2𝑊 − 𝑠𝑊(𝐶 + 𝐷𝑊) = 𝐾𝑉𝑒 − 𝑊(𝐾2 + 𝑅𝑒𝛾𝑀 + 𝑅𝑒𝐾𝑑𝑊),        (60) 

where the right hand side represents the stationary mode of the electric motor, and the 

left hand side represents the dynamic transient mode. For cases of voltage control we 

can use directly the solution of equation (60), while for current control of the electric 

motor, the solution has to be substituted to equation (59). For the stationary case we can 

directly calculate the required 𝒗𝒆 for an arbitrary stationary 𝜔𝑠𝑡𝑎𝑡 by making the 

transient left hand side equal to zero. The solution of the left hand side, keeping the 

right hand side zero, defines the transient mode characteristic of the rotation angular 

velocity 𝝎𝒕(𝑡) as: 

𝝎𝒕(𝑡) = −
𝐶

𝐷
− (

𝐴𝐵

𝐷
)𝑡𝑎𝑛ℎ (

𝐴

2
(𝑇ℎ − 𝑡)),           (61) 

where 𝐴 = √(
𝐶2

𝐵2 +
2𝐷

𝐵
𝐸), 𝑇ℎ;  and 𝐸 are constants calculated for 𝝎𝒕(0) = 𝜔0, 𝝎𝒕̇ (0) =

𝜔𝑑0 boundary conditions. For 𝝎𝒕̇ (0) = 𝜔𝑑0 = 0 equation (61) can be presented in the 

form of:  

𝝎𝒕(𝑡) =
𝜔𝑠𝑡𝑎𝑡

2
(1 + 𝑡𝑎𝑛ℎ (

𝜋

𝑃
(𝑡 −

𝑃

4
))),            (62) 

where 𝜔𝑠𝑡𝑎𝑡 stands for the targeted stationary rotation speed; 𝑃 is a system specific 

parameter describing the transient characteristic - the settling time of the transient; for 

the given boundary condition 𝐸 = 𝐸(𝜔0) we have: 
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𝑃 =
2𝜋

𝐴
= 2𝜋√(

𝐶2

𝐵2 +
𝐵𝐷

𝐵2 𝐸)
−1

=
2𝜋𝐿𝑒(𝐽𝑀+𝐽𝑅)

√(𝑅𝑒(𝐽𝑀+𝐽𝑅)+𝐿𝑒𝛾𝑀)2+𝐸𝐿𝑒(𝐽𝑀+𝐽𝑅)𝐿𝑒𝐾𝑑
       (63) 

Dependency of multirotor torque and rotor blade angular velocity on the continuity of 

the pop function can be also demonstrated by simply calculating and plotting these 

system values for an artificially created step function-like trajectory pop [s14] – it is 

well notable that any discontinuity in the trajectory pop will result in a discontinuity in 

the time derivative of the required rotor angular velocity, which we have already 

concluded to be a physical not feasible requirement. The most important system 

variable time signals of such infeasible discontinuous trajectories are presented in 

Appendix II. 

THESIS IV.a - DEFINITION: 

For a realistic, feasible general system trajectory one must design realistic, 

feasible control system inputs. For direct BLDC actuated systems (RMs, cranes, 

wheeled vehicles) the designed path has to be such that the planned body displacement 

fourth time derivative, the snap (𝜉(4)) must be continuous and proportional to the third 

derivative of the motor shaft rotational displacement as in equation (62). 

We must notice that multi-rotor UAVs introduce yet another layer of complexity: their 

torque dynamics is similar to RMs, while they are propelled by a lift force of rotating 

blades fixed to the body 𝑧 axes. Paths [𝛏(𝑡), 𝝁(𝑡)] = [(𝒙(𝑡), 𝒚(𝑡), 𝒛(𝑡)),𝝍(𝑡)] defined 

along earth coordinate �⃗�, �⃗�, 𝑧 axes extended with the desired yaw rotation angle 𝜓(𝑡) 

translate to body rotation coordinates 𝝁(𝑡) = (𝝋(𝑡), 𝜽(𝑡), 𝝍(𝑡)) as defined by equation 

(54)  where 𝝋(𝑡) = 𝝋(�̈�(𝑡), �̈�(𝑡), �̈�(𝑡)),  and 𝜽(𝑡) = 𝜽(�̈�(𝑡), �̈�(𝑡), �̈�(𝑡)), which 

means 𝝁(𝑡) =  𝝁 (�̈�(𝑡)). Thus, from the torque equation 𝛕𝐁(t) = 𝐇(𝛍) ∙ �̈� + �̇�𝐓 ∙ 𝐂(𝛍) ∙

�̇� = 𝛕𝐁(𝛏(𝟒)) we can conclude 𝝉𝑩(𝑡) = 𝝉𝑩(𝛏(𝟒)), where 𝛏(𝟒) = 𝑑4𝒇(𝒕)/𝑑𝑡4 is the 

fourth time derivative of the displacement curve vector function f(t).  

This means that we have the body torque being a function of the displacement snap, the 

fourth time derivative of the displacement. This is the point where [37] draws the 

conclusion to use minimum snap trajectories. 

But this is not the complete picture! For multi rotors the control signal is the angular 

velocity of the rotor blade, which is not an arbitrary ‘just a mathematical’ function; it is 

a real physical system! 

5.2.2 New Feasible Optimal Harmonic Multi-rotor Flight Trajectories 

For a realistic, feasible control input of multi-rotor UAVs, we must not only consider 

equation (54), but also (55) and (58), so the designed UAV path has to be such that the 

displacement pop (𝝃(6)) must be continuous and the body snap transient has to be 

feasible by a BLDC: 𝝃(𝑡)(4)~𝝎(𝑡). 

As described in [s6], [s7], [s13], [s14] to have realistic, feasible torques along a 

trajectory, which are efficiently controllable without chattering, we need smooth torque 

changes. The term (n times) smooth is used as in being equivalent to having continuous 

(n
th

) time derivative. 
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THESIS IV.b - DEFINITION: 

For a realistic, feasible multi-rotor trajectory one must design realistic, 

feasible control system inputs, such that the planned body displacement sixth time 

derivative, the pop (𝜉(6)) must be continuous and proportional to the third derivative of 

the motor shaft rotational displacement as in equation (62). 

For any trajectory we have a target position and generally a limit to the maximum 

velocity  ξ(1) < Vmax for safety. Usually there is also a limit | ξ(2)| < Amax to the 

acceleration and deceleration, too – either for power source capacity, constructional 

integrity or passenger safety reasons. The jerk is to be bounded| ξ(3)| < Jmax as it has 

already been concluded by many researchers either to reduce structural vibrations or 

just for passenger comfort.  

The important message of the proposal of this paper is that we also must not overlook a 

simple physical constraint of the actuator motor either: the rotation speed of the rotor is 

bounded – this limit in case of a multi-rotor vehicle is equivalent to limiting the 

trajectory displacement crackle |  ξ(5)| < Cmax. 

As already highlighted all currently named “optimal” trajectory planning methods, be it 

minimum time, acceleration bang-bang, minimum energy or fuel, minimum jerk, 

minimum torque or minimum acceleration trajectories, they all suffer from the same 

physical infeasibility issue: existence of supposed discontinuity in the second or third 

derivative of the displacement, which translates to a discontinuity target in the actuator 

rotor position time derivatives of second or third order. In case of a multi-rotor vehicle 

not even a minimum snap trajectory qualifies as physically feasible sound trajectory – in 

terms of targeting continuous actuator actions up to the third time derivative of the 

actuator rotor displacement. 

It is easy to overlook these issues as we have the power of the feedback controller at our 

disposal. A well-tuned strong, fast feedback loop efficiently copes with system 

identification deficiencies and unmodelled, random perturbations, so we readily use 

them - and by the way we mask our physically infeasible trajectories. This is so natural 

an approach that the most basic tool for measuring the performance of a controller is the 

step response function. The goal is usually to have the fastest response with just a small 

overshoot, which induces only limited system vibrations lasting for a planned settling 

time. But we have to pay the cost of extra energy used for control – a luxury that we 

cannot allow for battery powered flying bodies. 

The important message of the proposal of this paper based on [s6] is that we must not 

overlook the physical capabilities, constraint of neither the system nor the actuator 

itself. For multi-rotors their body torques and matching rotation speed of rotors and 

their transient behaviour is limited – these constraints are proportional to properties of 

the trajectory displacement snap 𝒔(𝑡) = 𝝃(4)(𝑡). The snap is required to be 2 times 

smooth, equivalent to pop  𝒑(𝑡) = 𝛏(6)(𝑡) being continuous. Also by equation (61) the 

transient behaviour of rotor 𝝎𝒕(𝑡) rotation speed has to be proportional to                 

 1 + 𝑡𝑎𝑛ℎ (
𝜋

𝑃
(𝑡 −

𝑃

4
)). 

The proposal of this paper is to use for the snap transient a base function in the form of: 

𝒄𝒕(𝑡) =  𝝃𝒕
(5)

(𝑡) = 𝐺 ∙ (1 − 𝑐𝑜𝑠 (
2𝜋

𝑃
𝑡)),           (64) 
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where 𝑃 is the design parameter responsible for the trajectory duration and also the 

energy efficiency with oscillation avoidance, its value has to be equal or an integer 

multiple of the settling time of the 𝝎𝒕(𝑡) actuator system - in case of BLDC see 

equation (11); and G is the design parameter by which we freely control the required 

displacement length for traveling any distance. By this we obtain the pop base 

continuous transient function as: 

 𝒑𝒕(𝑡) = 𝝃𝒕
(6)

(𝑡) = 𝐺 ∙
2𝜋

𝑃
sin (

2𝜋

𝑃
𝑡).           (65) 

For any trajectory we have a target position and generally a limit to the maximum 

velocity  ξ(1) < 𝑉𝑚𝑎𝑥 for safety. Usually there is also a limit | ξ(2)| < 𝐴𝑚𝑎𝑥 to the 

acceleration and deceleration, too – either for power source capacity, constructional 

integrity or passenger well-being reasons. For advanced projects also the jerk is to be 

limited| ξ(3)| < 𝐽𝑚𝑎𝑥 as it has already been concluded by many researchers either to 

reduce structural vibrations or just for passenger comfort. 

