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Chapter 1

Introduction

Among the different approaches of modern engineering applications model-integrated com-

puting plays an exceptional role. Modeling is a fundamental and difficult problem in all

the sciences; to design a controller one needs a model. Soft Computing techniques, such as

fuzzy and neural network-based models, are found to be highly efficient due to their flexibil-

ity, robustness and easy interpretability. Especially in cases where the problem to be solved

is highly nonlinear or when only partial, uncertain and/or inaccurate data is available. At

the same, though their usage can be so advantageous, it is still limited by their exponentially

increasing computational complexity. Combining Soft Computing, non-conventional and

novel data representation techniques is a possible way to overcome this difficulty. The per-

formance of a controller depends on the available form of the model, therefore my research

concentrates on novel data representation and control methods that are able to adaptively

cope with usually imperfect, noisy or even missing information, the dynamically changing,

possibly insufficient amount of resources and reaction time (for instance, wavelet based mul-

tiresolution controllers [1], anytime control [2][3][4][5], Situational Control [6][7], Robust

Fixed Point Transformation-based control [8], etc.).

1.1 Research Aims and Their Relevance in the Context of
the State of the Art

The field of Adaptive Systems, that includes for instance recursive identification, adaptive

control, filtering, and signal processing, has been one of the most active research areas of

the past decade [9][10]. Since adaptive controllers are fundamentally nonlinear, their the-

oretical analysis is usually very difficult. Therefore, modern approaches of control design
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and signal processing include a various class of mathematical tools [5][11][12]. The idea

of wavelet based controllers (see, [1][13][14][15]) originates from the facilities of series

expansion with wavelets. In paper [1] the authors investigate wavelet network and fuzzy

approximation in controlling a class of continuous time unknown nonlinear systems. The

described method applies variable wavelet bases, where the adjustable parameters enable

constructing suitable control laws. An effective way dealing with potentially infinite number

of unknown parameters with the help of wavelet basis functions has been introduced in [13].

The proposed method is based on constructing an ideal infinite controller and approximating

its behaviour with a finite controller. The authors highlight the advantages of the ’Mexican

hat’ type wavelet frames from multiresolution analysis’ point of view. Paper [14] shows a

new frequency-domain approach to identify poles in discrete-time linear systems. The dis-

crete rational transfer function is represented in a rational Laguerre-basis, where the basis

elements are expressed by powers of the Blaschke-function. This function can be interpreted

as a congruence transform on the Poincaré unit disc model of the hyperbolic geometry. The

identification of a pole is given as a hyperbolic transform of the limit of a quotient-sequence

formed from the Laguerre-Fourier coefficients. Paper [14] extends this approach for using

discrete time-domain data directly. Another interesting new adaptive fuzzy wavelet network

controller is shown in [15], for control of nonlinear affine systems, inspired by the theory

of multiresolution analysis (MRA) of wavelet transforms and fuzzy concepts. The proposed

adaptive gain controller, which results from the direct adaptive approach, has the ability to

tune the adaptation parameter in each fuzzy rule during real-time operation.

The traditional approach in the design of adaptive controllers for nonlinear dynamic systems

normally applies Lyapunov’s “direct” method [16]. Several solutions have been proposed in

order to replace this technique by a simpler approach (see, [17][18][19][20][21][22]). The

main characteristic features of Lyapunov’s method can be summarized as follows: a) it yields

satisfactory conditions for the stability, b) instead of focusing on the primary design intent

(for instance, the precise prescription of the trajectory tracking error relaxation) it concen-

trates on proving “global stability” that often is too much for common practical applications,

c) in the identification of the model parameters of the controlled system it provides a tuning

algorithm that contains certain components of the particular Lyapunov function in use, there-

fore it works with a large number of arbitrary adaptive control parameters; (see, [22]), d) the

parameter identification process in certain cases is vulnerable if unknown external perturba-

tions can disturb the system under control. Concentrating on the primary design intent the

“Robust Fixed Point Transformation (RFPT)”-based technique was suggested. The RFPT

at the cost of sacrificing the need for global stability – applied iteratively deformed control

signal sequences that, on the basis of Banach’s Fixed Point Theorem, converged to the ap-
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propriate control signal only within a bounded basin of attraction. This method was found to

be applicable for a wide class of systems to be controlled, it was robust against the unknown

external disturbances. Various tuning methods were suggested for keeping the control signal

in the basin of attraction of the fixed point [23], later its global properties were investigated

in [24], [25], [26], and [27]. These investigations resulted in the following conclusion: for

a wide class of physical systems it has become always possible to so tune one of the adap-

tive control parameters, that so called “precursor oscillations” appear when the monotone

convergent sequence turns into a non-monotone but still convergent one before turning into

bounded chaotic fluctuations. Since it was possible to observe the precursor oscillations with

a simple, model-independent observer, it also has became possible to maintain the conver-

gence, therefore the lack of guaranteed global stability was efficiently compensated from

the point of view of practical applications. The RFPT –based control has also been applied

in various tasks, like in chaos synchronization [28] and traffic control [29]. As Lyapunov’s

Direct Method can be applied in the Model Reference Adaptive Control [22][30], the Robust

Fixed Point Transformations can also be used for such purposes [31]. Further interesting re-

sults have been obtained in the control of certain dynamical systems (for example [32][33]).

The above summarized antecedents and the preliminary results introduced in my M.Sc. The-

sis [34] provided interesting prospects for further investigations. The main directions for this

research will be outlined in the next section.

1.2 Organization of the Thesis and Main Directions

The deep theoretical side to control and signal processing is ubiquitous in any system,

whether it be mechanical or electrical. This theoretical side provides a systematic approach

to the design of control and signal processing algorithms for practical engineering problems.

Therefore, more sophisticated algorithms are required in adaptive systems. This research

makes an attempt to introduce new algorithmical methods to adaptive control in the first

three theses and to adaptive signal procesing in the last two theses. The main objectives are

detailed below:

• Chapter 2 aims revealing the possibilities of the combination of classical model-identification

and the RFPT-based design. The proposed new method utilizes the geometric inter-

pretation provided by the Lyapunov-technique that can be directly used for parameter

tuning. It is shown that these useful information are obtained by using the same feed-

back terms and equations of motion, as in the original method. The application of

the modified Gram-Schmidt algorithm is proposed for the new parameter tuning strat-

egy with the appropriate modifications of the “Adaptive Inverse Dynamics Controller
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(AIDC)’ and the “Adaptive Slotine-Li Robot Controller (ADSLRC)”. Additionally, an

even more simplified technique is presented in the case of the Modified Adaptive In-

verse Dynamics Robot Controller combined with the Sigmoid Generated Fixed Point

Transformation.

• The goal of Chapter 3 is to develop a systematic method for the generation of a new

family of the Fixed Point Transformations (FPT) for the purposes of adaptive con-

trol for nonlinear systems. At first the idea is outlined for the Single Input - Single

Output (SISO) systems. After, it is extended to physical systems having a special

f : IRn 7→ IRn, n ∈ IN Multiple Input – Multiple Output (MIMO) response function.

Then, the Thesis makes an attempt to replace the tuning method by a simple calcula-

tion.

• Chapter 4 proposes new advances regarding “Sigmoid Generated Fixed Point Trans-

formation (SGFPT)”. Also, a new control strategy is described based on the combi-

nation of the “adaptive” and “optimal” control by applying time-sharing strategy in

the SGFPT method, that supports error containment by cyclic control of the different

variables. Further, I focus on new improvements on SGFPT technique by introduc-

ing “Stretched Sigmoid Functions”. The efficiency of the presented control solution is

confirmed by the adaptive control of an underactuated mechanical system. Afterwards,

I investigate the applicability of fuzzy approximation in the SGFPT-type control de-

sign. Additionally, a new type of function is shown for the SGFPT.

• The other important issue that includes the maintenance of unwanted sensor noises

that are mainly introduced by feedback into the system under control is discussed in

Chapter 5. In the development of a control system the signals of noisy measurements

have to be addressed first thus more sophisticated signal pre-processing methods are

required. Since, in this Chapter, I focus on the issue of well-adapted techniques for

smoothing problems in the time domain and fitting data to parametric models. Widely

this means, that research is also needed to determine novel approximations that can

well be used for smoothing the operation of the adaptive controller.

• Afterwards, the objective of Chapter 6 is to investigate the Savitzky-Golay (SG) smooth-

ing and differentiation filter. It has been proven that the performance of the classical

SG-filter depends on the appropriate setting of the windowlength and the polynomial
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degree. Therefore, the main limitations of the performance of this filter are the most

conspicuous in processing of signals with high rate of change. Since, in order to evade

these deficiencies my aim is to propose a new adaptive design to smooth signals based

on the Savitzky-Golay algorithm. The provided method ensures high precision noise

removal by iterative multi-round smoothing. The signal approximated by linear regres-

sion lines and corrections are made in each step. Also, in each round the parameters

are dynamically changed due to the results of the previous smoothing. For supporting

high precision reconstruction I introduce a new parametric weighting function.

Finally, the new scientific results are concluded at the end of each Chapter.
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1.3 Research Methodology

The theoretical considerations and their usability are validated by simulation investigations.

The great majority of the practical problems results in differential equations that do not have

solutions in closed analytical form. Since, in order to build numerical simulations I have

applied the INRIA’s Scilab programming environment. For obtaining realistic simulations

I have also applied the SCILAB’s XCOS tool that provides an excellent graphical interface

and includes more efficient numerical integrators. Furthermore, a few of the simulations have

been carried out by using the package “Julia” with a sequential code using Euler integration

method. This dynamic language ensures a very fast evaluation for technical computing. For

some investigations I have applied Matlab8 that offers a variety of tools and functions that

otherwise are widely used in applied research. The applied scientific methods are ensuring

the precision and thoroughness of the simulation results.
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Chapter 2

Combination of Classical Model
Identification with the RFPT-based
Design by the Use of a New Tuning
Method

The most popular and well studied adaptive control methods in the field of robotics as the

“Adaptive Inverse Dynamics Robot Controller (AIDRC)” or the “Adaptive Slotine-Li Robot

Controller (ADSLRC)” apply Lyapunov’s 2nd method for tuning the parameters of the actual

model of the mechanical system in consideration. The Lyapunov-based technique makes

it possible to guarantee the stability of the controlled system using only simple estimations

without having any detailed knowledge on its motion that is a great advantage. However,

in the application of this technique the main problem is the proper construction of the Lya-

punov function. In order to overcome this limitation a possible solution for replacing the

Lyapunov technique with the RFPT-based design in these classical controllers firstly raised

in [8]. Both the above mentioned classical controllers, namely the AIDRC and ADSLRC

were critically analyzed in [8]. It has been shown, that these classical methods can be im-

proved and combined with the RFPT technique. In [8] two modifications were introduced;

firstly the parameter tuning processes were modified on the basis of simple geometric inter-

pretation, in order to evade the application of the Lyapunov function in the design: it was

shown that consistent tuning of the part of the parameters on which satisfactory informa-

tion were available was possible without the use of any Lyapunov function. Secondly the

feedback term was modified by inserting RFPT-based component, because this modification

did not concern the possibilities for parameter tuning. Due to this latter modification the

trajectory tracking became precise even in the initial phase of the tuning process in which
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the actual parameter estimations were very imprecise.

The essence of parameter tuning is the utilization of the available, geometrically interpreted

information, that can be formulated as follows: there is given a known term a ∈ IRn (it

is known partly by measurements and partly by the use of the actual approximate model

parameters), a known matrix Y ∈ IRn×m determined by the precisely modeled kinematic

structure of the robot arm, and an unknown parameter estimation error array b ∈ IRm in

the form a = Y b, in which n ∈ IN denotes the degree of freedom of the controlled system,

and m ∈ IN denotes the dimension of the array of the dynamic parameters. The basic idea

was to obtain some information on array b. In connection with that, it has to be noted that

normally n � m. In the technical literature for such purposes some pseudo-inverse or gen-

eralized inverse can be used. However, one must be very cautious in choosing an appropriate

“inverse”:

• In general the solution of this problem is ambiguous to the tune of an arbitrary vector

z 6= 0 for which Y z = 0, that is an arbitrary element of the Null Space of Y can be

added to the solution b: the vector b+ z also is the solution of the original problem.

• The elements of this null space also have twofold geometric interpretaion:

a) An element of this null space corresponds to a non-zero linear combination of

the linearly dependent columns of matrix Y ;

b) According to the scalar product of real vectors the elements of this null-space

belong to the orthogonal subspace of the linear space spanned by the rows of Y .

• The classical Moore-Penrose pseudoinverse [35, 36] that successfully can be used for

solving the inverse kinematic tasks for redundant robots in the kinematically not sin-

gular points so “distributes” the solution over the available variables that it minimizes

the sum
∑

s b
2
s. The result is b = Y T

(
Y Y T

)−1
a that is provided as the linear com-

bination of the rows of matrix Y . In principle it corresponds to our needs because it

cannot contain any element of the null space of the rows of Y for which no information

is conveyed by the equation under consideration. However, it numerically inconve-

niently behaves in the vicinity of the singularities where Y Y T is ill-conditioned, and it

does not exist in the singularities in which
(
Y Y T

)−1 cannot be calculated. This prob-

lem normally is treated by introducing a small scalar 0 < µ and using an approximate

solution of the original problem, i.e. b ≈ Y T
(
Y Y T + µI

)−1
a, in which I denotes

the identity matrix of appropriate sizes (see, [37]). This approximation distorts the

existing precise solutions in the non-singular points, and the significance of this dis-

tortion can be reduced only by decreasing µ. However, too small µ may result in the
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appearance of too big components in the approximate solution. It is evident that the

singularities correspond to the elements of the null space of matrix Y T .

• In order to deal better with the singularities in [38, 39] the application of the Singular

Value Decomposition (SVD) (for instance [40]) was suggested for the matrix Y in the

form: Y = UσV T =
∑

l σlu
(l)v(l)T in which σl ≥ 0 are the singular values of matrix

Y , and U ∈ IRn×n, V ∈ IRm×m are real orthogonal matrices the columns of which

serve as a set of orthonormal basis vectors in IRn ({u(l)}) and IRm ({v(l)}), respec-

tively. By the use of this basis b =
∑

l b̃lv
(l), in which (due to the orthonormality of

the set) b̃k = v(k)T b, and a = Y b =
∑

l σlu
(l)v(l)T b =

∑
l σlu

(l)b̃l can be written. This

sum can be reduced only to the positive singular values. Again, due to the orthonor-

mality of the set {u(l)}, it is obtained that b̃k = u(k)
T
a

σk
, that is b =

∑
k
u(k)

T
a

σk
v(k). If

certain singular values are very small in comparison with the others, we are very un-

certain regarding the information content of the original equation in these “directions”,

so it is expedient to use only the “sure” directions in b ≈
∑

k:σk>σ0
u(k)

T
a

σk
v(k) in which

σ0 > 0 is some “limit parameter”. Though this approach geometrically can be very

well interpreted, its computational need is too high, since both the singular values and

the two orthonormal matrices have to be determined for its use.

Based on the above considerations in this chapter my first aim is to investigate the use of the

Modified Gram-Schmidt Algoritm for the possible combination of the RFPT-based method

with a modification of the AIDRC. The algorithm makes the decomposition Y = Ỹ∆ in

which the columns of Ỹ were pairwisely orthogonal but they were not normalized (the orig-

inal algorithm also executes the normalization of its columns), and ∆ denotes an upper tri-

angular matrix with ones in its main diagonals (that was the consequence of omitting the

normalizations). The presented approach referred to took it into consideration that in a given

control step we do not need the solution to an arbitrary array aarb in the LHS of aarb = Y b:

we need the solution only for a given array a. Since we did not need a complete generalized

inverse, the computation needs were reduced in calculating or estimating b. The problem

of the “uncertain directions” was treated in a similar way as in the case of the SVD-based

solution: in Ỹ in the place of the linearly dependent columns zeros appear, and wery small

contributions are present for those directions for which little independent components re-

mains. These columns can be replaced by zeros in Ỹ , and the approximation of b can be

built up by the use of this modified Ỹapprox. Due to their structures the inverse matrices of Ỹ

and ∆ can be built up in a relatively easy way, that is detailed in the following sections. Fol-

lowing that, I show a same possibility for the Modified Adaptive Slotine-Li Robot Controller

(MADSLRC). Finally a new, even simpler tuning technique is presented for the Modified

Adaptive Inverese Dynamic Robot Controller.

