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1
Introduction

Every theory of the course of events in
nature is necessarily based on some
process of simplification of the
phenomena and is to some extent
therefore a fairy tale.

Sir Napier Shaw: Manual of
Meteorology: I, 123.

Complexity and diversity of biological processes can be inspirational and daunting at
the same time. During my studies I had the opportunity to delve deeper into two tasks,
which are both connected to physiological signals and have their merits on their own. First,
I will introduce the two larger topics of my dissertation and since they may seem as a bit
distant scientific fields, I also wish to highlight the common threads that run along them.
The beauty of mathematical modeling is that describing the dynamics of the blood glu-
cose level and fitting models of laser speckle contrast imaging require very similar set of
tools and methods. Throughout the different physiological processes, I was mainly dealing
with model creation, parameter estimation and what surrounds these topics: identifiabil-
ity, parameter sensitivity, signal processing and optimization. First part of my dissertation
describes my research related to providing better personalizations in diabetes therapy and
explaining patient dynamics with a focus on simpler mathematical models. In the second
part, I aimed to extend the current mathematical models of laser speckle imaging and
improve the method through various optimizations.

Diabetes is a chronic disease that is estimated to affect 537 millions of people world-
wide [R1]. Type 1 diabetes is a specifically dangerous form of the disease, since the ceasing
of insulin hormone production requires a constant exogenous insulin intake. The constant
insulin is needed to keep the patient’s blood glucose level in a healthy range; without it,
the insulin dependent cells cannot withdraw glucose from the plasma, and the high blood
glucose level (hyperglycemia) leads to various physiological complications such as retinopa-
thy, nephropathy, neuropathy, macrovascular complications [R2]. Also, insulin cannot be
injected or infused arbitrarily as increased levels of plasma insulin can lead to low glucose
values (hypoglycemia), which creates life-threatening condition by not providing fuel to the
brain, whose main nutrition is glucose.

Type 1 diabetes management have come a long way since the invention of insulin [R3].
Insulin delivery moves from multiple daily injections to continuous infusion, from insulin
pens to insulin pumps. Glucose measurement moves from intermittent sampling to con-
tinuous measurement, from finger prick to minimal invasive sensors. Lastly, but not least
automated delivery systems gain popularity by utilizing the continuous manner both in the

1
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World

2021 537 million

2030 643 million

2045 783 million 46%
increase

2021 51 million

2030 57 million

2045 63 million

North America & Caribbean (NAC)

24%
increase
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Western Pacifc (WP)
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increase

Figure 1.1: Number of people with diabetes worldwide and per IDF Region in 2021-2045
(20-79 years)[R1].
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input and the measurement. An automated delivery system (or artificial pancreas) aims to
alleviate the burden of constant monitoring and controlling of blood glucose by assigning
the task to an algorithm. In the last decade or so four such systems got the approval of the
Food and Drug Administration of the United States [R4, R5, R6, R7].

The control algorithms of automated insulin delivery systems take into account the past
values of the blood glucose concentration, and try to calculate an insulin amount which will
– based on the information the system has – keep the blood glucose in a healthy range. The
calculation is a difficult task for several reasons, few important ones are as follows: 1) The
algorithm has to face interpatient variability. (Physiology of the patients can differ greatly,
making it difficult for a single algorithm to handle a heterogeneous group of people.) 2)
Variability also occurs during the day, due to the circadian rhythm of the patient – usually
referred to as intrapatient variability. 3) Carbohydrate intakes, physical activity, stress
and such introduce disturbances which need a constant compensation. So that the algo-
rithm could make informed decisions, one approach is to provide additional information
about the dynamics of the patient and disturbances. My journey joins this path, where I
started off with different Kalman filters for state and disturbance estimation; I continued
my way through moving horizon estimation based methods. I relied heavily on optimiza-
tion and applied various constraints to achieve better results without sacrificing on the
altar of overparametrization. Usually model predictive controllers are considered as to-
day’s state-of-the-art algorithms; they can take into account constraints and provide good
disturbance rejection [R8, R9]. Also, they can be fine-tuned to the patient by setting the
parameters of the underlying mathematical model. This also means that usually the per-
formance of the controller relies heavily on the accuracy of the parameters, which implies
the requirement of accurate patient parameter estimation.

Laser speckle contrast imaging (LSCI) is situated on the other side of the medical work-
flow of diabetes; so far I described the tools that I investigated and related to diabetes
treatment. On the other hand, LSCI is tied to the diagnosis part by the possibility to moni-
tor microcirculation in diabetic feet. Diabetic foot ulcers are one of the main complications
of diabetes. A significant factor in causing diabetic foot ulcers is the microvascular dys-
function which leads to impaired perfusion (ischemia). The early and accurate evaluation
of the severity of the microcirculation deficiency is essential in clinical decision making.
Current techniques lack the ability to quantify the severity of the ischemia and have poor
prognostic values. There are studies suggesting that LSCI can be a method to quantify the
ischemia in a diabetic foot in a non-invasive manner [R10, R11]. However, the technique
have some shortcomings which I focused on in my research.

LSCI is a noninvasive imaging technique, and mainly used for generating blood flow or
perfusion maps. The working principle is based on the interference pattern caused by the
reflection of coherent light from a medium with static and dynamic scatterers. Scattering
coherent light gets amplified and attenuated depending on the structure of the medium,
which leads to a random pattern the so-called speckles. In the specific case when the re-
flective medium is completely static, the imaging device observes a frozen pattern of the
so-called speckles. However, if motion occurs (e.g. blood flows) the pattern changes and
decorrelates in time, and the exposed image turns out to be blurry. The local level of decor-
relation (or blurriness) can be quantified by calculating the contrast in a region of interest.
Carrying out the calculation using a sliding window results in a contrast map, which tells
us about the relative flow speeds in vessels with various sizes, the progression of diabetes-
induced vascular complications [R10] or regeneration of a burned tissue [R13, R14]. Dis-
advantages of the technique is the relatively low dynamic range, under- or overexposure
can also greatly affect the observed contrast values.

During my studies I modeled different aspects of LSCI or aimed to improve the tech-
nique. In both cases my methodologies relied heavily on optimization, either to improve
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the dynamic range by optimizing the laser pulse sequence, or by validating the models
when fitted to simulated and/or real world data. In summary, the recurring themes in
my dissertation are model development, simulations and parameter estimation by using
optimization methods.
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(a) Images of changing
speckle patterns caused by
dynamic scatterers.

Raw speckle image
as observed by a camera

(static scatterers)

Raw speckle image
as observed by a camera

(dynamic scatterers)

(b) Exposed images of speckle patterns with finite exposure
length.

Figure 1.2: Illustration of projected speckle patterns and exposed images with static and
dynamic scatterers [R12].

Monochrome camera

LSCI for blood flow monitoring
LSCI for remote

small animal experiment monitoring

Laser

Monochrome camera

Raw speckle imageRaw speckle image

Laser

Inverse contrast map Inverse contrast map 

Figure 1.3: Application areas of LSCI. The raw speckle image for the blood flow monitoring
is for illustration purposes [R15]. In the inverse contrast maps brighter pixels correspond
to more movement/higher blood perfusion. On the left hand side the rectangles show ves-
sels with different diameter and flow speed.
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Kalman filter

Thesis group 1: State and disturbance estimation in Artificial
Pancreas using Kalman filters

Thesis 1
I developed and investigated Kalman filters for state/param-
eter and disturbance estimation in Artificial Pancreas ap-
plications. My focus was on developing extended Kalman
filters based on linear parameter varying methodology.
Thesis 1.1
I have developed Joint and Dual Kalman filters for state and dis-
turbance estimation using linear parameter varying methodol-
ogy. I analyzed different linear parameter varying discretiza-
tion methods and scheduling parameter selections.
Thesis 1.2
I developed a Kalman filter tuning method to acquire consistent
results and outcomes in the evaluated scenarios. I contributed
to the comparison of the developed filters. The filters were com-
pared across different models, estimated variables and to a slid-
ing mode observer.

Publications relevant to the theses: [C1, C2, J1, J2].

2.1 Introduction

A major hurdle in artificial pancreas applications is data scarcity. In practice, the typically
utilized information is the Continuous Glucose Monitoring Sensor (CGMS) measurements
and demographic data such as body weight. As the physiology and processes of a human
organism is a complex system – a network of multitudinous interconnected subsystems – it
is cumbersome to describe them with a limited number of measurable variables. The most
well-known of the observers in the field are the different realizations of the Kalman filter
(KF) [R16]; their performance is evaluated on different terms (general, fault detection, in-
sulin estimation) in [R17, R18, R19], respectively. A crucial element in the observer design
is the model. The medium-complexity Hovorka model [R20] has been widely used to design
observers for glucose control [R21, R22]. However, its large number of parameters could
complicate model identification and observer tuning. For this reason, the use of simpler

6
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models might be desirable. Extensions of the Bergman’s minimal model [R23], such as the
Identifiable Virtual Patient model (IVP) [R24] might be an appealing option in this regard,
as shown in [R25] and [R18]. Necessarily, a price to pay for model simplification is a loss of
accuracy in modelling certain physiological behaviours. For example, while renal glucose
clearance is considered in the Hovorka model, the IVP does not.

One goal of this research was to determine how the model complexity affects the perfor-
mance of the observer. To this end, the well-accepted Hovorka model in [R20] was compared
to IVP presented in [R24].

2.2 Investigated models

2.2.1 Identifiable Virtual Patient Model

The IVP model [R24] is a compromise between Bergman’s model [R23] and the Hovorka
model regarding structural complexity and accuracy. Its equations are described below:

İSC(t) = − 1

τ1
· ISC(t) +

1

τ1CI
· u(t) (2.1)

İP (t) = − 1

τ2
· IP (t) +

1

τ2
· ISC(t) (2.2)

İEFF (t) = −p2 · IEFF (t) + p2 · SI · IP (t) (2.3)

Ġ(t) = −(GEZI + IEFF (t)) ·G(t)+

+ EPG+RA(t)
(2.4)

where ISC(t) and IP (t) represent the subcutaneous and plasma insulin concentrations
(mU/L), respectively. IEFF (t) is the insulin effect

(
min−1

)
and G(t) is the plasma glucose

concentration (mg/dL). The inputs of the model are the subcutaneous insulin infusion u(t)
(µU/min), and the rate of glucose appearance RA(t) (mg/dL/min) from the meal absorp-
tion. Note that the RA(t) is generally unknown due to the complexity of meal absorption
dynamics, influencing factors like nutritional composition and alcohol intake. Hence, the
RA(t) will be estimated in this work. Lastly, τ1 and τ2 (min) refer to the insulin absorption
time constants, p2 is the kinetic rate for insulin action

(
min−1

)
, SI is the insulin sensitivity

(mL/µU/min), EGP is the hepatic glucose production, GEZI is the glucose effectiveness at
zero insulin

(
min−1

)
and CI denotes the insulin clearance (mL/min).

2.2.2 Hovorka model

The Hovorka or Cambridge model is considered a medium complexity model by the arti-
ficial pancreas scientific community. The model consists of 8 dynamic states and a couple
of additional algebraic equations if the carbohydrate absorption sub-model is lumped, and
replaced with the RA(t) term, as in the IVP model previously described. The dynamic
equations are given by [R20]:
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Q̇1(t) = −F01c(t)− FR(t)− x1(t)Q1(t) + k12Q2(t)

+ EGP0(1− x3(t)) +RA(t),
(2.5)

Q̇2(t) = Q1(t)x1(t)− (k12 + x2(t))Q2(t), (2.6)

İ(t) =
S2(t)

τSVI
− keI(t), (2.7)

ẋ1(t) = −ka1x1(t) + kb1I(t), (2.8)
ẋ2(t) = −ka2x2(t) + kb2I(t), (2.9)
ẋ3(t) = −ka3x3(t) + kb3I(t), (2.10)

Ṡ1(t) = u(t)− S1(t)

τS
, (2.11)

Ṡ2(t) =
S1(t)

τS
− S2(t)

τS
, (2.12)

where Q1(t) (mmol/kg) is the glucose content in the accessible compartment, Q2(t) (mmol/kg)
is the glucose content in the non-accessible compartment, RA(t) (mmol/kg/min) is the rate
of glucose appearance, I(t) (mU/L) is the plasma insulin concentration. x1(t)

(
min−1

)
is

the remote effect of insulin on glucose distribution, x2(t)
(
min−1

)
is the remote effect of

insulin on glucose disposal, x3(t) (1) is the remote effect of insulin on endogenous glucose
production in the liver. S1(t) (mU/kg) is the insulin in the accessible compartment and
S2(t) (mU/kg) is the insulin in the non-accessible compartment. Input of the system u(t)
(mU/kg/min) is the insulin infusion. The parameters: k12

(
min−1

)
is the transfer rate from

the non-accessible compartment to the accessible, EGP0 (mmol/kg/min) is the endogenous
glucose production in case of zero insulin level, ke

(
min−1

)
is the insulin clearance. The pa-

tient’s insulin sensitivities on transport, disposal and, glucose production are determined
by the ka1,2,3

(
min−1

)
and kb1,2 (L/mU/min/min), kb3 (L/mU/min) parameters. The insulin

absorption time constant is denoted by τS (min) [R20].
Supplementary algebraic equations are defined by:

F01c(t) =

{
F01, if G(t) ≥ 4.5 mmol/L

F01G(t)/4.5, otherwise
, (2.13)

FR(t) =

{
0.003VG(G(t)− 9), if G(t) ≥ 9 mmol/L

0, otherwise
, (2.14)

G(t) =
Q1(t)

VG
, (2.15)

where F01c (mmol/kg/min) is the glucose consumption of the central nervous system, while
F01 represents the consumption at ambient glucose concentration, FR (mmol/kg/min) is the
renal excretion of glucose in the kidneys, G(t) (mmol/L) is the actual output of the system:
blood glucose concentration, VG (L/kg) is the glucose distribution volume [R20].

The units of the models can be converted in the following way: 1 (mmol/L) = 18 (mg/dL)
for the blood glucose level, 1 (mmol/kg/min) = 180/Vg (mg/dL/min) for the rate of appear-
ance, where Vg(dL/kg) is the glucose distribution volume. The conversion between the in-
sulin infusion is 1 (mU/kg/min) = 1000/BW (µU/min), where BW (kg) is the body weight.
Note that the IVP model expresses the variables relative to the volumes, while the Hovorka
model, relative to the body weight.

The UVa-Padova simulator was selected to identify the models. The simulator received
the approval of the Food and Drug Administration to be used as a substitute for preclinical
trials with animals [R26]. Also, the simulator model could fit glucose profiles from clinical
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data [R27], and its meal model reconstructed the RA with more accuracy than other models
in the literature [R28]. Finally, it includes a realistic cohort of virtual subjects [R29].

We identified two parameter sets: a population value parameter set (or average model)
and individualized parameter set. The population value parameter set was determined
from the average subject in the simulator. The individualized parameter sets were obtained
by identifying two of the most sensitive parameters for each of the 10 individuals in the
adult cohort (of the academic version of the simulator), while the remaining parameters
were set to their corresponding values in the average model. The identification procedure
followed the pathway of [R30]: checking the structural identifiability, ranking the sensitive
parameters, and identifying the parameters.

2.3 Methods

2.3.1 Identifiability analysis

Structural identifiability defines the possibility of determining under ideal conditions (e.g.
absence of noise) a unique value (structurally globally identifiable) or a finite set of values
(structurally locally identifiable) for model unknown parameters, with the only information
of the inputs and outputs [R31]. To analyse the structural identifiability, the generating
series approach was used since it is a trade-off method between computational cost and
provided information regarding other techniques in the literature [R31]. The analysis was
performed with the GenSSI 2.0 software described in [R32].

The inputs considered in the identifiability analysis were the insulin infusion and RA.
Since the RA was available for the identification, parameters related to the carbohydrate
absorption dynamics – the glucose distribution volume in the IVP model [R24] and the pa-
rameters DG (amount of carbohydrates digested), AG (carbohydrate bioavailability), tmaxG

(maximum time for the rate of glucose appearance) in the Hovorka model [R20] – were
excluded from the analysis. In addition, the weight BW in the Hovorka model is known,
thus it was neither considered in the identification.

2.3.2 Sensitivity analysis

A global sensitivity analysis was performed with a twofold purpose: 1) to reduce the num-
ber of parameters to be identified in the Hovorka average model, and 2) to select the two
parameters to be individualized in the personalized IVP and Hovorka models. The same
parameters included in the identifiability analysis were considered in the sensitivity anal-
ysis.

For the sensitivity analysis, the AMIGO2 Matlab toolbox was utilized [R33]. The sen-
sitivity is calculated by changing the parameters which result in various trajectories. Dif-
ferent measures can be applied to these trajectories, the most common ones are the root-
mean-square deviation and the mean absolute deviation. In order to get a more robust
result, several steps were taken. The simulations of the trajectories were repeated with
different initial conditions or input schemes. The sensitivity values were normalized at
each time instance for all the parameters. The toolbox utilized the Latin Hypercube Sam-
pling (LHS). The LHS method provides an even distribution of all the parameters in the
given range, with a relatively low amount of necessary samples. The parameter bounds
were calculated by applying to the nominal values in [R34] and [R24] a deviation of ±5σ,
where σ denotes the standard deviation provided in the referred articles, but saturating
to 0 if negative values appeared. The simulation of a given parameter set was only con-
sidered in the calculation of the sensitivity if the BG remained in the following range:
1.8 < BG < 25 mmol/L in order to avoid entirely unrealistic trajectories.



2. Kalman filter

If a general nonlinear system is defined in the form of 0 = f(ẋ, x, p, u, t), where p are the
parameters, then the sensitivities sp =

∂x
∂p can be given with the Jacobians: ∂sp

∂t = ∂f
∂xsp+

∂f
∂p

s.t. sp(0) = 0.
The toolbox normalizes with the value of the parameter and with the value of the output

in the given discrete step:

Sp,k =
pi

y(k)
sp,k (2.16)

where Sp,k is the normalized or relative sensitivity of the parameter p in the k − th
discrete step, y(k) is the output and pi is the i − th sample from the LHS. The ranking of
the parameters is based on the final measure defined by:

δmsqr
p =

1

nenlhsnk

√√√√ ne∑
e=1

nlhs∑
i=1

nk∑
k=1

(Sp,k)
2 (2.17)

where ne is the number of different setups for experiments (initial conditions or input
schemes), nlhs is the number of sampled values of the parameters, nk is the number of
discrete points at which the system is evaluated.

2.3.3 Identification

On the one hand, in the identification of the average models, all the sensitive and mildly
sensitive parameters were considered, as suggested in [R30]. The insensitive parameters
were set to the nominal parameters in [R20] for the Hovorka model, and the means of the
parameters listed in [R24] were considered for the IVP model. On the other hand, two
parameters in the sensitive group were individualized for the personalized models. The
remaining parameters were fixed to the corresponding values in the average model. To
identify the Hovorka model, the parametrization of the model in terms of insulin sensitiv-
ities (Si1 = kb1/ka1, Si2 = kb2/ka2 and Si3 = kb3/ka3 ) was utilized as in [R20].

The identification consisted of two optimization problems: one that identifies insulin-
related states by minimizing the normalized root-mean-square error (NRMSE) of the plasma
insulin; and another one that identifies the insulin effect and glucose-related parameters
by minimizing the NRMSE of the glucose measurement. The NRMSE is defined by:

NRMSE(x) =

√∑N
i=1 (xmodel − xUV a)

2

N
· 1

xmax
UV a − xmin

UV a

, (2.18)

where xmodel represents the glucose or plasma insulin obtained by the IVP or Hovorka mod-
els. xUV a denotes the “real" measurements, whereas the superscripts max and min refers
to the maximum and minimum values of these measurements, respectively. This two-step
optimization procedure targets a better identification of the insulin pharmacokinetics, as
discussed in [R24]. The inputs to the optimization problem were the glucose, the plasma
insulin, the insulin infusion, and the meal disturbance. We generated these inputs from
a 3-meal simulation of the average adult patient (for average models) or the adult cohort
(for personalized models). Of note, the full knowledge of these inputs is impractical for
real applications, but they were used in this study to ensure accurate identification of the
parameters.

The genetic algorithm in the Global Optimization Toolbox of Matlab 2018b (ga func-
tion) was utilized to solve the above-described optimization problem. The algorithm was
configured with its default settings [R35].

Finally, the identification of the models was assessed in terms of the NRMSE using, as
in the identification, a 3-meal scenario, but with different instances of variability.
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2.3.4 Kalman filters

Besides the estimation of the state variables, our goal was to estimate the RA as well. To
do so in the case of KFs, the engineer has two main options. The most straightforward
and largely applied technique is the augmentation of the state vector with the parameter
or disturbance term, giving rise to the joint KF (JKF) [R36]. Another possibility is to use
separate KF for the state and parameter/disturbance estimation problem; this observer is
called the dual KF (DKF) [R36]. Both observers hypothesize that the parameters are static:
in the prediction phase, the parameter in the next step holds the value of the previous
step. For the application of the observers, the models are either discretized by the Euler or
Complete method. In addition, the benefits of linear parameter varying (LPV) formulation
were exploited in this article to handle non-linearities in KFs design. Consequently, more
complex KF-based algorithms (such as Extended KF or Unscented KF) were avoided [R17].

LPV modeling technique is an approach to handle the nonlinearities of the given sys-
tem. If one the parameters is not a free signal such as an inner state variable, then it is
called quasi-LPV or qLPV. The continuous time qLPV state-space representation (qLPV-
SS) is defined as follows [R37]:

ẋ(t) = A(p(t))x(t) +B(p(t))u(t) , (2.19a)

y(t) = C(p(t))x(t) +D(p(t))u(t) , (2.19b)

where the p(t) = [p1(t) . . . pR(t)] parameter vector consists of the so-called scheduling pa-
rameters pi(t). p(t) ∈ ΩR ⊂ RR is an R-dimensional real vector within the set Ω =
[p1,min, p1,max]× [p2,min, p2,max]× . . .× [pR,min, pR,max].

