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INTRODUCTION 

Personal motivation and interest: Since the establishment's inception, both industrial 

and non-industrial tasks have utilised hand tools to enhance the workers' power and 

achieve the required goals. In this context, during my childhood, my father worked and 

ran a workshop where he repaired crashed cars using various hand tools. I was his 

assistant and enjoyed this time, but as the years went by, I started to worry because I 

noticed that his hand shape and behaviour were changing due to the constant and 

repetitive work with these tools. I noticed that after a long shift, he was in continuous pain 

in his hand. In addition, my lovely cousin, who cared for me in the early years of my life, 

is a nurse and has worked all her life with patients and healing wounds with surgical hand 

tools doing repetitive tasks during the same shift, coincidentally after several years her 

hands had similar changes in muscle behaviour, and she suffered repeated muscle injuries. 

Nowadays, she has been diagnosed with a disease of the muscles and joints in her hands. 

On the other hand, Ecuador has special weather conditions and does not experience four 

distinct seasons (winter, spring, summer, and autumn) like the USA and Europe. Our 

location on the equator means that we only have two climate seasons: wet and dry. The 

weather conditions in my town are unique. Rose picking is the main activity. In this 

activity, workers are assigned to use hand tools or cutting hand tools to harvest roses. This 

repetitive task can lead to hand pain and fatigue among workers. Looking at the above 

situations, I felt the need to understand how these problems arise and how they can be 

solved or prevented. 

Scientific motivation: Throughout my career, I have managed construction and 

automation technicians who work constantly with hand tools and who report hand fatigue 

during their shifts. For this reason, they request that necessary research be conducted to 

bridge the gap between factors contributing to hand fatigue and healthy working 

practices. The implications of this study are far-reaching: improving worker comfort and 

managing hand fatigue has the potential to improve work performance, reduce 

absenteeism, and reduce the risk of musculoskeletal disorders. 

Actuality of the topic  

The manufacturing industry is working to improve the management system and create an 

ideal healthy workplace, focusing on the best way to reduce accidents and maximise 
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resources [1], [2], [3]. Hand tools are increasingly being used as the primary tool in a 

wide range of industrial operations. One of the most critical control points in the industry 

is focused on the needs of specialised areas. Ergonomics and safety regulations are linked, 

as both contribute to a safe and healthy working environment. Ergonomic requirements 

include the design of workplaces, tools, and equipment to reduce the physical strain on 

workers and improve their well-being. In contrast, safety requirements concern the 

identification and mitigation of hazards that could contribute to accidents, injuries, or ill 

health. The high number of injuries each year is a significant concern for these types of 

businesses. By addressing ergonomic elements such as posture, equipment design, and 

work organisation, organisations can avoid ergonomic hazards and reduce the incidence 

of musculoskeletal disorders. Workers are trained to recognise and deal with ergonomic 

problems when ergonomic concepts are incorporated into safety practices, resulting in an 

integrated approach to occupational safety and health that improves worker safety, 

comfort, and productivity [1], [4]. 

Especially in sectors that depend on hand tools, ergonomics and appropriate risk 

management must be integrated to ensure worker safety and security. Long-term health 

problems and lost productivity are caused by musculoskeletal illnesses, which are 

exacerbated by poorly designed tools and repetitive manual labour. To reduce injuries 

and improve worker well-being, companies should evaluate ergonomic risks, choose the 

best tools, and provide appropriate training. In addition, acceptance of global safety 

regulations and risk-reduction strategies contributes to a decrease in workplace dangers, 

guaranteeing a more secure and effective setting that safeguards workers and corporate 

operations. To reduce the likelihood of a worker becoming ill in the future, it is necessary 

to assess the recurring and elemental forces during work and then design the workstation 

using methodical tool selection. The market's reliance on tool size will be a constraint in 

this situation, as tool manufacturers focus on designing for everyone, which can be 

challenging for specialist workers now, to reduce the possibility of getting a future illness 

due to the lack of a tailored device [5]. 

A two-stage process is used to identify management requirements. The aim of the first 

level is to group tasks according to the requirements of the project and application. This 

level involves main stages such as allocation, elicitation, analysis, specification, 

validation, and approval, ensuring that requirements are identified, analysed, 

documented, and validated before final approval. The second level consists of actions to 
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manage the process focuses on maintaining control over these requirements through 

configuration identification, baseline management, change control, library control, status 

accounting, and review audits to ensure consistency and traceability throughout the 

project lifecycle [6], [7], [8].  

Industrial risk assessment tools aim to identify occupational diseases that affect different 

levels of the body. They are constantly refining their methods for identifying and 

mitigating the causes of accidents to reduce them, considering the requirements of 

Engineering [1], [9], [10], [11]. 

Industries have tracked musculoskeletal disorders in a variety of ways based on 

observation and workplace organisation, so tool selection is an essential feature of 

workplace design or organisation to reduce the possibility of future conditions [12]. 

Because it requires flexion and extension of the wrist, repetitive performance of the 

manual activity with excessive muscle effort is a serious ergonomic concern [13]. 

Cumulative trauma disorders of the extremities must be recognised as a serious 

ergonomic hazard by the ergonomics management of each factory. 

According to the US Bureau of Labor Statistics, there are approximately 100,000 hand 

tool-related accidents per year, which illustrates the high frequency of accidents in this 

industry and the need to propose a viable solution strategy. The information provided 

relates to accidents involving hand-held power equipment and hand tools. The number of 

incidents and the average number of days lost due to work-related accidents involving 

equipment and hand tools will increase significantly between 2015 and 2021. From 

59,830 cases in 2015 to 125,297 cases in 2021, equipment injuries resulted in an average 

of seven days lost from work. In comparison, hand tool-related injuries increased from 

52,030 in 2015 to 108,903 in 2021, resulting in an average of five days off work. The 

total number of hand injury accidents, which includes accidents involving both equipment 

and hand tools, will increase from 111,860 in 2015 to 234,200 in 2021, indicating a 

worrying upward trend [15] - [18]. 

In a globalised environment, the quest for greater efficiency affects all organisational 

structures that seek to standardise the response to a similar activity across multiple 

locations. In this view, a "human reliability analysis" is used when the operator is at the 

centre of a cognitive process that leads to judgments, whose dependence increases the 

overall safety of the use of the equipment [18], [19]. Monitoring and controlling both 
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components of this combination to manage the "human factors" in the production process 

is the best way to achieve high safety standards, highlighting the need for risk prevention 

techniques targeted at specific hand tools. 

Hand tool-related injuries, which make up a large portion of occupational incidents each 

year, are frequently caused by poor ergonomic practices, repetitive strain, and inadequate 

tool selection, which can result in long-term health risks and increased costs for 

businesses. Guaranteeing that ergonomic principles are followed in tool design, 

workstation setup, and work processes is crucial in reducing accidents, minimising 

musculoskeletal disorders, and improving overall worker well-being. 

Physical damage caused by commonly used devices, such as pliers, hammers, chisels, 

and screwdrivers, as well as other hand tools, during the performance of regular work 

duties can be considered and classified into several groups based on the severity and 

medical care required, ranging from mild (Level I) to severe (Level IV). The trauma level 

percentage distribution is categorised by cause (cutting, machine-related, etc.). Machine-

related injuries increase significantly from 11.61% to 88.2% when the trauma level rises 

from Level I to Level IV, whereas cut injuries fluctuate, reaching a peak of 38.39% at 

Level III before falling precipitously at Level IV [20]. 

The European Union Directive 89/391/EEC [21]. It encourages the adoption of policies 

to enhance employees' health and safety at work, thereby reducing the risk of job-related 

injuries.  In addition to adherence to the mandates of numerous international standards, 

hand and wrist injuries account for over 17% (740 million) of total annual medical and 

production costs due to the above factors. 

Adopting appropriate safety measures improves productivity by preventing lost workdays 

due to injuries, in addition to lowering the direct medical and compensation costs related 

to workplace injuries. It is even more critical to address ergonomic issues to create a safe 

and sustainable workplace as industries continue to change and strive for greater 

efficiency. 

Occupational Safety in Hungary vs. Ecuador 

Occupational safety strategies differ between Latin American and European countries due 

to differences in risk perception and tool use. Ultimately, workplace procedures, training 

methods, and technology adoption all affect worker safety outcomes, and cultural factors 

strongly influence these factors. Advances in technology, improvements in low-cost 
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manufacturing, and globalisation have been found to be strongly correlated. In Latin 

America, occupational safety regulations are often reactive, and with fewer resources and 

less emphasis on prevention, workers tend to take more risks. In contrast, proactive safety 

measures are typically prioritised in European countries, where they are supported by 

stricter regulatory frameworks and a greater focus on compliance, ensuring better risk 

reduction and preparedness [21], [22], [23]. 

Based on a culture that values personal accountability and following rules, Hungarian 

employees are more likely to prioritise safety and recognise possible risks, while 

Ecuadorian employees, who frequently deal with financial strains and less structured 

systems, may choose to accept or downplay risks to keep their jobs [24], [25], [26].  

 

Figure 1 Occupational Safety in Hungary vs. Ecuador 

In Hungary and Ecuador, non-powered hand tools exhibit significant differences in 

several aspects of ergonomics and occupational safety, as illustrated in Figure 1. 

Specifically, in Hungary, tools used in the industrial and automotive sectors are 

ergonomically designed with non-slip grips and optimal handle diameters. These tools 

are used in accordance with regular ergonomic assessments and training programmes. In 

contrast, in Ecuador, machetes, hammers, and hand drills are commonly used, often 

without ergonomic modifications and with limited assessment and training, especially in 

the informal sector. In contrast, machetes, hammers, and hand drills are commonly used 

in Ecuador, with minor ergonomic modification and limited assessment and training, 
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especially in the informal sector. This leads to higher rates of musculoskeletal disorders 

(MSDs), such as knee (7.4%) and hand (5.3%) osteoarthritis. In Hungary, regulations are 

in place but are not consistently enforced, and tools are not maintained, leading to a higher 

risk of injury [27], [28]. 

Older or less ergonomic equipment, more hazardous working conditions, and laxer 

enforcement of safety laws may all contribute to a greater awareness of potential risks in 

Ecuador. In addition, fewer people have access to organised training and medical care, 

which can make incidents seem more serious [21], [22], [23]. 

Formulation of the scientific problem 

A complex problem requiring creative solutions at the interface of ergonomics, safety 

standards, tool design, workplace optimisation, and human reliability analysis. This 

complicated subject has several interrelated elements, each of which presents scientific 

difficulties and opportunities for progress. The large number of injuries that occur each 

year in the manufacturing industry, particularly those involving hand tools, has become a 

significant concern. The overall aim is to improve the management system and prevent 

future hand tool-related disorders.  

Combining ergonomic concepts with safety requirements is a major scientific challenge. 

New approaches are needed to achieve a harmonious balance between designing 

workspaces, tools, and equipment that reduce the physical demands on workers 

(addressing ergonomic concerns) and identifying and mitigating hazards to prevent 

accidents and injuries (ensuring safety). The design of workstations requires a systematic 

and scientific strategy to measure recurrent and elemental forces during work. The 

scientific challenge is to develop effective methods for using tools in workstations, 

considering individual variations in tasks and applications, while meeting the varying 

needs of workers across multiple projects. 

Hand tools are widely used in many different industries, especially in Latin America. 

However, there are still insufficient integrated ways to evaluate and reduce the 

ergonomic, physiological, and perception-related dangers associated with their repeated 

and prolonged use. Current procedures often overlook culturally influenced perceptions 

of occupational risk, the anatomical diversity of users, and the initial signs of muscle 

fatigue. The absence of formal examination techniques aggravates the high prevalence of 

musculoskeletal problems, hand injuries, and lost productivity. Specifically, there is a 
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lack of expert-driven frameworks for systematically classifying ergonomic hazards, 

culturally sensitive tools for evaluating worker risk perception are lacking, and surface 

electromyography (EMG) is not being used for real-time fatigue monitoring. 

Understanding the physiological implications of flexion and extension of the wrist and 

excessive muscle effort is crucial in developing preventive measures and ergonomic 

management strategies to minimise the concern of cumulative trauma disorders. 

Objectives 

• Develop strategies and measures to prevent future hand tool-related disorders by 

applying cause identification. 

• Establish systematic and scientific strategies for measuring forces during work 

and develop effective methods for the use of tools in workstations using new 

technology. 

• Gain a comprehensive understanding of the physiological implications of 

repetitive manual activities on the wrist and muscles for avoiding possible 

degradation. 

Hypotheses of the research 

Hypothesis 1 (H1): Electromyography (EMG) can be used to identify the onset of muscle 

fatigue in individuals using hand tools by analysing changes in EMG signals during 

sustained gripping tasks to prevent injury and cumulative trauma disorders related to 

work. 

Hypothesis 2 (H2): Risks associated with the use of non-powered hand tools can be 

effectively identified, categorised, and prioritised through the integration of individual 

factors using Multi-Criteria Decision-Making (MCDM) methods, by applying structured 

approaches like the Analytic Hierarchy Process (AHP) and the Best-Worst Method 

(BWM), to develop targeted risk reduction strategies that lead to a reduction in both the 

frequency and severity of hand-related injuries in the workplace. 

Hypothesis 3 (H3): The probability of risk perception examined through the Domain-

Specific Risk-Taking (DOSPERT) among users during tasks involving non-powered 

hand tools is significantly associated with individual factors such as previous hand-related 

injuries, task-specific variables such as tool complexity and duration of use, and 

ergonomic considerations such as tool design and workplace environment, which could 

lead to users experiencing hand-related disorders. 
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Hypothesis 4 (H4): By recording and analysing electromyography (EMG) signals from 

the muscles involved in using hand tools, an ML algorithm can accurately detect signs of 

muscle fatigue in individuals performing repetitive or prolonged manual tasks. This 

information can then be used to develop targeted interventions to prevent injuries and 

improve workplace safety. 

Hypothesis 5 (H5): By training an artificial intelligence (AI) system using 

electromyography (EMG) data, we can teach the AI to accurately identify muscle fatigue 

signals and provide real-time feedback to workers, thereby improving their productivity 

and reducing the risk of injury. 

Research methods 

In preparing my thesis, I have divided my research into four parts, as shown in Figure 2. 

In the first part, I conducted a systematic review to determine the application methods of 

electromyography (EMG) and fatigue wave detection in the electromyographic response 

of hand muscles. In the second part, I developed a survey and data analysis to determine 

users' risk perceptions of different hand tool use scenarios and a country comparison to 

determine workers' behaviour in dealing with hand tool risks. In the third part, EMG data 

collection and machine learning (ML) techniques are applied to determine the muscle 

wave response, thereby identifying the best data identification method for AI data 

classification.  
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Figure 2 Tool Sizing for Latin American People Research Framework  

Research limitations 

The main limitations of the research are as follows: First, the variability in responses, 

particularly when experts are drawn from different industrial sectors or cultural 

backgrounds, may affect the consistency and reliability of the data used in multi-criteria 

decision-making methods when the categorisation of work-related risks in manual tool 

operation is made. 

The DOSPERT scale could be limited by the fact that respondents might underreport risk-

taking behaviour due to social overestimating the benefits of certain unsafe practices out 

of habit or necessity. Participants from different countries may interpret questions 

differently based on their language and workplace laws. 

While EMG is a valuable tool for understanding muscle function in the hand to identify 

the early stages of fatigue, its limitations in directly studying nerve behaviour highlight 

the need for a multimodal approach that combines EMG with other techniques capable of 

providing a more comprehensive view of nerve control and interactions with hand 

muscles. In addition, a primary limitation is the indirect nature of EMG measurements. 

EMG records the electrical activity generated by muscle contractions, providing insight 
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into muscle function, but the recorded signals represent the collective output of motor 

units, making it difficult to isolate and analyse specific nerve behaviours. 

EMG cannot distinguish between different types of nerves, such as sensory and motor 

nerves, limiting its ability to provide a comprehensive understanding of the neural 

mechanisms involved. This lack of precision limits the ability to differentiate between 

individual nerves or specific motor units within a muscle. In addition, studying nerve 

behaviour often requires invasive procedures that are not feasible in routine EMG studies. 

Direct insertion of electrodes into nerves or advanced imaging techniques, such as nerve 

ultrasound, are more suitable for studying nerve activity. However, there are ethical 

concerns, practical challenges, and potential risks associated with these methods that limit 

their widespread use. 

Structure of the dissertation 

The first part of this thesis presents an introductory description, presenting the 

formulation of the scientific problem, objectives, hypothesis, methods, and research 

limitations. The research continues in five chapters as follows:  

In Chapter 1, a literature systematic review is presented to identify the methods used to 

apply electromyography to study hand muscle behaviour and to provide a comprehensive 

overview of the different techniques used to apply electromyography in other contexts 

and disciplines. It also includes methods for assessing and analysing risk perception and 

risk-benefit when using hand tools. 

In Chapter 2, risk identification and assessment are combined with a mathematical 

categorisation method for risk reduction strategies.  Data collected from surveys of 

ergonomics experts in workplaces where non-powered hand tools are used is used to 

determine risk grouping and categorisation to reduce hand injuries in the workplace using 

an Analytic Hierarchy Process (AHP). 

In Chapter 3, the Domain-Specific Risk-Taking (DOSPERT) questionnaire is used to 

measure their risk perception and risk/benefit assessment of hand tool use. This study 

focuses on the health and safety domains relevant to the use of hand tools to gain a basic 

understanding of how workers in different cultural contexts perceive and evaluate the 

hazards associated with the use of hand tools in their unique work environments. 



 

15 

 

In Chapter 4, an electromyography (EMG) data collection method is specifically used to 

detect the onset of fatigue during hand tool use by detecting muscle electrical wave 

responses. Detecting the onset of fatigue during hand tool use using EMG data highlights 

the implications of the study for worker welfare. 

In Chapter 5, Conclusions explain the significant contributions to the field by 

establishing a basic understanding and shedding light on the complex nature of risk 

perception in occupational settings related to the use of hand tools. The practical 

implications for worker well-being are underscored through the identification of fatigue 

onset during tool operation using EMG data and muscle electrical wave responses. 

Finally, the inclusion of references and supplementary materials in this research serves to 

substantiate and enrich the proposed comprehensive model. It also strengthens its 

foundation in existing scientific work. 
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1 PRISMA-BASED REVIEW OF FATIGUE AND RISK 

EVALUATION IN HAND TOOL USE   

A comprehensive analysis of ergonomic solutions, injury prevention techniques, and 

biomechanical consequences in hand tool use provides an overview of the variables 

involved. The structured approach consists of an introduction, PRISMA methodology, 

presentation of results, and discussion. 

1.1 Hand tools 

In many professions, the use of hand tools is one of the leading causes of work-related 

illnesses and disorders. Uncomfortable postures and risky contact stressors are potential 

sources of injury. To avoid this, hand tools need to be hand-specific, considering the 

essential characteristics of the instrument. Excessive and repetitive use of these tools, 

especially when ergonomic design is unconsidered, puts users at considerable risk of 

developing musculoskeletal disorders (MSDs). Forceful exertions, uncomfortable wrist 

positions, and repeated hand movements are some of the main ergonomic risks associated 

with manual labour. Muscle exhaustion from such movements often leads to conditions 

such as De Quervain's disease, tennis elbow, tendinitis, tenosynovitis, and carpal tunnel 

syndrome (CTS). Collectively, these are referred to as repetitive strain injuries (RSIs) or 

cumulative trauma disorders (CTDs), and can result in diminished quality of life, loss of 

function, and chronic discomfort [29], [30]. 

1.1.1 Hand tools classification 

Comfortably designed, effectively constructed hand tools used in balanced work 

environments reduce the incidence of hand and upper limb injuries. It also provides users 

with comfortable working conditions and high-quality products [31], [32]. 

The ergonomic function of the hand tool is the relationship between the characteristics of 

the user, the workstation, and the organisation of the task. By analysing the influence of 

several basic variables for each use situation, hand tools can be grouped and classified 

according to Table 1. 

Table 1 Hand tools classification 

Category Non-Powered Hand Tools Powered Hand Tools 

Cutting Tools Knives Electric Saws  
Saws Circular Saws  
Scissors Jigsaws  
Shears Reciprocating Saws  
Clippers Chainsaws 
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Chisels Angle Grinders  
Axes Power Drills  
Pliers Impact Drivers   

Rotary Tools (Dremel) 
Driving Tools Screwdrivers Power Screwdrivers  

Hammers Electric Drills  
Mallets Impact Wrenches  
Wrenches Power Ratchets  
Spanners Power Staplers   

Nail Guns 

Holding Tools Clamps Bench Vises  
Vises C-clamps  
Grips Quick Clamps 

Striking Tools Hammers Demolition Hammers  
Mallets Rotary Hammers  
Sledgehammers Power Nailers  
Mauls Pneumatic Impact Tools 

Measuring Tools Tape measures Laser Distance Measurers  
Rulers Electronic Measuring Tools  
Callipers Digital Levels  
Protractors Ultrasonic Distance Measurers  
Levels 

 

 
Squares 

 
 

Gauges 
 

Finishing Tools Sandpaper Electric Sanders  
Files Belt Sanders  
Rasps Orbital Sanders  
Scrapers Detail Sanders  
Planes Power Planers  
Burnishers Power Buffers  
Deburring tools Rotary Polishers 

Miscellaneous Awls Heat Guns  
Brushes Electric Screwdrivers  
Pry bars Electric Staplers  
Punches 

 

1.1.2 Hand tools selection 

The risky contact shape of the tool could cause injury, so it's essential to be aware of 
it. Table 2 shows the main tool characteristics for the assessment criteria [25]. 

