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KIVONAT

Az 1-es típusú diabétesz a szervezet cukor-háztartásának krónikus za-
vara, amelynek előfordulása világszerte növekvő tendenciát mutat. Ez
egy jelenleg még gyógyíthatatlan, de kezelhető betegség, amelynek a
szövődményei jelentősen befolyásolják élettartamot és életminőségét. A
mesterséges hasnyálmirigy terápia kidolgozására irányuló fejlesztések
célja, hogy a hagyományos manuális inzulin terápiánál hatékonyabb
vércukorszint-szabályozást tegyenek lehetővé. Az utóbbi évek eredmé-
nyes klinikai vizsgálatai és a félautomata inzulin pumpák sikeres alkal-
mazásának ellenére a mesterséges vércukorszint-szabályozás számos
gyakorlati problémát vet fel.

A disszertáció a mesterséges hasnyálmirigy funkciói közül az alábbi
háromra fókuszál: közvetlenül nem mérhető mennyiségek becslése, a
vércukorszint hosszú távú előrejelzése, valamint a szabályozó algorit-
mus. Az alkalmazott módszereknek figyelembe kell vennie a vércukor-
szint szabályozás kihívásait: a humán anyagcsere-folyamatok összetett
és nemlineáris dinamikáját, a korlátozott mérési lehetőségeket, a vezér-
lőjel aszimmetriáját, valamint az ételbevitelre vonatkozó információk
hiányát.

Az elmúlt évek során a hangsúly a biztonság és megbízhatóság irá-
nyába tolódott el a mesterséges hasnyálmirigy kutatásában. Mivel az
eszköz robusztusságának növelése elengedhetetlen a biztonságos műkö-
dés biztosításához, ezért a disszertáció elsősorban ebből a szempontból
vizsgálja a becslés, predikció és szabályozás kérdéskörét.

A bemutatásra kerülő módszerek mindegyike modellalapú. A sza-
bályozó a nemlineáris modellek egy speciális fajtáját, lineáris változó
paraméterű rendszert használ a vércukor háztartás modellezéséhez. A
szabályozótervezés a modell súlyfüggvényekkel kibővített változatát al-
kalmazza. Ezek a súlyfüggvények többek között a rendszer bizonyta-

II



lanságát és a vezérlőjel korlátait képviselik. A végeredmény egy olyan
nemlineáris állapot-visszacsatoló szabályozó, amely H-végtelen és H2
normákon alapuló robusztus vércukorszint szabályozást valósít meg.

Az állapot-visszacsatoláshoz szükséges állapotvektor becslését szig-
ma pont szűrőn alapuló állapotmegfigyelő biztosítja. A szigma pont szű-
rők hatékonyak nemlineáris, sztochasztikus zajokkal és zavarásokkal
terhelt rendszerek állapotainak becslésére. Továbbá a disszertációban
bemutatott szigma pont szűrők kifejezetten úgy lettek módosítva, hogy
figyelembe vegyék a vércukorszint háztartás modelljének bizonytalan-
ságát, és az állapotváltozók nemnegatív voltát.

A bemutatott állapotmegfigyelő használható predikcióra is. Azon-
ban ahhoz, hogy a predikció zárt szabályozási körben is hatékony ma-
radjon, szükséges az állapotbecslés hibájának figyelembe vétele. Ez biz-
tosítható abban az esetben, ha a prediktort együttesen alkalmazzuk
egy olyan sztochasztikus becslővel, amely az állapotbecslés hibájából
származó eltérésekről szolgáltat információt. A prediktor többek között
használható bejelentett ételbevitel validálására és potenciálisan veszé-
lyes vércukorszintek előrejelzésére.

A bemutatott szabályozó és állapotbecslő algoritmusok kiértékelé-
se szimulációk segítségével történt. Az eredmények alapján az életta-
ni változók nemnegatív jellegének figyelembevétele javíthatja a szigma
pont szűrők pontosságát bizonyos feltételek teljesülése mellett. Ezenfe-
lül megállapítást nyert, hogy a szigma pontok számának növelése egy
adott ponton túl nem javítja érdemben a becslés minőségét. A szabályo-
zó algoritmus egy a szakirodalomban rendszeresített vizsgálati módszer
alapján kielégítő módon tudja szabályozni a vércukorszintet be nem je-
lentett ételbevitelek mellett.

A szimulációs eredmények alapján valószínűsíthető, hogy a bemuta-
tott módszerek alkalmasak a mesterséges hasnyálmirigyben való hasz-
nálatra. Azonban figyelembe véve a módszerek korlátait, valamint a
könnyű implementálhatóságot és kis számítási igényt, használatuk el-
sősorban támogató és diagnosztikai funkciókra javasolt.
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ABSTRACT

Type 1 diabetes mellitus is a chronic condition of glucose metabolism,
which has an increasing prevalence worldwide. It is currently incurable
but treatable, with severe potential long-term outcomes. Artificial pan-
creas is an emerging automated treatment with the aim to manage glu-
cose levels more efficiently than manual insulin injections. However, de-
spite the promising clinical trials and the success of commercially avail-
able semi-automated solutions, glucose control has numerous practical
challenges.

This dissertation focuses on three key aspects of Artificial Pancreas:
estimation of unmeasured signals, long-term prediction of glucose lev-
els, and control algorithm. The goal is to address the following chal-
lenges: the complex, nonlinear and uncertain dynamics of the impaired
human metabolism; the limited measurement capabilities; the asym-
metric nature of the control signal, which can only decrease but not
increase the glucose concentration; and finally, unannounced meal in-
takes. In recent years, the focus of the corresponding research shifted
toward safety. Robustness is one of the enablers of safe and reliable op-
eration. Hence, this work puts robustness at the forefront, approaching
all three aspects mentioned above from this perspective.

All presented methods are model-based. The control algorithm uses
a linear parameter varying model to represent the nonlinear behavior.
The model is extended with weighting functions to impose additional
constraints and capture modeling uncertainties. The controller synthe-
sis ensures robust stability and optimizes nominal performance for the
closed-loop system. The resulting control algorithm is a robust quasi
linear parameter varying controller optimized for particularities of glu-
cose control.

A sigma point filter aids the controller by estimating both state vari-
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ables and glucose flux from meal ingestion. Sigma point filters are ef-
fective on nonlinear models. Furthermore, they can handle stochastic
disturbances and measurement noise. The proposed state observer al-
gorithm also considers model uncertainties and that the state variables
of a physiological system are nonnegative.

The presented state observer can also serve as a predictor. Combined
with a modified state observer, it can provide long-term prediction in a
closed-loop setting, considering the effect of estimation error. Further-
more, if a meal intake model is available, the predictor can validate
meal announcements.

The controller and state observer have been evaluated via simula-
tions. The results showed that taking the nonnegativity of the sys-
tem into consideration increases state estimation accuracy. However,
increasing the number of sigma points beyond a particular value pro-
vides little benefit. Control variability grid analysis of the control al-
gorithm shows satisfactory disturbance rejection without hypoglycemic
episodes.

The presented algorithms could contribute to an artificial pancreas
system as primary components but more likely in a supporting role.
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NOMENCLATURE

P(xx) : Estimated covariance matrix of variable vector x.
P(xy) : Estimated cross-covariance matrix of variable vectors x and y.
Σ,Σ(e) : Covariance matrix of estimation error.
Σ(p) : Covariance matrix of prediction error.
ξi : ith sigma point of a sigma point set.
φi : Vector defining the spread of the ith sigma point.
ωi : Weight associated with the ith sigma point.
X : Sigma point set in Chapter 3 and Lyapunov function in Chapter 4.
M

1
2 : Cholesky factor of matrix M.

ρi : ith scheduling variable.
ρc : Convex polytope spanned by a set of ρ vectors.
∆ : Unstructured uncertainty.
∥x∥p : p-norm of vector x.
∥M∥p : induced p-norm of matrix M.
ϑ : Scaling factor associated with output multiplicative uncertainty.
Θ : Diagonal matrix for which the non-zero values are either 1 or ϑ.
ψ : Scaling factor associated with performance output.
Ψ : Diagonal matrix for which the non-zero values are either 1 or ψ.
T : Linear mapping/transformation.
T (.) : Function representing nonlinear transformation.
x : Average or weighted average of a set of x variables.
σ(M) : Largest singular value of the matrix M
σ(M) : Smallest singular value of the matrix M
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1

INTRODUCTION

1.1 Diabetes Mellitus

Diabetes Mellitus (DM) is a collective term referring to several chronic
metabolic diseases. They are characterized by elevated glucose levels
(hyperglycemia) over a prolonged period of time. The World Health Or-
ganization reported that the number of people with diabetes increased
from 108 million in 1980 to 422 million in 2014 [1]. In 2019, diabetes
was the direct cause of 1.5 million deaths [2].

The three main types of diabetes mellitus are the following [3]:

• Type 1 Diabetes Mellitus (T1DM) is an autoimmune disease in
which the pancreas cannot produce insulin due to the loss of β-
islet cells. Insulin is a peptide hormone that plays a crucial role in
glucose utilization, decreasing plasma glucose concentration. Cur-
rently, neither its cause nor means of prevention are known, but
genetic susceptibility and environmental factors are suspected [4].

• Type 2 Diabetes Mellitus (T2DM) is the most common form of di-
abetes. More than 95% of all diabetes cases belong to type 2 dia-
betes. Insulin resistance, which is the inefficient use of the insulin
produced in the body, characterizes this condition. This type of di-
abetes is primarily the result of excess body weight and physical
inactivity. Symptoms may be similar to those of T1DM but are
often less marked.

• Gestational diabetes occurs during pregnancy, with blood glucose
values above normal but below those diagnostic of diabetes. The
patients have no previous history of diabetes, and glucose values
usually return to normal soon after delivery. However, women
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2 1. Introduction

with gestational diabetes are at an increased risk of complications
during pregnancy and delivery.

The most common symptoms include excessive excretion of urine, in-
creased appetite and thirst, weight loss, vision changes, and fatigue. If
left untreated, it can lead to severe acute and long-term complications.
Acute complications include diabetic ketoacidosis and hyperglycemic
hyperosmolar state, both of which can be life-threatening in severe cases.
Long-term complications include:

• Cardiovascular diseases: Adults with diabetes have a two- to three-
fold increased risk of heart attacks and strokes.

• Nephropathy: diabetes is among the leading causes of kidney fail-
ure.

• Neuropathy: various forms of nerve damage. Combined with the
reduced blood flow, it increases the chance of foot ulcers.

• Retinopathy: the long-term damage to the retina’s small blood ves-
sels can lead to blindness [Énzsöly et al., 2014].

• People with diabetes are more likely to have poor outcomes for
several infectious disease.

Despite its smaller prevalence compared to T2DM, this work focuses
exclusively on Type 1 Diabetes Mellitus.

The treatment of T1DM mainly consists of regular insulin injections.
All insulin delivery methods are invasive and administered via syringe
or pump. Different types of insulin analogs are available in clinical
practice, ranging from fast to long-acting versions. However, insulin
treatment has its challenges. An insufficient amount does not decrease
glucose levels enough to avoid long-term complications while adminis-
tering too much can lead to hypoglycemia. Hypoglycemia is defined as
blood glucose concentration below 3.9 mmol/L or 70 mg/dL. Severe cases
can result in seizure, coma, or death.

Recent decades saw extensive research in the automation of insulin
delivery, commonly referred to as Artificial Pancreas (AP) [5, 6, 7] [KSF+11,
KSF+12, KSF+13]. Artificial Pancreas can potentially lessen both the
severity and time spent in hyperglycemia while completely avoiding
dangerous hypoglycemic episodes. Keeping a T1DM patient consistently
in the normal range of blood glucose concentration decreases the chance
of developing acute and long-term complications of diabetes.
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1.2 Artificial Pancreas

From the perspective of hardware, Artificial Pancreas is a portable med-
ical device with two main components:

1. Continuous Glucose Monitoring (CGM) system provides up-to-date
readings of the subcutaneous glucose concentration of the patient.

2. Continuous subcutaneous insulin infusion (CSII) pump.

The most common AP systems are insulin-only types, which achieve
a target glucose level by automatically increasing or decreasing the
amount of insulin infused based on the CGM values. Their function-
ality is limited to decreasing glucose levels, with no means to increase
it. A bi-hormonal control system contains an additional pump deliver-
ing glucagon to increase blood glucose levels if necessary. Therefore,
the bi-hormonal system mimics the functionality of a healthy pancreas
more closely. However, bi-hormonal systems have practical limitations
[8]. The unstable nature of the peptide limits the pharmaceutical use of
glucagon. Furthermore, glucagon has undesirable side effects, such as
nausea and vomiting.

Artificial Pancreas can be combined with existing wearable medi-
cal devices to get additional information about the patient, especially
regarding physical activity. Physical activity has high significance for
insulin-only systems since it can decrease glucose levels, which they
have no means to compensate for.

From the perspective of control theory, Artificial Pancreas is a fully
automated regulation of blood glucose levels. Currently, only hybrid
closed-loop systems are available in clinical practice, with the U.S. Food
and Drug Administration (FDA) approving the first device in 2016 [9].
Although a hybrid system delivers basal insulin via closed-loop control,
the user still needs to inject insulin manually after meal intakes. How-
ever, there are several fully automated systems undergoing clinical tri-
als [10, 11, 12, 13].

From the perspective of software, AP consists of several key compo-
nents, some of which are listed below:

• Control algorithm: use the data acquired from the sensors of AP
to deliver insulin via CSII whenever needed.

• State observer: it can reduce sensor noise, estimate signals neces-
sary for the control algorithm, or even enable state feedback con-
trol.

• Parameter identification: necessary for adaptive control strate-
gies.



4 1. Introduction

• Event and fault detection: the human metabolism is affected by
various factors, some of which occur in an event-like manner, such
as meal intake or physical activity. Faults can occur in any of the
hardware or software of the device. Detecting them in time is of
paramount importance to ensure safe operation.

• Prediction: while event detection concerns itself with the present,
prediction allows the device to make decisions based on potential
future occurrences.

The list is not exhaustive, and items are tightly connected. For ex-
ample, some state observer algorithms can be used for parameter iden-
tification, while events can be detected by comparing past predictions
with current readings. Furthermore, future AP devices might use a
fusion of multiple different instances in each category for redundancy,
safety, and robustness. For example, multiple parameter identification
algorithms with different limitations or a specialized but sensitive con-
trol algorithm backed up by a less efficient but robust counterpart.

1.2.1 Control Algorithms

Maintaining normal glucose concentration (normoglycemia) is a chal-
lenging control problem.

• The human metabolism is a highly complex dynamic system. The
most popular models that can capture the glucose-insulin inter-
action in the body of a T1DM patient to a satisfying degree are
severely nonlinear [14]. Furthermore, the dynamics tend to change
significantly over time.

• The dynamics of the human metabolism concerning glucose are
slower when the glucose levels are lower than when they are high
[15].

• The metabolic glucose process may be affected by various factors.
These factors are usually difficult to measure, detect or even quan-
tify. Notable examples are physical activity, dietary changes, stress,
infections and medical conditions, menstrual cycle, or even circa-
dian rhythm [16].

• Hypoglycemia is a more severe acute complication than hyper-
glycemia, even though reducing the latter in severity and frequency
is the main goal of AP.

• Even rapid-acting insulin - if injected subcutaneously - has a sig-
nificantly slower effect on the plasma glucose concentration than
meal intake or physical activity [17, 18].
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• The commercially available continuous glucose monitoring (CGM)
sensors have significant noise and drift [19, 20, 21].

• An insulin-only device has no means to elevate glucose levels. The
control signal should always be nonnegative.

A wide range of control algorithms is proposed in the literature to over-
come these challenges [22, 23].

Proportional Integral Derivative (PID) control is one of the most
well-known control methods; hence, it is also applied for blood glucose
control. Barnes and Jones [24] explored the potential of intraperitoneal
insulin infusion by comparing a PID controller with a CSII-based AP
that uses Model Predictive Control (MPC). Alshalalfah et al. [25] used
a combination of two PID controllers to handle varying meal conditions.
Finally, Calupiña et al. [26] showed how a nonlinear PID controller
could outperform a dynamic sliding mode controller in some instances.

Despite that, there are promising attempts at sliding mode control
as well. Beneyto et al. [27] combined sliding mode control with a car-
bohydrate recommender system to avoid hypoglycemia due to unan-
nounced physical activity. Leyva et al. [28] compared positive sliding
mode control with control Lyapunov function theory to ensure nonneg-
ative insulin signal.

There are attempts to address the nonlinearity of the models directly
[Kovács et al., 2012, Kovács et al., 2011] [29], using nonlinear state feed-
back. However, physiological systems are highly complex, with numer-
ous unknowns that are difficult to model, which data-driven and soft
computing methods can handle efficiently. Furthermore, they are more
commonly used for prediction and fault detection. For example, Zhu et
al. [30] used Deep Reinforcement Learning for glucose control, Peiró et
al. [31] improved existing hybrid control schemes with machine learn-
ing, and Mohammadzadeh et al. [32] combined fractional-order model-
ing with general type-2 fuzzy predictive control.

Adaptive controllers are good candidates to address the time-variant
dynamics of a T1DM patient [33]. Shi et al. [34] used a multivari-
ate Bayesian optimization-assisted parameter adaptation framework,
while Kovács et al. [35] proposed an adaptive controller using a novel
robust fixed point transformation.

However, one of the most widely accepted approaches is model pre-
dictive control (MPC). Various MPC-based AP prototypes have been pro-
posed over the years [36, 37, 38], some of which are undergoing clinical
trials [39, 13]. Some recent examples combine MPC with soft comput-
ing methods such as feed-forward neural networks and fuzzy logic con-
trollers [40], while others include circadian insulin sensitivity scheme
[41], employing several layers of adaptivity [42], or aiding MPC with
meal estimation [43].
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MPC usually relies heavily on the accuracy of the model, which is
rarely available in clinical practice. Furthermore, the more complex
the model is, the more computational power MPC algorithms require.
Hence, increasing the robustness of the MPC controllers gained popu-
larity [44, 45, 46]. Alternatively, some proposals make robustness the
core feature of the control algorithm [47] [48]. Linear Parameter Vary-
ing (LPV) systems are a class of nonlinear models that are easy to com-
bine with robust control methods. Although signals enabling LPV con-
trol are usually not measured in clinical practice, quasi LPV (qLPV)
methods relying on estimated signals are applicable. Robust qLPV con-
trol addresses both the nonlinearity and uncertainty of the impaired
metabolism of the T1DM patient [49, 50] [Kovács et al., 2011b, SEK14,
SDKew].

One of the contributions of this dissertation is a control algorithm
that addresses the above-listed challenges of blood glucose control using
a robust control technique based on an uncertain qLPV model while
satisfying constraints on the control signal under unannounced meal
intakes.

1.2.2 Estimation

AP control algorithms, especially model-based techniques, can signif-
icantly benefit from state and disturbance estimation. Furthermore,
they can aid in fault detection and parameter tuning as well. Due to
the stochastic nature of the disturbances present, Kalman Filter (KF)
is a popular choice [51]. KF is a linear model-based method. However,
there are several ways to address the nonlinearity of the T1DM model.
One of the earliest approaches is the Extended Kalman Filter (EKF).
For example, Fushimi et al. [52] used EKF to detect unannounced meal
intakes, while Mahmoudi et al. [53] used it for fault detection in CGMS.
Finally, in the work of Boiroux et al. [54], EKF supports parameter
estimation using Maximum Likelihood method.

Despite its popularity in nonlinear state estimation, EKF relies on
linearization, which has limitations in severely nonlinear models. Sigma
point filters can provide a more practical alternative [SMM+14] at the
cost of computational power. Unscented Kalman Filter (UKF) is a sigma
point filter frequently used for various roles in AP [55, 56, 57].

Combining the Kalman filter with Linear Parameter Varying mod-
eling can address the nonlinearity of the model without the need for
linearization and excessive computation power [58].

Despite the prevalence of KF, there have been other types of state
observers applied for AP. For example, Alam et al. [59] aided a slid-
ing mode control algorithm with a gain-scheduled Luenberger observer.
Chen et al. [60] detected and estimated unannounced meal intake with
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Moving Horizon estimation, while Sanz et al. [61] used an extended
state observer for the same task. Sliding mode observers are also good
contenders for KF in nonlinear state and disturbance estimation [58,
62].

Another contribution of this dissertation is exploring sigma point
filtering for AP use, assessing the effectiveness of some of the popular
techniques, and providing a novel algorithm for effective state and dis-
turbance estimation.

1.2.3 Prediction

Sufficiently long-term prediction of glucose concentration is helpful for
an AP in various ways:

• Prediction is the core concept behind MPC.

• An overseer logic can assess the expected quality of the blood glu-
cose control and tune controller parameters accordingly.

• It is possible to intervene if the prediction indicates a potentially
hazardous hypoglycemic episode.

• A significant deviation between predicted and measured behavior
can indicate fault or an unannounced event (e.g., meal intake).

• Multiple predictions based on different hypotheses can identify
unannounced events or validate announced ones.

Some of the estimation algorithms referenced earlier can be re-pur-
posed for prediction [SBK16] [63]. However, the more commonly applied
techniques come from Machine Learning. Kushner et al. [64] used a
non-deterministic data-driven model to predict up to 5 hours how a pa-
tient would perform under a PID-based closed-loop system. Meneghetti
et al. [65] proposed an unsupervised model-free approach to detect in-
sulin pump malfunction, while Güemes et al. [66] and Eigner et al. [67]
used algorithms based on Supervised Learning to predict overnight gly-
caemic control quality and to support decision-making in conservative
diabetes therapy, respectively.

There are numerous examples of neural network-based prediction
algorithms. Some recent examples come from Aliberti et al. [68], Li et
al. [69], and Zhu et al. [70].

The third contribution of this dissertation is the extension of the pre-
viously presented state estimation algorithm into a predictor that can
support meal announcement validation and detection of unannounced
meal intakes.



8 1. Introduction

1.3 Motivation

The motivation behind the presented theses is to address some chal-
lenges of automated blood glucose regulation with AP. The focus is on
insulin-only setup and only on the software level. Within the numerous
features an AP can have, this work addresses three key areas: estima-
tion, prediction, and control. It is possible to contribute to these fea-
tures even if one has no access to medical data due to the existence of
validated models and simulation environments.

The first goal is to provide a control algorithm that has the following
properties:

• A model-based approach that is adaptable to the most popular
T1DM models. It shall address the nonlinearity of these models
and the difference in dynamics between control signal and distur-
bances.

• The algorithm shall be able to deal with glucose increase due to
meal intake, as it is the most impactful disturbance from blood
glucose control perspective.

• There should be no reliance on meal intake announcements.

• The controller shall be robust against the intra-patient variability
and uncertainty of the human metabolism.

• The controlled system shall completely avoid hypoglycemia while
reducing time in hyperglycemia as much as possible.

Although asymptotic tracking via nonlinear state feedback has been ex-
tensively examined for this role [Szalay et al., 2012, Kovács et al., 2011,
Szalay and Kovács, 2012, Kovács et al., 2012, Kovács et al., 2011b]
[Kovács et al., 2011a], the corresponding research has been discontin-
ued in favor of a robust qLPV control scheme. While asymptotic track-
ing is a powerful method for nonlinear systems, it is less suited to deal
with uncertainties or satisfy inequality-type constraints. Furthermore,
sensitivity to disturbances and parameter or state estimation inaccura-
cies can be difficult to analyze.

The second goal is to provide a state observer that can support the
control algorithm with accurate estimations derived from the readings
of a single continuous glucose sensor affected by measurement noise.
Additionally, the proposed state observer should be extendable into a
predictor. Sigma point filters are a good choice since they have good
estimation capabilities for severely nonlinear models, can deal with sto-
chastic noises and disturbances, and strike a good balance between ac-
curacy and required computation power.
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The third goal is to validate the proposed control and state observer
methods via simulations.

1.4 Outline of the Thesis

Chapter 2 briefly introduces the T1DM model used throughout this
work. Furthermore, it presents the modeling methods used to capture
the uncertainty of the chosen T1DM model.

Chapter 3 presents sigma point filter algorithms and updates toward
more accurate state estimation in an AP setting. Moreover, state esti-
mation in the presence of modeling uncertainties is discussed. Finally,
the chapter concludes with the means to use sigma point filters for the
long-term prediction of glucose concentration. Chapter 4 consists of two
main parts. The first section proposes an LPV representation of a com-
monly used T1DM model, while the second half of the chapter focuses
on robust control methodologies. Simulation results are presented in
Chapter 5. The chapter starts with state observer estimation, followed
by a control variability grid analysis of control algorithms.

The new results are summarized in three Thesis groups in Chap-
ter 6. Finally, Chapter 7 concludes the dissertation.



2

MODELING THE
METABOLISM OF A TYPE 1

DIABETES PATIENT

A wide range of mathematical models has been introduced over the last
four decades for capturing the metabolism of a T1DM patient. Bergman
et al. published the first of these models [71], focusing on the core pro-
cesses with two nonlinear continuous differential equations:

Ġ(t) = (p1 −X(t))G(t) + p4
Ẋ(t) = p2X(t) + p3I(t)

(2.1)

The two compartments in this model are G(t) plasma glucose con-
centration, and X(t) is proportional to insulin in the remote compart-
ment. I(t) represents injected insulin. The model parameters p1 − p4
are derived from various transfer and disappearance rates. Please note
that (2.1) preserves the original notation presented in [71]. Hence, pa-
rameters p1 and p2 have negative values, which can be misleading since
parameters in all other models presented in this chapter are strictly
positive.