15



2.1 Principles of the Original Robust Fixed Point Transfor-
mation for Nonlinear Control

As an alternative of the Lyapunov function technique in adaptive control the method of “Ro-

bust Fixed Point Transformations” (RFPT) was suggested in [41]. This approach assumes

the existence of an approximate dynamic model used by the controller for the calculation of

the control “forces” belonging to some purely kinematically prescribed trajectory tracking

error reduction (it is the “desired response” of the system, rDes), and compares it with the ac-

tually observed response rAct, that is formed according to the exact dynamics of the system

under control. In this manner a “response function” rAct = f(rDes, . . .) can be introduced,

in which normally f : IRn 7→ IRn, n ∈ IN for a MIMO system. In the argument list of f

the symbol “. . . ” represents the state variables and the unknown environmental “forces” that

also influence the system’s response. (Depending on the phenomenology of the controlled

system the responses may be some –generally higher order– time-derivatives of the system’s

coordinates, while the “forces” may mean force or torque values for mechanical systems,

voltages or currents for electrical ones, or the input rates of some reagents in the case of

chemical reactions, etc.) Due to the modeling errors and the unknown external disturbances,

normally rAct 6= rDes. The basic idea was an application of Stefan Banach’s Fixed Point

Theorem [42] in the following manner: instead of tuning the model parameters or the feed-

back gains for the calculation of the control “forces”, the controller generates an iterative

sequence of the “Deformed Responses” {rn} that are introduced into the approximate dy-

namic model instead of rDes. If this sequence converges to a “deformed input value” r?

so that rDes = f(r?, . . .), the input of the approximate model is appropriately deformed. To

obtain a sequence that converges to the solution of the control task an iteration was generated

by a contractive map over a complete linear metric space. The abbreviation “RFPT” refers

to a nonlinear map that, in combination with the response function, generates the conver-

gent sequences. It was shown that on the basis of the same idea MRAC controllers can be

easily designed without extra mathematical considerations [17]. The idea was also extended

to MIMO systems. In comparison with the Lyapunov function based technique, the RFPT

has the features as follows: a) the method is very simple and easily implementable; b) it

keeps in the center of attention the primary design intent, i.e. the kinematically formulated

tracking error relaxation; c) it works only with a few adaptive parameters that are clearly

set; d) it does not impose unnecessary conditions to be met; d) its weak point is that in its

basic form cannot guarantee global stability. The basin of convergence of the sequence is

bounded and theoretically it may happen that the control signals leave this basin. Recent

investigations revealed that in this case the control signal may produce chattering [26, 27]. It
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was also shown that by tuning one of its altogether 3 adaptive parameters, for a wide class of

physical systems, the controller can be kept within the basin of attraction [24] and that by the

use of model-independent observers, “precursor oscillations” can be observed in the control

signal that are not dangerous for the control since they belong to non-monotonic, oscillating

convergence to the solution of the control task [43].

2.2 Critical Analysis and Modification of the AIDC Con-
troller

The method’s main properties are demonstrated by numerical simulations regarding the con-

trol of a 1 DoF paradigm, the 5th order modification of the van der Pol oscillator, a nonlinear

physical system that produces nonlinear oscillations first analyzed, modeled, and understood

by van der Pol in 1927 [44]. This system has the equation of motion as

mq̈ + µ
(
q2 − c

)
q̇ + kq + βq3 + λq5 = F (2.1)

in which m = 10 physically corresponds to some inertia, µ = 1 describes some viscous

damping if q2 > c otherwise it means energy input, c = 3 determines the limit between the

damped and excited regions, k = 100 corresponds to the stiffness of a linear spring while

β = 1 and λ = 2 mean nonlinear corrections in the third and fifth order, that is the stiffness of

the spring drastically increases with its dilatation, q. Variable F describes the external forces

acting on this system. (Since my investigations are of mathematical nature, for the sake of

simplicity the physical dimensions/units of the various quantities will not be considered in

this example).

2.2.1 The Operation of the Classical AIDC Controller

It can be observed that (2.1) satisfies the conditions that must be met to construct an AIDC

according to [45]: the dynamic parameters of the system model can be linearly separated

into an array that is multiplied by known or measurable functions of the state variables of the

system q, q̇, and q̈ in the form F = Y (q̈, q̇, q) Θ as

Y = (q̈, q̇q2,−q̇, q, q3, q5) ,

Θ = (m,µ, µc, k, β, λ)T .
(2.2)

Let the available approximate model parameters be m̂ = 9, µ̂ = 2, ĉ = 3.5, k̂ = 110,

β̂ = 0.9, and λ̂ = 1.5.
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Assuming that for the nominal trajectory the qN(t), q̇N(t), q̈N(t) values are known by

the use of a kinematic PD-type feedback described by the gains K1 and K2, this controller

applies the modified q̈N+K1

(
qN − q

)
+K2

(
q̇N − q̇

)
acceleration instead of q̈N , and applies

the approximate model parameters for the estimation of the necessary force as

F = m̂
[
q̈N +K1

(
qN − q

)
+K2

(
q̇N − q̇

)]
+

µ̂ (q2 − ĉ) q̇ + k̂q + β̂q3 + λ̂q5
(2.3)

that – in the lack of external perturbations – must be identical to the force in (2.1) containing

the exact parameters. The control force F evidently can be eliminated from (2.1) and (2.3).

Furthermore, it is easy to see that by subtracting m̂q̈ from both sides of the so obtained

equation the appropriate time-derivatives of the tracking error e(t) def
= qN(t) − q(t) appears

in the left-hand side (LHS) as

m̂ [ë+K1e+K2ė] + µ̂ (q2 − ĉ) q̇+
k̂q + β̂q3 + λ̂q5 =

(m− m̂)q̈ + µ (q2 − c) q̇ + kq + βq3 + λq5.

(2.4)

In the next step it can be observed that by rearranging (2.4) in the RHS the modeling error

appears as

m̂ [ë+K1e+K2ė] = Y (q̈, q̇, q)
(

Θ− Θ̂
)
. (2.5)

In order to find a Lyapunov function in the design of the AIDC controller the variable x def
=

(e, ė)T “artificial state variable” is introduced and the equation of motion can be rewritten

as

ẋ =

(
0 1

−K1 −K2

)
x+

(
0
Y
m̂

)(
Θ− Θ̂

)
def
=

Ax+B.

(2.6)

With the symmetric positive definite matrices P (of size 2 × 2) and R (of size 6 × 6) a

Lyapunov function is defined as

V
def
= xTPx+

(
Θ− Θ̂

)T
R
(

Θ− Θ̂
)
. (2.7)

Equation (2.7) evidently defines a good Lyapunov function that takes zero if and only if the

errors x and
(

Θ− Θ̂
)

equal to zeros. According to the “orthodox” solution V̇ must be made

negative [A. 3]:

V̇ = ẋTPx+ xTPẋ+ 2
(

Θ̇− ˙̂
Θ
)T

R
(

Θ− Θ̂
)
< 0 (2.8)
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in which the symmetry of R is utilized. Via substituting (2.6) into (2.8) the term quadratic in

x can be separated and by using the symmetry of P the remaining terms linear in x can be

collected as

V̇ = xT
(
ATP + PA

)
x+

2

{(
Θ̇− ˙̂

Θ
)T

R + xTP

(
0
Y
m̂

)}(
Θ− Θ̂

)
.

(2.9)

For making V̇ negative the quadratic part can be made negative by solving the Lyapunov

equation for a positive definite matrix Q as
(
ATP + PA

)
= −Q and the remaining part can

be made zero by the parameter tuning rule (2.10) since Θ̇ ≡ 0, where

˙̂
ΘT = xTP

(
0
Y
m̂

)
R−1. (2.10)

The Lyapunov equation has appropriate solution if the real part of the eigenvalues of A are

negative. For this the fedback gains K1 and K2 must be properly chosen.

It is worth noting that the name of the method follows from the fact that in (2.10) the

inverse of the estimated inertia m̂ occurs that considerably limits the speed of parameter

tuning. If the numerical algorithm achieves the 1/0 singularity the learning process stops

without useful results. Another weak point of the solution is that the effects of the unknown

external disturbances are improperly compensated by the tuning process [A. 3]. Furthermore

P and R contain numerous arbitrary parameters. To exemplify the operation of the method

for Λ = 10, K1 = Λ2, K2 = 2Λ, Q = 〈100, 100〉, R = 〈5, 5, 5, 5, 5, 5〉 simulation results are

shown in Figs. 2.1–2.4.

It can be seen that the learning speed of the controller is very small. It was found that in

the case of some decrease in R caused singularities in the tuning process. To improve the

situation similar steps are done as in [8].

2.2.2 Modified Tuning Algorithm

In order to speed up the learning process it would be expedient to avoid the use of m̂−1 in

the tuning algorithm [A. 1]. This program seems to be possible if we return to (2.5) and

note that the LHS of the equation is known and Y is also known in the right-hand side

(RHS). This means that (2.5) provides actual and available information on the projection of

the modeling error Θ − Θ̂ in the direction of Y T . If we do not want to use any Lyapunov

function for parameter tuning, this information can be utilized directly by the tuning rule

(2.11) that can be expounded as follows: an exponential decay with the exponent −α could

be resulted by the equation d(Θ−Θ̂)
dt

= −α(Θ − Θ̂). However, instead of the full parameter
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Figure 2.1: The trajectory tracking error of the AIDC in the case free of external disturbances

(upper chart) and in the case of disturbance forces (3rd order spline functions of time) (lower

chart)

Figure 2.2: The disturbance forces pertaining to the lower chart of Fig. 2.1

error vector only its projection to the direction of Y T is known that can be generated by a

projector as Y TY
‖Y ‖2 (Θ− Θ̂). According to (2.5) Y (Θ− Θ̂) = m̂ (ë+K1e+K2ė). Therefore

if exponential decay of the known components is required only, then (2.11) can be deduced

(ε stands to avoid division by zero).

˙̂
Θ = αm̂ (ë+K1e+K2ė)

Y T

‖Y ‖2 + ε
(2.11)

To show the applicability of this new tuning for α = 10 simulation results are given in

Figs. 2.5–2.7. The exact parameters are Θ = (10, 1, 3, 100, 1, 2)T . It is evident that Θ2,

Θ3, Θ5 and Θ6 are well learned but Θ1 and Θ4 are only slowly approximated. In the case

of the new tuning it cannot taken for granted that the exact value of each system parameter
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Figure 2.3: Tuning of parameter Θ4 ≡ k̂ without (upper chart) and with (lower chart) external

disturbances

Figure 2.4: Tuning the other parameters in Θ without (upper chart) and with (lower chart)

external disturbances [Θ1 ≡ m̂: black, Θ2 ≡ µ̂: blue, Θ3 ≡ µ̂ĉ: green, Θ5 ≡ β̂: magenta,

and Θ6 ≡ λ̂: ocher lines]

will be precisely learned: if the occurring motion does not yield satisfactory information on

certain parameters these parameters will not be learned. However, it also means that the
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exact knowledge on these parameters is not necessary for guaranteeing precise tracking.

Figure 2.5: The trajectory tracking error of the AIDC with modified tuning in the case free

of external disturbances

Figure 2.6: Tuning of parameter Θ4 ≡ k̂ of the AIDC with modified tuning without external

disturbances

Figure 2.7: Tuning the other parameters in Θ of the AIDC with modified tuning without

external disturbances [Θ1 ≡ m̂: black, Θ2 ≡ µ̂: blue, Θ3 ≡ µ̂ĉ: green, Θ5 ≡ β̂: magenta,

and Θ6 ≡ λ̂: ocher lines]

According to the simulations this speedy parameter learning is very vulnerable by even

small external disturbances. Even very small ones made the simulation results diverge. For

α = 1 and a very limited disturbance force results are displayed in Figs. 2.8–2.9. It is evi-

dent that the external perturbations also disturb this new tuning method too, and decrease the
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quality of trajectory tracking. In the next section it will be shown that the combination of pa-

rameter tuning with the RFPT-based adaptive technique can seriously improve the situation

[A. 1].

Figure 2.8: The trajectory tracking error of the AIDC (upper chart) with modified tuning and

limited external disturbances (lower chart)
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Figure 2.9: Tuning the parameters in Θ of the AIDC with modified tuning with reduced

external disturbances [Θ1 ≡ m̂: black, Θ2 ≡ µ̂: blue, Θ3 ≡ µ̂ĉ: green, Θ4 ≡ k̂: red,

Θ5 ≡ β̂: magenta, and Θ6 ≡ λ̂: ocher lines]

2.3 Combination of the New Tuning Method with the RFPT-
based Adaptive Control

The idea comes from the observation that in the lack of unknown external perturbations

a more general variant of (2.5) can be deduced as (2.12) in which the “Required Accel-

eration” q̈Req can be freely determined by a kinematically prescribed trajectory tracking

mode. (If we do not wish to introduce a Lyapunov function for the deduction of parame-

ter tuning, we have a great formal freedom.) If exponential error relaxation is prescribed

as
(

d
dt

+ Λ
)2 (

qN(t)− q(t)
)

= 0, a “Desired Acceleration” q̈Des def
= q̈N + Λ2

(
qN − q

)
+

2Λ(q̇N − q̇) can be introduced just as it was done in the above simulations.

m̂
[
q̈Req − q̈

]
= Y (q̈, q̇, q)

(
Θ− Θ̂

)
. (2.12)

Let the control signal be iteratively determined for the consecutive control cycles with

the sigmoid function σ(x)
def
= x
|x|+1

as given in (2.13) in which q̈n−1 is the observed system

response for the control signal q̈Reqn−1.

q̈Reqn

def
=
(
q̈Reqn−1 +Kc

)
×{

1 +Bcσ(Ac[q̈n−1 − q̈Desn ])
}
−Kc.

(2.13)
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This equation evidently is an adaptive structure that learns from the past behavior of the

system. The properties of the RFPT defined by (2.13) have been widely studied in [41], [26],

[43]. Here we only note that if q̈n−1 = q̈Desn then qReqn = qReqn−1, that is the solution of the

control task is the fixed point of this mapping. The behavior of this controller as well as the

simple methods for setting its adaptive control parameters have been widely investigated and

it was found that for a wide class of physical systems it simultaneously and efficiently can

compensate the effects of unknown external disturbances and modeling errors. Therefore

it is expected that by the use of its control signals in the lack of external perturbations the

AIDC with modified tuning can learn the system parameters, and in the case of external

perturbations it can compensate their effects even if the parameter tuning process becomes

improper [A. 1]. In the sequel simulation results will be provided that substantiate this

statement.

2.3.1 Simulation Results for the RFPT-supported AIDC Controller with
Modified Tuning Rule

The simulations were made for the control parameter settings Kc = −105, Bc = 1, and

A = 10−6. Figure 2.10 shows the tracking error and the disturbance forces. In Fig. 2.11

it can be seen that the external perturbations again “mislead” the parameter tuning process.

Figure 2.12 reveals that the phase trajectory tracking remained nice and precise in spite of

the considerable external disturbances.
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Figure 2.10: The trajectory tracking error of the RFPT-supported AIDC (upper chart) with

modified tuning and considerable external disturbances (lower chart)

Figure 2.11: Tuning the parameters in Θ of the RFPT-supported AIDC with modified tuning

with considerable external disturbances [Θ1 ≡ m̂: black, Θ2 ≡ µ̂: blue, Θ3 ≡ µ̂ĉ: green,

Θ4 ≡ k̂: red, Θ5 ≡ β̂: magenta, and Θ6 ≡ λ̂: ocher lines]
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Figure 2.12: The phase trajectory tracking of the RFPT-supported AIDC with modified tun-

ing and considerable external disturbances
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2.4 Combination of the Modified Adaptive Slotine-Li Robot
Controller (ADSLRC) with the RFPT-based Adaptive
Controller

In the present section my aim is to show a similar possibility for the ADSLRC controller

[A. 2]. For starting point we go back to its modification introduced in [8]. For simulation

purposes and illustrations the same paradigm (a cart+beam+hamper system) will be used

here.

2.4.1 The Tuning Method using Lyapunov-function
The integrated tracking error can be introduced as ξ(t) def

=
∫ t
t0

[
qN(ζ)− q(ζ)

]
dζ . If Λ > 0

(constant symmetric positive definite matrix) an “error metrics” can be introduced as S(t)
def
=(

d
dt

+ Λ
)2
ξ(t). Furthermore, for the feedback the quantity v def

= q̇N + 2Λξ̇ + Λ2ξ also is

practically defined. Evidently v − q̇ = S.