Either the IVP or the Hovorka model accept a qLPV-SS representation:

• IVP model. Selecting p(t) = G(t) as scheduling parameter leads to the following
qLPV representation:

A
(
p(t)

)
=


−GEZI + EGP

p(t) −p(t) 0 0 1

0 −p2 p2SI 0 0
0 0 − 1

τ2
1
τ2

0

0 0 0 − 1
τ1

0

0 0 0 0 0

 , (2.20)

B =
[
0 0 0 1

τ1CI
0
]T

, (2.21)

C =
[
1 0 0 0 0

]
, (2.22)

D = [0], (2.23)

where the additional 5th state variable is the estimated disturbance, namely the RA:

• Hovorka model. Taking:

p(t) = [
EGP0 − F01c(t)− FR(t)

Q1(t)
, Q1(t), Q2(t)]
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the qLPV representation is as follows:

A
(
p(t)

)
=



p1(t) k12 0 −p2(t) 0 −EGP0 0 0 1
0 −k12 0 p2(t) −p3(t) 0 0 0 0
0 0 −ke 0 0 0 0 1

τSVI
0

0 0 kb1 −ka1 0 0 0 0 0
0 0 kb2 0 −ka2 0 0 0 0
0 0 kb1 0 0 −ka3 0 0 0
0 0 0 0 0 0 − 1

τS
0 0

0 0 0 0 0 0 1
τS

− 1
τS

0

0 0 0 0 0 0 0 0 0


, (2.24)

B =
[
0 0 0 0 0 0 1 0 0

]T
, (2.25)

C =
[

1
VG

0 0 0 0 0 0 0 0
]
, (2.26)

D = [0], (2.27)

Since the selected parameters are not directly measurable, they have to be estimated by
the observer and can introduce additional inaccuracies compared to an LPV model where
the parameters are measurable. The additional 9th state variable is the estimated distur-
bance, namely the RA(t).

Utilizing the benefits of the discretized LPV representation, a linear discrete Kalman
filter can be applied to the nonlinear system [R38, R39]. In the case of the JKF, the di-
mension of the covariance matrix is extended by the number of parameters. In this case,
because of the supposition of the parameters, the exact discretization method cannot be
applied. This is due to the arising singularity issue, thus explicit Euler method is applied:

A
[
p[k]

]
= I+ TsA

(
p(kTs)

)
, (2.28)

B
[
p[k]

]
= TsB

(
p(kTs)

)
, (2.29)

C
[
p[k]

]
= C

(
p(kTs)

)
, (2.30)

D
[
p[k]

]
= D

(
p(kTs)

)
, (2.31)

where the parentheses indicate the continuous LPV representations of state-space matri-
ces, while the brackets the discretized ones of the corresponding model. Sample time is
denoted by Ts, while the discrete step by k.

On the contrary, the DKF can be implemented using the exact discretization given by:

A
[
p[k]

]
= eA

(
p(kTs)

)
Ts , (2.32)

B
[
p[k]

]
= A−1

(
p(kTs)

)(
eA(p(kTs))Ts − I

)
·B

(
p(kTs)

)
, (2.33)

C
[
p[k]

]
= C

(
p(kTs)

)
, (2.34)

D
[
p[k]

]
= D

(
p(kTs)

)
, (2.35)

As a result of the LPV discretization, the discrete propagation can be expressed in the
following state-space form:

x̂−[k] = A
[
p[k]

]
x̂[k − 1] +B

[
p[k]

]
u[k − 1], (2.36)

P−[k] = A
[
p[k]

]
P[k − 1]AT

[
p[k]

]
+Q, (2.37)

P−
p [k] = Pp[k − 1]λ−1, (2.38)
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JKF DKF
state vector [xs xp]

T xs, xp

state vector dim. (n+ p) x 1 n x 1, p x 1
state matrix dim. (n+ p) x (n+ p) n x n

error covariance matrix dim. (n+ p) x (n+ p) n x n, p x p
Kalman gain dim. (n+ p) x 1 n x 1, p x 1

Table 2.1: Comparison of JKF and DKF

where u[k− 1] is the integral of the continuous input from (k− 1)Ts to kTs. The x̂− and P−

are the predicted state variables and error covariance, respectively, while x̂ and P are the
posteriori state estimate and posteriori error covariance. The Q process noise covariance
matrix is the tuning parameter and the λ is the forgetting factor.

In the update phase, the predicted values are corrected with the new measurements:

K[k] = P−[k]CT ·
[
p[k]

](
C
[
p[k]

]
P−[k]CT

[
p[k]

]
+R

)−1
, (2.39)

x̂[k] = x̂−[k] +K[k]
(
y[k]−C

[
p[k]

]
x̂−[k]

)
, (2.40)

P[k] =
(
I−K[k]C

[
p[k]

])
P−[k]. (2.41)

The main differences between the filters are summarized in Table 2.1, where n is the
number of state variables and p is the number of parameters.

The study included 4 different KFs. The filters can be categorized by type and utilized
model. A specific filter is identified by a consequent notation: the model name (IVP or
Hovorka), followed by the abbreviation of the filter type (DKF or JKF). During the tuning
process, the virtual patient and the observer utilized the same model, either the IVP or
the Hovorka; dissimilarity between them was caused by a fixed +30% variability in all
the model parameters. This amount of variability is in physiologically relevant ranges
according to [R34, R24]. The Q covariance matrix had non-zero elements only in the main
diagonal.

To lessen the human factor, and make the comparison between observers fairer, we
tuned the Q matrix with Matlab GA. The optimization was done on a 24-hour-long BG
trajectory of a virtual patient with parameter variability. The optimization was driven
by a cost function where only the transients were considered, as we observed in previous
simulations that the filters cannot compensate for the steady-state offset. If the whole
trajectory would be taken into account, the optimizer would adjust the transient to reduce
the cost function; however, it can result in distorted, unfavourable responses, as shown in
Fig. 2.1. The result of a tuning considering only the transient is denoted by “A”, while a
tuning taking into account the steady-state also is denoted by “B”. Although “B” yields a
lower NRMSE compared to “A”, the latter one is preferred, since it provides a more realistic
waveform.

The elements lying in the main diagonal of the Q covariance matrix were the tuning
parameters, also known as genes of an individual. The lower bounds of the parameters
were set to zero. The upper bounds were set to a value at least as large, as if this value
would be the only non-zero element in the Q matrix, the filter would still converge to the
measurements. The numerical results are shown in Table 2.2.

Since this tuning method utilizes all the state variables, it can be applied only in-silico,
due to the non-measurable variables in clinical practice. This was a reasonable compromise
to make since our main goal was to provide uniform settings during the investigations.
There is a significant difference in the number of state variables between the models, the
Dalla Man model (used by the UVa-Padova simulator) has 20 state variables, the Hovorka
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DKF JKF
Not. IVP Hovorka IVP Hovorka
1,1 18000 0.2418 17990 0.5814
2,2 2.993·10−6 2.498 2.909·10−6 0.1831
3,3 5 8.377·10−5 4.986 1.252·10−5

4,4 48.13 1.867·10−4 49.99 0.005
5,5 18000 1.974·10−5 18010 0
6,6 0.75 2.199·10−3 - 0.0186
7,7 - 4.861·10−5 - 9.967·10−4

8,8 - 4.986·10−5 - 9.150·10−4

9,9 - - - 9.951
Qp - 1000 - -
λ - 0.8742 - -

Table 2.2: KF tuning table. The notations indicate the element of the Q matrix. As an
example 2,2 is the element in the second row and in the second column
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Figure 2.1: Effect of not compensating the steady state offset.

model has 8 state variables and the IVP model has 4 state variables. There are three
equivalent variables between the models (with different units of measurement), namely
the BG, Ip, and RA. To achieve that these common variables are presented with the same
weights in the cost functions (2.44)-(2.45), two coefficients are introduced. By applying the
weights 9

5 and 3
5 in (2.45), the error in the BG, Ip and RA yields the same amount of cost in

the Hovorka and the IVP model independently of their corresponding system order.
During the tuning process, it has been observed that the genetic algorithm could overfit

the optimization scenario and small-amplitude oscillations could appear or the shape of
the trajectory can be unrealistic as shown in Fig. 2.1. To avoid this artefact, a measure of
oscillation was formulated and penalized in the cost function. The penalizing coefficient,
xosc, is calculated in the following way:
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xosc =
n∑

i=3

| sgn(xi − xi−1)− sgn(xi−1 − xi−2) |, (2.42)

k =

{
10, if xosc > threshold

1, otherwise
(2.43)

where x is the state vector of the applied models, n is the number of samples, and the
thresholds were dependent on the direction changes of the reference trajectory. These
numbers were determined in a way, to ensure that the estimated trajectory has the same
number of direction changes as the reference. The k penalizing coefficient increases the
cost by an order of magnitude, enforcing the genetic algorithm to find a solution under the
threshold. We found that the CGMS noise does not affect significantly the final result, thus
the generated measurement data was the true blood glucose values of one of the models.
Taking into account the aforementioned factors, the cost functions JIV P and JHovorka have
been developed for each virtual patient model:

JIV P = k(eG + eIeff + eIp + eIsc + eRA
) (2.44)

JHovorka = k
(9
5
(eG + eIp + eRA

) +
3

5
(eQ2 + ex1 + ex2 + ex3 + eS1 + eS2)

)
(2.45)

where e denotes the NRMSE of the given state variable (see the corresponding notations
in [R20] and [R24]) and k is the penalizing coefficient.

2.3.5 General description

The purpose of the comparison is to study the impact on the estimation performance of the
following factors:

• “Model": the structure of the model was considered by comparing the IVP model.

• “Observer": the observers were assessed with the comparison of the NSMO.

We performed 6 simulations – one for each combination of models and observers – with
the academic version of the UVa-Padova simulator [R40], which was extended with added
features for intra-patient variability generation. The scenario consisted in a 24-h simu-
lation including three meals (45 g at 7 h, 70 g at 14 h, and 60 g at 21 h) and multiple
sources of variability, namely, CGMS error according to the default model in the simula-
tor; sinusoidal-based circadian insulin variation with uniformly-distributed amplitude of
±30%; and, variability of subcutaneous insulin absorption according to a uniform distri-
bution of ±30%. For each of the 10 virtual adults, we repeated the simulation three times
with different variability instances.

Remark that when comparing different types of observers, tuning may bias the results.
For the fairness of the comparison, we tuned the three observers for them to perform sim-
ilarly under the same tuning scenario. To this end, we set the Q matrix of the KFs by
optimization, and the disturbance bound of the NSMO by exhaustive simulations.

2.3.6 Statistical analysis

We used the root-mean-square error (RMSE), the median absolute error (MAE), and the
maximum absolute error (MaxAE) to study the estimation accuracy of the BG, Ip, and RA.
To avoid influencing the metrics with the initial condition transient, we neglected the first
30 min of the simulation when computing the metrics.
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For each signal, a multifactorial ANOVA determined whether the factors “Model" and
“Observer" and their interaction explained the variability found in the performance met-
rics. Since all the simulations shared the cohort of patients and the meals, the hypothesis
of independence was unmet[R41]. For this reason, we considered as new covariates the
factor “Subject" – the identifiers for each of the virtual subjects – together with the inter-
actions “Subject:Model" and “Subject:Observer".

When a factor (or interaction) was significant, a pairwise comparison was performed
to determine which level (or combination of levels in the interaction) cause the factor (or
interaction) to be significant. Given the skewness of the distribution, the sign test was
selected to determine if the median difference between the performance metrics of the
groups is significantly different from 0 at a 0.05 confidence level [R42]. The Benjamini-
Hochberg p-value correction approach [R43] was applied to control the false discovery rate
in the case of multiple comparisons.

The ANOVA and sign test only inform whether the observed differences among the
levels of a factor are non-random (statistically significant difference) or they originated
from the randomness of the simulations. However, these tests do not inform about the
magnitude of these differences or their practical relevance. To analyse this information, we
calculated two metrics: the eta-squared (η2) – which measures the proportion of variance
associated with each factor [R44] –, and the 95% confidence interval around the median
difference (with the correction in[R45] to control the false coverage rate).

2.3.7 Virtual Patient Model

The analysis of the structural identifiability of the IVP model determines that all the pa-
rameters are structurally locally identifiable when the plasma insulin is measured, which
is coherent with the results in [R24]. The sensitive parameters are SI , EGP , CI , and GEZI;
whereas, parameters τ1, and p2 are mildly sensitive. The only insensitive parameter is τ2;
its nominal value was used instead of being identified.

Among the sensitive parameters, we individualized SI and CI because they are related
to the steady state conditions of all the state variables. Table ?? shows the identified
parameters for the 10 virtual adults in the UVa-Padova simulator.

2.3.8 Hovorka model

Likewise the IVP model, the Hovorka model parameters are structurally locally identifi-
able if the plasma insulin is known. The sensitive parameters of this model are Vi, ke,
Si1, k12, Si2, F01, Si3; the mildly sensitive are EGP , τs and Vg and finally, the insensitive
parameters are the remaining ones. The sensitive and mildly sensitive parameters were
included in the identification of the average model, while the insensitive ones were fixed
to the nominal values in [R20]. Parameters Vi and Si1 were selected to be individualized,
since they are the most sensitive gains of the insulin subsystem and glucose subsystem,
respectively. Table ?? includes the identified parameters.

2.4 Identification assessment

The identified parameters of the average models (Tables ?? and ??) accurately fitted the
glucose; they achieved an NRMSE of 9.87% for the IVP model and 6.32% for the Hovorka
model.

Both models achieved a low NRMSE for the plasma insulin. However, the IVP model
fits the plasma insulin better (3.69% vs. 6.38%). The main difference between the models
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Parameter Average patient Individual

SI (mL/µU/min) 7.03 · 10−4

6.95 · 10−4

6.19 · 10−4

6.34 · 10−4

7.88 · 10−4

7.25 · 10−4

4.59 · 10−4

6.77 · 10−4

6.79 · 10−4

7.35 · 10−4

7.74 · 10−4

EGP (mg/dL/min) 1.49 -

CI (mL/min) 1.11 · 103

1.16 · 103
1.13 · 103
1.28 · 103
1.02 · 103
9.31 · 102
1.15 · 103
1.09 · 103
1.09 · 103
9.06 · 103
1.18 · 103

GEZI
(
min−1

)
3.03 · 10−8 -

τ1 (min) 52.71 -
τ2 (min) 45.41 -

p2
(
min−1

)
2.85 · 10−2 -

Table 2.3: Virtual Patient model parameters. The parameter τ2 was obtained as the mean
of the values included in [R24]
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Parameter Average patient Individual
τs (min) 43.00 -

ke
(
min−1

)
1.36 · 10−1 -

Vi (L/kg) 1.18 · 10−1

1.09 · 10−1

1.04 · 10−1

1.36 · 10−1

1.16 · 10−1

1.05 · 10−1

1.19 · 10−1

1.74 · 10−1

8.41 · 10−2

1.00 · 10−1

1.09 · 10−1

Vg (L/kg) 2.22 · 10−2 -
k12

(
min−1

)
9.11 · 10−2 -

Si1

(
min−1 per mUL−1

)
2.13 · 10−3

2.20 · 10−3

1.65 · 10−3

1.84 · 10−3

3.02 · 10−3

2.62 · 10−3

9.45 · 10−4

1.90 · 10−3

2.52 · 10−3

2.42 · 10−3

2.35 · 10−3

Si2

(
min−1 per mUL−1

)
1.02 · 10−3 -

Si3 (L/mU) 3.92 · 10−3 -
ka1

(
min−1

)
2.35 · 10−3 -

F01
(
mmol · kg−1min−1

)
1.28 · 10−2 -

EGP
(
mmol · kg−1min−1

)
2.37 · 10−2 -

Table 2.4: Hovorka’s model parameters

is that the Hovorka model has a slower response due to a higher order in the insulin
pharmacokinetics model.

Moreover, fit degraded when the average models were used for the different adult
subjects in the cohort (see Fig. 2.2), specially for the BG fit provided by the Hovorka
model. The larger degradation of the fit in the Hovorka model might be related to an
over-parametrization of the insulin effect subsystem: Whereas the simulator model uses
two compartments to describe the insulin effect [R40], the Hovorka model adds an addi-
tional compartment to describe the insulin effect on the glucose transport, i.e. the state
variable x1(t). Also, it turned out that Si1 is a sensitive parameter that was chosen to indi-
vidualize the model. This denotes a structural deficiency of the Hovorka model concerning
the Dalla Man model. This over-parametrization could cause some overfitting problems,
which make the model sensitive to different patients.

Model individualization improved the fit and reduced the difference in terms of NRMSE
between both models. No statistically significant evidence existed to consider that the
median difference in the NRMSE of the glucose between both models is different from
0, according to the sign test, at a confidence level of 0.05. Model individualization also
reduced the variability of the plasma insulin, but the IVP model improved the accuracy of
the Hovorka model.
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Figure 2.2: Evaluation of the NRMSE for the identificated IVP and Hovorka models

Since the individualized models fitted the plasma insulin and the plasma glucose better
than the average model, we used the individualized models to design the observers.

RMSE MAE MaxAE

η2 P η2 P η2 P
Model 0.40 0.00* 0.50 0.00* 0.00 0.97
Observer 0.30 0.05 0.90 0.00* 0.00 0.83
Subject 89.20 0.00* 86.60 0.00* 85.10 0.00*
Model:Observer 0.20 0.21 0.10 0.37 0.70 0.02*
Model:Subject 2.20 0.00* 3.90 0.00* 1.10 0.14
Observer:Subject 0.50 0.96 0.20 1.00 1.70 0.34
Residuals

Table 2.5: Summary of ANOVA results of rate of glucose appearance. It summarizes three
metrics: the root-mean-square error (RMSE), the mean absolute error (MAE) and the max-
imum absolute error (MaxAE). Terms “η2” and “P” denote the eta squared effect size mea-
surement and the P-value of the ANOVA F-statistics, respectively. The asterisk (*) indi-
cates a P-Value lower than 0.05.

2.5 Results

2.5.1 Rate of glucose appearance

Overall, observers imprecisely estimated the RA, since the CGMS noise and model uncer-
tainties are coupled with the estimation. For example, in Fig. 2.3, the estimated RA has
negative values: an unphysiological behaviour for a scenario without exercise.

The type of model significantly contributed to the variability of RMSE and MAE (Table
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Figure 2.3: Population plot of the estimation of the rate of glucose appearance. Thick lines
represent the median of the estimation for the 10 patients and the shaded areas represent
the median absolute deviation

Difference CI
IVP-Hovorka 0.04 (0.14) [0.01 , 0.07] *

JKF-DKF 0.05 (0.06) [0.03 , 0.07] *
NSMO-DKF 0.04 (0.05) [0.03 , 0.05] *
NSMO-JKF -0.01 (0.04) [-0.02 , 0]

Table 2.6: Pairwise comparison of the median difference of the root-mean-square error for
the rate of glucose appearance (in mg/dL/min) between the levels of the significant factors.
Values are expressed as median (mean absolute deviation). The P-values and confidence
intervals (CI) corresponded to the sign test with corrections of false discovery rate and false
coverage rate. An asterisk indicates a significant result at 0.05 level

2.5) in the statistical sense (P-value<0.05). Observers designed with the IVP model un-
derperformed the observers designed with the Hovorka model (Fig. 2.4) in terms of RMSE
and MAE because the former overestimated the RA after the postprandial peak and un-
derestimated it in the steady-state (Fig. 2.3). The pairwise comparisons also confirmed the
superiority of Hovorka-based observers (Table 2.6 and Table 2.7). However, the median
difference was 0.04 mg/dL/min for both RMSE and MAE, which might be negligible from
the application side.

The observer structure also had a statistically significant effect on MAE (the influence
on RMSE was not statistically significant). Specifically, DKF observers overperformed
NSMO and JKF in 0.04 mg/dL/min in the median for the MAE (Fig. 2.7) and in 0.05
mg/dL for the RMSE (Fig. 2.6). Conversely, NSMO and JKF behaved similarly, although
the NSMO observers had a higher peak during the transient (Fig. 2.3), not considered in
the calculation of the metrics (see Section 2.3.6).

Unlike the analysis of RMSE and MAE, ANOVA of MaxAE identified a statistically sig-
nificant effect of the interaction between the model and the observer (Table 2.5). The DKF
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Difference CI
IVP-Hovorka 0.04 (0.09) [0.02 , 0.06] *

JKF-DKF 0.04 (0.03) [0.03 , 0.05] *
NSMO-DKF 0.04 (0.02) [0.03 , 0.05] *
NSMO-JKF 0 (0.02) [-0.01 , 0.01]

Table 2.7: Pairwise comparison of the median difference of the mean absolute error for the
rate of glucose appearance (in mg/dL/min) between the levels of the significant factors.
Values are expressed as median (mean absolute deviation). The P-values and confidence
intervals (CI) corresponded to the sign test with corrections of false discovery rate and false
coverage rate. An asterisk indicates a significant result at 0.05 level

RMSE MAE MaxAE

η2 P η2 P η2 P
Model 8.50 0.00* 10.50 0.00* 11.80 0.00*
Observer 2.40 0.00* 1.60 0.00* 3.60 0.00*
Subject 66.60 0.00* 65.60 0.00* 60.80 0.00*
Model:Observer 0.20 0.54 0.10 0.63 0.30 0.35
Model:Subject 1.20 0.53 2.00 0.13 1.40 0.46
Observer:Subject 0.40 1.00 0.40 1.00 0.50 1.00
Residuals

Table 2.8: Summary of ANOVA results of plasma insulin. It summarizes three metrics: the
root-mean-square error (RMSE), the mean absolute error (MAE) and the maximum abso-
lute error (MaxAE). Terms “η2” and “P-value” denote the eta squared effect size measure-
ment and the P-value of the ANOVA F-statistics, respectively. The asterisk (*) indicates a
P-Value lower than 0.05.

observer designed with the Hovorka model illustrated the importance of this interaction
since it had the largest MaxAE (Fig. 2.4); it even underperformed the observers designed
with the IVP, which differed from the conclusions of RMSE and MAE.