 
Table 2 Design Features Considerations in Ergonomic Hand Tools  

Eligibility Parameter Shape Device Tool Characteristic Handle Grip Material 

Features Adaptable and 

mouldable design 

Lightweight structure Enhanced grip with 

high-friction surface 

Smooth, non-

sharp edges 

Proportional 

dimensions for the task 

Even force distribution 

on the handle 
 

Way of handling the tool  

Determining the job's tasks and methodology is the next step in the selection process. The 

physical attributes of the worker's hands are analysed in conjunction with the tool's and 

handle's applications to establish the tool's size for the hands [33], [34]. The fundamental 

safety of non-powered hand tools and the ergonomic handling of the tool are two ways to 
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evaluate the design features that encourage safer tool use and lower the chance of mishap 

or injury. 

Intrinsic safety of non-powered hand tools  

The proper safety measures in conjunction with inherent safety characteristics are 

essential for boosting efficiency, guaranteeing compliance, and enhancing overall 

operational efficiency and economy when choosing non-powered hand tools to lower the 

risk of accidents and foster safer working conditions. The best qualities of hand tools with 

basic security features are shown in Table 3 [26]. 

Table 3 Intrinsic safety aspects in non-powered hand tools. 

Non-Powered Hand Tool 

Characteristics 

Intrinsic Safety Features 

Ergonomic - Handle designed for comfort and reduced hand fatigue. 

- Grip surface prevents slipping for better control. 

- Magnetic tip ensures secure screw placement and reduces 

slippage. 

- Insulated grip enhances protection against electrical 

hazards. 

Non-Slip - Textured handle enhances grip and stability. 

- Integrated wire cutter guard prevents accidental injuries. 

- Anti-pinch mechanism reduces the risk of finger 

entrapment. 

- Locking joint mechanism ensures a firm and stable grip. 

Retractable Utility - Retractable blade allows safe storage and minimises 

accidental cuts. 

- Blade locking system prevents unintended movement. 

- Built with durable, impact-resistant materials for longevity. 
 

 Ergonomic way of handling the tool 

Companies continue to invest in comfortable equipment and promote safe handling 

practices. Not only does this reduce workplace injuries and disorders, but it also promotes 

a healthier and more efficient working environment, increasing overall workplace success 

and well-being. The ergonomic grip of any hand tool is critical in all industrial tasks and 

helps workers achieve their job objectives. 

 

Figure 3 Power Grip. 
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Figure 3 shows the Power Grip, which is the style of tool holding used by both small and 

large hammers to provide the necessary force when striking materials. This style of 

holding a tool uses the entire palm to support the object, while the fingers and thumb 

provide the force [35]. 

 

Figure 4: Single-handling tool. 

The method for handling tubular tools based on handle diameter and length is depicted 

in Figure 4. While the fingers and thumb are employed to apply force, the entire palm is 

utilised when grasping a tool in this manner. 

 

Figure 5 Pinch Grip handling tool. 

The tool is held in a pinch grip for control, accuracy, and precision (see Figure 5). Holding 

the instrument between the thumb, index finger, and middle finger gives you the force 

you need to do the task. The contact pressure tool is another kind of grip that is shown in 

Figure 6. It is distinct from other grip methods in that force is applied to the tool against 

the component being fixed using the palm. 

 

Figure 6 Contact pressure handling tool. 
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The complete hand is frequently employed to operate the double-handle tools depicted in 

Figure 7. To apply the proper force during the job, the pliers or forceps are held in this 

grip between the thumb, forefinger, and middle finger [36]. 

 

Figure 7: Double-handle tool. 

1.1.3 Activating hand muscles using hand tools  

According to the human studies, even the most skilled individuals cannot generate 

completely separate forces or movements with their four fingers; there is significant 

coupling between adjacent fingers [37], [38]. Previous studies have shown that each 

person maintains 52 different hand morphologies by combining intrinsic and extrinsic 

hand muscles.  The principal component axes of the EMG (the 'muscle synergies') were 

then calculated, and the two orthogonal hand shape axes most closely associated with the 

most common muscle synergies were selected. This allowed us to examine muscle and 

motor unit membership patterns in muscle and postural synergies. The recording sites for 

this muscle were illustrated in Figure 8  [37], [39]. 

 

Figure 8 A) Anatomical locations of the seven muscles or muscle parts. B) Recording locations recommended and 

percentage of signal recovery quality. 
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Figure 8A, displays the muscles that are used to control hand movements using muscles. 

These include the flexor pollicis brevis (FPB), abductor digiti minimi (ADM), extensor 

digitorum (ED), abductor pollicis brevis (APB), and the portion of the first dorsal 

interosseus that is closest to the thumb (FDIth) and the index finger (FDIif). The APB 

and FPB are the thumb's intrinsic muscles. Activating Hand Muscles using Hand Tools. 

The intrinsic muscles of the little and index fingers are the ADM and FDI. The forearm 

contains the tendons of the extrinsic hand muscles ED and FDS, which are attached to the 

middle-to-distal phalanx (ED) or middle phalanx (FDS) of the four fingers [37]. 

1.1.4 Muscle fatigue 

Muscle fatigue can be characterised as a decrease in optimal contractile force. Our body's 

ability to lift or move is impaired by extreme fatigue. Many studies have been carried out 

to detect and assess muscle fatigue. There are several methods of detecting fatigue based 

on muscle signals [40], [41]. Surface electromyography (sEMG) is the primary approach 

to recording and studying muscle activity, as it records the electrical signal from the 

muscles. Many other things can contribute to fatigue [42], such as muscle fibre structure, 

blood ion balance, energy supply, neurological variables, and many others. Research has 

shown that muscle fatigue is associated with the occurrence of musculoskeletal injuries 

during competition and training. Fatigue alters muscle activity patterns and kinematics, 

according to new research. Running fatigue could be linked to lower extremity injuries, 

as suggested by Nyland [43]. This can increase the likelihood of injury to both muscles 

and bones [44].  

The kinematics can be modified as a result of physiological adjustments made to prevent 

or reduce the level of discomfort and the incidence of tiredness [45], [46]. Muscle strength 

can undergo various changes when sufficiently fatigued, controlling and ultimately 

determining the regulation of movement of the different parts, as demonstrated by 

Rodacki [47].  

The mechanical properties of the hand play a role in the transmission of force produced 

by hand-held tools; this interaction is referred to as the tool-biological system, although 

it is widely recognised that the biological system changes over time in terms of fatigue 

and muscular precision [48], [49]. 

As a result, the above phenomenon suggests the existence of an underlying mechanism 

to mitigate the decreases that occur during the occurrence of force development 
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characteristics within the muscles due to fatigue. It highlights the importance of EMG 

signal processing and strategies for detecting muscle fatigue. 

1.1.5 Assessments of Muscle Fatigue  

The use of different training models, protocols, and techniques to quantify muscle fatigue 

may explain some of the differences in our understanding of the mechanism behind 

muscle fatigue. Our knowledge of ergonomics, work, and work-related injuries will be 

enhanced if we can develop an objective, quantifiable, and continuous technique for 

monitoring muscle fatigue [50], [51]. The maximal voluntary contraction (MVC) test is 

the most appropriate method for determining fatigue because it measures the force or 

power produced during a voluntary effort of maximal intensity. Short MVC tests are 

usually performed to record the decrease in maximal force production from a specific 

muscle as the subject continuously performs the fatiguing task or task of interest at pre, 

post and/or intermediate time points. This measures the pattern of muscle fatigue during 

the task performed. The pattern of muscle fatigue is represented by the rate of decline in 

power output assessed in these MVC tests. The force measurement equipment forms the 

basis of comparable tests that assist in direct assessment. However, muscle fatigue is 

indicated by a decrease in the power of maximal voluntary contractions. Nevertheless, 

the electrical impulses from the superficial muscle layer can be recorded by the surface 

electrodes, amplified, and finally used to determine the signal power spectrum when the 

response is observed in the sEMG. 

1.1.6 Evaluation methods  

Numerous non-invasive techniques exist for identifying muscle fatigue, with surface 

Electromyography (sEMG) and Mechanomyography (MMG) being the primary methods. 

sEMG captures the muscle's electrical activity signal, whereas MMG records its 

mechanical activity [52]. In addition, many other techniques are not as widely used in 

clinical or research settings. Examples include sonomyography (SMG), which uses 

ultrasound to measure haemoglobin absorption properties and detect fatigue during 

prosthesis control; near-infrared spectroscopy (NIRS); and acoustic myograph (AMG), 

which records muscle sound and is a specific application of MMG. Each technique 

attempts to document and study one or more muscle signals, symptoms and 

characteristics. However, surface electromyography is a more accurate way of identifying 

muscle fatigue [53]. 
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1.2 Methodology 

The main goal of using hand tools is to help find practical ways to lower hazards, lessen 

injuries, and enhance worker productivity and safety. Focusing primarily on any element 

influencing the assessment of muscular fatigue, the PRISMA methodology is composed 

of: (I) Data Sources and Search Strategy; (II) Eligibility Criteria; (III) Data Extraction; 

(IV) Quality Assessment; (V) Analysis Procedures. 

1.2.1 Data Sources and Search Strategy 

The research and document selection process followed the PRISMA (Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses) standards [54]. The articles in this 

meta-analysis were published between January 1990 and February 2024. 

Web of Science, Scopus, PsycINFO, PubMed, Cochrane Library, and Excerpta Medica 

Database (EMBASE) were the multidisciplinary electronic databases from which 

English-language sources were retrieved for this meta-analysis. To find pertinent 

publications from these databases, the following keywords were used: (EMG OR surface 

OR electromyography OR myoelectric AND manifestations AND of AND fatigue OR 

surface AND emg OR multi-channel AND surface OR semg) OR (muscles AND fatigue 

OR exercise AND fatigue) AND (hand OR hand AND muscles) AND (machine AND 

learning OR ai OR artifical AND intelligence). Based on previous systematic reviews, 

the keywords identified were in the area of hand tool work-related illnesses [55], [56], 

[57], [58].  

Figure 9 illustrates the steps involved in this meta-analytic investigation. 4827 documents 

in all were first obtained from the internet databases, and they were augmented by further 

human searches. Using Mendeley software, 1048 duplicates were removed, leaving 3779 

records from the data sources. The remaining 291 papers were eliminated in the 

subsequent round of title and abstract screening, which eliminated 3488 papers deemed 

unrelated to the subject or centred on scale validation. 243 articles were eliminated 

following full-text screening by the exclusion criteria. After the eligibility evaluation was 

finished, thirteen full-text articles were eliminated. 35 journal articles were ultimately 

included for synthesis. 
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Figure 9 Flowchart of the selection and inclusion procedure 

1.2.2 Eligibility Criteria 

To be considered for inclusion, a study had to (a) primarily focus on any element that 

influences the assessment of muscular exhaustion; (b) be deemed empirical research; and 

(c) have a sample size of at least ten participants.  

Key features of the selected studies were extracted and summarised in a consolidated 

report. 50% of the 35 studies were randomly selected to perform independent data 

extraction.   

The extracted and coded items included (a) author(s) and year of publication; (b) sample 

size; (c) study design (EMG applied method and position); (d) effect size; and (e) EMG 

characteristics of AI applied principles. This study evaluates the muscle fatigue 
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assessment methods and data recognition algorithms to determine the required sample 

size. 

The quality of the selected studies was assessed using the criteria of the Newcastle-Ottawa 

Scale (NOS). The NOS has been used extensively in previous physical health assessment 

reviews to evaluate the reliability of cross-sectional and cohort studies [59], [60] . 

1.2.3 Analysis Procedures 

Comprehensive Meta-Analysis (CMA, version 4.0, Biostat, Englewood, NJ, USA) 

software was used to conduct a meta-analysis. For the majority of studies included in this 

review, effect sizes were reported using Pearson's correlation coefficient (r) for 

correlational data or other convertible statistics such as normalised mean difference for 

continuous data and log odds ratios for binary data [60]. The p-value suggesting a 

moderating effect was evaluated using the Qb test, and the meta-regression analysis 

employed the β-value. Fourth, a funnel plot was made to assess publication bias and see 

if the studies were evenly spaced around the effect size [61]. 

1.3 Results  

This part displays the findings from the correlation test, which evaluates the impact of 

publications, as well as the information gathered about the risk assessment of hand tool 

use. 

1.3.1 Correlation test 

The publication bias of the chosen studies was then assessed using the Egger's correlation 

test and the Begg–Mazumdar rank correlation test. 

The results of this meta-analysis indicated that the studies focused on preventing work-

related diseases linked to hand muscles have a correlation with the sample effect and the 

myoelectrical evaluation method (r = 0.520, Q = 27.04, p < 0.001).  There is a 95% 

confidence interval between 0.728 and 0.902, and the mean effect size is 0.834. The 

studies that were chosen were grouped into effect sizes that varied from -0.299 to 0.991 

The null hypothesis that the mean impact size is zero is tested using the Z-value. The Z-

value is 8.470, and p is less than zero. The Q-value is 27.04 with 17 degrees of freedom 

and p < 0.001. 
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1.3.2 Muscle fatigue detection 

Several non-invasive methods, such as surface electromyography (sEMG) and 

mechanomyography (MMG), can identify muscle tiredness. MMG measures mechanical 

activity, while sEMG records electrical activity. Other techniques are also used, such as 

near-infrared spectroscopy (NIRS) and sonomicography (SMG). EMG data from muscles 

is gathered using statistical or machine learning methods, depending on the pattern of 

muscle exhaustion characteristics, as shown in Table 4. 

Table 4 Overview of existing research on techniques using EMG signals to identify muscle fatigue during contraction 

Studies   Consequence-

Based Risk 

Identification 

Muscles Contraction Protocol Analysis 

Methods 

 
Accidents / Physical 

Injuries 

RF, BF, GM Cycling 30 minutes 

constantly 

IMNF 

 Long Head 

BB 

Exercise for 8 minutes during 

low-level isometric 

contraction. 

Recurrence 

quantification 

analysis 

 RF, BF Run 400m on a tartan athletic 

track with a different 

intensity. 

MPF, Linear 

Regression 

 SEMBS, BF Running over ground with 

maximal speed 

EMG Peak, 

ANOVA  
BB, TB Utilised the dumbbell as a 

burden 

FFT, MPF 

[62] Long-term 

Ergonomic risk 

Middle BB Perform sixteen tasks with 

the fingers of the hand  

RMS, Twin 

SVM 

[63] TB Dumbbell curl exercise. FFT & 

Spectral 

Density 

[64] RF, TA, BF, 

GM 

Cycling with 100 watts RAW EMG 

and statistical  
RF, VL, VM 5km running on a variable 

surface 

iARV, 

iMAV, 

iRMS, WL, 

IMNF, IMDF 

[64] RF, GL, GM, 

VL, VM 

Cycling for prolonged 

constant 

RMS, MF 

 
Right RF During walking. DWT 

 
Physical Injuries  

and Tool Damage 

RF, VL, BF, 

GL 

Incremental running on a 

treadmill 

RMS, Linear 

Regression  
GA Running on a treadmill for 30 

minutes 

MDF, Linear 

regression  
RF, BF, TA, 

GAS 

Running, 200m/outdoor and 

400m/ treadmill. 

MPF, Linear 

Regression 

 GM, BF, VL, 

RF, TA, GA 

Incremental running test on a 

treadmill 

iEMG 

Note: RF = quadriceps-rectus femoris; BF = biceps femoris (long head), GM = Gluteus Maximus, RA = 

rectus abdomini; ES = erector spinae; TA = tibialis anterior; VM = vastus medialis; SO = soleus. VL= 

vastus lateralis, GA= gastrocnemius, GL= Gluteal Muscles, SEMBS= semimembranosus, BB= Biceps 

Brachii, TB= Triceps Brachii. 
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Each method seeks to record and analyse different symptoms, indications, and properties 

of muscular exhaustion. Still, surface electromyography (EMG) is the gold standard for 

identifying muscle tiredness. BF, Medial Hamstrings (MH), GM, RF, Tibialis Anterior 

(TA), GL, Medial Gastrocnemius (GMS), semimembranosus (SEMBS), VM, GA, BB, 

Triceps Brachii (TB), and VL are among the muscles from which EMG signals have been 

obtained in numerous studies to generate fatigue indices using machine learning 

(regression) or statistical techniques (ANOVA test). Another issue is determining fatigue 

patterns from feature patterns, based on the particular usage. 

1.3.3 Signal Processing 

Electromyogram (EMG) signals are becoming increasingly important in a variety of 

applications such as healthcare, human-machine interfaces, and prosthetics. However, a 

significant obstacle to optimising these applications is dealing with distorted EMG signals 

[65]. Because EMG signals from muscles contain noise, appropriate filtering is required 

to ensure correct recording. This noise, which can come from a variety of sources, 

including amplifiers or external interference such as computers and radio broadcasts, can 

be low or high-frequency. While low-pass filters deal with high-frequency noise, high-

pass filters reduce low-frequency noise. Bandpass filters are used to isolate specific 

frequency bands and deal with both types of noise [65], [66], [67]. These filtering methods 

are critical for improving performance in relevant applications and for accurate EMG 

signal analysis. A summary of the steps involved in processing EMG signals is shown in 

Table 5. 

Table 5 EMG Signal Processing  

Aspect Details 

Application EMG signals are increasingly crucial in prosthetic devices, human-machine 

interactions, clinical/biomedical fields, and rehabilitation devices [63]. 

Challenge Distorted EMG signals present a significant challenge in expanding performance 

applications [68]. 

Noise 

Removal 

EMG signals collected from muscles by electrodes contain noise, which hampers 

signal recording [69]. 

Frequency of 

Noise 

Noise in EMG signals can be low or high-frequency. Low-frequency noise often 

stems from amplifier direct current offsets, while high-frequency noise arises from 

nerve conduction, computers, and radio broadcasts [70]. 

Noise 

Removal 

Filters 

High-pass filters remove low-frequency noise, while low-pass filters eliminate high-

frequency noise [62]. 

Filter Band Frequencies passed by a filter's transmission are known as the passband, while those 

blocked are the stop band [64]. 

Filter Concept Low-pass filters remove frequencies above the cut-off value and transmit those 

below it, opposite to high-pass filters [71]. 
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Bandpass 

Filter 

Bandpass filters, unlike low or high-pass filters, transmit specific frequency bands 

determined by the user. They are ideal for EMG signal processing [72]. 

 

EMG signal processing involves using electrodes to collect impulses from muscles, then 

pre-processing the signals to remove distortion and noise. The processed signals are then 

subjected to primary feature extraction, including amplitude, frequency, and time domain 

characteristics. Relevant features are selected to facilitate analysis. Machine learning 

algorithms are then used to classify the signals into appropriate categories, and post-

processing methods can be used to improve the classification results. Finally, the signals 

are processed and interpreted to provide insights for a range of applications, including 

sports science, rehabilitation, and prosthetics [73]. 

1.3.4 Work-related hand tool risk identification 

"Work-related health issues", "tool-related issues," and " work-related performance 

problems" are the main themes of the earlier studies. The main factors that appear to have 

prompted research into hand tool improvement were MSDs in any number of body 

regions (such as ulnar, upper extremity, carpal tunnel, etc.) [74]. 

Several studies examined work-related problems, which can be divided into three main 

categories: productivity, tool-related issues, and health and safety. Musculoskeletal 

disorders (MSDs) were the most common concern (36.2%), while health and safety issues 

were the most commonly examined (46.6% of articles). 8.6% of the studies looked at 

specific types of MSDs, while 3.4% looked at general health issues. Productivity and 

performance issues were addressed in 27.6% of the literature. Tool-related failure aspects 

were also extensively studied (32.8%), with particular attention paid to grip (15.6%), 

handle design (8.6%), tool characteristics (10.3%), and tool orientation (3.4%) [75]. 

Managers are very concerned about hand tool accidents because they have a direct impact 

on employee safety, output, and overall operational effectiveness. 'Physical injuries' 

associated with the use of hand tools have a direct impact on employee safety, output, and 

overall productivity. These include immediate injuries such as cuts, fractures, and crush 

injuries, as well as chronic musculoskeletal disorders (MSDs). The possibility of these 

accidents is significantly increased by poor tool design, excessive force, vibration 

exposure, and improper maintenance; these factors result in lost workdays, reduced 

productivity, and increased compensation costs [76]. 

Another source of concern for managers is Ergonomic risk postures when using hand 

tools, which can lead to severe musculoskeletal disorders (MSDs) such as tendonitis, 
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carpal tunnel syndrome, and hand-arm vibration syndrome (HAVS). The strain on 

muscles, tendons, and nerves increases when workers use tools in awkward positions, 

such as extreme wrist flexion, forceful gripping, or repetitive motions. This can lead to 

long-term pain, reduced grip strength, and even permanent disability [76]. 

'Tool damage' is another primary concern for business managers because it has a direct 

impact on overall costs, worker safety, and operational efficiency. Workplace accidents 

and lost productivity can result from damaged tools, whether the result of inappropriate 

use, poor maintenance, or material fatigue. Workers may use extra force to compensate 

for worn or malfunctioning tools, increasing the risk of musculoskeletal injuries and 

product defects. Ignoring tool damage can lead to safety violations and reduced worker 

motivation [75], [76]. 

1.4 Discussions  

Hand tools are essential in many professions; their misuse can lead to work-related 

illnesses and accidents. To reduce these hazards, this research presents how hand tools 

are properly categorised and selected. In addition, it presents hand tool features as either 

powered or non-powered, and then further into categories such as cutting, driving, 

holding, striking, measuring, finishing, and miscellaneous. Each category has a different 

function, and the ergonomic design of each is critical to ensuring user productivity and 

safety. 

The study defined the selection process considering several variables, including the nature 

and technique of the task, the handle material of the tool, and its characteristics. The 

inherent safety features of hand tools, such as non-slip surfaces, insulated handles for 

electrical safety, and ergonomic handle designs, are essential in reducing the possibility 

of mishaps and promoting safer working environments. In addition, user efficiency and 

safety are improved by understanding different handling styles such as pressure handling, 

pinch grip, power grip, and single handling. 