Further research led to the extension to a third-order model [72],
which inspired the models most widely used to develop automated and
semi-automated treatments for T1DM patients in the intensive care
unit (ICU). Chase et al. at the University of Cambridge developed a
series of models with three compartments [73, 74, 75], where the ad-
ditional state variable Q(t) represents insulin bounded to interstitial
sites. The model is defined by the differential equations (2.2). The model
is further extended with parameters representing other physiological

10
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processes, such as insulin losses to the liver and kidneys. Furthermore,
their nonlinearity is not limited to the product of state variables as in
(2.1), but also employs Michaelis-Menten kinetics for saturation dynam-
ics, resulting in

Ġ(t) = −pGG(t)− SI(t)(G(t) +GE)
Q(t)

1 + αGQ(t)
+ P (t)

Q̇(t) = k(I(t)−Q(t))

İ(t) = −
nI(t)

1 + αII(t)
+
uex(t)

V

(2.2)

On the other end of the complexity spectrum lies the T1DM model
presented by Sorensen et al. [76], which has up to 19 state variables.
Besides the potential accuracy and precision, the state variables them-
selves are more closely linked to actual compartments in the human
body than other models presented in this chapter. However, the large
number of parameters makes fitting the model to an actual T1DM pa-
tient challenging. Hence, using the Sorensen model for either simula-
tion or controller design is impractical.

The following is a non-exhaustive list of other T1DM models:

• Extension of the third order Bergman model with fractional deriva-
tive [77];

• Capturing the glucose-insulin interaction with delay differential
equations [78, 79];

• Including hormones other than insulin, such as glucagon, epineph-
rine, and incretins [80, 81];

• Representing the intestinal glucose absorption with partial differ-
ential equations [82];

2.1 T1DM models used for Artificial Pancreas
development

The models used for AP development need to strike a delicate balance
between several different aspects:

• The model shall capture the core dynamics of the impaired meta-
bolism of a T1DM patient.

• State variables shall at least loosely correlate to actual physiolog-
ical quantities.
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• The fitting of the model parameters to an actual T1DM patient
shall be feasible and a numerically well-conditioned problem. The
parameter fitting should satisfy accuracy and precision expecta-
tions using the measurement data available in clinical practice.

Magni et al. [18] proposed a model consisting of 13 differential equa-
tions. Three of them represent the intestinal glucose absorption model
first published in [83]. Even though the complete model is less detailed
than the Sorensen model, it is more sophisticated in capturing glucose
absorption from meal intake, which was not a primary focus in the lat-
ter. The Magni model is the core of a simulation tool developed by re-
searchers at the University of Virginia, which is the first approved by
the U.S. Food and Drug Administration (FDA) as an alternative to an-
imal testing of Type 1 diabetes control strategies [84]. Section A.1.1
presents details of the model.

2.1.1 Cambridge model

Hovorka et al. introduced [17] and later updated [85] an 11th-order
model, including glucose absorption from meal intake. Similarly to
the Magni model, it is part of a simulator environment developed in
the Cambridge University Metabolic Research Laboratories for in sil-
ico testing and the development of automated diabetes treatment al-
gorithms. However, this simulator is yet to achieve approval from the
FDA. The state variables of the model are as follows:

• C(t) [mmol/L] glucose concentration in the subcutaneous tissue;

• Q1(t) [mmol] mass of glucose in accessible compartments;

• Q2(t) [mmol] mass of glucose in non-accessible compartments;

• x1(t) [1/min] remote effects of insulin on glucose distribution;

• x2(t) [1/min] remote effects of insulin on glucose disposal;

• x3(t) [-] remote effects of insulin on endogenous glucose produc-
tion;

• I(t) [mU/L] insulin concentration in plasma;

• S1(t) [mU] insulin mass in the accessible compartments;

• S2(t) [mU] insulin mass in the non-accessible compartments;

• G1(t) [mmol/kg] mass of ingested glucose in the stomach;

• G2(t) [mmol/kg] mass of ingested glucose in the gut.



13 2.2. MODEL REDUCTION

The following differential equations describe the Cambridge model
itself:

Ċ(t) = −ka,intC(t) +
ka,int
VG

Q1(t)

Q̇1(t) = −
(

F01

Q1(t) + VG
+ x1(t)

)
Q1(t) + k12Q2(t)−

−Rcl max{0, Q1(t)−RthrVG} − Phy(t)+

+EGP0max{0, 1− x3(t)}+min

{
UG,ceil,

G2(t)

tmax

}
Q̇2(t) = x1(t)Q1(t)−

(
k12 + x2(t)

)
Q2(t)

ẋ1(t) = −kb1x1(t) + SITkb1I(t)
ẋ2(t) = −kb2x2(t) + SIDkb2I(t)
ẋ3(t) = −kb3x3(t) + SIEkb3I(t)

İ(t) =
ka
VI
S2(t)− keI(t)

Ṡ2(t) = −kaS2(t) + kaS1(t)

Ṡ1(t) = −kaS1(t) + u(t)

Ġ2(t) =
G1(t)−G2(t)

max

{
tmax,

G2(t)

UG,ceil

}
Ġ1(t) = − G1(t)

max

{
tmax,

G2(t)

UG,ceil

} +D(t)

(2.3)

u(t) is the injected insulin flow of rapid-acting insulin [mU/min],
which serves as the input of the system. D(t) is the amount of ingested
carbohydrates [mmol/min], and Phy(t) is the effect of physical activity
[mmol/min]. Both of the latter are considered as disturbances.

Table 2.1 provides details on model parameters. Parameters ka,int,
F s
01, k12, EGP0, kb1, kb2, kb3, SIT , SID, SIE , ka and ke are time-varying

with ±5% deviation. In the in silico tests, this is represented by sinu-
soidal oscillations superimposed on the nominal values with three hour
period and a randomly generated phase.

2.2 Model reduction

A high-order model is more challenging to handle than one with fewer
state variables, let it be analysis, identification, observer, or controller
design, regardless of the method used. Limited measurement capabili-
ties also encourage focusing on the dominant components of the model
dynamics. Hence, it can be advantageous to reduce the model to one
that retains the most characteristic properties, as long as the error re-
sulting from this simplification is manageable by the controller. The



14 2. Modeling the Metabolism of a Type 1 Diabetes Patient

Table 2.1. Cambridge model parameters
Name Unit Description
ka,int 1/min transfer rate constant between the

plasma and the subcutaneous com-
partment

VG L distribution volume of glucose in the
accessible compartment

F s
01 mmol/min parameter of the total non-insulin

dependent glucose flux
k12 1/min transfer rate constant from the non-

accessible to the accessible compart-
ment

Rcl 1/min renal clearance constant
Rthr mmol/L glucose threshold for renal clearance
EGP0 mmol/min endogenous glucose production ex-

trapolated to the zero insulin concen-
tration

tmax min time-to-maximum appearance rate
of glucose in the accessible compart-
ment

UG,ceil mmol/min/kg maximum glucose flux from the gut
kb1, kb2 1/min deactivation rate constants
kb3 1/min deactivation rate constant for the in-

sulin effect on endogenous glucose
production

SIT L/mU/min insulin sensitivity for transport
SID L/mU/min insulin sensitivity for distribution
SIE L/mU insulin sensitivity for endogenous

glucose production
ka 1/min insulin absorption rate constant
VI L volume of distribution of rapid-

acting insulin
ke 1/min fractional elimination rate from

plasma
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controller design must consider the errors resulting from model reduc-
tion, especially in the case of robust control.

The Cambridge model has more than ten state variables. For the
ones that belong to meal absorption (considered disturbance), it is easy
to choose a linear first-order substitution representing worst-case meal
intake. For this subsystem, let us use the notation Wmeal(s).

Wmeal,H(s) =
UG,ceil

tmaxs+ 1
(2.4)

The Cambridge model contains a second-order nonlinear component.
The corresponding state variables are denoted as Q1(t) and Q2(t). The
rest of the model, excluding the meal intake, consists of linear differen-
tial equations. This linear part can be further divided into two main cat-
egories: subcutaneous glucose transfer and insulin dynamics. C repre-
sents the former in the Cambridge model. Subcutaneous glucose trans-
fer is negligible if an adequate state observer can accurately estimate
plasma glucose concentration. Alternatively, it can be grouped into a
CGMS model. The rest incorporates the transfer of the fast-acting in-
sulin from the subcutaneous regions to the plasma, insulin degradation,
and insulin effect. This linear system with a single input and multiple
outputs can be simplified depending on the patient-specific parameters.
In the Cambridge model they are x1, x2, x3, I, S1, and S2.

Depending on the patient, the speed of transfer between specific
compartments is comparable to the sampling time of the CGM. Hence,
the states associated with them can be eliminated. The resulting re-
duced model is as follows:

Q̇1(t) = −
(

F01
Q1(t)+VG

+ x1(t)
)
Q1(t) + k12Q2(t)−

−Rcl max{0, Q1(t)−RthrVG} − Phy(t)+

+EGP0max
{
0, 1− kaSIE

VIke
S2(t)

}
+min

{
UG,ceil,

G2(t)
tmax

}
Q̇2(t) = x1(t)Q1(t)−

(
k12 +

kaSID
VIke

S2(t)
)
Q2(t)

ẋ1(t) = kb1

(
kaSIT
VIke

S2(t)− x1(t)
)

Ṡ2(t) = −kaS2(t) + kaS1(t)

Ṡ1(t) = −kaS1(t) + u(t)

Ġ2(t) =
G1(t)−G2(t)

max

{
tmax,

G2(t)
UG,ceil

}
Ġ1(t) = − G1(t)

max

{
tmax,

G2(t)
UG,ceil

} +D(t)

(2.5)

The output of this reduced modell, C(t), is approximated from the state
variable Q1 as follows: C(t) ≈ Q1(t)/VG. This simplification essentially
ignores the delay of subcutaneous transfer of glucose to sensor.



16 2. Modeling the Metabolism of a Type 1 Diabetes Patient

The equations for state variables S1(t), S2(t), and x1(t) can be re-
garded as a third-order linear system of equations with injected in-
sulin u(t) as the only input and three outputs: x1(t), (kaSIDS2(t))/(VIke)
and (kaSIES2(t))/(VIke). The latter two are approximations of state
variables x2(t) and x3(t) of the original model respectively. Figure 2.1
presents a representation of state elimination.

u(t)

D(t)

C(t)

S1(t)

S2(t)

I(t)

x1(t)

x2(t)

x3(t)

Q2(t)

Q1(t)

G2(t)

G1(t)

C(t)

Figure 2.1. The elimination of state variables. Circle nodes represent
linear; square nodes represent nonlinear equations. Disturbance input
Phy(t) is not displayed. Dotted lines indicate the eliminated state vari-
ables and connections.

Further reduction of this third-order system is possible using fre-
quency-weighted balanced reduction presented in [86] or [87]. The non-
linear glucose subsystem of the model, linearized at a chosen working
point, can serve as the frequency-depended weighting function if neces-
sary. However, this may not be the most effective choice when using the
system in other working points. Furthermore, the frequency-weighted
balanced reduction does not guarantee that the reduced model remains
stable and minimum-phase.

Finally, considering the range of parameter k12 as presented in [85],
if 1/k12 is comparable to the CGMS sample time, then there is a need to
apply reduction in the nonlinear dynamics as well. Section 4.3 presents
an effective approach for a specific type of nonlinear control.

2.3 Modeling Uncertainties

All T1DM models are abstractions of the underlying physiological pro-
cesses. They aim to capture essential aspects of the glucose-insulin in-
teraction but are inherently inaccurate to a lesser or greater degree. Not
even the Sorensen model can fully capture a system as complex as hu-
man metabolism. When developing a model-based control algorithm for
AP, reductions, linearizations and other types of approximations of the
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original T1DM are commonplace, usually to remove certain theoretical
or practical limitations of using a chosen control methodology. However,
these techniques make the inaccuracy of the model even more severe.
Furthermore, human physiology tends to change and adapt over time.
Hence, several T1DM models use time-varying parameters. Finally, hu-
man metabolism is affected by various external factors that are difficult
to quantify, let alone measure [88] [89]. Therefore, regardless of which
T1DM model one chooses for a model-based blood glucose control, the
deviation of the model from the actual dynamics and the presence of
disturbances must be addressed in the controller design.

2.3.1 Uncertainty functions

Let P denote a nominal nonlinear T1DM model, with a single output
y(t), a single controlled input u(t), and a set of external disturbances
d(t). Figure 2.2 presents a simple system that uses linear output uncer-
tainty weighting functions.

P

d(t)

u(t) y(t)

Wout,adout(t)

Wout,m ∆

Figure 2.2. Simple system with output uncertainty weighting functions.

Wout,a and Wout,m are linear minimum-phase systems representing
additive and multiplicative output uncertainty, respectively. ∆ is an
unstructured uncertainty, which is an unknown linear system with the
following properties:

• minimum-phase;

• the H∞-norm is less or equal to 1;

din(t) and dout(t) are considered stochastic disturbance signals, that
are usually modelled with distribution N (0, 1) or U(−1, 1). Section 4.4
provides more information regarding H∞-norm.

There are other ways to model uncertainties, but this work only uses
output uncertainties. Since most T1DM models have a single measured
output, output uncertainties are sufficient to capture the deviation of
the nominal model from the actual system. For example, the parameters
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of Wout,a and Wout,m may come from the residual error of fitting T1DM
parameters or from a priori knowledge from clinical practice.

Extending the nominal model with uncertainties is essential for both
controller and state observer, as it can ensure robustness and stability
for both control and state estimation [KS16]. However, it also poses
a challenge if the control law is realized with state feedback. In this
particular case, the state variables of the uncertainty models shall also
be estimated.

2.4 Discrete-Time Modeling

All physiological models presented in this chapter are defined in con-
tinuous time. However, the glucose measurements are available only in
discrete time instances. Furthermore, the controllers used in practice
work in discrete time as well. Therefore, it is crucial to address the prob-
lem of defining a discrete-time nonlinear model for a given continuous-
time T1DM model.

Most T1DM models presented or referenced in Chapter 2 belong to
a subset of continuous-time nonlinear models described by (2.6):

ẋ(t) = f(x(t)) +B1d(t) +B2u(t)
y(t) = Cx(t),

(2.6)

where x(t) is the vector of state variables with n elements, f(x(t)) : Rn →
Rn is a vector field, while B2 and C are n × 1 and 1 × n vectors respec-
tively. B1 is a n×mmatrix. u(t) denotes the single controllable output of
the system, which is the external insulin injected intravenously or sub-
cutaneously. The system has only one input denoted as y(t) and usually
refers to the glucose concentration in the plasma or the subcutaneous
regions. The model is affected by m disturbances d(t).

For a continuous-time T1DM model, one can define a discrete-time
nonlinear model, usually by approximation with numerical methods.
The following equations represent the discrete-time nonlinear model
(2.7):

x[k + 1] = fd(x[k],u[k])
y[k] = gd(x[k])

(2.7)

The square bracket represents the value of a time-dependent vari-
able at a discrete time instance, e.g., x[k] = x(kTs). The new func-
tions introduced in (2.7) are fd(x[k],d[k], u[k]) : Rn × Rm × R → Rn, and
gd(x[k]) : Rn → R.

The most straightforward technique for deriving a discrete-time model
is the Euler method [90], which provides first order approximation for a
defined sampling time Ts:

fd(x[k],d[k], u[k]) ≈ x[k] + Ts

(
f(x[k]) +B1d[k] +B2u[k]

)
. (2.8)
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This method is relatively easy to implement. Furthermore, consid-
ering the continuous time model (2.6), the discrete-time model will also
depend linearly on the input and disturbance signals.

The control algorithms in later chapters use the four-step Runge-
Kutta method, presented by (2.9), equivalent to a fourth-order approxi-
mation, and hence offer higher accuracy than the Euler method. On the
other hand, the four-step Runge-Kutta is relatively straightforward to
implement and execute even on embedded hardware with limited com-
putational power.

χ1[k] = Ts

(
f
(
x[k]

)
+B1d[k] +B2u[k]

)
χ2[k] = Ts

(
f
(
x[k] + χ1[k]

2

)
+B1d[k +

1
2 ] +B2u[k +

1
2 ]
)

χ3[k] = Ts

(
f
(
x[k] + χ2[k]

2

)
+B1d[k +

1
2 ] +B2u[k +

1
2 ]
)

χ4[k] = Ts

(
f
(
x[k] + χ3[k]

)
+B1d[k + 1] +B2u[k + 1]

)
x[k + 1] = x[k] + 1

6

(
χ1[k] + 2χ2[k] + 2χ3[k] + χ4[k]

)
(2.9)

2.5 Continuous Glucose Measurement

Reliable continuous plasma glucose measurement is vital in automated
type 1 diabetes treatment. Self-monitoring of blood glucose (SMBG), an
invasive measurement method performed manually by the patient or
physician, is insufficient for closed-loop control. While measurements
acquired through SMBG are usually highly accurate and precise, only
around 4-6 samples are recorded during a single day, usually in an
event-driven manner (e.g., postprandial) [91]. On the other hand, con-
tinuous glucose measurement sensors (CGMS) automatically update
readings every 3-5 minutes. The CGMS has two main groups: invasive
and non- or minimally invasive.

Invasive sensors commonly use enzyme-based detection, realized with
a needle covered by a glucose permeable membrane [92]. The enzymes
catalyze reduction-oxidation reactions and, in doing so, produce a con-
centration-dependent current or voltage. This current or voltage is mea-
surable with electrodes. The enzyme commonly used in CGMS is glu-
cose oxidase. However, due to protein and cell coating of the sensor, vari-
able tissue oxygen tension, tissue interferents, and wound response, pa-
tients need to change the electrode of the sensor every 10-12 days. The
same effects are also partially responsible for significant sensor drift.
Hence, earlier models required frequent calibration, while later models
could function without calibration. Some commercially available inva-
sive CGMS are Dexcom G6 CGM System, Abbott FreeStyle Libre 2, and
Medtronic Guardian™ Connect System.
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Non-invasive or minimally invasive CGMS are less common in clin-
ical practice but remain an actively researched field. There are several
potential approaches to measuring glucose in the interstitial fluid in a
non-invasive manner [92]. Section A.1.2 provides more details about
these sensors.



3

OBSERVER DESIGN

This Chapter addresses the first thesis group: a new state observer
framework for estimating the state variables of nonlinear T1DM mod-
els and the glucose flux resulting from meal intake. The state observer
considers the measurement noise of CGM sensors, the nonlinearity, un-
certainty, and nonnegativity of the model, as well as the glucose utiliza-
tion resulting from physical activity. The contributions that belong to
this thesis group are the following:

1. A method for a generic stochastic state observer algorithm to con-
sider the nonnegativity of the model and the nonnegativity of the
most significant disturbances: meal intake and physical activity.

2. A new state observer framework that considers and estimates the
additive and multiplicative output uncertainty of a T1DM model.

3. A state observer framework that can estimate the glucose flux re-
sulting from meal intake and ingestion.

4. A predictor algorithm that can provide long-term prediction for a
nonlinear and uncertain T1DM model using planned meal intake
announcements.

The presented observer and predictor were published in: [SEK14, SMM+14,
SSBK14, KS16, SBK16, SDKew].

When it comes to diabetes treatment, mainly the following measure-
ments and devices support glucose control:

1. Blood glucose meter: This measurement provides the most accu-
rate real-time blood glucose reading. Precisely, the glucose meter
measures the capillary glucose concentration. It is an invasive

21
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method performed by the patient or clinician 4-6 times per day.
The results determine the need for insulin injection or glucose in-
take in classical Diabetes treatment. In the case of Artificial Pan-
creas, SMBG with a blood glucose meter can aid sensor calibration
or enable safety and diagnostic features.

2. Glycated hemoglobin test (HbA1c): Most monosaccharides, includ-
ing glucose, galactose, and fructose, can non-enzymatically bond
with hemoglobin in the bloodstream. Hence, the formation of the
sugar-hemoglobin indicates the presence of excessive glucose.
HbA1c test provides an estimation of a three-month average blood
sugar level. Therefore, it can assess the effectiveness of a Diabetes
treatment regarding the long-term complications.

3. Continuous Glucose Monitor (CGM): The primary sensor in auto-
mated Diabetes treatment. The commercially available sensors
have limited accuracy and precision due to significant noise and
drift. See Section 2.5 for further details.

Moreover, some therapeutic and fitness devices may be re-purposed
for AP, as they can provide information on physical activity of the pa-
tient [93]. This kind of measurement, however, is not in the scope of
this work.

Aside from sensory input, announcements made by the patient can
further the range of information available for the AP. For example, the
patient can inform the AP about meal intake, insulin injection, planned
physical activity, and visible damage to hardware components, among
others. All these can improve the treatment, as long as they are reliable.
Consequently, the AP must validate all announcements and use them
to the point that invalid inputs cannot endanger the patient or have a
detrimental effect on controlling glucose levels.

Despite all the previously presented sensors and inputs, multiple
quantities cannot be measured directly, or the measurement is impracti-
cal in clinical practice. Nevertheless, they have high importance for AP.
Notable examples are plasma glucose concentration, glucose flux from
the gut, and plasma insulin concentration. Furthermore, human me-
tabolism is affected by various outside factors that act as disturbances.
These are difficult to measure or even quantify, especially in real time.

Since direct measurement is not an option, it is necessary to esti-
mate the needed quantities. State observers are good candidates to pro-
vide this estimation if an appropriate state-space model is available.
Not only can they estimate quantities not available for measurement,
but they also enable control algorithms realized as linear or nonlin-
ear state feedback, among others. Moreover, state observers can detect
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unannounced events, such as meal intake or physical activity, or vali-
date announcements of the patient.

Techniques derived from Kalman filter are some of the most fre-
quently used approaches for this task. The Extended Kalman filter ad-
dresses the nonlinearity of the human metabolism with linearization.
Notable examples include [53, 52, 54]. The applications are not limited
to state estimation but include meal and fault detection and parameter
estimation. However, linearization may lead to inaccuracies when the
nonlinearity is severe. Unscented Kalman Filter, a type of sigma point
filter, can provide a more efficient alternative in AP use [55, 56, 57]. The
state observer presented in this Chapter continues this trend by choos-
ing the sigma point filter as the core of the proposed algorithm. Other
notable examples that do not rely on the Kalman filter include Mov-
ing Horizon estimation [60], Sliding mode observers [58, 62], Machine
Learning [65, 66], and Neural Networks [68, 69, 70] with the latter two
more prevalent in prediction.

3.1 Methods

3.1.1 Kalman Filter

Measurement noise and disturbances affect all real-life systems, and
neither human metabolism nor AP is an exception. In this work, noise
refers to the unwanted and unknown modifications that the measure-
ment signals may suffer during capture. Disturbances, on the other
hand, refer to unwanted or unknown inputs of the system. Usually,
both the former and the latter have stochastic aspects. A state observer
shall provide a sufficiently accurate and precise estimation of the state
variables of a T1DM model despite the noises and disturbances affect-
ing it.

The well-known and widely used Kalman filter [94], [95] gives a re-
cursive optimal estimation of the state variables of a linear discrete-
time dynamic system in the sense that the vector of estimation error
has a zero mean and minimal covariance matrix (based on the partial
ordering of positive definite matrices). There are various ways to derive
the Kalman filter algorithm. This work uses the approach presented in
[96].

Let us have the following linear discrete-time nonlinear system:

xk+1 = Akxk +Bkwk

yk = Ckxk +Dkvk,
(3.1)

where xk ∈ Rnx denotes the vector of state variables with nx ele-
ments at time k. yk ∈ Rny is the vector of measured signals, wk ∈ Rnw
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represents disturbances affecting the states while vk ∈ Rnv is the mea-
surement noise. The matrices Ak, Bk, Ck, and Dk, are nx × nx, nx × nw,
ny × nx, and ny × nv real matrices respectively, which define linear pro-
jection of xk and wk to xk+1, as well as xk and vk to yk. We have the fol-
lowing assumptions about the system, which is referred to as stochastic
hypothesis:

1. The disturbance is white and has w̄k mean value (usually zero)
with known covariance matrix:{
E(wkw

T
k ) = Qk

E(wiw
T
j ) = 0 i ̸= j

2. The measurement noise is white and has v̄ mean value (usually
zero) with known covariance matrix:{
E(vkv

T
k ) = Rk

E(viv
T
j ) = 0 i ̸= j

3. The measurement noise and the process noise are independent
E(wiv

T
j ) = 0 ∀i, j

4. x0 is independent from wk and vk for all k;

5. Given an initial estimation x̂0 of x0 the initial estimation error has
zero mean and the covariance matrix Σ0 = E((x0 − x̂0)(x0 − x̂0)

T )
is known;

For (3.1) we can define the Kalman filter in the following form:

x̂k+1 = Akx̂k +Bkw̄k +Kk(yk −Ckx̂k −Dkv̄k) (3.2)

where x̂k is the estimation of the state variables at time k and Kk is
the Kalman gain. The state estimation algorithm is as follows:

0. Initialization:
The initial estimation of the x0 state variables x̂0 and the initial
estimation error covariance matrix Σ0 are chosen based on a priori
knowledge.

1. Estimation:
The system matrices in equations (3.1) are known, x̂k and Σk are
available from the previous iteration, while w̄k, Qk, v̄k+1 and Rk+1

are derived from a priori information.

(a) Calculate the initial estimation of the state vector using the
state equations (3.1): x̄k+1 = Akx̂k +Bkw̄k.