Finally, although the ANOVA identified the type of model, the observer structure, or its
interaction as statistically significant factors, the analysis of the η2 determined that these
factors contributed less than 1% to the variability of the metrics (Table 2.5). In contrast,
“Subject" and “Model:Subject" explained more than 90% of the variability, evincing that
no observer technique managed to cope with the large inter-patient variability of the sim-
ulation. In addition, this result unveiled the limitations of the personalized models used
to design the observer, even though we identified these models with the knowledge of the
plasma insulin and meal rate of appearance.

2.5.2 Plasma insulin estimation

Model structure and observer type caused remarkable differences in the RMSE, MAE, and
MaxAE (Fig. 2.5). Indeed, ANOVA supported for the three metrics significant differences
between the IVP and Hovorka models on the one side and between the DKF, JKF, and
NSMO on the other side (Table 2.8).

The post-hoc analyses in Tables 2.9 - 2.11 determined that no significant differences
between the NSMO and the JKF existed, which agreed with Fig. 2.6, where the responses
of both observers mostly overlap. DKF observers were the only ones that statistically differ;
they lower, in the median, the RMSE in 0.5 mU/L, the MAE in 0.3 mU/L, and the MaxAE
in 2.92 mU/L. Since the gain related to the Ip in the KFs was near 0 and, it was exactly 0 for



2. Kalman filter

Difference CI
IVP-Hovorka -0.92 (0.4) [-1.05 , -0.83] *
JKF - DKF 0.52 (0.3) [0.45 , 0.65] *

NSMO - DKF 0.52 (0.3) [0.65 , 0.45] *
NSMO - JFK 0 (0) [0 , 0]

Table 2.9: Pairwise comparison of the median difference of the root-mean-square error
for the plasma insulin (in mU/L) between the levels of the significant factors. Values
are expressed as median (mean absolute deviation). The P-values and confidence intervals
(CI) corresponded to the sign test with corrections of false discovery rate and false coverage
rate. An asterisk indicates a significant result at 0.05 level

Difference CI
IVP-Hovorka -0.74 (0.32) [-0.82 , -0.62] *

JKF-DKF 0.3 (0.21) [0.24 , 0.36] *
NSMO-DKF 0.3 (0.21) [0.24 , 0.36] *
NSMO-JKF 0 (0) [0 , 0]

Table 2.10: Pairwise comparison of the median difference of the mean absolute error for
the plasma insulin (in mL/U) between the levels of the significant factors. Values are
expressed as median (mean absolute deviation). The P-values and confidence intervals
(CI) corresponded to the sign test with corrections of false discovery rate and false coverage
rate. An asterisk indicates a significant result at 0.05 level

the NSMO, the only difference between observers was the discretization method: whereas
the NSMO and the JFK were based, respectively, on an implicit and explicit Euler method,
the DKF employed a zero-order hold discretization that lead to more accurate results.

The IVP model significantly improveed the performance of the estimation compared to
the observers designed with the Hovorka model – with median reductions of 0.92, 0.72, and
5 mU/L in the RMSE, the MAE, and the MaxAE, respectively. In Section 2.4, we already
observed these differences between models when analysing the fit of the identified models,
indicating that the use of the observer could not cope with the deficiencies of the models.
The superiority of the IVP was related to a quicker response in the Ip dynamics than the
Hovorka model (Fig. 2.6). The slower dynamics of the Hovorka model might be explained
by the 2-compartment model that describes the subcutaneous absorption with an equal
transfer rate between compartments.

The interaction between the type of model and the observer structure was not signifi-
cant. This result agrees with Fig. 2.5, where the DKF always reduces the RMSE compared
to the JKF and NSMO, regardless of the utilized model.

The type of model contributed more to the performance of the observer than the ob-
server structure did (Table 2.8). However, as observed in the analysis of the RA, the vari-
ability explained by “Subject” and the interactions “Model:Subject” and “Observer:Subject”
– 67.6% of the RMSE, 68.0% of the MAE, and 62.7% of the MaxAE – was much larger than
the sum of type of model, observer structure and interaction – 11.1% of the RMSE, 12.2%
of the MAE, and 15.7% of the MaxAE. Again, this revealed the limitation of the observers
to overcome the inter-patient variability.

2.5.3 Glucose measurement

The ANOVA in Table 2.12 determined that the type of model, the observer structure, and
its interaction significantly explained the variance of the RMSE, the MAE, and the MaxAE.
Although all the levels in the interaction between the type of model and the observer struc-
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Difference CI
IVP-Hovorka -5.79 (3.26) [-6.53 , -4.73] *

JKF-DKF 2.92 (1.73) [2.68 , 3.85] *
NSMO-DKF 2.92 (1.73) [2.68 , 3.85] *
NSMO-JKF 0 (0) [0 , 0]

Table 2.11: Pairwise comparison of the median difference of the maximum absolute error
for the plasma insulin (in mL/U) between the levels of the significant factors. Values
are expressed as median (mean absolute deviation). The P-values and confidence intervals
(CI) corresponded to the sign test with corrections of false discovery rate and false coverage
rate. An asterisk indicates a significant result at 0.05 level

RMSE MAE MaxAE

η2 P η2 P η2 P
Model 19.50 0.00* 19.50 0.00* 19.30 0.00*
Observer 40.50 0.00* 40.60 0.00* 40.00 0.00*
Subject 0.10 0.02* 0.10 0.14 0.10 0.47
Model:Observer 38.70 0.00* 38.80 0.00* 38.30 0.00*
Model:Subject 0.10 0.02* 0.10 0.16 0.10 0.49
Observer:Subject 0.20 0.00* 0.20 0.09 0.30 0.51
Residuals

Table 2.12: Summary of ANOVA results of CGMS. It summarizes three metrics: the root-
mean-square error (RMSE), the mean absolute error (MAE) and the maximum absolute
error (MaxAE). Terms “η2” and “P” denote the eta squared effect size measurement and
the P-value of the ANOVA F-statistics, respectively. The asterisk (*) indicates a P-Value
lower than 0.05.

ture were statistically different, the median differences were, at most, 0.10 mg/dL for the
RMSE, 0.07 mg/dL for the MAE, and 0.4 mg/dL for the MaxAE. Such minor differences
are negligible from the clinical point of view.

Unlike the analysis of the RA and the Ip, the type of model, the observer structure,
and its interaction fully explained the variability of the performance metrics – 98.7% of
the RMSE, 98.9% of the MAE, and 97.6% of the MaxAE. Since glucose was the only signal
available online, the observers handle the inter-patient variability, which contributed less
than 1% to the variability.

2.6 Thesis summary

Tackling nonlinearity is an essential part in designing control algorithms for artificial pan-
creas. Physiological systems are highly nonlinear and time varying, thus designing effi-
cient algorithms that can handle them are important aspects of the field. My goal was to
design discretized Kalman filters based on linear parameter varying methodologies as they
proved to be an efficient method to tackle state estimation problem in nonlinear systems.
Also, my aim was to evaluate how the method compares to different estimation methods,
and how the underlying mathematical models affect the performance. In [C1] I designed
Dual Kalman filters based on linear parameter varying methodology, in [J1] a Kalman fil-
ter has been applied in simulations for closed-loop blood glucose control. Then in [C2, J2],
the Kalman filters were analyzed based on different models, disturbance estimation and
state estimation capabilities. Also, the tuning process of the filters were standardized.
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Figure 2.4: Grouped boxplot for the rate of glucose appearance. It represents the mean
absolute error (MAE), maximum absolute error (MaxAE) and the root-mean-square error
(RMSE) of the rate of glucose appearance (in mg/dL/min). The length of the box corre-
sponds to the interquartile range, the black solid line is the median and the yellow cross is
the mean.
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Figure 2.6: Population plot for the estimation of the plasma insulin. Thick lines represent
the median for the 10 subjects in the cohort, and the shaded area the mean absolute devi-
ation.
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Digital twin in Artificial Pancreas

Thesis group 2: Moving horizon estimation-based digital twin
in artificial pancreas

Thesis 2
I developed and investigated moving horizon estimation-
based digital twin methodologies to represent the pa-
tient’s glucose metabolism and trace intrapatient variability.
Thesis 2.1
I have developed moving horizon estimation based methodology
to trace parameter variability of the patient with a strong focus
on constraining the parameters to represent the physiologically
relevant values.
Thesis 2.2
I developed and investigated meal estimation accuracy in a mov-
ing horizon estimation-model predictive control scenario.
Thesis 2.3
I implemented the moving horizon estimation as just-in-
compiled functions and on the graphical processing unit to
make the method scalable for large patient populations.

Publications relevant to the theses: [C3, C4, C5, C6].

Findings in my first thesis led to the conclusion that the structure of the mathematical
model and the accuracy of the patient parameters can have greater impact on the esti-
mation accuracy than the state observer algorithm itself. Thus, I focused on parameter
estimation methods, with a particular focus on constraining the free parameter space to
improve the speed, convergence and consistency. Also, the estimated parameters can be
of great use in various applications such as blood glucose prediction, replaying different
insulin and meal scenarios, also observing daily or long-term trends in insulin sensitivity.
The method and its use-cases fall under the umbrella of digital twins. In [C3], I devel-
oped moving horizon estimation based methodology to track intrapatient variability. In
[C4], the focus was on the estimation of the endgenous glucose production and extending
the model with heart rate as a potential, easy-to-access parameter to describe physical ac-
tivity. In [C5], the estimation algorithm was extended with a model predictive controller
and its performance was evaluated in a simulation environment. In [C6], I optimized the
parameter estimation algorithm for tackling large populations as a cloud-based service.

26
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3.1 Parameter estimation to track intrapatient variability

In the first part, the measurements and logged data from an approximately 3-day-long ses-
sion are used. For the BG concentration measurements a Medtronic Enlite® CGM sensor
was used with a sampling frequency of 5 minutes. The subject logged the BG measure-
ments (fingertip glucometer DCont Nemere®), the meal intakes, insulin administrations
and physical activities. The heart rate was tracked with a Mi band 5 with a sampling fre-
quency of 1 minute. The subject was on a basal-bolus insulin therapy, with a total daily
insulin around 50 Units. A daily long-acting Tresiba and rapid-acting NovoRapid insulin
boluses were administered based on the meal intakes. Based on the characteristics of the
experimental data and the properties of the model, several considerations have to be made
during the identification of the model parameters.

We used the previously introduced IVP model, but extended with the equation describ-
ing the rate of appearance as:

Ġ(t) = −(GEZI + IEFF (t)) ·G(t) + EGP

+RA(t),
(3.1)

İEFF (t) = −p2 · IEFF (t) + p2 · SI · IP (t) (3.2)

İP (t) = − 1

τ2
IP (t) +

1

τ2
ISC(t) (3.3)

İSC(t) = − 1

τ1
ISC(t) +

1

τ1CI
u(t) (3.4)

RA(t) =
m∑
i

di
VG · τ2Di

ti · e
− ti

τDi (3.5)

where G(t) mg/dl is the blood glucose level at time instant t, IEFF (t) min−1 is the insulin
effect on glucose, ISC(t) and IP (t) µU/mL represent the subcutaneous and plasma insulin
concentrations, respectively. The input is the insulin infusion u(t) µU/min. The infused
insulin u(t) µU/min serves as the input. Parameters of the insulin submodel: τ1 min and τ2
min are time constants of the subcutaneous and plasma insulin compartments, p2 min−1 is
the kinetic rate for insulin action, CI mL/min is the insulin clearance and SI mL/µU/min
is the insulin sensitivity. The endogenous glucose production EGP mg/dl/min is modeled
by a constant term and GEZI is the glucose effectiveness at zero insulin level, VG dl is
the glucose distribution volume of the patient and Ag − is the carbohydrate utilization
constant. A given meal is the disturbance di g (carbohydrate content of the meal). The
CHO absorption submodel is lumped into the RA(t) mg/dl/min term, which is the sum of
the impulse responses characterized by two first order processes in series with τD min time
constants.

First, the model (3.1)-(3.5) was mainly developed on experiments with insulin pumps,
which differs from the basal-bolus therapy in a key aspect. With insulin pumps, a single
type of short-acting insulin is injected in micro boluses. On a theoretical level, when there
is no intrapatient variability and the injection site is fixed, a constant set of τ1, τ2 and p2
parameters ought to accurately approximate the insulin absorption profile of the patient.
However, in the case of the basal-bolus therapy the long-acting insulin was taken into
account as a constant insulin input by assuming that the daily dose was equally absorbed
throughout the day. Using this assumption, a constant 1.28 U/hour input was calculated
based on the size of the long-acting bolus insulin. For the NovoRapid insulin, an onset of
10-20 min, maximum effect between 1 and 3 hours and duration of 3-5 hours is given [R46].
These information served as the basis for the definition of the bounds for the parameters
τ1 ∈ [30, 50], τ2 ∈ [30, 50] and p2 ∈ [1/50, 1/30]. The given ranges constrained the profiles to
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represent the properties of the administered insulin. In Fig. 3.1 a tangible example of the
feasible profiles with respect to the parameters of the insulin is given. Since here we were
interested only in the pharmacokinetics of the insulin, the gains (SI ,CI ) could be neglected,
and normalized profiles are visualized.

Figure 3.1: Responses to a bolus insulin at t = 0. The shaded region defines the approxi-
mate trajectories given that a NovoRapid short-acting insulin is used.

The basal glucose concentration is determined by the parameters and the basal insulin
infusion. It can be calculated from the steady state of the system ((3.1)-(3.4)) as follows:

Ḡ =
EGP

GEZI + SI
CI

ū
, (3.6)

where ū is the basal insulin infusion and Ḡ is the basal BG level.
A further restriction was made in the sense of the BG basal levels. To avoid either unre-

alistically low or high basal levels, a nonlinear constraint was applied based on (3.6). The
basal BG level was assumed to be in the range of 80 mg/dl and 120 mg/dl, this assumption
correlates well with the BG levels observed in the morning in Fig. 3.3, when the the last
meal intake and bolus insulin from the previous day already lost its effect.

The identification was constructed as an optimization problem, where the cost function
was defined to be the root-mean-square error (RMSE) between the measured CGMS signal
and the simulated BG trajectory. The optimization problem was formulated as

min
p ∈ Rn

J =

√√√√ 1

L

L∑
k=1

∆G2
k

s.t. p ∈ [lb,ub],

80 ≤ Ḡk ≤ 120 ∀k,
x0 = x̄ (Initial condition)

(3.7)

where L is the number of CGMS measurements evaluated, ∆Gk = CGMSk − Gk where Gk

is the output of the system at the discrete step k using the forward Euler method. The
optimized variable is the n-dimensional p parameter vector with lower and upper bounds
defined by lb and ub. The dimensionality of the problem depends on the window size, but
can be given as n = nc + w ·nv + nm where nc = 5 is the number of constant parameters,
while nv = 3 is the number of parameters which vary between the windows. Depending
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on the window size w ∈ {3, 6, 8} and lastly nm = 16 is the number of meals. The initial
condition of the x state vector was defined as the steady-state of the system assuming that
d = 0 and u = ū.

Constant parameters
CI p2 Vg τ1 τ2

lb 372 1/50 100 30 50
ub 3350 1/30 260 30 50

Varied parameters Meal
EGP GEZI SI τD

lb 0.062 5 · 10−4 2.35 · 10−5 5
ub 2.32 6 · 10−3 2.11 · 10−3 60

Table 3.1: Lower and upper bounds used during the identification.

Parameter sensitivities were calculated in order to quantify the effect of variabilities
on the accuracy of the prediction. The parameter sensitivities are defined by:

sijp =
∆Ψ

∆p
(3.8)

Sij
p =

pj

Ψ j
pred.

sijp , (3.9)

Smsqr
p =

√√√√ 1

n

n∑
l=1

(
Sij
p

)2
, (3.10)

where ∆Ψ = Ψ i
ident. − Ψ j

pred. is the cost difference observed by using the identified p of
window i for the prediction of window j, ∆p = pi−pj . The relative or normalized parameter
sensitivity is denoted by Sij

p . The sensitivity of a given p parameter can be quantified in
different ways [R47], for our purposes we applied the root-mean-square metric (3.10). The
effect of variability was assessed based on the BLD intervals, which means i, j ∈ [1, 8]
s.t. i < j. In other words, for the current prediction window only parameters identified
beforehand were evaluated. The n total number of i, j pairs is 28 for the EGP , SI and
CI parameters and 56 for the τD, since in the BLD case a window contains two separate
meal intakes. The optimization was done by the fmincon algorithm of the MATLAB 2020a
software package. 500 initial points were generated using the Latin hypercube sampling
in order to explore large parameter space, and counteract the drawback of local optimizers.

3.2 Results of tracking intrapatient variability

During the evaluation of the results two major scenarios were distinguished. The first
one was an identification of the model where the parameters were grouped based on [R24]
into constant and variable categories. The second one was the evaluation of the predictive
capabilities of the model and the identified parameter sets. These major scenarios were
then further subdivided based on the specified number of meals a window should contain.
The number of meals (and insulin boluses) were either 2, 3 or 6. A window length of 2
meals coincided with the more generally used (breakfast (B), lunch (L), dinner (D)) BLD
partitioning in the literature [R48, R49].

The parameters which affects the basal glucose level are the SI , CI , EGP and GEZI,
where SI and CI can be lumped together – if plasma insulin is not measured –, resulting
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Figure 3.2: Colored points are identified parameter sets lying in the reduced parameter
space constrained by the basal levels.
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in three parameters overall. The nonlinear constraint restricts the feasible 3-dimensional
parameter space to lie in between two planes. The planes and identified parameter sets
are represented in Fig 3.2.

3.2.1 Identification scenario

In Fig. 3.3, for the identification scenario, the initial condition of a window equals to the
arrival condition of the previous one. Generally, it can be stated that a good average fit
was achieved, larger errors occurred around the postprandial peaks. In reality, the differ-
ences around the peaks should be even larger, since the blood-interstitial interaction acts
as a low-pass filter [R50]. The accuracy has a potential limit due to the model complexity,
as from the large amount of initial points the best 10-20 optimizations achieved the same
RMSE, and the resulting parameters were rarely on the bounds. The identification accu-
racy degraded only in a modest way, when from the BLD setup the window increased to 3
meals. This indicates that with the extension of approximately 2-3 hours of the identifica-
tion window the physiological variability is not major. However, stepping up to a window
of 6 meals (roughly 24 hours) the accuracy degrades to a great extent, and, while the peaks
on a relative term remained accurate, the trends of the baseline were missed. A lowered
basal BG level and subdued peaks were observed following the second, larger session of
physical activity.

In Fig. 3.4, the relative peaks quantify the glycemic state of the patient in the given
interval. The relative peak was calculated by applying a typical 30 g, 3 U impulse in a
steady state condition. This method gives a condensed representation, and was used for
the evaluation of the intrapatient variability instead of analyzing the parameters individ-
ually. The relative peak correlates well with the inverse of the insulin sensitivity. In the
morning, larger relative peaks and lower insulin sensitivity compared to L and D periods
are common. This pattern of the circadian rhythm was broken between day 2 and 3, where
a larger session of physical activity could cause the insulin sensitivity to raise.

3.2.2 Effect of variability on prediction

In the prediction scenario, the initial condition was set to the initial condition of the iden-
tification scenario, with the exception of G, which was the measured BG. It is important
to note that during the predictive phase, future events of meal intakes and bolus insulin
were considered known, since the focus was to investigate the effect of intraday variation.
In Fig. 3.3, for each predicted trajectory, the parameter set of the previous window is used.
This means that the constant parameters contained information from the current window
and from the future windows as well, but as the constant parameters are expected to be
valid for longer horizons this assumption can be made. It can be seen that two larger de-
viations happened in the morning period, both with the shorter horizons, which indicates
that larger change in the physiology take place between the evening and morning periods.
This change was attenuated with the larger windows (blue line) since it incorporates data
from a longer horizon. Despite the fact that using the largest window greatly degraded the
identification, this was not true for the prediction where data from a longer horizon gave
attenuated behavior which was more valid on an average.

Table 3.2 gives an overview of the performance of an identified parameter set. It is
visible that the lowest values in each column appear in the main diagonal, which happens
because the identification results in a lower RMSE compared to using any other parameter
sets from the past. The largest errors occured when an identification during the B interval
was used for the prediction of the L interval. Although, this was not completely true for the
last column, which can be explained by the longer session of physical activity done during
the previous afternoon. These findings are coherent with Fig. 3.4.
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Figure 3.3: Two scenarios are depicted. In the top, the result of the identification is shown,
while in the bottom, predicted BG trajectories that use the parameter set of the previous
window. The measured CGMS is denoted by a dashed red line, while the simulated tra-
jectories are highlighted by different colors depending on the window size. The grey lines
in the first window of the prediction scenario indicate that the starting window is an iden-
tification, and the prediction is available in the consecutive intervals. The injected bolus
insulin and meal intakes are indicated by arrows . The timescale is given in a relative
manner and in a 24-hour scale, as well. Four distinct periods or events are represented
with different zones, namely AM, PM, Asleep and physical activity. The arrowheads in-
dicate the endpoint of the window and the lines indicate the start point.
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Figure 3.4: Simulated relative peak to a typical 30 g, 3 U impulse.