THESIS IV.c - DEFINITION: 

A realistic, feasible multi-rotor trajectory parametrisation of continuous 

body displacement sixth time derivative pop (𝜉(6)), such that the snap (𝜉(4)) is 

proportional to the motor shaft rotational velocity as in equation (62) can be designed 

by selecting: 

𝒑𝒕(𝑡) = 𝝃𝒕
(6)

(𝑡) = 𝐺 ∙
2𝜋

𝑃
sin (

2𝜋

𝑃
𝑡).             (65) 

𝒄𝒕(𝑡) =  𝝃𝒕
(5)

(𝑡) = 𝐺 ∙ (1 − 𝑐𝑜𝑠 (
2𝜋

𝑃
𝑡)),             (64) 

where P is either measured, as in equation (62), or calculated based on equation (63) 

𝝎𝒕(𝑡) =
𝜔𝑠𝑡𝑎𝑡

2
(1 + 𝑡𝑎𝑛ℎ (

𝜋

𝑃
(𝑡 −

𝑃

4
))),              (62) 

𝑃 =
2𝜋

𝐴
= 2𝜋√(

𝐶2

𝐵2
+

𝐵𝐷

𝐵2
𝐸)

−1

=
2𝜋𝐿𝑒(𝐽𝑀+𝐽𝑅)

√(𝑅𝑒(𝐽𝑀+𝐽𝑅)+𝐿𝑒𝛾𝑀)2+𝐸𝐿𝑒(𝐽𝑀+𝐽𝑅)𝐿𝑒𝐾𝑑
        (63) 

The proposal of this paper is to use for multi-rotors a parameterised single sinus wave 

𝒑(𝑡) = 𝐺
2𝜋

𝑃
sin (

2𝜋

𝑃
𝑡) as the base function for the displacement pop to reach the desired 

smooth crackle as 𝒄(𝑡) = ∫𝒑(𝑡)𝑑𝑡 = 𝐺 (1 − 𝑐𝑜𝑠 (
2𝜋

𝑃
𝑡)), which is of transient 

characteristics physically feasible to match by a BLDC motor. P is the period of 𝒑(𝑡) 

and by this it must match the dynamics of the actuated system. G can be an arbitrary 

positive real value, which controls the amplitude of the pop base function and thus 

trajectory displacement length. The integral of a full period 𝒄(𝑡) for t=1..P is to be used 

for the ascending part of the jerk function 𝒋+(𝑡) = ∫ 𝒄(𝑡)𝑑𝑡, for simplicity we take 0 for 

the integral constant value. For 𝒋−(𝑡) descending part of jerk the integral of –c(t) is 

taken. In case that the acceleration 𝒂(𝒕) = ∫(𝒋+(𝑡) + 𝒋−(𝑡 + 𝑃))𝑑𝑡 does not reach the 

desired level, a constant 𝒋𝒎𝒂𝒙 interval is to be inserted between 𝒋+ and 𝒋− intervals. The 

velocity is planned in an analogous manner, by integrating the rising acceleration and 

the falling deceleration interval, with optional inclusion of a constant acceleration 

interval to reach the desired maximum velocity, all this without overshooting the 

reached acceleration limit. By keeping the velocity constant in the middle of the 
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trajectory we ensure feasible time optimally reaching the desired displacement without 

exceeding the speed limit. 

5.2.3 Implementation of the New Feasible Optimal Harmonic Multi-rotor 

Trajectories of Bounded, Smooth Time Derivatives 

A basic smooth trajectory parametrization curve can be defined with a realistic 

sampling time dt = 0.001[s]. A feasible trajectory with dynamic boundary velues can be 

chosen to have maximum_snap = 1[m/s
4
], maximum_jerk = 1[m/s

3
], 

maximum_acceleration = 2[m/s
2
], maximum_velocity = 8[m/s], displacement = 64[m], 

for displacement duration = 16[sec]. 

This base trajectory parametrisation can be projected to the training path of connecting 

back and forth the centre and the right most and left most opposite corners along the 

main diagonal (x,y,z) = (0,0,0) -> (64,64,64), (64,64,64) -> (0,0,0), (0,0,0) -> (-64,-64,-

64), (-64,-64,-64) -> (0,0,0) of a 128m cube, while for each segment of flight 

performing simultaneous a full yaw rotations in each direction 𝝍 = (0->2𝜋), (2𝜋-

>0).This test trajectory setup will result in a training data set worth of 68 seconds of 

flight time. 

The algorithm to generate feasible optimal harmonic trajectory of bounded, smooth time 

derivatives is: 

0. Account for all defined limitations in snap, jerk, acceleration, velocity, 

displacement, duration, for each calculate the boundary consequence on each higher 

derivative:  

a. limit_snap directly limits: 

limit_P=limit_snap/G;  

b. limit_jerk limits: 

limit_P=sqrt(limit_jerk/G) and  

limit_snap=G*limit_P; 

c. limit_acceleration limits: 

limit_P=nthrooth(limit_acceleration/(2*G),3) and  

limit_snap=G*limit_P and  

limit_jerk=G*(limit_P)
2
 

d. limit_velocity limits: 

limit_P=nthrooth(limit_velocity/(8*G),4) and  

limit_snap=G*limit_P and  

limit_jerk=G*(limit_P)
2
 and  

limit_acceleration=G*2*(limit_P)
3
  

e. limit_displacement limits: 

limit_P=nthrooth(limit_velocity/(64*G),5) and  
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limit_snap=G*limit_P and  

limit_jerk=G*(limit_P)
2
 and  

limit_acceleration=G*2*(limit_P)
3
 and  

limit_ velocity =G*8*(limit_P)
4
  

f. limit_duration limits: 

limit_P=limit_duration/16 

1. select the minimal calculated limit of all above calculated values for each derivative: 

limit_P, limit_snap, limit_jerk, limit_acceleration, limit_velocity, values calculated 

in step 0. 

2. calculate base feasible values: 

base_P = min([limit_P]) from step 1. 

base_cracle = G*2 

base_snap = base_P 

base_jerk = base_snap*base_P 

base_acceleration = base_jerk*2*base_P 

base_velocity = base_acceleration*4*base_P 

base_displacement = base_velocity*8*base_P 

base_duration = 16*base_P 

3. select the smallest admissible allowed_P, allowed_snap, allowed_jerk, 

allowed_acceleration, allowed_velocity from limit and base values calculated in 

steps 1 and 2. 

4. calculate final trajectory parameters 

a. P = allowed_P 

b. max_cracle = G*2 

l_cracle = P/2 

c. max_snap = max_cracle * l_cracle 

l_snap = 2 * l_cracle 

d. increment_jerk = max(0, allowed_jerk/max_snap – l_snap) 

max_jerk=mas_snap * (l_snap + increment_jerk) 

l_jerk=2 * l_snap + increment_jerk 

e. increment_acceleration=max(0, allowed_acceleration/max_jerk – l_jerk) 

max_acceleration = max_jerk * (l_jerk + increment_acceleration) 

l_acceleration = 2 * l_jerk + increment_acceleration 
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f. increment_velocity = max(0, allowed_velocity/max_acceleration – 

l_acceleration) 

max_velocity = max_acceleration * (l_acceleration + increment_velocity) 

l_velocity = 2 * l_acceleration + increment_velocity 

g. increment_displacement = max(0, allolwed_displacement/max_velocity – 

l_velocity) 

max_displacement = max_velocity * (l_velocity + increment_displacement) 

l_displacement = 2 * l_velocity + increment_displacement 

h. increment_duration = max(0, target_duration – l_displacement) 

max_duration = 16 * P + 8 * increment_jerk + 4 * increment_acceleration + 2 * 

increment_velocity + increment_displacement + increment_duration 

Notice that for numerical robustness in discrete calculations one must take care of each 

variable l_# and increment_#, and also values #_P, as they have to be integer multiples 

of the sampling time, otherwise the required exact balance between positive and 

negative areas of acceleration and higher derivatives cannot be ensured. The discrete 

algorithm thus cannot generate trajectories to arbitrary displacement with absolute 

precision. The generated displacement final position error is proportional to 

numerical_endposition_error = 16 * P - integer(16 * P / sampling_time) * 

sampling_time. 

Such a general basic 16 intervals, smooth sinusoid pop function trajectory setup with 

P=1, and all its corresponding displacement derivatives are presented in Figure 32. The 

basic smooth trajectory parametrization curve used is with P = 1, with sampling time dt 

= 0.01[s] sampling time, which results in a time optimal trajectory with dynamic 

boundaries of maximum of sinus pop = 2𝜋 [m/s
6
] wave of 1[s] period, maximum of 

crackle = 2[m/s
5
], maximum_snap = 1[m/s

4
], maximum_jerk = 1[m/s

3
], 

maximum_acceleration = 2[m/s
2
], maximum_velocity = 8[m/s], displacement = 64[m], 

within duration = 16[sec]. The integral of absolute jerk is 8[m/s
2
], what is proportional 

to the expended energy (as mass and desired displacement we consider to be constant). 
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Figure 32. 

Harmonic (x,y,z) displacements with yaw Euler angle orientation and their time derivatives. 

5.2.4 Results of the New Feasible Optimal Harmonic Multi-rotor Flight 

Trajectories of Bounded, Smooth Time Derivatives 

To fully understand and appreciate the quality and value of my feasible trajectory 

proposal, please study first Appendix II where the effects of discontinuities in jerk, snap 

and pop on the flight dynamics of a multi-rotor are presented. As the trajectory is fully 

symmetric, for the clarity and manageable size of figures I am here presenting only the 

first segment of the displacement: (x,y,z) = (0,0,0) -> (64,64,64). 
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Figure 33. 

Harmonic (x,y,z) displacements and 𝜓 yaw Euler angle orientation scheme. 

Figure 34. 

Harmonic (x,y,z,𝜓) velocity scheme. 
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Figure 35. 

Harmonic (x,y,z,𝜓) acceleration scheme. 

The above presented displacement, velocity and acceleration profiles, common to 

harmonic x,y,z and 𝜓 changes – at the first glance – look quite simple; their nature will 

be obvious only after inspecting their further time derivatives. 

Figure 36. 

Harmonic (x,y,z,𝜓) jerk scheme. 

The rhythm typical to my harmonic feasibility trajectories is starting to reveal – each 

following time derivative will present a double frequency ‘mirrored’ image of the 

previous time derivative. 
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Figure 37. 

Harmonic (x,y,z,𝜓) snap scheme. 

 

 

 
Figure 38. 

Harmonic (x,y,z,𝜓) cracle scheme. 
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Figure 39. 

Harmonic (x,y,z,𝜓) pop scheme. 

Finally the pop function, which a series of sinusoid base functions. Notice that by 

symmetrically inserting pauses between these sinusoid base functions, we can arbitrary 

prolong the selected time derivative maximum value, without increasing any values of 

higher derivatives. 

For example introducing a gap of 2 seconds at time instance t=8, we change our 

velocity profile in a manner that the maximum velocity is held for these 2 seconds, thus 

the displacement is significantly increased, without changing the maximum velocity, or 

acceleration. 

Similarly by introducing a 1 second delay at time instanced t=4 and t=12 we change our 

velocity profile in a manner that the maximum acceleration and deceleration is held for 

this 1 second, thus the maximum velocity and displacement is significantly increased, 

without changing the maximum acceleration, or jerk. 