The physiological characteristics of using hand tools are explained by hand muscle 

activation and fatigue. Research has shown that hand muscles interact in complex ways 

when using tools and that muscle fatigue can reduce function and increase the risk of 

injury. There are many non-invasive techniques for detecting fatigue. Many articles 

describe and identify fatigue using surface electromyography (sEMG), a widely used 

method for determining fatigue and muscle performance [58], [63], [68], [77]. Despite 
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this, RMS, MNF, MPF, WL, MDF, iMAV, iRMS, IMNF, and IMDF are the most often 

used analysis techniques.  

The analysis of electromyogram (EMG) signals to assess muscle fatigue requires the use 

of signal processing. EMG signals are filtered using a variety of techniques to reduce 

noise and distortion, enabling accurate analysis and interpretation. EMG signal 

processing is further enhanced by machine learning techniques that facilitate signal 

classification and provide insights for a range of healthcare, prosthetics, and rehabilitation 

applications. Based on the linear regression slope values that characterise the muscle 

fatigue index, statistical analysis or machine learning (ANOVA, regression line) is then 

applied [78]. 

The meta-analysis adds significantly to our knowledge of ergonomic risk factors and 

preventative measures by shedding light on the relationship between hand muscle fatigue 

and work-related illnesses. According to earlier research [79], [80], [81], tiredness is 

correlated with an increase in the EMG amplitude in the time domain, a shift towards 

lower frequencies in the frequency domain, and a mean drop in the spectrum when the 

amplitude increases in the time-frequency domain.  

One finding from the research set is that MDF and MNF, which are based on power 

spectrum analysis of the EMG signals obtained from the FFT, are superior methods for 

detecting muscle fatigue because the spectral analysis of the data is more reliable and 

provides more information about muscle function than the other methods. 

The research on hand tools, muscle activation, and fatigue assessment also highlights the 

importance of technological improvements, ergonomic design, and safety considerations 

in promoting health and safety in the workplace. The commonly evaluated muscles are 

GM, RF, BF, GMS, GL, VL, and VM. These muscles are superficial and easy to apply 

electrodes to; they are also very controllable when it comes to detecting fatigue. SEMG 

can detect fatigue during both dynamic and static contractions. 

1.5 Main contributions 

The amount of information we have on the ergonomic factors, muscle activation, and 

fatigue assessment associated with hand tools in many professional situations has been 

greatly enhanced by this research. The main contributions are presented below: 
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Hand Muscle Activation and Fatigue: The research identifies the role that muscle 

fatigue plays in occupational health. It examines the patterns of muscle activation, how 

adjacent fingers are coupled, and how fatigue affects muscle performance and the 

likelihood of injury. Several techniques for assessing muscular fatigue, such as surface 

electromyography (sEMG), are discussed, with an emphasis on the importance of 

accurately detecting fatigue to prevent work-related illnesses. In addition, the location of 

the electrodes is determined as the forearm, the area closest to the elbow, to obtain hand 

muscle signals from the muscles located in the forearm, including the flexor carpi radialis, 

flexor carpi ulnaris, and pronator teres. 

Signal Processing for Muscle Fatigue Assessment: This study presents signal 

processing methods for properly assessing muscular tiredness by examining 

electromyogram (EMG) signals. It discusses how to extract features from EMG signals, 

remove noise from them, and use filtering techniques. It highlights how machine learning 

algorithms may be used to categorise patterns of fatigue. Signal processing makes it 

possible to accurately measure muscle exhaustion, offering information for use in 

prosthetics, rehabilitation, and healthcare. 

Meta-analysis on Muscle Fatigue Studies: Demonstrates the link between hand muscle 

fatigue and work-related illnesses, highlighting the importance of understanding 

ergonomic risk factors and taking preventive action. The meta-analysis shows that there 

is a positive correlation (r = 0.520, p < 0.001) between the effectiveness of myoelectric 

evaluation methods and the prevention of work-related illnesses. According to this 

correlation, using the proper myoelectric diagnostic techniques can help to reduce the 

prevalence of work-related hand muscle disorders. 

Implications for Workplace Health and Safety: Identify the importance of safety 

considerations, ergonomic design, and technological developments in promoting health 

and safety in the workplace. Stakeholders can develop strategies to reduce workplace 

hazards and improve worker well-being. 

Categorisation of identified risks based on their consequences: Establish a framework 

for understanding potential risks in categories such as accidents, Physical injury, 

Ergonomic risks, and Tool damage, and understand the wide range of possible outcomes 

associated with different activities. 
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Sample size: Determines the number of samples for the experimental selection in the 

identified categories. Considering that the experiment is a series of muscle repetitions, 

the adequate correlation between size and experimental result determines the group size 

of 12-20, as it allows the researchers to collect sufficient data to understand the factors 

that contribute to accidents. 

- Thesis (T1): With a systematic PRISMA literature review and using correlation 

analysis of the studies (which presented an index r = 0.520 and p < 0.001), I have 

proved that: 

o Electromyography (EMG) collected in the forearm, including the flexor 

carpi radialis, flexor carpi ulnaris, and pronator teres, helps prevent work-

related injuries and cumulative trauma disorders by identifying the onset 

of muscle fatigue during over 5-second gripping tasks.  

o The main identified categories of potential hand tool use-related risks 

include accidents, Physical injuries, Ergonomic risk, and Tool damage. 

Own publications related to this chapter: [82], [83] 
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2 CATEGORISATION OF WORK-RELATED RISKS IN 

MANUAL TOOL OPERATION 

In the field of hand tool use, a multicriteria categorisation of direct risk is essential for 

understanding the task. A structured methodology for categorising risk related to hand 

tools is presented, including an introduction, a detailed explanation of the methods, a 

presentation of the results, and a discussion of their implications. 

2.1 Preventing CTDs through Tool Design and Risk Assessment 

Work activities in several tasks have been associated with cumulative trauma disorders 

(CTDs) of the upper extremity. Poor posture has been identified as a major ergonomic 

risk factor for CTDs.  In studies of musculoskeletal complaints in industrial assembly 

workers, ulnar deviation of the hand posture was shown to be the leading risk factor for 

hand symptoms. This hand position was found to be more common than other abnormal 

hand positions  [84]. 

Musculoskeletal disorders (MSDs) and injuries among workers lead to a wide range of 

problems, including poor quality of life, reduced mobility, reduced strength, reduced 

income, and even difficult circumstances. 

Hand tool use has generally been one area where ergonomic risk concerns are significant 

due to one of the main industrial goals being to prevent MSDS. That is why improvements 

in the design of hand tools have been essential in reducing pain and injury in the wrists 

and hands. A proven method for reducing workplace accidents is risk assessment. EN 292 

/ISO 12100 risk reduction criteria and risk assessment form the conventional risk 

assessment methodology [85]. But when it comes to the risk assessment of a machine, it 

can be a challenge for users to identify and analyse hazardous actions. 

Multicriteria decision-making 

Ergonomics specialists have used multicriteria decision-making (MCDM) programs to 

identify ergonomic factors that can lead to MSDs and enhance subjects' quality of life 

through preventive initiatives. These models have helped create answers for a wide range 

of issues related to the avoidance of work-related illnesses, and the models themselves 

have addressed a significant number of issues with job scheduling in the sector. 

Researchers from all over the world have begun to examine this model in depth by 

connecting the mobility components with the MCDM models [86], [87]. 
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The Analytic Hierarchy Process (AHP) technique is a relevant multi-criteria model that 

relies on the judgment and expertise of decision makers to make the right choices about 

how to solve a complex problem according to specific criteria. In effect, it assists decision 

makers in choosing the course of action that best suits their needs and assessment of the 

problem. As the AHP approach is subjective and an evaluation of expert knowledge, the 

study does not require a large sample size [87], [88].  

However, since the answer can be viewed as a personal argument to some extent, the 

AHP approach has limitations, including the respondent's decision criteria. As the 

decision maker's preferences have a significant impact on the results, the criteria of 

perception, evaluation, correction, and choice in the AHP approach are rather ambiguous.  

Additionally, the interdependencies between AHP variables often lead to inconsistent 

weighting of criteria and results that do not reflect reality [88], [89]. To address these 

constraints, Pareto optimisation of AHP weight vectors was used. Thus, the authors 

modified the weights of the AHP vectors by using pairwise comparison matrices in a real-

world case study. This showed that the AHP approach could be improved by integrating 

it with simulation-based sensitivity assessment and analytical network process (ANP) 

modelling [90]. 

The model used in addition to the AHP offers different advantages, depending on the type 

of study it is best suited for and the scenario to which it is applied. Therefore, several 

mathematical and optimisation techniques have been used to evaluate and improve the 

accuracy of the AHP results. Using a Monte Carlo simulation, statistical factors from 

sensitivity analysis and innovation have been incorporated into the AHP approach [91]. 

Few studies have examined the criteria for non-powered hand tools by combining the 

MCDM approaches with risk assessment. The choice of tool was made by the authors 

using an assessment based on the available materials. 

This method is widely used to rank the risk factors associated with the onset of 

musculoskeletal problems in the shoulder and neck, OHS used APP to design a decision 

support system [92], [93]. 

2.2 Methodology 

This section covers the components and materials used to conduct the research, together 

with an explanation of the survey methodology. To solve the Analytic Hierarchy Process 

(AHP) and Best Worst Method (BWM), we utilised algorithms created in Microsoft Excel 

from Office 365. The methodology used in this study followed the guidelines of previous 



 

35 

 

researchers [94], who provided a structured framework of algorithmic tools based on 

Excel for handling multi-criteria decision problems. Two researchers from the University 

of Obuda, R.P.A-R  and V.C.E-C, each carried out a cross-check before confirming the 

results. This is followed by a detailed presentation of the study and an explanation of the 

approach used. 

2.2.1 Survey 

The survey was developed based on meetings and discussions with ergonomics experts 

to identify the key criteria for risk grouping and categorisation. The survey was then 

carried out in May 2023 through Google Forms (ANNEX 2) using the snowball sampling. 

Participants were selected from experts in the National Ergonomic Association of 

Ecuador, whose expertise characteristics in the safety field are detailed in Table 6. The 

expert category considered in this research was evaluated based on the rule provided by 

Malcolm Gladwell, which suggests that individuals need a minimum of ten years of 

experience. The survey was completed in 15 to 20 minutes per expert. Based on the 

criteria or groups identified in section 1.3.2, shown in Table 7, each expert categorised 

the risks according to their importance. 

Table 6 Expert’s description 

Number Expertise field Years of working in 

the field 

Gender Education Level 

1 Ergonomics 11 Male PhD 

2 Electrical 

ergonomics 

10 Female Master.  

3 workplace 13 Male Master. 

4 safety engineering 11 Male Master. 

5 safety 10 Female PhD 

6 Accidents prevention 11 Female Master. 

7 safety and security 14 Male Master. 

8 safety 10 Male Master. 

9 safety and security 10 Female Master.  

10 ergonomics 15 Male PhD 

 

2.2.2 Design of Saaty Scale and Description Criteria 

For the subsequent ranking of these criteria according to the requirements of the 

multicriteria technique used, one of the most important aspects of the study is the planning 

and selection of the criteria to be used or considered for the evaluation of the risk category 

associated with the use of hand tools. It is possible to examine the order of importance 
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chosen by the researchers, both individually and collectively, thanks to the creation of 

criteria. Our project's research identified three primary standards based on the literature 

on the hazards of using hand tools. An explanation of each criterion relating to the first 

level is also given in Table 7, together with the coding for each main criterion. The criteria 

are coded from C1 to C3.  

Table 7 Main criteria and description of the criteria 

Code Explanation  Description 

C1 Physical 

Injuries 

Reflecting the immediate effects that injuries can have on worker health. It 

refers to direct harm caused by improper hand tool use, unsafe working 

conditions, or lack of protective measures. 

C2 Ergonomic risk Activities that have no immediate effects can result in long-term health issues 

and future illnesses. It refers to a tool’s design, weight, or required force 

application that leads to physical strain or musculoskeletal disorders. 

C3 Tool damage It refers to the deterioration, malfunction, or breakage of hand tools due to 

excessive use, improper handling, or poor maintenance of tools used in the 

workplace. 

Thus, they can be easily identified in Figure 10. The coding has been done to allow the 

reader to identify them with the criteria. 

 

Figure 10 The hierarchical structure of hand tool use risk assessment. 

Once the hierarchy has been constructed, respondents assign a numerical scale to each 

pair of alternatives (𝐴𝑖, 𝐴𝑗), as shown in Table 8 [86]. By comparing the options in pairs 

in terms of how they affect an element higher in the hierarchy, numerical scales are 

assigned. Expert 𝑘 personal preference for alternative Ai over alternative 𝐴𝑗 is expressed 

by the term 𝑎𝑖𝑗𝑘. 

Table 8 AHP scale for combinations. 

Scale Definition Verbal Explanation 

1 Both elements hold equal 

importance. 

The two elements contribute equally to the 

characteristic being evaluated. 

3 One element is slightly more 

important than the other. 

Based on experience and judgment, one element 

is preferred, but the difference is minimal. 

5 One element is significantly more 

important than the other. 

Practical experience and evaluation strongly 

favour one aspect over the other. 

7 One element dominates the other. There is a strong preference for one element, 

backed by practical observations. 
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9 One element is overwhelmingly 

more important. 

The superiority of one element is 

unquestionable, supported by substantial 

evidence. 

2, 4, 6, 8 Intermediate values between 

adjacent levels. 

The evaluation falls between two defined levels, 

representing a gradual increase in significance. 

Reciprocals 

(1/x) 

Assigned when comparing one 

activity to another. 

The inverse value is used when the comparison 

direction is reversed. 

According to Saaty (1990), one may also evaluate the consistency of judgments using the 

following equation [95]: 

Consistency ratio =  𝐶𝑅 =
𝐶𝐼

𝑅𝐶
 

(1) 

And,  

Consistency index =  𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

(2) 

Where λmax represents the most influential eigenvalue. For a comparison to be considered 

reliable, the inconsistency of the comparison must be under 10 per cent. 

The consistency ratio (CR) indicates how consistent the decisions made in the pairwise 

comparisons are; the consistency ratio forecasts the degree of inconsistency for random 

judgments of the same size; and the consistency ratio (CR) measures the degree of 

inconsistency observed in the pairwise comparisons. 

2.2.3 Best Worst Method 

Using the Best Worst Method (BWM), weights for the criterion and sub-criteria were 

generated with fewer pairwise comparisons and a more consistent comparison procedure. 

A criterion is considered best or most significant when it is most important in decision-

making. In contrast, a criterion that is the least significant or worst has the opposite effect. 

The creation of BWM is just one of many MCDM strategies. The perceived efficiency of 

the technique can be attributed to its well-structured, transparent, and user-friendly nature, 

as well as its trustworthy results and minimal data requirements. A notable difference 

between the pairwise comparison-based BWM technique and other approaches is the way 

its core framework depends on the most and least important components. Higher 

performance accuracy, increased reliability of measured weight coefficients, and other 

features that facilitate estimation and interpretation with fewer paired comparisons than 

other methods are some of the advantages of BWM [96]. A summary of the key steps is 

given as:  
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Step 1: In decision-making is to choose a set of criteria. The criteria (C1, C2,..., Cn) must 

be determined before a decision can be made. These criteria are used to determine how 

well the alternatives perform. 

Step 2: Determine the criteria that are the best and the worst for the context in which the 

decision is made. A criterion that is the most desirable may be the best; a criterion that is 

the least important or desirable may be the worst. This is about the criteria themselves, 

not the values of the criteria. 

Step 3: Determine which criterion is most crucial. This value will be evaluated by a 

number between 1 and 9.  

Step 4: Determine that the remaining criteria should take precedence over the least 

advantageous one.  

Step 5: Establish the appropriate weights. To determine the best criterion weights, the 

most considerable absolute disparities are considered. 

Step 6: The optimal optimisation 𝑘𝑠𝑖
∗
in the Best Worst Method (BWM) is found by 

solving an optimization model. 

𝐶𝑅 =
𝜉∗

Consistency index
 

( 3) 

2.3 Results  

As stated in the methodology, two multi-criteria were utilised to separate the results: the 

AHP approach and the Best-Worst method. 

Best-Worst method 

To classify the hand tools used at level one, the respondents were asked to compare the 

key requirements for risk categorisation, such as "Physical injuries" (C1) and "Ergonomic 

risk" (C2). Table 9 presents the input criteria established at the algorithm's starting point, 

which are used to initiate the BWM comparison as outlined in the methodology. 

Table 9 Established criteria of hand tool use risk assessment 

Criteria Number = 3 Criterion 1 Criterion 2 Criterion 3 

Names of Criteria Physical Injuries Ergonomic risk Tool damage 

The analysed data provided by the experts identified the benchmarks illustrating the best 

and worst criteria in this analysis. In the next step, the best and worst identified criteria 

are needed as input. Table 10 shows the best and worst identified criteria in the method. 
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Table 10 Best and Worst identified criteria of hand tool use risk assessment. 

Select the Best Physical Injuries 

Select the Worst Tool damage 

After obtaining all the aggregated weights of the 10 experts, pairwise comparisons (PCs) 

must be developed for each branch of the decision system according to the BWM 

technique, as shown below.  As indicated in Table 11, the best criteria are compared to 

the other criteria at the beginning of the process with weighted values. 

Table 11 Best criteria comparison of hand tool use risk assessment 

Best to Others Physical Injuries Ergonomic risk Tool damage 

Physical Injuries 1 5 7 

Using the scale provided by the assessors, Table 12 presents the comparison of the 

worst criterion against the other criteria with weighted values. 

Table 12 Worst criteria comparison of hand tool use risk assessment 

Others to the 

Worst 

Physical 

Injuries 

Ergonomic 

risk 
Tool damage 

Tool damage 7 5 1 

The resulting weighting of the criteria according to the BWM is calculated in the 

established step 5 of the methodology. This data is presented in Table 13. 

Table 13 Resulting weight criteria of hand tool use risk assessment 

Weights 
Physical Injuries Ergonomic risk Tool damage 

0.736 0.187 0.077 

The 𝑘𝑠𝑖
∗
 represents the optimal consistency ratio, which measures the level of consistency 

in the decision-maker pairwise comparisons, leading to values typically ranging between 

0 and 0.2 to indicate a correct consistency. The results' degree of dependability is 

indicated by the 𝑘𝑠𝑖
∗ = 0.198, and their reliability is further demonstrated. 

Figure 11 shows a strong difference between the criteria, where Physical Injuries 

dominate with over 73% of the total value, while the other two categories are smaller, 

contributing less than 20% and 8% respectively. This represents the distribution of risks 

when workers use hand tools. 
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Figure 11 Results of BWM Criterion Weights of hand tool use risk assessment. 

AHP Method 

Using the scale provided by the evaluators, the Hierarchical Method for Weight 

Assignment, proposed by Saaty, will be used, which aims to "determine the weights or 

coefficients (Ci) with which a group of variables intervene. The weighted values are 

registered in Table 14, which presents the comparison of the worst criterion against the 

other criteria [97], [98]. The risk was rated by the experts using the method's guided scale, 

considering both the likelihood of future illness and its immediate impact on the worker's 

health. 

Table 14 Matrix A= Risk evaluation ratio. 

Matrix 
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Wi Ci LAMDAi 

1 2 3 

Physical Injuries 1 1 5 7 3,27 0,73 0,98 

Ergonomic risk 2 1/5 1 3 0,84 0,19 1,19 

Tool damage 3 1/7 1/3 1 0,36 0,08 0,89 

The relationship between each risk and the scale to compare and determine the following 

steps to complete the calculation is represented by matrix A in Table 14. After 

establishing the matrix comparison, the presented data are normalised to ensure that the 

priority values (weights) assigned to criteria or alternatives are on a comparable scale. 

These normalised data are presented in Table 15. 

Table 15 Normalized matrix 

𝐴𝑁 = [
0.74 0.79 0.64
0.91 0.16 0.27
0.41 0.10 0.09

] 

73,63%

18,68%

7,69%

0

0,2

0,4

0,6

0,8

Physical Injuries Ergonomic risk Tool damage

Weights
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To calculate the consistency ratio (CI) and the random consistency ratio (RCI), 

respectively, equations 1 and 2 are utilized. The findings are shown in Table 16.  

Table 16 Resulting Consistency ratio for the AHP method 

Ci= 0.03244379  
Rci= 0.66  
CR= 0.0492 Consistent 

The risk level S* was finally found by the Consensus indicator, and this number indicated 

the maximum risk that should be considered when choosing a tool. The general 

acceptance indicator S* measures how well the decision criteria are generally agreed 

upon. The average judgments of the group are compared to the individual evaluations to 

ascertain the prevalence of each criterion [99]. 

 In Figure 12, the results show that physical injuries account for the most significant 

percentage of injuries (73%), followed by ergonomics risk (18.8%) and tool damage 

(8.1%). 

 

Figure 12 Results of AHP Criterion Weights of hand tool use risk assessment 

2.4 Discussions  

Poor posture and cumulative trauma disorders (CTDs), particularly in the upper 

extremities, are closely correlated. This correlation is particularly evident in areas such 

as industrial assembly, where repetitive manual handling is required. Specifically, it has 

been found that a significant risk factor for musculoskeletal disorders (MSDs) in workers 

is ulnar deviation of hand posture [100], [101], [102]. 

Preserving resources while increasing income is the first principle of the industry. Under 

this strategy, preventing employee illness is crucial to increasing output, and considerable 

effort is put into selecting the appropriate tools [103]. To reduce the potential risk, this 

study identified the main elements used in hand tool operations. According to current 
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research, injuries are the biggest concern for companies, with an average of 73.06%. This 

shows that organisations place a high priority on injuries because of the direct impact they 

can have on workers' health. Accidents and hazardous situations are often the cause of 

workplace injuries, which can result in physical pain and disability, lost productivity, 

increased healthcare costs, and employee downtime. In line with the researchers ' findings 

about workplace injuries, physical pain, and disability[104], [105] 

According to the study, ergonomic risks, which include things like repetitive motions and 

poor posture, are the second biggest concern, accounting for 18.84% of all hand tool-

related injuries. This means that although they don't always cause immediate health 

problems, ergonomic risks, which include things like these, can lead to long-term health 

problems and future illnesses, in accordance with studies where the risk evaluation was 

proposed [106]. The expert opinions were consistently evaluated by the AHP method, as 

indicated by the comparatively high Consistency Ratio (CR = 0.0492). 