As it was shown by Slotine and Li, the approximate model of the robot can be described

by the positive definite symmetric inertia matrix Ĥ(q), the special matrix Ĉ(q, q̇), the ap-

proximation of the gravitational term ĝ(q), and a positive symmetric matrix KD, in which

variable q denotes the “Generalized coordinates” of the robot. Regarding the definition of

matrix C this method takes into account the fact that in the Euler-Lagrange equations of

motion this matrix is composed from the inertia matrix:

L
def
= 1

2

∑
ij Hij q̇iq̇j − U(q),

Qk = d
dt

∂L
∂q̇k
− ∂L

∂qk
,

Qk =
∑

j Hkj q̈j +
∑

ji
∂Hkj

∂qi
q̇iq̇j

−1
2

∑
ij
∂Hij

∂qk
q̇iq̇j + ∂U

∂qk
,

(2.14)

in which the product q̇iq̇j is symmetric in the indices i, j, therefore only the symmetric part

of its coefficient yields contribution as

Qk =
∑

j Hkj q̈j + ∂U
∂qk

+∑
ji

(
1
2

∂Hkj

∂qi
+ 1

2
∂Hki

∂qj
− 1

2

∂Hij

∂qk

)
q̇iq̇j

Ckj
def
= 1

2

∑
i

(
∂Hkj

∂qi
+ ∂Hki

∂qj
− ∂Hij

∂qk

)
q̇i

(2.15)

Let the controller exert the generalized force Q according to (2.16). An important as-

sumption of the method is that neither unknown external disturbances nor other modeling

inaccuracies may exist, therefore the generalized force Q as calculated in the first line of

(2.16) is related to the motion of the system as given by its 2nd line:
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Q = Ĥ(q)v̇ + Ĉ(q, q̇)v + ĝ(q) +KDS

Q = H(q)q̈ + C(q, q̇)q̇ + g(q) =

= Y (q, q̇, v, v̇)Θ,

(2.16)

in which the “exact model values” are denoted by H(q), C(q, q̇), and g(q), and it is also

utilized that the array of the dynamic model parameters Θ can be written in a separated form

in which Y is exactly known.

The equality of the left hand sides of the equations in (2.16) traditionally is utilized as

follows. Following the elimination of Q from both sides the unknown quantities (the exact

matrices are not known) Hv̇, Cv, g, and KDS can be subtracted. Since −Hv̇ + q̈ = −HṠ,

and C(−v + q̇) = −CS, it is obtained that

(Ĥ −H)v̇ + (Ĉ − C)v + (ĝ − g) =

−HṠ − CS −KDS = Y (Θ̂−Θ).
(2.17)

The Lyapunov function is V = 1
2
STH(q)S+ 1

2
(Θ−Θ̂)TΓ(Θ−Θ̂). For guaranteeing negative

time-derivative for the Lyapunov function

V̇ = STHṠ + 1
2
ST ḢS+

(Θ̇− ˙̂
Θ)TΓ(Θ− Θ̂)

(2.18)

must be made negative. From (2.17) HṠ can be expressed and substituted into (2.18):

V̇ = ST
(
−Y (Θ̂−Θ)− CS −KDS

)
+

ST 1
2
ḢS + (Θ̇− ˙̂

Θ)TΓ(Θ− Θ̂).
(2.19)

Taking into account that according to (2.15) 1
2
Ḣkj −Ckj = 1

2

∑
i

(
−∂Hki

∂qj
+

∂Hij

∂qk

)
q̇i is skew

symmetric in the indices (k, j), ST
(

1
2
Ḣ − C

)
S = 0, and the the condition of the stability

is

0 > V̇ = −STKDS+[
STY + (Θ̇− ˙̂

Θ)TΓ
]

(Θ− Θ̂).
(2.20)

Since normally Θ̇ ≡ 0 and KD is positive definite the appropriate parameter tuning rule can

be: ˙̂
ΘT = STY Γ−1. It is worths noting that:

◦ since in this approach no matrix inversion happens, the speed of parameter tuning can be

quite high;

◦ the actual value of V̇ is independent of (Θ − Θ̂) and d
dt

(Θ − Θ̂), therefore if the S = 0

state is achieved, the parameter tuning process is stopped even if the estimation error is
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not zero, and the consequence of any instant disturbance that kicks out S from zero is an

immediate decrease in ‖S‖;

◦ this method cannot properly compensate the effects of unknown external disturbances and

friction forces since in the first two lines of (2.16) the sameQ generalized force must occur;

◦ further problems arise with the systems for which the model cannot be separated as a

multiplication of the array of the dynamical parameters and known functions [A. 2].

The above statements are trivial and do not require illustration via simulation. In the next

subsection it will be shown that consistent parameter tuning can be invented without the use

of any Lyapunov function.

2.4.2 New Parameter Tuning
Let us return to (2.16) and observe that if the aim is not the construction of any Lyapunov

function, the known terms as Ĥq̈, Ĉq̇, and ĝ can be subtracted from both sides of the equation

that was obtained after the elimination of Q. In the result we again obtain the modeling error

multiplied by known quantities at one side and known quantities will appear at the other side

[A. 2]:

Ĥ(q)(v̇ − q̈) + Ĉ(q, q̇)(v − q̇) +KDS =[
H − Ĥ

]
q̈ +

[
C − Ĉ

]
q̇ + [g − ĝ] =

= Z(q, q̇, q̈)
(

Θ− Θ̂
) (2.21)

in which Z(q, q̇, q̈) is a known quantity. This is a great advantage with respect to (2.17) in

which the left hand side of the 2nd equation is not known sinceH and C are unknown. Equa-

tion (2.21) has simple geometric interpretation that directly can be used for parameter tuning

as follows: if exponential decay rate could be realized for the parameter estimation error, the

array equation d
dt

(
Θ− Θ̂

)
= −α

(
Θ− Θ̂

)
(α > 0) should be valid. If we multiply both

sides of this equation with a projector determined by a few pairwisely orthogonal unit vec-

tors as
∑

i e
(i)e(i)T the equation

∑
i

(
Θ̇i − ˙̂

iΘ
)

= −α
∑

i e
(i)
(

Θi − Θ̂i

)
is obtained. This

situation can well be approximated if we use the Gram-Schmidt algorithm ([46], [47]) for

finding the orthogonal components of the rows of matrix Z in (2.21). Assuming that the

speed of variation of Z is not too significant, we can apply the tuning rule only for the known

components in the form [A. 2]: d
dt

(Θ− Θ̂) = −α
∑

i
z̃(i)z̃(i)

T

‖z̃(i)‖2+ε
(Θ− Θ̂) in which z̃(i) denotes

the transpose of the orthogonalized rows of matrix Z, and a small ε > 0 evades division by

zero whenever the norm of the appropriate row is too small. Since the scalar product is a

linear operation during the orthogonalization process the appropriate linear combinations of

the scalar products in the 3rd row of (2.21) can be computed.
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2.4.3 Further Modification in the Exerted Force/Torque Components
It is evident that all the above considerations remain valid if in the place of Ĥv̇ some different

term is written in (2.21) [A. 2]. (Obtaining exactly Ṡ was important only for the construction

of a Lyapunov function.) So useful information can be obtained for model parameter tuning

if in the exerted forces this term is replaced by its iterative variant obtained from the RFPT-

based design as follows:

h := f(rn)− rdn+1, e := h/‖h‖,
B̃ = Bcσ(Ac‖h‖)

rn+1 = (1 + B̃)rn + B̃Kce

(2.22)

in which σ(x)
def
= x

1+|x| , r
d
n+1

def
= vn+1, rn denotes the adaptively deformed control signal

used instead of vn control in control cycle n, and f(rn) ≡ q̈n, i.e. the observed system

response in cycle n. It is evident that if f(rn) = rdn+1 then rn+1 = rn, that is the solution of

the control task (i.e. the appropriate adaptive deformation) is the fixed point of the mapping

defined in (2.22). Since the details of the convergence were discussed in ample literature

references in the sequel only simulation results will be presented to reveal the cooperation of

the RFPT-based adaptivity and model parameter tuning.

2.4.4 Simulation Results

For the simulations the same cart+beam+hamper system was used as in [48] with the Euler–

Lagrange equations of motion (ML2 + θ) θ mLcosq1

θ θ 0

mLcosq1 0 (m+M)


 q̈1

q̈2

q̈3

+

+

 −mgLsinq1

0

−mLsinq1q̇
2
1

 =

 Q1

Q2

Q3

 .
(2.23)

in which M = 30 kg and m = 10 kg denote the masses of the cart and the hamper, respec-

tively (the mass of the beam connecting the hamper to the cart is neglected), θ = 20 kg ·m2

describes the momentum of the hamper referenced to its rotary axle on which its mass center

point is located, L = 2m denotes the length of the beam, and g = 10m/s2 in this case

denotes the gravitational acceleration. With the definition Θ
def
= [mL,mL2 + θ, θ,M +

m,mgL]T matrix Z easily can be constructed. The approximate model parameters are

M̂ = 60 kg and m̂ = 20 kg, θ̂ = 50 kg · m2, L̂ = 2.5m (in the dynamical calcula-

tions), and ĝ = 8m/s2. These settings correspond to Θ̂ini = [50, 175, 50, 80, 400]T , and
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Θ = [20, 60, 20, 40, 200]T .

2.4.5 Cooperation in the Lack of External Disturbances
In the first step it will be illustrated that the RFPT-based design can well coexist with the

dynamical parameter tuning in the absence of disturbances [A. 2]. The control parameters

are as follows: Λ = 10/s, α = 1/s, KD = 100/s, Kc = −107, Bc = 1, and Ac =

10−8, the cycle time and the time-resolution of the numerical (Euler-type) integration was

δt = 10−4 s. According to Fig. 2.13 the application of the RFPT considerably improved

the tracking precision. As it is displayed by Fig. 2.14 the initially strongly over-estimated

parameters are tuned in similar manner.

Figure 2.13: The tracking error in the lack of unknown disturbances: with modified tuning

without RFPT (upper chart), and modified tuning with RFPT (lower chart)[q1: solid, q2:

dashed, q3: dense dash lines]

2.4.6 Cooperation under the Effect of a LuGre Friction at Axle 3
For disturbances a LuGre-type (Lund-Grenoble) friction was introduced at axle 3 as it was

done in [48]. This model cannot be taken into account in a “separated form” and also con-

tains an internal dynamic variable that is not modeled by our controller (it is used only in

the simulations). Figure 2.15 reveals that the application of the RFPT again considerably

improves the tracking error, with the exception of the initial “transient” section.
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Figure 2.14: Tuning of the adaptive parameters in the lack of unknown disturbances:

with modified tuning without RFPT (upper chart), and modified tuning with RFPT (lower

chart)[Θ1: solid, Θ2: dashed, Θ3: dense dash, Θ4: dash-dot, and Θ5: dash-dot-dot lines]

Figure 2.15: The tracking error under unknown disturbances: with modified tuning without

RFPT (upper chart), and modified tuning with RFPT (lower chart)[q1: solid, q2: dashed, q3:

dense dash lines]

Figure 2.16 reveals that similar “abnormal” tuning-discrepancies occur in both cases, but the
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RFPT-based method well compensates the simultaneous consequences of the disturbances

and improper parameter tuning.

Figure 2.16: Tuning of the adaptive parameters under unknown disturbances: with modified

tuning without RFPT (upper chart), and modified tuning with RFPT (lower chart)[Θ1: solid,

Θ2: dashed, Θ3: dense dash, Θ4: dash-dot, and Θ5: dash-dot-dot lines]

In this case important details are revealed by the phase trajectories (Fig. 2.17). Without using

the RFPT-based adaptation more even and greater tracking errors are present. The RFPT

reduces these errors in long sections, while in the problematic sections it generates significant

changes in the phase space. Certain details can also be observed in the charts of trajectory

tracking (Fig. 2.18). In Fig. 2.19 the operation of the RFPT-based method is illustrated: the

realized (simulated) 2nd time-derivative is in the close vicinity of the kinematically computed

“desired” value, i.e. the primary design intent, i.e. the realization of a kinemtically prescribed

tracking error relaxation is successfully demonstrated.
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Figure 2.17: The phase trajectories under unknown disturbances: with modified tuning with-

out RFPT (upper chart), and modified tuning with RFPT (lower chart)[q1: solid, q2: dashed,

q3: dense dash lines]

Figure 2.18: The trajectory tracking under unknown disturbances: with modified tuning

without RFPT (upper chart), and modified tuning with RFPT (lower chart)[q1: solid, q2:

dashed, q3: dense dash lines]
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Figure 2.19: The second time-derivatives of generalized coordinate q3 with modified tuning

and RFPT-based adaptation (zoomed excerpt in the lower chart) [q̈3 (realized): solid, q̈Des3

(“desired”): dashed, q̈Req3 (adaptively deformed): dense dash lines]
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2.5 Novel Tuning Method for the Modified Adaptive In-
verse Dynamic Robot Controller (MAIDRC)

In this section I present that the SGFPT can also well coexist with the MAIDRC control

design. I propose a novel, even simpler tuning method that also applies fixed-point transfor-

mation based tuning rule for parameter identification [A. 4].

2.5.1 Improvement in the MAIDRC control design

The theoretical considerations are validated by numerical simulations of the adaptive control

of a 2 DoF (Degree of Freedom) paradigm. This approach uses the formal properties of the

dyanamic model of the system under control as

H(q)q̈ + h(q, q̇) ≡ Y (q, q̇, q̈)Θ = Q , (2.24)

in which H > 0 the positive definite symmetric inertia matrix, q is the generalized coordi-

nate of the system, Y (q, q̇, q̈) is precisely known on the basis of the kinematic model of the

controlled system, Q is the exerted generalized control forces, while Θ is the array of the

dynamic parameters that are only imprecisely known. Let the approximate values notated as

Ĥ , ĥ, and Θ̂, respectively. The PID-type kinematic trajectory tracking error relaxation was

prescribed as q̈Des = q̈Nom + 3Λ2(qNom− q) + Λ3
∫ t

0

(
qNom(ξ)− q(ξ)

)
dξ. For the adaptive

deformation the same function was used here, as in [A. 10]:

F (x)
def
= atanh(tanh(x+D)/2) ,

hi
def
= f(ri)− rDesi+1 ,

ei
def
= hi
‖hi‖ ,

ri+1 = G
(
ri, f(ri), r

Des
i+1

) def
=

[F (A ‖hi‖+ x?)− x?] ei + ri ,

(2.25)

where F (x?) = x?, and the Frobenius norm is in use. The applied new type of function is

detailed in section 4.2. Let the exerted control force calculated as

Qn = Ĥ(qn) [rn] + ĥ(qn, q̇n) , (2.26)

that, according to (2.24), must be equal to H(qn)q̈n +h(qn, q̇n). By subtracting Ĥq̈+ ĥ from

both sides we get information on the actual modeling errors as

Ĥ(qn) [rn − q̈n] = Y (qn, q̇n, q̈n)
(

Θ− Θ̂n

)
. (2.27)
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This structure corresponds to the a = Y b equation with an = Ĥ(qn) [rn − q̈n] and bn =(
Θ− Θ̂n

)
. The novelty in this approach that for parameter tuning I replace the relatively

complicated Modified Gram-Schmidt Algorithm by a more primitive iterative approach [A.

4]: we have information on the parameter estimation error in the orthogonal sub-space of

the parameter space spanned by the rows of Y , therefore we seek this part of the error in the

form
(

Θ− Θ̂n

)
= Y T (qn, q̇n, q̈n)wn ≡ Y T

n wn. Within each control cycle a quick internal

iteration is run for finding the appropriate wn parameter as [A. 4]:

wn(i+ 1) = G
(
wn(i), YnY

T
n wn(i), an

)
. (2.28)

Since YnY T
n is symmetric positive semidefinite, convergence can be guaranteed for it for

positive eigenvalues, and signal stagnation for a zero eigenvalue, as it was used for inverese

kinematic applications in [49]. For the purposes of the dynamic control and the parameter

tuning different parameter A can be chosen in (3.5). Furthermore, the internal iteration in

the first step can be commenced at an arbitrary value in the first control cycle, and in the

forthcoming ones from the value at which the iteration was stopped in the previous cycle.

In this manner very low computational need can be expected. The parameter tuning was

applied for the known components as ˙̂
Θ = −α

(
Θ− Θ̂

)
with a parameter α > 0 [A. 4].

2.5.2 Simulation Results

The applicability has been validated by numerical simulations made for a 2 Degree of Free-

dom (DoF) paradigm, in the adaptive control of two coupled mass-points with simultaneous

parameter identification. The system consist of two masses (m1 [kg] , m2 [kg] ) connected

with two springs, the zero force lengths of which are denoted by L1 [m] and L2 [m]. The

spring stifnesses are k1 [N/m] and k2 [N/m]. The viscous damping coefficients are denoted

by b1 [N · s/m] and b2 [N · s/m]. The equation of motion is given by:[
m1 0

0 m2

][
q̈1

q̈2

]
+ h =

[
Q1

Q2

]
,

h =[
−m1g + k1(q1 − L1)− k2(q2 − q1 − L2) + b1q̇1

−m2g + k2(q2 − q1 − L2) + b2q̇2

] (2.29)

The task is to adjust the necessary forces Q1 [N ] and Q2 [N ] in order to allow the desired

displacement of the two masses q1 [m] and q2 [m].