Analogously by introducing a 1 second delay at time instanced t=2, t=6 and t=10, t=14 

we change our acceleration profile in a manner that the maximum and minimum jerk is 

held for this 1 second, thus the maximum acceleration, velocity and displacement is 

significantly increased, without changing the maximum jerk, or snap. These higher 

intensity trajectories are presented in Appendix II. 

Notice that the smoothness and general scheme of any derivative is unaffected by these 

pauses in the pop function. 

The following figures present the smooth roll and pitch orientation changes, matching 

torques, rortor angular displacements, and their derivatives, corresponding to the 

designed (x,y,z,𝝍) profiles. 
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Figure 40. 

Resulting smooth roll, pitch Euler angle orientation. 

Figure 41. 

Resulting smooth roll, pitch orientations first time derivative. 

Figure 42. 

Resulting smooth roll, pitch orientations second time derivative. 
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Figure 43. 

Resulting smooth roll, pitch, yaw torques. 
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Figure 44. 

Resulting smooth roll, pitch, yaw torque first time derivatives. 
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Figure 45. 

Resulting smooth roll, pitch, yaw torque second time derivatives. 
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Figure 46. 

Resulting smooth rotor blade angular velocities. 

Figure 47. 

Resulting smooth rotor blade angular accelerations. 
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Figure 48. 

Resulting smooth rotor blade angular acceleration time derivative. 

By examination of above Figures 33-48 we can conclude that all the relevant system 

variable transients are continuous and smooth. Since this trajectory is planned so that 

the highest harmonics in changes of angular velocities correspond to the transient 

frequency of the BLDC actuators, the trajectory is feasible. Since the BLDC actuator is 

not capable of producing faster changes, there exists no faster trajectory for the planned 

displacement, so this trajectory is feasible time optimal. 

By this analysis I conclude that my Thesis IV.b and IV.c are proven valid. 

Energy efficiency and oscillations properties of my feasible optimal harmonic 

trajectories are examined in the fore coming chapters on a system, which manifests and 

magnifies these traits to a highly noticeable, visible level. 

5.2.5 New Feasible Optimal Harmonic 3D Overhead Crane Trajectories 

Compared to the analysed multi-rotor dynamics, a 3D overhead crane model and a RM 

dynamics model are of the same basic format as equation (39), these systems are more 

simple as the position of the payload or end effector is directly linked to the position of 

the actuator rotor shaft – there is no intermediate transfer function like equation (54) for 

a multi-rotor. This fact predicts that cranes and RMs are not sensitive to discontinuities 

in the trajectory pop or crackle, only the snap has to be continuous. 

Notice that for 3D overhead cranes and a RMs it is expected to be enough to have 

𝝃𝒕
(4)

(𝑡) = 𝐺 ∙
2𝜋

𝑃
sin (

2𝜋

𝑃
𝑡), since we have a direct link between the actuator motor shaft 



116 

position and the system variables  𝒒(𝑡) =  𝝃𝒕(𝑡) – as opposed to multi-rotors, where 

equation (54) has to be first applied. When the trajectory is planned with parameter P 

matching the system transient behaviour, the trajectory is harmonic. 

THESIS IV.d - DEFINITION: 

When the trajectory is planned as in my Thesis IV.c with parameter P matching 

the system transient behaviour, the trajectory is harmonic. 

For a harmonic, realistic, feasible multi-rotor trajectories induce no system 

oscillations. 

5.2.6 Implementation of the New Feasible Optimal Harmonic 3D Overhead 

Crane Trajectories of Bounded, Smooth Time Derivatives 

The generated trajectory can be applied as parametrisation to any vector function 

defined path f(t)=(fx(r(t)),fy(r(t)),fz(r(t))). When determining the constraints on 

trajectory derivatives, one has to take into consideration both the system limits and 

curvature properties of the desired path f(t) and its derivatives. f(t) has to be smooth at 

least up to the required smoothness of the trajectory.  

Reduction of the method is strait forward to systems with simpler trajectory constraints, 

like RMs or wheeled vehicles, where it is enough to have smooth trajectories up to the 

3
rd

 time derivative of displacement. A 3D crane, as described in [11] is a simple system, 

which can in a feed forward control setup very notably present system oscillations 

induced by the prescribed trajectory. The dimensionless cost function 𝑪𝒆𝒍(𝑠) =
1

2
∫ (�̈�(𝑡)2 + �̇�(𝑡)2 + 𝒓(𝑡)2)𝑑𝑡

𝑡𝑓
0

 was minimised by calculus of variation, where r(t) is 

the displacement. 

5.2.7 Results of the New Feasible Optimal Harmonic 3D Overhead Crane 

Trajectories of Bounded, Smooth Time Derivatives 

Figure 49 and 50 presents the crane system feed forward output error (payload delta 

position and pitch angle) for bang-bang acceleration and for a minimal torque (minimal 

electric energy trajectory). System oscillations are obvious even by observing the 

payload position only. 
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Figure 49. 

Crane feed forward response error: classical bang-bang acceleration trajectory. 
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Figure 50. 

Crane feed forward response error: classical minimal torque trajectory. 

Table XVIII presents the numerical results for maximum payload pitch (Theta), 

maximum payload tracking error along x and y, and the torque cost (electric energy cost 

function) for classical ‘optimal’ trajectories. Table XIX. presents the numerical results 

for my proposed feasible optimal harmonic smoot trajectories, measured by the same 

objective function. 

One can conclude by looking at the numerical results of ‘hastier trajectories’ in Table 

XIX that the more timid, slower changing the trajectory is, the better the performance is 

along all four objectives. The “w0“ reference in the table stands for the used ideal 

pendulum angular frequency 𝜔0 = √𝑔/𝐿, where 𝑔 is the gravity acceleration (9.81m/s
2
) 

and L is the pendulum length; the divisor “w0/n” by the angular frequency in the 

trajectory name represents the trajectory length multiplier compared to a smooth 
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trajectory defined by a pop base function of period 𝜔0 (a trajectory of name ending with 

“w0/2k” takes 2 times longer to complete than that of “w0/k”). 

TRAJECTORY TYPE 

     / PERFORMANCE 

maxTheta maxErrorX maxErrorY maxTorqueCost 

Minimal_Jerk w0: 3.72E-04 3.73E-05 1.21E-04 1.25E-01 

Acceler_BangBang w0: 9.04E-04 4.44E-05 3.00E-04 1.34E-01 

Minimal_Snap w0: 4.76E-04 4.35E-05 1.53E-04 1.48E-01 

Minimal_Crackle w0: 6.01E-04 4.90E-05 1.89E-04 1.67E-01 

Minimal_Torque w0: 5.02E-03 9.35E-04 1.80E-03 7.24E-02 

Minimal_Acceler w0: 7.07E-04 8.97E-05 2.29E-04 9.96E-02 

Vmax_Lightning w0: 2.50E+00 1.58E+01 1.58E+01 1.94E+03 

HASTIER 

TRAJECTORIES: 

        

Minimal_Torque w0*2: 1.05E-02 1.88E-03 3.01E-03 1.57E-01 

Minimal_Torque w0*4: 2.28E-02 2.14E-03 6.55E-03 3.63E-01 

Minimal_Torque w0*8: 6.56E-02 5.77E-03 1.59E-02 9.09E-01 

Minimal_Torque w0*16: 2.88E-01 2.35E-02 6.40E-02 2.73E+00 

Minimal_Torque w0*32: 7.97E-01 7.84E-02 1.30E-01 6.43E+00 

Table XVIII. Numerical results for the crane feed forward control setup 

 – classical trajectories. 

All trajectories planned for faster completion than 𝑡𝑇 = 2 ∗ 𝜋/𝜔0 end up with 

oscillations. The proposed smooth trajectories are always inducing less oscillation than 

the classical “minimum” counterparts. The minimum crackle and the proposed smooth 

crackle trajectories are the only two trajectory types that starting from 𝑡𝑇 = 2 ∗ 𝜋/𝜔0 

long trajectory motions, which result in no significant crane pendulum second state 

derivative oscillations. For longer durations other variants of the proposed smooth 

trajectories are totally vibration free. One benefit of the proposed smooth trajectory is in 

the designed, arbitrary bounded derivative maximum values – one can set any velocity, 

acceleration, jerk, even snap limits. The other benefit is that by increasing the level of 

smoothness one can ensure absolute oscillation free behaviour and reduce the position 

error, even to reduce the required energy – of course all this is at the cost of longer 

trajectory durations. 

SMOOTH TRAJECTORIES:         

SmoothCrackle_w0/32: 1.93E-06 1.51E-06 1.70E-06 8.18E-03 

SmoothSnap_w0/16: 7.74E-06 3.01E-06 4.30E-06 1.64E-02 

SmoothCrackle_w0/16: 7.74E-06 3.01E-06 4.31E-06 1.64E-02 

SmoothSnap_w0/8: 3.11E-05 6.03E-06 1.28E-05 3.31E-02 

SmoothCrackle_w0/8: 3.11E-05 6.03E-06 1.28E-05 3.31E-02 

SmoothSnap_w0/4: 1.26E-04 1.21E-05 4.33E-05 6.73E-02 

SmoothCrackle_w0/4: 1.26E-04 1.21E-05 4.34E-05 6.73E-02 

SmoothSnap_w0/2: 5.33E-04 2.42E-05 1.65E-04 1.39E-01 

SmoothCrackle_w0/2: 5.33E-04 2.43E-05 1.65E-04 1.39E-01 

SmoothSnap_w0: 2.51E-03 1.04E-04 7.04E-04 2.95E-01 

SmoothCrackle_w0: 2.53E-03 1.05E-04 7.08E-04 2.95E-01 

Table XIX. Numerical results for the crane feed forward control setup 

 – my harmonic, smooth trajectories. 
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Figure 51. 

Crane feed forward response error: various trajectories – observe the oscillations. 
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Notice that for this crane system example an incomplete mathematical model is used as 

in [11] – it does not include the actuator dynamics – it counts with the control signal 

being of arbitrary precision simple mathematical function. For this research paper I have 

not compensated this model deficiency, so that my results can be directly compared to 

[11]. 

Figure 51 presents crane system second time derivative state oscillations induced by 

different trajectories; for the maximum velocity and the acceleration bang-bang there is 

just no point in looking at the second time derivative of the y position, only the position 

and its first derivative is presented, respectively.  

Let us examine closer my proposal for a harmonic feasible optimal trajectory of smooth 

crackle and its effect on system state variables: 

Figure 52. 

Crane feed forward state variable: my harmonic optimal feasible smooth crackle 

trajectory. 
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Figure 53. 