Comparable results were also obtained using the Best Worst Method (BWM), where 

physical injury was considered the most important factor, accounting for 73.62% of the 

weight. This high weighting highlights how quickly physical injuries sustained during 

manual work with hand tools can have an impact. With weights of 18.68% and 7.69% 

respectively, the BWM analysis also found that ergonomic risks and tool damage were 

less important considerations. 

This study shows that when selecting and designing hand tools, organisations should 

focus on reducing the immediate risk of physical injury. While ergonomic improvements 

should be considered to minimise long-term hazards, preventing injuries such as cuts, 

lacerations, and fractures caused by incorrect tool use should be a priority. It is in 

concordance with research to determine upper extremities MSDs [107]. 

The study's combined application of BWM and AHP demonstrates how MCDM 

techniques can be used to improve decision-making in occupational health and safety.  

2.5 Main contributions 

Worker safety must always come before other considerations. This is especially important 

in industrial environments where repetitive activities and physical handling are common. 

The high weighting of physical injuries reflects the industry's emphasis on minimising 

these risks. In settings where non-powered hand tools are often used, cuts, abrasions, and 

fractures are frequent injuries. Businesses must recognise that failing to take preventative 
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measures against such mishaps will lead to deteriorating employee health, increased 

production costs due to missed work, higher medical expenses, and decreased 

productivity. 

The AHP and BWM models scored 73% and 73.62% respectively, indicating that 

physical injury posed the most significant risk associated with using hand tools. This 

demonstrates that misusing hand tools can have immediate and severe negative health 

repercussions on employees. 

Ergonomic risk is the second most crucial component found in the study, accounting for 

18.84% in the AHP model and 18.68% in the BWM model. Poor posture, repetitive tasks, 

and prolonged use of tools without adequate breaks are examples of ergonomic hazards 

that usually do not cause immediate injury. 

Tool damage was the least essential criterion in both models, with 8.1% in the AHP model 

and 7.69% in the BWM model. Although this factor is critical, its low weight suggests 

that companies are more focused on the direct impact of tool use on worker health than 

on the potential for tool failure or damage. 

The findings highlight the need for preventive methods in occupational health and safety 

management. Companies should invest in injury prevention by choosing equipment that 

reduces the likelihood of physical harm and by improving worker ergonomics. This can 

be achieved through the design of ergonomic equipment, worker training programmes 

that instruct workers in the correct use of equipment, and routine risk assessments that 

help identify potential hazards before they cause harm. 

- Thesis (T2): By applying Multi-Criteria Decision-Making (MCDM) methods to 

categorize risks associated with hand tool use in a sample of 10 ergonomic 

experts, I demonstrated that integrating individual factors like 'tool damage', 

'ergonomic risk', and 'physical injury' can effectively categorise to rank and assess 

the risks related to hand tool use, and it shows that 'physical injury' is the primary 

risk factor, with a weighted importance of 73.06% in the Analytic Hierarchy 

Process (AHP) (Consistency ratio: 0.0492) and cross-validated by the Best-Worst 

Method (BWM) at 73.62% (Reliability ratio: 0.1978).  

Own publications related to this chapter: [17], [82], [108] 
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3 PERCEIVED WORK-RELATED RISKS OF USING 

HAND TOOLS 

Understanding the task in the context of hand tool use requires an understanding of the 

user's perception of risk. A structured methodology for categorising risk related to hand 

tools is presented, including an introduction, a detailed explanation of the methods, a 

presentation of the results, and a discussion of their implications. 

3.1 Ergonomic Assessment and Risk Perception of Hand Tools Use in 

Industrial Settings  

Industrial businesses and tool suppliers have been able to forge new business partnerships 

in new areas because of the recent surge in the development of new information 

technologies—the use of hand tools in production processes, whether industrial or non-

industrial, is growing in importance. Current trends show that hand tools, the main 

instrument utilised in the expansion of industrial activity, account for a sizable share of 

labour. One of the main issues facing the sector is the high incidence of hand tool-related 

injuries over time, which means that it will need to invest resources in remediation [29], 

[109], [110], [111]. 

When introducing new products to the market, industrial manufacturers specialising in 

hand tools pay particular attention to compliance with mechanical and legal requirements, 

depending on the conformity of these criteria with international standards. For 

ergonomics managers, a significant concern is how tools are selected to reduce the 

likelihood of workers becoming ill in the future. In this case, tool companies focus on 

designing for everyone, which can be problematic for certain operators and limits their 

reliance on the size of tools available on the market. [30], [112]. 

The identification of serious occupational diseases at various levels of the body is linked 

to the assessment of industrial risks. These tools, which range from virtual reality 

simulations to survey analysis, are constantly being improved to identify and reproduce 

the causes of accidents, thereby reducing the likelihood of such incidents [9], [10], [11]. 

The control of musculoskeletal disorders depends on the layout and design of the 

workstation; therefore, the method of tool selection plays a crucial role in the design or 

organisation of the workstation. As repetitive manual work requires significant muscle 
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tension and wrist flexion and extension, it poses a serious ergonomic risk [2], [13], [113], 

[114]. 

One of the main advantages of the DOSPERT scale is that it can be applied to a 

completely different setting, providing insightful information that can improve 

understanding of risk behaviour that is unique to a particular domain. [115] 

A major issue affecting workers in the industry is risk attitudes related to hand tools. This 

issue has been examined by current researchers mainly from the employer's perspective, 

but there is limited research on workers' risk attitudes and how risk perceptions compare 

to expected benefits. There is a need to address this gap as the risk associated with the 

use of hand tools contributes to work-related musculoskeletal problems, in addition to 

their malfunctioning or less ergonomic design. The study seeks to assess employees' risk 

attitudes in relation to the selection of hand tools. Using the regression equation, the 

applied DOSPERT scale assesses employees' attitude to risk while providing information 

on their attitude to risk taking, risk perception, and expected benefits. It also assesses how 

employees perceive the hazards associated with the use of hand tools. 

3.1.1 DOSPERT 

The Domain-Specific Risk-Taking Scale, or DOSPERT scale, is a psychological 

assessment instrument used to measure risk-taking in several life domains. The purpose 

of the DOSPERT is to assess self-reported risk preferences in five domains. It assesses 

whether respondents are likely to engage in risky behaviour specific to a given domain 

[116]. 

3.1.2 Structure of the DOSPERT Scale 

Each domain of the DOSPERT scale uses a series of items to assess a person's propensity 

to take risks. From "extremely unlikely" to "extremely likely", participants rate their 

likelihood of engaging in certain dangerous activities on a Likert scale (often 1-7) [116]. 

The five primary domains of the original DOSPERT scale are: 

- Risks Related to Ethics involve actions that go against the law or moral 

principles. 

- Investment and gambling risks are further subdivided under financial hazards. 

Options include making real estate or stock investments. 
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- Risks to Health and Safety refers to practices that may risk physical health or 

safety. 

- Risks Associated with Recreation dangerous actions done in an attempt to have 

fun or get a thrill. 

- Social risks are activities that could have an impact on a person's connections or 

social position. 

 

3.1.3 Evaluation of the DOSPERT Scale 

To assess "Risk perception (RPERC), Risk taken/risk probability (RPROB), and 

Expected Benefits (EXPB)" during tasks, the questionnaire items are evaluated three 

times. Comparisons between the two domains were done after a collective analysis of the 

responses was completed [116]. 

Regression analysis is then used to explore the relationship between the independent 

components and the risk-taking propensity. These effects' strength and direction are 

determined, along with the variables that significantly affect risk propensity. 

To determine a person's risk attitude, risk-seeking or risk-aversion behaviour, one must 

analyse their conduct in the setting of uncertainty while taking into consideration their 

preferences and related utilities [115], [117]. A regression function represented in 

equation 14 can be utilised for this, per the DOSPERT evaluation: 

𝑃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑋) = 𝑎 ∙ (𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑋)) + 𝑏 ∙ (𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑅𝑖𝑠𝑘 (𝑋)) + 𝑐 (4) 

 

Where the risk attitude parameter of the individual is represented by a and b, it is the 

coefficients a and b that influence risk attitude. It serves as a signal in the DOSPERT 

equation (equation 4) that the level of risk is increasing or decreasing. A positive 

coefficient denotes risk-taking behaviour, whereas a negative coefficient denotes risk-

averse conduct. 

3.2 Methodology 

There are several stages of implementation in the methodological protocol for the conduct 

of this research. Figure 13 illustrates the research process. Firstly, a centralised set of 

information selection criteria is used to gather the most critical aspects of occupational 

safety in hand tools, focusing on senior characteristics, reducing the risk of accidents, and 
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using non-powered tools as safety devices. After the initial research phase, problems and 

solutions are identified by systematising the data collected. The elements that should be 

utilised to evaluate the degree of risk in a particular domain were then determined using 

the DOSPERT (Domain-Specific Risk-Taking) scale. This was done using a survey. The 

data is then analysed to draw conclusions.  

 

 

Figure 13 Research Process for Assessing Risk Perception in Hand Tool Use 

The study was authorised by the Obuda University Ethics Committee (protocol code: OE-

DI-205,2023, approved on November 28, 2022) and carried out in compliance with the 

Declaration of Helsinki (see ANNEX 1). 

Every participant in the research gave their informed consent. Due to the particulars of 

the study, specific groups of people with relevant knowledge and experience had to be 

selected, such as safety engineers, ergonomists, and senior users themselves. To reduce 

the risk of injury and concentrate on non-powered equipment, purposive sampling was 

used to gather information on the most essential aspects of hand tool safety.  
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3.2.1 Survey 

The online survey was conducted with willing participants, whose main commonality was 

that they had expertise with hand tools and had received training in their use across a 

range of industries. Given the changing nature of manufacturing, it is necessary to adopt 

new statements in place of the established financial, ethical, health and safety, and 

recreational categories. Following completion of the anonymous survey, the data were 

utilised to calculate perceived risk. It was sent directly to industrial managers via Google 

Forms. 

A combined number of 123 replies from Ecuador and Hungary have been collected. The 

sample appears to be balanced based on the responses, with responses coming from 

Hungarian participants and respondents coming from Ecuador. The questionnaire in 

ANNEX 3 begins with demographic questions. 

3.2.2 DOSPERT 

 The following section assesses risk-taking; four content areas are evaluated using the 

Domain-Specific Risk-Taking (DOSPERT) scale. To assess risk-taking behaviour in a 

new environment, the DOSPERT scale is modified for a completely new domain. To 

better reflect the characteristics of risk-taking relevant to this new domain, the original 

DOSPERT scale is modified in this transformation. The internal consistency is 

demonstrated by preliminary reliability tests on the modified questions. The number of 

questions also differs from the initial questionnaire. 

 A survey of twenty questions was created to assess the different categories [116], [118], 

[119]. The potential risk associated with the use of any hand tool or manually operated 

machine is determined by the first category, "Material Domain". The second category, 

'Personal Domain', identifies the risk associated with individual characteristics such as 

aptitude and disposition when performing a task requiring hand tools. The risks associated 

with each physical aspect of the task activity, including temperature, humidity, light, and 

the arrangement of materials and tools, are described in the following category, 

'Environmental Domain'. Finally, the risks associated with planning and documentation 

are explained in the "Organisational Domain". Figure 14 shows each of these criteria and 

groups. 
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Figure 14 Risk categories and category examples 

Table 17 lists the statements used for each of the survey's four subcategories [120]. 

Expected benefits, risk perception, and risk likelihood were all questioned using the same 

questions. 

Table 17 Statements used for Risk Probability, Risk Perception, and Expected Benefits. 

Index Statements 

Material Domain (MD) 

1 Work with incorrect hand PPE (Personal Protective Equipment). 

2 Work with short tool handles that press into the palm of the hand? 

3 Work with narrow tool handles that press deeply into the hand when the tool is used? 

4 
Work with a hand tool for the incorrect side? Example: if you are a right-hand person will 

you use a hand tool for left hand person. 

5 Work with hand tools that require big effort or rotational movement to use? 

6 Work with hand tools that require a bad or uncomfortable posture? 

7 Work with hand tools that require big holding time? 

8 Work with hand tools with handles made of slippery materials? 

9 Work with heavy hand tools without hanging support? 

10 
Work with heavy hand tools so that the hand and fingers are not able to easily grasp the 

tool? 

Environmental Domain (ED) 

11 Work in spaces that are small or uncomfortable for the hand? 

12 Work with the wrist in a flexed position? 

13 Work with heavy hand tools in place where there are not hand support? 

14 Work with heavy hand tools in a place where there is not good illumination? 

Personal Domain (PD) 

15 Work fixing or adjusting mobile machine parts using hand tools? 

16 Work with hand tools that have not been tested for proper operation? 

Organizational Domain (OD) 

17 
How probably could you work with hand tools without training before starting a new 

industrial task? 

18 Work with hand tools in a place without structured industrial tasks? 

19 Work with hand tools in a place without an accident prevention protocol? 

20 
How likely could you Work with hand tools in a place without a response protocol after 

suffering an accident? 
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Ten questions corresponding to the first category assess risk in relation to the physical 

dimensions of hand tools; the other four questions assess hazard perception about 

workplace characteristics and comfort during tasks. In the third category, two questions 

evaluate perceived risk in connection to aptitude and disposition. The final category 

consists of four questions that are especially made to assess risk in connection with the 

established protocols and procedures needed to carry out the job. On a numerical scale 

from 1 (very unlikely) to 7 (extremely likely), respondents are asked to rate the likelihood 

of engaging in the activity described in each question, which represents a risk-related 

scenario. Each question represents a specific risk-related event. The response range for 

expected benefits was 1 (no benefit at all) to 7 (great benefit), and the range for perceived 

risk was 1 (not at all risky) to 7 (very risky) [93]. 

People who use or are associated with hand tools in various ways make up the sample for 

the Hand Tools Survey. Users of hand tools, garden tools, construction tools, and related 

products are included. The voluntary nature of the questionnaire is the basis of the 

methodology. 

3.2.3 Data evaluation 

The number of independent variables has a significant impact on the analysis of risk 

behaviour. SPSS v25 and Microsoft Excel are used for this analysis. Next, to determine 

whether there are any notable differences in the different behaviours of Ecuador and 

Hungary, independent t-tests are used to compare the two countries. The reliability of the 

statements in each group was assessed by calculating Cronbach's alpha for the statements; 

all distributions were checked, and the three groups were evaluated. Equation 15 was used 

to check the internal reliability of the statements in the three groups (x, A, and B). 

∝= (
𝑘

𝑘 − 1
) (

𝑆𝑦
2 − ∑ 𝑆𝑖

2

𝑆𝑦
2 ) (15) 

Where 𝑘  is the measure's item count, ∝ is Cronbach's alpha, the variance of the overall 

scores is 𝑆𝑦
2  , and the variance for each group is 𝑆𝑖

2. 

Three categories from which the responses received by the research are analysed: Scores 

below 0.6 indicate that the research is in its early stages and may not be robust enough or 

may need additional validation. This category, "Early stage research", contains these 

results. Scores between 0.5 and 0.7 fall into the second category, 'Applied research', which 

represents work that is beyond the preliminary stage and suggests that it could be used in 
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practice, although further work may be needed. Results between 0.9 and 1 are considered 

to have a high level of confidence and reliability, making the data suitable for use in 

making essential decisions [121], [122]. 

There is a latent risk of harm when carrying out industrial activities involving the use of 

hand tools. Risk perception, which includes the ability to identify hazards as well as the 

ability to perceive and evaluate risks, is a critical skill in maintaining safe working 

conditions when using hand tools. Knowledge and training are essential components of 

the development of industrial jobs [123], [124].   

Given the different cultural perspectives on uncertainty, risk-taking, and safety between 

workers from Ecuador and Hungary, it is clear that assessing whether the former will 

behave in a more risk-averse manner than the latter is necessary. In addition, the use of 

assistive technology tools designed for the elderly will increase their ability to perform 

industrial and specialised tasks compared to tools that are not explicitly designed for their 

needs. Considering the purpose of the study and the need to investigate risk-taking, the 

study investigates workers' perceptions of hazards when using hand tools. 

3.3 Results  

Due to a lack of strict safety regulations and adequate training in the use of hand tools, 

the construction industry in the United States has an accident and injury rate 50% higher 

than any other industry. Risk awareness is on the rise in both countries, and to establish 

the starting point of workers' perceptions and gain insights for future workplace 

development, hand tools are used. The demographic profiles are presented first, followed 

by the research findings, considering the primary aspects of the study. Risk attitudes are 

assessed both across domains and between groups, after determining the level of risk in 

each domain (Domain-Specific Risk-Taking). Finally, a comparison is made between 

Ecuador and Hungary  [125]. 

3.3.1 Demographic Profile 

The number of respondents and the response rate for each nation are displayed in Figure 

15. A total of 123 responses were obtained from Ecuador and Hungary. The replies show 

that 58.4% (73 persons) of the total respondents were Ecuadorian workers, and 41.46% 

of the respondents were Hungarian, providing a very balanced sample. 



 

52 

 

 

Figure 15 Response distribution by country 

The number of women working in industry is rising. Figure 16 illustrates that of the 

respondents with hand tool experience, 13.82% (18 persons) are female, and 86.18% of 

the participants are male. Given that hand tools are utilised mainly in the engineering and 

construction sectors, it is not unexpected that a large proportion of men work in these 

fields. 

 

Figure 16 Gender distribution 

Age is often the primary factor used in safety-related industries to categorise groups of 

workers. This classification considers the different stages of development, risk awareness, 

and experience of the workers. Figure 17 shows that young people make up the bulk of 

the industry's workforce. Most participants (63.41%) are between 19 and 26 years old, 

while the second largest group in the sample (15.45%) is even younger, i.e., between 15 

and 18 years old, and the third largest group (10.57%) is made up of people between 27 

and 35 years old. A common characteristic of the two youngest groups, representing 

78.86% of the sample, is a low level of knowledge of work experience, indicating a lack 

of awareness of the impact of their work on occupational safety and health. 
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Figure 17 Age of participants 

One of the most critical factors in ensuring that the sector has a specialised and competent 

workforce is the educational background of workers and engineers. Within this 

framework, the industry is divided into four primary levels of education: A Bachelor of 

Science (BSc), which focuses on technical and scientific fields. The Master of Science 

(MSc) programme is the next group and represents a higher level of education. The most 

prestigious academic degree is the Doctor of Philosophy (PhD). The 'Other' category also 

includes employees who have completed specialised training, technical colleges, and 

courses to cover all employees without a university degree. The fact that many employees 

in the sector do not have specialised vocational academic training, as shown in Figure 18, 

is indicative of the level of education in the industry. According to the data, 84.56% of 

the employees have a bachelor's degree or equivalent in technical sciences, and 15.45% 

of the respondents have completed higher education. The industry's heavy reliance on 

technical education is highlighted by this distribution, which may indicate a lack of 

specialised, professional or advanced knowledge and skills among the workforce. To 

promote innovation and meet the changing needs of the industry, these workforce 

characteristics highlight the need for decision support tools. 

 

Figure 18 Education level of participants 
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Workers in the industrial sector consider the need for a personalised set of hand tools 

based on the changes they experience both at work and throughout their lives. This is due 

to age and the physical changes that come with experience. Workers' perceptions of the 

need for a consistent and specialised selection of tools for each age group are shown in 

Figure 19. 

 

Figure 19 The necessity of tailored tool selection, total and grouped by age (%) 

3.3.2 Descriptive statistics 

In Ecuador and Hungary, workers who frequently use hand tools in their jobs were asked 

to complete the survey. The study of people who regularly use hand tools shows the 

median, mode, standard deviation, skewness, and standard error of skewness (see 

ANNEX 4), and these statistics show variability and distribution.  

The Risk Probability domain reflects how participants think about ergonomic hazards 

when using tools. The average rating is about 3.56, suggesting regular exposure. The most 

concerning activities are "fixing mobile machine parts" (rating 4.19) and using "hand 

tools requiring force or rotation" (rating 4.07), both of which are linked to physical strain. 

Perceived risks are lower for lacking an "accident response protocol" (2.89) or "slippery 

handles" (3.09), while Ecuadorians consistently report risk values (4.07) related to 

incorrect PPE compared to Hungarians (2.80). Male participants report higher exposure 

(3.54) than women (3.35). The 15–18 age group reports the highest values (6.83) for 

fixing mobile parts. Those in healthcare and industrial jobs have the highest risk 

perception, 4.33 and 4.00, respectively, due to frequent exposure to risky tasks. Sales and 

admin roles show lower scores. Participants with PhDs/MScs report higher risk 

perception. This suggests that technical knowledge or exposure influences their 

perceptions. 
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Respondents identified how dangerous they felt ergonomic conditions were. The highest 

average risk perception was linked to "Slippery handles" (4.74), followed by "Poor grasp 

tools" (4.66) and "No support for heavy tools" (4.51). This reflects concerns about hand 

safety and load handling. The least risky were "No accident protocol" (2.89) and 

"Unstructured task sites" (3.48). Hungarians report a higher perception of risk (5.27 for 

"Slippery handles") than Ecuadorians (4.42). Both males (4.74) and females (4.76) 

showed identical recognition of tool-related hazards, with the most sensitive group (15-

18 years) demonstrating the most significant awareness of poor-grasp tools (7.58). The 

older group (46-54 years) exhibited slightly elevated awareness due to experience. Health 

professionals reported the highest awareness (5.83). Those with PhDs and MScs 

consistently perceived greater risk. 