Id.
Pred. B L D B L D B L

B 19 130 51 29 143 25 36 37
L 20 22 80 97 73 26 58
D 8 17 21 73 52 44
B 12 135 22 34 50
L 17 73 33 39
D 10 46 56
B 18 47
L 23

Table 3.2: Row Id. gives the window of identification in a consecutive way starting from the
first breakfast (B), lunch (L) and dinner (D) period. The columns represent the prediction
window, since during prediction only varied parameter sets from previous identifications
can be used, the result is an upper triangular matrix, where the diagonal represents the
RMSE mg/dl of the identification. The RMSE in the cells indicate how well the identifica-
tion works on the evaluated future interval.

SτD SSI
SEGP SGEZI

7.77 2.36 2.10 0.863

Table 3.3: Calculated parameter sensitivities with respect to the prediction error.
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In Table 3.3, parameter sensitivities are given based on (3.10). It can be seen that the
τD (the time constant related to the meal) had the largest effect on the accuracy of the
prediction using previous. It indicates that not only the carbohydrate content of the meal
is an important factor, but the quality of the carbohydrate as well. The insulin sensitivity
SI and the endogenous glucose production EGP had a similar effect, while the GEZI had
the lowest. This finding is in agreement with other studies [R20, R51], insulin sensitivity
usually considered with the largest known variability.

3.3 Parameter estimation with a particular focus on endoge-
nous glucose production

The aim of this investigation was to evaluate the fitting accuracies with respect to different
complexity of the endogenous glucose production (EGP) submodel. It was the center of our
work since in recent years much of the focus had been placed on intrapatient variability
and the effect of physical activity [R52, R53]; endogenous glucose production is proven to
be effected by both phenomena [R54, R24].

Due to the physiological effects of exercise, such as a higher chance of hypoglycaemia,
researchers started to work on the implementation of physical activity into the prediction of
blood glucose levels. In general, for extending models with the effects of exercise, relatively
simple glucose predicting models are used, such as Hovorkas model [R20] and the Identi-
fiable Virtual Patient (IVP) model [R55]. For instance, Jacobs and colleagues have created
a hormone dosing algorithm related to exercise, where the insulin action was based on
Hovorkas equations [R56]. Rashid and colleagues also extended the Hovorka model while
modeling glucose-insulin dynamics in type 1 diabetes, taking into account physical activity
[R57]. Hajizadeh and colleagues used the Hovorka model to create a multivariable artifi-
cial pancreas system using the estimation of plasma insulin concentration [R58]. Reenberg
and colleagues created a glucagon, an exercise, and a CGM subsystem in addition to the
original insulin, meal and glucose subsystem of the model [R59]. The usage of the IVP
model is also common due to its compromise in effectiveness and complexity. In the first
thesis we took the IVP model as a basis while designing an observer for estimating the rate
of glucose appearance [R60].

Most studies use heart rate, lactate, PAMM (percentage of active muscle mass) or
PV Omax

2 (maximal O2 usage) data to define physical activity. From these, heart rate is the
easiest to measure with a wearable device, such as a wrist or chest band, in contrast to
the other types of data, which are more complicated to be monitored continuously during
the day. Ormsbee and colleagues developed an endogenous glucose production equation in
function of heart rate [R61].

We investigated the fitting accuracy on CGM measurements with respect to different
endogenous glucose production submodels. The IVP model has been extended with the
insulin action and with the effect of heart rate. From the simplest piecewise constant
approach to the more complex insulin and heart rate dependent functions, all endogenous
glucose production related parameters were assumed to possess variability during the day.
Compared to previous investigations, the IVP model (3.4)-(3.1) has been modified so that
the EGP is defined as a function.

3.3.1 Models of endogenous glucose production

Ormsbee and colleagues organized an exercise protocol, during which they measured lac-
tate and heart rate levels. Using the measured lactate and heart rate data, they created
an equation to estimate lactate concentration.
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LC =
α ·HR

(220−HR)β
, (3.11)

where LC is the lactate concentration, HR is the heart rate, and the maximal heart
rate was assumed to be 220 bpm. α and β parametrize the observed connection between
heart rate and lactate level. The results were validated on independent literature data.
They created another equation to estimate EGP levels using lactate and heart rate data
from the literature.

EGP = γ ·HR+ δ · LC, (3.12)

where γ and δ parameters were determined based on the literature data. The calculated
parameters were α = 13.25, β = 1.6, γ = 0.027 and δ = 0.73.

Using these equations we extended the original IVP model. In our model we made the
following modifications. Instead of using four parameters (α, β, γ and δ) we lumped to-
gether α and δ parameters, calling them α̂. Also, instead of estimating the EGP parameter
we estimated either α̂ or γ.

Figure 3.5: Effects of α̂, β and γ parameters on EGP. Red line represents the EGP values
depending on HR, using the constant values of the parameters. Black lines show the vary-
ing EGP values when changing one parameter within the given bounds.

The unit of the EGP was converted from (mg/kg/min) to (mg/dl/min) using the body
weight (BW ) (kg) and the glucose distribution volume (dl) of the patient.
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EGP =
BW

VG
· γ ·HR+ α̂ · HR

(220−HR)β
, (3.13)

where α̂ = 9.6725, β = 1.6 and γ = 0.027 according to the original values.
We also took into account the possibility of modeling the insulin action on the endoge-

nous glucose production as it is used in the widely applied Hovorka model. As opposed to
the deactivation and activation rate constant parametrization we used the gain (insulin
sensitivity) parametrization to match the IVP model. Taking into account x3 insulin effect,
the model modifies to:

EGP = EGP (1− x3(t)), (3.14)

ẋ3(t) = − 1

τE
· x3(t) +

1

τE
· SIE · IP (t), (3.15)

where x3(t) represents the effects of insulin on endogenous glucose production, and SIE

is the insulin sensitivity belonging to x3(t).

3.3.2 Investigated model versions

We distinguished three possible extensions of the model: effect of insulin on the endogenous
glucose production, effect of physical activity parametrized by α̂ or γ. Moreover, the joint
effect of insulin and physical activity was also considered, resulting in a total number of 6
scenarios: IVP, IVP+HRα̂, IVP+HRγ , IVP+x3, IVP+x3+HRα̂, IVP+x3+HRγ . The idea was to
limit the number of estimated parameters; the baseline method requires the estimation of
a single parameter EGP per interval to calculate the EGP . A single parameter remains
for the scenarios IVP+HRα̂, IVP+HRγ and IVP+x3, as well. However, the combined effect
of insulin and physical activity involves the estimation of two parameters per interval. The
summary for the different model versions is given in Table 3.4.

Model EGP

IVP EGP (t)

IVP+HRα̂
BW
VG

· γ ·HR+ α̂(t) · HR
(220−HR)β

IVP+HRγ
BW
VG

· γ(t) ·HR+ α̂ · HR
(220−HR)β

IVP+x3 EGP (t)(1− x3(t))

IVP+x3+HRα̂

(
1− x3(t)

)(
BW
VG

· γ ·HR+ α̂(t) · HR
(220−HR)β

)
IVP+x3+HRγ

(
1− x3(t)

)(
BW
VG

· γ(t) ·HR+ α̂ · HR
(220−HR)β

)
Table 3.4: Summary of the model versions

Since we aimed to investigate the effect of the additional dynamics –not the effect of
wider parameter ranges–, the upper and lower bounds of the parameters were adjusted
accordingly. α̂ and γ parameters were determined to meet the condition, that the EGP
stays inside the original bounds (0.062 - 2.32 mg/dl/min) at a resting heart rate of 70 bpm.
Thus, the bounds for the α̂ and γ parameters were calculated based on the maximum VG

and minimum VG values; HR = 70 bpm was used in these calculations.
Lower bounds of α̂ and γ:

0.062 <
BW

V̄G
· 0.027 ·HR+ α̂ · HR

(220−HR)1.6
, (3.16)

0.062 <
BW

V̄G
· γ ·HR+ 9.6725 · HR

(220−HR)1.6
. (3.17)
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Upper bounds of α̂ and γ:

BW

VG
· 0.027 ·HR+ α̂ · HR

(220−HR)1.6
< 2.232, (3.18)

BW

VG
· γ ·HR+ 9.6725 · HR

(220−HR)1.6
< 2.232. (3.19)

In the Hovorka kinetics cases, τE had the same bounds as other insulin related time
constants. The lower bound of SIE was assumed to be the same as the lower bound of
SI; however the upper bound needed to be changed. The EGP values are not allowed to
decrease below zero, so the maximum value of x3 needs to be less than one. In addition, x3
needs to vary in the widest possible range, so that the EGP values could also be varied in
a wide range. Taking these conditions into account, we assumed the upper bound of SIE to
be 0.017. Time constants of the insulin submodel was chosen to match the insulin profile of
the NovoRapid [R62] rapid acting insulin, which was used during the data collection. All
parameter bounds can be seen in Table 3.5. The values of the constant parameters are the
following ones: BW = 89 (kg), CI = 1200 (mL/min), α̂ = 9.6725, β = 1.6 and γ = 0.027.

Parameter Lower bound Upper bound
τ1, τ2, τ3, τE 30 50

VG 100 1000
τD 5 60

EGP 0.062 2.232
GEZI 5E-4 7E-2
SI 1.173E-4 4.224E-3
SIE 1.173E-4 0.017

α̂ : IVP+HRα̂ 0.5 26
α̂ : IVP+x3+HRα̂ 0.6 25

γ 0.007 0.032

Table 3.5: Parameter bounds

3.3.3 Parameter estimation method

The parameter estimation task was formulated as an optimization problem, where the free
variables were the parameters of the mathematical model. The cost function was defined
as the root-mean-square error between the simulated and the measured blood glucose tra-
jectory. Taking into account the bounds and constraints the problem is given as:

min
p ∈ Rn

J(p) =

√√√√√√ 1

L

L∑
l=1

(CGMl −Gl)2,

s.t. p ∈ [p, p̄],

80 ≤ GB ≤ 120,

x0 = xB (Initial condition),

(3.20)

where L is the optimization window (24 hours), because of the 5 min sampling time of the
CGM it translates to 288 samples/day. G is the simulated blood glucose level, GB and xB
are the basal glucose and steady state of the system, respectively. Lower and upper bounds
of the estimated parameters are defined by p and p̄. The fmincon [R63, R64] function
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carried out the optimization from 30 initial points sampled by Latin hypercube sampling
(lhsdesign [R63]) to counteract the drawbacks of a local search. After the optimization, the
parameter set with the lowest cost was selected for further analysis.

Parameters with proven daily intrapatient variability (SI , EGP , GEZI) were esti-
mated on intervals [R54, R24]. The script defined three daily intervals in an automated
way such that the transitions coincide with either lunch (closest meal to 1 PM) or dinner
(closest meal to 8 PM). When EGP was a function of other parameters, the independent
variables were allowed to change between the intervals.

3.3.4 Results

The utilized data came from two databases. Both were generated during an approximately
3-day-long session in which blood glucose concentration and heart rate were measured.
The patient was on multiple daily injection therapy and logged the carbohydrate content
of the meals and insulin injections. In both cases a Medtronic Enlite© CGM sensor was
applied with a sampling frequency of 5 minutes. Heart rate was measured with Mi band 5
with a sampling frequency of 1 minute. The heart rate data was resampled to a 5 minutes
basis by using linear interpolation to match the sampling frequency of the CGM sensor.
For the tests, we fitted the models on 5 non-overlapping days starting from 7 AM. The first
two days are from the first and the last three days are from the second database.

Model 20/09 21/09 22/10 23/10 24/10 avg std
IVP 14.10 13.14 11.76 18.52 11.62 13.83 2.82

IVP+HRα̂ 19.99 12.00 13.53 20.28 12.56 15.67 4.11
IVP+HRγ 19.22 12.19 13.29 18.89 12.09 15.14 3.61
IVP+x3 13.01 13.04 11.47 17.90 11.54 13.39 2.63

IVP+x3+HRα̂ 16.36 11.72 13.04 17.89 12.08 14.22 2.75
IVP+x3+HRγ 16.19 11.70 12.85 17.31 11.89 13.99 2.59

Table 3.6: RMSE of the evaluated models, highlighted models achieved the lowest RMSE
on the given estimation horizon.

Table 3.6 summarizes the root-mean-square errors (RMSE) with respect to the different
days, while Fig. 3.6 and 3.7 with respect to the blood glucose level and heart rate, respec-
tively. In most cases, taking into account the heart rate deteriorated the fitting accuracy,
especially on 20/09/20. Looking at the corresponding blood glucose trajectories of 20/09/20
in Fig. 3.9, the IVP and IVP+x3 methods underestimated the glucose when the heart rate
was low and overestimated when the heart rate was higher. Since the heart rate has a di-
rect elevatory effect on the EGP, it will modify the trajectories in a deteriorating way. The
model with the effect of insulin on the EGP (IVP+x3) achieved the lowest average RMSE
and the lowest standard deviation. Comparing the estimation of the α̂ and γ parameters,
the latter one yielded the lower RMSE, in two cases the lowest errors. The larger effect
of γ on the EGP value at a given heart rate and the less steep slope of the function –as
illustrated in Fig. 3.5– could lead to better estimation.

In Fig. 3.6, it can be observed that larger estimation error occurred at higher blood
glucose concentrations independently from the applied EGP submodel and was caused by
the underestimation of the postprandial peaks. It implies that the source of the inaccuracy
should not be sought in the modeling of the EGP.

In Fig. 3.8m the estimated EGP values and relative postprandial peaks are illustrated.
With some exceptions the insulin-dependent and heart rate dependent EGP values corre-
lated well with the piecewise constant values. The postprandial peaks were calculated by
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Figure 3.6: Boxplot of the absolute errors between the CGM measurements and estimated
BG values with respect to the CGM values. The errors are grouped into 25 unit long ranges.

administering a 30 g of carbohydrate input and a 3 unit of insulin to the virtual patient
in a steady-state condition. This metric provides a perspective of the whole behavior of
the model, where the meal, insulin effect is also taken into account. It is important to
compare the general behavior as well, since because of the identifiability and observability
limitations seemingly different EGP trajectories can result in similar blood glucose trajec-
tories or similar EGP values in different final trajectories. Such a situation can be seen on
21/09/20, where the EGP values in the second interval are much larger compared to the
third interval however, the relative peaks are all around 30 mg/dl.

Figure 3.9 gives a general overview how the fittings change between different models,
intervals and days. Overall, the modifications in the EGP term does not influence the
behavior in a substantial way. There are key periods, which contribute the majority of
the error to the RMSE. These discrepancies usually occur around the postprandial peak or
after the depletion of the glucose coming from the carbohydrate consumption.

Results showed that the largest improvement in the fitting accuracy was achieved by
taking into account the insulin action on the endogenous glucose production. In some
scenarios the heart rate dependent, γ parametrized EGP could further reduce the esti-
mation error. However, important to note that the reduction of the estimation error was
minor. Compared to the piecewise constant EGP functions of the baseline IVP model, x3
introduced two new parameters and the heart rate dependency one more parameter. The
parameter bounds were chosen so that the EGP at basal conditions remains in the same
range as in the piecewise constant case. The approach highlighted the effect of the in-
sulin action and heart rate on the EGP, and mitigated the effect of the increased degree of
freedom.

In light of these considerations, the piecewise constant EGP function provided a good
compromise between the estimation accuracy and the number of variables. Limiting the
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Figure 3.7: Boxplot of the absolute errors between the CGM measurements and estimated
BG values with respect to the heart rate values. The errors are grouped into 20 unit long
ranges.

number of free parameters is an important aspect when the model is used in the artificial
pancreas system in order to mitigate the identifiability issues and improve the consistency
of the parameter values between consecutive estimations. Although the results implied
that the majority of the estimation error was not due to the oversimplification of the EGP
submodel, they have to be taken with caution. Due to the lack of CGM measurements
under 80 mg/dl, the investigated data were biased towards larger blood glucose levels and
prohibited the evaluation of the models during hypoglycemic conditions. On the other
hand, the heart rate measurements were biased towards the smaller values.

3.4 Meal estimation in Model Predictive Control-Moving Hori-
zon Estimation control strategy

Over the last decade, three artificial pancreas systems gained Food and Drug Administra-
tion (FDA) approval [R4, R5, R6]. These systems can alleviate much of the burden of glu-
cose control, improve the time spent in the target blood glucose range and the quality of life
of the patients [R65, R66]. The approved systems fall into the category of hybrid closed-
loop systems; it means that the system requires the announcement of the meal and an
estimated carbohydrate (CHO) content. Usually, the control algorithm combines rules and
a model predictive controller. The performance of the control algorithm is largely affected
by the CHO counting accuracy of the patient and the accuracy of the model parameters.

Brazeau et al. [R67] assessed the CHO counting accuracy of adults with type 1 diabetes
mellitus and found that the difference between the CHO content and the estimated CHO
was 15.4±7.8 g. The difference was calculated between the reported value by the patient
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and a dietitian who used a computerized analysis program as well. Another study [R68]
which focused on adolescents utilized a slightly different approach; adolescents filled the
so-called PedCarbQuiz [R69] questionnaire. The authors found that 42% of the participants
estimated the CHO content within 10 g of the actual value, 44% within the 10-20 g range,
and 14% didn’t meet the 20 g threshold. [R70] proposes a mathematical model of CHO-
counting error. The model shows a tendency of underestimation of larger meals and a
positive correlation between the standard deviation of the error and the meal size. The
standard deviation increases from 4.78 g for meals under 20 g to 33.4 g for meals above
100 g of CHO.

Several studies investigated the performance of a fully closed-loop artificial pancreas
in recent times. These studies are largely performed in the FDA approved UVa-Padova
simulator [R71, R72], however clinical study has been conducted as well [R73]. A model
predictive control-moving horizon estimation approach was presented and evaluated in
silico in [R74] and was found to reduce the number of hypoglycemic events and result in
a smoother BG trajectory. We investigated the meal estimation accuracy of an MPC-MHE
strategy in silico. The investigated scenario sit between the hybrid and the fully closed-loop
therapy in the sense that the announcement of the meal was assumed to be known, but
no other related data. We investigated the CHO content and the time constant estimation
accuracy of the meals in two setups: with and without CGM noise. We also investigated
the effect of the meal estimation on the prediction accuracy, which largely determines the
performance of a model predictive control scheme. By automatically estimating the meals
with an acceptable error (and by knowing only the time of the meal intake), we could
improve the automated artificial pancreas system and decrease the administrative load of
diabetic patients.

Both the controller and the observer utilized the IVP model (3.1)-(3.5). The basal glu-
cose level GB is a function of 5 variables: EGP , GEZI, SI , CI and uB which is the basal
insulin infusion. During the parameter estimation process, one of the assumptions we
made is that the basal glucose level was known. Furthermore, we fixed the CI parameter
to improve the consistency of the results and lower the identifiability issues. CI and SI

are both gains of the system and cannot be identified together when the only measured
variable is the BG. As physiologically EGP and SI are easier to grasp, and physiologically
relevant ranges are easier to define, we kept them as free parameters during the estimation
process. The remaining variable was determined by the nonlinear constraint GEZI > 0
we imposed on the basal glucose level as follows:

GEZI =
EGP

GB
− SI

CI
uB. (3.21)

We extended the IVP model (3.1)-(3.5) with a CGM error model based on [R75]. The
model can account for the delay [R50] – since the measurement site is the interstitium –,
sensor drift, additive sensor noise and calibration error. To limit the number of factors,
which affect the CHO estimation the sensor drift has been omitted. The sensor delay was
modeled as an additional interstitial glucose compartment IG, while the additive noise was
an autoregressive process of order two with a white noise term w ∼ N (0, σ2) as follows:

˙IG(t) = − 1

τIG
IG(t) +

1

τIG
G(t), (3.22)

v(t) = α1v(t− Ts) + α2v(t− 2Ts) + w(t), (3.23)
CGM(t) = IG(t) + v(t), (3.24)

where τIG is a time constant characterizing the transfer between the blood and the inter-
stitial glucose, while α1 and α2 define the autoregressive process.
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3.4.1 Moving horizon estimation

A moving horizon estimation based observer has been developed with the purpose of pro-
viding estimated initial state, patient parameters and CHO for the MPC. The observer ran
in a sliding window every 5 minutes, in accordance with new CGM measurements. The
method was based on a constrained optimization where a cost function was minimized.
The cost function was defined to be the root-mean-square error between the estimated tra-
jectory of the blood glucose and the CGM values of the last 24 hours:

min
p ∈ Rn

J(p; tk) =

√√√√√√ 1

L

k∑
l=k−L

(CGMl −Gl)2

s.t. p ∈ [p, p̄],

GEZI ≥ 0,

x0 = xB (Initial condition),

(3.25)

where L is the sliding window length, tk is the current time instance, p = [SI , EGP,d, τD] is
the vector of free parameters during the current optimization horizon, k is the discrete step
using the forward Euler method. The number of free variables n depends on the number of
meals in the current window. The initial condition of the state vector x0 is defined as the
steady-state of the system assuming that d0 = 0 and u0 = uB.

The optimization was done using the differential evolution method of the SciPy library.
The differential evolution algorithm ran until a termination criterion of accuracy or a max-
imum number of iterations was achieved.