Crane feed forward position error: my harmonic optimal feasible smooth crackle 

trajectory. 

The trajectory is planned for a realistic laboratory setup comparable to [3]. The planned 

displacement is of 41 cm. The displacement takes 25 seconds, while the maximal 

displacement error along all 3 dimensions is extremely small <0.1mm (radians). 

One benefit of the proposed smooth trajectory is in the designed, arbitrary bounded 

derivative maximum values –any velocity, acceleration, jerk, even snap limits. Other 

benefit is that by increasing the level of smoothness one can ensure absolute oscillation 

free behaviour and reduce the position error, even to reduce the required energy – of 

course all this is at the cost of longer trajectory durations. 

The next figure presents rates of displacement (velocity) and their change 

(accelerations) – these signals clearly presents state variable oscillations, if any exists 

that is. 
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Figure 54. 

Crane feed forward state variable time derivatives: my harmonic optimal feasible 

smooth crackle trajectory – observe no oscillations. 

We can observe unquestionably smooth velocity changes along the complete trajectory, 

up until the stopping point at t=24 seconds. After the 24
th

 second an extremely small 

wave appears of a magnitude ~1e-14m and ~1e-12m, which I cannot contribute to 

anything else but numerical error of the Matlab Simulink environment. 

All trajectories planned for faster completion than 𝑡𝑇 = 2 ∗ 𝜋/𝜔0 end up with 

oscillations. The proposed smooth trajectories are always inducing less than the 

classical “minimum” counterparts; practically no oscillations are induced by harmonic 

trajectories. The minimum crackle and the proposed smooth crackle trajectories are the 

only two trajectory types that starting from 𝑡𝑇 = 2 ∗ 𝜋/𝜔0 long trajectory motions, 

which result in no significant crane pendulum second state derivative oscillations. 

Lower frequency trajectory 𝑡𝑇 = 32 ∗ 2 ∗ 𝜋/𝜔0 no oscillations at all 

By this analysis I conclude that my Thesis IV.a and IV.d are proven valid. 
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I am here addressing a criticism that my harmonic feasible optimal trajectories are “too 

slow – as it takes 24 seconds to travel 41cm with a 1m crane”. 

My response to this is: if one requires no oscillations and minimal energy usage, then 

this is what it takes for the analysed physical system – if one requires faster motions, 

either a well-designed feedback loop with a more capable actuator is to be used, or one 

has to accept system oscillations. By the way, would anybody consider traveling in 12 

minutes some 41 000 kilometres (all around the Earth’s equator) to be too slow? – 

because this is what is harmonically feasible with the same crane system setup, when no 

physical system boundaries in terms of cran size are considered: 

Figure 55. 

Crane feed forward state variables: exaggerated smooth crackle trajectory “around the 

equator in 12 minutes”. 
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Figure 56. 

Crane feed forward position error: exaggerated smooth crackle trajectory “around the 

equator in 12 minutes”. 

The displacement error corresponds to the distance travelled at maximum speed (10e+4 

m/s) for the sampling time duration (1ms). Notice that the unrealistic maximum velocity 

is 100km/sec, which is reached by an even more unrealistic acceleration of 500m/s
2
, 

while the maximal jerk is uniformly <5m/s
3
, which is a very comfortable value. 

Indeed this “around the equator in 12 minutes” is a Sci-Fi crane setup, its sole purpose 

is to demonstrate that it is not the harmonic feasible optimal trajectory design method 

responsible for generating any “slow” trajectories, but it is the nature of physical 

properties of the system that in reality actually limit our harmonic feasible trajectory 

“speed”. 

Of course one can always relax the harmonic feasibility aspect of a trajectory and then 

relay on a powerful robust stable feedback loop design and excessive energy 

consumption to drive a system faster than what it is capable of – and then only the 

induced oscillations have to be properly dampened. I question that it is possible to 
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create an oscillations free trajectory that takes in overall less time than it takes to track a 

harmonic feasible trajectory; and I am positive that any other trajectory would require 

much more energy to be spent. 

Figure 57. 

Crane feed forward state variable time derivatives: exaggerated smooth crackle 

trajectory “around the equator in 12 minutes” – observe no oscillations. 

We can observe smooth velocity changes along most of the trajectory, except for the 

first 80 seconds, when an extremely small oscillation appears of a magnitude ~5e-9m 

and ~4e-9m. Since the displacement magnitude is ~ 4e+7 this 4e-9 oscillation is of 1e-

16 relative magnitude which I cannot contribute to anything else but numerical error of 

the Matlab Simulink environment. 
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6 GENETIC FUZZY SYSTEM TRAINING DATA SET 

REDUCTION 

A prerequisite for system identification is a set of measurements of the system to be 

modelled while being driven along a pre-defined trajectory. As this training path must 

be sufficiently exiting so that all system characteristics can be observed, it is natural that 

we have to operate with extremely large training data sets. Performing Singular Value 

Decomposition (SVD) of large matrices is extremely time consuming. It is always a 

challenge to find sufficiently exciting, while being not oversized training data sets. 

6.1 Literature Synopsis 

Training data sets consist of recorded input-output pairs of the function/system to be 

identified. A fuzzy system cannot properly respond for totally unknown input space 

regions, thus for training fuzzy systems a large amount of historical data is collected, as 

it is important ha the training data covers all possible aspects of the system. The training 

data collection has to ensure that the complete input space is sampled at least to a 

certain extent. These aspirations will usually lead to an abandon data set with possibly 

many unneeded repetitions. Calculations, numerical transformations of huge data sets 

are always a time consuming task. Neither real time applicability, nor evolutionary 

algorithms prefer time inefficient long calculation cycles. For real time systems we must 

conclude our calculations in-between the timeframe of the sampling time. For 

evolutionary search we perform couple of hundreds evaluations for each generation – if 

one evaluation takes too long, the complete design calculation easily turns out to be a 

multi-week server task, which is not a friendly environment for a research study. 

In case of modelling complex systems filtering out unnecessary samples, while still 

leaving all the necessary data for good quality identification is not a trivial strait 

forward process. In case of every identification problem, specific approaches are used 

when deemed necessary. 

By my Hypothesis V this paper presents a novel method that will reduce the necessary 

training data set size for fuzzy identification of complex dynamic systems. The method 

is based on finding the minimal subset of the training data, which most efficiently 

minimises the corresponding condition number of the linear system subject to SVD 

decomposition when identifying the optimal linear parameters of the system. 

6.1.1 Validating Quality of Genetic Fuzzy System Training Data Sets 

The nonlinear parameters always have to form complete fuzzy partitions, thus complete 

uniform input space coverage, what is to be ensured by the proposed new parameter 

representation method of Thesis II. The quality of a TSK linear parameter set calculated 

by an SVD based LS optimization method greatly depends on the training data set 

quality. 

By definition the condition number of a parameter data set, which defines a linear 

system of equations is called the condition number of the equation; it is the ratio of the 

largest and the smallest singular value. The higher the condition number, the more 

uncertain the solution is; the more sensitive the solution is to small disturbances of 

system parameters. The natural goal for a good quality, robust linear system solution is 

to have as small a condition number as possible. 
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A very well-conditioned linear system of equations has a condition number of three 

orders of magnitude less than the reciprocal of the numerical precision of our 

calculations. In case of double precision floating point digital computer calculous we 

can rely on a numerical precision of at least ~10
-16

, which means that any condition 

number <10
10

 will already result in a sufficient precision of up to six decimal places. 

6.2 New Scientific Achievements 

6.2.1 New Singular Value Decomposition Based Genetic Fuzzy System Training 

Data Set Reduction 

As described in [s6] when identifying a system, we have to design a sufficiently 

exciting trajectory, which will properly expose all singular values of the (linear) system. 

For a stable equation solution for linear parameters it is needed to have all singular 

values higher than one. 

For solving a linear system of equations it is recommended to use an SVD-based 

decomposition method before calculating the inverse matrix as for equation (53), but 

calculating SVD decomposition for large matrices is very processor and memory 

demanding task, which increases exponentially with the data set size. 

Data samples collected along sufficiently exciting trajectories tend to be oversized, thus 

redundant. In [s12] and [s16] it is shown for a robotic manipulator dynamic model 

identification, that by using only a reduced number of training data points the same 

quality of system identification can be reached as with the full set, given that the 

reduced set is representative enough of the full set, which is equivalent to having a 

similarly low condition number. 

My idea to reduce the fuzzy system training data set comes from the applied linear 

parameter calculation method of Thesis groups II and III – they rely on SVD based 

linear equation calculation. To efficiently calculate n linear parameters one only needs n 

linearly independent equations of n variables – whose parameters are represented by an 

nxn matrix. This means that if we could obtain the ideal set of training points we would 

need not more points than what is minimally required to construct an nxn matrix of 

linearly independent rows for our system representation. This is my attempt to select 

only those input data, which are necessary to construct a good quality system 

parameters. 

To successfully train a FLS of a general form as 𝑓(𝒙) = ∑ 𝜔𝑙(𝒙, 𝒃) ∙ 𝑦𝑙(𝒙, 𝒄)𝑀
𝑙=1 , which 

is equivalent to the transformed form of 𝑓(𝒙) =  𝑨(𝒙, 𝒃) ∙ 𝒄 the traning data has to be 

such that it is necessary fo the matrix A to be of full rank, while the condition number of 

matrix A is limited by the desired numerical precision. 

The FLS training in this case is finding the proper b vector of the nonlinear MF 

parameters, and finding the c vector of linear consequence parameters. For optimising b 

one can us a method as described in my thesis II. For LS optimal c vector one can use 

the SVD transformation property as 𝒄 = 𝑽𝑺−𝟏𝑼𝑻 ∙ 𝑭𝑓𝑢𝑙𝑙(𝒙) for the SVD decomposition 

of 𝑨𝑓𝑢𝑙𝑙 = [𝑨(𝒙𝒊, 𝒃)] = 𝑼𝑺𝑽𝑻, where 𝑭𝑓𝑢𝑙𝑙(𝒙) = [𝑓(𝒙𝒊)] is the vector of the traning 

data results 𝑓(𝒙𝒊), for the input series data 𝒙𝒊, i=1,..,N; for N being the number of traing 

data inputs. 

The proposal of this paper is to apply a selection algorithm to [𝒙𝒊] and thus to the 

𝑭𝑓𝑢𝑙𝑙(𝒙) training data set, such that we can determine an arbitrary quality / size 
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balanced training data set [𝒙𝒋] and thus 𝑭𝑟𝑒𝑑 = [𝑓(𝒙𝒋)] for FLS based dynamic model 

identifications. 