The initial values for the approximate system parameters were

Θ̂0 =

[m1a,m1ag, k1a, k1aL1a, k2a, k2aL2a, b1a,m2a,m2ag, b2a]
T .
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The controller’s parameters were stated in D = 0.3, A1 = −1, A2 = −3 α = −3e − 1

and the numerical Euler integration was carried out with δt = 0.001 with a time constant

Λ = 5 [s−1]. Figs. 2.20 - 2.21 shows the trajectory tracking while Fig. 2.22 and Fig. 2.23

display the trajectory tracking errors. It can be seen, that compassing the iteration from the

value 0 (Fig. 2.22) ensures nearly the same smooth performance as using the cycles’ past

results as initial values 2.21. Similar results for the phase trajectory can be seen in Figs. 2.24

- 2.25. The errors of the approximation of the known components in Figs. 2.26 - 2.27 show

that in the second case the error decreases faster. The tuning of the dynamic parameters are

revealed in Figs. 2.28 - 2.31. It can be seen that the learning speed is faster in the second

case for most of the parameters, such as parameters θ̂1, θ̂4, θ̂5, θ̂9, θ̂10. Figs. 2.32 - 2.33 reveal

the performance of the adaptivity. After switching the adaptivity on at t = 0.5[s] it can be

observed that q̈1 approaches q̈Des1 and q̈2 approaches q̈Des2 and the deformed signals separated.

Figure 2.20: The Trajectory Tracking (iteration using initial value 0)
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Figure 2.21: The Trajectory Tracking (using result of previous cycle as initial value)

Figure 2.22: The Trajectory Tracking Error (iteration using initial value 0)
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Figure 2.23: The Trajectory Tracking Error (using result of previous cycle as initial value)

Figure 2.24: The Phase Trajectory Tracking (iteration using initial value 0)
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Figure 2.25: The Phase Trajectory Tracking (using result of previous cycle as initial value)

Figure 2.26: The Error of the Known Term (iteration using initial value 0)
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Figure 2.27: The Error of the Known Term (using result of previous cycle as initial value)

Figure 2.28: The Dynamic parameters (iteration using initial value 0) θ̂1 − black, θ̂2 −
blue, θ̂3 − green, θ̂4 − red, θ̂5 − orange
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Figure 2.29: The Dynamic parameters (using result of previous cycle as initial value) θ̂1 −
black, θ̂2 − blue, θ̂3 − green, θ̂4 − red, θ̂5 − orange

Figure 2.30: The Dynamic Parameters (iteration using initial value 0) θ̂6 − black, θ̂7 −
blue, θ̂8 − green, θ̂9 − red, θ̂10 − orange
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Figure 2.31: The Dynamic parameters (using result of previous cycle as initial value) θ̂6 −
black, θ̂7 − blue, θ̂8 − green, θ̂9 − red, θ̂10 − orange

Figure 2.32: The 2nd Time Derivatives (iteration using initial value 0)
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Figure 2.33: The 2nd Time Derivatives (using result of previous cycle as initial value)
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2.6 Thesis Statement I.

I have introduced a new method for the combination of the classical model-based adap-
tive control approaches as the “Modified Adaptive Inverse Dynamics Robot Controller”
(MAIDRC) and the “Modified Adaptive Slotine-Li Robot Controller” (MADSLRC)
with the Robust Fixed Point Transformation-based design. The proposed new algo-
rithm ensures efficient parameter identification by the use of the modified Gram-Schmidt
method. Additionally, I have developed a new, even more simplified strategy that also
applies fixed point transformation-based tuning rule in the case of the MAIDRC con-
trol design.

Thesis Explanation

The key point of this new concept relies on the fact that the original initial equations of

motion can be so rearranged, that instead serving the need of creation a quadratic Lyapunov

function, direct information can be obtained on a "fragment" of the actual model parame-

ter estimation error. On the basis of a simple geometric interpretation this information can

be directly used for parameter tuning. The modified Gram-Schmidt algorithm is proposed

in the parameter tuning process on the matrix of the kinematically known dynamic system

parameters that yields more efficient tuning and in general requires less number of arbitrary

control parameters. This step greatly simplifies the calculations. In contrast to the tradi-

tional solutions that normally guarantee global (asymptotic) stability by using Lyapunov

functions, the adaptive controllers designed by the use of “Robust Fixed Point Transforma-

tions (RFPT)” are only locally stable, cannot learn the system’s analytical model parameters

but they are very robust to modeling deficiencies (for instance, abandoned friction effects)

and unknown external forces. Utilizing the fact that the mathematical form of the new re-

arrangement also allows the use of the RFPT-based iterative feedback terms, I have shown

that the learning ability of the original controllers can be efficiently combined with the ro-

bustness of the RFPT-based feedback in the lack of unknown external disturbances. I have

also shown that though the unknown external disturbances corrupt the parameter tuning in

this combined solution, the RFPT-based feedback efficiently can compensate the effects of

temporal external perturbations of short duration. Furthermore, I have designed a new fixed

point transformation-based parameter identification strategy for the Modified Adaptive In-

verse Dynamics Robot Controller. The proposed new algorithm is far simpler and has lower

computational need. I have illustrated these effects via numerical simulations. Thesis appli-

cation and proof of operation can be found in 2.3.1, 2.4.4.

Related publications: [A. 1], [A. 3], [A. 2], [A. 4]
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Chapter 3

New Generation of Fixed Point
Transformation for Adaptive Control

3.1 Fixed Point’s Generation for SISO Systems

The previous investigations belong to a special fixed point transformation the so-called

RFPT. The question naturally arose: is it possible to construct other type fixed point transfor-

mations that are applicable for adaptive control? In this Chapter a positive answer is given

to this question.

3.1.1 The Idea of Fixed Point Generation

The idea is borrowed from the subject area of fuzzy operators. In fuzzy controllers the so-

called t-norms and t-conorms can be built up by the use of monotonic generator functions

ϕ(x) : IR 7→ IR as ψ(x, y)
def
= ϕ

(
ϕ(−1)(x) + ϕ(−1)(y)

)
[50]. In signal aggregation a similar

technique can be used in which the monotonicity of the generator function is of crucial

significance [51]. Consider a monotonic increasing bounded, smooth function (a “sigmoid”)

g(x) : IR 7→ IR. For some K > 0 and D > 0 consider the graphs of the functions g(x)−K
and g(x−D) (Fig. 3.1). In the 1st case the graph of g(x) is shifted vertically (down), while

in the second one it is shifted horizontally (to the right). It is evident that generally two points

can be obtained, x∗1 and x∗2 > x∗1 for which it is valid that g(x∗1) −K = g(x∗1 −D) and

g(x∗2)−K = g(x∗2 −D) [A. 5].

Since g(x) is invertible there exist the function F (x)
def
= g−1 (g(x)−K) + D, and trivially

x∗1 and x∗2 are the fixed points of F (x): F (x∗1) = x∗1 , and F (x∗2) = x∗2 . The graph of

F (x) is illustrated in Fig. 3.2. It is evident that one of these fixed points is repulsive, while

the other is attractive. Figure 3.3 illustrates that the iteration xn+1
def
= F (xn) converges to the

48



Figure 3.1: The basic idea of fixed point generation by the use of a sigmoid

attractive fixed point if the initial element x0 > x∗1 . Let the attractive fixed point be denoted

in the sequel as x∗ ≡ x∗2 . The actual value of x∗ can easily be determined via iteration.

Figure 3.2: The fixed points of F (x)
def
= g−1 (g(x)−K) +D

Figure 3.3: Schematic description of the iteration xn+1
def
= F (xn) as it converges to the

attractive fixed point [g(xn)−K = g (xn+1 −D) corresponds to xn+1 = g−1 (g(x)−K) +

D]
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By the use of F (x) the following fixed point transformation is recommended for adaptive

control:

rn+1 = G(rn)
def
= F

(
A
[
f(rn)− rDes

]
+ x?

)
+ rn − x? (3.1)

in which A ∈ IR is a parameter. Evidently, if r? is the solution of the control task, i.e.

f(r?) = rDes then G(r?) = r?, that is this solution is a fixed point of the function G.

For guaranteeing the convergence of the series {rn} function G must be contractive. This

contractivity can be achieved by properly setting the value of the parameter A [A. 5]. In the

next section typical examples are be considered. The illustrative Figs. 3.1–3.3 belong to the

case of g(x) = tanh(x) with K = 0.5 and D = 0.6 to which the numerically determined

x? ≈ x = 0.7114269142 attractive fixed point belongs. With an affine approximation of the

response function F (x) = αx + β with α = 1 and β = 1, for rDes = −2 slow monotonic

convergence can be achieved for A = −0.5 (Fig. 3.4) [A. 5].

Figure 3.4: Example for slow monotonic convergence to the solution of the control task:

A = −0.5

Further increase in A at first results in faster convergence (Fig. 3.5), then in the appearance

of non-monotonic convergence (Fig. 3.6), finally it leads to bounded chaotic oscillations

(Fig. 3.7).

3.1.2 Application Example

Since in [52] the FitzHugh-Nagumo model’s adaptive control was investigated by the original

RFPT transformation, the same model is chosen to demonstrate the abilities of the novel type

fixed point transformation in this section. The “FiztHugh Neuron Model” was suggested in

1961 to model the spiking phenomena of neurons [53]. In the next year an equivalent circuit
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Figure 3.5: Example for fast monotonic convergence to the solution of the control task:

A = −2

Figure 3.6: Example for precursor oscillations (non-monotonic convergence to the solution

of the control task): A = −3.12

Figure 3.7: Example for chaotic, divergent oscillations: A = −6

of this nonlinear oscillator was created by Nagumo et al. in [54]. The equations of motion

of this two Degree of Freedom (DoF) system are given in (3.2).

dv

dt
= v − v3

3
− w + Iext (3.2a)

dw

dt
=
v + a− bw

τ
(3.2b)

This model has been extended in (3.3) by the introduction of a new parameter and an addi-

tional external current for control purposes.
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Parameter Ideal Approximate Actual/Exact

a ai = 0.6 aa = 0.8 ae = 0.7

τ τi = 11 τa = 10 τe = 12.5

b bi = 0.4 ba = 0.6 be = 0.5

Iext Iexti = 0.3 Iexta = 0.4 Iexte = 0.5

µ µi = 1 µa = 3 µe = 2

Table 3.1: The parameters of the trajectory generator “ideal” neuron, that of the “approxi-

mate model” and the actually controlled “Actual/Exact” neurons

dv

dt
= v − v3

3
− w + Iext + µICtrl (3.3a)

dw

dt
=
v + a− bw

τ
(3.3b)

in which ICtrl denotes the control signal, and µ is a new parameter that weights the control

current. In the simulations these models with different parameters are used as is given in

Table. 3.1.

In the control task a “Nominal Trajectory” as {vN(t), wN(t)} is generated by the use

of the “ideal” neuron’s parameter settings with ICtrl ≡ 0. The control signal is generated

by the use of the “Approximate Parameter Settings”, while the actually controlled system is

assumed to differ from both of them with the “Actual/Exact Parameter Settings”.

The control task is precise tracking only vN(t) without concerning the errorwN(t)−w(t)

with the following purely kinematic trajectory tracking error prescription:

(
d

dt
+ Λ

)2 ∫ t

0

(
vN(ξ)− v(ξ)

)
dξ = 0 leading to (3.4a)

v̇Des(t) = v̇N(t) + 2Λ
(
vN(t)− v(t)

)
+ Λ2

∫ t

0

(
vN(ξ)− v(ξ)

)
dξ (3.4b)

with Λ = 0.1 s−1. The adaptive parameters are as in the above considerations i.e. g(x) =

tanh(x), K = 0.5, D = 0.6 with x? = 0.7114269142. In the adaptive case A = −0.75 is

set. In the non-adaptive case the necessary derivative calculated by the PID block (3.4) is

directly introduced into the approximate model. In the adaptive case it is deformed according

to (3.1).

Figures 3.8 and 3.9 reveal that the adaptive controller yields faster error relaxation and far

more precise trajectory tracking than the non-adaptive one. The same tendency can be seen

in the phase trajectories (Figs. 3.10 and 3.11). The operation of the adaptive controller is
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well exemplified by Fig. 3.12 that reveals that due to the adaptive deformation the “Desired”

and “Realized” quantities remain in each other’s close vicinity, while in the non-adaptive

case there is a significant difference between them. Figure 3.13 testifies the great difference

between the control currents, too.

Figure 3.8: Trajectory tracking for v in the non-adaptive (LHS) and the adaptive (RHS)

cases: vN : black solid, wN : blue dashed, v: green dash dot, w: red dotted lines (LHS)

Figure 3.9: Trajectory tracking error for v in the non-adaptive (LHS) and the adaptive (RHS)

cases: vN − v: black solid, (in the adaptive case the error of w has been removed from the

chart)

Furthermore, the robustness is investigated [A. 5]. The external disturbances and noises

are modeled by adding additional sinusoidal and noisy terms to the calculated control signal

as follows:

if n_evi then

z=2*(rand(1,1)-0.5)*Ampl_Rand

end

y1=Ampl_Dist*sin(Omega_Dist*t)+z

Ampl_Dist=0.15

Omega_Dist=4

Ampl_Rand=Ampl_Dist
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Figure 3.10: The phase trajectories for variable v the non-adaptive (LHS) and the adaptive

(RHS) cases: v̇ vs. v: nominal: solid blue, realized: red dotted lines

Figure 3.11: The phase trajectories for variable w the non-adaptive (LHS) and the adaptive

(RHS) cases when only the trajectory of v is under control: ẇ vs. w: nominal: solid blue,

realized: red dotted lines

Figure 3.12: The “Desired” (black solid), the “Deformed” (blue dotted) (without deforma-

tion it exactly is identical to the “Desired” line), and the “Realized” (green dashed) time-

derivatives for variable v in the non-adaptive (LHS), and the adaptive (RHS) cases

In each control cycle the event clock generates a signal due to which the noisy term is added

to the smooth disturbance term. The results are displayed in Figs. 3.14 and 3.15 revealing

that the adaptivity significantly improves the tracking precision even in this case, too. The

explanation of this fact is almost trivial: without adaptivity only the PI-type feedback defined
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Figure 3.13: The control signal in the non-adaptive (LHS) and the adaptive (RHS) cases

in (3.4) works so that it cannot take into consideration the fast fluctuations in the realized

signal v(t). In the adaptive case a fast feedback also works that compensates the fast variation

of this signal.

Figure 3.14: Trajectory tracking for v in the non-adaptive (LHS) and the adaptive (RHS)

cases, under external disturbances: vN : black solid, wN : blue dashed, v: green dash dot, w:

red dotted lines (LHS)

Figure 3.15: Trajectory tracking error for v in the non-adaptive (LHS) and the adaptive

(RHS) cases, under external disturbances: vN − v: black solid, wN − w: blue dotted lines
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Figure 3.16: The phase trajectories for variable v the non-adaptive (LHS) and the adaptive

(RHS) cases, under external disturbances: v̇ vs. v: nominal: solid blue, realized: red dotted

lines

Figure 3.17: The phase trajectories for variable w the non-adaptive (LHS) and the adaptive

(RHS) cases, under external disturbances: ẇ vs. w: nominal: solid blue, realized: red dotted

lines

Figure 3.18: The “Desired” (black solid), the “Deformed” (blue dotted) (without deforma-

tion it exactly is identical to the “Desired” line), and the “Realized” (green dashed) time-

derivatives for variable v in the non-adaptive (LHS), and the adaptive (RHS) cases, under

external disturbances.
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Figure 3.19: The control signal in the non-adaptive (LHS) and the adaptive (RHS) cases,

under external disturbances.
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3.2 Generalization of a Sigmoid Generated Fixed Point Trans-
formation from SISO to MIMO Systems

In the present section I provide further development of this alternative method. The extension

of the SGFPT to MIMO systems and its proof is given. The applicability of the novel method

is demonstrated by the adaptive control of a 2 “Degree of Freedom (DoF)” system, a cart

indirectly driven in the horizontal direction by a rotated pendulum. Results of numerical

simulations illustrate and substantiate the usability of the suggested approach.

3.2.1 The Extension to MIMO Systems

A possible extension to MIMO systems when f, r ∈ IRn, n ∈ IN is a kind of projection

of the nonlinear transformation in the direction of the response error in the ith step of the

iteration h(i)
def
= f(r(i)) − rDes, e(i) def

= h(i)
‖h(i)‖ (here the norm ‖h‖ is understood in the

Frobenius sense) [A. 6]:

r(i+ 1) = G̃(r(i))
def
=

def
= [F (A ‖h(i)‖+ x∗)− x∗] e(i) + r(i) .