Expected Benefits shows how people perceive the trade-off between the benefits and 

disadvantages of risky tasks. Hungarians generally report slightly lower benefits (3.48 vs 

3.44). Younger respondents (15–18 years old) show significantly higher values than those 

aged between 36 and 54 (3.30 vs 3.22). Gender does not appear to influence the 

perception of risk, with both males and females reporting similar values. However, 

individuals with higher education tend to rate the benefits of risky tasks lower, indicating 

they are more aware of the risks involved, and health professionals report caution in 

comparison to industrial workers and those in sales/other roles (3.48 vs 3.44 for "Work 

with short handles"). 

3.3.3 Comparison of Hungary and Ecuador 

A Comparison of Ecuadorian and Hungarian Risk Attitudes, along with aspects that 

influence risk attitudes across different domains, aids in designing targeted risk 

management strategies, enhancing safety at work, and refining decision-making models. 

This section presents: I) Risk Probability attitude Ecuador vs Hungary, II) Risk 

Perception behaviour Ecuador vs Hungary, III) Expected Benefits assessment Ecuador vs 

Hungary. 

3.3.3.1 Risk Probability attitude Ecuador vs Hungary 

Employee conduct in Ecuador and Hungary is shown by analysing their respective trend 

patterns. For each area, Figure 20 shows the likelihood of risk faced by Ecuadorian and 

Hungarian workers. The X-axis's numbers stand in for the statements. Comparing the two 
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countries is crucial because genetic variations lead to different human traits in each area, 

which can significantly alter how people perceive the likelihood of a risk. 

 

Figure 20 Comparison of Hungary and Ecuador: Risk probability 

Table 18 summarises the significant differences and those that are not. The findings 

indicate that there were no significant differences (p>0.05) in the two countries' workers' 

perceptions of the likelihood of danger for a variety of items. Long periods of standing, 

dangling or leaning hands, poor posture, and inadequate lighting are risk variables that 

affect how likely employees perceive their chances of becoming hurt. The use of a hand 

tool requires training. Tasks, work processes, and accidents must all adhere to established 

protocols. In evaluating danger, however, workers consider several physical attributes of 

hand tools. Whether you are left-handed or right-handed, the tool's dimensions, the range 

of motions and rotations you must perform, and whether the tool's handle is slippery are 

a few examples. 

Another notable difference was the continuation of work after an incident without 

observing safety protocols. It is not as common in these countries to consider safety and 

protocol. This implies that Ecuadorians perceive a higher risk potential than the 

Hungarians, as all the test scores are favourable. 

Table 18 Significant differences in risk probability by Hungarian and Ecuadorian workers. 

No 
Levene's Test for Equality of Variances t-test for Equality of Means 

F Sig. t df Sig. (2-tailed) 

1 Equal variances not assumed 3.556 118.274 0.001 

2 0.486 0.487 3.189 120 0.002 

3 0.036 0.850 3.975 121 0.000 

4 0.543 0.463 2.578 121 0.011 

5 2.418 0.123 2.809 121 0.006 

6 0.521 0.472 1.932 121 0.056* 

7 0.417 0.519 1.212 121 0.228* 

8 0.097 0.756 1.444 121 0.151* 

9 0.082 0.775 0.770 121 0.443* 
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10 1.287 0.259 2.430 121 0.017 

11 0.000 0.995 3.840 120 0.000 

12 1.745 0.189 2.269 121 0.025 

13 0.006 0.939 0.791 121 0.430* 

14 0.155 0.695 1.584 120 0.116* 

15 3.038 0.084 3.645 121 0.000 

16 2.216 0.139 3.102 121 0.002 

17 0.303 0.583 1.219 121 0.225* 

18 1.058 0.306 1.404 121 0.163* 

19 0.560 0.456 1.347 121 0.181* 

20 0.951 0.331 2.139 121 0.034 

* p>0.05, the function is not significant 

3.3.3.2 Risk Perception behaviour Ecuador vs Hungary 

Figure 21 presents the following comparison, highlighting the main differences and 

similarities in the way the two countries surveyed perceive the risks associated with the 

use of hand tools. 

 

Figure 21 Comparison of Hungary and Ecuador: Risk perception 

The responses of the Ecuadorian and Hungarian workers revealed substantial differences 

in their perceptions of risk in six areas. These areas include the size of tool handles, the 

possibility of slippage, the first testing of hand tools, and whether safety procedures are 

in place or not (Table 19). Employees' perceptions of risk differ between the two nations 

in other situations, but not substantially. Given that Ecuador served as the first sample 

and the test results were negative, it is presumed that employees in Hungary perceive 

danger more generally than employees in Ecuador.  However, Ecuadorian workers 

believe that using hand tools that haven't been adequately inspected and working in 

settings without a response system are less unsafe, which calls for additional health and 

safety training. 

Table 19 Significant differences in risk perception by Hungarian and Ecuadorian workers. 

No 
Levene's Test for Equality of Variances t-test for Equality of Means 

F Sig. t df Sig. (2-tailed) 

1 0.034 0.854 –1.629 121 0.106* 
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2 0.005 0.945 –2.436 121 0.016 

3 0.798 0.374 –3.505 121 0.001 

4 0.020 0.887 –1.200 121 0.233* 

5 2.329 0.130 –2.105 121 0.037 

6 0.047 0.828 –1.824 121 0.071* 

7 0.033 0.857 –1.661 121 0.099* 

8 3.592 0.060 –3.349 121 0.001 

9 Equal variances not assumed –1.005 117.610 0.317* 

10 1.904 0.170 –0.157 121 0.876* 

11 0.831 0.364 –0.954 121 0.342* 

12 0.312 0.577 –0.841 121 0.402* 

13 0.698 0.405 –0.030 121 0.976* 

14 0.796 0.374 –0.738 121 0.462* 

15 0.746 0.389 –1.278 121 0.204* 

16 Equal variances not assumed –2.577 116.473 0.011 

17 1.348 0.248 –0.484 121 0.629* 

18 4.682 0.032 –0.803 121 0.424* 

19 2.726 0.101 –1.026 121 0.307* 

20 0.398 0.529 –2.586 121 0.011 
* p>0.05, the function is not significant 

3.3.3.3 Expected Benefits Assessment Ecuador vs Hungary 

Figure 22 shows the final rating of the employee's behaviour based on how they perceived 

the benefits. The findings are displayed according to the country of the employee and 

categorised by each domain. 

 

Figure 22 Comparison of Hungary and Ecuador: Expected Benefits 

The perceived advantages of the assertions did not differ significantly (p>0.05 for each 

statement), as Table 20 demonstrates. The most significant variation in the impression of 

the positive characteristic is seen in statement number 15, "Work fixing or adjusting 

mobile machine parts using hand tools?" However, this difference in perception is not 

statistically significant. The statements about testing, pre-operational training, and safety 

practice (with Ecuador as the first sample) had a negative mean difference, as Table 20 

demonstrates. This implies that requests and demands for testing, training, and the 

presence of a safety plan were less common among Hungarian workers than among 

Ecuadorian workers. In these cases, more investigation is necessary because the 
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difference can be due to better working conditions, greater worker awareness, or better 

worker education. 

Table 20 Differences in expected benefits by Hungarian and Ecuadorian workers. 

No 
Levene's Test for Equality of Variances t-test for Equality of Means 

F Sig. t df Sig. (2-tailed) 

1 0.080 0.777 1.459 121 0.147 

2 1.583 0.211 0.170 121 0.865 

3 0.113 0.737 1.572 121 0.119 

4 0.037 0.847 0.601 121 0.549 

5 2.893 0.092 0.145 121 0.885 

6 1.268 0.262 0.047 121 0.963 

7 0.246 0.620 -0.221 121 0.825 

8 0.155 0.695 0.074 121 0.941 

9 0.085 0.771 0.242 120 0.809 

10 0.209 0.648 0.561 121 0.576 

11 2.458 0.120 0.674 121 0.502 

12 0.101 0.751 1.469 121 0.144 

13 0.090 0.765 -0.319 121 0.750 

14 0.497 0.482 0.426 121 0.671 

15 0.843 0.360 1.836 121 0.069 

16 0.283 0.595 -0.420 121 0.675 

17 2.033 0.156 -0.378 121 0.706 

18 0.556 0.457 -0.342 121 0.733 

19 0.025 0.874 -0.274 121 0.785 

20 0.245 0.622 -0.139 121 0.890 

3.3.4  Domain-Specific Risk-Taking Evaluation 

Domain-Specific Risk-Taking is the assessment of an individual's willingness to take 

risks in different industrial task domains, recognising that risk tolerance varies across 

contexts. This section presents: I) a Reliability analysis, II) a General view of Risk 

Probability of hand tool usage, III) a General view of Perceived Risk of hand tool usage, 

IV) a General view of Expected Benefits of hand tool usage. 

3.3.2.1 Reliability analysis 

The reliability of the statements was checked before applying the DOSPERT scale to 

score them. Table 21 shows the excellent reliability of each set of statements; Cronbach's 

alpha is greater than 0.92 for each of the three categories (probability of risk, risk 

perception, and expected benefits). Exceptionally high reliability is indicated by values 

above 0.9. Tables 18, 19, and 20 show the Cronbach's alpha values for each item when it 

is removed. Each question is pertinent and significantly influences risk perception, risk 

likelihood, and the advantages of hand tools, since each scenario's Cronbach's alpha 

values drop when the item is eliminated. 
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Table 21 Cronbach’s alpha value for Risk Probability (RPROB), Risk Perception (RPERC), and Benefits (EXPB) 

Risk Assessment 

Domains 

variance associated with 

the total scores 

Sum of individual 

variances 
Cronbach's Alpha 

RPROB 434.94 53.82 0.924 

MD   0.877 

ED   0.802 

PD   0.762 

OD   0.884 

RPERC 502.85 47.15 0.954 

MD   0.914 

ED   0.844 

PD   0.683 

OD   0.877 

EXPB 783.33 61.65 0.970 

MD   0.940 

ED   0.943 

PD   0.655 

OD     0.939 

 MD= Material Domain. ED= Environmental Domain. PD= Personal Domain. OD= Organizational Domain. 

A check for a reasonable level of reliability was also performed on the reliability of the 

statements within the categories. The most reliable questions in the group were those 

relating to the material and organisational domains. In contrast, the few questions in the 

human characteristics category resulted in a somewhat low but still acceptable level of 

reliability. 

3.3.2.2 Overview of the Risk Probability of Using Hand Tools 

At this point, an analysis was conducted of the responses' descriptive attributes, including 

the mean, mode, median, and standard deviation (Table 22). Table 17 contains a list of 

the actual statements. Higher numbers indicate greater hazards and fewer benefits, while 

lower numbers indicate lower probability and likelihood, and fewer benefits received. 

Table 22 Descriptive features of the statements (Risk probability (X)) 

x 
x 

(Mean) 
Median Mode SD Skewness 

Cronbach’s α and 

Cronbach’s α if the 

item is deleted 

1.  Material Domain (MD) 

Incorrect hand PPE  3.5121 3 1 2.01 0.316 0.923 

Short tool handles 3.4754 3 2 1.66 0.219 0.922 

Narrow tool handles 3.3658 3 2 1.64 0.242 0.921 

Incorrect hand (left/ right 

side) 
3.3821 3 5 1.56 0.104 0.922 

Big effort or rotational 

movement 
4.065 4 5 1.63 -0.13 0.922 

Uncomfortable posture 3.5853 3 5 1.61 0.117 0.918 

Big holding time 3.7967 4 5 1.61 -0.107 0.922 

Handles made of slippery 

materials  
3.0894 3 3 1.6 0.28 0.919 

Heavy hand tools 3.4552 3 3a 1.71 0.137 0.920 

Difficulty grasping the tool 3.1138 3 3 1.68 0.423 0.919 

2. Environmental Domain (ED) 

Small spaces 3.7377 4 5 1.65 0.023 0.920 
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x 
x 

(Mean) 
Median Mode SD Skewness 

Cronbach’s α and 

Cronbach’s α if the 

item is deleted 

Wrist in a flexed position 3.7398 4 5 1.62 -0.04 0.920 

Not hand support 3.5609 3 3 1.53 0.016 0.919 

Not good illumination 3.3278 3 3 1.57 0.122 0.920 

3. Personal Domain (PD) 

Mobile machine parts 4.1869 5 5 1.66 -0.194 0.922 

Not tested for proper 

operation 
3.3008 3 3 1.67 0.468 0.921 

4. Organizational Domain (OD)  

Work without training 3.1951 3 2 1.65 0.442 0.920 

Work without structured 

tasks 
3.4796 3 3 1.5 0.247 0.918 

Work without an accident 

prevention 
3.3902 3 3 1.62 0.223 0.920 

Work without a response 

protocol.  
2.8861 3 3 1.58 0.571 0.922 

a Multiple modes exist. The smallest value is shown. 

The mode and median have been adjusted to 'more likely' based on the responses, 

indicating that participants are more likely to use hand tools from the wrong side or with 

more effort, twisting or adopting an uncomfortable posture. Working with the wrong hand 

or with short or narrow tool handles is unacceptable to them. Although the mean and 

median are below the mode, the mode is 5 (out of 7). For the last set of participants, the 

median and mode are both 3 (out of 7) for those who do not think that there is a significant 

chance of slick handles, heavy tools used without hanging support, or hand tools that are 

difficult to grasp. Even though they were probably working with their wrists bent, 

participants frequently complained about the space being tiny or unpleasant. The 

workspace has enough lighting and illumination (the negative statement's mode and 

median are both 3). It also has a hand support. Participants are more likely to use hand 

tools to inspect and maintain the machine's moving parts correctly after receiving some 

instruction (see mode and median for questions 15–17). The responses indicate that some 

workplaces have no accident prevention measures in place, while others have 

mechanisms for responding to accidents (see mode and median for questions 18-20). 

Several workplaces lack clearly structured industrial activities. 

3.3.2.3 Perspective on the Perceived Risk of Using Hand Tools 

Descriptive statistics of the perceived risk of the participants about the statements 

(Table 17) are given in Table 23. 

Table 23 Descriptive features of the statements (B (Perceived Risk(X))) 

x B (Perceived Risk(X)) Median Mode SD Skewness Cronbach’s α if item deleted 

1. Material Domain (MD) 

1 4.2683 5 5 1.732 –0.125 0.971 

2 3.8211 4 5 1.466 0.236 0.969 
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x B (Perceived Risk(X)) Median Mode SD Skewness Cronbach’s α if item deleted 

3 4.0325 4 5 1.547 –0.042 0.969 

4 3.9675 4 5 1.476 0.072 0.969 

5 3.8455 4 3 1.488 0.057 0.969 

6 4.1626 4 5 1.49 0.064 0.968 

7 3.8699 4 4 1.402 0.018 0.968 

8 4.7398 5 6 1.552 –0.465 0.968 

9 4.5122 5 5 1.479 –0.241 0.969 

10 4.6585 5 5 1.644 –0.28 0.969 

2. Environmental Domain (ED) 

11 4.252 4 5 1.371 –0.137 0.968 

12 4.2195 5 5 1.48 –0.155 0.969 

13 4.3089 4 5 1.494 –0.2 0.968 

14 4.5528 5 4 1.685 –0.041 0.969 

3. Personal Domain (PD) 

15 3.9106 4 4 1.66 0.232 0.97 

16 4.5772 5 6 1.531 -0.385 0.968 

4. Organizational Domain (OD) 

17 4.5122 5 5 1.462 –0.16 0.968 

18 4.5772 5 5 1.493 –0.295 0.968 

19 4.8455 5 6 1.584 –0.333 0.968 

20 5.1301 5 7 1.619 –0.367 0.968 

The participants rated most of the scenarios under the Material Domain subscale as 

dangerous (mode and median range between 4 and 6 for these statements). These 

scenarios included using hand tools designed for the wrong hand, being too big, too short, 

too narrow, having a slippery handle, being heavy without hanging support, or requiring 

an awkward posture. The most frequent answers exceed the risk perceived by half of the 

respondents, indicating that respondents generally view the scenarios produced by the 

statements as relatively dangerous and risky. The only exception is that inadequate 

lighting and a large amount of extra work because of rotation are not regarded as 

hazardous. In contrast, the absence of accident response methods and processes is viewed 

as a dangerous and detrimental occurrence. 

3.3.2.4 Overall perception of the anticipated advantages of using hand tools 

Table 24 displays the anticipated advantages that participants thought would be connected 

to the exact phrases. 

Table 24 Descriptive features of the statements (A (Expected Benefits (X))) 

x A (Expected Benefits(X)) Median Mode SD Skewness Cronbach’s α if item deleted 

1. Material Domain (MD) 

1 3.5284 3 2 2.14 0.419 0.953 

2 3.13 3 2 1.75 0.618 0.953 

3 3.0162 3 1 1.74 0.547 0.954 

4 2.9268 3 1 1.6 0.390 0.952 

5 3.439 3 4 1.75 0.352 0.952 

6 2.9105 2 1 1.7 0.637 0.951 

7 3.252 3 2 1.77 0.496 0.952 

8 3.1138 3 1 1.98 0.470 0.950 

9 2.7049 2 1 1.7 0.854 0.951 

10 2.6991 3 1 1.52 0.683 0.950 
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x A (Expected Benefits(X)) Median Mode SD Skewness Cronbach’s α if item deleted 

2. Environmental Domain (ED) 

11 2.8455 3 1 1.66 0.589 0.951 

12 3.0406 3 1 1.64 0.367 0.951 

13 2.9024 3 1 1.7 0.541 0.951 

14 2.8211 3 1 1.66 0.804 0.952 

3. Personal Domain (PD) 

15 3.2357 3 2 1.71 0.331 0.953 

16 3.0569 3 1 1.78 0.471 0.951 

4. Organizational Domain (OD) 

17 2.9512 2 2 1.68 0.654 0.952 

18 3.2682 3 4 1.77 0.404 0.951 

19 3.0406 2 1 1.95 0.537 0.951 

20 2.8943 2 1 1.82 0.736 0.951 

 

3.3.5 Factor Analysis 

Figure 23 shows the risk probability analysis, the factor analysis included 10 items from 

the material domain, 4 items from the environmental domain, 2 items from the personal 

domain, and 4 items from the organisational domain. The Bartlett's sphericity test was 

highly significant (p < 0.001), and the Kaiser-Meyer-Olkin (KMO) measure of sampling 

adequacy was 0.8873, indicating that the data were suitable for factor analysis. Factor 

loadings for RPROB showed a mixed pattern for MD, with items distributed across 

several factors, three items loading highly on Factor 1 and one item on Factor 3. ED 

performed well, with most items (3/4) loading on Factor 1, confirming a clear grouping. 

However, PD did not show strong factor groupings, with items loading on different 

factors. OD showed excellent factor validity, with all four items loading on Factor 4, 

creating a perfect grouping. 

 

Figure 23 RPROB factor analysis 
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Figure 23 shows risk perception with a similarly structured factor analysis. The Bartlett's 

test was again highly significant (p < 0.001), and the KMO was 0.9204, indicating strong 

suitability for factor analysis. The results showed that the MD items were distributed 

across several factors, with no clear grouping into a single factor. ED again performed 

well, with all 4 items loading on Factor 1, confirming the consistency of this grouping. 

PD had two items with weak factor loadings, as they did not clearly load onto a single 

factor. OD performed excellently, with all four items loading on Factor 4, providing a 

coherent and clear grouping. 

The EXPTB factorial analysis in Figure 23 is similar. The Bartlett's sphericity test is 

significant (p < 0.001), and the KMO measure is 0.9248. This shows that the data is 

suitable for factor analysis. The factor loadings for MD are clearer in this block, with six 

of ten items loading onto Factor 1. ED also shows clear grouping, with all four items 

loading onto Factor 2. PD items have weak factor loadings, as in previous blocks. OD has 

an excellent result, with four items loading onto Factor 1.  

3.3.6 Attitude to risk by domain and across groups 

Risk Attitude by Domain across different domain groups. Understanding these variations 

helps in designing targeted risk management strategies, improving workplace safety, and 

enhancing decision-making models. This section presents: I) Correlation of Risk-taking, 

Risk Perception, and Expected Benefit of hand tool usage, II) Risk Attitude in the case of 

hand tool usage, III) Risk Attitude across the groups. 

Correlation of Risk-taking, Risk Perception, and Expected Benefit of Hand Tool 

Usage 

Asking about the perceived value of utilising a hand tool in connection to the 

circumstances outlined in the statements yields results at the other end of the spectrum. 

The relationships between the three groups are graphically depicted based on the 

responses: Risk Probability vs. Risk Perception vs. Expected Benefit. Pairs of 

relationships are displayed. The perceived risks and expected benefits for each domain 

are categorised in Figure 24. The Material Domain focuses on tool design and usability, 

presenting moderate risks (4.0-4.5) and benefits (3.0-3.5). With an emphasis on 

ergonomics, the Environmental Domain offers fewer hazards (~4.0) and advantages 

(~2.9–3.1). Fluctuation is shown in terms of rewards (~3.0) and risks (4.0-4.5) in the 

personal domain. The organisational domain has the highest risks (4.5-5.0) and the lowest 
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rewards (~2.7-3.1). This is due to structural issues such as inadequate safety procedures 

and training. 

 

Figure 24 Risk Perception and Expected Benefit of Hand Tool Usage 

The connection between risk perception and risk benefits is shown in Figure 25. Moderate 

risk perception (3.5–4.0) and relatively low risk-taking levels (~4.0) are consistent in the 

Material Domain, suggesting cautious behaviour brought on by tool design issues. 