3.4.2 Closed-loop simulation scenario

After the 2-day-long open-loop session (manual insulin dosing), the closed-loop setup au-
tomatically administered the insulin to the virtual patient for an extra two days. The
open-loop session was needed to provide historical data for initial patient parameter esti-
mation. On this initial horizon, the patient was assumed to be on a multiple daily injection
regimen, meaning long-acting insulin was taken into account as a basal insulin level, and
boluses were injected to compensate for the pandrial peaks. After the 48-hour-long initial-
ization horizon, the closed-loop strategy took over control and administered micro boluses
every 5 minutes virtually. The meal estimation accuracy was evaluated on the closed-loop
session, which consisted of meals between 10 to 80 g of CHO and peak times of absorption
between 15 and 60 min. Two meal schemes have been defined and used in the following
pattern: Meal scheme 1, Meal scheme 2 during the multiple daily injection therapy and
Meal scheme 2, Meal scheme 1 during the closed-loop therapy as it can be seen in Fig.
3.10.

The patient parameters of the virtual patient were the arithmetic mean of the virtual
cohort published in [R24].

3.5 Results of the meal estimation

In Fig. 3.10, the full horizon is depicted. The simulation started with a 2-day-long multiple
daily injection therapy where the injections were defined manually. After the initialization,
the MPC determined the control insulin (plotted in solid green line) in each iteration based
on the estimated CHO and patient parameters. The magnitudes of the arrows (injections)
are proportional to the values of the continuous infusion therapy. The solid red line depicts
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the simulated CGM trajectory, while the black dashed line the corresponding BG level of
the virtual patient.

Under the BG trajectories, the orange and magenta curves represent the 1-step-ahead
prediction error of the MPC during the optimization. The magnitudes of the errors imply
the overall estimation accuracy of the MHE. It can be seen that at the time of a given meal
consumption, the prediction error usually abruptly increased, and as new measurements
were being made, the error decreased. This phenomenon was more noticeable without
CGM noise. When the noise perturbed the BG trajectory practical identifiability has to
be taken into account; during the MHE optimization, local minima appear as the same
or very similar root-mean-square errors can be achieved with different trajectories (and
patient parameter sets). Despite these different parameter sets can result in very similar
errors, they can significantly alter the predicted BG values.

The controller achieved similar performance regardless of the CGM noise, slightly lower
peaks and safer minimum values could be observed without the CGM noise, depicted by
the solid purple line in Fig. 3.10. Similarly, the root-mean-square-error to the nominal
BG value of 115 mg/dl showed no significant difference between the two trajectories (32.45
with CGM noise, 31.85 without). During the 2-day-long manual therapy we used a total of
72 units of insulin, while 80 during the closed-loop therapy.

In Fig. 3.11, the CHO content and time constant estimation errors are plotted as a
function of time (relative to the consumption of the meal). The data were aggregated in
half-hour steps for evaluation. It can be seen that the median estimation error drops dras-
tically for both parameters in the first 2 hours. Regardless of the CGM noise, the errors
were of similar magnitudes throughout the evaluated 8-hour-long horizon; in fact, the error
samples come from the same distribution based on the two-sample Kolmogorov-Smirnov
test (with a mean p-value of 0.6), even if aggregated in 15-minute-long steps.

In Fig. 3.12, the horizontal axes represent the normalized error (p−pref
pref

) in the estimated
parameters: CHO content and time constant. The vertical axes denote the 1-step-ahead
prediction error: (Ĝl+1−Gl+1). An important aspect of the time constant estimation is that
while during the first half-hour the prediction and the estimation error had a negative
regression coefficient (-0.32 and -0.14), over 30 minutes the coefficients were positive (2.15
and 2.53). This means that underestimation of the time constant during the early stages
makes the MPC anticipate quicker absorption, hence larger peaks. Over 30 minutes the
effect is the opposite. Overestimated meals – that otherwise have been already absorbed –
make the MPC anticipate absorption over extended periods of time.

Despite the fact that we observed no statistically significant differences in the distri-
butions of the estimation errors, the prediction errors differed greatly in the regression
coefficients (1.03 vs 3.95 and 1.93 vs 6.00). The increased prediction errors – despite the
similar CHO and time constant estimation error – indicate that the deterioration of the
prediction accuracy originates from the estimation of other (patient) parameters.

While on a distribution level, the CGM did not introduce significant differences in the
meal estimation; in specific cases, the detrimental effect of the noise could appear. The
outliers of the τD estimation in Fig. 3.12 corresponds to the 10 g meal of the Meal scheme
2. The large estimation error can be explained based on the difference between the CGM
noise (red solidline) and the reference BG (dashed black line) in Fig. 3.10. For small meals,
it can occur that the magnitude of the postprandial peak falls into the range of the CGM
noise, and the resulting trajectory makes the time constant estimation unreliable.
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3.6 Numba-accelerated parameter estimation and simulation
functions

Optimization algorithms are a main focus of scientific computing. It is also heavily used in
control engineering and more specifically in artificial pancreas applications [R76]. Two ar-
eas where optimization problem rises: input signal calculation and parameter estimation.
We focused on the latter problem, where the task is to find some combination of the param-
eters of the mathematical model, which accurately describes the behavior of the process
and meets additional constraints. In recent years, general-purpose computing on GPUs
have been widely applied for optimization algorithms [R77, R78, R79].

Usually, these problems consist of the integration of nonlinear mathematical models,
applying linear or nonlinear constraints, and a large number of parameters. Often due to
these facts population-based optimization algorithms are employed such as the differential
evolution [R80, R81]. A key feature of population-based strategies is that they usually
slower to converge, but able to explore larger spaces and can be efficiently parallelized.

Despite the widely accepted notion of being "slow", Python is the most popular program-
ming language in data science and scientific computing [R82]. Usually, Python makes up
for the longer runtimes by sparing compilation and code development times. However,
there are cases where raw speed is required. In such situations, Numba [R83] aims to
provide a solution by converting Python code into fast machine code. With minor modifica-
tions in the syntax, the computationally heavy functions can be transferred to parallelized
machine code deployed either on the CPU or the GPU.

We showcased the performance differences in a parameter estimation task between
general Python syntax, Numba-accelerated code on CPU and GPU. In the case of the gen-
eral Python syntax, NumPy [R84] library was used where the array operation could be
accelerated with it, and the differential evolution algorithm of the SciPy [R85] library was
used as the optimization algorithm. In all cases, the most frequently used methods were
the forward Euler method in order to simulate the blood glucose trajectories, and the expo-
nential decay impulse response of the meal inputs. Runtimes were evaluated and compared
on different cloud computing platforms (Google Colab [R86] and Gradient [R87]) and a PC
laptop to provide a more general view on the performance differences.

The simulation of the blood glucose trajectories was separated into two functions to
speed up the calculations: the meal impulse response function (3.5) calculated the RA

term, while the cost function simulated the blood glucose trajectories and calculated the
root-mean-square error. Besides, the population evolution step was also accelerated com-
pared to the SciPy library, which was utilized by the general Python syntax version. The
implemented differential evolution algorithm was based on [R88] with "best1bin" strategy;
the same settings were applied in the SciPy function as well.

3.6.1 Meal impulse response

The meal impulse response function calculates the RA term for each patient for each dis-
crete timepoint as given in (3.5). The calculation can be greatly parallelized as a single
thread can be responsible for the calculation of the resulting 2-dimensional RA matrix as
illustrated in Fig. 3.13.

where N is the number of meal intakes during the horizon, typically around 5 for a
24-hour-long estimation window, i is the index of the individual in the population, tn(tk)
defines the time past since the n-th meal intake in the tk discrete timepoint. The optimized
parameters in the function are the VG and τD.

In order to fully utilize the GPU, input arrays were converted to single-precision floating-
point format, and the global memory access patterns of the elements: VGi , τDn,i , tn(tk) and
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Algorithm 1 Meal impulse response∑
RA = 0

for n = 1, 2, . . . , N do

RAn = dn
VGi

·τ2Dn,i

· tn(tk) · e
− tn(tk)

τDn,i∑
RA =

∑
RA +RAn

end for
RA(tk, i) =

∑
RA

dn to coalesced. The latter one was ensured by making the horizontal dimension of the
arrays (population sizes) multiples of 32 and converting the arrays to "C-contiguous". For
monitoring GPU occupancy, memory accesses and kernel optimization purposes Nvidia
Nsight Compute was used [R89].

3.6.2 Cost function

The cost function solves the differential equations on the simulated horizon and calculated
the root-mean-square error between the measured and the simulated blood glucose trajec-
tories as:

min
p ∈ Rn

J(p; tk) =

√√√√√√ 1

L

k∑
l=k−L

(CGMl −Gl)2

s.t. p ∈ [p, p̄],

x0 = xB (Initial condition),

(3.26)

where L is the optimization horizon, p and p̄ are lower and upper bounds of the free vari-
ables and xB is the steady-state of the system.

Algorithm 2 Cost function
J(i) = 0
for l = k − L, k − L+ 1, . . . , k do
x(tl+1) = x(tl) + ∆T · ẋ(tl+1)
J(i) = J(i) + (G(tl+1)− CGM(tl+1))

2

end for
J(i) =

√
J(i)/L

where x = [G, IEFF , Ip, Isc] is the state variable and J(i) is the corresponding cost of the
i-th individual in the population.

3.7 Results with the accelerated functions

Runtimes were evaluated by running the differential evolution algorithm for 100 gener-
ations with different population sizes, and the whole optimization was repeated 10 times
to get an average runtime. In all CPU cases, multi-threaded calculations were used. Two
additional factors were excluded: compilation time which affects the Numba-accelerated
functions and the spawning of multiple processes in the SciPy library which affects the
general Python syntax runtime.
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In Fig. 3.14, total runtimes and the runtimes of the parallelized functions are given
with respect to environments with different specifications. The total runtime includes gen-
eral Python syntax code and host-to-device transfer times as well. The complete Python
syntax implementation was evaluated solely on the PC Laptop setup, which had the high-
est computing performance in terms of the CPU. The Numba just-in-time (JIT) compiled
CPU runtime was approximately two orders of magnitude shorter (when evaluated on the
same CPU), and slower CPUs still greatly outperform the general syntax when using the
Numba JIT compiled functions.

Comparing the performance of the JIT compiled CPU and GPU runtimes larger vari-
ance can be seen in terms of the CPU performances; large difference in terms of threads
(2 vs 12 for the Colab and PC, respectively) and clock speeds (2.2 vs 4.0 GHz) explain the
variance.

Between the total runtime, meal impulse response, and cost function, the largest im-
provement was achieved in the meal impulse response. The reason for the one order of
magnitude acceleration even at low population sizes was due to the fact that two levels
of a three-level nested for loop can be parallelized, and each thread on the GPU can be
assigned to calculate a single element in a 2-dimensional matrix. For the cost function, the
acceleration was prevalent only for large population sizes, as it involves a single for loop;
GPU versions outperform their CPU counterpart above a population size of 3000. The cal-
culation of the cost function was not compute-heavy enough for small population sizes, as
the GPUs can yielded almost the same runtime in the range of 128 to 3000.

In Fig. 3.15, the ratios of the CPU and GPU runtimes are illustrated with respect to
the environments. The slightest advantage of using a GPU over the CPU is on the PC
laptop. On the cloud computing platforms the ratio was larger and the GPU outperformed
the CPU version for smaller population sizes. It can be seen that for larger population
sizes, depending on the environment a speed-up of 2 to 8 times can be achieved using the
GPU.

3.8 Thesis summary

Findings in my first thesis led to the conclusion that the structure of the mathematical
model and the accuracy of the patient parameters can have greater impact on the esti-
mation accuracy than the state observer algorithm itself. Thus, I focused on parameter
estimation methods, with a particular focus on constraining the free parameter space to
improve the speed, convergence and consistency. Also, the estimated parameters can be
of great use in various applications such as blood glucose prediction, replaying different
insulin and meal scenarios, also observing daily or long-term trends in insulin sensitivity.
The method and its use-cases fall under the umbrella of digital twins. In [C3], I devel-
oped moving horizon estimation based methodology to track intrapatient variability. In
[C4], the focus was on the estimation of the endgenous glucose production and extending
the model with heart rate as a potential, easy-to-access parameter to describe physical ac-
tivity. In [C5], the estimation algorithm was extended with a model predictive controller
and its performance was evaluated in a simulation environment. In [C6], I optimized the
parameter estimation algorithm for tackling large populations as a cloud-based service.
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Figure 3.8: The left column visualize the EGP values of the different models across the
estimation horizons. The right column illustrates the relative postprandial peak during
the breakfast (B), lunch (L) and dinner (D) periods. Each row represents a specific day
from the applied database.
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Figure 3.9: Two days of data from the first (upper) and three days of data from the sec-
ond (lower) measurement session. Measured BG level is plotted in a solid red line. The
estimated trajectories of the different models are represented with different colors. The
timepoint of the carbohydrate consumptions and insulin injections are given by the purple
and green arrows, respectively. The measured heart rate is illustrated by the grey area.
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Figure 3.10: Summary of the control with the defined multiple daily injection therapy and
with the closed-loop therapy on the full simulation horizon. The upper plot represents the
simulated BG trajectories, where the green arrows represent the insulin injections, the
purple arrows the meals, and the continuous green line is the insulin infusion. The lower
plot depicts the 1-step-ahead prediction errors with and without CGM noise.
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Figure 3.11: Aggregated estimation errors of the CHO content and time constants with
respect to the time passed since the consumption of the meal.
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Figure 3.12: 1-step-ahead prediction errors are plotted as a function of the normalized
errors in the CHO and time constant estimations. The short-range and long-range estima-
tions (with a threshold of 30 minutes) are separated into different subplots. The β numbers
are the regression coefficients.

Figure 3.13: 2D result array of the meal impulse response function.
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Figure 3.14: Total runtimes and the runtimes of the parallelized functions are given for
different environments.

Figure 3.15: Ratio of the CPU and GPU runtimes are given for the Numba JIT compiled
functions for different environments.



4
Time Varied Illumination Speckle
Contrast Imaging

Thesis group 3: Time varied illumination in laser speckle con-
trast imaging

Thesis 3
I contributed to the theory of laser speckle contrast imag-
ing by modeling the effect of varying laser illumination.
I contributed to the validation through simulations and
in vivo experiments. I contributed to the real-time im-
plementation of the time varied illumination methodology.
Thesis 3.1
I developed a mathematical model which describes the speckle
contrast with regards to the varying, modulated laser illumina-
tion. I generalized a well-known model which assumed constant
illumination.
Thesis 3.2
I validated the model of varied illumination by fitting it to in-
vitro and invivo measurements.
Thesis 3.3
I implemented the time varied laser speckle contrast imaging on
a Raspberry Pi coupled with a Basler camera. The system was
able to optimize the laser illumination in real-time.

Publications relevant to the theses: [J3, J4].

4.1 Time Varied Illumination Speckle Contrast Imaging Model

Laser Speckle Contrast Imaging (LSCI) is an optical technique that has been widely used
for monitoring disease induced blood flow changes on the brain surface [R90, R91], skin
[R92], surgery situation [R93] or even retina [R94]. It has a large field of view, paired with
high spatial and temporal resolution, and it requires no contrast agent, which makes it
an ideal choice for flowmetry. LSCI is based on the dynamic light scattering of coherent
light illumination. Laser speckles can be observed when an illuminated medium scatteres
the light in a way that it produces a random interference pattern from the superposition

52
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of phase fluctuations. As the pattern changes in accordance with the movement of the
scatterers, the decorrelation of such patterns can be used to determine the flow rate of
blood.

The first description of Laser Speckle Imaging and blood flowmetry was published as
early as 1981 [R95]. Ever since the technique has been improved greatly. Temporal analy-
sis can help to reduce the time-invariant noise and static scattering [R90]. Multi-exposure
methods [R96, R97] were developed to increase the dynamic range of the measurements
and for static scattering elimination. Multi-exposure method and its variants use multiple
exposure times with constant light intensity to estimate the correlation time of speckles
algorithmically and thus the flow rate. To suppress measurement noise and remove static
scattering with the aim of obtaining true flow speckle contrast and flow speed, LSCI sys-
tem calibrations and calculation procedures were proposed [R98, R99]. In order to balance
the temporal and spatial resolution, and speckle versus pixel size ratio various solutions
have been published [R100, R101]. Recently, in [R102], a high-speed camera enabled imag-
ing method was presented for wide-field measurement of the speckle temporal intensity
autocorrelation function.

For the quantification of speckle contrast, usually the variance of intensity is normal-
ized by the mean intensity in local spatial or temporal windows. This contrast is than used
to calculate the speckle autocorrelation (correlation time). The common methodology is the
following:

κ =
σs
〈I〉

, (4.1)

where κ is the calculated contrast from the image, σ is the standard deviation and 〈I〉 is the
mean light intensity over a window of pixels on the image or sequence of images. Relative
flow can be then estimated using (4.1), as the decorrelation increases with the flow rate
and hence κ is larger at smaller velocities and vice versa. The normalized second order
model of the underlying physical model was presented in [R103] as:

υ2(T ) =
β

T 2

∫ T

0

∫ T

0
ρ|gn1 (t′−t′′)|2 + (1− ρ)|gn1 (t′−t′′)|dt′dt′′, (4.2)

where υ2 is the reduced second moment, T is the exposure time, ρ is the fluctuating
component fraction and (1 − ρ) is the statically scattered ratio, and t′−t′′ give the time
differences during the exposure. The constant β is a normalization factor depending on
the speckle size, detector size and additional factors of the experimental setup. g1 is the
electric field autocorrelation [R95] which according to [R102] gives us gn1 (t) = exp(−(t/τc)

n),
where τc is the correlation time. The value of n depends on the type of flow dynamics.
In case of small arteries/veins in the size range of ≈30 to 150 µm with single scattering
unordered motion (SU) or multiple scattering ordered motion regime (MO) n = 1. For
multiple scattering unordered motion (MU) representing the behavior of capillary perfused
tissue (i.e. parenchyma) n = 0.5, while n = 2 describes single scattering from ordered
motion for larger vessels (SO). In transition situations, these dynamics (g0.51 , g11, g

2
1) are

weighted accordingly extending (4.2). The speckle contrast (4.1) can be used to identify τc
and other parameters by modeling κ(T, τc) and

√
υ2(T, τc) equivalency.

The standard LSCI methods have the assumption that the light intensity does not
change throughout the exposure time. Note, this holds for the multi-exposure methods
[R96] technique, its derivatives, and for single-shot acquisition multi-exposure methods
with a high frame rate single-photon avalanche diode camera speckle imaging [R97] as
well. In these methods, constant average laser intensity is used within an exposure.

In order to model the varying laser intensity during a single exposure, we generalized
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(4.2) by defining I(t) as time dependent illumination intensity:

υ2(T ) =
β∫ T

0

∫ T
0 I(t

′)I(t′′)dt′dt′′

∫ T

0

∫ T

0
I(t′)I(t′′)gρ,n(t′−t′′)dt′dt′′, (4.3)

where I(t′) and I(t′′) are the laser intensities at the sample at time instant t′ and t′′, and
for better readability the complex relation including scattering and flow dynamics is sub-
stituted as gρ,n(t′−t′′) = ρ|gn1 (t′−t′′)|2+(1−ρ)|gn1 (t′−t′′)| for non-transition dynamics [R102].
The description of the equation intuitively is the following: the decorrelation is weighted
with the intensity levels, which can be transformed to be dependent on the time lag by cal-
culating the correlation function. By applying integration once in (4.3) the reduced second
moment becomes:

υ2(T ) =
β∫ T

0 RII(t)dt

∫ T

0
RII(t)g

ρ,n(t)dt, (4.4)

where RII(t) is the autocorrelation of I(t). Note, that selecting I(t) = const. the RII(t)
and the denominator integral reduce to the well known (1 − t/T ) and 2/T formulas. This
equation can be used to derive various contrast to speckle correlation time relation in an
efficient way.

We propose as the most advantageous usage of changing illumination profile to be a
decreasing valued function. Meaning, a short bright period with decreasing brightness af-
terwards continuously or in discrete steps. The idea behind is similar to multi-exposure
concept, maintaining the average brightness for increasing exposure times. Thus, various
τc periods are captured with ∝ 1/τc intensity and ∝ τc observation time. The significant
difference from the multiple exposures is that the speckle decorrelation phenomena is con-
tinuously observed and is not separated into time segments.

Our proposed method – similar to the standard speckle contrast imaging – gives valid
result under the assumption that, except for the varying intensity, the critical laser prop-
erties are maintained such as coherence length, wavelength, noise performance during ex-
posure. In lieu of the limited and usually expensive analog modulation schemes (e.g. laser
current modulation, micro-opto-electro-mechanical systems or micromirror array, Bragg
cell), we rely on binary intensity modulation of finite pulse time resolution and constant
intensity.

The pulse coding enables wider average intensity range to be covered, and at the
same time the calibration of the nonlinear characteristics of continuous modulation can
be avoided. Given high enough pulse rate and sharp pulse skew, various modulation tech-
niques such as pulse width, position, code or delta modulation can be applied to tailor
the speckle contrast and correlation time relation. The validity of the nanosecond pulsed
speckle contrast imaging with uniform pulse rate has already been proven in [R104].

The pulsed illumination comes with limitations as well. The correlation time may be
close to the finite pulse width resulting in distortion in temporal averaging and in β [R102].
We estimate this limit, derived from the frame-rate requirements of [R102], as τc/T > 4,
where the β becomes near distortion-free of this effect. Thus, e.g. T = 5µs pulses enable to
capture τc > 20µs dynamics.