(3.5)

Remember, that F (x∗) = x∗. Evidently if f(r?)−rDes ≡ h(i) = 0 then r(i+1) = r(i) = r?,

i.e. the solution of the control task is the fixed point of G̃(r). As is well known, a “smooth”

i.e. infinitely differentiable function Ψ(x) as well as its derivatives can be well approximated

around a given point x0 by their Taylor series expansion as f(x0 + δx) ≈
∑∞

s=0
f (s)(x0)

s!
δxs

[55]. (In the case of an analytical function the series exactly describes the function and

its derivatives within the region of convergence.) If δx is small then in this approximation

the lowest order terms also give satisfactory approximation. On this reason the first order

approximation of function F (x) can be considered in (3.5) around point x∗ as [A. 6] :

r(i+ 1) ≈ [F (x∗) + F ′(x∗)A‖h(i)‖ − x∗] h(i)
‖h(i)‖+

+r(i) = F ′(x∗)Ah(i) + r(i)
(3.6)

since F (x∗) = x∗. Similar considerations can be applied for function f(r) in the vicinity of

r?:

h ≡ f(r)− rDes = f(r? − (r − r?))− rDes ≈
≈ f(r?) + ∂f

∂r

∣∣
r?

(r − r?)− rDes = ∂f
∂r

∣∣
r?

(r − r?)
(3.7)

since f(r?) = rDes. Substituting (3.7) into (3.6) and subtracting r? from its both sides the

approximation
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r(i+ 1)− r? ≈
[
I + F ′(x∗)A

∂f

∂r

∣∣∣∣
r?

]
(r(i)− r?) (3.8)

is obtained. According to (3.8) it can be stated that r(i+ L)− r? ≈ (I + µM)L(r(i)− r?),

where for a more concise notation real scalar factor µ = F ′(x∗)A, and the matrix Mst =
∂fs
∂rt

∣∣∣
r?

is introdced. For guaranteeing the convergence of the iteration this sequence must be

a Cauchy sequence. For this the function f(r) must have properties that can be considered

as follows. In the iteration the consecutive application of (3.8) results in the occurrence of

the various powers of the matrix [A. 6] ;

(I + µM)m =
m∑
s=0

m!

s!(m− s)!
µsM sIm−s , (3.9)

where it is utilized that the identity matrix I commutes with an arbitrary matrix M . To ana-

lyze the structure of the powers of M we can refer to the existence of its Jordan’s canonical

form that can be achieved by a similarity transformation (see, [56], [57]) transforming M

into a block diagonal structure as M = X−1M̂X where M̂ has block diagonal structure

in which the diagonal line just over the main diagonal contains ones, and all the other non-

diagonal matrix elements are zeros. Since in the matrix power the block diagonals are not

“mixed”, and X−1IX = I , we have to consider the powers of the blocks of type [A. 6]:
1 + λµ µ 0 0

0 1 + λµ µ 0

0 0 1 + λµ µ

0 0 0 1 + λµ


= (1 + λµ)I + µH

(3.10)

where λ ∈ C is one of the (normally complex) eigenvalues of M . In an extreme case the size

of H may be n × n (in the case of a single Jordan block) or smaller (S × S, n > S ∈ IN),

in the case of the occurrence of more than one Jordan blocks. Matrix H is nilpotent, more

precisely HS = 0, therefore in (3.9) we have only a limited number of terms even in the case

of very big m ∈ IN powers [A. 6]:

[(1 + λµ) + µH]m =
S−1∑
s=0

m!

s!(m− s)!
(1 + λµ)m−sµsHs . (3.11)

Equation (3.11) contains the finite number of terms as (1 + µλ)mI , m(1 + µλ)m−1µH ,
m(m−1)

2!
(1 + µλ)m−2µ2H2, . . . , and finally

m(m− 1) . . . (m+ 2− S)

(S − 1)!
(1 + µλ)m+1−S(µH)S−1 (3.12)
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in the numerator of which we have S − 1 terms. The highest power of m that occurs in the

last term belongs to mS−1(1 + µλ)m+1−S . If mS−1|1 + µλ|m+1−S → 0 as m → ∞ we ob-

tain a Cauchy sequence with the convergence to the solution of the control task r(i) →
r?. In order to guarantee that, firstly consider the monotonic increasing function ln(x):

ln
(
mS−1|1 + µλ|m+1−S) = (S − 1) ln(m) + ln(|1 + µλ|)(m + 1 − S). Since d ln(m)

dm
→ 0

as m → ∞, the first term has flattening derivative while the second one has a fixed deriva-

tive ln(|1 + µλ|). Therefore if |1 + µλ| < 1 then this fixed derivative become negative and

ln
(
mS−1|1 + µλ|m+1−S)→ −∞, from which mS−1|1 + µλ|m+1−S → 0 can be concluded.

The condition |1 + µλ| < 1 is equivalent with |1 + µλ|2 < 1 that means that

(1 + µ<λ)2 + (µ=λ)2 < 1 , that is (3.13a)

1 + 2µ<λ+ µ2|λ|2 < 1 , that is (3.13b)

2µ<λ+ µ2|λ|2 < 0 (3.13c)

must be valid [A. 6]. For <λ > 0 evidently µ < 0 is needed for that as

−2<λ
|λ|2

< µ < 0 , (3.14)

and for <λ < 0 evidently µ > 0 is needed for that as

0 < µ <
−2<λ
|λ|2

. (3.15)

These conditions must be valid for each eigenvalue of M . Since µ ∈ IR is a single number,

it is evident that if ∀i <λi > 0 or ∀i <λi < 0 the conditions of the convergence can be met.

However, if for certain eigenvalues <λi > 0 and for others <λj < 0 the contractivity cannot

be guaranteed.

Regarding the practical significance of the condition of convergence consider fully driven

robots with the equation of motion (for example, [58]) Q = H(q)q̈+ h(q, q̇). If the approxi-

mate model has the terms H̃ = H + ∆H , h̃ = h + ∆h, for the exerted generalized force Q

it will be valid that Q = H̃q̈Des + h̃ = Hq̈ + h from which the response function

q̈ =
(
I +H−1∆H

)
q̈Des +H−1∆h (3.16)

is obtained with M = I+H−1∆H . For not too drastic modeling error our restriction for the

spectrum of M is realistic.

To exemplify the operation of this MIMO extension the parameters belonging to Fig. 3.1

is considered to which x∗ ≈ 0.7114269142 belongs. An affine system model for the response

function given in (3.17) is considered with various parameters A [A. 6]. In this model x1 and
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x2 are evidently coupled. The “desired response” is [1,−3]T . The results can be seen in Fig.

(3.20), that exemplify the operation of the MISO extension.(
f1

f2

)
=

(
3.832 1.819

1.819 2.168

)(
x1

x2

)
+

(
1

−1

)
(3.17)

Figure 3.20: The convergence to the desired values for A = 0.20 (at the LHS) and A =

0.27425 (at the RHS): fDes1 : magenta, fDes2 : ocher, x1: black, x2: blue, f1: green, f2: red

lines

In the next section simulation examples are shown for the partly passively driven Classi-

cal Mechanical system that has been considered in [43] and [A. 8].

3.2.2 Application Example

The “TORA” (Translational Oscillations with an Eccentric Rotational Proof Mass Actuator)

corresponds to a simplified model of a dual-spin spacecraft with mass imbalance therefore

it serves as a “benchmark problem” for controller design in various publications [59]. For

instance in [60] it has been controlled by a cascade and a passivity based controller, while in

[61] the “Tensor Product Form” of the system model has been applied to develop a model-

based controller. In [62] nine papers can be found on the control of the TORA system in a

special issue.

The here considered model is an extension of this system to a 3 DoF model in its fully

driven form. The system consists of a cart moving in the horizontal direction (generalized

coordinate q3 [m]) with the generalized forceQ3 [N ]. To the cart body a pendulum is attached

with a rotary joint (coordinate q1 [rad]) with the driving torque Q1 [N · m]). At the end of

the pendulum a dial can be rotated (coordinate q2 [rad]) with the driving torque Q2 [N ·m]).

In the underactuated version Q3 ≡ 0, for q3 and q2 we can prescribe “nominal trajectories”

by allowing the appropriate motion for q1 and exerting the driving torque values Q1 and Q2

according to the equation of motion in Eq. (3.18).
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[
−(mL2+Θ)(m+M)

mL cos q1
+mL cos q1 Θ

− (m+M)Θ
mL cos q1

Θ

][
q̈3

q̈2

]
+[

(mL2+Θ)mL sin q1q̇1
2

mL cos q1
−mLg sin q1

0

]
=

[
Q1

Q2

] (3.18)

The exact model parameters are m = 20 [kg] (the mass of the dial), M = 30 [kg] (the

mass of the body of the cart, L = 2 [m] (the length of the beam of neglected mass), and

Θ = 20 [kg · m2] (the momentum of inertia of the dial with respect to its own mass center

point). The approximate model parameters are as follows: m̃ = 10 [kg], M̃ = 20 [kg],

L̃ = 2 [m], and Θ = 5 [kg ·m2]. For the kinematic trajectory tracking the q̈Desi = q̈Nomi +

3Λ2(qNomi −qi)+3Λ(q̇Nomi − q̇i)+Λ3
∫ t

0

(
qNomi (τ)− qi(τ)

)
dτ with Λ = 6 [s−1] is prescribed

for i = 2, 3. The nominal trajectory is a 3rd order periodic spline function of the time

resulting “linear” segments in q̈Nomi .

The cycle time of the digital controller is assumed to be δt = 10−3 [s]. In the adaptive

controller the fixed setting Ac = −0.1 is applied. In Fig. 3.21 the details of the trajectory

tracking and in Fig. 3.22 the trajectory tracking errors (using the same scaling in the charts)

are given. The phase trajectories can be monitored in Fig. 3.23. These figures reveal that

the suggested adaptive approach significantly improves the trajectory and phase trajectory

tracking properties of the controller.

Figure 3.21: Trajectory tracking in the non-adaptive (at the LHS) and the adaptive (at the

RHS) cases [q2 [rad]: black, q3 [m]: green, qNom2 [rad]: red, qNom3 [m]: ocher lines]
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Figure 3.22: Trajectory tracking error in the non-adaptive (at the LHS) and the adaptive (at

the RHS) cases [q2 [rad]: black, q3 [m]: green lines]

Figure 3.23: The phase trajectories for the non-adaptive (at the LHS) and the adaptive (at the

RHS) cases [for q2: black, q3: blue, qNom2 : red, qNom3 : ocher lines]

The operation of the adaptivity can well be seen in Figs. 3.24 and 3.25: due to the adaptive

deformation of the input the q̈Des2 : black and q̈2: brown lines are in each other’s close vicinity.

The same holds for the q̈Des3 : green, and q̈3: blue lines. The deformed q̈Def2 : red, and q̈Def3 :

ocher lines are considerably different to their counterparts. Subtle differences can also be

observed in Fig. 3.26 in which the trajectory of the driving arm q1 is described.

As it theoretically was expected some increase in the absolute value of A (in this case A

varied from -0.1 to -3.125) still improves the precision (Fig. 3.27).

The simulation results reveal that somewhere between A = −3.23 and A = −3.235 in

the control signal very quickly strong chattering appears. This is definitely not desirable for

a real control. It anticipates, that in contrast to the original RFPT transformation that was

applied in [43], where slow appearance of precursor oscillations were observed, this novel

fixed point transformation is apt to turn into an oscillating regime very quickly.
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Figure 3.24: The “desired”, “adaptively deformed”, and the “realized” 2nd time-derivatives

for the non-adaptive (at the LHS) and the adaptive (at the RHS) cases [q̈Des2 [rad]: black,

q̈Des3 [m]: green, q̈Def2 : red, q̈Def3 : ocher, q̈2: brown, q̈3: blue lines]

Figure 3.25: The “desired”, “adaptively deformed”, and the “realized” 2nd time-derivatives

for the adaptive case (zoomed in excerpts) [q̈Des2 [rad]: black, q̈Des3 [m]: green, q̈Def2 : red,

q̈Def3 : ocher, q̈2: brown, q̈3: blue lines]

Figure 3.26: The trajectory of the “driving arm” q1 for the non-adaptive (at the LHS) and the

adaptive (at the RHS) cases
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Figure 3.27: The “desired”, “adaptively deformed”, and the “realized” 2nd time-derivatives

for the adaptive case (zoomed in excerpts) for A = −3.125 [q̈Des2 [rad]: black, q̈Des3 [m]:

green, q̈Def2 : red, q̈Def3 : ocher, q̈2: brown, q̈3: blue lines]
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3.3 New Advances Regarding the Parameter Tuning

It was shown in the latter section that a simple tuning of parameter A, as it was done in the

case of the original RFPT-based method, is not expedient, because the system very quickly

takes strongly oscillatory behavior. Thus, in the following I study this critical “transient”

region via simulations and theoretical considerations.

3.3.1 Replacement of Parameter Tuning with Simple Calculation

It became clear that A can vary in a wide range within which it considerably improves the

quality of the control with respect to the non-adaptive one. A slow increase in |A| improves

the precisison till the appearance of the strong fluctuation in the control signal. This obser-

vation generated the idea as follows [A. 7]:

• It is not necessary to well approximate the upper limit of |A| to achieve good control

quality.

• It is just enough to set |A| so that the argument of the function F (A‖f − rDes‖) is

located somewhere between the two fixed points that can be easily determined even

graphically by considering the graph in Fig. 3.1.

• On this basis a “width parameter” W
def
= 0.2× (0.7− (−0.1)) can be introduced and

it has to be achieved that |A| · ‖f − rDes‖ ≈ W

• It is important to note that f is known via the observation of the system response and

r is known from the control signal.

To realize the above idea, for the control cycle time δt and a forgetting factor β ∈ (0, 1) the

actualized value of the response error at cycle n is [A. 7]:

h̄(n)
def
= (1− β)

∞∑
s=0

βs‖h(n− s)‖ . (3.19)

For a constant signal ‖h‖ (3.19) yields h̄(n) = ‖h‖ therefore (3.19) corresponds to a

weighted sum of the present and past values of ‖h(i)‖. For small possible β the relative

weight of the past values is small (quick forgetting) while for greater β this forgetting is not

so fast. In the possession of this value the actual value for |A| can be set as [A. 7],

AAct(n)
def
=

W

ε+ h̄(n)
, (3.20)
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where ε > 0 is a small positive number to avoid division by zero. This estimation is far

simpler than the formerly used tuning for the appropriate counterpart of the present parameter

A. Its digital realization is very simple: in each control cycle a buffer’s content can be

refreshed as b← βb+ ‖h‖, and the output is (1− β)b.

3.3.2 Application Example

For the simulation results the same TORA system is used, that is described with the equation

of motion in Eq. (3.18). In the adaptive controller the controller cycle time is δt = 10−3 [s],

the forgetting factor is β = 0.99 and the value of Ac is calculated according to (3.20).

The results on the trajectory tracking and the trajectory tracking errors can be observed in

Fig. 3.28 and Fig. 3.29, while Fig. 3.30 shows the phase trajectories. These figures clearly

display the performance improvement by the proposed alternative approach comapared to the

non-adaptive case. The simulation results demonstrate also, that we have obtained accurate

trajectory and phase trajectory tracking with the replacement of parameter tuning with the

proposed simple calculation technique.

Figure 3.28: Trajectory tracking in the non-adaptive (at the LHS) and the adaptive (at the

RHS) cases [q2 [rad]: black, q3 [m]: green, qNom2 [rad]: red, qNom3 [m]: ocher lines]

Figs. 3.31 and 3.32 detail the operation of the adaptivity due to the adaptive deformation

of the input. The desired q̈Des2 which is represented with black line and q̈2 with brown line

are covering each other. Similar results are obtained for the green line of q̈Des3 and blue line

of q̈3. The deformed q̈Def2 red, and q̈Def3 ocher lines significantly differ from each other. In

Fig. 3.33 comparing the trajectory of the driving arm q1 in adaptive and non-adaptive case

only insignificant differences can be recognized. The calculated parameter A is shown in

Fig. 3.34.
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Figure 3.29: Trajectory tracking error in the non-adaptive (at the LHS) and the adaptive (at

theRHS) cases [q2 [rad]: black, q3 [m]: green lines]

Figure 3.30: The phase trajectories for the non-adaptive (at the LHS) and the adaptive (at the

RHS) cases [for q2: black, q3: blue, qNom2 : red, qNom3 : ocher lines]

Figure 3.31: The desired, adaptively deformed, and the realized 2nd time-derivatives for the

non-adaptive (at the LHS) and the adaptive (at the RHS) cases [q̈Des2 [rad]: black, q̈Des3 [m]:

green, q̈Def2 : red, q̈Def3 : ocher, q̈2: brown, q̈3: blue lines]
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Figure 3.32: The desired, adaptively deformed, and the realized 2nd time-derivatives for the

adaptive case (zoomed in excerpts) [q̈Des2 [rad]: black, q̈Des3 [m]: green, q̈Def2 : red, q̈Def3 :

ocher, q̈2: brown, q̈3: blue lines]

Figure 3.33: The trajectory of the driving arm q1 for the non-adaptive (at the LHS) and the

adaptive (at the RHS) cases

Figure 3.34: The calculated parameter A vs. time
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3.4 Thesis Statement II.