THESIS V - DEFINITION: 

Without compromising the identification quality it is possible to reduce an 

oversized training data set F(x) in a manner that we extract only samples xj such that the 

selected input-output training data pairs 𝑭𝑟𝑒𝑑 = [𝑓(𝒙𝒋)] maximise the condition 

number decrease of the 𝑨𝑟𝑒𝑑 = [𝑨(𝒙𝒋, 𝒃)] of the FLS antecedent matrix. 

In this setup we can define an arbitrary condition number limit, which when reached 

means that no further training samples have to be considered for the defined calculation 

precision. Also an explicit limit can be set to the number of training data samples 

(driven by the computation complexity of 𝑨𝑟𝑒𝑑 = 𝑼𝑺𝑽𝑻 decomposition), while we can 

guaranty that only the most relevant samples are included into the training set – those 

samples that contribute the most to the calculation precision of 𝒄 = [𝑐𝑖𝑗] = 𝑽𝑺−𝟏𝑼𝑻 ∙

𝐹𝑟𝑒𝑑(𝒙). 

6.2.2 Implementation of New Singular Value Decomposition Based Genetic 

Fuzzy System Training Data Set Reduction 

The algorithm to select the required minimal training data set – an example application 

for RM dynamics or multi rotor flight dynamics identification problems is: 

0. set the reduced data set𝑨𝑟𝑒𝑑 for our system example 𝑨𝑟𝑒𝑑  ≡ ℚ𝑟𝑒𝑑 to an empty set 

and start from the full training data set 𝑨𝑓𝑢𝑙𝑙 ≡ ℚ𝒇𝒖𝒍𝒍 and perform the following 

preparations: 

a. evaluate FLS antecedents by equation (24), (25) and (37) using an uniform, 

equidistant fuzzy partition defined with ai=i/K for equation (37); 

b. prepare evaluation of linear cij parameters, by substituting all nonlinear 

ℚ𝑓𝑢𝑙𝑙(𝒒, �̇�, �̈�) components of the function/system model to be identified – in our 

case equation (53); 

c. (optional step) perform the SVD decomposition of ℚ𝑓𝑢𝑙𝑙(𝒒, �̇�, �̈�) = 𝑼 ∙ 𝑺𝑓𝑢𝑙𝑙 ∙ 𝑽𝑇 

and calculate the reference condition number of the full set as: 

𝑐𝑜𝑛𝑑(ℚ𝑓𝑢𝑙𝑙(𝒒, �̇�, �̈�)) = 𝑚𝑎𝑥 (𝑑𝑖𝑎𝑔(𝑺𝑓𝑢𝑙𝑙)/𝑚𝑖𝑛 (𝑑𝑖𝑎𝑔(𝑺𝑓𝑢𝑙𝑙)), 

1. select the j
th

 trajectory point input data ℚ𝑗(𝒒𝒋, 𝒒𝒋̇ , 𝒒𝒋̈ ) from the full training set 

ℚ𝑓𝑢𝑙𝑙, which the most reduces the condition number of the FLS antecedent, being 

max (𝑑𝑖𝑎𝑔(𝑺𝑟𝑒𝑑∪𝑗)) / min (𝑑𝑖𝑎𝑔(𝑺𝑟𝑒𝑑∪𝑗))   value of the reduced [ℚ𝑟𝑒𝑑(𝒒, �̇�, �̈�) ∪

ℚ𝑗(𝒒𝒋, 𝒒𝒋̇ , 𝒒𝒋̈ )] matrix; 

2. remove the selected j
th

 trajectory point from the full training set ℚ𝑓𝑢𝑙𝑙 and add it to 

the reduced training set ℚ𝑟𝑒𝑑; 

3. repeat steps 1 and 2, while the condition number of the reduced training set ℚ𝑟𝑒𝑑 is 

above the target value, and there remains any selectable points in the full training set 

ℚ𝑓𝑢𝑙𝑙 or the targeted maximum size of reduced training set ℚ𝑟𝑒𝑑 is not reached. 

Notice that the target condition number of the reduced training set ℚ𝑟𝑒𝑑 cannot be set to 

lower than the reference condition number of the full training set ℚ𝑓𝑢𝑙𝑙 data set (which 
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cn be determined by step c). The target training data set size cannot be set to lower than 

the number of cij linear parameters of the system, as ℚ𝑟𝑒𝑑(𝒒, �̇�, �̈�) must not be rank 

deficient. 

6.2.3 Results of New Singular Value Decomposition Based Genetic Fuzzy System 

Training Data Set Reduction 

For uniformly distributed MFs in the fuzzy partition of antecedents the 

𝑐𝑜𝑛𝑑(ℚ𝑓𝑢𝑙𝑙(𝒒, �̇�, �̈�))  condition number (cond) of the full training set ℚ𝑓𝑢𝑙𝑙 and 

𝑐𝑜𝑛𝑑(ℚ𝑟𝑒𝑑(𝒒, �̇�, �̈�)) for the reduced training set ℚ𝑟𝑒𝑑 is in Table XX; the condition 

number change for the first 1170 points out of the total set of 5487 points is presented in 

Figure 58. 

 Full set reduced to reduced to reduced to 

training points 

% reduction to 

5487 

100% 

2743 

50% 

1170 

25% 

685 

12.5% 

cond  

% increase by 

5625 

0% 

5680 

+0.98% 

5977 

+6.25% 

6893 

+22.54% 

Table XX. Condition number change and size of the reduced trading data set 

Figure 58. 

Condition number changes for the set reduction up to 1200 points 

We can observe that my proposed FLS training data set reduction method successfully 

reduces the multi-rotor flight dynamics data set from 5500 points to below 300 points, 

while the condition number of the resulting linear system identification problem does 

not significantly increase. The condition number of 1e+4 corresponds to a 1e-12 

numerical precision (assuming 1e-16 numerical precision for computer based 

calculations) in the calculated linear parameters, which is more than enough for a good 

quality engineering application. In case we still want to double our precision, we need 

to double the size of the training data set; notice that it makes no sense to increase the 

data set above 1000 points, as the identified linear system precision will practically not 

increase any longer. 

By this analysis I conclude that my Thesis V is proven valid.  
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SUMMARY CONCLUSIONS 

New Scientific Achievements 

1. New Vector Comparison Operators 

This paper presents a new vector comparison relation operator, and its extensions that 

can be used for creating a measurement based new multi-objective ranking operator, 

which can be the bases for an efficient new multi-objective GA. Also a measurement 

function is defined for Pareto-dominance. A general measurement based ranking 

method is proposed. Also a modification of fitness sharing is presented. Numerous 

multi-objective GA types are evaluated for their performance on GA hard functions. 

Each tested GA, no matter which ranking method is used, efficiently finds the close 

proximity of the true Pareto-front. The proposed new dominance based ranking methods 

DO and DM both outperform all other tested ranking methods by 20% when it comes to 

the number of generation evaluations required for convergence, and they also 

outperform the others by 5-10% when it comes to the number of non-dominated 

individuals found in the final generation. 

Each tested GA, no matter which vector comparison method is used, efficiently finds 

the proximity of the true Pareto-front. The new vector comparison methods (A, N, Q) 

outperform the Pareto comparison by 5-15% when it comes to the number of generation 

evaluations required for convergence, and they also outperform the others by 5-15% 

when it comes to the number of non-dominated individuals found in the final 

generation. 

2. New Minimalistic Parametrisation of Zadeh-type Fuzzy Partitions for Function 

Identification by Unconstrained Tuning 

This paper presents a novel method that simplifies the bi non-linear parameter 

optimisation of TSK FLSs based on fuzzy partitions for antecedent MFs like equation 

(27) that is suitable for unconstrained stochastic and gradient descent based non-linear 

optimisation, while preserving all the required constraints and properties. All linear 

parameters of equation (24) are determined by SVD based robust LS method. 

The proposed identification method is capable of highly efficient off-line precise 

identification, and also real-time adaptive fine tuning of fuzzy systems for function 

approximation or system identification purposes. Furthermore, the proposed 

minimalistic parameterisation of Zadeh-formed MFs makes it possible to use 

unconstrained optimisation methods while the initial ordering of MFs and the fuzzy-

partitioning properties are preserved. 

The presented simple uniform partition based fuzzy precedent definition with SVD-

based linear antecedent calculation is a very fast, good enough uniform function 

approximation technique. The application of my proposed precedent parameter 

representation enables the application of any numerically efficient unconstrained tuning 

of the fuzzy system. Applying a gradient-descent like method further improves the 

identification quality; at a cost of some extra computation effort (usually 15 iterations 

are satisfactory). Applying an initial efficient GA search for the global optima 

neighbourhood of the precedent parameters, combined with gradient-based fine toning 

and SVD-based antecedent parameter calculations result in extremely precise function 

identifications; at a cost of further extra computation effort (usually <15 generations are 



132 

needed for a population proportional to the complexity of the problem, proportional to 

the dimension of the search space and the number of objectives). 

This very efficient and minimalistic parametrisation of uniform function approximation 

fuzzy systems is the starting point of building complex, robust fuzzy system models, 

which can cope with real life data uncertainties such as the unpredictable aerial 

environment of an UAV. 

3. New Genetic Fuzzy System Grey-box Modelling of Complex Dynamics Systems 

This paper presents a new method that identifies the RM dynamics through finding the 

Dij nonlinear functions of equation (39) as TSK FLSs, while calculating Dijk nonlinear 

functions as in equation (41). All linear parameters of the system are determined by 

SVD based robust LS method. Nonlinear parameters are evolved by multi-objective GA 

and fine-tuned by gradient descent method. 

This paper presents a new method that identifies the multi-rotor flight dynamics 

equation (44) Dij components by specially constructed continuous and periodic TSK 

FLSs, while calculating the Dijk nonlinear functions as in equation (45). All linear 

parameters of the system are determined by SVD based robust LS method. Nonlinear 

parameters are evolved by multi-objective GA and fine-tuned by gradient descent 

method. 

The proposed identification method is capable of forming and fine-tuning a soft 

computing, fuzzy system based dynamic model for a robot manipulator. The number of 

nonlinear parameters can be kept to minimal and optimised by evolutionary and 

gradient based methods, too. The value of the linear parameters can be determined by a 

least squares method. After an initial evaluation the complete identification method is 

capable of running on-line with a control algorithm if we use an on-line iterative least 

squares method for the linear parameters [57], while from the background a hybrid 

evolutionary and gradient based method periodically updates the nonlinear parameters. 

The relative value of the maximal error is well within the tolerance level of a model 

based control algorithms [80]. Parameters identified by this method can be considered 

as real physical values, in contrast to previous results where some negative numbers 

appeared for inertia terms. 

The proposed identification method is capable of forming and fine-tuning a soft 

computing, fuzzy system based dynamic model for quadrotors. The quality of 

identification with the relative torque error being uniformly <10% is suitable for 

application in model based control algorithms; the torque error is presented in Figure 5. 