Ergonomic problems with moderate risk taking are indicated by the lower risk perception 

(~3.5) but comparable risk taking in the Environmental domain. Variety is evident in the 

Personal Domain, where more risk-taking (~4.5) is associated with risk perception (~3.5–

4.0), which is a consequence of self-confidence in one's own abilities. The highest risk 

perception (4.0–4.5) and risk-taking (~5.0) are seen in the Organizational Domain, which 

is a sign of organisational issues such as a lack of established protocols that push 

employees to take more risks. 

 

Figure 25 Risk Perception vs Risk-taking of hand tool usage 

Risk-taking and perceived benefits are shown in Figure 26. The balance between tool 

benefits and associated risks is reflected in the material domain, where moderate risk-



 

66 

 

taking (~3.9-4.3) is associated with greater perceived benefits (~3.0-3.5). Similar patterns 

are seen in the environmental domain, where modest ergonomic benefits are seen despite 

significant risk taking (~3.9-4.3) and lower perceived benefits (~2.9-3.1). Due to people's 

confidence in risk management, the personal domain shows fluctuation, with moderate 

benefits (~3.1-3.3) corresponding to higher risk-taking (~4.3-4.5). The organisational 

domain has the highest risk-taking (~4.7-5.3) and the lowest perceived benefits (~2.7-

3.1). 

 

Figure 26 Risk–Taking vs Expected Benefit of Hand Tool Usage 

Perceived danger, taking risks, and projected benefits are all adversely connected, 

according to the study. Based on a pairwise analysis of the connections, Table 25 displays 

the correlation coefficients across the categories. Perceived risk and risk-taking have a 

substantial negative correlation (-0.75), suggesting that people are deterred from utilising 

the hand tool due to the perceived risk. Perceived risk and expected benefits, however, 

have a negative correlation (-0.4), suggesting that consumers are aware that employing 

"faulty" hand tools could result in mishaps. In summary, the correlation between taking 

risks and the anticipated rewards is positive (0.48). This implies that people could act 

carelessly when utilising imperfect hand tools or when their employer requires them to 

use hand tools, even if they are aware of the possible risks. In comparison, if employees 

believe they would benefit, they are more likely to take risks. This third association is the 

worst one displayed in Figure 26. The multiple correlation of 0.77, which indicates that 

risk perception and projected benefits have a 60% influence on risk taking, suggests a 

moderately strong explanatory effect. 
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Table 25 Risk statement values used for DOSPERT evaluation 

  Risk–taking Perceived risk Expected benefit 

Risk-taking 1   
Perceived risk –0.75 1  

Expected benefit 0.48 –0.40 1 

3.3.7  Risk Attitude in the case of hand tool usage 

The bounded means calculated for the DOSPERT scale regression analysis are shown in 

Table 26. The use of the bounded mean avoids bias and distortion calculated after 

removing the lowest and highest 15% of data values. For each response item, these values 

represent the results for the whole group. To assess the regression and ascertain the 

coefficients for perceived risk (X2) and expected benefit (X1), they supply the initial 

values for the DOSPERT equation. 

Table 26 Risk statement values used for DOSPERT evaluation 

Statements x  A (Expected Benefits(X)) B (Perceived Risk(X)) 

1. Material Domain (MD) 

1 3.4286 3.4476 4.2952 

2 3.4423 3 3.7619 

3 3.3143 2.8952 4.0286 

4 3.3524 2.8381 3.9333 

5 4.0762 3.3524 3.8476 

6 3.5714 2.7619 4.1333 

7 3.8286 3.1524 3.8571 

8 3.0095 2.9714 4.7905 

9 3.4286 2.5577 4.5238 

10 3.019 2.5905 4.6952 

2. Environmental Domain (ED) 

11 3.7308 2.7238 4.2667 

12 3.7524 2.9429 4.2286 

13 3.5524 2.7905 4.3238 

14 3.2885 2.6571 4.5714 

3. Personal Domain (PD) 

15 4.1905 3.1524 3.8667 

16 3.219 2.9333 4.619 

4. Organizational Domain (OD) 

17 3.1143 2.8095 4.5238 

18 3.4476 3.1714 4.6095 

19 3.3333 2.8952 4.9238 

20 2.7714 2.7333 5.2381 

The Dospert values by domains and the total Dospert value for the components before the 

regression analysis are evaluated in Figure 27 and 24. 
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Figure 27 Dospert values by domains (developed by authors) 

By averaging the statement values within each domain, the average scores for each 

domain are first determined to obtain the DOSPERT value. As a result, a new average 

matrix is produced, with each column denoting a particular factor and each row 

representing a domain. Every column across all domains is averaged to determine the 

final DOSPERT number. 

 

Figure 28 The combined Dospert value (developed by authors) 

To determine if people who use hand tools are risk-seeking or risk-averse, equation 14 is 

completed, and the DOSPERT scale assessment is used in the form of linear estimates. 

When Equation 1 was applied to the data gathered for the first domain (material domain), 

as Table 27 illustrates, the "b" factor in the equation (perceived risk) had a negative 

coefficient, signifying risk aversion. 

Table 27 Risk assessment evaluation – Material Domain 

 
Coefficients SE t-Statistic Probability Lower 95% Higher 95% 

Interception 4.7494 1.5853 2.9960 0.0201 1.0009 8.4979 

Expected Benefits 0.3079 0.2977 1.0341 0.3355 –0.3961 1.0118 

Perceived Risk –0.5285 0.2367 –2.2323 0.0608 –1.0883 0.0313 
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The data collected for the second domain (the environmental domain) generated a 

negative coefficient as well in the 'b' term of the equation when the identical equation 1 

was applied, again indicating risk aversion. Table 28 shows the result in terms of 

perceived risk. 

Table 28 Risk assessment evaluation – Environmental Domain 

 Coefficients SE t-Statistic Prob. Lower 95% Higher 95% 

Interception 10.3143 2.9811 3.4599 0.1791 –27.5640 48.1925 

Expected Benefits –0.1500 0.5111 –0.2936 0.8182 –6.6441 6.3440 

Perceived Risk –1.4528 0.4052 –3.5852 0.1732 –6.6018 3.6961 

Finally, a negative factor was found for the "b" component of the equation for the 

Organisational Domain, the fourth domain, which indicates a risk-aversion attitude once 

more. The information in Table 29 represents perceived risk. 

Table 29 Risk assessment evaluation - Organizational Domain 

 Coefficients SE t-Statistic Prob. Lower 95% Upper 95% 

Interception 1.2131 4.2830 0.2832 0.8243 –53.2076 55.6337 

Expected Benefits 1.0979 0.8508 1.2905 0.4197 –9.7123 11.9082 

Perceived Risk –0.2556 0.4999 –0.5113 0.6991 –6.6076 6.0963 

According to the risk attitude by category, employees exhibited risk-averse behaviour in 

the material, environmental, and organisational domains. The Personal Domain had to be 

excluded because it contained two statements and three variables, making it impossible 

to run the regression model. However, the Personal domain was also part of the whole 

model. 

Risk attitude across the groups 

Regression analysis was used to assess the risk attitude across all the statements. The 

analysis (Table 30) reveals that respondents generally exhibited a risk-averse attitude, and 

that while using hand tools for work, risk aversion outweighs risk seeking. Employees 

want a safe working environment and safe hand tools. 

Table 30 Risk attitude evaluation - coefficients 

 

 

 

 

The following regression formula can be used to calculate risk attitude based on the 

calculations: 

𝑅𝑖𝑠𝑘 𝐴𝑡𝑡𝑖𝑡𝑢𝑑𝑒 = 5.0525 + 0.31 ∙ 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 (𝑋) − 0.58 ∙ 𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑅𝑖𝑠𝑘(𝑋) (3) 

 Coefficients SE t Stat P-value 
Lower 

95% 

Upper 

95% 

Intercept 5.0525 1.1488 4.3980 0.0004 2.6287 7.4763 

Expected Benefits 0.3098 0.2477 1.2507 0.2280 –0.2128 0.8323 

Perceived Risk –0.5775 0.1468 -3.9338 0.0011 –0.8872 –0.2678 
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According to the regression values, the Organizational Domain has lower values, and 

the Material Domain has greater values (Figure 29). 

 

Figure 29 Risk Attitude values by domains according to the regression function (developed by authors) (Note: the 

numbers denote the individual statements in the questionnaire) 

The regression model's coefficients can be examined to identify trends in risk-taking 

behaviour. The aggregate results clearly show that the respondents preferred safety over 

hand tools and the workplace. 

3.4 Discussions  

The selection and customisation of hand tools for jobs and personnel is an essential 

concern in industry. This study provides a framework for grouping hand tool risks into 

four categories: organisational, material, personal, and environmental. Each of these 

categories highlights the various components of tool use that can pose risks to workers, 

which must be understood to prevent hand-related diseases and accidents. 

Perceived hazards influence the desire for safer devices, and the cautious use of these 

devices depends on several variables, including age, tool quality, worker qualifications 

and skills, and the type of manufacturing process [126], [127], [128].  

Risk aversion is common in the material and environmental spheres, according to the 

study. This implies that employees value using tools properly to avoid accidents and 

choose safer equipment and working environments. Numerous factors, including the 

task's nature, the worker's expertise, and the tool's quality, affect this caution. 

The study found significant differences in risk attitudes when comparing the risk 

perceptions of workers from Ecuador and Hungary. The size of tool handles, their 
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slickness, and the presence of safety laws were all factors that Hungarian workers 

frequently viewed as posing greater risks. However, Ecuadorian workers were less 

worried about other risks, such as working in unregulated environments or utilising 

untested equipment. This implies that for Ecuador's safety protocols to meet worldwide 

standards, more education and awareness initiatives are required. 

The study identified several domains, including material risks related to the 

manufacturing of tools and machinery, personal risks caused by individual factors like 

prior injuries, environmental risks caused by physical aspects like the workplace layout, 

and organisational risks related to planning and documentation. In Tables 27-30, the 

coefficients show that instruments considered safe improve worker satisfaction and 

productivity, demonstrating the dependability of the relationship between perceived risk 

and predicted benefits. 

Perceived risk in the organisational domain is lower than in the other domains, according 

to Figure 29, which displays the outcome. According to this, the group of organisational 

domains has a lower perceived risk than the material, environmental, and human features. 

The results presented in Table 27 demonstrate that workers do not have a risk-taking 

attitude toward the risk associated with the hand and any hand-held tool or hand-held 

machine because of the identified risk aversion in the material domain, which implies that 

users feel the need to understand how to use the tool while also paying attention to 

potential failures. 

Employees in Ecuador may perceive less risk while using hand tools that have not been 

evaluated or when working in settings without established safety protocols, according to 

the results displayed in Figure 21. This implies that Hungarians are more inclined than 

Ecuadorian workers to behave in a risk-averse manner. 

3.5 Main contributions 

Nowadays, selecting hand tools specifically designed for jobs and employees is a 

significant concern for ergonomics specialists and industry managers. By classifying the 

risks connected to using hand tools for industrial tasks, this study aims to assist 

ergonomics managers. The four categories of risks are organisational, environmental, 

human, and physical. Organisational risks are linked to planning and documentation, 

people risks are related to specific elements, environmental risks are linked to physical 

conditions, and material risks are linked to tools and equipment.  
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By understanding these categories, users can reduce their risk of hand-related ailments 

and complaints associated with non-powered hand equipment. Table 27 findings indicate 

that risk aversion was noted in the Material domain. Given the possibility of failure, this 

implies that users are driven to become proficient with the instrument. 

Workers may select other instruments that initially appear riskier but, despite the apparent 

risk, turn out to be more accurate, efficient, or cost-effective. The findings in Table 28 for 

the environmental domain similarly demonstrate risk aversion, indicating that hand tool 

users think it's critical to take the workplace's quality and atmosphere into account. The 

Organizational Domain group was viewed as having less risk, according to the data 

displayed in Figure 29. This is due to the established protocols and training programs that 

are specific to each industrial work. Risk-taking was also observed in the personal realm, 

which is the third area (Table 28). This implies that workers are very confident in their 

capacity to complete the task at hand after obtaining the required training. 

In general, Hungarian workers felt more risky than Ecuadorian workers, the survey found. 

The two nations' views of danger in some hand tool safety situations, such as tool handle 

size, slipperiness, and the existence of safety procedures, differed noticeably.  

- Thesis (T3): By applying modified DOSPERT risks perception evaluation related 

to hand tool uses in a sample of 123 participants. I determined four domains: 

'Material Domain', 'Personal Domain', 'Environmental Domain', 'Organizational 

Domain', and I proved that risk aversion was more likely in the Material and 

Environmental domains (b coefficient –0.0729 and –2.1639, respectively) and 

risk-taking behaviour in the Organizational and Personal domains (b coefficient 

0.2985 and 0.2985, respectively). 

Own publications related to this chapter: [120], [129] 
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4 ELECTROMYOGRAPHIC FATIGUE MONITORING 

DURING MANUAL TOOL OPERATION  

In the field of hand tool use, the risk related to fatigue among users is essential for 

understanding the task. A structured methodology for analysing fatigue on set risk related 

to hand tools is presented, including an introduction, a detailed explanation of the 

methods, a presentation of the results, and a discussion of their implications. 

MSDs induced by hand tool use were primarily caused by hard exertion, uncomfortable 

postures, vibrations, and repetition. Additionally, most tasks involving hand tools involve 

one or more of these characteristics. The discomfort that tool users endure leads to 

physical stress [130]. Since these varieties of variables can cause musculoskeletal 

disorders (MSDs), ergonomic tool design is essential. Stress and chronic injuries can be 

avoided by using ergonomic tools to lessen the physical strain on the body. 

4.1 Ergonomic Pliers Gripping Design 

In the design of hand tools, the grip width plays a crucial role in minimising the stress on 

the hand. Improving work efficiency and reducing work-related illnesses, therefore, 

depends on hand tools having the right grip span. Research has been carried out to 

determine the ideal grip span to achieve the strongest possible grip. In particular, the grip 

width influences the individual finger force. In other words, each finger has a unique grip 

span for applying the most force [130]. 

ISO 5745, together with DIN 5745, sets standards for the dimensions and usability of 

pliers and nippers to ensure they fit comfortably in the hand, reduce strain, and support 

natural hand movements, which is essential for ergonomics. By defining grip 

requirements, handle lengths, and force distribution, this standard helps prevent repetitive 

strain injuries and musculoskeletal disorders (MSDs) among tool users [131]. The 

primary dimensions of gripping and handling pliers are outlined in this International 

Standard, together with test values that confirm the suitability of the pliers for use in 

accordance with ISO 5744 [132]. 

The correct handle length ensures that the tool can be used comfortably with less risk of 

musculoskeletal disorders, as it helps to distribute the force more evenly across the hand, 

reducing fatigue and discomfort with prolonged use. The standardised dimensions of the 

pliers are presented, and the standardised measurement position is shown in Figure 35. 



 

74 

 

 

Figure 30. Standardised Pliers Dimensions 

Table 35 provides specifications for pliers based on their nose length, nominal length (l), 

and handle length (l1), along with performance standards for torque, twist, load, and 

permanent deformation. The l1 handle length is critical for ergonomics as it directly 

affects the leverage, comfort, and ease of applying force. The l1 length allows users to 

generate adequate gripping force without excessive strain or awkward hand postures, 

ensuring that the tool can be comfortably used with less risk of musculoskeletal disorders, 

as it helps distribute force more evenly across the hand, reducing fatigue and discomfort 

in prolonged use. 

Table 31. Standardised Pliers Dimensions according to ISO DIN 5745 

Length of nose Nominal length Torsion test Load test 

l (mm) l₁ (mm) Torque 

T (N·m) 

Maximum 

 twist 

αₘₐₓ 

Load 

F (N) 

Maximum  

permanent set 

sₘₐₓa (mm) 

Short nose 125 63 0.5 20° 630 

1 

140 71 1.0 
 

710 

160 80 1.25 
 

800 

Long nose 140 63 0.25 25° 630 

160 71 0.5 
 

710 

180 80 1.0 
 

800 

a s = w₁ – w₂ (see ISO 5744) 

4.2 Method 

This section covers the components and materials used to conduct the research, together 

with an explanation of the device implementation methodology. This is followed by a 

detailed presentation of the study and an explanation of the approach used. 

4.2.1 Sample 

A sample of 12 men who had never had upper extremity MSDs volunteered for this 

investigation. The study began with a summary of the experiment's goals and procedures 

and an informed consent form for each participant (see ANNEX 5). The signal was 
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captured as the reference measurement from the forearm. Each subject's Pronator Teres 

was used as the measurement site and was attached to the electrodes. 

4.2.2 Procedure 

Participants completed an upper extremity MSD questionnaire before the experiments. 

Then, prior to the experiments, all participants were given a brief description of the 

experimental procedure and completed a practice test to familiarise them with the 

grasping task. 

For this study, participants exerted their maximum grip force by grasping the handles of 

the pliers. All participants were instructed to exert their maximum force from an initial 

relaxed state and then to perform 40 repetitions of this movement. After the trial, they 

were asked to relax. Participants were given five minutes' rest between each trial to 

minimise muscle fatigue. The grasping task was repeated twice for each grip range (45 

mm, 65 mm), so that each participant performed 80 trials. Trials were selected in random 

order. After performing a grasping task, each participant was asked to provide a subjective 

rating of discomfort for each grip span using the Borg CR10 scale, which ranges from 0 

to 10 and represents different levels of effort intensity. A score of 0 indicates complete 

relaxation, with 0.5 suggesting a barely perceptible level of effort and 1 reflecting very 

low effort where one might feel slightly uncomfortable. At 2, low effort is manageable, 

while 3 represents moderate effort, signalling noticeable pressure but still under control. 

4 indicates somewhat intense effort, affecting concentration, and 5 indicates intense 

effort, with discomfort and significant worry. As effort increases, 7 reflects a very intense 

level, characterised by overload that's difficult to ignore. Near the top, 9 represents 

extreme effort, bordering on unbearable, and 10 is maximum effort, an overwhelming 

state that can't be sustained for long. 

The electrical signal outputs from the EMG sensors were converted to digital signals and 

then sent to a computer. 

4.2.3 Statistical comparison 

The t-test is used to determine whether the means of two groups are significantly different. 

First, formulate the alternative hypothesis that there is a significant difference and the null 

hypothesis that there is no difference. The next step is to choose between a paired t-test, 

an independent t-test (two-sample), or a one-sample t-test. This is followed by confirming 

equal variance for independent tests and checking normality assumptions before 
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computing the test. Degrees of freedom, which vary with sample size, are then determined 

after the t-statistic has been calculated using group means, variances, and sample sizes. 

The p-value associated with the computed t-statistic is then found to determine 

significance: if the p-value is less than or equal to the chosen significance level (often 

0.05), the null hypothesis is rejected, indicating a significant difference between the 

groups; if it is greater, the null hypothesis is not rejected, indicating no significant 

difference. 

4.3 Results  

To select the most appropriate hand tools and ensure both efficiency and user safety, force 

and fatigue detection are used to determine the force requirements that can lead to muscle 

strain, while prolonged use of tools that cause excessive fatigue can lead to long-term 

injury or reduced productivity. The results are presented with a focus on force and fatigue 

detection by EMG evaluation. 

4.3.1 EMG evaluation 

The analysis presented tracks muscle activity over time for each repetition or muscular 

contraction during a task using hand tools. The variables identify the participant and 

represent the measurement of muscular activity value, indicating the EMG reading of 

muscular strength, to be analysed by an algorithm to determine the presence of fatigue. 

The Activity and its response are presented in Figure 31. 

 

Figure 31. EMG captured data during hand tool use. 1) relaxed grasping of the handles, 2) Full force grasping of the 

handles, 3) Initial position recovery and muscle relaxation 
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 To analyse the data, it is divided into four groups by assigning a tag during the exercise 

according to the type of hand tool usage (45mm or 65mm). Group 1 represents non-

fatigue using a 45mm hand tool, while Group 3 represents non-fatigue using a 65mm 

hand tool. Fatigue is indicated by a value of 2 or 4, representing its influence during the 

task: 2 means the onset of fatigue using a 45mm hand tool, and 4 indicates the onset of 

fatigue using a 65mm hand tool. When analysing fatigue, focus on cases where the class 

is 2 or 4 to identify possible patterns in the EMG signals, such as changes in amplitude 

or frequency, compared to non-fatiguing cases. The descriptive analysis of the measured 

data is presented in Table 32. 

Table 32. Descriptive analysis for data used to identify fatigue 

 Participant Repetition  

EMG values 

Class  

values 

Fatigue Non-Fatigue 

count 11808.0 11796.0 11808.0 11,802.0 18,239.0 

mean 3.7007960705 35.7414377755 2.8770325203 320.60 390.62 

std 1.1401313194 9.4492391668 0.9924527262 948.01 1,031.75 

min 1.0 3.0 2.0 0.0 0.0 

25% 3.0 30.0 2.0 0.0 0.0 

50% 3.0 34.0 2.0 0.0 0.0 

75% 5.0 39.0 4.0 0.0 484 

max 12.0 83.0 4.0  29,24 29,92 

P (one tail) 2.22e-07 

t-statistic -5.9285 

Cohen’s d -0.070 

The data is evaluated and classified to proceed with the rows of fatigue (class = 2 or 4) 

that have been filtered. 

Figure 32 provides significant findings related to the evolution of EMG values over the 

range of the 40 trials. In the initial range around 25 repetitions, there is considerable 

variability in EMG values for both the fatigued and non-fatigued conditions, with more 

pronounced spikes in the fatigued condition. This reflects peaks in muscle activity as 

participants adjust their effort. Over time, EMG values gradually decrease in both 

conditions, suggesting a reduction in muscle activation due to fatigue. In the fatigue 

condition, the EMG values have higher peaks, indicating moments of increased effort. In 

contrast, in the non-fatigue condition, the values are steadier and lower in amplitude, 

reflecting more consistent muscle activity without extreme effort. After about 20 

repetitions, EMG values stabilise at lower levels, particularly in the non-fatiguing 

condition. This analysis suggests that fatigue is characterised by greater variability and 

higher peaks in EMG values, particularly in the early repetitions, before both conditions 

stabilise. 
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Figure 32. EMG values for the fatigued condition. 