I have introduced a new family of fixed point transformations that can be generated
from sigmoid functions in similar manner as certain fuzzy aggregation, t-norm, and
s-norm operators are produced by the use of appropriate generator functions. I have
shown that by the use of this generation technique a pair of repulsive and attractive
fixed points can be generated as in the case of the originally used RFPT. This new con-
struction can be used for the adaptive control of SISO systems and also allows tuning
only one of the control parameters.

3.4.1 Substatement I.

I have given an extension and its proof of the ’Sigmoid Generated Fixed Point Trans-
formation’ to MIMO systems. I have shown that: the only parameter of the controller
A that must be set according to the dynamic properties of the system under control
within a wide range can provide acceptable solution. The increase in its absolute value
from a small initial one considerably can improve the tracking precision. However, the
increase in this parameter quickly leads to oscillations in the iterative adaptive control.

3.4.2 Substatement II.

In the present statement I have given further improvements in order to enhance the
precision of the suggested adaptive control scheme by replacing the parameter tuning
with simple calculation. The proposed estimation and its digital realization is consider-
ably simpler than the previously used.

Related publications: [A. 5], [A. 6], [A. 7], [A. 8]
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Chapter 4

Advances in the Sigmoid Generated
Fixed Point Transformation

4.1 Adaptive Control Using Improved Sigmoid Generated
Fixed Point Transformation and Scheduling Strategy

The available model of the system under control normally is complicated and can be ob-

tained at the costs of huge efforts ([63]). In certain cases typical “ranges of operation” can

be identified that gives sufficient basis for the application of the idea of “Situational control”

in the case of turbojet engines used in aviation [6]. However, when the characteristics of the

system under control nonlinearly vary over a broad range of various conditions, the use of

progressive and adaptive control approaches may be especially beneficial [64]. In a mod-

ern control solution “modeling”, “control”, and “diagnostic” elements are simultaneously

present [65, 66]. When only approximate and incomplete system models are available the

other widely acknowledged approaches in nonlinear control are the so-called optimal con-

trol and the Receding Horizon Controllers [67][68][69]. Typically the optimal controllers

minimize some cost functional that is constructed of terms expressing various (often con-

tradictory) requirements under the constraints that represent the dynamic properties of the

system under control. The Receding Horizon controller is a special optimal controller that

frequently redesigns the future horizon of the control so reducing the effects of modeling er-

rors and unknown external disturbances. Optimal controllers use a cost function in order to

ensure some trade–off between performance and accuracy. Common examples of application

area are underactuated mechanical systems where it is impossible to drive them on an arbi-

trary ’trajectory’ along by simultaneously precisely ensuring each state variables position in

time. In order to distribute the tracking error between the state variable’s a possible solution
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is minimizing a cost function that is constructed as a sum of the errors. Due to a complicated

mathematical framework of Lyapunov’s Direct method it is far difficult to combine it with

the optimal controllers. A possible solution by the combination of optimal controllers and

adaptive controllers was suggested in [52] in the control of neuron models. With this in mind

in this section I propose a strategy for replacing the optimal control by scheduling the control

with time sharing in the adaptive control based on the improved SGFPT [A. 10].

4.1.1 New Function

The conditions for the stability for MIMO systems were proved in publication [A. 10]. This

solution works in bounded region of attraction around r? that formally cannot guarantee

global stability. By shifting the function in the horizontal and vertical direction it was as-

sumed that for the first element of the iteration x0 there exists x1 for which g(x0) − K =

g(x − D). This is valid for most of the x0 values but not for each of them. In order to

overcome this limitation the following stretched function is proposed [A. 9]

F (x) = Btanh(a(x+ b)) +K (4.1)

with a, b > 0. This way allows further a more precise positioning of the function in the

vicinity of the solution of the control task [A. 9]. In the next sections the control design is

presented for an underactuated Classical Mechanical System.

4.1.2 The Control Design for Underactuated Mechanical Systems

The phenomenon of swinging can be modeled by an underactuated pendulum according to

Fig. 4.1: the internal degree of freedom of the human body is represented by a rotary axle

q2 [rad] with its own driving torque Q2 [N · m]. The upper axle of the swing q1 does not

have any driving torque. To exemplify the applicability of the improved Sigmoid Generated

Fixed Point Transformation with combination of optimal control an underactuated pendulum

model serves as a benchmark problem. The dynamic model is given by Eqs. (4.2) and (4.3):

[
m1L

2
1 +m2L

2
1 +m2L

2
2 + 2m2L1L2 cos q2 m2L

2
2 +m2L1L2 cos q2

m2L
2
2 +m2L1L2 cos q2 m2L

2
2

][
q̈1

q̈2

]
+h =

[
Q1

Q2

]
(4.2)

h =

[
−2m2L1L2 sin q2q̇1q̇2 −m2L1L2 sin q2q̇

2
2 + [m1 +m2]gL1 sin q1 +m2L2g sin[q1 + q2]

m2L1L2 sin q2q̇
2
1 +m2gL2 sin[q1 + q2]

]
(4.3)
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where q1 and q2 are rotary angles, Q1 and Q2 are joint torque values. In the possession of a

single driving torque Q1 it is impossible to simultaneously precisely track nominal trajecto-

ries prescribed for both axles as qN1 (t) and qN2 1(t). The errors of tracking the components

must be distributed between q1 and q2. Instead of using any cost function this distribution is

realized by time-sharing: for a while the motion of q1 is controlled while q2 is let to move

“as it wants”, and in the other time-slot q2 is controlled and during this session q1 can move

without direct control. The error distribution can be manipulated by properly modifying the

time-slots [A. 9].

Further problem is that only an approximately known model is available for the control

design (see Table 4.2).

Parameter Approximate value Exact value
m1 [kg] 2.2 2

m2 [kg] 0.8 1

L1 [m] 1 1

L2 [m] 2 2

g [m
s2

] 10 9.81

Table 4.1: The parameters of the “Approximate Model” and the actually controlled system’s

exact model

The suggested control method at first transforms the control task into a fixed point prob-

lem then solves it via iteration: in each time-step one iteration can be done during the digital

control.

4.1.2.1 Realization of the Suggested Control Method using Stretched Sigmoid Func-
tion

For the control a novel fixed point transformation (SGFPT) is used that has been published

in [A. 5], the structure of the simulation is given in Fig. 4.2. It is made by the use of the

SCILAB-XCOS simulator.

The controller’s parameters are given in the “context box” of the graphical simulation.

The parameter Adaptive must be set to 1 for adaptive, and 0 for non-adaptive control.

4.1.2.2 Simulation Results

For the simulation the exact model parameters and approximate model parameters are set

according to 4.2. The kinematic trajectory tracking is assumed to be q̈Desi = q̈Nomi +
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Figure 4.1: Example of the “swinging paradigm”: in the underactuated system axle q1 has

no driving torque, i.e. the appropriate generalized force Q1 [N ] ≡ 0. The driving torque of

axle q2 i.e. Q2 [N ] is used for the realization of a compromise in approximately tracking a

nominal trajectory qN1 (t) 6= 0 and qN2 (t) ≡ 0. (This latter restriction is introduced for saving

the body of the swinging child.)

Figure 4.2: The structure of the controller and the simulation

3Λ2(qNomi − qi) + 3Λ(q̇Nomi − q̇i) + Λ3
∫ t

0

(
qNomi (τ)− qi(τ)

)
dτ with a time constant Λ =

6 [s−1].

The results on the trajectory tracking can be observed in Fig. 4.4 for the adaptive case

while Fig. 4.3 shows the results for the non-adaptive one.

In Figs. 4.5 the detail of the operation of the adaptivity due to the adaptive deformation

of the input can be observed.
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Figure 4.3: Non-adaptive trajectory tracking; top: qN1 (t): black line, q1(t): green line; bot-

tom: qN2 (t): green line, q2(t): red line

Figure 4.4: Adaptive trajectory tracking; top: qN1 (t): black line, q1(t): green line; bottom:

qN2 (t): green line, q2(t): red line

Figure 4.5 reveals that in the non-adaptive phase the nominal, the kinematically designed

“desired” values (that contain the PID error-corrections of the nominal trajectory) and the

realized second derivatives seriously differ to each other. (In the lack of adaptivity the “de-

sired” and the “deformed” values are exactly identical.) In the adaptive case the “desired”

and the “deformed” values considerably differ from each other, but the “realized” value has a

fast convergence to the “desired” one, that is the kinematically prescribed tracking is realized

in the appropriate time-slot. The same holds for the control of axle q2 (Fig. 4.6).
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Figure 4.5: Time-dependence of q̈1 (zoomed-in excerpts): non-adaptive control: top, adap-

tive control bottom (color codes: black line: q̈N1 (t) nominal, blue line: q̈Des1 kinematically

prescribed “desired”, green line: q̈Def1 adaptively deformed, red line: q̈1 realized (simulated),

yellow line: the timer: for 1 q1 is under control, for 2 q2 is under control)

Figure 4.6: Time-dependence of q̈2 (zoomed-in excerpts): non-adaptive control: top, adap-

tive control bottom (color codes: black line: q̈N2 (t) nominal, blue line: q̈Des2 kinematically

prescribed “desired”, green line: q̈Def2 adaptively deformed, red line: q̈2 realized (simulated),

yellow line: the timer: for 1 q1 is under control, for 2 q2 is under control)

4.2 Novel Type of Function

The results provided in 4.1 indicated further investigations on the class of applicable func-

tions. I have found that instead of Eq. (4.1) the following new type of function belonging to
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this family can be applied [A. 10]:

F (x) = atanh(tanh(x+D)/2). (4.4)

The following section presents application example and numerical results that support the

advantages of the control scheme using Eq. (4.4) in the fixed point transformation.

4.2.1 Validation of Practical Applicability Through the Adaptive Con-
trol of Kapitza’s Pendulum System

In this example a simplified Kapitza pendulum system serves as a benchmark problem. Sta-

bilization problems of oscillating motions in pendular systems are well studied for horizontal

movement of the pivot [70] [71]. The inverted pendulum on a pivot point that vibrates in a

vertical direction, upside- down is the so-called Kapitza’s pendulum that is used as the exam-

ple of parametric oscillator in nonlinear control theory [72]. Under a high-frequency vertical

excitation of the pivot point, a complex periodic motion of the pendulum can be observed in

the vicinity of the upright position referred to as induced or vibrational stability. Models of

pendulum with vertical vibration of the pivot and their properties have been widely investi-

gated [73] [74] [75] [76] [77] [78]. Due to its unique features it is also used as a benchmark

system for many other technological, physical and natural phenomena including biological

processes, vibrational technologies, anti-gravity problems, etc. The scheme of the simplified

model under consideration can be seen in Fig. 4.7 [A. 10]

Figure 4.7: The scheme of the upside-down pendulum system

In the case of the underactuated model Q2 ≡ 0 and we can prescribe the “nominal

trajectories” for q2 and adjust the driving force value Q1 by using the following equation of

motion:
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[
(M +m) −mL sin q2

−mL sin q2 mL
2

][
q̈1

q̈2

]
+[

−mL cos q2q̇2
2 + (m+M)g

−mgL sin q2

]
=

[
Q1

Q2

] (4.5)

For defining the desired q̈1
Des value we can write [A. 10]:

q̈1
Des =

mL2q̈2 −mgL sin q2

mL sin q2

=
L

sin q2

q̈2
Des − g (4.6)

In order to maintain the dynamic singularity that has occured in Eq. (4.6) I have introduced

the following kinematic strategy;

q̈1
Des = L

|q2|
sin q2

q̈2
Des − g. (4.7)

with the conditions below:

sq2=sin(q2)

q1_ppDes_max=La*q2_ppDes/sin(error_limit);

q1_ppDes_min=-q1_ppDes_max;

if abs(sq2)>error_limit then

q1_ppDes=La*q2_ppDes/sq2;

else

if sq2<=0 then

q1_ppDes=q1_ppDes_min;

else

q1_ppDes=q1_ppDes_max;

4.2.1.1 Results of Numerical Simulations

For the simulation the exact model parameters are set in m = 2 [kg], M = 1 [kg] , where

m represents the mass attached the end of the pendulum and M is the mass at the bottom

of the pivot. The length of the beam is set in L = 1 [m] and it’s mass is neglected. The

following approximate model parameters are used: m̃ = 2.2 [kg], M̃ = 1.5 [kg], L̃ =

0.8 [m], and g = 9.81 [m/s2]. The PID-type kinematic trajectory tracking is assumed to be

q̈Des2 = q̈Nom2 +3Λ2(qNom2 −q2)+3Λ(q̇2i
Nom− q̇2)+Λ3

∫ t
0

(
qNom2 (τ)− q2(τ)

)
dτ with a time

constant Λ = 3 [s−1]. The simulation is carried out by using SCILAB-XCOS simulator. The

structure of the simulation is depicted in Fig.(4.8). In the adaptive controller the controller

cycle time is δt = 10−4 [s], the value of A is set −10 while D = −0.3. The results on the

trajectory tracking and the trajectory tracking errors can be observed in Figs. 4.9, 4.10 and
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Figure 4.8: The structure of the controller and the simulation

Fig. 4.11 for both the adaptive and non-adaptive cases. It can be observed, that the adaptive

strategy results in improvement on the precision compared to the non-adaptive case. In

Figures 4.12 and 4.13 the operation of the adaptivity according to the adaptive deformation

of the input can be seen. The desired q̈Des2 which is represented with black line and q̈2 shown

with green line are covering each other. The values for Q1 are displayed in Figs. 4.14 and

4.15. The results of the numerical simulation demonstrate, that we have achieved accurate

trajectory tracking with the new type of sigmoid function applied in the proposed control

scheme.

Figure 4.9: Trajectory tracking and tracking error in the the adaptive case
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Figure 4.10: Trajectory tracking and tracking error in the the adaptive cases -zoomed

Figure 4.11: Trajectory tracking and tracking error in the the non-adaptive cases -zoomed

Figure 4.12: Time-dependence of q̈2 in case of adaptive control (color codes: black line:q̈Des2

kinematically prescribed “desired”, blue line: q̈Def2 adaptively deformed, green line: q̈2 real-

ized (simulated)
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Figure 4.13: Time-dependence of q̈2 in case of adaptive control -zoomed (color codes: black

line:q̈Des2 kinematically prescribed “desired”, blue line: q̈Def2 adaptively deformed, green

line: q̈2 realized (simulated)

Figure 4.14: Q1 [N] vs. time in the adaptive case

Figure 4.15: Q1 [N] vs. time in the non-adaptive case
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4.3 Enhancement of the SGFPT Control Design by Soft
Computing

The excellent properties of soft computing methods, such as fuzzy logic, neural networks and

evolutionary computing provide a wide range of tools for addressing issues of establishing

relationship between measurements, assigning error bars to predictions, integrating infor-

mation from various sources with a varying degree of uncertainty, etc. [79] [80]. Recently,

most of the deterministic model buildings are increasingly replaced by soft-computing meth-

ods [81]. Inspite of the classical hard-computing methods the intelligent methodologies are

able to deal with imprecisions, uncertainties and partial truth by an efficient and robust way.

Fuzzy logic is widely used for modeling complex and ill-defined systems. The core concept

relies on the application of linguistic variables, see [82]. In this section a possible combina-

tion of the fuzzy modeling and the SGFPT control strategy is shown [A. 11]. The inverted

pendulum system serves as a nonlinear paradigm.

4.3.1 The System under Consideration

The proposed strategy is demonstrated by the control of the following inverted pendulum

system. The generalized coordinates are q1 [rad], q2 [rad] and the generalized forces are

torque signals: Q1 [N ·m], Q2 [N ·m]. The equations of motion are given in (4.8).

(
mL2 0

0 mL2 sin2 q1

)(
q̈1

q̈2

)
+

(
−mL2 sin q1 cos q1q̇

2
2 +mgL sin q1

2mL2 sin q1 cos q1q̇1q̇2

)
=

(
Q1

Q2

)
(4.8a)

The system parameters are collected in Table 4.2.

Parameter Exact Value Approximate Value

mass m 0.5 kg 1 kg

lenght L 1.5m 1m

gravitational acceleration g 9.81 m
s2

10 m
s2

Table 4.2: The system model and its parameters
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4.3.2 The Control Strategy

The fixed point transformation is carried out as described previously. The iteration generates

sequences as {r(i) ∈ IRn|i = 0, 1, . . .} by using the direction of the response error in the ith

step of the iteration as

h(i)
def
= f(r(i))− rDes, e(i) def

=
Ah(i)

‖Ah(i)‖
, (4.9)

where ‖h‖ is the Frobenius norm:

r(i+ 1) = G̃(r(i))
def
=

def
= [F (A‖Ah(i)‖+ x∗)− x∗] e(i) + r(i) .

(4.10)

Afterwards, the solution of the control task is the fixed point of G̃(r) when f(r?) − rDes ≡
h(i) = 0 then r(i+ 1) = r(i) = r?.