Such good quality UAV flight dynamics models are the prerequisites for quality model 

based flight control systems. 

4. New Feasible Optimal Harmonic Trajectories of Bounded, Smooth Time 

Derivatives 

This paper presents a novel harmonic path construction real-time direct algorithm for 

generating physically feasible, time-and energy optimal, bounded, continuous 

trajectories that can reach any target displacement with a known minimal error. These 

trajectories can be designed to arbitrary smoothness – depending on system 

requirements; they are to be designed smooth up to the 5
th

 time derivative of 

displacement for multi-rotor UAV trajectories. The term (n times) smooth is used as in 

being equivalent to having continuous (n
th

) time derivative. The requirement for feasible 
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trajectories of having minimum 5 times smooth displacement functions in case of UAV 

is proven. Effects of trajectory discontinuities on system state oscillations are studied in 

details. It is proven that the proposed harmonic trajectories of appropriate smoothness 

(defined by the system and control actuator dynamics) do not generate system state 

oscillations. 

The proposed trajectory design method is capable of forming bounded, smooth, energy 

efficient and time optimal trajectories with a single pass algorithm using closed 

formulas.  The design method is defined and validated on an example for a multi-rotor 

UAV path planning, where a single parameter controls the trajectory dynamics, as 

presented in Figure 32. 

Dynamic transient properties and energy efficiency of the trajectory can be tuned with a 

single parameter, but the feasibility of torque transients must not be dismissed along this 

optimization. The resulting trajectory is always the time optimal solution, which 

complies with all defined limits. 

5. New Singular Value Decomposition Based Genetic Fuzzy System Training Data Set 

Reduction 

This paper presents a novel method that reduces the necessary training data set size for 

fuzzy identification of complex dynamic systems. The method is based on finding the 

minimal subset of the training data, which most efficiently minimises the corresponding 

condition number of the linear system subject to SVD decomposition when identifying 

the optimal linear parameters of the system. 

The proposed GFS training data set reduction method, while maintaining the quality of 

the identification process, is capable of significantly reducing the number of necessary 

training data points, and thus significantly increases the identification process 

performance. The method is defined and validated on quadrotor dynamic model 

identification with GFS, where less than 20% of data points give more than 80% of 

contribution to the system condition number. A typical rate of condition number change 

for the most significant 25% of data points is presented in Figure 58. 

The training data set reduction to 1/20th of the full set significantly increases the 

identification process speed, while the proposed reduction method ensures that the 

identification result quality does not deteriorate to below a pre-defined minimum 

precision level. 

This method implicitly provides information on the quality of the training data set. The 

condition number is of acceptable magnitude only for full rank matrices. Rank 

deficiency in case of the proposed fuzzy identification methods means that there is no 

sufficient data to meaningfully define consequent values for every rule; thus when using 

such model for control purposes we cannot achieve uniform stability – a model built on 

a rank deficient fuzzy system is not stable for the complete operational space, even if 

the antecedent fuzzy partition uniformly cover the complete input space. 

Application Possibilities of Results 

The main goal of this work is to create new and improve existing tools, by which the 

complete autonomy with obstacle avoidance of UAV navigation can be enhanced. 
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My first thesis group gives a set of new tools for evolving, searching near-optimal 

parameters of complex systems such as fuzzy models of system dynamics as in 

navigation dynamics of UAV. 

My second thesis group gives a new tool for minimalistic representation of fuzzy model 

parameters and their unconstrained tuning for precise function approximation in 

modelling complex system dynamics as in navigation dynamics of UAV. 

My third thesis group gives a new tool for efficient complete fuzzy modelling of 

continuous and periodic complex nonlinear dynamics systems as in navigation 

dynamics of UAV. 

My fourth thesis group gives a new tool for feasible optimal trajectory design, which 

can real-time generate trajectory parametrisations while obeying all the kinematic 

constraints, such as parametrisation for any geometric UAV path with velocity and 

acceleration constraints. 

My fifth thesis group gives a new tool for efficient genetic fuzzy modelling by reducing 

the training data set to minimum, while guaranteeing the prescribed quality of the 

solution. 

Along my results to improve the autonomy of UAV navigation I propose to: 

- start from a flying UAV, keep the high level strategic way-point selection algorithm 

- for planning the exact feasible optimal trajectory between two way-points use my 

method described in thesis 4 

- at the initial stage use the existing control mechanism to track such feasible optimal 

trajectories and collect measurement signals datasets consisting of at least 3D position, 

3D orientation data paired to exact (4 in case of quadrotor) motor rotation velocities for 

each time sample; if sensors can provide, further data can be collected such as position 

and orientation velocities and accelerations, motor currents or voltages 

- for minimising the training data set size use my method described in thesis 5 

- using my methods described in thesis 1 and 2 design a fuzzy system structure as 

described in thesis 3 to precisely model the UAV flight dynamics along the reduced 

trading data set 

- replace the UAV control system to a back stepping (computed torque) controller, 

which uses a fuzzy reference model obtained in the previous step 

A further improvement possibility exist in adapting the computed torque control 

algorithm in a manner that it does not apply a simple PID action to the decoupled 

double integrators, but instead actually calculates a feasible optimal harmonic micro-

trajectory which, when super-positioned to the original trajectory, compensates for the 

occurred trajectory error. This way high speed smooth obstacle avoidance can be 

achieved, be it a full evasive manoeuvre or just a velocity modification. 

As all the tools I have developed are general, they have much broader application 

possibilities. 

1. Multi-objective Genetic Algorithms with Quality-dominance and Measurement-

based Ranking 
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The proposed vector comparison operators are strict partial order binary endo-relations, 

being irreflexive, antisymmetric and transitive – thus they are uniformly usable in any 

mathematical or engineering process where a decision is to be made based on multipole 

criteria. The proposed metrics, including those for Pareto and weighted sum operators 

can be the bases for any ranking process, not just stochastic search, evolutionary 

algorithms and genetic algorithms. These proposed methods are computational efficient 

and provide detailed information on the quality, the nature and extent of difference 

between vectors of the same kind. 

These new ranking and vector comparison methods can be freely use in any 

mathematical, engineering, economics or any other field, when objects of multiple 

properties are to be objectively compered or ranked. They are very much needed when 

the task is to optimise very complex, highly nonlinear system as fuzzy UAV flight 

dynamics models. 

Based on the presented analysis my conclusion is that if one does not want to mess with 

vector comparisons, then the simple weighted sum of objectives will still do the trick; 

the only recommendation I give for this simple approach is to use the dominance 

approach to ranking (DO or DM) – measure by how much an individual is better than 

the others (and not by how much it is worse than the others), as this is a more efficient 

approach – observe the yellow highlighted D.DO.GA of Table IV. 

Finally to offer an alternative to all those that still insist on using the classical Pareto 

vector comparison for multi-objective GAs: please observe the orange marked P.DM 

and P.DO GAs in Table IV to conclude that it is still more efficient to base the rank of 

an individual on the number of how many individuals it dominates (dominance based 

ranking) instead of looking for how many individuals do not dominate it (non-

dominance based ranking). 

2. Free Parametrisation Method for Unconstrained Tuning of Zadeh-type Fuzzy 

Partitions 

My proposal for a successful fuzzy identification strategy is to take the ‘GAzFLS’ 

method as an off-line preliminary identification method, apply the results while keeping 

a continuous real-time ‘LinLSzFLS’ update mechanism in place for continuous fine 

tuning with fresh measurements, thus ensuring adaptability of the system. 

The proposed fuzzy partition representation method performs exceptionally well when 

it comes to precision and reduced complexity (simplicity) of the solution format – low 

number of MFs and fuzzy rules. The global search of nonlinear parameters can be 

performed in a satisfactory fast manner by a well-constructed GA; gradient descent 

methods can simply and efficiently fine-tuned the system. With all linear parameters 

being LS optimal, the final quality of the identification is very good. Since the FLS 

complexity is reduced (low number of MFs and fuzzy rules) the model evaluation is 

fast. After the necessary offline pre-processing to calculate the system a then b and c 

parameters, for each online input data we need to perform only 5*(number of system 

inputs) multiplications and maximum 7*(number of system inputs), in average 

4*(number of system inputs) additions; this can all be performed online in real time on 

practically any simple processor. 

The number of multiplications and additions comes from these considerations: 

 one input triggers maximum 2 MFs in a fuzzy partition; 
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 2 MFs of equation (25) take maximum 3 additions (subtractions) and 2 

multiplications (1 multiplication and 1 division); notice that the MF denominator 

does not take a subtraction for every online input calculation, it is constant, thus it 

can be pre-calculated; and actually the average number of additions is only 2; 

 for each input it takes 2 multiplications for each antecedent of equation (22); 

 for each input it takes 1 multiplication and 1 addition for each fuzzy consequence 

evaluation (24); 

It is interesting to note that the proposed antecedent structure has all the positive 

properties of a second order B-spline antecedent. It has the same minimal number of 

parameters. Its derivative is continuous up to the second order. The evaluation of the 

complete rule base for every input can be omitted the same way as for B-splines. 

Furthermore, the proposed formulation has other benefits over B-splines: no iterative 

evaluation of the MF values is required. The MF parameters can be directly tuned by 

gradient based methods. No constraints have to be taken into consideration for its 

parameters. The consistency of the linguistic values remains intact throughout any fine-

tuning so incorporated human knowledge can be fine-tuned without loss of meaning. 

Instead of nonlinear LS the proposed formulation and unconstrained gradient based 

method can be used for tuning the consequent parameters of a Mamdani type FLS, too. 

3. Grey-box Genetic Fuzzy System Modelling and Control of Complex Dynamic 

Systems 

The proposed general identification method is capable of forming and fine-tuning a soft 

computing, fuzzy system based dynamic models for any mechanical system that can be 

described by Euler-Lagrange equations, including but not limited to robotic 

manipulators, cranes, even for flight dynamics. The structure of the model is such that 

we can guarantee continuity of the model output and also periodicity if required. The 

model continuity and its bounded nature can be used for mathematically proving 

stability of control systems using the model. Periodicity of the model is needed to 

ensure the proper natural behaviour after full circle turns in flight dynamics or with 

robotic arms where a joint (typically a wrist) can rotate in one direction more than 360 

degrees. 

This method can be freely used for large, complex systems of many heavily coupled 

variables, as the number of nonlinear parameters is kept to minimum, and influenced 

only by the inertia matrix size; the complexity of the Coriolis and the centrifugal 

components do not introduce any new variables, as they are fully defined by and 

calculated from inertia components. 

The structure of the model is such that after an initial evolutionary nonlinear parameter 

optimisation, it is possible to continuously, real-time fine tune the linear parameters of 

the model thus resulting in an adaptive model. 