(b) Calculate the covariance matrix:
P

(xx)
k+1 = AkΣkA

T
k +BkQkB

T
k .
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(c) Calculate the initial estimation of the output:
ȳk+1 = Ck+1x̄k+1 +Dk+1v̄k+1.

(d) Calculate the covariance matrices: P
(xy)
k+1 = P

(xx)
k+1C

T
k+1 and

P
(yy)
k+1 = Ck+1P

(xx)
k+1C

T
k+1 +Dk+1Rk+1C

T
k+1.

2. Update:
The actual value of output yk+1 is available through measurement.

(a) Calculate the Kalman gain: Kk+1 = P
(xy)
k+1

(
P

(yy)
k+1

)−1
.

(b) Update the initial estimation of the state variables:
x̂k+1 = x̄k+1 +Kk+1(yk+1 − ȳk+1).

(c) Update the estimation error covariance matrix:
Σk+1 = P

(xx)
k+1 −Kk+1P

(yy)
k+1K

T
k+1, or

Σk+1 = P
(xx)
k+1 −P

(xy)
k+1

(
P

(yy)
k+1

)−1 (
P

(xy)
k+1

)T
.

3. Set k = k + 1 and continue from Estimation.

3.1.2 Extended Kalman filter

Kalman filter is a powerful tool for state estimation in the case of linear
stochastic models. However, in numerous practical applications, a lin-
ear model is insufficient to capture the system’s dynamics, so nonlinear
representation is necessary. This limitation motivated the extension of
the Kalman filter to nonlinear models. One of the most widely used non-
linear filters is still the Extended Kalman Filter (EKF), which is based
on first-order linearization of the observed nonlinear model [96, 97].

Let us have the following nonlinear system:

xk+1 = f(xk,wk, k)
yk = h(xk,vk, k)

(3.3)

where f : Rnx × Rnw × R → Rnx and h : Rnx × Rnv × R → Rny are
piece-wise continuous nonlinear mappings.

In the EKF algorithm, the Initialization and Update steps remain
identical. The Estimation however, has differences and is performed as
follows:

1. Calculate Ak = ∂f(x̂k,0,k)
∂x , Bk = ∂f(x̂k,0,k)

∂w .

2. Use the nonlinear model (3.3) to calculate the initial estimation of
the state vector: x̄k+1 = f(x̂k, w̄k, k).
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3. Use the linearized model from step 1 to calculate the covariance
matrix P

(xx)
k+1 the same way as in the regular Kalman filter algo-

rithm.

4. Calculate Ck+1 =
∂h(x̄k+1,0,k+1)

∂x and Dk+1 =
∂h(x̄k+1,0,k+1)

∂v using the
initial estimation x̄k+1.

5. Use the nonlinear model to calculate the initial estimation of the
output: ȳk+1 = h(x̄k+1, v̄k, k + 1).

6. Use the linearized model to calculate the covariance matrices: P(xy)
k+1

and P
(yy)
k+1 the same way as in the regular Kalman filter algorithm.

Despite how versatile and practical EKF can be, it may fail when the
system contains severe nonlinearities, significant disturbances, or ini-
tial estimation errors. The distributions will not be Gaussian anymore
and are usually not symmetric. The linearization in the EKF cannot
cope with this effect.

3.1.3 Sigma Point Filters

The need to overcome the limitations of the EKF gave birth to sigma
point filters. They are a form of nonlinear Kalman filters which use
a number of deterministic samples - called sigma points - to repre-
sent the probability distribution of the system state [98]. Several ver-
sions differ mainly on how these sigma points are selected. Cubature
Kalman Filter (CKF) is based on the Cubature rule [99] and is one of the
most straightforward approaches. The slightly more popular Unscented
Kalman Filter (UKF) relies on the Unscented Transformation [98] with
tunable parameters for each filtering problem to achieve better perfor-
mance. On the other hand, the Central Difference Kalman filter (CDKF)
works with the Stirling polynomial interpolation formula [100]. Gauss-
Hermite Quadrature Filter (GHQF) offers even higher accuracy when
Gaussian distribution is guaranteed [101]. However, it also requires a
large number of sigma points and hence increased computational power.
Sparse-grid quadrature nonlinear filtering (SGQF) primarily relies on
the same assumptions and aims to achieve similar accuracy and preci-
sion as GHQF but with significantly fewer sigma points [102]. Particle
filters [103] can offer the highest accuracy since it works with a statis-
tically significant number of samples. Instead of focusing merely on the
mean and the covariance, one can acquire more details from the distri-
bution of the estimated state variables. However, particle filters require
the most computational power from all the filters presented here. In
contrast, the Reduced Sigma Point filter (RSPF) [104] uses the least
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xk

xk+1
f(x)

∂f(µk)
∂x

µkµk − φk µk + φk

xk

xk+1
f(x)

µkµk − pφk µk + pφk

Figure 3.1. Illustration of the difference between estimating using lin-
earization (left) and with sigma points (right). The solid green lines
represent the real distribution of xk and xk+1. The distribution of xk
is N (µk, φk). p denotes a parameter associated with sigma point selec-
tion. The solid blue line represents the nonlinear mapping f(x). The
estimated distribution of xk+1 is illustrated with red dashed line. The
yellow dots represent sigma points before and after the mapping.

amount of sigma points, prioritizing computational efficiency over esti-
mation accuracy.

Figure 3.1 illustrates the advantage of sigma point filters over EKF.
Let us have a nonlinear system of the first order: xk+1 = f(xk) and
assume, that xk is a stochastic variable with Gaussian distribution with
given mean and variance (µk and φk respectively). Linearization can
lead to an incorrect estimation of E{xk+1}, and therefore cannot ensure
zero mean value for the estimation error. Sigma point filters can provide
a better estimation as long as the sigma points are chosen to reflect the
system’s nonlinearity. Sigma point collapse [105] can occur when sigma
points are chosen incorrectly (Figure 3.2).

3.1.4 Sigma point selection

Let us introduce the notation X for a sigma point set. This set contains
N number of sigma points denoted as ξi ∈ RL, i = 1, . . . , N . The sigma
points that represent the stochastic variable x ∼ N (µ,Σ) can be written
in the following form:

ξi = Σ
1
2φi + µ (3.4)

where φi is a vector corresponding to a sigma point selection strategy.
Σ

1
2 is the factor of Σ so that Σ = Σ

1
2Σ

T
2 . Cholesky decomposition is a
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xk

xk+1
f(x)

µk

Figure 3.2. Illustration of sigma point collapse. The solid green lines
represent the real distribution of xk and xk+1. The solid blue line repre-
sents the nonlinear mapping f(x). The incorrectly estimated distribu-
tion of xk+1 is illustrated with red dashed line. The yellow dots repre-
sent sigma points before and after the mapping.

commonly used method for determining Σ
1
2 , since Σ is positive definite.

µ is not limited to state variables only. It can contain disturbances and
measurement noises as well. Using these sigma points, one can esti-
mate the mean and covariance of the distribution of f(X) as a weighted
sum of f(X ):

E (f(x)) ≈
∑N

i=1 ω
(m)
i f(ξi) = x̄

cov (f(x)) ≈
∑N

i=1 ω
(c)
i

(
(f(ξi)− x̄)(f(ξi)− x̄)T

) (3.5)

There are various strategies to choose φi and the weights ω(m)
i and

ω
(c)
i . A comparative summary of the sigma point strategies referenced

in this work can be found in Table 3.1.4. The following properties were
used for comparison:

• Number of sigma points: it indicates the computational power
required to execute the filter algorithms. Hence, using a large
amount of sigma points can be a limiting factor on embedded sys-
tems. Moreover, numerical instability may increase with the in-
creasing number of points.

• Number of parameters: How configurable the method is.

• Assumption of distribution: Some methods rely on the assump-
tion that the prior statistics of estimation error, disturbances, and
noises are Gaussian, while others are less restrictive.
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• Nonnegative weights: When calculating the estimated covariance
matrices (3.5), negative weights can lead to singular or non-definite
results.

Cubature Kalman filter

Nonlinear filtering in the Gaussian domain essentially reduces to a
problem of how to compute integrals of nonlinear functions on Gaus-
sian distribution (3.6):

∫
RL

f(x) exp (−xTx)dx. (3.6)

The Cubature Kalman filter aims to provide numerically accurate
estimation that is easily extendable to high-dimensional problems [99].
The term cubature describes the numerical computation of a multi-
ple integral [106]. It uses only 2L sigma points derived from a well-
chosen third-degree spherical-radial cubature rule. The weights and
basis functions ω(m), ω(c) and φ of the CKF require no adjustable pa-
rameter.

φi =

{
ei
√
L i = 1, . . . , L

−ei
√
L i = L+ 1, . . . , 2L

ω
(m)
i = ω

(c)
i =

1

L
, ∀i

(3.7)

where ei denotes the unit vector in RL where the only non-zero element
is the (i− 1)th.

Because the third-degree rule is exact up to third-degree polynomi-
als, the CKF computes the posterior mean accurately but only approxi-
mates the estimation error covariance. Furthermore, it assumes Gaus-
sian distribution.

Unscented Kalman filter

The Unscented Kalman filter relies on the unscented transform, com-
puting posterior statistics of an L-dimensional stochastic variable trans-
formed by a nonlinear function [98]. Unlike CKF, the prior distribution
does not need to be strictly Gaussian but merely symmetric. The UKF
has three adjustable parameters: κ, α, and β. The weights and basis
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functions ω and φ in the case of a UKF are:

φi =


0 i = 1

ei
√
L+ λ i = 2, . . . , L+ 1

−ei
√
L+ λ i = L+ 2, . . . , 2L+ 1

ω
(m)
i =


λ

L+ λ
i = 1

1

2(L+ λ)
i = 2, . . . , 2L+ 1

ω
(c)
i =


λ

L+ λ
+ 1− α2 + β i = 1

1

2(L+ λ)
i = 2, . . . , 2L+ 1

(3.8)

where λ = α2(L + κ) − L is a scaling parameter [97]. The constant α
determines the spread of sigma points around µ, and is usually set to
a small positive value (e.g., 10−4 ≤ α ≤ 1). The constant κ is a second
scaling parameter usually set to 3− L so that the kurtosis of the sigma
points agrees with that of the Gaussian distribution [98]. β is used to
incorporate prior knowledge of the distribution of µ and is usually set to
2 for the Gaussian distribution.

Reduced Sigma Point filter

Reduced Sigma Point filter uses a significantly smaller number of sigma
points than CKF or UKF. A minimum set of L + 1 asymmetric sigma
points can fully capture the mean and covariance of a distribution. How-
ever, to incorporate minimal information regarding the third central
moment (skewness), at least one more sigma point is necessary.

φi =



0 i = 1(
− 2(L−1)/2

√
1− p0

. . .
− 1

√
1− p0

)T

i = 2(
2(L−1)/2

√
1− p0

,
− 2(L−2)/2

√
1− p0

. . .
− 1

√
1− p0

)T

i = 3(
0 . . . 0,

2(L+2−i)/2

√
1− p0

,
− 2(L+1−i)/2

√
1− p0

. . .
− 1

√
1− p0

)T

i = 4, . . . , L+ 1(
0 . . . 0,

1
√
1− p0

)T

i = L+ 2

ω
(m)
i =


p0 i = 1

1−p0
2L

i = 2

2i−3ω
(m)
2 i = 3, . . . , L+ 2

ω
(c)
i = ω

(m)
i ,

(3.9)
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where p0 ∈ [0, 1] is the only adjustable parameter. Although it has re-
duced accuracy and precision, RSPF is useful when there is a need to
minimize computation time.

Central Difference Kalman filter

Central Difference Kalman filter share several properties with UKF,
including the number of sigma points (2L+ 1), how their spread is con-
figurable with a parameter (h), and that they both work with any sym-
metrical prior distribution. Furthermore, h is usually set to

√
3, which

matches α = 1 and κ = 3− L settings of UKF:

φi =


0 i = 1
eih i = 2, . . . , L+ 1
−eih i = L+ 2, . . . , 2L+ 1.

(3.10)

The mean value is calculated similarly as well, with the following
weights:

ω
(m)
i =


h2 − L

h2
i = 1

1

2h2
i = 2, . . . , L+ 2.

(3.11)

The novelty lies in how the covariance matrix is approximated from
the sigma points. Instead of the formula used by other sigma point
filters (3.5), CDKF uses the Stirling polynomial interpolation formula
[100]:

cov (f(x)) ≈
∑L

i=1 ω
(c1)
i

(
f(ξi+1)− f(ξi+L+1)

)
(
f(ξi+1)− f(ξi+L+1)

)T
+

+
∑L

i=1 ω
(c2)
i

(
f(ξi+1) + f(ξi+L+1)− 2f(ξ1)

)
(
f(ξi+1) + f(ξi+L+1)− 2f(ξ1)

)T
,

(3.12)

where the two types of weights used are as follows:

ω
(c1)
i =

1

4h2
∀i

ω
(c2)
i =

h2 − 1

4h4
∀i.

(3.13)

The estimated mean value is not necessary for the covariance calcula-
tion.
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Gauss-Hermite Quadrature filter

The Gauss-Hermite Quadrature filter is derived similarly to the the
Cubature Kalman filter but relies on the Gauss-Hermite quadrature
rule. Unlike the cubature rule, which deals with multiple integral, the
quadrature rule deals with numerical computation of a univariate in-
tegral [106]. Arasaratnam et al. [101] propose a GHQF algorithm,
which defines m number of sigma points for each scalar stochastic vari-
able. These sigma points are then combined into mL sigma points. m is
an adjustable positive integer-valued parameter. For a single variable,
the weights and basis functions ω and φ are defined using a symmetric
m×m tridiagonal matrix J:

Ji,i = 0

Ji,i+1 =
√
i/2, 1 ≥ i ≥ m− 1.

(3.14)

Then, if ϵi represents the i-th eigenvalue of J, while v1,i is the first
element of the i-th normalized eigenvector of J, the weights and basis
functions are as follows:

φi =
√
2ϵi

ω
(m)
i = v21,i
ω
(c)
i = ω

(m)
i

(3.15)

Furthermore, GHQF shares the assumption with CKF that the prior
statistics of estimation error, disturbances, and noises are Gaussian.
Gaussian Sum Quadrature Kalman filter is an extension of GHQF to
non-Gaussian distributions [101]. However, it requires even more sigma
points and hence is not discussed further here.

Sparse-Grid Quadrature filter

Sparse-Grid Quadrature filter aims to provide the same capabilities as
GHQF, but with the number of sigma points scaling polynomially in-
stead of exponentially with dimension. It uses the Sparse-grid quadra-
ture (SGQ) rule [102], a method that is meant to alleviate the curse of
dimensionality problem in numerical integration. SGQ can be derived
for different accuracy levels. The SGQ with accuracy level P is exact
for all multivariate polynomials with the total order of 2P − 1. Both
CKF and UKF can be considered special cases of level-2 SGQF. Level-3
SGQF can provide a similar estimation performance as GHQF with 7L

sigma points but requires maximum 2L2+4L+1 sigma points. The exact
number depends on how the three free parameters – p1, p2 and p3 – are
chosen. Similarly to the GHQF, these parameters are selected from the
perspective of a univariate estimation, where the points µ+ {−p1, 0, p1}
and µ + {−p3,−p2, 0, p2, p3} are used to estimate certain moments of an
univariate Gaussian distribution transformed by a nonlinear function.
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If all parameters are unique (p1 ̸= p2, p2 ̸= p3 and p3 ̸= p1), the sigma
points of SGQF are as follows:

φi =



0 i = 1
eip1 i = 2, . . . , L+ 1
−eip1 i = L+ 2, . . . , 2L+ 1
eip2 i = 2L+ 2, . . . , 3L+ 1
−eip2 i = 3L+ 2, . . . , 4L+ 1
eip3 i = 4L+ 2, . . . , 5L+ 1
−eip3 i = 5L+ 2, . . . , 6L+ 1

eip1 + ejp1 i = 6L+ 2, . . . , 6L+ 1 + C
−eip1 + ejp1 i = 6L+ 2 + C, . . . , 6L+ 1 + 2C
eip1 − ejp1 i = 6L+ 2 + 2C, . . . , 6L+ 1 + 3C
−eip1 − ejp1 i = 6L+ 2 + 3C, . . . , 6L+ 1 + 4C,

(3.16)

where C = L(L−1)/2 and j ̸= i. Let us introduce the following variables
for the weight calculation:

ω̂1 = 1−
1

p21
ω̂2 =

1

2p21
ω̂3 = 1− 2ω̂4 − 2ω̂5

ω̂4 =
3− p23

2p22(p
2
2 − p23)

ω̂5 =
3− p22

2p23(p
2
3 − p22)

.

(3.17)

Using these variables, the weights are as follows:

ω
(m)
1 =

(L− 1)(L− 2 + Lω̂2
1)

2
− L(L− 1)ω̂1 + Lω̂3

ω
(m)
i = (L− 1)ω̂2(ω̂1 − 1)

{
i = 2, . . . , L+ 1

i = L+ 2, . . . , 2L+ 1

ω
(m)
i = ω̂4

{
i = 2L+ 2, . . . , 3L+ 1
i = 3L+ 2, . . . , 4L+ 1

ω
(m)
i = ω̂5

{
i = 4L+ 2, . . . , 5L+ 1
i = 5L+ 2, . . . , 6L+ 1

ω
(m)
i = ω̂2

2


i = 6L+ 2, . . . , 6L+ 1 + C

i = 6L+ 2 + C, . . . , 6L+ 1 + 2C
i = 6L+ 2 + 2C, . . . , 6L+ 1 + 3C
i = 6L+ 2 + 3C, . . . , 6L+ 1 + 4C

(3.18)

The same values are used for both ω
(m)
i and ω(c)

i .

3.1.5 Sigma point filter algorithm

An example algorithm for a sigma point filter is presented below, with
the assumption, that the observed discrete-time system is of the form
(3.3).
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Table 3.1. Sigma point filters with different sigma point selection
strategies

Para- Assumption on Non-negative
Name Points meters distribution weights

CKF 2L 0 Gaussian yes
UKF 2L+ 1 3 Symmetric yes*

RSPF L+ 2 1 Symmetric yes
CDKF 2L+ 1 1 Symmetric yes*
GHQF mL** 1 Gaussian yes
SGQF 2L2 + 4L+ 1 3 Gaussian no

* Depends on the choice of parameters.
** m is an adjustable parameter.

0. Initialization:

(a) The initial estimation x̂0 and Σ0 are chosen.

(b) Initial sigma point set of N sigma points X0 is calculated from
x̂0 and the factors of Σ0, Q0 and R1 using a chosen sigma
point selection strategy.

1. Estimation:
Xk is known. It can be divided to

(
X (x)T
k X (w)T

k X (v)T
k

)T
if the

disturbance and the noise are embedded into the sigma points.

(a) Propagate the sigma points through the nonlinear function of
the system

X (x̄)
k+1 = f(X (x)

k ,X (w)
k ) (3.19)

(b) The weighted mean of the propagated sigma points x̄k+1 is
the initial estimation of the state vector xk+1.
If X (x̄)

k+1 = {ξ(x̄)k+1,1, . . . , ξ
(x̄)
k+1,N}, then the result is as follows:

x̄k+1 =
N∑
i=1

ω
(m)
i ξ

(x̄)
k+1,i (3.20)

(c) Calculate the covariance matrix of the state variables as fol-
lows:

pxx,i = (ξ
(x̄)
k+1,i − x̄k+1)(ξ

(x̄)
k+1,i − x̄k+1)

T

P(xx) =
∑N

i=1 ω
(c)
i pxx,i.

(3.21)
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The formula is different in the case of CDKF:

p
(1)
xx,i = (ξ

(x̄)
k+1,i − ξ

(x̄)
k+1,j)(ξ

(x̄)
k+1,i − ξ

(x̄)
k+1,j)

T

p
(2)
xx,i = (ξ

(x̄)
k+1,i + ξ

(x̄)
k+1,j − 2ξ

(x̄)
k+1,1)

(ξ
(x̄)
k+1,i + ξ

(x̄)
k+1,j − 2ξ

(x̄)
k+1,1)

T

P(xx) =
∑(N−1)/2

i=2 (ω
(c1)
i p

(1)
xx,i + ω

(c2)
i p

(2)
xx,i),

(3.22)

where j = i+ (N − 1)/2.
(d) Propagate the transformed sigma points to the output:

X (y)
k+1 = h(X (x̄)

k+1,X
(v)
k ). (3.23)

(e) The initial estimation of the measured output is the weighted
mean of the propagated sigma points.
If X (y)

k+1 = {ξ(y)k+1,1, . . . , ξ
(y)
k+1,N}, then the result is as follows:

ȳk+1 =

N∑
i=1

ω
(m)
i ξ

(y)
k+1,i (3.24)

(f) Calculate the covariance matrix of the output and the cross-
covariance between the output and the states as follows:

pyy,i = (ξ
(y)
k+1,i − ȳk+1)(ξ

(y)
k+1,i − ȳk+1)

T

P(yy) =
∑N

i=1 ω
(c)
i pyy,i

pxy,i = (ξ
(x̄)
k+1,i − x̄k+1)(ξ

(y)
k+1,i − ȳk+1)

T

P(xy) =
∑N

i=1 ω
(c)
i pxy,i.

(3.25)

Similarly to step 1c, the calculation is different for CDKF:

p
(1)
yy,i = (ξ

(y)
k+1,i − ξ

(y)
k+1,j)(ξ

(y)
k+1,i − ξ

(y)
k+1,j)

T

p
(2)
yy,i = (ξ

(y)
k+1,i + ξ

(y)
k+1,j − 2ξ

(y)
k+1,1)

(ξ
(y)
k+1,i + ξ

(y)
k+1,j − 2ξ

(y)
k+1,1)

T

P(yy) =
∑(N−1)/2

i=2 (ω
(c1)
i p

(1)
yy,i + ω

(c2)
i p

(2)
yy,i)

p
(1)
xy,i = (ξ

(x̄)
k+1,i − ξ

(x̄)
k+1,j)(ξ

(y)
k+1,i − ξ

(y)
k+1,j)

T

p
(2)
xy,i = (ξ

(x̄)
k+1,i + ξ

(x̄)
k+1,j − 2ξ

(x̄)
k+1,1)

(ξ
(y)
k+1,i + ξ

(y)
k+1,j − 2ξ

(y)
k+1,1)

T

P(xy) =
∑(N−1)/2

i=2 (ω
(c1)
i p

(1)
xy,i + ω

(c2)
i p

(2)
xy,i).

(3.26)

Note, that the way P(xy) is calculated is different from the
algorithm presented by Nørgaard et al. [100].

2. Update:
The actual value of output yk+1 is available through measurement.
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(a) Calculate the Kalman gain:

Kk+1 = P(xy)
(
P(yy)

)−1
. (3.27)

(b) Update the state vector and the estimation error covariance
matrix as follows:

x̂k+1 = x̄k+1 +Kk+1(yk+1 − ȳk+1)

Σk+1 = P(xx) −Kk+1P
(yy)KT

k+1.
(3.28)

(c) Calculate Σ
1
2
k+1 using Cholesky decomposition.

(d) Define the new sigma point set Xk+1 using the following mean
and covariance matrix factor, with the chosen sigma point se-
lection strategy:

 x̂k+1

w̄k+1

v̄k+2




Σ
1
2
k+1 0 0

0 Q
1
2
k+1 0

0 0 R
1
2
k+2

 (3.29)

3. k = k + 1 and continue from Estimation.

3.1.6 Extensive transform

Extensive transform [107] is an attempt to enhance the accuracy of
sigma point filters by preserving the statistical independence of Σk from
Qk and Rk when approximating their joint predictive distribution. Es-
timation error can be separated from disturbances and measurement
noise. Furthermore, it is possible to apply different sigma point selec-
tion strategies to each component as long as the sum of weights used
to determine the covariance matrices equals one. The only exception
is CDKF, where covariance matrices are calculated from sigma points
differently. Let us have two sigma point sets χ1 and χ2 with n1 and n2
number of points, furthermore ω1 and ω2 weights associated with them.
We can use the combined sigma point set χ with n1 · n2 sigma points to
acquire information on their joint distribution.

χ ∋ ξk =

(
ξ1,i
ξ2,j

)
ξ1,i ∈ χ1 ξ2,j ∈ χ2

wk = w1,iw2,j k = (n2 − 1)i+ j
i = 1, . . . , n1 j = 1, . . . , n2

(3.30)
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3.1.7 Square-root filtering

In practical applications, the calculated estimation error covariance mat-
rix Σk+1 may not be strictly positive definite. Numerical inaccuracies
can accumulate so that Σk+1 is close to singularity or indefinite. The
Cholesky decomposition can lead to poor numerical solutions, depend-
ing on the model and the number of state variables. Sigma point col-
lapse [105] can also result in singular covariance matrices.

However, it is possible to provide a more robust and numerically
better conditioned solution by avoiding the Cholesky decomposition al-
together and calculating Σ

1
2
k+1 directly. This approach is referred to as

square-root filtering [108]. QR-decomposition is an essential tool for the
square-root filtering algorithm. Let us introduce the notation Triang for
the transpose of the upper triangular result Γ of the QR decomposition
(3.31):

ΓT = Triang(A)
ΘΓ = QR(AT ),

(3.31)

where A is a real valued matrix. There are various versions of square-
root filtering algorithms in the literature. The approach presented by
Mark G. Rutten [108] requires disturbance and noise sources to be em-
bedded into the sigma points. Furthermore, all weights ω(c) need to be
nonnegative.