The Kolmogorov-Smirnov (KS) test evaluates distributional differences between two 

datasets. In this sense, the p-value (2.22e-07) indicates a statistically significant difference 

between the two groups, though the effect size (Cohen's d = -0.07) suggests the difference 

is negligible. On the other hand, the left-tail KS test explicitly has a high p-value (0.9941) 

and a minimal statistic (0.0006). As a result, even though the overall distributions vary 

somewhat, the difference appears to be insignificant. 

Individual Participant Analysis 

The next step is to analyse data from a random participant in a hand tool fatigue 

experiment to understand how fatigue manifests itself in the observed metrics, such as 

grip strength, force application, or tool handling efficiency. In addition, the sensitivity of 

detecting fatigue-related changes will be determined. The selected subject is Participant 

3, and the compared data is the repetition 1 compared to the last repetition, as shown in 

Figure 33, to analyse the changes in EMG data. The effects of fatigue are highlighted in 

Repetition 1 (blue) and Repetition 40 (orange). At Repetition 1, the muscle initially shows 

stronger contractions, with higher and more frequent EMG peaks, reflected in a maximum 

of 6241.0. At repetition 40, these values decrease significantly to a maximum of 2916.0 
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(a decrease of 53.3%), indicating reduced muscle activity due to fatigue. The number of 

samples increases from 261 to 316, which suggests more fragmented signal patterns, 

possibly due to irregular contractions. 

 

Figure 33. EMG values during Repetition 1 and Repetition 40 

Figure 34 compares the EMG peak values during the first (R1) and fortieth (R40) 

repetition of a task, showing changes in muscle activation over time. The mean peak 

values for repetition 1 are significantly higher at 1866.27, while the mean for repetition 

40 is 1142.48, indicating a 38.8% decrease in mean peak values, suggesting muscle 

fatigue or adaptation as activation levels decrease with repeated effort. The peaks are 

sorted by magnitude, and while both conditions show a steep initial decline that levels 

off, the R1 peaks consistently exceed those of R40 until they converge at lower 

magnitudes and peak count of 51 for R1 and 54 for R40. 

 

Figure 34. Comparison of the peaks between Repetition 1 and Repetition 40 
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The EMG values for participant 3 between the first (R1) and fortieth (R40) repetition 

show significant differences in muscle activation, as shown in Figure 35. The mean EMG 

value decreases from 474.35 in R1 to 239.90 in R40, a reduction of 49.4% and a mean 

difference of 234.45. The R1 distribution is broader and shows greater variability, 

whereas the R40 distribution is narrower with a higher peak, indicating more consistent 

but reduced muscle activation during later repetitions. A t-test confirms the statistical 

significance of this difference, with a t-statistic of 3.391 and a p-value of less than 0.0001. 

These results suggest that muscle fatigue occurs over repetitions, leading to reduced 

activation and possibly more stable movement patterns. 

 

Figure 35. Gaussian distributions plotted for Repetition 1 and Repetition 40 

The statistical significance of the difference between repetition 1 and repetition 40. The 

distribution corresponds to a p-value of approximately 0.0004 (0.04%). The t-statistic 

(3.3911) emphasises the right tail. The overall two-tailed p-value is approximately 0.0008 

(0.08%), well below the α = 0.05 threshold, confirming that the difference is statistically 

significant. These data are expressed in Table 33. 

Table 33. Statistics for Participant 3, Repetition 1vs Repetition 40 

  Repetition 1 Repetition 40  

  Value Value 
count 261.0 316.0 

mean 4.743.524.904.215 2.398.987.341.772 
Std 1.078.801.203.564 5.353.450.889.995 

Min 0.0 0.0 
25% 0.0 0.0 

50% 0.0 0.0 

75% 484.0 0.0 
Max 6241.0 2916.0 

Two-tailed p-

value 

0.0008043728222952851 
t-statistic 33.911 

One-tail area 4,02E-04 
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4.3.2 Force evaluation 

Ergonomic gripping of hand tools is a concern in industry for prolonged or repetitive use. 

The tool comparison, as shown in Figure 36, is used to observe the force trend and 

determine the influence of hand tool size in the selection process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Force throughout the reps for tools 45mm and 65 mm 

The rate of force reduction for the 45mm tool is -1.9N, whereas the rate of force reduction 

for the 65mm tool is more prominent at -2.42N. This implies that because the force needed 

decreases more quickly with each repetition, participants reduce the force more quickly 

when using the 65mm tool. In this sense, the 65mm tool allows users to achieve a little 

higher peak force values in terms of performance and variability (maximum of 370.8 N 

as opposed to 342.3 N for the 45mm tool). However, a standard deviation of 54.25 N for 

the 65mm tool vs 50.13 N for the 45mm tool suggests that the force measurements are 

less reliable.  
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Figure 37. Percentage change in force over repetitions 

The percentage change in force over repetitions for the 45mm and 65mm tools is shown 

in Figure 37. With the 45mm tool weighing 251.33 N and the 65mm tool weighing 253.5 

N, comparable force levels are established. The initial variability of the 65mm tool is 

marginally higher, though. Both gadgets show a noticeable decrease in force as fatigue 

increases with the number of repeats. The 45mm tool's starting force is reduced by 31.3%, 

resulting in a drop to 172.66 N. In a similar vein, the 65mm tool decreases by 30.3% to 

176.58 N. 

Table 34. Force distribution statistics and statistical comparisons. 

Metric Tool 45mm Tool 65mm 

Non-Fatigue Mean 251.33 N 253.5 N 

Non-Fatigue Std 50.13 N 54.25 N 

Fatigue Mean 172.66 N 176.58 N 

Force Reduction 78.68 N (31.3%) 76.9 N (30.3%) 

Non-Fatigue (t-statistic) 9.46 8.16 

Non-Fatigue (p-value) 3.74 × 10-16 4.19 × 10-13 

Fatigue Effect Cohen's d (Tool 45mm) 1.73 
 

Fatigue Effect Cohen's d (Tool 65mm) 
 

1.49 

Table 34 compares the force distribution statistics of the 45mm and 65mm tools in both 

fatigued and non-fatigued conditions. The initial force levels of the two tools are 

comparable; however, the 45mm tool reduces the force a bit more (78.68 N vs 76.9 N). 

Strong fatigue effects are seen in both states, with larger Cohen's d values (1.73 for 45mm 

and 1.49 for 65mm). With p-values below the significance level (p < 0.001), both tools 

show very significant effects. The 45mm tool reflected a p-value of 3.74 × 10-¹⁶. The 

65mm tool also shows a substantial effect with a p-value of 4.19 × 10-¹³. The force 

reductions observed for both tools are statistically significant and unlikely to be the result 

of chance, as confirmed by these incredibly low p-values. 
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To detect changes, the focus is on the application of force, comparing the data from the 

initial phase with the data from the final phase, as shown in Figure 38. The data were 

collected from the selected participants. 

 

Figure 38. Force across repetitions from Participant 3 for hand tools use. 

Significant force reductions for both tools over the repetitions are shown in Table 35. 

With a mean force of 286.65 N at the start and 209.74 N at the end, the 45mm tool reduced 

by 76.91 N (26.8%). Similarly, the 65mm tool shows a reduction of 84.17 N (29.4%) 

from its initial mean force of 286.26 N to 202.09 N. The 45mm tool gave a t-statistic of 

3.20 and a p-value of 0.0127, while the 65mm tool showed greater significance with a t-

statistic of 4.84 and a p-value of 0.0013, confirming the importance of these reductions. 

With the 65mm tool showing greater reductions, these data demonstrate the significant 

influence of fatigue on force. 

Table 35. Statistical force analysis for Participant 3 

Metric Tool 45mm Tool 65mm 

Initial Mean Force (first 5 reps) 286.65 N 286.26 N 

Final Mean Force (last 5 reps) 209.74 N 202.09 N 

Force Reduction 76.91 N 84.17 N 

Percentage Reduction 26.8% 29.4% 

t-statistic 3.20 4.84 

p-value 0.0127 0.0013 

4.3.3 Machine Learning Fatigue detection 

The information needed to identify the underlying patterns and relationships between the 

features and their labels is extracted by the KNN algorithm.  This knowledge is then used 

to classify new, unseen data points. In this case, data pre-processing was the first step. 

This involved selecting relevant parameters such as standard deviations, moving averages 

and EMG values. The information was then separated into training and test sets after 

being classified as 'fatigue' or 'non-fatigue' [133], [134], [135]. 
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The initial strategy, called the prototype selection strategy, uses the Condensed Nearest 

Neighbour (CNN) algorithm to keep the points nearest to the decision boundary's edge 

points. The second approach is the use of models to identify outliers. These models can 

detect data that has a different distribution from the others. With this method, 

unsupervised analysis is carried out, and the model decides which samples need to be 

eliminated. 

 

Figure 39 KNN classification method structure 

The design of the experiment involves a detailed representation of all its systems and the 

steps to determine the onset of fatigue. The design consists of several phases, as shown 

in Figure 39. Several specialised libraries and Python were used to analyse muscular 

fatigue using electromyography (EMG) data obtained from various sizes of hand tools. 

First, the necessary modules were imported: scipy.stats for statistical analysis, 

matplotlib.pyplot and seaborn for data visualisation, numpy for numerical operations and 

pandas for managing and modifying the dataset. We imported the dataset using 

pandas.read_excel() with the engine="odf" option to correctly interpret the ODS file 

format. After loading the data, we filtered it using the 'Class' column, with classes 1 and 

3 denoting non-fatigue and classes 2 and 4 denoting fatigue. As a result, we were able to 

separate and contrast fatigued and non-fatigued samples. To visually examine the 

differences between these two states, we generated Gaussian distribution plots of the 

EMG data using seaborn.kdeplot(). We applied the Mann-Whitney U test using 

scipy.stats.mannwhitneyu(), which can be set up for a two-tailed or one-tailed test 

depending on the hypothesis (e.g. whether tiredness values were predicted to be lower), 

to assess the statistical significance of these differences. 
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To prepare the data for K-Nearest Neighbours (KNN) machine learning classification, 

two additional features were created: a moving average and a moving standard deviation 

of the EMG signal. The series.rolling(window=50).mean() and .std() functions were used 

in Pandas to compute these features, respectively, smoothing the signal and aiding the 

identification of fatigue-related patterns. The K-nearest neighbours (KNN) classifier was 

initialised using KNeighborsClassifier(n_neighbors=5), where n_neighbors=5 indicates 

that the output label would be determined by taking the five closest data points into 

account. After training the model using fit(), the test data was classified using predict(). 

We used sklearn.metrics.accuracy_score() and sklearn.metrics.classification_report() to 

evaluate the model's performance, yielding precision, recall, F1-score and accuracy 

metrics. 

 

Figure 40. KNN classification results 

The clustering result of the KNN model trained on the training data and then evaluated 

on the test set is shown in Figure 40. The overall accuracy of the model was 76.4%, 

indicating that it accurately predicted the state of fatigue in 76.4% of the situations. 

Additional investigation showed that the model performed better at detecting non-

fatiguing states (81% F1 score) than fatiguing states (68% F1 score). 

Table 36. KNN classification analysis of the EMG data  

Class Precision Recall F1-score Support 

0 0.79 0.83 0.81 5403 

1 0.71 0.66 0.68 3404 

Accuracy 0.76 
  

8807 

Macro Avg 0.75 0.74 0.75 8807 

Weighted Avg 0.76 0.76 0.76 8807 

Average distance to nearest neighbours 0.03828786168904291 

Min distance to nearest neighbours 0.0 

Max distance to nearest neighbours 5.119779473991095 
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Table 36 shows the descriptive behavioural parameters of the model. The average 

distance to nearest neighbours was relatively small, indicating that the data points are 

generally clustered together; it shows clear clustering patterns between predicted fatigued 

and non-fatigued states. The average distance to nearest neighbours is relatively small 

(0.038), indicating a good clustering density.  

The presence of points with zero distance to their nearest neighbours indicates high 

similarity or even identical patterns within the data. Conversely, the maximum distance 

observed indicates the presence of outliers or isolated data points. The maximum distance 

of 5.12 indicates some outliers or isolated points in the data set. 

4.4 Discussions  

The study demonstrates how important it is to use electromyography (EMG) analysis to 

detect force and fatigue when choosing hand tools that strike a compromise between user 

safety and efficiency. Insights to reduce the risk of chronic injuries, increase productivity, 

and support ergonomic designs can be obtained by assessing the degree of muscular 

activity and exhaustion during tool use. These findings are in concordance with previous 

research about Muscular synchronisation and hand-arm fatigue [136], [137], [138] 

Twelve male participants with no history of upper extremity musculoskeletal disorders 

(MSDs) were selected to reduce risk factors for confounding and to provide a controlled 

group. By reducing the variability associated with pre-existing problems, this 

homogeneity ensures the trustworthiness of the strength and EMG data. The inclusion of 

individuals with different fitness levels may shed light on how these variables affect tool 

ergonomics and fatigue. 

Based on ergonomic concepts and research that tracks muscle activity, EMG data, and 

clustering detection techniques over multiple tool use cycles [134], [139], [140]. A 

thorough examination of the effects of varying hand tool sizes (45mm vs. 65mm) on 

muscle strain is made possible by the classification of fatigue levels (class 2 and 4 for 

fatigue, class 1 and 3 for non-fatigue). EMG measurements show patterns, including 

higher peaks during fatigue and increased variability. 

Significant variability and significant peaks can be seen in the EMG data during fatigue. 

These trends show an increase in muscular effort as the user adapts to the demands of the 

task. Muscle activity stabilises with the number of repetitions. Even after this period of 

adaptation, fatigued conditions still show higher EMG signal amplitude and variability 
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than non-fatigued conditions. These changes are crucial markers of the onset of fatigue 

and help determine when users need to take a break or change tasks. The examination of 

participant 3 provides a particularly clear understanding of how fatigue develops over 

time. A significant decrease in muscle activation is observed when comparing the mean 

EMG values from repetition 1 (R1) and 40 (R40), which show a 49.4% decrease. 

The p-value (0.0008) in the t-test for EMG values between repetitions 1 and 40 is below 

the typical significance threshold (α = 0.05). This indicates a statistically significant 

reduction in muscle activation as fatigue progresses over repetitions. The distributions of 

EMG values in fatigued and non-fatigued conditions differ significantly, according to the 

Kolmogorov-Smirnov (KS) Test, which has a p-value of 2.22e-07. This low p-value 

validates the presence of variations in muscle activation patterns brought on by tiredness, 

even though the effect magnitude is tiny (Cohen's d = -0.07). 

For statistical comparison of force measurements between fatigued and non-fatigued 

states, the p-values for the 45mm and 65mm tools are incredibly small (e.g. 3.74 × 10-¹⁶ 

and 4.19 × 10-¹³). These results support the idea that the decreases in force seen during 

repetitions are not random but rather reflect the effects of fatigue. Both tools show 

significant fatigue effects, and the statistical comparisons are highly significant (p < 

0.001). The higher fatigue effect of the 45mm tool may be due to its closer approximation 

to natural hand ergonomics, allowing users to exert effort for more extended periods of 

time at a higher cumulative cost. As the 65mm tool initially allows for higher peak forces, 

the faster force reduction indicates that fatigue is induced more quickly. This result 

highlights the trade-off between diameter and peak force in tool design. 

K-Nearest Neighbours (KNN) machine learning approach in ergonomics is used to 

characterise fatigue states. The model's accuracy (76.4%) and precision (81%) for non-

fatiguing states, and for identifying fatigue (68% F1 score). The presence of outliers (the 

highest distance is 5.12) suggests some noise in the data, but the clustering patterns and 

modest average distances to nearest neighbours suggest strong internal consistency. This 

could be reduced in the future with improved feature selection and pre-processing. 

4.5 Main contributions 

Preventing worker fatigue during industrial operations with hand tools is a strategic risk 

prevention measure for worker health and safety. This work primarily contributes to 

enhancing knowledge of muscle fatigue and force application during repetitive gripping 
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tasks with hand tools of different sizes. The study offers comprehensive knowledge into 

how tool design affects user performance, fatigue, and ergonomics by utilising machine 

learning approaches, statistical comparisons, and electromyographic (EMG) analysis. 

This research bridges the knowledge gap between biomechanical analysis and real-world 

tool design and occupational health applications. The novel use of EMG data to measure 

muscle activity and identify fatigue during repetitive gripping tasks is one of the key 

contributions of the study. When comparing fatigued and non-fatigued states, the data 

show patterns in muscle activation, including increased EMG peaks and variability.  In 

addition, a comparison between the 45mm and 65mm tool sizes shows that the larger tool 

allows slightly higher peak forces and develops fatigue more quickly, as evidenced by 

greater decreases in force and variability. 

- Thesis (T4): Applying an EMG smart wearable device in a controlled laboratory 

setting with 12 participants using standardised hand tool dimensions of 45 and 

65mm. I proved that: 

o Fatigue onset occurs around 25 repetitions with a probability of fatigue 

detection (p-value = 2.22 × 10⁻⁷)  

o A pattern comparison in mean peak EMG values decrease significantly 

during the exercise. 

o  Electromyography (EMG) signals from forearm muscles in griping tasks 

show a probability of force reduction detection of 3.74 × 10⁻¹⁶ and 4.19 × 

10⁻¹³, using standardized hand tool dimensions of 45 and 65mm. 

- Thesis (T5): I have proved that an artificial intelligence (AI) system trained on 

electromyography (EMG) data can accurately detect muscle fatigue signals with 

K-NN method, that achieved an accuracy of the model to predict the state of 

fatigue of 76.4% to provide real-time feedback to workers, reducing the risk of 

MSDS. 

Own publications related to this chapter: [17]. 
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5 CONCLUSIONS 

This part presents the innovations and contributions of the thesis. It emphasises the 

importance of the study and reaffirms how it will promote occupational safety and health 

(OSH). This chapter focuses on providing an overall description of the objectives of the 

study, the novelty of the approach and how the results support the initial hypotheses. 

5.1 Novelty 

In my thesis, I have presented risk assessment and reduction strategies that focus 

specifically on non-powered hand tools that integrate ergonomic principles, safety 

regulations, and human reliability analysis to create a robust framework for minimising 

hand tool injuries. My thesis also included approaches to addressing hand tool-related 

injuries in the manufacturing sector, using new technologies and multidisciplinary 

management strategies. 

In my research, I established the integration of electromyography (EMG) for the 

monitoring of muscle activity and the detection of early signs of fatigue. By using EMG 

signals, the study proposes real-time detection of physiological strain during prolonged 

or repetitive tasks, enabling intervention before injury or cumulative trauma disorders can 

be observed. 

To meet the challenges of occupational safety, systematic analysis of physiological 

factors is a key element of fatigue analysis. By studying the effects of wrist flexion, 

extension and excessive muscle effort during repetitive manual tasks, my research 

identifies the biomechanical factors that contribute to injury. This kind of information 

helps to develop tools and procedures that better match human capabilities, thereby 

significantly reducing risk. 

A comprehensive and multi-dimensional approach to risk assessment and reduction has 

been developed in my research, using ergonomic principles, safety regulations and human 

reliability analysis to furnish a comprehensive methodology for the attenuation of injuries 

sustained in the use of hand tools. The mathematical categorisation technique and the 

Analytic Hierarchy Process (AHP), together with the Best Worst Method to 

systematically evaluate and rank risk factors, demonstrate a novel, expert perception, 

evidence-based strategy for workplace safety. 
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In my dissertation, I presented a risk assessment using the Domain-Specific Risk-Taking 

(DOSPERT) questionnaire, which provides psychological and behavioural findings for 

understanding risk perception and its impact on workplace safety measures, taking into 

account the attitudes of users of non-powered hand tools. Finally, I have presented 

practical applications by collecting and analysing EMG data to develop fatigue reduction 

protocols using innovative technologies for a deep understanding of ergonomic and 

physiological principles to minimise injuries and improve productivity in the 

manufacturing sector. 

5.2 New scientific results 

My research aimed to develop scientific strategies and methods for measuring forces 

during work, as well as to develop efficient workstation tool use techniques using new 

technologies. In addition, I aimed to develop strategies and measures to prevent hand 

tool-related disorders by gaining a detailed understanding of the physiological effects of 

repetitive manual activities on the wrist and muscles, as well as identifying their causes. 

Therefore, my new scientific results are as follows: 

- Thesis (T1): With a systematic PRISMA literature review and meta-analyses, I 

have proved that electromyography (EMG) collected in the forearm, including the 

flexor carpi radialis, flexor carpi ulnaris, and pronator teres, helps prevent work-

related injuries and cumulative trauma disorders by identifying the onset of 

muscle fatigue during over 5-second gripping tasks.  

- Thesis (T2): By applying Multi-Criteria Decision-Making (MCDM) methods to 

categorize risks associated with hand tool use in a sample of 10 ergonomic 

experts, I demonstrated that integrating individual factors like 'tool damage', 

'ergonomic risk', and 'physical injury' can effectively stratify to rank and assess 

the risks related to hand tool use, and it shows that 'physical injury' is the primary 

risk factor, with a weighted importance of 73.06% in the Analytic Hierarchy 

Process (AHP) (Consistency ratio: 0.0492) and cross-validated by the Best-Worst 

Method (BWM) at 73.62% (Reliability ratio: 0.1978).  

- Thesis (T3): By applying modified DOSPERT risks perception evaluation related 

to hand tool uses in a sample of 123 participants. I determined four domains: 

'Material Domain', 'Personal Domain', 'Environmental Domain', 'Organizational 

Domain', and I proved that risk aversion was more likely in the Material and 
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Environmental domains (b coefficient –0.0729 and –2.1639, respectively) and 

risk-taking behaviour in the Organizational and Personal domains (b coefficient 

0.2985 and 0.2985, respectively). 