A simulation was done with exposure time of 2 ms at constant laser intensity (continu-
ous wave, CW) and a single exposure with the decreasing illumination value (I ∝ 1/t) using
(4.4). The υ2 and τc relations are presented in Fig. 4.1. In the simulations, three different
realistic flow dynamics were considered: SOn=2, SU/MOn=1 regimes with β = 0.3, 1− ρ = 0
values, and MUn=0.5 with β = 0.3, 1 − ρ = 0.2 [R102]. Fig. 4.1b) shows the absolute
sensitivity Sa, defined as υ2 sensitivity to absolute flow changes [R105], at the different
physiological regions and dynamics.
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The sensitivity of the continuous wave illumination remains localized in a τc region
raising the need for changing the exposure time to capture rather different flow speeds.
The varied illumination on the other hand flattens the sensitivity curves and shifts the
sensitive parts of the different dynamics into τc regions where they actually occur: SOn=2

curve towards lower τc of larger flow rate, etc. As a result, we expect that our method com-
presses and enhance the flow speed coverage while having sensitivity at various dynamics
in the physiologically important span [R106].

Figure 4.1: Simulation of 2 ms constant illumination (dotted curves) and single-shot 2 ms
time varied intensity illumination (solid curves) speckle contrast with β = 0.3, 1 − ρ = 0.2
for n = 0.5 and β = 0.3, 1 − ρ = 0 for n = 1, 2 regimes. Fig. a) shows the physiological
regions, dynamics types, and the speckle contrast versus correlation time relations. Fig. b)
shows the absolute sensitivity of the different dynamics versus illumination scheme.
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4.2 In-vitro and in-vivo validation

Two experiments were conducted: first, human full blood was pumped through a clear
channel slide, and second, the blood flow in the vessels visualized on a surgically prepared
mouse brain surface. The samples were illuminated with a fast modulated continuous
laser diode and observed with a camera.

In details, the laser spot was generated by a non-collimated single-mode laser diode
(RLD84PZJ2, λ=842 nm, 220 mW, ROHM Co., Ltd., Japan). The laser diode was placed
in a mount with thermoelectric cooling stage (HLD001, Thorlabs, Newton, NJ, USA). The
images were acquired with 10x and 4x infinity corrected objectives (Thorlabs, Newton,
NJ, USA) and a monochrome camera of 3.45x3.45 µm2 pixel size (Basler ACA2040-55um,
Basler Vision Technologies, Germany). The minimal laser pulse length was Ton = 5 µs
(200 KHz sampling rate). Interfacing between a host computer, the camera trigger and
the pulse waveform generation were done by a data acquisition card (USB-6211, National
Instruments Co., Austin, TX, USA). The timing and stability performance of the setup
was verified by a Si fixed gain detector (PDA015A/M, Thorlabs, Newton, NJ, USA) and a
spectrometer (AvaSpec-ULS2048 StarLine, Avantes Ltd., The Netherlands).

In the first experiment, a syringe pump (SN-50F6, Sino Medical-Device Technology Co.,
Ltd., China) drove the blood through a µ-Slide I Luer channel slide (ibidi GmbH, Germany).
The measured medium was room-temperature anticoagulated (citrate) packed red blood
cell product for transfusions. The flow velocity was varied across a large dynamic range,
from 0 to 600 mL/min in 19 logarithmic distributed steps (considering the flow control
resolution of the syringe pump). These volumetric flow rates resulted in 0 to 37.5 mm/s
velocities, taking into account the dimensions of the channel. The visible area was 720x540
µm2 and the speckle contrast was then calculated over a large region of interest of uniform
speed distribution using (5.21) [R107].

In the in vivo experiment, first we deeply anesthetized a mouse (strain: C57BL6/J) by
25 mg/kg xylazine and 125 mg/kg ketamine in 0.9% NaCl mixture, and then we fixed the
head of the animal in a stereotaxic frame (Stoelting Inc, USA). Next we made a 1 cm long
sagittal incision on the skull, and cleaned the surface by 3% H2O2. With a high speed drill
we opened the skull and made a 5x5 mm window on the parietal part. To avoid the drying
of the tissue, we put physiological saline solution on the brain and covered it with a glass
cover slip. The used 4x objective resulted in appr. 4x3 mm useful visible area on the brain
surface. The speckle size was s ≈ 13.2µm.

First, the model given in (4.4) has been identified based on controlled measurements of
the ex vivo setup. In the second step, to make the effect of an intensity profile predictable,
we used the identified model for optimization and used it later on the in vivo measurement.

We defined τc := k 1
v+vb

, where v is the flow speed in the channel, vb is the speed corre-
sponding to Brownian motion and k is a scaling factor, ρ = 1 neglecting the static scattering
component. As the exploration of second type dynamics induced variability is not in the
scope of this article, we assumed n = 1 for the ex vivo characterization. For the iden-
tification (4.4) was extended with a vs offset as proposed in [R96], to better account for
static scatterers and measurement noise. The identification process was formulated as an
optimization problem, where the free variables are: β, k, vs and vb. The goal of the opti-
mization was to minimize the root-mean-square error (RMSE) between the measured and
the simulated contrast values:

min
β,k,vb,vs

M∑
i=1

RMSE(κ(i) − κ
(i)
sim), (4.5)

where M is the number of different exposure times, κ is the measured and κsim is the
simulated contrast. The optimization was done by the MATLAB 2020a fmincon function
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interior-point method from 20 initial points generated by Latin Hypercube Sampling (LHS)
[R108]. The identified parameters were given as β = 0.195, k = 6.027 · 10−4 mm and
vb = 0.0072 mm/s with RMSE of 0.012± 0.0047.

During intensity profile optimization the goal was to extend the dynamic range of the
non-saturating speckle contrast values from the τc ≈ 10−5 − 10−2 s span. A given exposure
time has been sliced into sections of different lengths, and each section could have different
repetition rate of the fixed length pulses (i.e. equivalent CW constant intensity). From an
optimization point of view the variables were the length and duty cycle of each section. A
feasible implementation requires the lengths to be integer multiplicative of the hardware
limited pulse width (Ton = 5 µs), thus the number of pulses in a particular section becomes
Ni = round

(
TiDi
Ton

)
, where Ti is the section length and Di is the duty cycle. These pulses are

then equally distributed on the resulting T h
i = round

(
NiTon
1−Di

)
, where subscript h indicates

the hardware implemented section length. The rounding introduces discontinuities in the
cost function rendering derivative based optimizer not applicable. Therefore, instead of the
fmincon algorithm, patternsearch was applied from 20 initial points generated by the LHS,
similarly to the identification process. The cost function and optimization was defined in
the following way:

min
Ti,Di

σ
(∆κ(T, τc)

∆tc

)
+ µ

(∆κ(T, τc)

∆tc

)−1
, (4.6)

subject to tc = log(τc), (4.7)∑
i

Ti·Di = Tconst, (4.8)

where Tconst is the total "on time" of the equivalent exposure using one constant frequency,
σ(·) is the standard deviation and µ(·) is the mean. The first term of the cost function
(4.6) forces the convergence of the difference quotients toward a constant value, realizing a
linear-like response on the logarithmic scale. The second term forces the speckle contrasts
to spread, by maximizing the mean slope of the response. The (4.8) puts a constraint on the
exposure time. A change of variable is made (tc), since the near-linear response is expected
on the logarithmic scale, where the differences are calculated between the experimentally
evaluated flow speeds. The simulated and measured speckle variances are illustrated in
Fig. 4.2 labeled with the different illumination scenarios. The curves represent a single
exposure per rate with no averaging of multiple frames. Due to the lack of continuous
illumination control in the setup, the constant illumination cases in the comparison were
produced by uniformly distributed pulse trains similarly to [R104].

It can be observed that the resulting correlation time span has higher dynamic range
compared to the uniformly distributed illumination setups as expected.

4.2.1 In Vivo Experiment Results

The protocol was the following during the experiment: after the preparation of the animal,
the optical setup is adjusted and a sequence of 100 frames was captured for each measure-
ment scenarios and then the stored sequences were evaluated. The scenarios contained
continuous and modulated pulse train illumination versions as well. Before capturing a
series, we adjusted the laser position in order to use the broadest dynamic range of the
camera at the given exposure time with no saturating pixel values. Finally, the speckle
contrast was then calculated with (5.21) on a 7x7 pixels sliding windows in the individual
frames and to improve the signal-to-noise ratio we averaged across the contrast maps.

The results are presented in Fig. 5.6. The images show that for such relatively small
flow speed ranges present in the prepared mouse cranial window our TVI-LSCI method
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Figure 4.2: Measured and simulated speckle variances given different exposure times and
laser pulse modulation setups as a function of flow rate. CW and CISI pulse trains are
illustrated in the bottom figure. For the constant frequency setups only a section is shown
(1000 µs), for visualization reasons.

perform similarly to CW LSCI. However, it is expected based on our simulations and ex vivo
experiment, that in scenarios with higher flow speed ranges like in the human circulatory
system TVI-LSCI can achieve better speckle variance and gaining advantage by its higher
dynamics mapping. Such experiments will be carried and evaluated in the future.
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Figure 4.3: In vivo experiment showing speckle contrast of the surface of a mouse brain.
Image captions indicate continuous illumination (CW) and varied illumination (TVI-LSCI)
outcomes at different exposure time and pulse train length. The ROIs are registered
on each image and picked at different vessel size positions. The shown field of view is
3.2x3.2mm2.

4.3 Real-time implementation

For the real-time implementation a Raspberry Pi 4, a custom-developed software and
Basler camera were used. A Raspberry Pi 4 Model B carries out the digital pulse wave gen-
eration, the camera control, and the image processing tasks through a custom-developed
software. Fig. 4.4 depicts the sample-in-the-loop experimental setup. The protocol of an
experiment can be summarized as follows: First, the user selects the optimization sce-
nario and the related thresholds and reference values. Second, an initial pulse wave is
generated to capture a single image for ROI selection purposes. Afterward, the optimiza-
tion algorithm updates the pulse sequences based on 10 averaged contrast images (with
a resolution of 2000x1500 pixels). It continues to do so until a maximum number of it-
erations or termination limit is reached. The pulsetrains (leaving the GPIO pins of the
Pi) control the 660 nm 50 mW laser diode through a laser driver (LDP-VRM 01-12 CA,
PicoLAS, Germany) and at the same time trigger the monochrome digital camera (Basler
acA2040-55um). Based on preliminary investigations we limited the minimum pulse width
to 10 µs. With shorter pulses the proportion of laser transients becomes dominant, which
introduces two unwanted effects: average intensity significantly lowers, and contrast low-
ers because of the larger proportion of incoherent light [R109]. Furthermore, the laser is
mounted in a thermally stabilized mount (LDM21, Thorlabs, Germany) driven by a Thor-
labs TED200C temperature controller. The constant temperature improves contrast by
reducing temperature-induced laser mode hopping.

The validity of pulsed speckle contrast imaging has already been proven in [R104].
In this method, uniform intensity and uniform length discrete laser pulses with uniform
pulse rates are used instead of continuous wave illumination. It uses laser pulsetrains of
uniform intensity and uniform length discrete pulses, however, it changes the density of
the pulses that ultimately simulates a varying intensity during a single exposure. Using
a pulse sequence made of multiple density pulsetrains (e.g. 3 pulsetrains of equal length
with 75%, 50% and 25% duty cycles concatenated) enables high dynamic range flow rate
imaging during this single exposure.

We made this discrete pulse sequence to be a function of a single variable. This func-
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Figure 4.4: The experimental setup can be seen on the left-hand side. A medical syringe
pump provides a constant flow speed, while the laser and the digital camera are controlled
by the Raspberry Pi. A raw speckle image with a typical ROI selection is illustrated in
the upper right corner. The schematic diagram in the lower right corner summarizes the
sample-in-the-loop LSCI method.

tion limits the number of feasible sequences but helps with the optimization problem by
introducing only one more variable besides the exposure length. The additional param-
eter affects the spacing – in a form of a power function – between two consecutive high
states. The sequence starts with an initial high state. The next high state is defined by the
number of low states (nLOW ) following the initial high state as:

nLOW (i) = round(iγ)− 1, (4.9)

where the discrete sequence is loaded with binary values from i = 0 to i = T
10 µs , T is the

exposure length, γ >= 0 is the spacing factor. If nLOW ≤ 0 the next state will remain a
high state. The continuous wave laser setup is a limiting case when γ = 0, typically we
evaluated 0 ≤ γ ≤ 1.4. Fig. 4.5 illustrates how the spacing factor affects the average ROI
intensity for different exposure lengths.
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Figure 4.5: Measured average intensities in an ROI are visualized as a function of the
spacing factor. It can be observed that after an initial interval between 0 and 0.1, a spacing
factor of 1 reduces the intensity by more than an order of magnitude. Small values of the
spacing factor would have only a visible effect on exposures above 30 ms.

The typical way of quantifying flow speed in LSCI is by means of contrast calculation.
The speckle contrast is calculated on a single digital image or sequence of consecutive
images (to descrease noise level), in both cases using a sliding window. The contrast is
calculated by taking the quotient of the standard deviation and the mean of the intensities
in the current window. The window size is usually n× n, where n is in the range of 5 to 15
[R110]. The spatial speckle contrast is defined as:

κ =
σ(Is)

〈Is〉
, (4.10)

where σ(Is) and 〈Is〉 are the sample standard deviation and the sample mean in the current
window. The choice of window size affects the noisiness and the resolution of the resulting
contrast map. The contrast value is averaged on 10 consecutive images in order to reduce
noise and improve the consistency of the optimization.

We defined three major optimization problems: contrast setpoint, sensitivity maximiza-
tion, and dynamic range maximization. Previously it was shown in [R111] that the inten-
sity has a significant effect on the contrast values. Thus, besides the major objectives,
all three share an optional penalization for underexposed images; a linear term penalizes
the given parameter/parameter set when the average intensity falls below a predefined
threshold in the ROIs. In our experimental setup ROI sizes ranged between 10x10 to
50x50 depending on the size of the evaluated cross-section in the channel slide.
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Figure 4.6: Observed speckle contrasts plotted with respect to the average ROI intensity.
Low intensities can cause falsely observed large contrast values, while high intensities can
cause falsely observed low contrast values. In order to avoid the potentially detrimental
effects, a method of intensity penalization is implemented during the optimization. The
figure indicates that a threshold around an intensity level of 40-50 guarantees a linear, flat
response.

4.3.1 Contrast setpoint

Optimization based methods are widely used in control problems [R112, R113, R114, R115],
we defined the first scenario as an optimization to setpoint contrast value. The user can
select an arbitrary ROI and define a desired average contrast value in that particular ROI.
Then the gradient descent algorithm iteratively modifies the continuous wavelength, which
also determines the exposure length of the camera. This first scenario aims to approach the
sample-in-the-loop concept in the simplest manner. For this reason, we decided to optimize
a single variable with the gradient descent method as follows:

Ti+1 = Ti − α
∆J

∆T
, (4.11)

where α is the step size, ∆ denotes the differences in cost J and exposure length T between
the i-th and i− 1-th iteration.

min
T

J(T )= |κ(T )− κref |+ Jexp.,

s.t. T ∈ [1, 30],

Jexp.=

{
0, if µ >= µref ,
µ−µref

λ , else.
,

(4.12)

where κ is the average calculated contrast in the ROI, κref is the user-defined contrast
setpoint, and µref is the average intensity threshold. The offset from the reference intensity
µref is normalized by λ in order to scale the additional penalization in the range of the
unpenalized cost, in our experimental setup, a reasonable value for the λ was around 40.
The parameters of the control: α, the number of iterations, and the λ were determined
based on multiple experiments with different channel slides and flow speeds.
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4.3.2 Sensitivity maximization

The cost is defined as the inverse of the difference:

min
T

J(T ) =
1

|κ1(T )− κ2(T )|+ ε
+ Jexp.,

s.t. T ∈ [1, 30],

Jexp.=

{
0, if µ >= µref ,
µ−µref

λ , else.
,

(4.13)

where κ1 and κ2 are the average contrast values in the respective ROI and ε avoids
division by zero.

4.3.3 Dynamic range maximization

Study [R116] showed that by utilizing time variant illumination during the camera expo-
sure the dynamic range of the laser speckle contrast imaging can be greatly improved.

min
T, γ

J(T, γ) = |κ1(T, γ)− κref |+ |κ2(T, γ)− κref |+ Jexp.,

s.t. T ∈ [1, 30], γ ∈ [0, 1.4],

Jexp.=

{
0, if µ >= µref ,
µ−µref

λ , else.
,

(4.14)

where κref. is a user-defined contrast value, around which the sensitivity ought to be
the least.
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4.4 Results of the real-time implementation

4.4.1 Optimization to contrast setpoint

Figure 4.7: The set exposure length and measured contrast with respect to the current
sample number are illustrated by solid black lines. The flow speed of the syringe pump has
been modified during the experiment (denoted by the dashed red line), creating an external
disturbance on the system. The contrast setpoint is depicted by the dashed green line.

Fig. 4.7 demonstrates the result of the first scenario, namely the optimization for a specific
contrast value. A contrast value of 0.27 is observed with an initial exposure length of
3 ms. Then the gradient descent algorithm iteratively increases the exposure length to
match the reference 0.2 contrast value. Besides the fluctuation caused by the measurement
noises, the algorithm settles for an exposure length of 6 ms. When the disturbance occurs
(in a form of flow speed change), the observed contrast drops by 0.05, but the algorithm
compensates for it after a couple of iterations and settles for a new 4 ms exposure length.
A change in flow speed induces a change in the measured contrast values, which are based
on the captured image. The larger deviance in the contrast value ultimately results in
a larger cost. A new optimum can be found by either increasing or reducing the exposure
time so that deviance can be counteracted. The compensation can be done only in a feasible
range of the parameters which determine the operation of the laser and the camera.
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4.4.2 Sensitivity maximization

Despite that the optimization of the exposure length would be sufficient for sensitivity
maximization, we carried out an experiment using both of the variables for demonstration
purposes: the spacing factor and the exposure length.

Fig. 4.8 demonstrates well that the optimizer achieved the lowest costs when the spac-
ing factor was close to zero. The small spacing factor in practical perspective translates to
a continuous wave-like operation, which is otherwise expected to yield the best result in
terms of sensitivity.

Figure 4.8: Evaluated spacing factor-exposure length combinations are illustrated during
the sensitivity maximization scenario. It can be seen that the lowest costs are achieved if
the optimizer converges the pulse sequence to the continuous wave operation.

4.4.3 Dynamic range maximization

In Fig. 4.9 we showcase an exemplary optimization using the grid search algorithm [R117].
The algorithm aims to minimize the cost function given in (4.14). It can be seen that it
converges to a spacing factor of around 0.3 and to an exposure length of 8 ms, where a
minimum is found. In this multivariate scenario, the grid search algorithm was preferred
in order to avoid the possibility of quick convergence to a local minimum.
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Figure 4.9: Evaluated spacing factor-exposure length combinations are illustrated during
the dynamic range maximization scenario. It can be seen that the cost can be lowered by
applying time-varying illumination. An optimal solution is found around a spacing factor
of 0.3 and an exposure length of 8 ms.

We explored the effect of the spacing factor and exposure length in order to ascertain
the cost surface and that the algorithm indeed found a minimum. The exposure length is
varied in a range from 1 ms to 30 ms and the spacing factor is from 0 to 1.4. Fig. 4.10 and
4.11 depict the optimization surfaces given two different reference contrast values. The
reference value of (4.14) is set to 0.1 in Fig. 4.10 and 0.3 in Fig. 4.11.

Figure 4.10: The measured optimization surface when the reference value is set to 0.1 is
approximated with a family of curves. Subplot a) represents the "raw" cost, while subplot
b) the cost when the average intensity is penalized.
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Figure 4.11: The measured optimization surface when the reference value is set to 0.3 is
approximated with a family of curves. Subplot a) represents the "raw" cost, while subplot
b) the cost when the average intensity is penalized.

The behavior of the cost function towards the minimum (0) and maximum (1.4) of the
spacing factor is dominated by the phenomenon related to the average intensities. Firstly,
for small values of the spacing factor, the laser switches to continuous wave-like operation,
which means increased exposure. The increased exposure (mostly in the case of longer
exposure times) leads to saturation, which in return lowers the observed contrast (as indi-
cated in Fig. 4.6). Zero contrast values consequently saturate the cost function, as it can
be seen in Fig. 4.10 and 4.11 subplots a) for exposure times above 20 ms. Secondly, the
countereffect of high spacing factors introduces numerical instability into the calculation
of the speckle contrast. Falsely observed high contrast values increase the cost; numeri-
cal instability appears at smaller spacing factors for shorter exposure times. Subplots b)
showcase the intensity penalized cost surface. The significant difference between the raw
and the penalized versions is that the cost towards the larger spacing factors is affected by
an additional term, which penalizes the underexposed images in a linear way. The start of
the penalization – when the exposure falls below the predefined threshold – is dependent
on the actual exposure length as expected.

The theoretical minimum moves toward the continuous wave operation mode for larger
values, as it is indicated by the black circle on the envelope. Such behavior is expected
since larger spacing factors have a great effect on the dynamic range, making the response
so wide that the contrast values fall below the reference values, hence increasing the cost.
Fig. 4.12 depicts the Pareto front around the minimum; it can be seen that similar costs
are achieved with different combinations of exposure length and spacing factor.
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Figure 4.12: As the dynamic range maximization in (4.14) is formulated as a multi-
objective optimization, a Pareto front can be found, where ROI1 and ROI2 costs represent
the distances from the reference contrast value.