The algorithm presented in Section 3.1.5 remains mostly unchanged
except for 1c, 1f, 2a, 2b and 2c.

The square-root sigma point filter algorithm is as follows:

0. Initialization:

(a) The initial estimation x̂0 and Σ0 are chosen.
(b) Initial sigma point set X0 is calculated from x̂0 and the fac-

tors of Σ0, Q0 and R0 using a chosen sigma point selection
strategy.

1. Estimation:
Xk =

(
X (x)T
k X (w)T

k X (v)T
k

)T
is known.

(a) Propagate the sigma points through the nonlinear function of
the system:

X (x̄)
k+1 = f(X (x)

k ,X (w)
k ) X (x̄)

k+1 = {ξ(x̄)k+1,1, . . . , ξ
(x̄)
k+1,N}. (3.32)

(b) Initial estimation of the state vector:

x̄k+1 =
N∑
i=1

ω
(m)
i ξ

(x̄)
k+1,i. (3.33)
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(c) Calculate the following:

P(x) =



√
ω
(c1)
1 (ξ

(x̄)
k+1,2 − ξ

(x̄)
k+1,L+2)

T

...√
ω
(c1)
L (ξ

(x̄)
k+1,L+1 − ξ

(x̄)
k+1,2L+1)

T√
ω
(c2)
1 (ξ

(x̄)
k+1,2 + ξ

(x̄)
k+1,L+2 − 2ξ

(x̄)
k+1,1)

T

...√
ω
(c2)
L (ξ

(x̄)
k+1,L+1 + ξ

(x̄)
k+1,2L+1 − 2ξ

(x̄)
k+1,1)

T



T

(3.34)

for CDKF and

P(x) =


√
ω
(c)
1 (ξ

(x̄)
k+1,1 − x̄k+1)

T

...√
ω
(c)
N (ξ

(x̄)
k+1,N − x̄k+1)

T


T

(3.35)

for any of the other filters.
(d) Propagate the transformed sigma points to the output:

X (y)
k+1 = h(X (x̄)

k+1,X
(v)
k ) X (y)

k+1 = {ξ(y)k+1,1, . . . , ξ
(y)
k+1,N}. (3.36)

.
(e) Calculate the initial estimation of the measured output:

ȳk+1 =

N∑
i=1

ω
(m)
i ξ

(y)
k+1,i. (3.37)

(f) Calculate the following for CDKF and for the other filters re-
spectively:

P(y) =



√
ω
(c1)
1 (ξ

(y)
k+1,2 − ξ

(y)
k+1,L+2)

T

...√
ω
(c1)
L (ξ

(y)
k+1,L+1 − ξ

(y)
k+1,2L+1)

T√
ω
(c2)
1 (ξ

(y)
k+1,2 + ξ

(y)
k+1,L+2 − 2ξ

(y)
k+1,1)

T

...√
ω
(c2)
L (ξ

(y)
k+1,L+1 + ξ

(y)
k+1,2L+1 − 2ξ

(y)
k+1,1)

T



T

(3.38)

P(y) =


√
ω
(c)
1 (ξ

(y)
k+1,1 − ȳk+1)

T

...√
ω
(c)
N (ξ

(y)
k+1,N − ȳk+1)

T


T

(3.39)
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2. Update:
The actual value of output yk+1 is available through measurement.

(a) Calculate the factor Σ
1
2
k+1 as follows:(

P̃(yy) 0 0

P̃
(xy)
k Σ

1
2
k+1 0

)
= Triang

(
P(y)

P(x)

)
. (3.40)

(b) Calculate the Kalman gain:

Kk+1 = P̃(xy)
(
P̃(yy)

)−1
. (3.41)

Note, that P̃(xy) and P̃(yy) are not equal to the covariance and
cross-covariance matrices P(xy) and P(yy).

(c) Update the state vector:

x̂k+1 = x̄k+1 +Kk+1(yk+1 − ȳk+1) (3.42)

(d) Define the new sigma point set Xk+1 using Σ
1
2
k+1 and the sigma

point selection strategy.

3. k = k + 1 and continue from Estimation.

Some of the other notable updates of sigma point filters include Iter-
ative filtering and H∞ filtering. See Section A.2.1 and Section A.2.2 for
further details.

3.2 State Estimation for T1DM Models

Sigma point filters are good candidates for state estimation of the T1DM
models presented in Chapter 2 [109] [SBK16] [110]. These are nonlinear
models with stochastic disturbances and measurement noise. However,
there are certain aspects of T1DM models that must be addressed.

3.2.1 Preserving Nonnegativity

First, the state variables, inputs, and outputs of a T1DM model are
all associated with strictly nonnegative physical quantities [111] [112].
One way to consider this in the state estimation is to use the natu-
ral logarithm of these variables, effectively representing them with the
lognormal distribution. In this case, the covariance matrix of the es-
timation error is only valid for the transformed state vector. It is not
strictly necessary to transform all variables, but it is enough to focus on
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the nonlinear parts of the model and the states affected by disturbances
instead. Let Tx denote the transformation of selected state variables
to their natural logarithm: κi,k = lnxi,k, where i is the index of a sin-
gle state variable in the state vector x and k indicates discrete time. A
similar transformation can be introduced for the disturbances denoted
with Tw. Meal intake and physical activity are likely candidates for this
transformation, as both are strictly nonnegative. The transformed dis-
crete time state space T1DM model (3.3) used during the estimation is
as follows:

κk = Txxk

κk+1 = Txf(T −1
x κk, T −1

w wk, k)
yk = h(T −1

x κk, zk, k).
(3.43)

The same method applies to the Extended Kalman and sigma point
filters. In addition, potentially other nonlinear state estimation meth-
ods, such as particle filters and sliding mode observers, can benefit from
this approach. Furthermore, this method is not limited to lognormal
distribution. Other positive or nonnegative valued distributions may be
applicable as well. Although state estimation can be improved this way,
it is even more helpful in the long-term prediction of plasma glucose
concentration.

Disturbance modeling is also peculiar in the state estimation of T1DM
models, especially unannounced meal intake. The occurrence and the
amount of carbohydrates ingested by the patient may be stochastic in
nature, but Gaussian or lognormal distribution is a relatively poor model
of the meal intake signal. However, suppose a dynamic model of the
meal ingestion is available, and is part of the T1DM model used for
state estimation. In that case, the estimated output of the meal inges-
tion model can be sufficiently accurate for control purposes.

If the chosen control method is realized via state feedback, certain
state variables associated with meal ingestion may be inaccurate. This
inaccuracy must be considered when choosing the model for controller
design and synthesis. Section 3.3.2 provides more information regard-
ing announced meal intake modeling.

3.2.2 Estimation of an uncertain model

As presented in Section 2.3, most T1DM models are inherently inac-
curate. This work uses additive and multiplicative output uncertainty
functions to capture this inaccuracy (Section 2.3). Let us use the follow-
ing state-space representation for additive (Wout,a) and multiplicative
(Wout,m) uncertainty functions respectively:

x(out,a),k+1 = Aout,ax(out,a),k +Bout,ad(out),k
z(out,a),k = Cout,ax(out,a)k +Dout,ad(out),k

(3.44)
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x(out,m),k = Aout,mx(out,m),k +Bout,myk
z(out,m),k = Cout,mx(out,m),k +Dout,myk,

(3.45)

where d(out) is a white noise of standard normal distribution. The pa-
rameters of both functions can be derived from:

• the remainder error of a parameter identification task,

• a priori knowledge of intra-patient variability,

• known effects of model simplification,

among others. When performing state estimation, the uncertainty func-
tions must be part of the model. d(out) is part of the disturbances. Fur-
thermore, x(out,a) and x(out,m) are estimated like any other state variable
of the T1DM model, which is beneficial for state feedback type of control
algorithms.

While integrating additive uncertainty function to a state observer
is relatively straightforward, a sigma point filter has no direct means to
consider the ∆ unstructured uncertainty (see Figure 2.2). To overcome
this limitation, the additive and multiplicative uncertainty weighting
function can be combined to calculate the measured output y(meas) as
follows:

y(meas),k = yk + z(out,a),k

(
1 +

z(out,m),k

Gadd

)
, (3.46)

where Gadd is the DC gain of the additive uncertainty weighting func-
tion. The combined additive and multiplicative output uncertainty is
illustrated in Figure 3.3.

P

d(t)

u(t) y(t)

Wout,m

Wout,adout,a(t)

∗1

Gadd

1

Figure 3.3. Model P extended with combinedWout,a additive andWout,m

multiplicative output uncertainty weighting functions for state estima-
tion purposes.

The limitation of this approach is that it introduces a strong de-
pendency between additive and multiplicative uncertainty. However,
this may not be a disadvantage if the parameters of these weighting
functions are derived from the same source, which is not uncommon in
practice. Alternatively, introducing a new weighting function similar
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to Wout,a, and combining it with Wout,m instead can eliminate the de-
pendency at the cost of increasing model and disturbance dimensions.
Figure 3.4 illustrates this case.

P

d(t)

u(t) y(t)

Wout,adout,a(t)

W
(1)
out,m

W
(2)
out,m

dout,m(t)

∗

Figure 3.4. Model P extended with additive and multiplicative output
uncertainty weighting functions for state estimation purposes. W (1)

out,m is
the original multiplicative uncertainty weighting function, while W (2)

out,m

is a low pass filter driven by white noise.

3.3 Prediction

Kalman filters and sigma point filters can also be used for model-based
prediction. The Estimation step in the previously presented algorithms
is already a model-based prediction, which is then corrected in the Up-
date step based on the difference between the predicted and measured
output. Thus, a Kalman filter-based predictor merely needs to repeat-
edly perform the Estimation step. As an additional benefit, this kind
of predictor can also assess its accuracy of state variable and output
prediction via P(xx) and P(yy) respectively. The progression of these co-
variance matrices can tell how far ahead the algorithm can predict so
that the predicted values are still useful.

Using the same Estimation step for prediction is sufficient in open
loop control or when the controller in a closed-loop configuration does
not use the estimated values of the state observer. However, if the con-
troller uses some of the estimated values of the state observer, the pre-
dictor should consider how future estimation errors can influence the
system. In this case, the control algorithm is part of the model used by
the predictor:

xk+1 = f(xk,wk,uk, k)
x(c),k+1 = fc(x(c),k, (xk +w(e),k), k)

uk = hc(x(c),k, (xk +w(e),k), k)

yk = h(xk,vk,uk, k).

(3.47)

In this combined system of model and controller, u denotes the con-
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trol signal, which is a stochastic signal due to the influence of the state
estimation error w(e). Functions fc and hc represent the control algo-
rithm. If the controller has a dynamic behavior, it necessitates the
introduction of new state variables, denoted with x(c). x(c) is unnec-
essary for static algorithms, such as state feedback control. Note that
although the estimated state vector is the input argument of both fc and
hc, the controller does not necessarily use all of them. As an example,
if the controller uses the estimated output of the model, the operation
h((xk +w(e),k), 0,uk, k) is incorporated into fc and hc.

w(e) state estimation error is assumed to have zero mean value,
but the predictor needs to estimate its covariance matrix Σ(e) and the

Cholesky factor Σ
1
2

(e). A modified state observer running parallel to the
predictor can provide this information [SBK16].

In each prediction step, the modified observer performs Estimation
and Update using only the nominal model (3.3). However, since there
is no actual measurement available, both Estimation and Update can
omit to calculate the following values:

• initial estimation of the measured output: ȳ,

• Kalman gain: K,

• updated state vector: x̂.

The only relevant output of the simplified observer is the updated fac-
tor of the estimation error covariance matrix: Σ

1
2

(e). Furthermore, to
decouple the calculation from the prediction, the control signal u is sub-
stituted with its mean value, denoted with ū.

Let us introduce the following notations for the predictor to differen-
tiate it from the observer.

• The lower index j denotes j-th prediction step. Therefore, the j-
th predicted value starting from the k-th estimation step has the
lower index k + j, e.g., xk+j .

• While the estimation of a variable x is denoted as x̂, prediction of
x is indicated with x̆.

3.3.1 Predictor Algorithm

The sigma point filter-based predictor algorithm is as follows:

0. Initialization:
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(a) At the end of the k-th estimation step the predictor starts
from the estimated state variable vector and the state vari-
ables of the controller (if applicable):

x̆k+0 = x̂k

x̆(c),k+0 = x(c),k
(3.48)

(b) Set the initial mean and sigma points for the control signal:

ūk+0 = hc(x(c),k, x̂k, k)

X (u)
k+0 = {ū, . . . , ū}

(3.49)

(c) Both estimation error and prediction error covariance matrix
factor start from the same value:

Σ
1
2

(p),k+0 = Σ
1
2

(e),k+0 = Σ
1
2
k (3.50)

(d) Expand Xk =
(

X (x)T
k X (w)T

k X (z)T
k

)T
with the state vari-

ables of the control algorithm (if applicable). However, since
these states are known at the beginning, the number of sigma
points should not be increased and Σ

1
2

(e),k+0 should not be used
in the initialization.

X(p),k+0 =


X (x)
k(

x(c),k, . . . ,x(c),k

)
X (w)
k

X (z)
k

 (3.51)

1. Prediction:
X(p),k+j =

(
X (x)T
(p),k+j X (w)T

(p),k+j X (z)T
(p),k+j

)T
and X (u)

k+j sigma point

sets are available after the j-th prediction step. Note, that X (x)T
(p),k+j

incorporates both model and controller state variables, (x and x(c))
while X (w)T

(p),k+j accounts for both disturbances and state estimation
error (w and w(e)). The only exception is j = 0, where w(e) is not
present.

(a) Propagate the sigma points through the model and controller:

X (x̄)
(p),k+j+1 =

(
f(X (x)

(p),k+j ,X
(w)
(p),k+j ,X

(u)
k+j)

fc(X (x)
(p),k+j ,X

(w)
(p),k+j)

)
=

= {ξ(x̄)k+j+1,1, . . . , ξ
(x̄)
k+j+1,N}.

(3.52)
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(b) Calculate the j + 1-th predicted value of the combined vector
of x̆k+j+1 model and x̆(c),k+j+1 controller state variables:

(
x̆k+j+1

x̆(c),k+j+1

)
=

N∑
i=1

ω
(m)
i ξ

(x̄)
k+j+1,i. (3.53)

(c) For a regular predictor, calculate P(xx) the same way as in the
Estimation step of a sigma point filter. The new prediction er-
ror covariance matrix factor Σ

1
2

(p),k+j+1 is the Cholesky factor
of P(xx).
Alternatively, calculate P(x) the same way as for a square root
filter. Then, use QR decomposition to calculate Σ

1
2

(p),k+j+1:

Σ
1
2

(p),k+j+1 = Triang(P(x)) (3.54)

(d) For output prediction, propagate the transformed sigma points:

X (y)
(p),k+j+1 = h(X (x̄)

(p),k+j+1,X
(z)
(p),k+j+1,X

(u)
k+j) =

= {ξ(y)k+j+1,1, . . . , ξ
(y)
k+j+1,N}.

(3.55)

(e) Calculate the predicted value of the measured output:

y̆k+j+1 =

N∑
i=1

ω
(m)
i ξ

(y)
k+j+1,i. (3.56)

(f) Calculate the covariance matrix of the predicted output the
same way as P(yy) in a sigma point filter.

2. Estimation error update:

(a) Using the sigma point set X (u)
k+j = {ξ(u)k+j,1, . . . , ξ

(u)
k+j,N}, calcu-

late the mean value of the control signal:

ūk+j =
N∑
i=1

ω
(m)
i ξ

(u)
k+j,i. (3.57)

(b) Perform all steps of Estimation the same way as in a sigma
point filter using X(e),k+j and ūk+j .
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(c) Use P(xx), P(xy) and P(yy) calculated in the previous step to
acquire the new estimation error covariance matrix, and its
Cholesky factor:

Σ(e),k+j+1 = P(xx) −P(xy)
(
P(yy)

)−1
P(xy)T

Σ
1
2

(e),k+j+1 = Chol
(
Σ(e),k+j+1

)
.

(3.58)

Alternatively, use P(x) and P(y) to calculate Σ
1
2

(e),k+j+1 directly:(
∗ 0 0

∗ Σ
1
2

(e),k+j+1 0

)
= Triang

(
P(y)

P(x)

)
. (3.59)

(d) Calculate the new X(p),k+j+1 sigma point set for the Prediction
with the chosen sigma point selections strategy from the vec-
tor

(
x̆T
k+j+1 w̄T

k+j+1 v̄T
k+j+2 0T

)T and covariance matrix

factor: diag
(
Σ

1
2

(p),k+j+1,Q
1
2
k+j+1,R

1
2
k+j+2,Σ

1
2

(e),k+j+1

)
.

(e) Use the new sigma point set X(p),k+j+1 to define the next sigma
point set for the control signal using the control algorithm:

X (u)
(p),k+j+1 = hc(X(p),k+j+1) (3.60)

(f) Calculate the new sigma point Σ
1
2

(e),k+j+1 using the vector(
x̆T
k+j+1 w̄T

k+j+1c v̄T
k+j+2

)T and covariance matrix factor:

diag

(
Σ

1
2

(e),k+j+1,Q
1
2
k+j+1,R

1
2
k+j+2

)
, for the Estimation error up-

date with the chosen sigma point selection strategy.

3. j = j + 1 and continue from Prediction.

3.3.2 Meal Intake Announcement

Using an unannounced meal intake model for the predictor and ob-
server provides the benefit of assessing the glucose control’s expected
quality, e.g., the likelihood of hypoglycemia. Because there is no a priori
information regarding meal intakes, one must assume that the glucose
flux resulting from ingestion has high variability. Thus, the predictor
can only provide a relatively large standard deviation for the predicted
glucose concentration [SBK16]. This is usually unsuited for event de-
tection. However, if the meal intakes are announced, the predictor can
be more versatile.
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First, the predictor needs a different meal intake model. Let us de-
note the disturbance signal associated with meal intake as wmeal. The
parameters used for wmeal are usually constant when meals are unan-
nounced, with values that cover a wide range of inputs. For announced
meals, the parameters should be a function of time, capturing the es-
timated amount of CHO in the meal and uncertainties both in amount
and timing. Two potential meal intake functions are illustrated in Fig-
ure 3.5, showing the w̄meal(t) mean value and σwmeal

(t) standard de-
viation of stochastic signal wmeal(t) over time. More advanced models
can consider CHO content and other selected nutritional factors as well
[113].

time

w
m
ea

l

time

m
ea

l

m
ea

l

Figure 3.5. Illustration of possible meal intake models. The blue lines
display w̄meal(t) mean value and σwmeal

(t) standard deviation of the sto-
chastic variable wmeal(t). Solid line represent the former, while dashed
and dotted line the latter. The vertical green dashed lines mark a sin-
gle meal intake announcement in each plot. The plot on the left is an
example where the meal intake is modeled by a time-varying normal
distribution, while it has lognormal distribution in the plot on the right.

When validating a meal announcement, at least two predictions are
necessary: one with parameters from the announcement and one as-
suming no meal intake occurred. Then, as more and more glucose mea-
surements become available, a separate logic can assess which predic-
tions have a higher likelihood. The decision can be made based on
e.g., fixed thresholds, statistical techniques [114, 115] or soft comput-
ing methods [116].

3.3.3 Fault and Event Detection

Unannounced meals and unexpected events can be detected in a rather
similar manner. However, in this case, there is no direct trigger for exe-
cuting the prediction. The AP may perform a new prediction and test for
anomalies using an earlier one for every new measurement data. How-
ever, this can be rather resource intensive and impractical for embedded
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hardware. Alternatively, it is possible to combine the predictor with a
supervisor logic and perform prediction only when necessary. Predic-
tions validate or reject hypotheses regarding the event or fault in these
cases.

For example, suppose the measured glucose levels have consistently
low likelihood based on P(yy) calculated by the state observer. In that
case, the supervisor logic can trigger multiple predictions from an ear-
lier point in time. Some of the use cases the predictor may be able to
cover are as follows:

• there was an unannounced meal intake,

• there is ongoing physical activity,

• there is a sensor fault with some characteristic signature in data,

• the pump provides no insulin.

The specificity of the changes introduced by these events defines the
applicability of the predictor. The supervisor logic executes predictions
associated with the relevant events above and compares them with the
hypothesis that "no event occurred".

3.4 Simulation

Chapter 5 presents in silico validation of various observer algorithms
with details of the corresponding simulation environment and setup. To
illustrate the behavior of the observer, Figure 3.6 displays an example
of a single 12 hours simulation. The simulation setup is identical to
the one presented in Section 5.1, which includes the parameters of the
Cambridge model that represents the ground truth, model reduction,
parameters of the uncertainty functions, parameters of sigma point se-
lection strategy,initial estimation error, and disturbance and noise pa-
rameters. Both the reference model and observer used the parameter
set of patient no. 1 as presented in Table 5.1. The meal intake is based
on Scenario 3, presented in Section 5.3.

The observer is based on the Unscented Kalman filter. In addition,
it applies additive and multiplicative uncertainty models, lognormal
transform, and square-root filtering. During the simulation, a state
feedback controller uses the estimated state variables to define the in-
sulin input. The controller is the hybrid H2/H∞ controller referenced in
Section 5.3.4.

Figure 3.6 shows the actual and estimated values of the Cambridge
model, except for the meal intake and ingestion subsystem, where only



49 3.4. SIMULATION

the output G2 is relevant. The subplot displaying the estimated sub-
cutaneous glucose measurement also illustrates the output uncertainty
considered by the observer with cyan patches. The last two subplots dis-
play the outputs of the multiplicative and additive uncertainty weight-
ing functions, respectively.

Figure 3.6. Illustration of an UKF based T1DM state observer. Blue
solid and green dashed lines represent the actual and estimated value
of the observed quantities indicated on the top of each subplot, respec-
tively. The first subplot visualizes the output uncertainty that the ob-
server considers with cyan patches. The last two subplots display the
output of the multiplicative and additive output uncertainty functions,
respectively, with solid green lines.
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The effect of model simplification is visible in the deviation of the
actual and estimated values of state variables x2, x3, and I. The esti-
mated glucose flux (G2) shows some delay, which is then compensated
with larger estimated values shortly after each peak of the actual G2

signal.
Figure 3.7 displays the simulation results of the same observer and

controller as before but in predictor mode. The figure visualizes a sin-
gle 180-minute-long prediction following a meal intake announcement.
The predictor considers ±10 g of uncertainty in the amount of CHO
intake and ±10 minutes uncertainty in timing. The meal model is as
illustrated in the left subplot of Figure 3.5.

The predicted mean value of the subcutaneous glucose concentra-
tion, marked with a dashed green line, roughly follows the actual glu-
cose concentration, marked with a solid blue line. The predicted stan-
dard deviation increases along the prediction horizon, which is indi-
cated by cyan patches.

Figure 3.7. Simulation of a 180 minutes prediction horizon following a
meal intake announcement. The solid blue line represents the actual
subcutaneous glucose concentration. The green dashed line and cyan
patches illustrate the predicted mean and standard deviation of the glu-
cose concentration.
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LINEAR
PARAMETER-VARYING

MODELING AND CONTROL

This chapter addresses the second thesis group: a robust nonlinear
control algorithm for Artificial Pancreas. The controller addresses the
nonlinearity, the nonnegativity, and the intra-patient variability of the
glucose-insulin interaction in a T1DM patient. The contributions that
belong to this thesis group are the following:

1. A linear parameter-varying approximation of the well-known Cam-
bridge T1DM model enabled the synthesis of quasi linear param-
eter varying controllers via the solution of linear matrix inequali-
ties.

2. A H2/H∞ controller for Artificial Pancreas, which considers model
uncertainties and intra-patient variability, as well as constraints
on the control signal.

3. A method to automatically scale performance and multiplicative
uncertainty outputs of a T1DM model so that robust stability con-
straints are ensured, and nominal performance is optimized, as
long as they are feasible.

The related publications are: [KSZ11, KSF+11, KTSS12, KS12, KSF+12,
KKSE13, SEK+13, KSAB13, KSS+13, KKS+14, SEK14, KS16, SDKew].

51
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4.1 Requirements of Blood Glucose Control

As discussed in Section 1.2.1, the design of the control algorithm of the
Artificial Pancreas must consider various expectations and constraints.
The controller presented in this Chapter addresses the following re-
quirements:

• The controller shall be model-based, using the Cambridge model
as its core.

• The controller shall consider the nonlinearity of the model.

• The controller shall consider the uncertainty resulting from mod-
eling inaccuracies, time-varying parameters, and model simplifi-
cations.

• The controller shall keep the output in the range of normoglycemia.

• The controller shall reduce the time spent above the normal range
(hyperglycemia), and avoid going below the range (hypoglycemia).

• The controller shall not request a negative control signal.

• The controller shall not rely on external information regarding dis-
turbances (e.g., meal intake).

4.1.1 Literature Overview

The proposed controller relies only on the hardware most frequently
used in clinical practice: a continuous subcutaneous glucose sensor and
continuous subcutaneous insulin infusion. Although the use of intraperi-
toneal insulin infusion proposed by Barnes and Jones [24] or an addi-
tional glucagon pump as presented by El-Khatib et al. [81] and partially
by Zhu et al. [30] can be highly efficient, they require hardware that
currently has practical limitations. Furthermore, there is no reliance
on patient intervention, as in the solution proposed by Beneyto et al.
[27].