4. Feasible Optimal Harmonic Trajectories of Bounded, Smooth Time Derivatives 

The proposed trajectory design method results in real-life feasible smooth, bounded 

torque transients, which is energy efficient for control signal design; while providing a 

flexible interface to arbitrary velocity, acceleration, jerk and snap limit enforcement. 

For such cases the trajectory is designed in a way to hold the maximal velocity, 

acceleration, jerk and snap, so that the desired lesser derivative maximum values are 

reached without any increase in higher derivatives. Figure 59 presents such trajectory, 
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where the maximum snap is held for 1 second (yellow vertical lines), maximum jerk for 

2 seconds (orange double vertical line), maximum acceleration for 4 seconds (pink 

rectangles) and the maximum velocity for 8 seconds (hollow red rectangles). 

Reduction of this method is strait forward for more simple systems where it is enough to 

have smooth trajectories up to the 3rd time derivative of displacement. The notion of 

time and energy optimality is not used in some mathematics theory manner but in real 

life physically feasible engineering manner. 

Figure 59. 

Design of increased maximal trajectory values 

The same basic principle of accounting for system oscillations and the actuator 

dynamics when planning for system trajectories can be also applied to a crane model 

and any other than electro motor actuated system, by replacing equations (55) to 

appropriate ones, and then evaluating their transient behaviour. When the actuator 

dynamics and its relation to the system trajectory is known, one can use the algorithm 

and the method described in this paper to design trajectories of required transient 

dynamics and smoothness by replacing equation (62) to the appropriate one [s6]. 

These real time generated trajectories can be applied as parametrisation to any vector 

function defined path f(s)=(x(s),y(s),z(s)), which is chosen to accomplish the desired 

RM or crane task; also for complex UAV missions of arbitrary designed paths, even 

those including sudden unplanned changes as in obstacle avoidance. When determining 

the constraints on trajectory derivatives, one has to take into consideration both the 

system limits (39) or (43) and curvature properties of f(s). The capability of real time 

trajectory generation with arbitrary constraints on displacement derivatives makes this 

trajectory design method especially suited for tactical re-planning of flight trajectories. 
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This paper presents results with feed-forward control scheme, but the trajectory design 

is applicable to any scheme including feedback setups. Naturally the poles of the system 

will change in a feedback loop, this will result in changed system dynamics – the period 

of a critical aperiodic transient will be different. This transient period can either be 

calculated as in equation (63) or simply measured as in equation (62) and then used as 

the parameter P in equations (64) and (65). 

5. Singular Value Decomposition Based Genetic Fuzzy System Training Data Set 

Reduction 

The proposed training data set reduction method is a general procedure usable for all 

identification procedures where a significant part of the approximation is linear – as in 

linear parameter approximation in TSK fuzzy system consequent part. For complex 

system identification problems we must be sure that the training data set is sufficiently 

exciting – that it reveals all the typical modes of the system. Datasets of sufficiently 

exciting system trajectories tend to be oversized. Oversized data is expensive to 

evaluate, especially in iterative and evolutionary search methods. 

The need to reduce the training dataset is real, but for many applications the quality of 

the result is of outmost importance as in model based control of UAV flight dynamics 

we must not allow for any unknown, uncontrolled states. Using this proposed training 

data reduction method we can ensure that we have full control over the quality and also 

the size of the training data, thus full control off the uniform quality of our UAV flight 

dynamics model and implicitly of the stability of the model based flight control. 
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APPENDIX I 

Box-Jenkins Gas Furnace Benchmark Data 

t[s] input output   t[s] input output   t[s] input output 

1 -0.109 53.8   100 -0.314 50.4   199 -2.378 52.4 

2 0 53.6   101 -0.288 51   200 -2.499 53.5 

3 0.178 53.5   102 -0.153 51.8   201 -2.473 55.6 

4 0.339 53.5   103 -0.109 52.4   202 -2.33 58 

5 0.373 53.4   104 -0.187 53   203 -2.053 59.5 

6 0.441 53.1   105 -0.255 53.4   204 -1.739 60 

7 0.461 52.7   106 -0.229 53.6   205 -1.261 60.4 

8 0.348 52.4   107 -0.007 53.7   206 -0.569 60.5 

9 0.127 52.2   108 0.254 53.8   207 -0.137 60.2 

10 -0.18 52   109 0.33 53.8   208 -0.024 59.7 

11 -0.588 52   110 0.102 53.8   209 -0.05 59 

12 -1.055 52.4   111 -0.423 53.3   210 -0.135 57.6 

13 -1.421 53   112 -1.139 53   211 -0.276 56.4 

14 -1.52 54   113 -2.275 52.9   212 -0.534 55.2 

15 -1.302 54.9   114 -2.594 53.4   213 -0.871 54.5 

16 -0.814 56   115 -2.716 54.6   214 -1.243 54.1 

17 -0.475 56.8   116 -2.51 56.4   215 -1.439 54.1 

18 -0.193 56.8   117 -1.79 58   216 -1.422 54.4 

19 0.088 56.4   118 -1.346 59.4   217 -1.175 55.5 

20 0.435 55.7   119 -1.081 60.2   218 -0.813 56.2 

21 0.771 55   120 -0.91 60   219 -0.634 57 

22 0.866 54.3   121 -0.876 59.4   220 -0.582 57.3 

23 0.875 53.2   122 -0.885 58.4   221 -0.625 57.4 

24 0.891 52.3   123 -0.8 57.6   222 -0.713 57 

25 0.987 51.6   124 -0.544 56.9   223 -0.848 56.4 

26 1.263 51.2   125 -0.416 56.4   224 -1.039 55.9 

27 1.775 50.8   126 -0.271 56   225 -1.346 55.5 

28 1.976 50.5   127 0 55.7   226 -1.628 55.3 

29 1.934 50   128 0.403 55.3   227 -1.619 55.2 

30 1.866 49.2   129 0.841 55   228 -1.149 55.4 

31 1.832 48.4   130 1.285 54.4   229 -0.488 56 

32 1.767 47.9   131 1.607 53.7   230 -0.16 56.5 

33 1.608 47.6   132 1.746 52.8   231 -0.007 57.1 
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t[s] input output   t[s] input output   t[s] input output 

34 1.265 47.5   133 1.683 51.6   232 -0.092 57.3 

35 0.79 47.5   134 1.485 50.6   233 -0.62 56.8 

36 0.36 47.6   135 0.993 49.4   234 -1.086 55.6 

37 0.115 48.1   136 0.648 48.8   235 -1.525 55 

38 0.088 49   137 0.577 48.5   236 -1.858 54.1 

39 0.331 50   138 0.577 48.7   237 -2.029 54.3 

40 0.645 51.1   139 0.632 49.2   238 -2.024 55.3 

41 0.96 51.8   140 0.747 49.8   239 -1.961 56.4 

42 1.409 51.9   141 0.9 50.4   240 -1.952 57.2 

43 2.67 51.7   142 0.993 50.7   241 -1.794 57.8 

44 2.834 51.2   143 0.968 50.9   242 -1.302 58.3 

45 2.812 50   144 0.79 50.7   243 -1.03 58.6 

46 2.483 48.3   145 0.399 50.5   244 -0.918 58.8 

47 1.929 47   146 -0.161 50.4   245 -0.798 58.8 

48 1.485 45.8   147 -0.553 50.2   246 -0.867 58.6 

49 1.214 45.6   148 -0.603 50.4   247 -1.047 58 

50 1.239 46   149 -0.424 51.2   248 -1.123 57.4 

51 1.608 46.9   150 -0.194 52.3   249 -0.876 57 

52 1.905 47.8   151 -0.049 53.2   250 -0.395 56.4 

53 2.023 48.2   152 0.06 53.9   251 0.185 56.3 

54 1.815 48.3   153 0.161 54.1   252 0.662 56.4 

55 0.535 47.9   154 0.301 54   253 0.709 56.4 

56 0.122 47.2   155 0.517 53.6   254 0.605 56 

57 0.009 47.2   156 0.566 53.2   255 0.501 55.2 

58 0.164 48.1   157 0.56 53   256 0.603 54 

59 0.671 49.4   158 0.573 52.8   257 0.943 53 

60 1.019 50.6   159 0.592 52.3   258 1.223 52 

61 1.146 51.5   160 0.671 51.9   259 1.249 51.6 

62 1.155 51.6   161 0.933 51.6   260 0.824 51.6 

63 1.112 51.2   162 1.337 51.6   261 0.102 51.1 

64 1.121 50.5   163 1.46 51.4   262 0.025 50.4 

65 1.223 50.1   164 1.353 51.2   263 0.382 50 

66 1.257 49.8   165 0.772 50.7   264 0.922 50 

67 1.157 49.6   166 0.218 50   265 1.032 52 

68 0.913 49.4   167 -0.237 49.4   266 0.866 54 

69 0.62 49.3   168 -0.714 49.3   267 0.527 55.1 
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t[s] input output   t[s] input output   t[s] input output 

70 0.255 49.2   169 -1.099 49.7   268 0.093 54.5 

71 -0.28 49.3   170 -1.269 50.6   269 -0.458 52.8 

72 -1.08 49.7   171 -1.175 51.8   270 -0.748 51.4 

73 -1.551 50.3   172 -0.676 53   271 -0.947 50.8 

74 -1.799 51.3   173 0.033 54   272 -1.029 51.2 

75 -1.825 52.8   174 0.556 55.3   273 -0.928 52 

76 -1.456 54.4   175 0.643 55.9   274 -0.645 52.8 

77 -0.944 56   176 0.484 55.9   275 -0.424 53.8 

78 -0.57 56.9   177 0.109 54.6   276 -0.276 54.5 

79 -0.431 57.5   178 -0.31 53.5   277 -0.158 54.9 

80 -0.577 57.3   179 -0.697 52.4   278 -0.033 54.9 

81 -0.96 56.6   180 -1.047 52.1   279 0.102 54.8 

82 -1.616 56   181 -1.218 52.3   280 0.251 54.4 

83 -1.875 55.4   182 -1.183 53   281 0.28 53.7 

84 -1.891 55.4   183 -0.873 53.8   282 0 53.3 

85 -1.746 56.4   184 -0.336 54.6   283 -0.493 52.8 

86 -1.474 57.2   185 0.063 55.4   284 -0.759 52.6 

87 -1.201 58   186 0.084 55.9   285 -0.824 52.6 

88 -0.927 58.4   187 0 55.9   286 -0.74 53 

89 -0.524 58.4   188 0.001 55.2   287 -0.528 54.3 

90 0.04 58.1   189 0.209 54.4   288 -0.204 56 

91 0.788 57.7   190 0.556 53.7   289 0.034 57 

92 0.943 57   191 0.782 53.6   290 0.204 58 

93 0.93 56   192 0.858 53.6   291 0.253 58.6 

94 1.006 54.7   193 0.918 53.2   292 0.195 58.5 

95 1.137 53.2   194 0.862 52.5   293 0.131 58.3 

96 1.198 52.1   195 0.416 52   294 0.017 57.8 

97 1.054 51.6   196 -0.336 51.4   295 -0.182 57.3 

98 0.595 51   197 -0.959 51   296 -0.262 57 

99 -0.08 50.5   198 -1.813 50.9 

 

      

Table XX. Adapted Box-Jenkins benchmark system input-output training data pairs. 
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APPENDIX II 

Effects of Displacement Jerk, Snap and Pop Function 

Discontinuities on Multi-rotor Flight Dynamics 

Discontinuity in d
3
r/dt

3
 – jerk 

Discontinuity in d
3
r/dt

3
 – jerk, the third time derivative of the displacement function 

occurs with trajectories that have non-smooth profile of the acceleration function. 