4.5 Thesis summary

Laser speckle contrast imaging is a method with great potential, as it can be a cheap,
noninvasive imaging modality in medical applications. It is capable of generating blood
flow maps and recently was used in assessing the microcirculation in diabetic feet. On
the other hand, the method has some drawbacks and lacks models which can be used to
interpret measurements and make optimizations. In [J3], we introduced time varied illu-
mination laser speckle contrast imaging, which is a method to improve the dynamic range
of the technique by varying the laser light during the camera exposure. I developed the
model which describes the effect of varying illumination and defined optimization scenar-
ios to improve the dynamic range. In [J4], I developed the laser illumination optimization
method on a Raspberry Pi, which realizes a real-time implementation of the technique.
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Modeling the effect of exposure, static
and dynamic scatterers on laser
speckle contrast imaging

Thesis group 4: Models of exposure and scattering medium in
laser speckle contrast imaging

Thesis 4
I contributed to the theory of laser speckle contrast imag-
ing by developing a mathematical model of static and dy-
namic scatterers. Also, I contributed to the theory by de-
veloping a model of overexposure compensation. I validated
the models through simulations and invivo experiments.
Thesis 4.1
I developed a mathematical model which describes the effect
of static and dynamic scatterers on the measured contrast; the
model also describes how ensemble averaging affects the con-
trast.
Thesis 4.2
I developed a mathematical model which describes how overex-
posure affects the measured contrast, and how can the model be
used to compensate for the overexposure.
Thesis 4.3
I validated the mathematical models through simulations and
invivo experiments by fitting the model parameters to the mea-
sured variables. The fitted models showed good accuracy and
consistency with the data.

Publications relevant to the theses: [J5, J6].

5.1 Model of scattering medium and ensemble averaging

Laser speckles are the result of the superposition of scattered coherent light forming in-
terference patterns. The movement of the scatterers creates phase fluctuations, and as a
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result, the interference patterns decorrelate during observation time. Inert materials pos-
sess a behavior of fixed patterns, while decorrelation will increase with the movement of
the scatterers and with other local activities of the living tissue. To quantify decorrelation
and flow rate, the speckle contrast is calculated on a digital image or series of images of the
sample. For the calculation, as the basis of the LSCI technology, the standard deviation of
the intensity is normalized by the mean intensity in spatial or temporal sliding windows
to form a contrast map. The observed speckle pattern is affected by static and dynamic
scatters of the observed surface. Static scatterers remain fixed, while dynamic ones are
moving. Speckle patterns of consequent frames are correlated in time in the presence of
non-moving scatterers, e.g. contains frozen speckle patterns. This nonzero speckle pattern
correlation is the consequence of the temporal stability of the mutual location of static scat-
terers, such as skin or tissue, and the laser source. In practice, the result is granular image
and false flow rate estimate on static and static scatterer-rich areas. We investigated the
use cases of ensemble averaging and how it changes contrast map quality as a function
of static and dynamic scatterers ratio. We proposed a model, which describes the relation
between scatterer ratios and contrast outcomes, also with respect to ensemble averaging.

We used two premises: the frame by frame illumination change should not diminish the
speckle contrast of the individual frames and at the same time, the consecutive patterns
should be uncorrelated. Hence, the correlation time τI of the illumination related objective
speckle patterns must be significantly larger than the exposure time Texp � τI , and the
decorrelation of the speckle patterns of the consecutive frames must be forced on the whole
region of interest.

Different technical solutions could satisfy these conditions: slowly rotating ground glass
diffuser [R118][R119], digital micromirror arrays [R120][R121], space light phase modu-
lators, tunable laser diodes [R122], and other similar techniques that are commonly used
in switchable laser speckle reduction solutions [R123, R124] may be considered for the
purpose.

Next, we formulated the combination of intensity speckle patterns of static and dynamic
scatterers to model the effect of sample size (number of frames). We adopted the common
definition of the fraction of dynamic optical scatterers over total scatterers denoted by ρ,
and the non-moving scatterers as (1 − ρ). The static component is modeled as a single
fully developed speckle pattern, the dynamic contribution was described by temporarily
integrated distribution [R107], and an independent noise source was modeled by Gaussian
noise as:

I = (1− ρ)S(λS) + ρD(kD, λD) +W, (5.1)

where S is random variables of exponential distribution with parameter λS > 0 represent-
ing static scatterers. Dynamic scatterers are described with the random variables D of a
gamma distribution defined by shape-rate parametrization: kD, λD > 0, where λD is rate
and the kD is the shape parameter. Camera noise is taken into account as random variable
of normal distribution W ∼ N (µW , σ2

W ). Any non-zero mean error source such as dark
current or readout noise can be modeled by non-zero µW bias and other zero mean sources,
like photon or electronic noises, can be described by σ2

W .
The quality factor was calculated in an alternative way – based on variance and mean.

As for the standard deviation of the sample standard deviation no closed-form expression
exists. The expression can be approximated by using Taylor series expansion. However,
due to the highly nonlinear nature of the problem even the second order approximation
introduces significant inaccuracies, the variance based variables were defined by:

Kv
s =

σ′2
s

µ′
s

, εvK =
Var

(
Kv

s

)
E
(
Kv

s

) , (5.2)
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where σ2
s and µs are the sample variance and sample mean, respectively. The Kv

s is
evaluated similarly to the spatial speckle contrast on a sliding spatial neighborhood of
ns × ns pixels than εvK is calculated through n frames.

The effect of the number of samples n was used for constructing the variables of the
distributions for the two illumination cases. Since variance of sample variance was calcu-
lated, the dependent variables were extended with n1/4. The illumination has no effect on
the expected value, thus separate variables were used for the calculation of the variance
and the expected value. Using the scaling property of the exponential, the gamma distri-
bution, and the variance, the following change of variables could be made for the different
illumination cases.
Stable illumination:

Var : λ′
S =

λS

1− ρ
, λ′

D =
λD

ρ
n1/4, k′D = kD, µ′

W = µW , σ′
W =

σW

n1/4
, (5.3)

Decorrelated illumination:

Var : λ′
S =

λS

1− ρ
n1/4, λ′

D =
λD

ρ
n1/4, k′D = kD µ′

W =
µW

n1/4
, σ′

W =
σW
n1/4

(5.4)

Illumination independent:

E : λ′
S =

λS

1− ρ
, λ′

S =
λD

ρ
, k′D = kD µ′

W = µW , σ′
W = σW , (5.5)

where the λ′
S , λ′

D, k′D, µ′
W and σ′

W are the transformed variables. In order to express the
quality as a function of sample size, we used moment generating functions [R125]:

MS(x) =
λ′
S

λ′
S − x

, MD(x) =
( λ′

D

λ′
D − x

)kD
, MW (x) = eµW x+0.5(σ′

W x)2 , (5.6)

where M is the moment generating function. The k-th moment and the sum of the
random variables can be obtained in the following way:

MI = MS(x)MD(x)MW (x), (5.7)

E[Ik] =
dk

dxk
MI(x)

∣∣∣
x=0

. (5.8)

The variance and the mean of the ratio distribution can be approximated using Taylor
series expansion [R126]. Furthermore, utilizing that the covariance of the sample variance
and sample mean is:
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E
(σ′2

s

µ′
s

)
≈ E(σ′2

s )

E(µ′
s)

− Cov(σ′2
s , µ

′
s)

E(µ′
s)

2
+

Var(µ′
s) E(σ

′2
s )

E(µ′
s)

3
, (5.9)

Var
(σ′2

s

µ′
s

)
≈ Var(σ′2

s )

E(µ′
s)

2
+

E(σ′2
s )

2Var(µ′
s)

E(µ′
s)

4
− 2Cov(σ′2

s , µ
′
s) E(σ

′2
s )

E(µ′
s)

3
, (5.10)

Cov
(
σ′2
s , µ

′
s

)
=

µ′
3

n2
s

, (5.11)

Var(σ′2
s ) =

µ′
4

n2
s

− n2
s − 3

n2
s − 1

σ′4
s

n2
s

, (5.12)

Var(µ′
s) =

σ′2
s

n2
s

, (5.13)

Ks = E
(σs
µs

)
≈ E(σ′

s)

E(µ′
s)

− Cov(σ′
s, µ

′
s)

E(µ′
s)

2
+

Var(µ′
s) E(σ

′
s)

E(µ′
s)

3
, (5.14)

Cov
(
σ′
s, µ

′
s

)
=

µ′
3

2σ′
sn

2
s

, (5.15)

where µ′
3, µ′

4 is the 3rd and 4th central moment and n2
s is the area size. The two most

specific limits of the model are given of static and dynamic content only (ρ = 0, 1) for stable
illumination, assuming that λS=λD=λ, the complex relation simplifies to the following:

lim
kD→1
σW→0
ρ→1

µW→0

εvK =
n2
s − 4n1/4(n2

s − 1) +
√
n(8n2

s − 6)− 1

λn3/2(n2
s − 1)2

, (5.16)

lim
kD→1
σW→0
ρ→0

µW→0

εvK =
5n2

s − 3

λ(n2
s − 1)2

, (5.17)

Equation (5.16) confirms the expected behavior, that the variance-based quality factor
improves with increasing sample number n for a given n2

s area, and shows εvK ∝ 1/n depen-
dency. Meanwhile, for static content Eq. (5.17) the quality is sample number n indepen-
dent at constant illumination, meaning that the averaging does not improve the flatness
of the contrast map. On the other hand, the interframe decorrelated illumination makes
the samples independent and consequently reduces the variability of the static scatterers
as well. In order to validate the model and observe the mixed static, dynamic behavior, a
numerical simulation was implemented using the methods and models presented in [R127]
and [R128]. Figure 5.1 shows a comparison of εvK under stable and changing illumination
at different ρ values and Fig. 5.2 demonstrates the effect of the variations of multiple
distribution parameters.

The case of temporal contrast calculation was addressed as well. The temporal con-
trast calculation based flowmetry is demonstrated to be less sensitive to static scatterers
in volume scatterers and flows [R129]. Using interframe decorrelated illumination the
patterns become statistically independent frame by frame, and as a consequence, the flow
rate cannot be estimated with the calculated temporal contrasts. In order to retain the
proper temporal statistics and still evaluate the effect of ensemble averaging, we proposed
a combined experimental method.

The temporal methods rely on determining the first-order statistics of the speckle fluc-
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Figure 5.1: Comparison of the numerical simulations and the model. Quality factor εvK
is plotted on the left axis, while the spatial contrast Ks with respect to factor ρ on the
right axis. The value of parameter ρ defines the fraction of dynamic scatterers and total
scatterers (ρ = 1 only dynamic, ρ = 0 only static scatterers), n denotes the number of
frames acquired, n2

s area was set to constant 400. The numerical simulation, similarly to
[R127] and [R128], was carried out by generating independent random samples for D and
W variables, while keeping S variable constant. A sample defines an intensity map as
given in Eq. (5.23). The parameters of the random variables were chosen so that D and S
variables had identical mean. The shape parameter was kD = 2, which resulted in a

√
2

spatial contrast in the fully dynamic (ρ = 1) scenario, the µW and σW were set to 0.
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Figure 5.2: The model parameters have been varied around a nominal value in order to
showcase the effect of the different parameter tendencies on the quality factor and the
spatial contrast. The nominal values of the parameters have been based on the valida-
tion. The arrows indicate the direction of increase in the parameter values. The camera
noise related parameters, namely σW and µW have opposite effect. Larger mean noise level
causes larger spatial contrast degradation, this effect can be attenuated by acquiring sev-
eral images as the trajectories of the quality factors indicate. Larger σW values superpose
an additional pattern on the image, and increases the spatial contrast. The shape param-
eter kD related to the ratio of camera exposure time and decorrelation time, larger values
indicate higher ratios, and from a practical point of view a blurred image. Furthermore,
the shape parameter doesn’t have an effect on the fully static scenario (ρ = 0), as it affects
only the distribution of the dynamic variable.
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tuations data of a sequence [R101]:

Kt =
σ(It)

〈It〉
=

√
〈I2t 〉 − 〈It〉2

〈It〉2
, (5.18)

where 〈It〉 and 〈I2t 〉 are the mean and mean square values of the speckle intensity variations
during exposure time. The temporal contrast calculation works on a 1×1×n neighborhood
using n temporal length that depends on the exposure time and frame rate [R101]. The
exact relation between the contrast and flow rate is a complex question and depends on
multiple factors [R98, R96, R129, R97, R99, R102, R130].

The temporal contrast is calculated according to Eq. (5.18) for a short sequence [R101]
(e.g. 15-20 frames). Then, after providing an independent wavefront phase distribution,
another contrast map is gathered. The contrast maps are accumulated in this manner and
finally averaged.

Three versatile experiments were conducted to compare the predicted difference be-
tween the stable and the ensemble illumination schemes:

• Intralipid (Fresenius Kabi AB, Uppsala, Sweden) flow was observed while pumped
through a clear channel slide phantom covered with a series of different thickness
diffusers.

• Blood flow in vessels was visualized in vivo on a surgically prepared mouse brain
surface.

• The underside of a fresh Ficus benjamina leaf was examined.

The general setup is detailed in Fig. 5.3. We changed the phase distribution of the scat-
tered field of the laser with a pair of diffusers in which one diffuser was rotated. This ar-
rangement supersede the presented single diffuser arrangements [R118][R121], in several
aspects: i) a doubly scattered speckle system (mm range diameter aperture) approximates
better Gaussian statistics, ii) the larger surface structures of one diffuser are suppressed
effectively on the illuminated target, iii) the overall speckle pattern count using rotat-
ing diffuser, the maximum number of uncorrelated speckle patterns is limited by a single
diffuser [R121], while the double configuration is still limited, but provides significantly
larger independent pattern count [R131].

A laser spot was generated by a collimated and beam expanded single-mode laser diode
driven by a constant current source (RLD82PZJ2, 820 nm central wavelength, 220 mW,
ROHM Co., Ltd., Japan). The laser diode was placed in a mount with a thermoelectric
cooling stage (LDM9T, Thorlabs, Newton, NJ, USA). The images were acquired with a
2x infinity-corrected objective, a 15 cm focal length tube lens, a linear polarizer (Thorlabs,
Newton, NJ, USA), and a monochrome camera of 1536x2048 pixels resolution and 3.45x3.45
μm2 pixel size (Basler ACA2040-55um, Basler Vision Technologies, Germany). One fused
silica 1500 grit diffuser of the dual pair (DGUV10-1500, Thorlabs, Newton, NJ, USA) was
placed in a DC servo motorized rotational stage. The visible area was 4x5 mm2. The speckle
size was s ≈ 10.4 μm. The speed of revolution of the diffuser was set to a slow rotation of
0.05 rad/s to achieve τI ≈ 50 ms. We chose exposure times in the range of 2 − 3 ms and we
set the frame rate to 20 FPS in the demonstrations to satisfy the required premises. The
number of emerging temporally independent speckle intensity patterns during the used
exposure time is M = Texp/τI ≈ 0.06, meaning negligible reduction in speckle contrast
[R131], while each frame is provided an independent pattern. To measure the quality and
to quantify the non-uniformity of the speckle contrast maps we use a simpler metric based
on Eq. (5.21):
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Figure 5.3: The optical arrangements of the illumination and imaging system used in the
experiments. The examined targets are a channel phantom, a fresh leaf of ficus benjamina,
and the surgically prepared mouse brain surface.

εK =
σK
µK

, (5.19)

where εK , σK and µK are the standard deviation and mean values of a region of interest
of the calculated contrast [R132].

First, we conducted the channel slide experiment to evaluate the effect of ensemble
averaging in a controlled environment with known flow speed and changing ρ. A syringe
pump (SN-50F6, Sino Medical-Device Technology Co., Ltd., China) drove a 10% emulsion
of phospholipid stabilized soybean oil (Intralipid) through a µ-Slide I Luer channel slide of
200 µm channel height (ibidi GmbH, Germany) at 2.0 mm/s speed. The slide was placed on
a black beam blocking background cavity in order to avoid multiple reflections and provide
optical isolation. The entire channel has been covered uniformly with an ≈ 54µm thick
weak diffuser (Scotch Magic Tape, 3M, USA) with increasing number of layers. During the
first measurement the slide was not covered, and one additional layer was applied to the
channel slide up step by step after each measurement step, up to 9 layers. In each step,
the speckle pattern was recorded for 100-100 frames with an exposure time of 3 ms with
stable and decorrelated illumination as well. The spatial speckle contrast (Eq. 5.21) was
calculated in a ns × ns = 7 × 7 spatial neighborhood sliding window and then averaged
through the frames for 1, 2, ..., N times. The non-uniformity of the contrast maps is calcu-
lated by Eq. 5.19 using a ns × ns = 11 × 11 spatial window and averaged for each n value.
The spatial windows sizes were selected to meet the Nyquist criterion with respect to the
speckle size and the spatial contrast pattern. The comparative results are presented in
Fig. 5.4.

It can be seen in the figure that the increasing static scatterer ratio (decreasing ρ)
contrast map quality does not improve as the number of frames increases using stable
illumination (Fig. 5.4(a)). On the other hand, as expected, the decorrelated illumination
effectively improves the contrast map (Fig. 5.4(b)). Note, that the data series recorded on
static ground glass diffuser of sub speckle sized surface structures and ρ = 0 follows the
∝ 1/

√
n improvement rate. This is not the case in a structured scatterer: the decreasing

slope of improvement is due to the heterogeneous structure of the used diffuser under
the quality metric. Comparing the mean spatial contrasts for the two illumination cases
Fig. 5.4(c) suggests that the contrast remains independent of illumination changes. As a
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Figure 5.4: The mean quality factor of the channel slide area is calculated with increasing
diffuser coverage (decreasing ρ) at constant flow rate 2 mm/s of 10% Intralipid emulsion
in a channel slide. Figure (a) shows the quality factor change as a function of the number
of averaged contrast maps and ρ with stable illumination. Figure (b) corresponds to the
quality factor using decorrelated illumination. Figure (c) maps the mean spatial contrast
values of the two illumination cases. In figures (a) and (b) the ρ = 0 curves were captured
on an ground glass diffuser for comparison.

conclusion, the expected value of the contrast maps does not change, while it becomes less
granulated, limited by the scatterer structure.

The model given in Eqs.(5.2)-(5.13) has also been validated on this measurement. The
validation is formulated as an identification process with constraints on the ρ factor. Each
additional layer of the diffuser is assumed to reduce the ρ factor by a constant ∆ρ value –
as it is illustrated in Fig. 5.5 –, a fully static (ρ = 0) and a fully dynamic (ρ = 1) sequence is
recorded, as well. During the identification beside the model parameters, the ∆ρ parameter
is optimized as follows:

min
∆ρ,λD,λS ,
kD,µW ,σW

∑
n∈{1,100}

√
1
nρ

∑nρ

k=1

(
∆εvK(n)

)2
2εvK,max

+

√
1
nρ

∑nρ

k=1∆K2
s

Ks,max

s.t. ρ = [0, 1− k∆ρ],

k ∈ (0, 9) ⊂ Z,
kD ≥ 1,

(5.20)

where nρ = 11 is the number of calculated quality factors and spatial contrasts based on
the measurements, ∆εvK denote the difference between the measured and simulated quality
factor, while ∆Ks denote the difference between the spatial contrasts. Furthermore, the
quality factors are evaluated at the two extremes (n = 1 or n = 100), the contributions from
the quality factor and spatial contrast are normalized by their maximum values εvK,max and
Ks,max, respectively. The results of the identification are summarized in Fig. 5.5.

Next, we conducted an in vivo experiment to investigate the effect of illumination
change. First, we deeply anesthetized a mouse (strain: C57BL6/J) with 25 mg/kg xylazine
and 125 mg/kg ketamine in 0.9% NaCl mixture, and then we fixed the head of the animal
in a stereotaxic frame (Stoelting Inc, USA). Next we made a 1 cm long sagittal incision on
the skull, and cleaned the surface with 3% H2O2. With a high speed drill we opened the
skull and made a 5x5 mm cranial window on the parietal part. The exposure time was 3
ms and 100-100 frames were recorded with each of the two illumination types. The two
speckle contrast maps were calculated using ns × ns = 7× 7 pixels neighborhood and then
averaged (Fig. 5.6).
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Figure 5.5: The result of the identification is in good agreement with the measured spatial
contrast and quality factor. Dashed line represent the output of the model, while the con-
tinuous lines are the measured values with linear interpolation between the data points.
The identified parameters are as follows: ∆ρ = 0.08, λS = 0.0042, λD = 0.01, kD = 17,
µW = 0.0015, σW = 0.0016.
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Figure 5.6: Results of the in vivo experiment of the parietal opening of a mouse. Figure
(a) brightfield image, (b) averaged spatial speckle contrast map of 100 frames with stable
laser illumination, (c) averaged spatial speckle contrast map of the ensemble averaging,
(d) cross-sections of (b) and (c) maps along the denoted line. The scale bar is 3mm.
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After segmenting the brightfield microscopy view to categories of bone/tissue covered
parenchyma, uncovered parenchyma, and vessels, we observed significant qualitative im-
provement (σK/µK lowered by 45 − 50%) over the cross section at the partially tissue-
covered region when decorrelated illumination was used. On the open surface of parenchyma
and arteries/large vessels, the decorrelated illumination showed less improvement: σK/µK

is lowered by 15 − 20% and 10 − 15%, respectively. The later difference can be originated
in more heterogeneous and voluminous organization of the parenchyma and deeper light
penetration depth compared to the simpler surface vessel structure.

As a representative example for temporal contrast calculation, we examined the midrib
and veins of the underside of a fresh Ficus benjamina leaf (Fig. 5.7(a)). The flow rate varies
in the range of a few m/h (<1 mm/s) in the leaves. This slow flow rate does not enable the
integral type spatial contrast calculation, thus a moderate sampling rate, short exposure
time, and temporal contrast calculation is the appropriate technique to estimate the flow
rate [R133]. The exposure time was 10 ms, 100 frames were captured at 20 frames per sec-
ond and used for temporal contrast calculation. In the reference measurement no diffuser
movement was applied as shown in Fig. 5.7(b). During the modified experiment, the dif-
fuser has been moved after every 20 frame and the contrast calculation was restarted. The
result was calculated as the average of the contrasts of the whole sequence (Fig. 5.7(c)).
The quality factor σK/µK was reduced significantly (Fig. 5.7(f)), resulting in much less
variation. Figure 5.7(d) cross-section compares a line section of the contrasts near a large
and narrow vein. We think that the improvement of this technique in imaging setups,
with the limit of ergodicity near static scatterers [R134], by partial ensemble averaging is
an important observation and worth further investigation. The amount of improvement is
similarly to the former experiments, is limited by the volumetric structure of the scatterers.