- Thesis (T4): Applying a EMG smart wearable device in a controlled laboratory 

setting with 12 participants using standardized hand tool dimensions of 45 and 

65mm. I proved that: 

o Fatigue onset occurs around 25 repetitions with a probability of fatigue 

detection (p-value = 2.22 × 10⁻⁷)  

o A pattern comparison in mean peak EMG values decrease significantly 

during the exercise. 

o  Electromyography (EMG) signals from forearm muscles in griping tasks 

show a probability of force reduction detection of 3.74 × 10⁻¹⁶ and 4.19 × 

10⁻¹³, using standardized hand tool dimensions of 45 and 65mm. 

- Thesis (T5): I have proved that an artificial intelligence (AI) system trained on 

electromyography (EMG) data can accurately detect muscle fatigue signals with 

K-NN method, that achieved an accuracy of the model to predict the state of 

fatigue of 76.4% to provide real-time feedback to workers, reducing the risk of 

MSDS. 

5.3  Recommendations 

The study could benefit the industry in tasks involving the use of hand tools by providing 

insight and knowledge into the appropriate tool for each worker. The results will provide 

information on how individual differences affect muscle fatigue and tool usability. 

More tool designs and a greater range of sizes and shapes can be considered when seeking 

to make recommendations for ergonomic tool design that are effective. By considering 

these elements, a more comprehensive understanding of how tool weight, material, and 

grip texture can impact workers when they are in danger and impact performance may be 

achievable. 

Designing ergonomically optimised tools with improved grip and force distribution 

should be prioritised. In addition, training programs for workers on proper tool-handling 

techniques and periodic ergonomic evaluations are provided to enhance workplace safety 

and productivity. 
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Implementing AI-driven EMG monitoring solutions in industrial environments can help 

identify early fatigue onset and adjust work-rest cycles, including a tailored hand tool 

selection according to workers' anthropometrics. 

As future research, the study could integrate the effects of recovery interventions, such as 

stretching, rest breaks, or cooling techniques, on mitigating fatigue during repetitive 

tasks. This would provide a complete understanding of risk prevention for workers using 

hand tools. 
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ANNEX 4 Descriptive statistics for hand tool risk perception 

Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

How likely could you 

Work with incorrect hand 

PPE (Personal Protective 

Equipment). 3,51 3,43 2,01 4,02 2,80 4,07 3,54 3,35 3,65 5,71 4,38 2,29 2,00 2,00 1,50 3,31 4,33 3,75 3,58 2,81 2,79 4,80 3,94 

How probably Work with 

short tool handles that 

press into the palm of the 

hand?. 3,48 3,44 1,66 2,76 2,80 3,92 3,45 3,24 2,95 5,73 4,23 2,71 2,17 2,00 1,50 3,31 4,00 3,75 3,48 2,60 2,79 3,60 4,00 

How probably could you 

Work with narrow tool 

handles that press deeply 

into the hand when the 

tool is used?. 3,37 3,31 1,64 2,69 2,71 3,89 3,42 3,06 3,65 5,48 3,15 2,29 3,50 1,00 1,50 3,62 4,00 3,75 3,39 3,02 2,57 3,80 3,63 

How probably could you 

Work with a hand tool for 

the incorrect side? 

Example: if you are a 

right-hand person will 

you use a hand tool for 

left hand person. 3,38 3,35 1,56 2,43 2,96 3,73 3,42 3,18 3,40 5,23 4,08 3,71 3,00 2,50 1,50 4,00 3,83 3,50 3,35 3,05 2,93 3,20 3,62 

How probably could you 

Work with hand tools that 

require big effort or 

rotational movement to 

use?. 4,07 4,08 1,63 2,65 3,59 4,46 4,19 3,29 4,00 6,52 3,92 5,29 3,17 2,00 2,50 4,08 5,33 4,00 4,09 3,53 3,14 4,40 4,48 

How probably could you 

Work with hand tools that 3,59 3,57 1,61 2,61 3,25 3,87 3,62 3,35 3,20 5,85 3,31 4,57 3,50 2,00 1,50 4,38 4,00 4,00 3,54 3,16 3,14 3,40 3,87 
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Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

require a bad or 

uncomfortable posture?. 

How probably could you 

Work with hand tools that 

require big holding time? 3,80 3,83 1,61 2,59 3,59 4,00 3,81 3,71 3,60 6,06 4,00 4,43 3,50 2,00 2,50 4,62 3,67 4,00 3,77 3,19 3,71 2,60 4,21 

How probably could you 

Work with hand tools 

with handles made of 

slippery materials?. 3,09 3,01 1,6 2,56 2,84 3,31 3,12 2,88 2,80 5,10 2,54 3,71 3,33 2,00 1,00 3,38 3,17 3,25 3,11 2,95 2,57 3,40 3,17 

How probably could you 

Work with heavy hand 

tools without hanging 

support ? 3,46 3,43 1,71 2,94 3,31 3,61 3,52 3,06 3,40 5,48 3,77 3,29 3,67 2,00 1,50 3,92 3,67 4,25 3,38 3,12 3,21 3,60 3,62 

How probably could you 

Work with heavy hand 

tools so that the hand and 

fingers are not able to 

easily grasp the tool?. 3,11 3,02 1,68 2,81 2,69 3,46 3,21 2,53 3,05 5,04 2,92 3,29 3,17 2,00 2,00 3,38 3,00 3,25 3,13 2,37 2,79 3,80 3,54 

How likely is it that you 

will be able to work in 

spaces that are small or 

uncomfortable for the 

hand?. 3,74 3,73 1,65 2,71 3,10 4,20 3,74 3,53 3,45 5,92 3,54 4,43 4,33 1,50 4,00 4,31 3,00 4,75 3,69 2,93 3,93 4,60 4,00 

How likely is it that you 

will be able to work with 

the wrist in a flexed 

position?. 3,74 3,75 1,62 2,62 3,35 4,07 3,75 3,71 3,35 5,83 4,15 4,43 4,67 2,50 4,50 4,31 3,33 5,25 3,65 3,19 3,93 4,20 3,92 

How probably could you 

Work with heavy hand 3,56 3,55 1,53 2,33 3,43 3,70 3,53 3,76 3,25 5,73 3,31 4,57 3,83 2,00 3,50 3,77 3,50 3,75 3,57 3,05 3,07 3,80 3,89 
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Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

tools in place where there 

are not hand support?. 

How probably could you 

Work with heavy hand 

tools in a place where 

there is not good 

illumination?. 3,33 3,29 1,57 2,45 3,00 3,56 3,40 2,71 3,75 5,31 2,31 3,57 3,50 2,00 1,00 3,54 2,50 3,25 3,41 2,98 2,57 3,20 3,59 

How probably could you 

Work fixing or adjusting 

mobile machine parts 

using hand tools?. 4,19 4,19 1,66 2,76 3,57 4,69 4,28 3,59 4,25 6,83 3,62 4,29 4,17 2,50 2,50 3,46 4,17 4,00 4,38 3,77 2,86 4,40 4,62 

How probably could you 

Work with hand tools that 

have not been tested for 

proper operation?. 3,30 3,22 1,67 2,79 2,76 3,73 3,42 2,59 3,15 5,60 2,08 3,43 3,83 2,00 2,00 2,77 2,00 3,75 3,51 3,05 2,50 4,60 3,44 

How probably could you 

Work with hand tools 

without training before 

starting a new industrial 

task? 3,20 3,11 1,65 2,72 2,98 3,39 3,25 2,82 2,90 5,27 2,77 4,43 2,50 2,50 3,00 3,46 2,17 2,00 3,32 2,70 2,93 4,20 3,41 

How probably could you 

Work with hand tools in a 

place without structured 

industrial tasks?, 3,48 3,45 1,5 2,25 3,25 3,69 3,57 2,94 3,35 5,71 2,85 4,14 3,50 2,50 2,50 3,69 2,33 3,50 3,59 2,98 3,00 3,80 3,79 

How probably could you 

Work with hand tools in a 

place without an accident 

prevention protocol?, 3,39 3,33 1,62 2,63 3,16 3,61 3,42 3,18 3,05 5,63 2,54 4,86 3,17 3,00 1,50 3,85 2,17 3,50 3,45 2,95 3,14 4,20 3,57 



 

128 

Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

How likely could you 

Work with hand tools in a 

place without a response 

protocol after suffering an 

accident? 2,89 2,77 1,58 2,50 2,53 3,18 2,98 2,29 2,45 4,90 2,23 3,86 2,50 3,00 1,50 2,92 2,33 2,50 2,98 2,40 2,64 3,20 3,16 

How risky do you 

consider Working with 

incorrect hand PPE? 

(Personal Protective 

Equipment). 4,27 4,30 1,73 3,00 4,57 4,11 4,33 3,88 3,65 7,04 4,85 4,14 3,67 3,50 4,00 3,85 4,50 3,25 4,35 4,53 3,79 4,80 4,02 

How risky do you 

consider Work with short 

tool handles that press 

into the palm of the 

hand?. 3,82 3,76 1,47 2,15 4,20 3,61 3,83 3,76 3,75 5,90 4,31 4,43 4,17 4,50 5,00 4,08 3,67 3,50 3,76 3,95 4,29 3,40 3,54 

How risky do you 

consider Work with 

narrow tool handles that 

press deeply into the hand 

when the tool is used?. 4,03 4,03 1,55 2,39 4,59 3,69 4,02 4,12 3,85 6,42 4,23 4,14 4,50 5,00 4,50 4,00 3,83 4,50 3,99 4,21 4,21 3,40 3,79 

How risky do you 

consider Working with a 

hand tool for the incorrect 

side? Example: if you are 

a right-hand person will 

you use a hand tool for a 

left-hand person. 3,97 3,93 1,48 2,18 4,16 3,89 4,00 3,76 3,30 6,42 4,62 3,86 4,50 4,00 3,50 4,38 3,17 4,50 3,96 3,95 4,07 4,00 3,83 

How risky do you 

consider Working with 

hand tools that require big 3,85 3,85 1,49 2,21 4,18 3,66 3,87 3,71 3,05 6,27 4,46 3,86 4,33 5,50 4,00 4,08 3,67 4,75 3,74 4,02 4,21 3,00 3,59 
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Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

effort or rotational 

movement to use?. 

How risky do you 

consider Working with 

hand tools that require a 

bad or uncomfortable 

posture?. 4,16 4,13 1,49 2,22 4,45 4,01 4,21 3,88 3,75 6,88 4,15 4,14 4,00 4,00 4,50 4,15 4,00 3,75 4,17 4,53 3,79 3,80 3,89 

How risky do you 

consider Working with 

hand tools that require big 

holding time?. 3,87 3,86 1,4 1,97 4,12 3,75 3,95 3,35 3,40 6,29 4,38 3,57 4,00 4,50 3,50 4,00 4,50 3,75 3,80 3,98 3,71 3,60 3,73 

How risky do you 

consider Working with 

hand tools with handles 

made of slippery 

materials?. 4,74 4,79 1,55 2,41 5,27 4,42 4,74 4,76 4,30 7,48 5,62 5,29 4,67 5,00 4,50 5,38 5,83 5,00 4,56 4,79 4,93 4,00 4,57 

How risky do you 

consider Working with 

heavy hand tools without 

hanging support?. 4,51 4,52 1,48 2,19 4,67 4,46 4,54 4,35 4,15 7,38 4,77 4,00 4,67 4,50 3,50 4,31 4,83 4,50 4,55 4,63 3,86 4,20 4,46 

How risky do you 

consider Working with 

heavy hand tools so that 

the hand and fingers are 

not able to easily grasp 

the tool?. 4,66 4,70 1,64 2,70 4,69 4,70 4,71 4,35 4,40 7,58 5,00 4,14 4,50 5,00 4,00 4,54 5,50 4,00 4,66 4,65 4,14 4,40 4,65 

How risky do you 

consider working in 

spaces that are small or 4,25 4,27 1,37 1,88 4,39 4,21 4,33 3,76 3,95 6,81 5,00 3,71 4,33 5,00 4,00 4,23 5,33 4,50 4,16 4,23 4,14 4,00 4,17 
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Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

uncomfortable for the 

hand?. 

How risky do you 

consider working with the 

wrist in a flexed 

position?. 4,22 4,23 1,48 2,19 4,35 4,18 4,27 3,88 4,15 6,75 4,77 3,43 4,33 4,00 3,50 4,00 4,83 4,00 4,23 4,30 3,79 4,40 4,11 

How risky do you 

consider Working with 

heavy hand tools in place 

where there is no hand 

support?. 4,31 4,32 1,49 2,23 4,31 4,37 4,42 3,59 4,10 7,02 4,69 3,43 4,33 4,50 3,50 3,69 5,00 3,75 4,39 4,51 3,50 4,20 4,22 

How risky do you 

consider Working with 

heavy hand tools in a 

place where there is not 

good illumination?. 4,55 4,57 1,69 2,84 4,69 4,52 4,53 4,71 3,70 7,25 5,54 5,00 5,17 4,00 5,00 5,08 5,50 5,25 4,40 4,30 4,71 4,20 4,57 

How risky do you 

consider Work fixing or 

adjusting mobile machine 

parts using hand tools?. 3,91 3,87 1,66 2,75 4,14 3,80 3,99 3,41 3,00 6,42 4,69 4,00 4,00 4,00 3,00 4,31 4,50 3,75 3,86 4,02 3,93 3,20 3,76 

How risky do you 

consider Working with 

hand tools that have not 

been tested for proper 

operation?. 4,58 4,62 1,53 2,34 4,98 4,35 4,62 4,29 4,10 7,44 5,31 4,29 4,17 4,00 4,00 4,62 5,33 4,25 4,54 4,72 4,07 4,20 4,48 

How risky do you 

consider Working with 

hand tools without 4,51 4,52 1,46 2,14 4,59 4,52 4,53 4,41 3,85 7,42 5,31 3,43 4,83 4,50 4,00 4,23 5,67 4,75 4,47 4,42 4,07 4,60 4,52 
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Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

training before starting a 

new industrial task?. 

How risky do you 

consider Working with 

hand tools in a place 

without structured 

industrial tasks?. 4,58 4,61 1,49 2,23 4,71 4,55 4,58 4,53 3,85 7,48 5,62 3,57 4,83 5,00 4,00 4,31 5,67 5,50 4,51 4,72 4,29 4,00 4,44 

How risky do you 

consider Working with 

hand tools in a place 

without an accident 

prevention protocol?. 4,85 4,92 1,58 2,51 5,02 4,79 4,93 4,29 4,15 7,90 5,85 4,29 4,67 4,00 5,00 4,62 6,00 4,75 4,81 4,81 4,36 4,60 4,84 

How risky do you 

consider Working with 

hand tools in a place 

without a response 

protocol after suffering an 

accident?. 5,13 5,24 1,62 2,62 5,57 4,89 5,09 5,35 4,45 8,13 6,31 5,43 5,33 5,00 5,00 5,54 5,33 6,00 5,01 5,14 5,36 4,80 4,94 

How beneficial do you 

consider Working with 

incorrect hand PPE? 

(Personal Protective 

Equipment). 3,53 3,45 2,14 4,56 3,20 3,82 3,67 2,65 3,60 5,96 3,00 3,00 2,67 2,00 1,50 2,69 4,83 2,00 3,72 3,16 2,07 3,80 3,97 

How beneficial  do you 

consider Work with short 

tool handles that press 

into the palm of the 

hand?. 3,13 3,00 1,75 3,06 3,10 3,20 3,19 2,76 2,95 5,38 2,69 3,00 2,00 2,50 1,50 2,92 4,17 1,75 3,22 3,02 2,50 3,60 3,21 
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Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

How beneficial  do you 

consider Work with 

narrow tool handles that 

press deeply into the hand 

when the tool is used?. 3,02 2,90 1,74 3,02 2,73 3,27 3,18 2,00 2,65 5,21 2,92 2,71 1,83 2,50 1,00 2,77 3,50 1,75 3,15 2,56 2,07 3,80 3,38 

How benefical do you 

consider Working with a 

hand tool for the incorrect 

side? Example: if you are 

a right-hand person will 

you use a hand tool for a 

left-hand person. 2,93 2,84 1,6 2,56 2,82 3,04 3,08 1,94 2,40 5,06 2,31 3,00 3,00 2,50 1,00 2,62 1,67 2,50 3,14 2,74 2,21 3,80 3,05 

How benefical do you 

consider Working with 

hand tools that require big 

effort or rotational 

movement to use?. ### 3,35 1,75 3,05 3,41 3,51 3,58 2,53 3,20 5,83 3,23 3,29 2,33 3,00 1,50 3,38 3,67 1,75 3,58 3,14 2,64 3,60 3,70 

How benefical do you 

consider Working with 

hand tools that require a 

bad or uncomfortable 

posture?. 2,91 2,76 1,7 2,90 2,90 2,96 2,99 2,41 2,65 4,98 2,23 3,00 2,67 3,00 2,50 2,38 3,00 2,25 3,03 2,95 2,43 3,80 2,83 

How benefical do you 

consider Working with 

hand tools that require big 

holding time?. 3,25 3,15 1,77 3,12 3,29 3,27 3,36 2,59 2,85 5,54 2,85 3,71 2,33 3,00 1,50 2,92 3,33 2,25 3,40 3,00 2,71 4,00 3,38 

How benefical do you 

consider Working with 

hand tools with handles 3,11 2,97 1,98 3,92 3,10 3,17 3,24 2,35 2,60 5,46 2,62 2,57 2,83 3,50 1,00 2,85 2,50 2,25 3,28 3,00 2,57 4,40 3,11 
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Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

made of slippery 

materials?. 

How benefical do you 

consider Working with 

heavy hand tools without 

hanging support?. 2,70 2,56 1,7 2,89 2,61 2,77 2,74 2,35 2,35 4,48 2,08 3,86 2,33 2,50 1,50 2,92 1,33 1,75 2,82 2,40 2,86 2,60 2,76 

How benefical do you 

consider Working with 

heavy hand tools so that 

the hand and fingers are 

not able to easily grasp 

the tool?. 2,70 2,59 1,52 2,29 2,61 2,80 2,78 2,18 2,25 4,65 2,23 3,14 2,17 2,50 1,00 2,54 1,83 2,50 2,84 2,58 2,36 3,20 2,73 

How benefical do you 

consider working in 

spaces that are small or 

uncomfortable for the 

hand?. 2,85 2,72 1,66 2,75 2,73 2,97 2,95 2,18 2,70 4,79 2,15 3,00 2,83 2,00 1,50 2,38 2,00 3,00 3,02 2,65 2,43 3,40 2,94 

How benefical do you 

consider working with the 

wrist in a flexed 

position?. 3,04 2,94 1,64 2,68 2,78 3,27 3,16 2,29 2,55 5,23 2,77 3,00 2,50 2,50 1,50 2,69 2,50 2,75 3,20 2,86 2,57 3,40 3,14 

How benefical do you 

consider Working with 

heavy hand tools in place 

where there is no hand 

support?. 2,90 2,79 1,7 2,89 2,96 2,90 2,98 2,41 2,25 4,98 2,46 3,29 3,00 3,50 2,00 2,77 2,33 2,25 3,01 2,67 2,93 3,80 2,89 

How benefical do you 

consider Working with 

heavy hand tools in a 2,82 2,66 1,66 2,75 2,75 2,92 2,92 2,24 2,05 4,81 2,62 3,43 2,83 3,00 2,00 2,77 2,33 2,00 2,93 2,67 2,71 2,80 2,86 
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Descriptive Statistics 

Questions per domain: 

Risk Probability               

Risk Perception         

Expected Benefits 

Central tendency Country Gender Age profession Education 

x̄ x̄b SD σ 
x̄  

Hun 
x̄   

Ecu 
x̄  

male 
x̄  

female 

x̄      
15-
18 

    x̄  
19-
26 

       x̄     
27-
35 

       x̄  
36-
46 

       x̄  
46-
54 

x̄  
academic  

     x̄  
health  

x̄  
industrial  

   x̄  
other  

     x̄  
sales  

x̄  
student 

x̄  
BSc 

x̄  
Master 

x̄  
PhD 

x̄  
Other  

place where there is not 

good illumination?. 

How benefical do you 

consider Work fixing or 

adjusting mobile machine 

parts using hand tools?. 3,24 3,15 1,71 2,94 2,90 3,52 3,35 2,53 3,05 5,52 2,62 3,29 2,50 2,00 1,00 2,62 2,33 2,25 3,52 2,84 2,29 4,00 3,56 

How benefical do you 

consider Working with 

hand tools that have not 

been tested for proper 

operation?. 3,06 2,93 1,78 3,17 3,14 3,04 3,11 2,71 2,75 5,04 2,85 3,71 2,67 2,00 1,00 3,08 4,00 2,00 3,13 2,88 2,71 3,80 3,10 

How benefical do you 

consider Working with 

hand tools without 

training before starting a 

new industrial task?. 2,95 2,81 1,68 2,83 3,02 2,94 3,00 2,65 2,95 5,00 1,92 3,43 2,50 2,00 1,50 2,77 2,67 2,00 3,11 3,05 2,57 3,40 2,84 

How benefical do you 

consider Working with 

hand tools in a place 

without structured 

industrial tasks?. 3,27 3,17 1,77 3,13 3,33 3,27 3,31 3,00 2,90 5,42 3,00 3,86 3,00 2,50 1,50 3,46 3,17 2,75 3,35 3,07 3,00 3,80 3,32 

How benefical do you 

consider Working with 

hand tools in a place 

without an accident 

prevention protocol?. 3,04 2,90 1,95 3,79 3,10 3,04 3,08 2,76 2,55 5,17 2,69 3,43 2,67 2,00 2,00 2,85 3,33 2,50 3,14 2,84 2,71 3,60 3,11 
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ANNEX 5 Informed consent for EMG fatigue recognition experiment 
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