In (4.9) and (4.10) A is a diagonal matrix with positive main diagonals that can be tuned

to improve the convergence properties of the controller. (In the original approach it was the

unit matrix.) Its matrix elements can be tuned by observing little fluctuations in the conver-

gence of the adaptive signal when these main diagonals are too big. These fluctuations are

revealed as a negative content in a forgetting buffer as it was done in [43].

The constant control parameters can be found in Table 4.3. The simulations are carried

out by using the package “Julia” with a sequential code using Euler integration method with

a fixed step length of 10−4 s.

Parameter Value

Λ 4 s−1

D 0.3

δt time delay in learning 10−3 s

Table 4.3: Setting of the constant control parameters

A PID-type relaxation can be prescribed for the tracking error of q. Let IR 3 Λ > 0, and

let
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e(t)
def
= qN(t)− q(t) , (4.11a)

eint(t) =

∫ t

t0

(
qN(ξ)− q(ξ)

)
dξ , (4.11b)(

Λ +
d

dt

)2

e(t) = 0⇒ (4.11c)

q̈Des = q̈N + Λ3eint(t) + 3Λ2e(t) + 3Λė(t) . (4.11d)

The adaptive controller at first deforms q̈Des into q̈Def , and uses the approximate dynamic

model for the calculation of the control forces for this deformed value. According to (4.8),

for this excitation the controlled system responses with the “Realized” response q̈. On the

sequel function q̈ = f
(
q̈Def

)
is referred to as the “response function” of the system under

control. The adaptive deformation is based on the measurements of these responses. The

controller used the function 4.4 for making the adaptive deformation.

4.3.3 Results for the Affine Model

At first, let’s investigate the affine model. The simulation results can be seen in Figs. 4.16-

4.19. The adaptive strategy is compared with a non-adaptive one. It is evident that the

modeling errors cause errors in the computed torque signals and corrupt the precision of

trajectory tracking [A. 11].

Figure 4.16: Trajectory tracking and tracking error of the non-adaptive controller for the

“affine model”
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Figure 4.17: Trajectory tracking and tracking error of the adaptive controller for the “affine

model”

Figure 4.18: The q̈ values of the adaptive controller for the “affine model”

Figure 4.19: The tuned parameters of the adaptive controller and the content of the forgetting

buffer for the “affine model”
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4.3.4 Results for the Soft Computing-based Model

In this case of the Soft Compting-based model the sin(x) and the cos(x) functions are ap-

proximated by fuzzy rules as µs(x) and µc(x) over a bounded region [A. 11], according to

Fig. 4.20.

Figure 4.20: Functions sin(x) (black), µs(x) (blue), cos(x) (green), and µc(x) (red)

In the approximate dynamic model the additional terms are constants just as in the case of

the “affine model”, but the function sin(x) in the inertia matrix is approximated:

function ApprMod(q,q_p,q_ppDes)

global ma

global La

global ga

H=zeros(2,2)

sq1=mus(q[1,1])

H[1,1]=ma*La^2;

H[2,2]=ma*La^2*sq1^2;

h=[1.0;1.0];

return H*q_ppDes+h;

end
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Figure 4.21: Trajectory tracking and tracking error of the non-adaptive controller for the

“soft computing-based model”

Figure 4.22: Trajectory tracking and tracking error of the adaptive controller for the “soft

computing-based model”

Figure 4.23: The q̈ values of the adaptive controller for the “soft computing-based model”
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Figure 4.24: The tuned parameters of the adaptive controller and the content of the forgetting

buffer for the “soft computing-based model”

4.3.5 Results for the Fully Soft Computing-based Model

In the approximate dynamic model in each term the functions sin(x) and cos(x) are approx-

imated by the fuzzy approximations µs(x) and µc(x) as in [A. 11],

function ApprMod(q,q_p,q_ppDes)

global ma

global La

global ga

H=zeros(2,2)

sq1=mus(q[1,1])

cq1=muc(q[1,1])

H[1,1]=ma*La^2;

H[2,2]=ma*La^2*sq1^2;

h=[1.0;1.0];

h[1,1]=-ma*La^2*sq1*cq1*q_p[2,1]^2+

+ma*ga*La*sq1;

h[2,1]=2*ma*La^2*sq1*cq1*q_p[1,1]*q_p[2,1];

return H*q_ppDes+h;

end
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Figure 4.25: Trajectory tracking and tracking errorof the non-adaptive controller for the “soft

computing-based model”

Figure 4.26: Trajectory tracking and tracking error of the adaptive controller for the “fully

soft computing-based model”

Figure 4.27: The q̈ values of the adaptive controller for the “fully soft computing-based

model”
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Figure 4.28: The tuned parameters of the adaptive controller and the content of the forgetting

buffer for the “fully soft computing-based model”
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4.4 Thesis Statement III.

In this Thesis I have introduced the new Stretched Sigmoid function for the SGFPT-
based control design. In this improved technique the sigmoid is stretched instead of
simple shifting. The main advantage is that it allows excellent positioning in the vicin-
ity of the solution of the control task. The new design has been introduced by the
combination of optimal controllers and adaptive controllers that allows overcoming
the difficulties of controlling underactuated mechanical systems.

4.4.1 Substatement I.

I have introduced a new function of this family. The applicability and effectiveness of
the proposed control method using this novel type of function have been confirmed by
the adaptive control of the inverted pendulum with vertical vibration of the pivot.

4.4.2 Substatement II.

I have shown that the Improved SGFPT type control design can be supported by soft
computing techniques. The approximations of trigonometric functions of the dynamic
model has been realized with fuzzy rules. I have proved via comparative simulation
investigations of an “affine” and a “soft computing-based” model that this new con-
struction is able to deal with imprecisions, uncertainties, etc. by an efficient and robust
way.

Related publications: [A. 9], [A. 10], [A. 11]
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Chapter 5

Improved Denoising in the Wavelet
Domain

Most of the applications of adaptive signal processing and data representation, etc., require

the development of highly efficient data processing techniques. The classical approaches,

such as linear filtering, can smooth the corrupted signal, but with weak feature localization

and incomplete noise suppression. These are especially important in applications that re-

quire online responses. Nonlinear filters have been proposed to overcome these limitations.

Among the fundamental methods of signal processing, wavelet-based noise reduction has

been successfully applied to filter data. This technique is so advantageous due to provid-

ing information at a level of detail, that is not available with the Fourier methods [83]. The

discrete wavelet transform (DWT) analyses the signal at different frequency scales with dif-

ferent resolutions by reducing the signal into approximate and detail coefficients [83] [84].

For removing noise, wavelet shrinkage employs nonlinear soft thresholding functions in the

wavelet domain. An ample number of papers have been published on the possible extensions

and areas of applications of the discrete wavelet transform, for instance [85].The fast signal

transform algorithms provide significant reduction in the computation time. The effective-

ness of wavelet shrinkage relies on that the wavelet transforms the additive white noise into

white noise in the coefficient domain. Thus, fewer coefficients represent the signal which

allows proper separation of the noise. Further, the wavelet-based technique requires only

less assumption about the properties of the signal. These advantageous properties and possi-

ble applications have been investigated in [A. 12][A. 13]. Otherwise, one must be cautious

in applying this technique, because by using higher decomposition levels, the signal loses

more of its important features which may degrade the result significantly. Furthermore, the

specific choice of the wavelet function, decomposition level, and thresholding rule allows

to construct a large number of shrinkage procedures. Advanced concepts on the thresh-
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old function have been introduced in [86].The fundamental criteria behind the construction

of shrinkage procedures are robustness, adaptivity to the data, information of interest, and

continuous operation. In critical situations or when failures occur in the processing system

anytime techniques can be applied to carry on continuous operation [3]. In such situations

the required reaction time is shortened and the processing phase must be completed in time

even in the absence of all the required data or computational power. The principle of any-

time design lies in that if there is a loss of some data or resources, the current operation can

be continued based on algorithms providing short response time [87][88]. On the cost of

accuracy optimal overall performance can be maintained.

5.1 Wavelet Shrinkage

The two main approaches of the denoising task are the processing in the time or space domain

and the processing in the transform domain [89]. The methods performed in the transform-

domain assume that the original signal can be well approximated by a linear combination of

some basis functions. The wavelet transform preserves the true signal in few high-magnitude

wavelet coefficients while others are associated with noise. Formally, let us consider the clas-

sical problem of noise removal: yi = f(t) + ε , i = 1, . . . , s where yi denotes the observed

noisy data and ε represents the random noise, which is an independent and identically dis-

tributed (iid) process, and (t) stands for time. Let f denote the unknown function. The

sampling points are equally spaced s = 2n in order to allow to perform the discrete wavelet

transform (DWT). The issue is to estimate f on yi = [y1, . . . , ys] with minimum risk in

least squares sense, The first step of wavelet shrinkage is the decomposition of yi as fol-

lows; yij = ωijεi, where ωij are the wavelet (detail and approximate) coefficients on jth

scale. The general idea behind wavelet shrinkage is to replace the coefficients with small

magnitude to zero (hard thresholding) or set their value to the threshold level. After, the

reconstruction is carried out by performing the inverse discrete wavelet transform (IDWT).

Generally, the shrinkage methods construct nonlinear threshold functions based on some sta-

tistical considerations. For instance, the smoothness-adaptive method (SureShrink) [90] is

proposed to threshold each dyadic resolution level using the principle of Stein’s Unbiased

Estimate of Risk [91] , while the universal bound thresholding rule provides results with low

computational complexity. The rule of the latter is defined as follows [90],

ν1 = σMAD

√
2 log sj (5.1)

where σMAD =
median(ωj)

0.6745
denotes the absolute median deviation. The SureShrink procedure,

which removes noise by thresholding the empirical wavelet coefficients is the following.
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Suppose a vector of the squared wavelet coefficients in increasing order, Ω = [ω1, . . . , ωk].

The risk of these coefficients are calculated as r = [r1, . . . , rk] =
|s−2i+(s−i)ωi+

∑k
i=1 ω

2
1|

s
and

the threshold equals

ν2 = σ
√
ω (5.2)

where ω is the smallest element of the risk vector and σ denotes the standard deviation of the

noisy signal.

The Heuristic Sure thresholding rule is a heuristic combination of the Sure method and

the universal bound [90],

ν3 =

ν1, if p ≤ q .

min(ν1, ν2), otherwise.
(5.3)

in which p = m−k
k

, q = (log2k)3/2 and m =
∑k

i=1 ω
2
i . The principle of minimax rule is

based on the estimator design used in statistics, the threshold is given by [90],

ν4 =

νMAD(0.3936 + 0.1829s), if s>32.

0, otherwise.
(5.4)

5.1.1 Fuzzy Supervisory System

Presently fuzzy systems are being applied to various process supervision tasks in an effective

way [A. 14]. When failures appear, we often wish to provide continuous operation. To

address this challenge, a fuzzy expert system has been improved for anytime signal auto-

healing. Anytime mode of operation is able to cope with missing information [92][93]. The

scheme of the supervisory system is depicted in Fig. (5.1). The inputs of the Mamdani-type

fuzzy expert are created by the measurements of the noisy signal and the sine probe function.

The first fuzzy module assigns fuzzy values to energy attributes and to the signal to noise ratio

(SNR). Based on the rules taken from its database, the expert system evaluates the necessary

wavelet resolution level. The second fuzzy module selects the most suitable thresholding rule

from [ν1, ν2, ν3, ν4]. The fuzzy rules are based on the selected resolution level (first module)

and the change in variance of the wavelet coefficients of the probe signal. The anytime auto-

healing module published in [A. 16] ensures signal recovery from incomplete data. Further,

this system has been extended with one more fuzzy module, performing similar manner

as the other ones, that selects the appropriate wavelet function for the wavelet transform.

Additionally, the reconstruction consists of searching for periodicity in the sequences stored

in a buffer and performing the nearest neighbor interpolation method on the sparse samples

[A. 16].
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Figure 5.1: The scheme of the supervisory system
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5.1.2 Improved Denoising

Regarding the key concepts in noise reducing applications another successful concept is min-

imizing the effects of outliers (extreme values or elements that deviate from the observation

pattern [94]. Recent studies deal with the problem of outlier detection during the signal pre-

processing. Most areas of engineering practice benefit from such algorithms, for instance

monitoring and fault detection applications, data mining, etc. [95]. It is proven, that the

robust local polynomial regression technique detects outliers excellently [96]. With this in

mind, the present approach aims to utilize its advantageous feature for the thresholding op-

erations in the wavelet domain.

The local polynomial regression (loess) procedure is also called locally weighted running

line smoother. Extensions of the original method can be found in, e.g [96]. The princi-

ple of the method relies on approximation a function by fitting a regression surface to the

data by determining a local neighbourhood of an arbitrary point t0. These neighbouring

points are weighted depending on their distance from the middlepoint. The closer points

get larger wi weights. The estimate is obtained by fitting a linear or quadratic polynomial

using the weighted values from the neighbourhood. Detailed description of the procedure

and the loess curve construction can be found in [97]. This method is based on least squares

regression and it is known that this is vulnerable to outliers that can significantly degrade

the result. For introducing robustness in the procedure an iterative reweighting according

to the residuals is proposed with bisquare method [97]. Using the advantages of the latter

procedure the proposed shrinkage approach includes the following steps. At first the signal

is decomposed with the orthogonal wavelet functionsselected by the fuzzy supervisor. Af-

ter the separation of the the detail and approximate coefficients of the signal a robust fitting

is applied on the coefficients on each level. In this step the supervisor sets the appropriate

parameters. Afterwards, the signal is reconstructed with inverse discrete wavelet transform.

Thus, the realization of the new shrinkage procedure is the following [A. 15]: 1.) perform the

discrete wavelet transform, 2.) fit the local polynomial regression curve on the coefficients

with the wi weights; 3.) get the residuals; 4.) get the median absolute value of the residuals;

5.) calculate the robust weights 6.) repeat step 1 ,7.) repeat step 3 to 6 until it converges; 8.)

perform the IDWT.

5.1.3 Simulation Results

The performance of the proposed procedure has been tested on a one-dimensional signal

corrupted with additive white Gaussian and impulse noises. The results have been compared

with two other conventional shrinkage algorithms. The simulation is built by using Matlab8.
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- Improved Denoising HeurSure SureShrink Minimax

SNR [dB] before 2.2294 2.2294 2.2294 2.2294

SNR [dB] after 23.5412 8.7601 3.6653 5.9276

RMSE 0.04159 0.5372 0.7621 0.3293

Level of Decomposition 1 4 8 4

Abs. max error 0.2289 0.8621 0.9535 31.1107

Elapsed time [s] 0.10196 0.0184 0.0127 0.0312

Table 5.1: The results of numerical simulations

The performance is measured by the root mean square error (RMSE) and the signal to noise

ratio (SNR), calculated by the formula SNRdB = 10log σ
2
s

σ2
n

, where σ2
s is the variation of

the signal after denoising and σ2
n is the variation of the eliminated noise. The results are

summarized in Table 5.1:

The performance of the robust fitting-based method can be seen in Fig. (5.2). The proce-

dure precisely removes the noise and smooths the signal. Though, the HeurSure and the

Minimax rule are faster (Table 5.1) and eliminate additive noise, but can not cope with

impulse-type noise (Figs. 5.3). Since the reconstruction is not sufficient, further smooth-

ing and outlier-eliminating processes are desired, which may increase the total elapsed time.

With this in mind, the speed of the proposed procedure is acceptable.
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Figure 5.2: The original signal corrupted with noise (Upper Chart) and the result of denoising

with the proposed method (Lower Chart, solid line - result of denoising, dotted line - original

signal)
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Figure 5.3: The performance of the HeurSure (Upper Chart) and the Minimax method

(Lower Chart). (solid line - result of denoising, dotted line - original signal)
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5.2 Thesis Statement IV.

I have introduced a new method that relies on the combination of anytime and other
soft computing techniques for thresholding the coefficients in the wavelet transform
domain. The proposed method combines the main advantages of multiresolution anal-
ysis and robust fitting. The anytime supervisory system supports the automatic wavelet
shrinkage procedure. The wavelet function and the level of decomposition that are the
most suitable in the given scenario and the parameters of the fitting are determined on-
line by the fuzzy supervisory expert. The system applies orthogonal wavelet functions
in order to significantly reduce the processing time of reconstruction.