The proposed control signal addresses the nonnegativity of the in-
sulin input but not as a hard constraint like the positive sliding mode
control presented by Leyva et al. [28]. Moreover, it is a nonlinear tech-
nique, similarly to the nonlinear state feedback of Cai et al. [29] and
the robust nonlinear feedback of Rigatos et al. [48].

There are two main approaches to handling the changes in the sys-
tem dynamics over time: adaptivity and robustness. Shi et al. [34] and
Kovács et al. [35] present notable recent examples, while Turksoy et al.
[33] provide an overview of adaptive control for T1DM. Moreover, Iman
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et al. [42] present an adaptive MPC controller, while the work of Abuin
et al. introduces a circadian insulin sensitivity scheme [41].

However, the controller presented in this thesis group applies ro-
bustness to address intra-patient variability. One of the first solutions
employing H∞-norm based robust control for T1DM is presented by
Doyle et al. [47]. A more recent example extends the H∞-based ro-
bustness to nonlinear control [48]. The approach presented by Mirzaee
et al. [50] uses a robust LPV controller, but partially relies on meal in-
take announcements. The controller proposed in this work requires no
meal intake information.

The most widely accepted approach is model predictive control [36,
37, 38]. However, based on the results obtained from clinical trials,
there is a need to address the robustness of these methods. Paoletti et
al. [45] increase the robustness of an MPC by deriving uncertainty sets
capturing the distribution of meal intake history and patient habits,
hence eliminating the need for meal announcements. Siket et al. [46]
addresses parameter uncertainties with particle swarm optimization.

4.2 Methods

4.2.1 Linear Parameter-Varying Model

Models of physiological systems are often expressed in state space form,
in which the state variables represent a physical quantity or concentra-
tion, as presented in Chapter 2. For a linear system expressed in state
space form, there is a wide range of controller synthesis methods that
use the state space matrices A, B, C, and D as input. These methods
include robust control, which could address the severe parameter and
modeling uncertainties that burden T1DM models. However, the vast
majority of T1DM models have a varying degree of nonlinearity. Hence,
one cannot apply linear control synthesis methods directly. However,
linear parameter-varying (LPV) models can bridge the gap between the
nonlinearity of the T1DM models and the powerful techniques for linear
state space systems [117].

A dynamic, continuous time state space LPV model with n states, m
inputs and r outputs is as follows:

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)
y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)

A(ρ(t)) = A0 +
∑p

i=1 ρi(t)Ai B(ρ(t)) = B0 +
∑p

i=1 ρi(t)Bi

C(ρ(t)) = C0 +
∑p

i=1 ρi(t)Ci D(ρ(t)) = D0 +
∑p

i=1 ρi(t)Di

(4.1)

where x(t) ∈ Rn is the vector of state variables, u(t) ∈ Rm is the vector
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of inputs and y(t) ∈ Rr is the vector of outputs. Ai, Bi, Ci, and Di are
n×n, n×m, r×n, and r×m real matrices respectively for all i ∈ {1, ..., p}.

The vector of scheduling variables ρ(t) ∈ Rp represents the time-
varying changes in the system. If (4.1) is an LPV model, the scheduling
variables must satisfy the following requirements:

1. The scheduling variables must be bounded, and the bound is known:
ρi,min ≤ ρi(t) ≤ ρi,max, ∀i ∈ {1, ..., p}

2. Each scheduling variable is continuously differentiable: ρi(t) ∈
C1(R,R),∀i ∈ {1, ..., p}

3. The time derivate of the scheduling variables is also bounded:
dρi,min ≤ ρ̇i(t) ≤ dρi,max, ∀i ∈ {1, ..., p}

The majority of T1DM models, that are defined in continuous time and
use integer order nonlinear differential equations, can be transformed
into a linear parameter-varying model [118] (4.1). This includes the
following models referenced in Chapter 2:

• Both the minimal [71] and the extended [72] Bergman model
[Kovács et al., 2011b].

• Most models used in intensive care [Kovács et al., 2011b].

• The Sorensen model [KSAB13].

• The Magni model [118].

• The Cambridge model [Kovács et al., 2011] [SEK+13] [SEK14].

It is important to note that if the state variables of T1DM models
represent physical quantities and concentrations in a physiological sys-
tem, they all meet the requirements for scheduling variables. Hence,
any state variable of a T1DM system can be used as a scheduling vari-
able in an LPV representation.

The rest of this Section will propose LPV representation of the Cam-
bridge models presented in Section 2.1.1 with the intent to use them in
robust linear and LPV controller synthesis. The scheduling variables
in these LPV models aim to capture the nonlinear aspects only without
addressing parametric uncertainties. Furthermore, a simplified linear
worst-case meal intake replaces the meal absorption (2.4). Section A.3.1
presents a similar LPV representation of the Magni model.
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4.2.2 Robust Control of Uncertain Model

The nonlinearity of a T1DM model is not the only aspect to consider
for realizing AP. As discussed in Section 2.3 there are uncertainties and
disturbances to any T1DM model.

Let P denote a linear MIMO model, dP (t) a vector of disturbances,
while u(t) control signals coming from K linear controller. Let zP (t) a
vector of outputs that indicate control performance, such as tracking er-
ror, while y(t) is the vector of measured outputs used for control. As ref-
erenced in Section 2.3.1, ∆ is unstructured uncertainty, with z∆(t) input
and d∆(t) output. The closed-loop control of the uncertain linear model
can be arranged into a ∆PK structure [119] as shown in Figure 4.1.

∆

P

K

u(t) y(t)

zP (t)dP (t)

z∆(t)d∆(t)

Figure 4.1. ∆PK structure of a linear model.

zP (t) and z∆(t), as well as dP (t) and d∆(t) can be grouped into a
single vector as follows:

d(t) =

(
d∆(t)
dP (t)

)
z(t) =

(
z∆(t)
zP (t)

)
(4.2)

The controller K ensures Robust Stability (RS) if M(jω), the combined
transfer matrix of P and K with d(t) input and z∆(t) has only poles that
have negative real value, and its H∞ norm is smaller than one [119]:

∥M(jω)∥∞ = sup
ω∈R

σ̄(M(jω)) < 1, (4.3)

where σ̄ is the largest singular value of a matrix.
Similarly, K ensures nominal performance (NP) for a predefined pos-

itive γ value if the transfer from d(t) input to zP (t) output meets a cho-
sen norm constraint ∥.∥p so that

∥M(jω)∥p < γ. (4.4)
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Some of the most commonly used norms based on transfer matrix for
performance are H∞ and H2 norms [117], from which the latter is cal-
culated as follows:

∥M(jω)∥2 =

√
1

2π

∫ ∞

−∞
Trace

(
M(jω)M∗(jω)

)
dω, (4.5)

Note, that ∥M(jω)∥2 is only finite if M(jω) has no direct feedthrough.
Furthermore, there are two other nominal performance norms pre-

sented in [117]: generalized H2 (H2g) norm and L1 or peak-to-peak
norm. They are defined as follows, for a given positive γ value:

∥M(jω)∥2,g =
∥z(t)∥∞
∥d(t)∥2

< γ, (4.6)

∥M(jω)∥1 =
∥z(t)∥∞
∥d(t)∥∞

< γ. (4.7)

Both d : R → Rp and z : R → Rq are Lebesgue-measurable functions,
and their norms are calculated as follows:

∥d∥∞ = max
i=1,...,p

sup
t≥0

|di(t)|, (4.8)

∥z∥∞ = max
j=1,...,q

sup
t≥0

|zj(t)|, (4.9)

∥d∥2 =
∫ ∞

0
d(t)Td(t)dt. (4.10)

If a controller can ensure both Robust Stability and Nominal Perfor-
mance, then Robust Performance is achieved.

4.2.3 Controller Synthesis with Linear Matrix Inequali-
ties

It is possible to synthesize a controller for a linear or LPV model given
in state space form by solving a set of Linear Matrix Inequalities (LMI),
given that the controller is feasible [119, 117]. An LMI is an expression
of the following form [117]:

M(x) := M0 + x1M1 + . . .+ xmMm ≥ 0, (4.11)

where x = (x1, . . . , xm) is a vector of real numbers, and Mi are real sym-
metric n×nmatrices (i = 1, . . . ,m, and n ∈ Z+). The inequality ≥ means
that M(x) is positive semidefinite. LMI-s are particularly interesting in
control for the following reasons:

• An LMI defines a convex constraint on x.
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• Convex optimization problems either have a single global optimum
or are infeasible.

• A wide range of controller synthesis problems can be formulated
as a convex optimization problem with convex constraints.

Let us consider the following LPV system in state space form:

ẋ(t) = A(ρ(t))x(t) +B1(ρ(t))d(t) +B2u(t)
z(t) = C1(ρ(t))x(t) +D11(ρ(t))d(t) +D12u(t)
y(t) = C2(ρ(t))x(t) +D21(ρ(t))d(t),

(4.12)

where x(t) ∈ Rnx is the vector of state variables, d(t) ∈ Rnd is the vector
of disturbances while u(t) ∈ Rnu is the vector of input signals. z(t) ∈ Rnz

and y(t) ∈ Rny are the vectors of performance signals and measured out-
puts respectively. ρ ∈ Rnρ is the vector of scheduling variables. A(ρ(t)) :
Rnρ → Rnx×nx , B1(ρ(t)) : Rnρ → Rnx×nd , C1(ρ(t)) : Rnρ → Rnz×nx , and
D11(ρ(t)) : Rnρ → Rnz×nd are matrix valued affine functions of ρ(t), while
B2, C2 D12 and D21 are real matrices of appropriate sizes. One of the
most commonly used control schemes for this model is the following
[119, 117]:

ẋK(t) = AK(ρ(t))xK(t) +BK(ρ(t))y(t)
u(t) = CK(ρ(t))xK(t) +DK(ρ(t))y(t).

(4.13)

In this case, the controller is a dynamic LPV system as well. xK(t)
and AK(ρ(t)) have the same dimensions as x(t) and A(ρ(t)) respec-
tively, while BK(ρ(t)) : Rnρ → Rnx×ny , CK(ρ(t)) : Rnρ → Rnu×nx and
DK(ρ(t)) : Rnρ → Rnu×ny are matrix-valued affine functions of ρ. If
the state variables are available for measurement, it is also possible to
realize the controller via state feedback:

u(t) = G(ρ(t))x(t) (4.14)

Both model and controller are LPV, affine functions of scheduling
variable ρ. Let ρc be a convex polytope spanned by a set of M points
conv{ρ1, . . . , ρM}, so that ρ(t) is always contained in ρc.

ρ(t) ∈ ρc, ∀t ∈ [0,+∞]. (4.15)

By solving LMIs for points ρ1, . . . , ρM makes the LMIs valid for the en-
tire convex polytope [117]. Note that the more scheduling variables are
in vector ρ, the more points are needed for the polytope, and the growth
is exponential.
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Linear Matrix Inequalities for State Feedback Control

Successfully solving the following LMIs:

X > 0 (4.16) A(ρj)
T +A(ρj) B(ρj) C(ρj)T

B(ρj)T −I D(ρj)
T

C(ρj) D(ρj) −I

 < 0 (4.17)

for

• nx × nx symmetric real matrix X,

• G̃(ρj) = G(ρj)X,

where A(ρj), B(ρj), C(ρj), D(ρj), and X denotes:

X = X

A(ρj) = A(ρj)X−B2G̃(ρj)
B(ρj) = B1(ρj)

C(ρj) = C1(ρj)X−D12G̃(ρj)
D(ρj) = D11(ρj).

(4.18)

provides the state feedback controller (4.14) that can make the LPV
model (4.12) asymptotically stable. Furthermore, it ensures that the
transfer from d(t) disturbances to z(t) performance output has H∞ norm
smaller than one (γ = 1) for all j = 1, ...M [117].

Note that it is necessary to introduce G̃(ρj), and acquire G(ρj) indi-
rectly to avoid the multiplication on unknown variables, and keep the
matrix inequalities linear.

D11(ρj) must be zero in order to be able to set an H2 constraint in-
stead of an H∞ one. Furthermore, there is a new variable introduced by
the LMI for H2 norm: affine function Z(ρ) : Rnρ → Rny×ny . Z(ρ(t)) is a
symmetric real matrix for all ρ(t). The LMI constraints for H2 norm are
as follows: (

A(ρj)
T +A(ρj) B(ρj)

B(ρj)T −I

)
< 0(

X C(ρj)T
C(ρj) Z(ρj)

)
> 0

Trace(Z(ρj)) < 1.

(4.19)

The LMI constraints for H2,g norm is rather similar to H2, with the
exception that Z(ρ) is not present:(

A(ρj)
T +A(ρj) B(ρj)

B(ρj)T −I

)
< 0(

X C(ρj)T
C(ρj) I

)
> 0.

(4.20)
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Unlike the previous norms, solving LMIs for L1 norm is an itera-
tive process. Each iteration uses a different positive real λ value. Fur-
thermore, solution requires a new positive real scalar-valued function
µ(ρ) : Rnρ → R+. The LMIs of controller synthesis for L1 norm are as
follows: (

A(ρj)
T +A(ρj) + λX B(ρj)
B(ρj)T −µ(ρj)I

)
< 0 λX 0 C(ρj)T

0 (1− µ(ρj))I D(ρj)
T

C(ρj) D(ρj) I

 > 0

µ(ρj) > 0.

(4.21)

Linear Matrix Inequalities for Dynamic Controller

The dynamics controller usually has an equal or less amount of state
variables than the controlled process. This work focuses on the former
case. However, it is impossible to derive an LMI using the dynamic con-
troller parameters directly, and a transformation is necessary to make
the matrix inequalities linear [117]. The transformed LMIs for all the
four previously referenced norms are solved for the following variables:

• X, Y nx × nx real symmetric matrices and

• K(ρj), L(ρj), M(ρj), N(ρj) real matrix valued affine functions.

The inequalities (4.17), (4.19), (4.20) and (4.21) are still valid for the
dynamic controller case, but the meaning of A(ρj), B(ρj), C(ρj) and D(ρj)
are different from (4.18):

A(ρj) =

(
A(ρj)Y +B2M(ρj) A(ρj) +B2N(ρj)C2

K(ρj) XA(ρj) + L(ρj)C2

)
B(ρj) =

(
B1(ρj) +B2N(ρj)D21

XB1(ρj) + L(ρj)D21

)
C(ρj) =

(
YC1(ρj) +M(ρj)

TDT
12

C1(ρj)
T +CT

2 N(ρj)
TDT

12

)T

D(ρj) = D11(ρj) +D12N(ρj)D21

X =

(
Y I
I X

)
.

(4.22)

Regardless of the used norm, X must be positive definite, similarly to
the state feedback case:

X > 0 (4.23)

If the LMIs are feasible and successfully solved, transforming K(ρj),
L(ρj), M(ρj) and N(ρj) provides the (4.13) controller parameters, for
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j = 0, . . . ,M .

T1 =

(
U XB2

0 I

)
T2 =

(
VT 0
C2Y I

)
(

AK,j BK,j

CK,j DK,j

)
= T −1

1

(
Kj −XAjY Lj

Mj Nj

)
T −1
2

(4.24)

where
UVT = I−XY. (4.25)

Note that even if there is a numerically well-conditioned solution for
the LMIs of a dynamic controller, (4.25) may produce matrices U and V
that are close to singularity.

Constraints on Closed-loop Poles

It is possible to set constraints on the controlled system beyond stability
and norms. Two of these that have high relevance in AP [SEK14]:

1. Limiting fastest poles in the closed-loop system,

2. Limiting angle of complex conjugate pole pairs.

Several of the most widely used T1DM models are defined in contin-
uous time. However, it is very likely, that the AP executes its control
algorithm in fixed discrete time intervals. If that is the case, the dy-
namics of the model that are faster than the sampling time Ts lose their
relevance. Moreover, the controller shall not accelerate the system be-
yond what the sampling time allows. The LMI below ensures that real
value of the poles of the closed-loop system are larger than pmax for both
controller types [117]. Setting pmax to − 1

2Ts
enables executing the con-

trol algorithm in Ts time intervals.

A+AT − 2pmaxX > 0 (4.26)

As mentioned earlier in Section 4.4.1, weighting functions alone can-
not guarantee nonnegative control signal. However, the need for neg-
ative u(t) is greatly decreased if there are no oscillatory transients.
Hence, it is beneficial to limit the angle of complex conjugate pole pairs
of the closed-loop system, using the following LMI [117]:(

A(ρj) +A(ρj) 2 cos (α)A(ρj)
2 cos (α)A(ρj)

T A(ρj) +A(ρj)

)
< 0 (4.27)

Figure 4.2 illustrates the combined effect of (4.26) and (4.27).
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Re

Im

1
2Ts α

Figure 4.2. Constraints for the poles of the controlled system: Ts is the
sampling time of the CGM sensor, α is the maximum angle of the com-
plex conjugate pole pairs

4.3 LPV representation of the Cambridge model

The LPV-transformed Cambridge model needs scheduling variables that
represent the following nonlinearities:

• Remote effect of insulin on glucose distribution: x1(t)Q1(t)

• Remote effect of insulin on glucose disposal: x2(t)Q2(t)

• The Michelis-Menten function of non-insulin-dependent glucose
flux: F01Q1(t)

Q1(t)+VG

• Endogenous glucose production: EGP0max{0, 1− x3(t)}

• Renal extraction: Rcl max{0, Q1(t)−RthrVG}

For the remote effect of insulin, we have the product of an insulin-
related and a glucose-related state variable. For both of the products,
we can choose either of the states as scheduling variables. The potential
configurations are as follows:

1. Both scheduling variables are insulin related:

ρ1(t) = x1(t) ρ2(t) = x2(t) (4.28)

2. Mixed configurations:

ρ1(t) = Q1(t) ρ2(t) = x2(t) (4.29)

or
ρ1(t) = x1(t) ρ2(t) = Q2(t) (4.30)
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3. Both scheduling variables are glucose related:

ρ1(t) = Q1(t) ρ2(t) = Q2(t) (4.31)

In the case of option 1 the system is hardly controllable. Endogenous
glucose production is the only connection between the glucose and in-
sulin subsystem. Furthermore, insulin is the control signal of AP. Thus,
all states linked to insulin can change in a rather wide range during
closed-loop control. Consequently, the LPV model will have drastically
different dynamics at the extreme values of the scheduling variables,
making the controller synthesis rather difficult. On the other hand, AP
aims to keep the glucose concentration in a narrow range. Therefore,
the controller synthesis needs to consider smaller bounds for schedul-
ing variables for options 2 and 3. Option 3 is the most straightforward
approach. Not only does it offer the smallest polytope for the scheduling
variables, but there is a connection between ρ1 and the nonlinearity of
non-insulin-dependent glucose flux, which can be exploited. However,
both Q1 and Q2 are affected by disturbances, while x1 and x2 are not.
If the scheduling variables are not available for measurement, estima-
tion of Q1 and Q2 will be less accurate than x1 and x2. A reasonable
compromise between option 1 and 3 is (4.29) of option 2. The model is
still controllable, and the estimation of x2(t) is potentially more accu-
rate and precise than the estimation of Q2. Despite this, option 3 is still
the recommended LPV modeling strategy [SEK+13].

There are two alternatives for the Michelis-Menten function of non-
insulin-dependent glucose flux. The trivial approach is to define a schedul-
ing variable as:

ρf (t) =
F01

Q1(t) + VG
(4.32)

ρf (t) is a function of Q1(t). This dependency can be exploited to de-
fine a minimal convex polytope for ρ(t). If there is a need to reduce the
dimension of the scheduling variables, linear approximation (4.33) can
be accurate enough to use in controller design [SEK14]. The various
configurations are illustrated on Figure 4.3.

F01

Q1(t) + VG
≈ Faρ1(t) + Fb (4.33)

Reducing the number of scheduling variables can be beneficial because
- as discussed in Section 4.2.3 - the computational power needed to ex-
ecute controller synthesis for an LPV system increases exponentially
with the number of scheduling variables.

Endogenous glucose production and renal extraction introduce a "swi-
tching" effect to the model. The former is active unless plasma glucose
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ρ2,min

ρ2,max

ρ2(ρ1)

ρ1,min ρ1,max
ρ1

Faρ1 + Fb

Figure 4.3. Different configurations for scheduling variable ρ2. Solid
black line: ρ2 as a function of ρ1; blue area: convex polytope for ρ1 and
ρ2; dashed line: linear approximation of ρ2.

is elevated. The latter activates when the plasma glucose concentra-
tion exceeds the threshold Rth. There are four different approaches to
handling such nonlinearity in an LPV model:

• Introduce a scheduling variable approximating the switching with
a sigmoid function.

• Replace with a linear approximation and ensure that switching
never occurs on a controller synthesis level.

• Address the switching nature of the nonlinearity with switching
control.

• Treat it as a disturbance.

The endogenous glucose production only depends on x3(t), which is
an insulin-specific state variable. Therefore, it is possible to set a con-
straint for the control signal that x3(t) is always smaller than one. The
corresponding nonlinearity can be ignored if this constraint is satisfied.
On the other hand, renal extraction can be considered a disturbance.

Using (4.31), (4.32), and the worst-case meal intake model (2.4) the
LVP representation chosen for the Cambridge model is as follows:



64 4. Linear Parameter-Varying Modeling and Control

Ċ(t) = −ka,intC(t) +
ka,int

VG
Q1(t)

Q̇1(t) = −ρf (t)Q1(t)− ρ1(t)x1(t) + k12Q2(t)− distRcl(t)−

−distPhy(t) + EGP0 (1− x3(t)) +
UG,ceil

tmax
G̃(t)

Q̇2(t) = ρ1(t)x1(t)− k12Q2(t)− ρ2(t)x2(t)
ẋ1(t) = −kb1x1(t) + SITkb1I(t)
ẋ2(t) = −kb2x2(t) + SIDkb2I(t)
ẋ3(t) = −kb3x3(t) + SIEkb3I(t)

İ(t) =
ka

VI
S2(t)− keI(t)

Ṡ2(t) = −kaS2(t) + kaS1(t)

Ṡ1(t) = −kaS1(t) + u(t)

˙̃G(t) = −
1

tmax
G̃(t) + distmeal(t)

(4.34)

where distRcl(t) is a disturbance representing renal extraction.
If model reduction is necessary (see Figure 2.1), the resulting LPV

model will be:

C(t) ≈
1

VG
Q1(t)

Q̇1(t) = −ρf (t)Q1(t)− ρ1(t)x1(t) + k12Q2(t)− distRcl(t)−

−distPhy(t) + EGP0

(
1− kaSIE

VIke
S2(t)

)
+
UG,ceil

tmax
G̃(t)

Q̇2(t) = ρ1(t)x1(t)− k12Q2(t)− ρ2(t)
kaSID
VIke

S2(t)

ẋ1(t) = kb1

(
kaSIT
VIke

S2(t)− x1(t)
)

Ṡ2(t) = −kaS2(t) + kaS1(t)

Ṡ1(t) = −kaS1(t) + u(t)

˙̃G(t) = −
1

tmax
G̃(t) + distmeal(t)

(4.35)

If there is a need to reduce the number of scheduling variables, the
equation for Q̇1(t) using (4.33) is as follows:

Q̇1(t) = − (Faρ1(t) + Fb) (t)Q1(t)− ρ1(t)x1(t) + k12Q2(t)−
−distRcl(t)− distPhy(t) + EGP0 (1− x3(t))+

+
UG,ceil

tmax
G̃(t).

(4.36)

As previously mentioned in Section 2.2 if 1/k12 is comparable to the
CGMS sample time, then further model reduction is possible by replac-
ing Q1(t) and Q2(t) with Q̃(t) ≈ Qt(t)− x1(t)/k12 as follows:
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Ċ(t) = −ka,intC(t) +
ka,int

VG
Q̃(t)−

ka,int

k12VG
x1(t)

Q̇1(t) = −ρf (t)Q̃(t) + (Fcρ1(t) + Fd)x1(t)− distRcl(t)−

distPhy(t)− ρ2(t)x2(t) + EGP0 (1− x3(t)) +
UG,ceil

tmax
G̃(t)

(4.37)

where Fcρ1(t) + Fd ≈
Q1(t)F01

k12(Q1(t) + VG)
. Furthermore, the output can

be approximated with C(t) ≈
1

VG

(
Q̃(t)−

1

k12
x1(t)

)
, if necessary. Note,

that even though Q1(t) and Q2(t) are not part of the model (4.37), the
scheduling variables ρ1(t) and ρ2(t) are still present.

The scheduling variables must be available for measurement to use
an LPV controller based on these LPV models. However, this is not
the case in clinical practice. Hence, a state observer must provide ac-
curate estimations for the control algorithm. Using estimation instead
of measurement [Kovács et al., 2011] makes the controller a quasi LPV
controller.

4.4 Robust Controller Design

4.4.1 Extended Model

The model used for robust controller design is not limited to the model
itself. Extending the model with additional static or dynamic weighting
functions is advantageous in general, and especially in AP [119, 120]
[Kovács et al., 2011, KS12, KSAB13, SEK+13, SEK14]. For example,
some of the control relevant signals may have different units, ranges
of values, or different significance. Weighting functions are essential
to make them comparable. Furthermore, they can capture additional
constraints and performance specifications. Finally, dynamic weighting
functions assign varying influences to different frequency ranges.

Sensor Noise Model

For the sake of simplicity, the measurement noise of the CGM sensor
is modeled with additive white noise. The noise has standard normal
distribution, multiplied with Wn = 0.1 [mmol/L] weighting function.