Common examples are: maximum velocity trajectory, bang-bang acceleration 

trajectory, or minimum acceleration and minimum energy trajectory, that are designed 

as described by Pontryagin in [58] – see chapter 5.1 Figure 30. Even minimum jerk 

trajectories of the same kind will result in discontinuities in jerk for the first and the last 

instance of time – see Figure 60: 

 

Figure 60. 

Minimal jerk trajectory time derivatives – discontinuity in jerk. 

The simplest way to visualise the effects of jerk discontinuity on the multi-rotor 

dynamics, is to take a simple step function for jerk – Figure 61 presents all the 

important derivatives of such a displacement. 
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Figure 61. 

Step jerk trajectory time derivatives – discontinuity in jerk. 

A step jerk function results in a triangular acceleration profile (quite often used in 

literature) as it defines a seemingly nice continuous velocity profile. Notice that I have 

set up this trajectory to be comparable to my feasible optimal harmonic trajectory 

described in chapter 5.2 and presented in Figures 32-39. Sampling time remains dt = 

0.01[s], also maximum_acceleration = 2[m/s
2
], maximum_velocity = 8[m/s], 

displacement = 64[m], within duration = 16[sec]. What is different because of the step 

jerk profile is that maximum_jerk = 0.5[m/s
3
](instead of 1), maximum_snap = 

100[m/s
4
] (instead of 1) and also maximum crackle increases to 10 000 [m/s

5
] from the 

previous value of 2[m/s
5
]! The most important change is that the snap and crackle 

functions become Dirac-delta impulses. 
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The discontinuity in jerk results in a noticeable discontinuity in the first derivative of 

the roll (nue1) and pitch (nue2) Euler angles, and a significant spike in their second time 

derivative – see Figure 62. 

 

 

 

Figure 62. 

Step jerk trajectory – system Euler angles and their time derivatives. 
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Now let’s take a look at the required torques to track such a trajectory; it is full of large 

spikes – Figure 63. 

 

 

 

Figure 63. 

Step jerk trajectory – system torques. 
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The corresponding electro motor shaft rotation velocity is presented in Figure 64. This 

shaft displacement is simply not feasible – we cannot generate instantaneous rotation 

velocity changes in a real physical system as electric motors.  

 

Figure 64. 

Step jerk trajectory – required motor shaft rotational velocity. 
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Discontinuity in d
4
r/dt

4
 – snap 

Discontinuity in d
4
r/dt

4
 – snap, the fourth derivative of displacement occurs even for 

minimum snap trajectories as described by Mellinger in [37]. Observe the first and the 

last instance of time in Figure 65. 

 

Figure 65. 

Minimal snap trajectory time derivatives – discontinuity in snap. 

The simplest way to visualise the effects of snap discontinuity on the multi-rotor 

dynamics, is to take a simple step function for snap – Figure 66 presents all the 

important derivatives of such a displacement. 
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A step snap function results in a triangular jerk profile. Notice that I have set up this 

trajectory to be comparable to my feasible optimal harmonic trajectory described in 

chapter 5.2 and presented in Figures 32-39. Sampling time remains dt = 0.01[s], also 

maximum_jerk = 1[m/s
3
], maximum_acceleration = 2[m/s

2
], maximum_velocity = 

8[m/s], displacement = 64[m], within duration = 16[sec]. What is different because of 

the step snap profile is that maximum_snap = 0.5[m/s
4
] (instead of 1) and also 

maximum crackle increases to 100 [m/s
5
] from the previous value of 2[m/s

5
]! The most 

important change is that the crackle function becomes a combination of Dirac-delta 

impulses – see Figure 66. 

 

Figure 66. 

Step snap trajectory time derivatives – discontinuity in snap.  
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The discontinuity in snap results in discontinuity in the second derivative of the roll 

(nue1) and pitch (nue2) Euler angles – see Figure 67. 

 

 

 

Figure 67. 

Step snap trajectory – system Euler angles and their time derivatives. 
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Now let’s take a look at the required torques to track such a trajectory, it is 

discontinuous – Figure 68, and first time derivative of the torque is full of spikes – 

Figure 69. 

 

Figure 68. 

Step snap trajectory – system torques. 
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The first time derivative of required system torques is full of discontinuities, spikes, 

Dirac impulses – Figure 69. 

 

Figure 69. 

Step snap trajectory – system torque first time derivatives. 
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The corresponding electro motor shaft rotation velocity is presented in Figure 70. Even 

these very small discontinuous jumps in the rotation velocity are simply not feasible – 

we cannot generate instantaneous rotation velocity changes in a real physical system. 

The problem is more obvious when we take a look at the rotational acceleration – 

Figure 71, especially in the light of equation (56). 

 

Figure 70. 

Step snap trajectory – required motor shaft rotational velocity. 
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The corresponding electro motor shaft rotation accelerations are presented in Figure 71.  

 

 

Figure 71. 

Step snap trajectory – required motor shaft rotational accelerations. 

These spikes, instant jumps back and forth in the rotor shaft acceleration of a real 

physical system are simply not feasible – we cannot generate instantaneous rotation 

acceleration changes in a real physical electric motor systems; since by equation (56) 

 𝐾𝜏𝒊𝒆(𝑡) − 𝝉𝑳(𝑡) = 𝐽𝑀
𝒅𝝎

𝒅𝒕
(𝑡) + 𝛾𝑀𝝎(𝑡) discontinuity in 

𝒅𝝎

𝒅𝒕
 would mean discontinuity 

in at least one of electric motor torque, rotation velocity and/or electrical current, which 

are obviously real physical properties of the system, and those just cannot be 

“instantaneously teleported” from one value to an arbitrary other value (like ±100 rad/s
2
 

changes within 10 milliseconds). 

  



168 

Discontinuity in d
6
r/dt

6
 – pop 

Discontinuity in d
6
r/dt

6
 – pop occurs with trajectories that have non-smooth crackle; a 

step function displacement pop will result in a triangular crackle function Figure 72. 

Notice that I have set up this trajectory to be comparable to my feasible optimal 

harmonic trajectory described in chapter 5.2 and presented in Figures 32-39. Sampling 

time remains dt = 0.01[s], also maximum_snap = 1[m/s
4
], maximum_jerk = 1[m/s

3
], 

maximum_acceleration = 2[m/s
2
], maximum_velocity = 8[m/s], displacement = 64[m], 

within duration = 16[sec]. Even the maximum crackle remains 2[m/s
5
] so all trajectory 

components are equally bounded as my feasible optimal harmonic trajectory described 

in chapter 5.2. 

 

Figure 72. 

Step pop trajectory – a trajectory with discontinuity in the displacement pop. 
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The discontinuity in pop results in no obvious issue with the required roll (nue1) and 

pitch (nue2) Euler angles or their first and second time derivatives, they are all smooth – 

see Figure 73. 

 

 

 

Figure 73. 

Step pop trajectory – system Euler angles and their time derivatives. 
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The discontinuity in pop results in no obvious issue with the required system torques, 

they also are all smooth – see Figure 74. 

 

Figure 74. 

Step pop trajectory – system torques. 
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The discontinuity in pop results in no obvious issue with the first time derivative of 

required system torques either, they are all smooth – see Figure 75. 

 

Figure 75. 

Step pop trajectory – first time derivative of system torques. 
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Now observe how the discontinuity in pop results in a discontinuity in the second time 

derivative of required system torques – see Figure 76. 

 

Figure 76. 

Step pop trajectory – second time derivative of system torques. 

Notice how a discontinuity in the second time derivative of required system torques will 

induce problems with the required motor shaft rotational profile. 
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Figure 77. 

Step pop trajectory – required motor shaft rotational velocity, 𝝎(𝑡). 
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Figure 78. 

Step pop trajectory – required motor shaft rotational acceleration, 
𝒅𝝎

𝒅𝒕
(𝑡). 

Now let’s observe how the discontinuity in pop results in a discontinuity in the second 

time derivative of required motor shaft rotational velocity – see Figure 79. This is 

understandable if we notice that based on equation (57) the rotational torque of the 

multi-rotor is mostly influenced by the square of the rotational velocity, thus 

discontinuity in the second derivative of the multi-rotor body torque (Figure 76) will 

result also in a discontinuity in the second derivative of the required rotational velocity 

the rotor shaft, given that all other components are continuous. 
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Figure 79. 

Step pop trajectory – required motor shaft rotational jerk, 
𝒅𝟐𝝎

𝒅𝒕𝟐
(𝑡). 

Observe the electric motor equation (58) and then (55) described in chapter 5.1.3, 

formulas repeated here for a reminder: 

𝒅𝒊𝒆

𝒅𝒕
(𝑡) =

1

 𝐾𝜏
((𝐽𝑀 + 𝐽𝑅)

𝒅𝟐𝝎

𝒅𝒕𝟐
(𝑡) + (𝛾𝑀 + 2𝐾𝑑𝝎)

𝒅𝝎

𝒅𝒕
(𝑡)),          (58) 

𝒗𝒆(𝒕) = 𝑳𝒆
𝒅𝒊𝒆

𝒅𝒕
(𝒕) + 𝑹𝒆𝒊𝒆(𝒕) + 𝑲𝒃𝝎(𝒕),             (55) 

It is obvious that discontinuity in 
𝒅𝟐𝝎

𝒅𝒕𝟐
(𝑡) would mean discontinuity in 

𝒅𝒊𝒆

𝒅𝒕
(𝑡) and then in 

𝒗𝒆(𝒕) or in 𝒊𝒆(𝒕), which is realistically not possible for real physical systems! We see 

that even if it seems really farfetched to discuss discontinuities in the sixth time 

derivative of a multi-rotor displacement or the second time derivative of a motor 

rotation profile, it is important if we would like to deal with real, physically feasible 

trajectories of electro motor actuated multi-rotors.  Implementation and properties, 

optimality of feasible trajectories are discussed in chapter 5.2. 

 