Figure 5.7: Temporal speckle contrast measurement of the underside of a fresh Ficus ben-
jamina leaf. (a) brightfield image, (b) temporal contrast of 100 consecutive frames, (c) av-
erage of 5 temporal contrast maps of sequences of 20 frames including diffuser relocation
after each sequence. (d) cross-sections of the two (b) and (c) contrast maps. Figures (e-f)
show the quality factor of three ROIs for the two cases. The scale bar is 1.5mm.
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5.2 Model and compensation of overexposure

LSCI utilizes the statistics of the random speckle pattern based on a measure of contrast
κ. As random pattern changes in accordance with the movement of the scatterers, the
flow rate ∝ τc. The different τc decorrelation times are then mapped to a contrast map
calculated as:

κ2s =
σ2(Is)

〈Is〉2
, (5.21)

where σ(Is)
2 and 〈Is〉 are the sample variance and the sample mean calculated in a sliding

window of a small neighborhood (e.g N × N = 5 × 5). The reduced second moment υ2
depending on T exposure time and τc is given in the following model [R103]:

υ2(T, τc) =
β

T 2

∫ T

0

∫ T

0
ρ|gn1 (t′−t′′)|2 + (1− ρ)|gn1 (t′−t′′)|2dt′dt′′, (5.22)

where ρ is the ratio of the dynamic scatterers and (1−ρ) is the ratio of the static scatterers
to total scatterers, and t′−t′′ give the time differences during the exposure, β is a nor-
malization factor depending on the speckle size [R135], detector physical resolution and
additional factors of the experimental setup [R136, R137]. g1 is the electric field autocor-
relation, which according to [R95] gives us gn1 (t) = exp(−(t/τc)

n) relation, where τc is the
correlation time. The value of n depends on the type of flow dynamics [R102]. The contrast
values are usually averaged on multiple consecutive frames to improve the signal-to-noise
ratio. There are other approaches using temporal or spatiotemporal contrast calculations
[R132, R101, R129].

It is important to note, that the outlined methods rely on undistorted speckle patterns,
meaning there should be no significant alteration found compared to the ideal Gaussian
distribution. Overexposure results in clipped signals and truncated distribution, making
the calculations misleading. Our aim was to compensate the saturation effect on contrast
calculation during the preprocessing of overexposed speckle patterns.

5.2.1 Effect of signal saturation

Several previous studies [R107, R136, R137] detail the statistical properties of the speckle
pattern. Working with biological samples and realistic sensors, the recorded speckle pat-
tern becomes a composite of multiple origins. Three major factors can be distinguished in
this composite: a static element, a dynamic element and a factor, which accounts for the
camera noise. The static component can be modeled as a single fully developed speckle
pattern. The component of interest is the dynamic one, which is described by the integra-
tion of the varying speckle pattern in the time domain over a single exposure. The general
composite of the factors can be modeled by the sum of three random variables as [R138]:

Is = (1− ρ)S(λS) + ρD(αD, βD) +W, (5.23)

where S is a random variable of exponential distribution, representing static scatterers.
Dynamic scatterers are described with the random variable D of gamma distribution. The
gamma distribution can be defined by αD > 0 shape and βD > 0 rate parameters. Camera
noise is taken into account as a random variable of normal distribution W and ρ is the ratio
of the dynamic scatterers to total scatterers (as in Eq. (5.22)).

We focused only on large signal behavior, thus we simplified by assuming the camera
noise to be negligible W ≈ 0. Since the sum of different multiple gamma distributions can
be estimated by a single near gamma distributed gamma-series [R139, R140], we handle
Is as a single one, regardless of static scatterer content. The described model does not



5. Modeling the effect of exposure, static and dynamic scatterers on laser
speckle contrast imaging

include several realistic image acquisition and laser source error phenomena (such as laser
bandwidth, pixel cross talk, shoot noise, speckle oversampling). In order to handle these
effects, we implemented a numerical approach that is described in the following sections.

Let Ii be the individual samples with gamma distribution, so the probability density
function can be described as:

f(Ii) =
βα

Γ(α)
Iα−1
i e−βIi , (5.24)

and the cumulative distribution function is:

F (Ii) =
γ(α, βIi)

Γ(α)
, (5.25)

where Γ(α) =
∫∞
0 tα−1e−tdt is the gamma function, and γ(α, βIi) =

∫ βIi
0 tα−1e−tdt is the

lower incomplete gamma function. In order to calculate the contrast, the expected value
and the variance of Eq. (5.24) is needed. The two values are calculated as E(f) = α/β
and σ2(f) = α/β2 based on the contrast calculation equations κ2s = 1/α for the unsaturated
reference distribution.

Next, we investigated the saturated case by defining it with the following cumulative
(truncated) distribution function:

Fsat(Ii) =

{
F (Ii), if Ii < Isat

1, otherwise.
, (5.26)

where Isat is the saturation threshold. The expected value of the truncated gamma distri-
bution in the undistorted [0, Isat] region is:

E(γ(α, βIsat)) =
1

β

γ(α+ 1, βIsat)

γ(α, βIsat)
(5.27)

The expected value of the saturated distribution E(fsat) can be calculated by weight-
ing the truncated gamma distribution by Fsat(Ii) and adding the saturation threshold Isat
weighted by 1− Fsat(Ii):

E(fsat) =
α

β

γ(α+ 1, βIsat)

Γ(α+ 1)
+ Isat (1− Fsat(Ii)) (5.28)

Variance is calculated based on the expression of moments σ2(x) = E(x2) − E(x)2, and
that the combined variance is the sum of the individual variances of independent samples:

σ2(fsat) =
α

β2

γ(α+ 2, βIsat)

Γ(α+ 1)
− E(fsat)

2 + I2sat
(
1− Fsat(Ii)

)
. (5.29)

The contrast equals to 1/α in the limiting case when Isat → ∞, and it becomes zero
when Isat → 0.

For completeness, it is important to mention that the quantization of very low inten-
sity values cause a different kind of distortion in the observed contrast values. As it is
described in [R141], the effect of the bit depth b on the contrast can be modeled by defining
κ2 corrected contrast:

κ2 ≈ κ2s

(
1 +

Isat
E(f)(2b − 1)

)
. (5.30)

Eqs. (5.28)-(5.30) enable to simulate and analyze both the effect of under- and overexpo-
sure.
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5.2.2 Analytical solution for the reference contrast

We refer to the contrast, which we could observe under ideal conditions as the reference
contrast. The reference contrast 1/α can be calculated by using higher-order partial deriva-
tives of the saturation ratio and sample mean with respect to the saturation threshold
(Isat). For ease of notation we introduce saturation ratio R and Y as:

R = 1− Fsat(Ii) (5.31)

Y = E(fsat)− IsatR =
α

β

γ(α+ 1, βIsat)

Γ(α+ 1)
(5.32)

Note, that the saturation ratio is equal to the complementary cumulative distribution
function (tail distribution). The shape and rate parameters of the distribution can be cal-
culated in the following way:

Let A =
∂2Y

∂I2sat
=

1

Γ(α)
βαe−βIsat

[
αIα−1

sat − Iαsatβ
]
, (5.33)

and let B =
∂R

∂Isat
= − 1

Γ(α)
βαIα−1

sat e−βIsat , (5.34)

then
A

B
= −α+ βIsat, (5.35)

∂

∂Isat

A

B
= β, (5.36)( ∂

∂Isat

A

B

)
Isat −

A

B
= α (5.37)

Though the result is theoretically feasible, it is unsuitable for practical application.
First and second order derivatives and their ratio are required for the implementation,
which makes the solution sensitive to noise and numerically unstable in the case of small
differences. A more consistent result was achieved by defining an iterative method to cor-
rect for overexposure. The iterative process is detailed in 5.2.3 and 5.2.4, and was proposed
by Péter Földesy.

5.2.3 Simulation

In order to investigate the practical effects of saturation, we performed a thorough image-
based numerical simulations using the methods and models presented in [R127], [R128],
[R142].

To model a realistic camera and laser source, the following effects are incorporated in
the simulations: (i) fixed pattern noise and shot noise modeled by Poisson distribution,
(ii) finite bit length data representation by rounding to 12-bit integer, (iii) lateral pixel
crosstalk implemented as 7x7 Gaussian kernel, (iv) speckle size, and (v) static scatter con-
tent. The simulated wavelength was λ = 820nm and the sensor size was 256x256 pixels.
The images were scaled with different illumination values, rounded, then normalized to
unity by Isat = 212. The saturation effect was modeled by clipping the intensity.

First, speckle patterns were generated with increasing illumination (β rate parameter).
The used parameters were α = 4, the mean speckle size was 4 pixels, shot noise σn = 0.01,
lateral pixel crosstalk σp = 0.5, and σλ = 3nm. First, the illumination level (Iunsat) was set
to the maximum level, where the speckle pattern had no saturated value (R = 0). Relative
to this value, the intensity was varied in 0.25Iunsat, 1Iunsat, 2.5Iunsat, and 4Iunsat steps. The
resulting images and their probability distributions are presented in Fig. 5.8.
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Figure 5.8: Density functions of 256x256 pixels of simulated speckle patterns are shown.
The used parameters are α = 4, speckle size 4 pixels, shot noise σn = 0.01, lateral pixel
crosstalk σp = 0.5, static scatterer ρ = 0. Subplot b) shows the speckle pattern at maximum
light intensity (Iunsat) where no saturation occurred. The subplots a), c), d) correspond
to 0.25, 2.5, 4 times this intensity. The contrast and saturation ratio of the four speckle
patterns are Ks = 0.46, 0.47, 0.41, 0.27 and Rs = 0%, 0%, 9.1%, 43.5%, respectively.

The detailed relation between the contrast, the observed mean illumination and the
saturation ratio is shown in Fig. 5.9. To calculate the saturation ratio Rs, the intensity
levels are first binarized; 0 is assigned if there is no saturation, 1 if the pixel value reached
Isat. Then, the binary map is averaged in N ×N neighborhoods:

Rs = 〈bin(Ii)〉, where (5.38)

bin(Ii) =

{
0, if Ii < Isat

1, otherwise.
(5.39)

It can be seen that the contrast value decreases as more and more pixels become satu-
rated. The reason behind this is that the mean value of the pattern is increasing asymp-
totically to the saturation level, while the standard deviation is decreasing.

The contrast κs can be approximated as a function of the saturation ratio Rs, with a
linear and two exponential components:

κs(Rs) ≈ p1 ·Rs + p0 + a1e
−b1Rs − a2e

−b2(1−Rs). (5.40)

Figure 5.9c shows the detrended, exponential component only, with contrast values for the
same examples.
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Figure 5.9: Subplot a) shows the contrast values and the saturation ratio as a function of
the mean observed illumination. The yellow markers corresponds to the numerical simu-
lation of Fig. 5.8. Subplots b) and c) show the linear and the exponential components of
the contrast approximation as a function of the saturation ratio.

Next, we investigated the contrast deterioration as a function of various flow rates and
imaging parameters: (i) as a function of α shape parameter, (ii) speckle size, (iii) pixel cross
talk and (iv) shot noise. It can be seen in Fig. 5.10 that the main tendency of contrast
deterioration does not alter under various scenarios.
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Figure 5.10: The upper subplots show the contrast value as a function of the satura-
tion ratio under various parameter sweeps: shape parameter, speckle size in pixels, pixel
crosstalk, and shot noise. In the bottom row, the detrended contrast values are plotted
with solid curves and their fitted model (the exponential terms of Eq. (5.40) only) as black
dashed curves. While a parameter is changed, the others remained static as α = 2, speckle
size 4 pixels for subplot a) and speckle size 1 for b-d), shot noise σn = 0, static scatterer
ratio ρ = 0, lateral pixel crosstalk σp = 0.5.

5.2.4 Correction of overexposure

The goal of this section is to compare the compensation of the contrast distortion of par-
tially saturated images. We demonstrated in the previous sections, that the contrast value
decreases as more and more pixels saturate. It can be seen in the detrended contrast curves
(Fig. 5.10), which are the exponential components of the fitted values that the low and high
saturation sides can differ significantly (a1 6= a2 and b1 6= b2). The reason for the difference
is that the high and low part of the PDF of the intensity is affected differently by various
imaging distortions. This observation suggests that a precise extrapolation cannot be done
when near half of the pixels are saturated.

Next, we investigate whether the unsaturated case can be estimated by extrapolation
from an artificially generated saturation ratio and contrast curve. Such curves, similar to
Fig. 5.9 and Fig. 5.10, may be generated from the recorded images by lowering the thresh-
old value step by step, clipping the images and recalculating their contrast maps. The
dynamic range of the initial image is limited by the threshold of the sensor as I0 ∈ [0, Isat].
Let us divide this range into M evenly distributed artificial threshold values. After consec-
utively clipping the original image at each threshold, we get M contrast κi and saturation
ratio Ri maps using Eq. (5.21), Eq. (5.38), where i ∈ [1,M ].

We have compared two straightforward function extrapolation strategies. As a ref-
erence solution, we fitted the Eq. (5.40) with M = 7 threshold levels with constrained
nonlinear least-squares optimization. In addition, we explored the near linear behavior of
the contrast decreasing in lower contrast cases with a simple and effective linear function.
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The presented simulation contained the following parameter settings: α = 1, 2, 5, 8, 20, 50,
speckle size 2 pixels, shot noise σn = 0.01, lateral pixel cross talk σp = 0.5, static scatterer
ratio ρ = 0.2.

After parameter fitting, each of them was evaluated at Rs = 0 point to get the unsat-
urated estimate. The simulation was repeated at 100 illumination levels in the range of
0.25Iunsat to 5Iunsat. The outcome is presented in Fig. 5.11a. The Eq. (5.40) based extrapo-
lation method resulted in precise, but slow and noisy estimates.

Next, the contrast κs is approximated by a linear function of the saturation ratio and
the measured (partially saturated) contrast value:

κcorr,linear = p1(κs, Rs) ·Rs + p0(κs, Rs). (5.41)

In order to further minimize the computational requirements, we took the advantage
that setting the threshold level to 0, the resulting contrast becomes 0 at saturation ratio 1,
thus there is no need for further contrast calculations in addition to the already known κs
and Rs. Thus this estimation simplifies to:

κcorr,linear =
κs

1−Rs
. (5.42)

The results are shown in Fig. 5.11b. As expected, this method produced low estimation
error at low contrast values where the contrast function is more linear.
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Figure 5.11: Comparison of different extrapolation methods: a) contrast and saturation
ratio point pairs are fitted by Eq. (5.40) and evaluated Rs = 0; b) linear fitting using
Eq. (5.42); c) residual multiplicative error scatter plot and trend of selected, low contrast
(κs < 0.3) points; d) linear fitting with residual error correction optimized for low contrast
values by Eq. (5.44).

As a continuation, we also analyzed the residual error of the fitting process. Generally,
due to the independent distortion sources, error compensation is not feasible, though, for a
certain condition range, it is beneficial to reduce the extrapolation imprecision. In order to
explore that, multiple simulation setups were used with a wide parameter span. The error
was sought as the ratio of the expected and the estimated contrast values κunsat/κcorr,linear.
The relation that describes the error can be derived as the quotient of Eq. (5.40) and Eq.
(5.42), and by substituting Rs = 0. The quotient can be approximated with good accuracy
by a rational function in the range of Rs ∈ [0, 1] in the following form:

κunsat
κcorr,linear

=
(p0 + a1)(1−Rs)

p1Rs + p0 + a1e−b1Rs − a2e−b2(1−Rs)
≈ 1 + c1Rs

1 + q1Rs + q2R2
s

. (5.43)
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The gathered data and the results of the approximate model (Eq. 5.43) is presented in
Fig. 5.11c as black dots. For different parameter settings, where the exponential terms
of Eq. (5.40) are small the extrapolation error behaved similarly, independently from the
actual contrast value. This observation helps to correct some errors of the simple extrapola-
tion for a wide range of setups. As a rule of thumb, low contrast values (κs < 0.3−0.4, which
corresponds to higher flow rate or long exposure time, small speckle size, etc.) satisfy this
condition. Including this term in the correction process, the simplified linear extrapolation
becomes:

κcorr =
κs

1−Rs

1 + c1Rs

1 + q1Rs + q2R2
s

, (5.44)

where the parameters are c1 = −0.8, q1 = −0.85, q2 = 0.25 for the selected low contrast
region. The corresponding corrected curves can be seen in Fig. 5.11d. The simulations of
Fig. 5.10 is repeated using Eq.(5.44) and can be seen in Fig. 5.12. The advantage of this
form is that it can be evaluated using image operators without pixel-wise fitting routines.
Note, to correct the overexposure, κs and Rs must be calculated for each image, while
c1, q1, q2 only once. On the other hand, the parameters of the correction term may differ for
different setups and need to be customized.

Figure 5.12: Linear extrapolation with residual error corrected repetition of the simula-
tions presented in Fig. 5.10. The dash lines are the expected, unsaturated contrast value
levels.

5.2.5 Measurement

In this section, the application of Eq. (5.44) is tested in laboratory experiments. A laser
spot was generated by an uncollimated single-mode laser diode driven by a constant cur-
rent source (RLD82PZJ1, 820 nm central wavelength, 220 mW , ROHM Co., Ltd., Japan).
The laser diode was placed in a mount with a thermoelectric cooling stage (LDM9T, Thor-
labs, Newton, NJ, USA) and driven by a current generator (LDP-VRM 01-12 CA, Picolas
GmbH, Germany). The images were acquired with a 10 cm focal length and f/11 aper-
ture objective and a monochrome camera of 1536x2048 pixels resolution and 3.45x3.45 μm2

pixel size (Basler ACA2040-55um, Basler Vision Technologies, Germany). Given the lin-
early polarized laser diode and an additional static and a rotated linear polarizer (Thorlabs,
Newton, NJ, USA) the illumination level was varied in wide range.

The first set of measurements observed a static white carton paper and a small area of
the backside of a hand with different exposure times (5, 10, 20 ms) and changing illumi-
nation level. The contrast and Eq. (5.44) were calculated in a 7x7 pixels sliding window,
than averaged for 2x2 mm2 area to make a single measurement dot as shown in Fig. 5.13.
The points shown in the figure belongs to the original and corrected 1/κ2s values. Working
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with in vivo samples we found that the contrast and saturation ratio curves tends to be
linear, with less non-linearity than the ideal scenarios. As Fig. 5.10 parametric analysis
showed, non-idealities separately already result in flattening of the contrast curve. Thus
the compensation may be more effective in real applications than the numerical simula-
tions suggest.
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Figure 5.13: Speckle contrast of the same areas at different illumination levels varied in
1:15 ratio. Red dots scaled on the right axis are the ratio of saturating pixels. Scaled on
the left axis, the uncorrected values are shown as blue dots, the corrected values as green
dots. Subplots show measurements of 2 mm by 2 mm areas of a) static white paper and
b-d) back of a hand with 5, 10, and 20 ms exposure times.

As a final experiment, we observed human fingers. 25 frames were taken at 5 ms ex-
posure time first at non-saturating light level, then at three times larger illumination,
causing significant area getting overexposured. The spatial contrast is calculated in 11x11
pixels windows and averaged for the frames. Figure 5.14 shows both the uncorrected and
corrected perfusion maps.

5.2.6 Discussion

The computational requirement of the presented linear and corrected extrapolation method
is slightly above the standard contrast calculations. This may restrict its real time appli-
cation in time critical applications, such as to visualize blood flow changes in vivo intraop-
erative situations [R143].

The contrast range reported in practical applications lies in the range of 0.04 < κ < 0.6
restricted by noise, pixel cross-talk, finite laser spatial coherence length and exposition
length [R142]. Considering these two limiting cases, we showed that up to 50-60% saturat-
ing pixel ratio and low contrast range (κ < 0.3 − 0.4) simple, linear extrapolation method
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Figure 5.14: Contrast correction of an overexposured image using Eq. (5.44). a) the per-
fusion map generated at medium illumination. The maximum intensity was set to 50%
mean value of the sensor’s dynamic range resulting in no saturating pixels. b) perfusion
map with overexposured regions using three times higher intensity. Strong distortion can
be seen at saturated regions, and better signal to noise ratio at darker areas. c) local mean
with color coded saturation (yellow to red areas). d) compensated perfusion map using the
proposed linear extrapolation method. The perfusion is estimated as 1/κ2.

enables external illumination increase with low blood flow index distortion.

5.3 Thesis summary

The signal-to-noise ratio of laser speckle contrast imaging can be improved with taking
multiple independent images – also called as ensemble averaging. In [J5], I proposed
a model based on statistical distributions which describes how the method depends on
the number of captured images and also describes the dependency of static and dynamic
scatterers. Differentiating between static and dynamic scatterers is important because
taking multiple images improves the signal-to-noise ratio only in terms of the dynamic
scatterers. The model was validated in simulations and also on real-world measurements.
Exposing properly the image in laser speckle contrast imaging is important to acquire
consistent results, overexposing the image distorts the statistical distributions, rendering
the observed contrast lower than the contrast of the real distribution. In [J6], we proposed
a model which describes the effect of overexposure and I described how it can be used to
compensate for overexposed images.
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