Quantifying Disturbance Rejection Performance

The regulation of the glucose concentration in a T1DM patient is es-
sentially a disturbance rejection problem. One approach to solving it
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with a closed-loop control is to minimize the gain from meal intake (and
other disturbances) to an error signal e(t). This error signal is the devi-
ation of glucose concentration from a reference signal r(t), representing
the desired output. The weighting function Wper specifies our expecta-
tion of the error signal in the frequency domain. It takes a considerable
amount of time for a healthy metabolism to normalize the glucose levels
after a meal intake with high carbohydrate content. Hence, it is advan-
tageous to choose a Wper akin to a low pass filter. The Wper chosen in
this work is as follows:

Wper(jω) =
1

180jω + 1
. (4.38)

It specifies that the controller should mainly minimize tracking error
below 2π

180 [rad/min]. The value was chosen based on the 3-hour duration
of OGTT. Moreover, the direct feedthrough is zero to enable H2 norm-
based performance optimization.

Reference Dynamics

A healthy individual’s fasting plasma glucose (FPG) is below 4.9 mmol/L
or 90 mg/dL, which is a good candidate for a constant reference signal
r0. Alternatively, if Ĝflux(t) estimation of glucose flux from meal intake
is available, one can define a weighting function Wref . The input of Wref

is the estimated glucose flux, and the sum of its output with a constant
value of r0 = 4.9 mmol/L serves as reference signal r(t). Wref should
mimic the glucose trends of a healthy patient after meal intake. In this
work, the parameters of Wref are patient-specific:

Wref (jω) =
11

UG,ceil

1

60jω + 1
(4.39)

Control Signal Constraints

The ∆PK structure allows placing constraints on the control signal. In
practical applications, the control signal cannot be infinitely large or
small and may have limited resolution. Furthermore, actuator dynam-
ics may place additional constraints, either because it is physically un-
able to provide specific signals or certain behavior can lead to damage
or degradation of the equipment. When it comes to model-based con-
trol based on the Cambridge model (2.3), there are four constraints to
consider:

1. Maximum insulin injection rate umax.

2. Resolution of injected insulin uq.
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3. Ensuring that endogenous glucose production does not reach be-
low zero, as mentioned in Section 4.3.

4. In a single hormone AP, the control signal cannot be negative.

Figure 4.4 illustrates how to extend the nominal model P to accommo-
date for these limitations.

P

Wu

u(t)

uq(t)

zu(t)

+ +

Figure 4.4. Limitations of the control signal.

uq(t) is quantization noise resulting from the resolution of the con-
trol signal. Wu is a weighting function with patient-specific parameters
intended to ensure both less than umax control signal and nonnegative
endogenous glucose production. Let WEGP denote the transfer from u(t)
to x3(t) in the original Cambridge model (2.3):

WEGP (jω) =

SIE
VIke

( 1
ka
s+ 1)2( 1

ke
s+ 1)( 1

kb3
s+ 1)

(4.40)

Wu should incorporate WEGP while considering model reduction and
umax. Figure 4.5 illustrates the case where the state variable I has
negligible time constant ke, and hence the transfer function of Wu is as
follows:

Wu(jω) =

SIE
VIke

(τs+ 1)3

( 1
ka
s+ 1)2( 1

kb3
s+ 1)

τ = 3

√
umaxVIke

SIEk2akb3
.

(4.41)

However, with a linear or LPV system, it is not possible to limit a
signal asymmetrically. Therefore, Wu alone cannot guarantee a non-
negative control signal.

Extended LPV Cambridge Model

Figure 4.6 displays the Cambridge model with its proposed LPV form
(4.34) extended with weighting functions Wn, Wper, Wref and Wu pre-
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ω[rad/sec]

Amp[dB]

1

ka

1

kkb3

1

ke

SIE

VIke

1

umax

Figure 4.5. Configuring Wu based on model parameters. The dashed
blue and solid green lines display the amplitude diagrams of WEGP and
Wu, respectively. In this example, parameter ke is only relevant when
setting the DC gain of Wu.

sented in this Section. It also includes uncertainty functions Wo,m and
Wo,a presented in Section 2.3.1, shortened from Wout,m and Wout,a.

Wu zu

u

uq

Wmmeal

P (ρ)dΣ

Wref

Ĝflux(t)

Wo,m ϑ−1
zo

∆
do

ϑ

Wo,ada r

Wper zp

Wnn y

e−

Figure 4.6. Extended LPV model for controller synthesis.

P (ρ) represents the LPV model (4.34) excluding the state compo-
nents regarding meal intake and ingestion, which is separated into a
weighting function Wm. As mentioned earlier, the estimated glucose
flux Ĝflux(t) is the input of Wref , which is shown to be the output of Wm.
To account for the estimation error Gflux(t)− Ĝflux(t), it is incorporated
into dΣ, which the sum of all disturbances affecting P (ρ) directly:

• distPhy(t) physical activity,

• distRcl(t) renal extraction,

• uq quantization noise,
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• and the aforementioned glucose flux estimation error.

The constant scaling factor ϑ is necessary to tune the model during con-
troller synthesis to satisfy Robust Stability constraints at the expense
of Nominal Performance.

4.4.2 Controller Synthesis for Artificial Pancreas

Although the LMIs presented in Section 4.2.3 address many of the con-
trol problems posed by AP, there are additional ways to customize them
for blood glucose control:

• Scale nominal performance for better disturbance rejection.

• Scale output multiplicative uncertainty.

γ should be smaller than one to ensure both RS and NP. However,
while this is a hard constraint for robust stability, it may be sufficient
to find an "as low as possible" γ value for nominal performance. Alter-
natively, a fixed γmax constraint may be specified to satisfy minimum
performance requirements, but the controller should still be optimized
to patient parameters. Let J ⊂ {1, . . . , nz} be a set of indices that select
some of the z(t) signals of the LPV model (4.12), that are associated with
nominal performance. Furthermore, let Ψ be an nz × nz real diagonal
matrix, for which the following properties hold:

Ψi,i =

{
1 i /∈ J
ψ i ∈ J

, (4.42)

where ψ is a positive real number. Let us take the LMI for H∞ norm
(4.17), although the same approach can be applied to all other norms,
and scale the nominal performance outputs with Ψ:

 A(ρj)
T +A(ρj) B(ρj) C(ρj)TΨ

B(ρj)T −I D(ρj)
TΨ

ΨC(ρj) ΨD(ρj) −I

 < 0. (4.43)

As long as the feasibility of the LMI is maintained, the larger ψ
is the better the disturbance rejection performance, while still satisfy-
ing robust stability and other hard constraints (e.g., for control signal).
However, (4.43) in its current form is not linear. Therefore, the following
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transformation is necessary:

T =

 I 0 0
0 I 0
0 0 Ψ−1


T

 A(ρj)
T +A(ρj) B(ρj) C(ρj)TΨ

B(ρj)T −I D(ρj)
TΨ

ΨC(ρj) ΨD(ρj) −I

 T T =

=

 A(ρj)
T +A(ρj) B(ρj) C(ρj)T

B(ρj)T −I D(ρj)
T

C(ρj) D(ρj) −Ψ−2

 .

(4.44)

Introducing a new variable γ̃ =
1

ψ2
makes (4.44) an LMI. Solving it

for minimal γ̃ provides a controller that satisfies robust performance,
with the nominal performance tuned for individual patients.

Since the solution is for all of {ρ1, . . . , ρM}, γ̃ is a valid upper limit
for the entire convex polytope. However, this is usually a suboptimal
solution. It may be possible to achieve a smaller γ̃ value for some points
of the polytope by changing γ̃ into an affine real positive valued function
of ρ.

γ̃(ρ) : Rnρ → R+. (4.45)

Let us introduce the average of the points spanning ρc:

ρ̄ =
1

M

M∑
j=1

ρj . (4.46)

Instead of minimizing γ̃ when solving the LMIs, minimize the value of
γ̃(ρ̄), so that γ̃(ρj) is positive for all j = 1, . . . ,M .

The performance output is not the only one that should be scaled.
The glucose concentration in the subcutaneous tissue, which is the out-
put of the Cambridge model, can reach up to 17 mmol/L even during
adequate control. It might be infeasible to achieve robust stability de-
pending on how the weighting function of multiplicative uncertainty
Wout,m is set. Thus, the scaling mentioned earlier in Section 4.4.1 and
displayed in Figure 4.6 denoted with ϑ can prove useful. Let us in-
troduce other sets of indices, Jin and Jout, similarly to J . Performance
outputs indexed with members of Jout are associated with multiplica-
tive uncertainty, while disturbance inputs indexed with members of Jin
come from the unstructured uncertainty block. The latter is denoted
with ∆ in Figure 4.6. Let Θin and Θout be nd × nd and nz × nz real
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diagonal matrices respectively, similar to Φ:

Θin,(i,i) =

{
1 i /∈ Jin
ϑ i ∈ Jin

Θout,(i,i) =

 1 i /∈ Jpit
1

ϑ
i ∈ Jout

(4.47)

The multiplicative uncertainty scaling applied for H∞ norm is as
follows: A(ρj)

T +A(ρj) B(ρj)Θin C(ρj)TΘout

ΘinB(ρj)T −I ΘinD(ρj)
TΘout

ΘoutC(ρj) ΘoutD(ρj)Θin −I

 < 0. (4.48)

While the nominal performance scaling was identical to state feed-
back and dynamic control, the same does not hold for uncertainty scal-
ing. For state feedback, the following transformation is applicable:

T =

 I 0 0
0 Θin 0

0 0 Θ−1
out


T

 A(ρj)
T +A(ρj) B(ρj)Θin C(ρj)TΘout

ΘinB(ρj)T −I ΘinD(ρj)
TΘout

ΘoutC(ρj) ΘoutD(ρj)Θin −I

 T T =

=

 A(ρj)
T +A(ρj) B(ρj)Θ2

in C(ρj)T
Θ2

inB(ρj)T −Θ2
in Θ2

inD(ρj)
T

C(ρj) D(ρj)Θ
2
in −Θ−2

out

 .

(4.49)

Once ϑ2 is substituted with ϑ̃, then (4.49) reverts back to an LMI,
since B and D, as defined in (4.18), does not depend on any of the con-
troller parameters or the other unknowns. Furthermore, since J and
Jout are disjointed sets, the two scaling methods can be combined.

The validity of this method is not limited to H∞ norm, as the same
T transformation is applicable for the LMIs of H2 and H2g norms. How-
ever, the inequalities for L1 norm are not linear due to the term Θ2

in(1−
µ(ρ)). Hence, an iterative solution is necessary.

Unfortunately, the same method does not make the matrix inequal-
ity linear for the dynamic controller since in (4.22) both B and D depend
on controller parameters. Thus, for a dynamic controller, finding the
optimal ϑ scaling value, where the problem is feasible, can only be de-
termined via an iterative process. If performance output is scaled, the
goal is to find the ϑ value that allows the best performance.

Figure 4.7 shows an example of glucose control of multiple virtual
T1DM patients with a hybrid H2/H∞ robust qLPV state feedback con-
troller. Chapter 5 provides more simulation results.
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Figure 4.7. Example of glucose control. Solid blue line represents sub-
cutaneous glucose concentration. The threshold for hypo- and hyper-
glycemia is indicated with red and black lines, respectively. Green line
marks the optimal glucose level.

4.4.3 Known Limitations

The robust controller synthesis method presented in Section 4.2.3 have
certain limitations. First, solving the LMIs introduced in this Section
results in an LPV controller. It is more capable of controlling an LPV
system than a purely linear algorithm. However, there are most proba-
bly more efficient nonlinear controllers. Merely not limiting the matrix-
valued functions AK(ρ), BK(ρ), CK(ρ), DK(ρ), and G(ρ) to affine func-
tions of ρ could lead to a more powerful controller. In this case, X should
not be constant but a function of ρ. However, the matrix inequalities
would no longer be linear.

Using a constant X has another consequence as well. Although the
LMIs hold at each point of the convex polytope spanned by the schedul-
ing variables, they are only valid locally. The transfer from one point
of the polytope to another, precisely the transient behavior, can be prob-
lematic. For example, insulin affects the glucose levels in a T1DM model
faster if the glucose concentration is already high than when it is low.
Hence, the insulin injected by an LPV controller for a specific scheduling
variable value may not be optimal as the scheduling variables change.
This can lead to oscillatory transients even if the complex conjugate pole
pairs of the closed-loop system are constrained.
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IN SILICO VALIDATION

This chapter addresses the third thesis group: in silico validation of the
observer and controller algorithms proposed in thesis groups 1 and 2.
The contributions that belong to this thesis group are the following:

1. Evaluation of the effect of the number of sigma points on state
estimation accuracy for a commonly used T1DM model.

2. In silico validation of a robust qLPV H2/H∞ state feedback con-
troller.

The related publications are: [KSAB13, KSF+13, KSS+13, KKSE13,
SEK14, KKS+14, KSE+14, KFS+15, SDKew].

The effectiveness of an AP control algorithm can be assessed in a
simulated environment. The FDA has approved the UVA-Padova Type
1 Diabetes Simulator as an alternative to animal testing, as mentioned
earlier in Section2.1 [84]. The Cambridge model has its own freely avail-
able simulator [85]. The Jacobs T1DM simulator [121] employs the
Cambridge model as well but contains an embedded physical activity
sub-model. Finally, the AIDA simulator is a freeware computer pro-
gram for demonstration and teaching purposes that has been available
online since 1996 [122].

5.1 Simulation Environment

The state estimation and controller algorithm presented in earlier chap-
ters were tested via a simulator based on the Cambridge model [17].
The Cambridge model serves as both a virtual patient (ground truth)
and the basis of controller and observer design. [Szalay et al., 2012]

73
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Table 5.1. Virtual patient parameters for the Cambridge simulator
Patient ID

1 2 4 6 8 10
ka,int 0.0736 0.151 0.1103 0.0974 0.0689 0.0898
VG 12.26 13.05 15.5 15.58 13.70 13.3
F s
01 0.893 0.879 0.704 1.0999 0.986 0.3999

k12 0.1095 0.0509 0.0635 0.0307 0.0293 0.0537
Rcl 0.0119 0.0130 0.0105 0.00965 0.0115 0.0111
Rthr 11.70 9.22 10.07 7.75 7.75 7.55
EGP0 1.354 0.819 0.718 1.1224 1.069 0.4393
tmax 43 55 29 26 42 52
UG,ceil 2.415 2.415 2.415 2.415 2.415 2.415
kb1 0.0021 0.0006 0.0014 0.0007 0.0032 0.0048
kb2 0.3956 0.0136 0.1377 0.0369 0.2195 0.0442
kb3 0.0803 0.0202 0.0210 0.0339 0.0323 0.0166
SIT 0.00771 0.0011 0.00119 0.00124 0.003 0.00054
SID 0.000314 0.000158 0.000664 0.000153 0.000170 0.0012
SIE 0.0377 0.0073 0.0116 0.0114 0.0219 0.0053
ka 0.0198 0.016 0.0253 0.0257 0.0289 0.0244
VI 7.79 11.79 11.3 12.3 9.72 13.02
ke 0.132 0.101 0.14 0.177 0.120 0.167

evaluates the observability of the model for the latter case. Each sim-
ulation uses one of the six patient parameters published for the Cam-
bridge simulator [85]. The parameters of the patients are presented in
in Table 5.1.

The simulation environment is part of a larger framework built with
MATLAB® version R2009b and the corresponding Simulink®. This frame-
work allows the creation and testing of a wide range of observers, pre-
dictors, and controllers for glucose control. The framework is imple-
mented as a collection of scripts, graphical user interfaces (GUI), and
Simulink® diagrams. Storing the framework in Bitbucket with Git ver-
sion control system allows for joint research work in AP development.
Furthermore, the framework generates standalone simulation environ-
ments, aiding the reproducibility of published results.

Completing the first six of the following seven steps in sequence re-
sults in a generated simulation environment:

1. Patient parameters: The six parameter sets presented in Table 5.1
are hard-coded. More parameter sets can be generated based on
the parameter ranges presented in [85]. Furthermore, this step
assesses the worst-case values for certain state variables.

2. Observer generation: This step uses templates to generate the ob-
server and, optionally, the predictor algorithm code.

3. Model definition: This step defines the model used for controller
synthesis. It may perform any of the following:
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• model simplification (also applies to the observer),

• exact linearization (not in the scope of the theses, but was
used in other T1DM research [Kovács et al., 2011]), and

• Scheduling variable definition for LPV representation.

The step concludes with extending the model with weighting func-
tions presented in Section 4.4.1.

4. Controller synthesis: The synthesis consists of two main parts:
LMI generation and solving the LMIs. The CVX toolbox [123, 124]
version 2.2 is used for the latter. The synthesis may be performed
once or iteratively. See Section 4.2.3 for further details.

5. Controller evaluation: Since the controller synthesis relies on nu-
merical methods, the resulting controller may only satisfy some of
the required constraints due to numerical inaccuracies. This step
verifies whether the synthesized controller is acceptable.

6. Simulation: This step combines the artifacts from the previous
five to create a standalone simulator. It consists of a Simulink®

diagram generated from a template, observer, predictor, and con-
troller algorithms scripts, a script to initialize and run the sim-
ulation, scenario definition, and data files storing patient-specific
parameters. The generated simulator is tested by running a sin-
gle simulation for each virtual patient using a set of simple meal
intake scenarios.

7. Evaluation: The final step generates data from the results of the
previous step. This data supports visualizing the capabilities of
the control algorithm.

Logs are generated and stored in the case of an error, and all consecutive
steps are canceled. Each of the steps above result in reusable artifacts.
Different configurations may share these artifacts depending on their
similarities and differences.

Figures 5.1, 5.2, and 5.3 show the main GUI. The check marks on
the bottom indicate the completion state of the seven main steps listed
above. The display on the left illustrates the extended model. The model
changes based on configuration. Clicking on elements of the extended
model results in the parameter editor on the right displaying the prop-
erties of the selected element. For example, Figure 5.1 shows the pa-
rameters of the weighting function labeled Wp1. Figure 5.2 displays the
combined settings of model reduction and observer parameters, includ-
ing the sigma point strategy and distribution of state variables.
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Figure 5.1. Primary GUI, with Wp1 performance weighting function se-
lected. The parameters indicate LPV configuration with transfer func-
tions displayed in the bottom of the panel labeled Wp1. Based on the
progress indicator on the bottom, all of the seven steps have been com-
pleted successfully.

Figure 5.2. Primary GUI with the model node P0 selected. Observer pa-
rameters and model reduction configuration is shown in the Parameters
panel on the right. None of the seven steps have been executed.

Finally, Figure 5.3 reveals controller-specific parameters. The user
can switch between state feedback and dynamic control scheme, define
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norm constraints by assigning performance weighting functions, and
configure scheduling variable selection for LPV control. Clicking on the
illustration in the bottom right corner opens an additional GUI, reveal-
ing more settings, as presented in Figure 5.4.

Figure 5.3. Primary GUI with the controller node K(ρ) selected. The
Parameters panel on the right display settings for a qLPV state feedback
controller.

Figure 5.4. Illustration of secondary GUI with switching control and 45◦

constraint set on the angle of closed-loop pole pairs.
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The framework enables comparing different controller configurations
using the artifacts generated by the last execution step, as illustrated
in Figure 5.5.

Figure 5.5. Example of comparison of different controller configurations.

Figure 5.6 shows an example of a generated Simulink® diagram.
The nominal model, labeled Extended system, is simulated with vari-
able step size ode45 solver. In contrast, the observer, predictor, and
controller algorithms are executed in fixed-time instances based on the
sampling time of the CMG sensor by the AP node. Figure 5.7 displays
further details on the Extended system node.

Figure 5.6. Simulink® diagram for closed-loop control simulation.
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Figure 5.7. Simulink® diagram of extended model.

The subcutaneous glucose measurements are generated via a simple
CGMS model that consists of an additive Gaussian white sensor noise
with zero mean value and 0.1 [mmol/L] standard deviation. The sam-
pling time of the CGMS is five minutes. For the sake of simplicity, no
sensor dynamics, drift [SSBK14], or other types of sensor faults were
considered.

The measurement noise and the starting phase of the time-varying
parameters were randomized for each execution.

Extended Model Parameters

The state estimator and the controller use the same extended model
displayed in Figure 4.6. The model reduction was patient-specific: state
variables that would introduce time constants smaller than 20 minutes
were removed. Additive and multiplicative uncertainty weighting func-
tions account for the difference between the actual and simplified model.
The parameters of these functions are not patient-specific and hence
derived in a way to cover the effects of model simplification and time-
varying parameters for all six virtual patients. Table 5.1 presents the
parameter values for the weighting functions.

5.2 State Estimation Evaluation

Table 5.2 contains the parameters used for all sigma point selection
strategies referenced in this Chapter. The sensitivity of these param-
eters was not the focus of this work, and hence the values were chosen
as recommended in their corresponding publications.
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Table 5.2. Parameters of the weighting functions of the extended model
Name Transfer function Description

Wout,m
0.1

30jω + 1
Represents ± 10 % multiplicative out-
put uncertainty.*

Wout,a
0.5

30jω + 1
Represents ± 0.5 mmol/L additive out-
put uncertainty.*

Wref
11

UG,ceil(60jω + 1)
Parameter are derived from [125] and
adjusted empirically.

Wper
1

180jω + 1
Weighting function was tuned empiri-
cally.

Wn 0.1 Represents CGM sensor noise with 0.1
[mmol/L] standard deviation.

Wu

SIE

(
1

ka4500
jω + 1

)
VIke

(
1

ka
jω + 1

)2 Uses patient-specific parameters to
avoid endogenous glucose production
saturation and keep insulin infusion
rate below 4500 mU/min.

* The uncertainties are only relevant on frequencies below 2π/30 [rad/min].

Table 5.3. Sigma point filter parameters.
Name Parameter Value Description
CDKF h

√
3 Results in the same sigma point spread

as UKF with α = 1 and κ = 3− L*.
GHQF m 2 Number of sigma points for each scalar

stochastic variable.
RSPF p0 0 This value results in the smallest sigma

point spread.

SGQF
p1 1.2556

Spread of sigma points.p2
√
3

p3 2.857

UKF
κ 3-L Scaling parameter.*
α 1 Spread of sigma points.
β 2 Used to incorporate prior knowledge of

the distribution.

*L indicates the dimension of the observed system.
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The following metrics are used for the evaluation and comparison of
state estimation algorithms [SMM+14]:

1. Root-mean-square error (RMSE) averaged over simulations. For
the j-th state variable and N simulations consisting of M samples
each:

R
(xj)
1 =

1

N

N∑
i=1

√√√√ 1

M

M∑
k=0

(
x
(i)
j [k]− x̂

(i)
j [k]

)2
(5.1)

2. Maximum root-mean-square error based on N simulations:

R
(xj)
2 = max

i=1,...,N

√√√√ 1

M

M∑
k=0

(
x
(i)
j [k]− x̂

(i)
j [k]

)2
(5.2)

3. Worst case absolute error:

R
(xj)
3 = max

i=1,...,N
max

k=1,...,M

∣∣∣x(i)j [k]− x̂
(i)
j [k]

∣∣∣ (5.3)

4. RMSE as a function of time averaged over the N simulations:

R
(xj)
4 [k] =

√√√√ 1

N

N∑
i=1

(
x
(i)
j [k]− x̂

(i)
j [k]

)2
(5.4)

5. A function capturing the trends in RMSE:

R
(xj)
5 [k] =

1

N

N∑
i=1

√√√√1

k

k∑
l=0

(
x
(i)
j [l]− x̂

(i)
j [l]

)2
(5.5)

The simulations used two different scenarios. One is the Oral Glucose
Tolerance Test (OGTT) [126, 127], commonly used in clinical practice to
diagnose type 1 diabetes mellitus. The simulation takes three hours,
with a one-time 75 mg carbohydrate intake at the beginning. Scenario
1 refers to OGTT simulation from now on.

However, OGTT does not include any insulin injections. Hence, an-
other scenario (Scenario 2) is necessary. To cover the AP use case,
closed-loop control provides insulin input. The meal intake protocol of
this scenario has been frequently used to evaluate control algorithms
[128]. It spans 24 hours and consists of three carbohydrate intakes:

• Breakfast containing 45g carbohydrate intake at 9:30.

• Lunch containing 75g carbohydrate at 13:30
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Table 5.4. Comparison of sigma point filters with EKF using metrics
R1 −R3 in their default configuration.

CDKF CKF EKF GHQF RSPF SGQF UKF
S

ce
na

ri
o

1 R1

Q1

Q2

Gflux

18.86
10.84
0.98

18.83
10.95
0.98

39.68
47.78
1.50

18.82
10.85
0.98

19.41
10.50
0.97

18.81
10.87
0.98

18.81
11.04
0.98

R2

Q1

Q2

Gflux

25.75
33.53
1.20

25.42
32.40
1.20

53.40
106.09
1.85

25.84
32.67
1.20

28.00
31.45
1.24

25.51
32.51
1.21

25.77
32.75
1.21

R3

Q1

Q2

Gflux

40.84
45.07
3.45

40.77
43.94
3.45

76.80
149.07
3.44

40.86
44.40
3.45

48.66
40.50
3.45

40.73
44.18
3.45

40.96
44.52
3.45

Time* 90% 120% 100% 1367% 92% 119% 91%

S
ce

na
ri

o
2 R1

Q1

Q2

Gflux

9.41
4.42
0.54

9.41
4.42
0.54

14.62
9.72
0.66

9.41
4.42
0.54

9.47
4.57
0.55

9.41
4.42
0.54

9.41
4.41
0.54

R2

Q1

Q2

Gflux

13.51
7.81
0.74

13.47
7.84
0.74

20.09
25.88
0.87

13.53
7.86
0.74

13.62
7.98
0.75

13.49
7.76
0.74

13.52
7.82
0.74

R3

Q1

Q2

Gflux

34.36
25.71
3.40

34.70
25.61
3.40

47.11
65.10
3.41

34.69
25.81
3.40

34.60
25.58
3.40

34.45
25.59
3.40

34.39
25.74
3.40

*Average execution time of a single simulation relative to EKF.