Related publications: [A. 12], [A. 13], [A. 14], [A. 15], [A. 16]
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Chapter 6

Adaptive Multi-round Smoothing based
on the Savitzky - Golay Filter

The great majority of signal processing applications require advanced processing methods

in order to achieve the desired precision of the result. In a particular class of tasks, for

instance chemical spectroscopy, smoothing and differentiation is very significant. The de-

tails of the smoothing filters are well studied. In 1964 a great effort has been devoted to

the paper of Savitzky and Golay, in which they introduced a particular type of low-pass fil-

ter, the so-called digital smoothing polynomial filter (DISPO) or Savitzky-Golay (SG) filter

[98]. Its great advantage in contrast to the classical filters - that require the characteriza-

tion and model of the noise process-, is that both the smoothed signal and the derivatives

can be obtained by a simple calculation. Critical analysis and proposals for the modifica-

tions of the original method have been presented, for instance in [99][100]. The basis of

their mehod is fitting a low degree polynomial in least squares sense on the samples within

a sliding window. After, the new smoothed value of the centerpoint obtained from con-

volution. An ample number of papers dicussing its properties and possible improvements

were written in [101][102][103][104][105][106][107][108]. The importance and applicabil-

ity of a digital smoothing polynomial filter in chemometric algorithms are also well docu-

mented [109][110][111]. While, the frequency domain properties of SG-filters are revealed

in [112][113][114][115]. Paper [116] concerns the properties of the SG digital differentiator

filters and also the issue of the choice of filter length. In [117] the calculation of the filter

coefficients for even-numbered data is addressed. Furthermore, the fractional-order SG dif-

ferentiators have been investigated, as an illustration, by using the Riemann-Lioueville frac-

tional order definition in the SG-filter. For example, the fractional order derivative can be

calculated of corrupted signals as published in [118]. There are several sources and types of

noise that may occur, for instance, eletronic noise, electromagnetic and electrostatic noise,
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etc.[119]. However, it is commonly assumed that the noise is an additive white Gaussian

noise (AWGN) process. In engineering practice often nonstationary, impulsive type distur-

bances, etc., can degrade the performance of the processing system. Since, for the noise

removal issue of signals with a large spectral dynamics or with a high rate of change, the

classical SG filtering is an unefficient method. Additionally, the performance depends on the

appropriate selection of the polynomial order and the window length. The arbitrary selec-

tion of these parameters is difficult for the users. Usually the Savitzky-Golay filters perform

well by using a low order polynomial with long window length or low degree with short

window. This latter case needs the repetition of the smoothing. It has also been declared

that the performance decreases by applying low order polynomial on higher frequencies.

Nonetheless, it is possible to further improve the efficiency. With this goal, in this chapter

I will describe a new adaptive smoothing approach based on the SG filtering technique that

ensures acceptable performance independently of the type of noise process.

6.1 Brief Inroduction of the Mathematical Background be-
hind the Savitzky-Golay Filter

In this section the premise behind the Savitzky–Golay filtering will be briefly outlined ac-

cording to [120]. Firstly, let us consider equally spaced input data of n{xj; yj }, j = 1, ..., n.

The smoothed values are derived from convolution, given by

gi =
m∑

i=−m

ciyk+i, (6.1)

where the window length M = 2m + 1 , i = −m, ..., λ, ...,m, and λ denotes the index of

the centerpoint. The kth order polynomial P can be written as

P = a0 + a1(x− xλ) + a2(x− xλ)2 + ...+ ak(x− xλ)k (6.2)

The goal is to calculate the coefficients of Eq. (6.1) by minimizing the fitting error in the

least squares sense. The Jacobian matrix is as follows

J =
∂P

∂a
(6.3)

The polynomial at x = xλ takes the value of a0, so in order to evaluate the polynomial

in the window we have to solve a system of M number of equations which can be written in

matrix form

J · a = y (6.4)
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Table 6.1: Some SG coefficients. M = 2m + 1 is the window length and k denotes the

polynomial degree
Savitzky-Golay coefficients

M k Coefficients
2*9 2 -0.0909 0.0606 0.1688 0.2338 0.2554 0.2338 0.1688 0.0606 -0.0909

4 0.0350 -0.1282 0.0699 0.3147 0.4172 0.3147 0.0699 -0.1282 0.0350

2*11 3 -0.0839 0.0210 0.1026 0.1608 0.1958 0.2075 0.1958 0.1608 0.1026 0.0210 -0.0839

5 0.0420 -0.1049 -0.0233 0.1399 0.2797 0.3333 0.2797 0.1399 -0.0233 -0.1049 0.0420



1 (xλ−m − xλ) · · · (xλ−m − xλ)k
...

...
...

...

1 0 · · · 0
...

...
...

...

1 (xλ+m − xλ) · · · (xλ+m − xλ)k


×



a0

...

...

...

ak


=



yλ−m
...
...
...

yλ+m


The coefficients are obtained from the normal equation as given below

JT (Ja) = (JTJ)a (6.5)

so

a = (JTJ)−1(JTy). (6.6)

Since

P (xλ) = a0 = (JTJ)−1(JTy), (6.7)

by replacing y with a unit vector in Eq.6.1 the c0 coefficient can be calculated as

cj =
k+1∑
i=1

|(JTJ)−1|0iJij. (6.8)

With a size of (2m+ 1)× (k + 1) the G matrix of the convolution coefficients

G = J(JTJ) = [g0, g1, ..., gj]. (6.9)

Fig. 6.1 displays the performance of the originall SG-filter. It can be seen that the

smoothing is not precise. In order to address this problem, the following section will present

an adaptive strategy.

103



Figure 6.1: Performance of the original SG filter. Upper chart: signal with contaminating

noise. Lower chart: dotted line - original signal, solid line - smoothed signal, k = 3, M = 35

6.2 Adaptive Multi-round Smoothing based-on the SG Fil-
tering Technique

6.2.1 Multi-round Smoothing and Correction by the use of Fuzzy Rules

This new adaptive strategy aims setting automatically the suitable polynomial order and win-

dow length at the different frequency components of the signal [A. 18]. Hence, it is possible

to avoid the undershoots and preserve the peaks that could be important from different data

analysis aspects. Since we perform in the time domain, this method provides efficient results

independently of the type of contaminating noise. At first, the classical Savitzky-Golay fil-

tering is performed. Assuming that only the corrupted signal is available, this step serves for

revealing the peaks, hence the window length and degree of the polynomial may be arbitrary.

After the first smoothing, the coordinates of the local minimum and maximum points can be

obtained. From now on, we can also define the distace vector dwhich contains the number of

samples between two neighboring points of local minima and maxima. Then, the next step

is the separation of the high- and low frequency components using the bordering points and

setting the proper parameters for the smoothing. The window should match the scale of the

signal and the polynomial degree should vary by depending on the framesize and frequency.
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Since the next fuzzy relation can be defined between the section lengths [A. 17];

F (dmax >> d̄R) =
1

1 + e−(δmax−d̄R)
∈ [0, 1] (6.10)

where δ̄R stands for the average length of the sections in the current R parts of the signal,

while δmax = max(d) in the observed signal. If g(dmax, d̄R) = 1, the current part of the

signal contains high freqency components. Hence, the following rules are applied [A. 18]:

if 1 > g(dmax, d̄R) > 0.9 then k = 5, M = nint(0.3δ̄R)

if 0.89 > g(dmax, d̄R) > 0.75 then k = 4, M = nint(0.5δ̄R)

if 0.75 > g(dmax, d̄R) > 0.45 then k = 3, M = nint(δ̄R)

if 0.44 > g(dmax, d̄R) > 0.2 then k = 2, M = nint(0.5Rn)

else k = 1, M = nint(0.8Rn),

(6.11)

whereRn is the total number of samples of theR part, and we can assign the k andM values

to each R part of the signal. In the rules the M values are rounded according to the nearest

integer (nint). The values for the bounds have been determined according to the formula 2k

modified by experimental results.

6.2.2 New Parametric Weighting Function

The correction carried out with taking the linear approximation of the obtained signal. Then,

it is extracted from the smoothed one. This step reveals the higher deviation, thus the next

smoothing procedure can be modified according to its result. As we have the coordinates of

the local minimum and maximum points and the vector d, we can easily fit a regression line

on the points between two local extrema. In order to ensure the continuous joining of the

lines we can perform this step by applying the Lagrange-multiplicator method given by

105



∑
xi∈[x1,x2]

(m1x
(i) + b1 − y(i))2 +

∑
xi∈[x1,x2]

(m2x
(i) + b2 − y(i))2 ⇒ min, (6.12)

with the following constraints:

m1x2 + b1 −m2x2 + b2. (6.13)

Figure 6.2: Illustration of problem of joining the regression lines

However, in some cases the peaks can contain the information of interest. Therefore,

the form of the peak or valley should be processed with special care. To address this issue,

a modified Shepard - method can be applied [A. 17]. Let us consider the points around

the local extrema in radius r. The new values are calculated by weighting according to the

neighboring points distance. There are several variations of the Shepard method [121], now

let us consider the GMS (Groundwater Modeling System) form below

wi =
(d−di
ddi

)2

n∑
i=1

(d−di
ddi

)2

. (6.14)

Eq. (6.14) can be trasformed into

wi =
(1−ui

ui
)2

n∑
j=1

(
u−uj
uj

)2

, (6.15)

in which ui(x) = di(x)
d(x)

. Now, using the similarity between the form of Eq. (6.15) and the

Dombi operator [122] we can define the following new parametric weighting function [A.

17]:

wi =
1

1 + ( ui
1−ui )

2
∑
j=1

(
1−uj
uj

)λ
(6.16)
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in which the setting of λ and radius r (where it performs) have the effect on the smoothness

of the result.

6.2.3 Simulation Results

The performance of the proposed method have been tested on a noisy signal (see, Fig. 6.3).

The simulation is carried out by using Matlab8. Figure 6.4 shows the approximated signal

after the first round. In Fig. 6.5 the resulted and the original signal can be seen after two

rounds. It can be observed that the applied technique can efficiently recover the signal.

Figure 6.3: The noisy signal.

Figure 6.4: Approximation of the signal after the first round.
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Figure 6.5: The recovered (blue) and the original (magenta) signal.
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6.3 Thesis Statement V.

I have developed a new adaptive smoothing strategy based on the Savitzky-Golay filter-
ing technique. The proposed method allows to evade the main difficulties of the original
SG filter by automatically setting the smoothing parameters. Furthermore, for the pre-
cise reconstruction of the signal a multi round correction has been applied using the
linear approximation of the signal. For the reconstruction of the peaks and valleys that
may contain the important information, a new parametric weighting function has been
introduced.

Related publications: [A. 17], [A. 18]
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Chapter 7

Conclusions

Practical solutions of engineering problems involve model-integrated computing. Model-

based approaches offer a very challenging way to integrate a priori knowledge into the pro-

cedure. Due to their flexibility, robustness and easy interpretability, the application of soft

computing, in particular fuzzy and neural network-based models, may have an exceptional

role at many fields. Especially in cases where the problem to be solved is highly nonlinear or

when only partial, uncertain and/or inaccurate data is available. At the same, their usage can

be so advantageous, it is still limited by their exponentially increasing computational com-

plexity. Combining soft computing, non-conventional and novel data representation tech-

niques is a possible way to overcome this difficulty.

The performance of a controller depends on the available form of the model, since my Thesis

addresses novel data representation and control methods that are able to adaptively cope with

usually imperfect, noisy or even missing information, the dynamically changing, possibly

insufficient amount of resources and reaction (such as wavelet based multiresolution con-

trollers, anytime control, Situational control, Robust Fixed Point Transformation (RFPT)-

based control). The great majority of the adaptive nonlinear control design are based on

Lyapunov’s 2nd or commonly referred to as the “Direct” method. The major defect of this

method that it is mathematically complicated and it works with a large number of arbitrary

adaptive control parameters and additionally the parameter identification process in certain

cases is vulnerable if unknown external perturbations can disturb the system under control,

etc. In the recent years the RFPT has been introduced for replacing the Lyapunov technique.

Since, in this Thesis my first aim was dealing with the possibilities of the combination of the

classical model-identification and the RFPT-based design in depth. I have proposed a new

method that utilize the geometric interpretation provided by the Lyapunov-technique that can

be directly used for parameter tuning. I have shown that these useful information can be ob-

tained on the actual parameter estimation error by using the same feedback terms and equa-
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tions of motion as the original methods. In order to improve the parameter tuning process,

I have suggested the application of the Modified Gram-Schmidt Algoritm for the possible

combination of the RFPT-based method with the Modified Adaptive Inverse Dynamic Robot

Controller (MAIDRC) and the Modified Adaptive Slotine-Li Robot Controller (MADSLRC).

Besides, I have presented an even simpler tuning technique in the case of the Modified Adap-

tive Inverse Dynamics Robot Controller that also applies fixed point transformation-based

tuning rule for parameter identification.

Afterwards, I have presented a systematic method for the generation of a new family of

the Fixed Point Transformations, the so-called Sigmoid Generated Fixed Point Transforma-

tion (SGFPT) for the purposes of „Adaptive Dynamic Control” for nonlinear systems. At

first, I have outlined the idea for the „Single Input - Single Output (SISO)” systems, then I

have shown that it can be extended to „Multiple Input - Multiple Output (MIMO)” systems.

Additionally, I have replaced the tuning method by a simple calculation in order to further

simplify and improve the method.

I have proposed new advances regarding the „ Sigmoid Generated Fixed Point Transforma-

tion (SGFPT)”. Also, I have described a new control strategy based on the combination

of the “adaptive” and “optimal” control by applying time-sharing strategy in the SGFPT

method, that supports error containment by cyclic control of the different variables. Fur-

ther, I have introduced new improvements on SGFPT technique by introducing “Stretched

Sigmoid Functions”. The efficiency of the presented control solution have been confirmed

by the adaptive control of an underactuated mechanical system. I have investigated the ap-

plicability of fuzzy approximation in the SGFPT-type control design and demonstrated the

usability via simulation investigations. Furthermore, I have shown a new type of function for

the SGFPT.

The other important issue that includes the maintenance of unwanted sensor noises that are

mainly introduced by feedback into the system under control. Accordingly, in the develop-

ment of a control system the signals of noisy measurements has to be addressed first so that

more sophisticated signal pre-processing methods are required. Therefore, I have concerned

the issue of well-adapted techniques for smoothing problems in the time domain and fitting

data to parametric models. I have suggested new startegies for thresholding operations in

the wavelet domain supported by anytime fuzzy supervisory system. I have investigated the

Savitzky-Golay (SG) smoothing and differentiation filter. It has been proven that the perfor-

mance of the classical SG-filter depends on the appropriate setting of the windowlength and

the polynomial degree. The main limitations of the performance of this filter are the most

conspicuous in processing of signals with high rate of change. In order to evade these de-

ficiencies I have developed a new adaptive design to smooth signals based on the Savitzky-
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Golay algorithm. The provided method ensures high precision noise removal by iterative

multi-round smoothing. The signal approximated by linear regression lines and corrections

are made in each step. Also, in each round the parameters are dynamically change due to the

results of the previous smoothing. For supporting high precision reconstruction I have intro-

duced a new parametric weighting function. Applicability of the Thesis have been confirmed

by numerical simulations.
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Chapter 8

Possible Targets of Future Research

Recently, Non − conventional approaches has received much attention in the design of

nonlinear adaptive control and signal processing. On account of the characteristics of Soft

Computing techniques, such as flexibility and robustness, they have become fundamental

tools in many areas. These methods are suitable for solving problems that are highly non-

linear or when only partial, uncertain data is available. In such situations, usual approaches

are often impractical or computationally demanding. Since, my Thesis attempts to shed new

light on Soft Computing, non-conventional and novel data representation techniques. In this

Thesis I have presented new methods of adaptive control and signal processing that are able

to adaptively cope with usually imperfect, noisy or even missing information. However, this

research has thrown up many questions in need of further investigations. The presented find-

ings suggest the following directions for future work; in Chapter 3 a systematic method has

been presented for the generation of whole families of fixed point transformations, the so-

called SGFPT. Considerable progress have been made with regard to the controller’s perfor-

mance by the use of the new types of functions. It is recommended that further investigations

should target new methods for the automatic setting of these functions.

In Section 4.3 the enhancement of the SGFPT based control design by fuzzy approximation

has been concerned. In the fixed point transformation instead of a unit matrix, a diagonal

matrix with positive main diagonals was applied, that can be tuned to improve the conver-

gence properties of the controller. It has been revealed, that its matrix elements can be tuned

by observing little fluctuations in the convergence of the adaptive signal when these main

diagonals are too big. Based on these observations, future research should focus on new

tuning algorithms in order to further improve the convergence properties.

Regarding the results of combining the RFPT with neural networks and fuzzy modelling (see,

[A. 19][A. 11]), a possible goal can be the investigations of the combination of RFPT method

and wavelet technique in the control of strongly nonlinear systems. Early foundings have
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been published in [A. 21] about the applicability of the Fixed Point Transformation-based

Adaptive Control design for automatic control of the depth of hypnosis during surgical op-

eration. The here presented technique regulates the WAVCNS index as the only measurable

variable by controling the intravenous propofol administration. Therefore a possible goal

of future work should aim revealing the links between the SGFPT-type control and Wavelet

Theory focusing on the novel methods for dynamical problems.
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[65] R. Andoga, L. Főző, L. Madarász, and T. Karol’. A digital diagnostic system for a

small turbojet engine. Acta Polytechnica Hungarica, 10(4):45–58, 2013.
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