• Dinner containing 85g carbohydrate at 19:30.

Fifty simulations are executed for each virtual patient. In each case,
the initial value of the estimated state vector is the equilibrium state
at 5 [mmol/L] subcutaneous glucose concentration. The actual system
starts with a maximum ±5% deviation from the initial estimation. The
values are randomly generated for each simulation with uniform dis-
tribution. The metrics R1 - R5 combine all simulation results for all
patients.

5.2.1 Sigma Point Filters with Default Parameters

The first set of simulations compares all filters with their default set-
tings. None of the potential improvement options described in Sec-
tion 3.1.7-3.1.6 are present.

Table 5.4 summarizes metrics R1 −R3 for both scenarios, while Fig-
ures 5.8 and 5.9 visualize R4 and R5 for Scenario 1 and Scenario 2 re-
spectively. Based on Figures 5.8 and 5.9 the sigma point filters provide
better estimation than Extended Kalman filter. It is not easy to distin-
guish between the other filters based on any of the metrics, except for
the Reduced Sigma Point filter. It has slightly different error trends,
providing worse estimation in some cases and better in others.
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Figure 5.8. Comparison of sigma point filters with EKF on Scenario 1 in
their default configuration. Subplots on the left and right column dis-
play the R4 and R5 metrics. Each row of subplots displays metrics for
a different state variable on the left. Each subplot displays results for
all of the following filters: EKF (black), RSPF (green), UKF (magenta),
CKF (magenta), CDKF (magenta), GHQF (magenta), and SGQF (ma-
genta). Due to the large relative difference between EKF and the sigma
point filters, it is difficult to distinguish between the latter five filters
based on this figure.
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Figure 5.9. Comparison of sigma point filters with EKF on Scenario 2 in
their default configuration. Subplots on the left and right column dis-
play the R4 and R5 metrics. Each row of subplots displays metrics for
a different state variable on the left. Each subplot displays results for
all of the following filters: EKF (black), RSPF (green), UKF (magenta),
CKF (magenta), CDKF (magenta), GHQF (magenta), and SGQF (ma-
genta). Due to the large relative difference between EKF and the sigma
point filters, it is difficult to distinguish between the latter five filters
based on this figure.
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5.2.2 Square Root Filtering

Using the filters in square root form does not intend to improve the
accuracy of the filters directly. Instead, it improves their numerical sta-
bility and uses a less resource-intensive operation. Therefore, the focus
was on those filters that use only nonnegative weights for calculating
the covariance matrices, as presented in Table 3.1.4.

Based on the values presented in Table 5.5 there is no clear advan-
tage or disadvantage in using a square-root filter in terms of accuracy.

5.2.3 Lognormal Distribution

The following simulations show the distribution of all glucose-specific
state variables of the Cambridge model (C,Q1,Q2,G1,G1), and the meal
intake input is modeled with lognormal distribution instead of normal
distribution. The results are summarized in Table 5.6 as well as Fig-
ures 5.10 and 5.11.

Based on Table 5.6 in Scenario 1 all lognormal filters provide better
results than their regular counterpart, by a significant margin. EKF
with lognormal transform can compete with sigma point filters with the
default configuration. The only exception is the R3 metric for Gflux,
where the lognormal filters have a slightly larger worst-case error. In
Scenario 2 the differences are smaller but still in favor of lognormal
versions of the filters, except for CKF. Lognormal CKF has worse per-
formance than its original counterpart. Finally, RSPF did not create
any valid result for either scenario. This and the poor performance of
CKF is connected since these two filters have the largest spread of their
sigma points among all the sigma point filters presented in this work.
This larger spread of sigma points, combined with a lognormal transfor-
mation, can lead to numerical instability.

Figures 5.10 and 5.11 display the metrics R4 and R5 for the lognor-
mal case. The original CKF is used as a reference, marked with a green
dashed line. For Scenario 1, the lognormal filters show the largest dif-
ference for state variable Q2, still a clear advantage for Q1, and a minor
difference for Qflux. For Scenario 2, the differences are more subtle.
Based on R5, lognormal EKF and CKF perform worse than the original
CKF, which also slightly outperforms GHQF and SGQF in the estima-
tion of Gflux signal.

Using lognormal transformation can improve the estimation accu-
racy of the Cambridge model’s sigma point filters and EKF alike, as
long as the sigma point spread is moderate.
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Figure 5.10. Comparison of sigma point filters using lognormal transfor-
mation on Scenario 1. Subplots on the left and right column display the
R4 and R5 metrics. Each row of subplots displays metrics for a different
state variable indicated on the left. Each subplot displays results for all
of the following filters: EKF (black), CKF (blue), UKF (magenta), CDKF
(cyan), GHQF (red), and SGQF (yellow). CKF in default configuration
is used as a reference displayed with a dashed green line.
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Figure 5.11. Comparison of sigma point filters using lognormal trans-
formation on Scenario 2. Subplots on the left and right column display
the R4 and R5 metrics. Each row of subplots displays metrics for a dif-
ferent state variable on the left. Each subplot displays results for all of
the following filters: EKF (black), CKF (blue), UKF (magenta), CDKF
(cyan), GHQF (red), and SGQF (yellow). CKF in default configuration
is used as a reference, displayed with a green dashed line.
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Table 5.7. Comparison of sigma point filters with and without extensive
transform using metrics R1 − R3. For each filter, left and right column
show values for regular and extensive version respectively. Improve-
ments are indicated with green, while red highlights setbacks

CKF RSPF SGQF UKF

S
ce

na
ri

o
1 R1

Q1

Q2

Gflux

14.11 13.40
4.88 5.19
0.69 0.70

19.41 18.53
10.50 11.59
0.97 0.98

13.90 13.09
5.17 5.24
0.72 0.71

14.12 13.36
5.07 4.67
0.66 0.70

R2

Q1

Q2

Gflux

20.13 18.95
15.81 17.24
0.98 0.97

28.00 24.91
31.45 34.63
1.24 1.18

19.81 18.70
17.59 18.46
0.99 0.95

20.08 19.02
16.60 15.41
0.96 1.01

R3

Q1

Q2

Gflux

32.75 28.84
23.07 25.24
3.51 3.34

48.66 39.64
40.50 47.63
3.45 3.44

32.83 27.97
25.44 27.38
3.46 3.38

31.26 31.40
24.00 23.43
3.47 3.42

S
ce

na
ri

o
2 R1

Q1

Q2

Gflux

9.64 7.88
4.76 4.26
0.64 0.51

9.47 9.23
4.57 4.33
0.55 0.54

8.29 8.15
4.42 4.35
0.54 0.54

7.94 11.51
4.32 5.19
0.50 0.72

R2

Q1

Q2

Gflux

13.03 11.53
8.52 7.35
0.95 0.66

13.62 13.29
7.98 7.66
0.75 0.73

11.88 11.91
7.51 7.55
0.76 0.76

11.72 15.42
7.03 9.70
0.64 1.06

R3

Q1

Q2

Gflux

37.31 29.92
26.12 24.53
3.39 3.50

34.60 34.24
25.58 26.49
3.40 3.38

31.58 29.87
23.25 24.62
3.26 3.25

31.02 42.54
22.45 31.48
3.53 3.36

5.2.4 Extensive Transform

Table 5.7 summarizes the difference between some of the sigma point
filters with and without extensive transform, which is presented in Sec-
tion 3.1.6. CDKF and GHKF have no extensive version. CDKF uses
a different method for calculating covariance matrix than other sigma
point filters. On the other hand, GHQF is already as if each state would
have an individual extensive transform. All sigma point filters in Ta-
ble 5.7 are in their lognormal form, except for RSPF.

Based on Scenario 1 extensive transform improves the accuracy for
state variable Q1 at the cost of estimation accuracy of Q2. UKF is an
exception, where both Q1 and Q2 improve at the cost of Gflux.

However, the results are different for Scenario 2. Extensive trans-
form is mostly advantageous for CKF and RSPF. In contrast, there is lit-
tle to no improvement in SGQF, and UKF performs significantly worse
when applying extensive transform.
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Figure 5.12. Comparison of sigma point filters using extensive trans-
form on Scenario 1. Subplots on the left and right column display the
R4 and R5 metrics. Each row of subplots displays metrics for a different
state variable on the left. Each subplot displays results for all of the
following filters: CKF (blue), UKF (magenta), RSPF (green), and SGQF
(yellow). UKF without extensive transform is used as a reference, dis-
played with a solid green line.
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Figure 5.13. Comparison of sigma point filters using extensive trans-
form on Scenario 2. Subplots on the left and right column display the
R4 and R5 metrics. Each row of subplots displays metrics for a different
state variable on the left. Each subplot displays results for all of the
following filters: CKF (blue), UKF (magenta), RSPF (green), and SGQF
(yellow). UKF without extensive transform is used as a reference, dis-
played with a solid green line.
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5.2.5 Summary

Based on the simulation results, using lognormal transformation has a
clear advantage for EKF and sigma point filters as long as the latter
has a moderate spread of sigma points. However, perhaps using a dif-
ferent distribution can help overcome this limitation while preserving
the nonnegativity of the state variables and disturbances.

Increasing the number of sigma points beyond a specific limit does
not provide a significant advantage in terms of accuracy. However, the
more sigma points a filter uses, the more computational power it re-
quires, which is a disadvantage when running on embedded hardware.
Therefore, using at least 2L sigma points in a symmetric configuration
is sufficient, where L is the dimension of the model, including states,
disturbances, and noises.

A high number of sigma points are even more demanding for square-
root filtering since it requires the QR decomposition of a matrix that
scales linearly with the number of sigma points. Square-root filtering
itself did not provide significantly better accuracy in these simulations.
However, based on [108], it has practical advantages in implementing
an artificial pancreas in terms of numerical stability.

5.3 Controller Evaluation

For easy comparison with other control methods, the simulations were
done using two commonly used meal intake scenarios. This allows eas-
ier comparison with other published methods. Both scenarios span 24
hours.

1. Scenario 3: 150 g of carbohydrate (CHO) intake per day. It consists
of a 35 g CHO breakfast at 8:30, a 65 g CHO lunch at 13:00, and
50 g CHO dinner at 19:00.

2. Scenario 4: The meal intake protocol presented in [128], which
was also used in Section 5.2 It consists of a 45 g CHO breakfast at
9:30, a 75 g CHO lunch at 13:30, and 85 g CHO dinner at 19:30.

The control algorithm does not announce the timing and amount of
CHO intake. The main focus was meal intake; hence, none of the scenar-
ios contain deterministic nor stochastic physical activity signals. The
control algorithm provides the injected insulin, no manual intervention
or open loop protocol is applied.

Control variability grid analysis (CVGA) is used to visualize and
compare different controller configurations. It is a commonly used tool
in AP development [128]. The x and y axis are the minimum and
maximum glucose levels throughout the simulations, respectively, in
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[mg/dL]. A single symbol (dot, square, etc.) represents a single simu-
lation. The plot is divided into different areas with a letter assigned
from A to E. Controllers that can keep their patients in regions A and B
are considered sufficient for AP use. Minimum and maximum glucose
is limited to 50 and 400 mg/dL respectively.

The model used for controller synthesis, unless stated otherwise, is
as described in Section 4.4.1. The constant reference signal r0 is in-
creased from 4.9 to 5.1 mmol/L to lessen the chance of hypoglycemia
further.

5.3.1 Linear H∞ Controller

This is the simplest configuration presented in this section. Instead of
the LPV representation, the Cambridge model is simply approximated
with a linear system at the desired r0 subcutaneous glucose concentra-
tion. The output multiplicative weighting function is increased from
10% to 25% to compensate for the model simplification. Furthermore,
the extended model does not contain Wref reference dynamics.

Figure 5.14 displays the simulation results for both dynamic con-
troller and state feedback. Due to the linearization of the model at a
lower glucose level, both controllers assume slow dynamics, which does
not hold for postprandial glucose levels. However, the behavior of the
two controller configurations is different. The state feedback controller
administers more insulin than necessary, leading to lower maximum
values and severe hypoglycemia (below 50 mg/dL). In contrast, the dy-
namic controller avoids hypoglycemia at the cost of higher maximum
glucose levels.

Although both controllers could be adjusted for better overall be-
havior, the goal here is not to provide an optimal linear configuration.
Instead, the aim is to highlight the effect of selected structural changes.
Hence, the parameters of weighting functions are mostly the same for
all versions.

5.3.2 qLPV H∞ Controller

Figure 5.15 and Figure 5.16 present the CVGA comparison of linear and
qLPV controllers for state feedback and dynamic controller respectively.
Two out of six patients reached B zone for the state feedback controller
or came very close for both meal scenarios.

For the dynamic controller, the maximum glucose levels are decreased,
pushing the virtual patients from upper regions to B zone. However,
two patients in both scenarios have severe hypoglycemia. The controller
synthesis of those two patients was numerically poorly conditioned.



95 5.3. CONTROLLER EVALUATION

A-zone Lower B Lower C

Upper B B-zone Lower D

Upper C Upper D E-zone

A-zone Lower B Lower C

Upper B B-zone Lower D

Upper C Upper D E-zone

Meal scenario 3 Meal scenario 4

100

200

300

≥400

110 90 70 ≤50
100

200

300

≥400

110 90 70 ≤50

M
ax

im
um

gl
uc

os
e

[m
g/

dL
]

Minimum glucose [mg/dL] Minimum glucose [mg/dL]

Figure 5.14. CVGA for linear H∞ controllers for meal scenario 3 (left)
and meal scenario 4 (right). Black and white circles represent simu-
lations using state-feedback and dynamic controller respectively. The
minimal glucose levels are limited to 50 mg/dL, but actual values may
be lower.

A-zone Lower B Lower C

Upper B B-zone Lower D

Upper C Upper D E-zone

A-zone Lower B Lower C

Upper B B-zone Lower D

Upper C Upper D E-zone

Meal scenario 3 Meal scenario 4

100

200

300

≥400

110 90 70 ≤50
100

200

300

≥400

110 90 70 ≤50

M
ax

im
um

gl
uc

os
e

[m
g/

dL
]

Minimum glucose [mg/dL] Minimum glucose [mg/dL]

Figure 5.15. CVGA comparison of linear (black circles) and qLPV H∞
(white circles) state feedback controllers. Left and right subplots show
results for meal scenario 3 and meal scenario 4 respectively. Minimum
glucose levels are limited to 50 mg/dL. Actual values may be lower.
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Figure 5.16. CVGA comparison of linear (black circles) and qLPV H∞
(white circles) dynamic controllers. Left and right subplots show results
for meal scenario 3 and meal scenario 4 respectively.

5.3.3 Reference Dynamics

Reference Dynamics can help to avoid hypoglycemic episodes. Instead of
using a constant reference signal, the estimated glucose flux from meal
intake is propagated through a weighting function to mimic a healthy
individual’s postprandial glucose concentration trend. An example of
this reference signal is displayed in Figure 5.17. Figure 5.18 illustrates
the difference between static and dynamic reference signal.
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Figure 5.17. Example of reference signal generated with reference dy-
namics weighting function
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Figure 5.18. Difference between static and dynamic reference signal.

The simulation results for state feedback and dynamic controller
are displayed in Figures 5.19 and 5.20 respectively. The hypoglycemic
episodes have decreased for the state feedback controller but have not
been eliminated. The reference dynamics weighting functions prevent
hypoglycemia for the dynamic controller but increase the maximum glu-
cose levels, pushing patients towards Upper C zone. A dynamic con-
troller generally provides more consistent results than state feedback,
but the latter provides better results overall.
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Figure 5.19. CVGA comparison of state feedback qLPV H∞ controllers
with and without Wref reference dynamics. Left and right subplots
show results for meal scenario 3 and meal scenario 4, respectively. Black
circles represent simulations without Wref . White circles indicate sim-
ulations of with Wref .
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Figure 5.20. CVGA comparison of dynamic qLPV H∞ controllers with
and without Wref reference dynamics. Left and right subplots show re-
sults for meal scenario 3 and meal scenario 4, respectively. Black circles
represent simulations without Wref . White circles indicate simulations
of with Wref .

5.3.4 Hybrid Norm Approach

Up to this point, all controllers used exclusively H∞ norm for both ro-
bust stability and nominal performance. Hence, the final round of sim-
ulations compares different hybrid norm controllers.

H∞ norm constraints still ensure robust stability, but each symbol
in Figure 5.21 and Figure 5.22 represent a controller where nominal
performance use one of the following norms: H2, H2g, or L1. The former
figure displays results for state feedback control while the latter shows
dynamic control.

For state feedback control, the use of H2, H2g or L1 norm help to
avoid hypoglycemia. However, only H2 and H2g keep all virtual patients
within B zone. Using L1 norm leads to higher minimum glucose levels
at the cost of higher maximum. At least half of the patients are in Upper
C zone for both meal scenarios.

In a dynamic controller’s case, using different norms does not bring
significant benefits. There are only slight differences between norms,
except for L1 norm, which leads to higher maximum glucose levels, sim-
ilar to the state feedback control.
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Figure 5.21. CVGA comparison of state feedback controllers using dif-
ferent norms for nominal performance. Left and right subplots show
results for meal scenario 3 and meal scenario 4, respectively. The used
symbols are as follows: black circles denote H∞ norm, white circles de-
note H2 norm, white squares denote H2g norm, and black stars denote
L1 norm.
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Figure 5.22. CVGA comparison of dynamic controllers using different
norms for nominal performance. Left and right subplots show results
for meal scenario 3 and meal scenario 4, respectively. The used symbols
are as follows: black circles denote H∞ norm, white circles denote H2

norm, white squares denote H2g norm, and black stars denote L1 norm.
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To put these results into perspective, some of the recently published
control methods reported the following CVGA outcomes:

• The sliding mode controller of Beneyto et al. [27] achieved 42.8
mg/dL average minimum glucose levels without and 59.2 mg/dL
with meal intake announcements.

• The nonlinear state feedback control of Cai et al. [29] kept the pa-
tients in the A and B zones when meal intakes were announced.
However, without meal intake information, some patients achieved
maximum glucose levels above 300 mg/dL or below 70 mg/dL.

• Some patients were in the lower D zone with both the single and
the dual hormone configuration of the Deep Reinforcement Learn-
ing based method presented by Zhu et al. [30].

• The multivariate Bayesian optimization-assisted parameter adap-
tation framework proposed by Shi et al. [34] kept the vast majority
of the patients in the B zone. However, some patients still entered
the D and E zones.

• The robust MPC presented by Siket et al. [46] provided similarly
efficient results to [34], but the outliers improved to the lower C
zone instead.

• The robust LPV approach of Mirzaee et al. [50] kept all patients in
the A and B zones but partially relied on announced meal intakes.

• The MPC presented by Shi et al. [38] kept most of the patients in
the most optimal A zone, with the use of CHO intake profiles of
the patients.

It is important to note that an accurate comparison of these meth-
ods is difficult due to the differences in simulation environments and
scenarios. Furthermore, some of these scenarios include physical activ-
ity and insulin sensitivity changes due to circadian rhythm, which was
outside the scope of the in silico validation presented in this Chapter.

5.3.5 Summary

Based on control variability grid analysis, the combination of qALPV
state feedback with reference dynamics and robust hybrid H2/H∞ or
H2g/H∞ controller could achieve satisfactory blood glucose control for
two commonly used meal intake scenarios.

With the dynamic controller, the same results could not be achieved.
All presented controller configurations lead to high maximum glucose
levels, exposing the patients to potentially severe hyperglycemia. The
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controller synthesis for the dynamic controller is also more difficult to
solve from a numerical point of view. Hence, it is recommended to use
state feedback control over a dynamic controller.
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THESES

Thesis Group 1 (Chapter 3)

I provided a new state observer framework for estimating the state vari-
ables of nonlinear T1DM models and the glucose flux resulting from
meal intake. The state observer considers the measurement noise of CGM
sensors, the nonlinearity, uncertainty, and nonnegativity of the model,
and the glucose utilization resulting from physical activity.

Square root sigma point filters can provide a satisfactory estimation
of the state variables of T1DM models, combined with meal intake and
uncertainty dynamics. The meal intake, physical activity, and the es-
timation error of state variables directly or indirectly affected by these
disturbances should be modeled with lognormal distribution.

Publications related to the theses are: [SEK14, SMM+14, SSBK14,
KS16, SBK16, SDKew].

Thesis 1.1

I provided a method for a generic stochastic state estimation algorithm
to consider the nonnegativity of the model and the most significant dis-
turbances: meal intake and physical activity.

Let Tx denote the transformation of selected state variables to their
natural logarithm: κi,k = lnxi,k, where i is the index of a single state
variable in the state vector x and k indicates time. Let Tw denote the
same transformation for disturbances. The transformed discrete time
state space T1DM model used during the estimation is as follows:

κk = Txxk
κk+1 = Txf(T −1

x κk, T −1
w wk, k)

yk = h(T −1
x κk, zk, k).

(6.1)
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Publication related to this thesis: [SMM+14, SBK16, SDKew].

Thesis 1.2

I provided a new state observer framework that considers and estimates
the additive and multiplicative output uncertainty of a T1DM model.

Extending the nominal T1DM model with uncertainty weighting func-
tions driven by white noise can account for modeling uncertainties and
intra-patient variability. Furthermore, this approach enables robust
state feedback control that relies on the same weighting functions.

Publications related to this thesis: [SEK14, KS16, SDKew].

Thesis 1.3

I provided a state observer framework that can estimate the glucose flux
resulting from meal intake and ingestion.

Extending the nominal T1DM model with a dynamic meal ingestion
subsystem, driven by white noise with lognormal distribution, can pro-
vide a reliable estimation of the glucose flux resulting from meal intake,
especially if the state observer algorithm is a sigma point filter.

Publications related to this thesis: [SEK14, SMM+14, SSBK14].

Thesis 1.4

I proposed a predictor algorithm that can provide a long-term prediction
for a nonlinear and uncertain T1DM model using planned meal intake
announcements.

The predicted distribution of the model output can be used to vali-
date meal intake announcements, detect unannounced events, or early
detection of potential hypoglycemic episodes.

The publication related to this thesis: [SBK16].

Thesis Group 2 (Chapter 4)

I provided a new robust nonlinear control algorithm for Artificial Pan-
creas. The controller addresses the nonlinearity, nonnegativity, and intra-
patient variability of the glucose-insulin interaction in a T1DM patient.

The controller is realized via a quasi linear parameter-varying state
feedback. The state observer proposed in Thesis 1 supplies the esti-
mated state and scheduling variables. By extending the nominal model
with appropriate weighting functions, the controller can be configured
to meet robustness criteria, avoid severe hypoglycemia, and rely on a
nonnegative control signal.
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Publications related to the theses are: [KSZ11, KSF+11, KTSS12,
KS12, KSF+12, KKSE13, SEK+13, KSAB13, KSS+13, KKS+14, SEK14,
KS16, SDKew].

Thesis 2.1

I provided a linear parameter varying approximation of the well-known
Cambridge T1DM model, which enabled the synthesis of quasi linear
parameter-varying controllers via the solution of linear matrix inequali-
ties.

Out of the four potential candidates, two glucose-related state vari-
ables are chosen as scheduling variables. The third scheduling variable
is a Hill function of one of the first two scheduling variables. Saturation
of endogenous glucose production is avoided by setting an additional
constraint on the control signal. At the same time, the nonlinearity of
the renal extraction is resolved by replacing it with a less conservative
disturbance. The resulting model contains only matrix-valued affine
functions of the scheduling variables, making it a linear parameter-
varying representation.

Publications related to this thesis: [SEK+13, KSAB13, SEK14, KS16,
SDKew].

Thesis 2.2

I provided a H2/H∞ controller for Artificial Pancreas, which considers
model uncertainties and intra-patient variability, as well as constraints
on the control signal.

The controller synthesis is performed by solving appropriate linear
matrix inequalities. Furthermore, the nominal T1DM model used for
the controller synthesis is extended with weighting functions.

Publications related to this thesis: [KSZ11, KSF+11, KS12, KSF+12,
KKSE13, KSS+13, KKS+14, SEK14, KS16, SDKew].

Thesis 2.3

I provided a method to automatically scale performance and multiplica-
tive uncertainty outputs of a T1DM model so that robust stability con-
straints are ensured and nominal performance is optimized, as long as
they are feasible.

I applied changes to particular well-known linear matrix inequali-
ties commonly used for the synthesis of linear parameter-varying con-
trollers. The changes enable automatic scaling for performance and un-
certainty outputs for a state feedback controller. However, only perfor-
mance scaling is available for dynamic controller synthesis.
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Publications related to this thesis: [SEK14, SDKew].

Thesis Group 3 (Chapter 5)

I performed the in silico validation of the observer and controller algo-
rithms proposed in Thesis groups 1 and 2.

The simulation environment is based on the Cambridge model and
simulator.

Publications related to the theses are: [KSAB13, KSF+13, KSS+13,
KKSE13, SEK14, SMM+14, KKS+14, KSE+14, KFS+15, SDKew].

Thesis 3.1

I examined the effect of the number of sigma points on state estimation
accuracy for a commonly used T1DM model. The results indicate that
using more than 2L+1 sigma points provide no significant benefit.

Based on the evaluation, the sigma points shall have a symmetric
configuration containing at least 2L points, where L represents the di-
mension of the model. Increasing the number of sigma points beyond
that value does not lead to significant benefits. Both Cubature and Un-
scented Kalman filters with 2L and 2L+1 sigma points provide sufficient
estimation capabilities.

Publication related to this thesis: [SMM+14].

Thesis 3.2

I performed the in silico validation of a robust qLPV H2/H∞ state feed-
back controller. An Artificial Pancreas undergoing clinical trial can
incorporate the proposed control algorithm, provided that Cambridge
model based representation of the participants is available.

Based on control variability grid analysis, the controller could pro-
vide satisfactory blood glucose control for two 24-hour meal intake sce-
narios.

Publications related to this thesis: [KSAB13, KSF+13, KSS+13, KKSE13,
SEK14, KKS+14, KSE+14, KFS+15, SDKew].
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CONCLUSION

This dissertation is about the automated control of the blood glucose
concentration of a type 1 diabetes patient, which is referred to as Arti-
ficial Pancreas in related literature. The main focus is on three aspects
of the Artificial Pancreas: estimation, prediction, and control.

Since all three aspects are model-based, Chapter 2 provided an intro-
duction to T1DM modeling, with a detailed description of a well-known
and widely used example, the Cambridge model. This is a nonlinear
state-space system defined in continuous time with ordinary differen-
tial equations. It consists of a linear insulin absorption component, a
nonlinear subsystem capturing glucose utilization and transfer, and a
nonlinear meal ingestion model. There is a freely accessible simulator
for the Cambridge model with six sets of virtual patient parameters.
The Chapter also addressed model reduction and uncertainty modeling.
The latter is especially relevant for robust controller design.

Chapter 3 discussed the state and disturbance estimation, which
also covers the first thesis group. The mathematical background is
Kalman filters and sigma point filters. First, the Chapter presents some
of the most commonly used sigma point selection strategies. The strate-
gies are followed by updates addressing sigma point filter limitations,
such as square root filtering for numerical stability and extensive trans-
form for preserving the statistical independence between states and dis-
turbances. Finally, the Chapter presents ways to customize sigma point
filters for artificial pancreas use. This includes lognormal transform
to preserve the nonnegativity of state variables and disturbances, the
use of uncertainty models, and aspects of disturbance estimation. The
Chapter concludes with possibilities of prediction. The state observer
discussed earlier can be extended into a predictor. The predictor is then
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combined with another state observer to address the long-term effects
of state estimation error in a closed-loop setting. The proposed predictor
algorithm can validate meal announcements and event hypotheses.

The second thesis group is detailed in Chapter 4, separated into two
parts. The first half presents the multiple linear parameter-varying
representations of the Cambridge model. It highlights the benefits and
drawbacks of the different alternatives and proposes one which is suit-
able for controller design. The second half starts with a discussion
on how to define constraints on the controller by extending the nomi-
nal LPV model with weighting functions. This includes control signal
limitations, uncertainties, and performance requirements. Finally, the
mathematical background of robust controller synthesis follows, includ-
ing the definition of relevant norms and the presentation of the neces-
sary linear matrix inequalities. The Chapter concludes with two AP-
specific changes to the LMIs:

• Performance scaling, which enables hard constraints on robust
stability and patient-specific optimization of nominal performance
simultaneously, with a single LMI.

• Output multiplicative uncertainty scaling. For the state feedback
controller, it provides automatic patient-specific tuning of uncer-
tainty output in order to make the corresponding LMIs feasible
with optimal nominal performance. For the dynamic controller, an
iterative process defines the scaling factor.

The in silico validation of the previously introduced state observer
and controller algorithms was carried out in Chapter 5. The first half
focuses on state estimation, while the second half deals with the con-
trol algorithm. Although, there are overlaps since the observers are
also examined in a closed-loop setting, and the controller relies heavily
on estimated signals. Based on the results, lognormal transformation
increases the accuracy of sigma point filters if the spread of the sigma
points is moderate. Furthermore, using more than 2L + 1 sigma points
yield only little benefit, which may not justify the increase in computa-
tion time. The controller could remain in the A and B zones of control
variability grid analysis, which indicates satisfactory blood glucose con-
trol.

The presented state observer can support a wide range of control al-
gorithms that require accurate estimation of signals not available for
measurement. Using square root filtering and a moderate number of
sigma points makes it a lightweight algorithm that is easy to imple-
ment and use on embedded hardware. However, the ability to calculate
the estimated covariance of the prediction error may be useful in some
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applications. Furthermore, the predictor is easily implemented if the
state observer is already available.

When designing the controller, the focus was more on robustness
than disturbance rejection. Hence, it may be combined with other con-
trol algorithms that use different approach: e.g., adaptive, predictive,
or soft-computing methods. In this kind of setup, the proposed con-
troller can cover use cases where the deviation of the real system from
the nominal model is large, or meal and other external information
is unreliable. Furthermore, it has low computational power require-
ments, which makes it an attractive choice for low-performance embed-
ded hardware or "power saver" use cases.

The Artificial Pancreas promises effective management of a chronic
condition that is more and more prevalent worldwide, affecting the lives
of millions of individuals. I sincerely hope that this dissertation can
have a positive contribution to keeping that promise.
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APPENDIX

A.1 Model

A.1.1 Magni model

The following differential equations describe the Magni-model:

˙GM (t) = −kscGM (t) +
ksc
VG

Gp(t)

Ġp(t) = −k1Gp(t) + k2Gt(t)− ke1max{0, Gp(t)− ke2}+

+f
kabsQgut(t)

BW
+max{0, kp1 − kp2Gp(t)− kp3Id(t)}−

−Uii(t)

Ġt(t) = k1Gp(t)− k2Gt(t)−
(VmxX(t) + Vm0)Gt(t)

Km +Gt(t)

Ẋ(t) = −p2U (X(t) + Ib) +
p2U
VI

Ip(t)

İd(t) = −kiId(t) + kiI1(t)

İ1(t) = −kiI1(t) +
ki
VI
Ip(t)

İp(t) = −(m2 +m4)Ip(t) +m1IL(t) + ka2S2(t) + ka1S1(t)

İL(t) = −(m1 +m3)IL(t) +m2Ip(t)

Ṡ2(t) = −ka2S2(t) + kdS1(t)

Ṡ1(t) = −(ka1 + kd)S1(t) +
1

BW
u(t)

Q̇sto1(t) = −kgriQsto1(t) + d(t)

Q̇sto2(t) = −kempt(t)Qsto2(t) + kgriQsto1(t)

Q̇gut(t) = −kabsQgut(t) + kempt(t)Qsto2(t)

(A.1)

The state variables are as follows:

• GM (t) [mg/dL] subcutaneous glucose concentration;
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• Gp(t) [mg/kg] glucose in plasma and rapidly equilibrating tissues;

• Gt(t) [mg/kg] glucose in slowly equilibrating tissues;

• X(t) [pmol/L] insulin in interstitial fluid;

• Id(t) and I1(t) [pmol/L] state variables for delayed insulin signal;

• Ip(t) [pmol/kg] insulin mass in plasma;

• IL(t) [pmol/kg] insulin mass in liver;

• S2(t) [pmol/kg] monomeric insulin in the subcutaneous tissue;

• S1(t) [pmol/kg] polymeric insulin in the subcutaneous tissue;

• Qsto1 [mg] amount of glucose in the stomach in solid phase;

• Qsto2 [mg] amount of glucose in the stomach in liquid phase;

• Qgut [mg] glucose mass in the intestine.

The inputs of the system are u(t) injected insulin flow [pmol/min],
d(t) amount of ingested glucose [mg/min], and Uii(t) insulin-independent
glucose utilization [mg/kg/min]. d(t) and Uii(t) are considered distur-
bance from AP perspective.

Table A.1 provides details on model parameters.
kempt is a time-varying parameters [83], which is calculated as fol-

lows:

kempt(t) = kmin +
kmax + kmin

2

(
tanh

(
α(Qsto(t)− bD)

)
−

− tanh
(
β(Qsto(t)− cD)

)
+ 2
)

α =
5

2D (1− b)

β =
5

2Dc
Qsto(t) = Qsto1(t) +Qsto2(t),

(A.2)

where kempt(t) is on its maximum value (kmax) when the stomach
contains D amount of ingested glucose. Then kempt(t) decreases with
the rate of α to a minimal value (kmin), but shortly afterward it rises
back to the maximum with the rate of β. c is the percentage of the dose

for which kempt(t) decreases to the value
kmax + kmin

2
, and similarly b

represents the percentage of the dose for which kempt rises back from
its minimal value to kmax+kmin

2 . The change of kempt(t) is shown on Fig.
A.1, where the usual amount of 60 g carbohydrate (CHO) intake used
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Table A.1. Magni model parameters
Name Unit Description
VG dL/kg distribution volume of glucose;
k1, k2 1/min rate parameters of the glucose subsys-

tem;
ke1 1/min renal glomerular filtration rate;
ke2 mg/kg renal threshold;
VI L/kg insulin distribution volume;

m1, ...,m4 1/min rate parameters of the insulin subsys-
tem;

BW kg body weight;
kp1 mg/kg/min extrapolated endogenous glucose pro-

duction at zero glucose and insulin;
kp2 1/min liver glucose effectiveness;
kp3 mg · L/kg/min/pmol indicator of effect of a delayed insulin

signal;
ki 1/min parameter of delayed insulin signal;
Ib pmol/L basal level of plasma insulin concentra-

tion;
p2U 1/min rate constant of insulin action;
Km mg/kg model parameter for insulin-dependent

glucose utilization;
Vm0 1/min model parameter for insulin-dependent

glucose utilization;
Vmx L/pmol/min model parameter for insulin-dependent

glucose utilization;
kd 1/min degradation constant;

ka1, ka2 1/min absorption constants;
ksc 1/min rate constant for the subcutaneous glu-

cose compartment;
kgri 1/min rate of grinding;
kabs 1/min rate constant of intestinal absorption;
f - fraction of intestinal absorption which

actually appears in plasma;
kempt 1/min rate constant of gastric emptying.
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Figure A.1. Time-varying rate of gastric emptying

in the literature was considered. Furthermore, the equations (A.2) can
be simplified into (A.3) if needed.

kempt(t) = kmin +
kmax + kmin

2

(
tanh

(
α(Qsto(t)− bD)

)
+ 1
)

(A.3)

A.1.2 Non-invasive or Minimally Invasive Glucose Sensors

The following is a non exhaustive list of non-invasive or minimally in-
vasive CMG sensors [92].

• Infrared absorption spectroscopy: the intensity of a beam of light
of a specific wavelength is measured before and after interaction
with matter.

• Kromoscopy: uses relative intensities of overlapping spectroscopic
responses from multiple detectors recording spectra over wave-
lengths of near-infrared light.

• Thermal infrared measurement is based on the principle that the
cutaneous microcirculation depends on the local glucose concen-
tration.

• Raman spectroscopy: assesses scattering of single wavelength light.

• Polarimetry: measures the optical rotary dispersal of polarized
light.

• Optical coherence tomography is a system that uses a low-power
laser source, an in-depth scanning system, a sampling device, and
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a light detector. The sensor irradiates the skin with coherent light
and records the backscattered radiation.

• Occlusion spectroscopy uses scattering technique and exploits pul-
satile arterial flow.

• Photoacoustic spectroscopy uses the principle that the absorption
of light by tissue causes ultrasonic waves.

• Reverse iontophoresis is a transdermal technique where the inter-
stitial fluid is accessed through the skin by applying a low electric
current across the skin between two electrodes, causing charged
and uncharged species to pass across the dermis at rates signifi-
cantly greater than passive permeability.

• Sonophoresis is similar to reverse iontophoresis but uses low-fre-
quency ultrasound to increase skin permeability.

A.2 Observer

A.2.1 Iterative filtering

If the function h() in (3.3) is nonlinear, it is possible to further enhance
the estimation of the sigma point filter by performing the Update step
in an iterative manner [129]. Once the Estimation step is completed
with either regular or square root sigma point filter algorithm, perform
the following steps for Update:

0. Set up the iteration loop with the following initialization:

• Set the iteration variable j = 1.

• Set the initial estimation of the state vector: x̂k+1,0 = x̄k+1

• Set the initial estimation of the state vector and the initial es-
timation error covariance matrix, using either Σk+1,0 = Pxx

or Σk+1,0 = PxP
T
x .

• Use the already propagated sigma points:

Xk+1,1 =
[
X (x̄)T
k+1 X (w)T

k X (z)T
k

]T
(A.4)

• Set the maximum number of iterations Imax
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1. Calculate estimation of the measured output ȳk+1,j , and either
P

(yy)
j or P

(y)
j with steps 1d, 1e and 1f of Estimation based on ei-

ther the regular of the square root sigma point filter algorithm.
Use Xk+1,j as input.

2. Calculate the Kalman gain Kk+1,j , and either Σk+1,j or Σ
1
2
k+1,j us-

ing step 2a and 2b from Update.

3. Get the jth candidate for state vector: x̂k+1,j = x̂k+1,j−1+Kk+1,j(yk+1−
ȳk+1,j).

4. Define the new sigma point set Xk+1,j+1 using the chosen sigma
point selection strategy.

5. If j < Imax and the following two inequality holds:

(yk+1 − ȳk+1,j−1)
TR−1

k (yk+1 − ȳk+1,j−1) >

(x̂k+1,j − x̂k+1,j−1)
TΣ−1

k+1,j(x̂k+1,j − x̂k+1,j−1) +

+(yk+1 − ȳk+1,j)
TR−1

k+1(yk+1 − ȳk+1,j)

(A.5)

then increment j, define the new sigma point set Xk+1,j+1 using
a sigma point selection strategy, and continue from step 1. Oth-
erwise, use x̂k+1,j , Σ

1
2
k+1,j and Xk+1,j+1 as x̂k+1, Σ

1
2
k+1 and Xk+1 re-

spectively, and continue with the k + 1th Estimation step. Note,
that the algorithm is identical to the regular or square root sigma
point filter if Imax = 1.

Since h() is nonlinear in the Cambridge model extended with output
multiplicative uncertainties, the effect of iterative filtering was tested
via simulations.

Based on simulation results presented in Table A.2 iterative filtering
may provide some benefits. It improves the estimation of state variable
Q1 for all sigma point filters. However, the results are mixed for the
other two state variables.
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A.2.2 H∞ filtering

H∞ filtering extends the state approximation problem with additional
inequality constraints for a chosen γ value:

Jk =

∑k
j=0 ∥ẑj − Lxj∥2

∥x0 − x̂0∥2Σ−1
0

+
∑k−1

j=0 ∥wj∥2Q−1
j

+
∑k

j=0 ∥vj∥2R−1
j

< γ2 (A.6)

where zk = Lxk are virtual measurements of xk, ẑk represents the es-
timation of zk, while ∥x∥2M denotes the square of the weighted l2 norm
of x: ∥x∥2M = xTMx [130]. It is possible to prioritize the estimation of
certain state variables over others by configuring the matrix M. This
is beneficial when the estimated values are used in a control algorithm.
For example, the Linear Parameter Varying control presented in Sec-
tion 4.2.1 requires reliable estimation of Q1 and Q2 state variables of
the Cambridge model (4.34).

Using the virtual measurements as follows extends the regular sigma
point filter algorithm with H∞ constraints (A.6) for a chosen γ value
[130]:

P(zz) =

(
P(yy)

(
P(xy)

)T
LT

LP(xy) LP(xx)LT − γ2I

)
P(xz) =

(
P(xy) P(xx)LT

)
Σk+1 = P(xx) −P(xy)

(
P(zz)

)−1
(
P(xz)

)T
.

(A.7)

However, the Kalman gain is calculated the same way. The resulting
Σk+1 may be indefinite depending on how the value of γ. Hence, γ is set
in an iterative manner in each update step.

When testing H∞ filtering with the Cambridge model, the γ itera-
tion sporadically resulted in instability in the filters. Furthermore, it is
difficult to combine it with square root filtering.

A.3 Control

A.3.1 LPV representation of the Magni model

The scheduling variables of the LPV-transformed Magni model must
address the following nonlinearities:

• Endogenous glucose production: max{0, kp1 − kp2Gp(t)− kp3Id(t)}

• Insulin-dependent glucose utilization:
(VmxX(t) + Vm0)Gt(t)

Km +Gt(t)

• Renal extraction: ke1max{0, Gp(t)− ke2}
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Similarly to the Cambridge model, endogenous glucose production
and renal extraction introduce a "switching" effect to the model. The
former is active unless either plasma glucose, plasma insulin, or both
are elevated. The latter activates only when the plasma glucose concen-
tration exceeds the threshold ke2.

One can use the following scheduling variables ρEGP and ρe, which
approximate the switching with a sigmoid function:

max{0, kp1 − kp2Gp(t)− kp3Id(t)} ≈ −ρEGP (t) (kp2Gp(t)+
+kp3Id(t)) + kp1EGP0(t)

ke1max{0, Gp(t)− ke2} ≈ ρe(t)Gp(t)− ke1ke2RE0(t)

ρEGP (t) =
1

1 + eα(kp1−kp2Gp(t)−kp3Id(t))

ρe(t) =
1

1 + eα(ke2−Gp(t))

(A.8)

The newly introduced parameter α defines the steepness of the sig-
moid functions, and hence the bounds of the time derivate of ρEGP (t)
and ρe(t). Some controller strategies relying on the LPV model can im-
pose constraints on α. EGP0(t) ∈ [0, 1] and RE0(t) ∈ [0, 1] are considered
as new disturbances from controller design perspective.

Alternatively it is possible to substitute the nonlinear endogenous
glucose production with kp1 − kp2Gp(t) − kp3Id(t), and ensure that kp1 −
kp2Gp(t)− kp3Id(t) ≥ 0. However, this can difficult to achieve depending
on the parameter values, since the controller can directly set Id(t), but
Gp(t) is affected by various external disturbances. For same holds for
renal extraction, however Gp(t) ≤ ke2 is a more reasonable constraint
in comparison. This requires to controller to protect the T1DM patient
from extreme hyperglycemia, which is the sole purpose of AP. Consid-
ering the small impact renal extraction can have on the plasma glucose
concentration, it is feasible to simply treat is as disturbance, unlike en-
dogenous glucose production.

There are two different LPV representations for insulin-dependent
glucose utilization. The first approach is to use a single scheduling vari-
able:

ρX,G(t) =
VmxX(t) + Vm0

Km +Gt(t)
(A.9)

This LPV representation has drawbacks. ρX,G(t) can have a wide
range of values, since it is a function of two state variables. Hence,
we need to consider all combination of their bounds when calculating
ρX,G,min and ρX,G,max. Furthermore, one of these variables - X(t) - is
linked to insulin concentration, which is regarded as the control signal
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in AP. This means it can change in a rather wide range during closed-
loop control, increasing the bounds of ρX,G(t) even further. Finally, Gt(t)
will have no connection with X(t) with this LPV representation, which
in turn alters the controllability of the derived LPV model.

Consequently, the preferred LPV representation of insulin-dependent
glucose utilization is ρG1(t)Gt(t)+ρG2(t)X(t), with the following schedul-
ing variables:

ρG1(t) =
Vm0

Km +Gt(t)
ρG2(t) =

VmxGt(t)

Km +Gt(t)
(A.10)

Using (A.10) the controllability of the model is retained, and the
scheduling variables are only depend from a single state variable. In
addition, that state variable - Gt(t) - is linked to glucose concentration,
which is kept in a narrow range if the controller works well.

ρG2(t) can be expressed as a linear function of ρG1(t) as shown in
(A.11), and hence we can reduce the number of scheduling variables in
the LPV model.

ρG2(t) = Vmx −
KmVmx

Vm0
ρG1(t) (A.11)

Using scheduling variables ρEGP from (A.8) and ρG2 from (A.10) and
(A.11), as well as introducing disturbance RE(t) to represent renal ex-
traction, the LPV representation of the Magni model (A.1) with worst
case meal intake is as follows:

˙GM (t) = −kscGM (t) +
ksc
VG

Gp(t)

Ġp(t) = −(k1 + kp2ρEGP (t))Gp(t) + k2Gt(t) +
kabsf

tQBW
Q̃gut(t)−

−ρEGP (t)kp3Id(t)− ke1RE(t) + kp1EGP0(t)−
−Uii(t)

Ġt(t) = k1Gp(t)− (k2 + ρG1(t))Gt(t)− (Vmx−

− KmVmx

Vm0
ρG1(t)

)
X(t)

Ẋ(t) = −p2U (X(t) + Ib) +
p2U
VI

Ip(t)

İd(t) = −kiId(t) + kiI1(t)

İ1(t) = −kiI1(t) +
ki
VI
Ip(t)

İp(t) = −(m2 +m4)Ip(t) +m1IL(t) + ka2S2(t) + ka1S1(t)

İL(t) = −(m1 +m3)IL(t) +m2Ip(t)

Ṡ2(t) = −ka2S2(t) + kdS1(t)

Ṡ1(t) = −(ka1 + kd)S1(t) +
1

BW
u(t)

˙̃Qgut(t) = − 1

tQ
Q̃gut(t) + d(t)

(A.12)
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Krisztina Wudi, Anna Körner, László Kautzky, Haj-
nalka Soós, Andrea Orbán, Tamás Niederland, Andrea
Juhászné Tuifel, Tímea Tóthné Sebestyén, Mária Hocsi,
Andrea Soós, András Török, and László Barkai. Magyar
mesterséges hasnyálmirigy projekt. Eredmények és távla-
tok. Diabetologia Hungarica, 22:73–76, 2014.

[KKSE13] Levente Kovács, Miklós Kozlovszky, Péter Szalay, and
Péter István Eigner, György és Sas. A magyar mesterséges
hasnyálmirigy projekt legújabb eredményei. In A Magyar
Gyermekorvosok Társasága és a Magyar Diabétesz Társaság
XXX. Gyermekdiabétesz tudományos ülése, 10 2013.

[KS12] Levente Kovács and Peter Szalay. H∞ robust control of
a T1DM model. IFAC Proceedings Volumes, 45(18):61–66,

133



134 PUBLICATIONS OF THE AUTHOR RELATED TO THE THESES

2012. 8th IFAC Symposium on Biological and Medical Sys-
tems.

[KS16] Levente Kovács and Péter Szalay. Uncertainties and Mod-
eling Errors of Type 1 Diabetes Models, pages 211–225.
Springer International Publishing, 2016.

[KSAB13] Levente Kovács, Péter Szalay, Zsuzsanna Almássy, and Lás-
zló Barkai. Applicability results of a nonlinear model-based
robust blood glucose control algorithm. Journal of diabetes
science and technology, 7(3):708–716, 2013.

[KSE+14] Levente Kovács, Johanna Sápi, György Eigner, Tamás Fer-
enci, Péter Szalay, József Klespitz, Balázs Kurtán, Miklós
Kozlovszky, Dániel A. Drexler, Péter Pausits, István Har-
mati, Zoltán Sápi, and Imre J. Rudas. Model-based health-
care applications at Óbuda university. In Proceedings of the
2014 IEEE 9th IEEE International Symposium on Applied
Computational Intelligence and Informatics (SACI), pages
183–187, 2014.

[KSF+11] L Kovács, P. Szalay, T. Ferenci, D. A. Drexler, J. Sápi, I. Har-
mati, and Z. Benyó. Modeling and optimal control strategies
of diseases with high public health impact. In Proceedings of
the 2011 15th IEEE International Conference on Intelligent
Engineering Systems, pages 23–28, 2011.

[KSF+12] L Kovács, P. Szalay, T. Ferenci, J. Sápi, P. Sas, D.A. Drexler,
I. Harmati, B. Benyó, and A. Kovács. Model-based con-
trol algorithms for optimal therapy of high-impact public
health diseases. In Proceedings of the 2012 IEEE 16th In-
ternational Conference on Intelligent Engineering Systems
(INES), pages 531–536, 2012.

[KSF+13] L. Kovács, J. Sápi, T. Ferenci, P. Szalay, D.A. Drexler,
Gy. Eigner, P.I. Sas, B. Kiss, I. Harmati, M. Kozlovszky,
and Z. Sápi. Model-based optimal therapy for high-impact
diseases. In Proceedings of the 2013 IEEE 17th Inter-
national Conference on Intelligent Engineering Systems
(INES), pages 209–214, 2013.

[KSS+13] Levente Kovács, Péter Szalay, Péter István Sas, György
Eigner, Zsuzsanna Almássy, Enikő Felszeghy, Győző Koc-
sis, József Fövényi, Anna Körner, László Kautzky, Ha-
jnalka Soós, Andrea Orbán, Tamás Niederland, Andrea
Juhászné Tuifel, Tímea Tóthné Sebestyén, Andrea Soós,



135 PUBLICATIONS OF THE AUTHOR RELATED TO THE THESES

András Török, and László Barkai. Preliminary model-free
results of a Hungarian robust artificial pancreas algorithm.
Diabetes Technology and Therapeutics, 15(Suppl1):A–96,
2013.

[KSZ11] Levente Kovács, Péter Szalay, and Almássy Zsuzsanna. Val-
idation results of a modern robust control algorithm for type
1 diabetes. In Proceedings of the MACRo 2011 – 3d Interna-
tional Conference on Recent Achievements in Mechatronics,
Automation, Computer Sciences and Robotics. Sapientia Ki-
adó, 2011.

[KTSS12] Levente Kovács, Ferenci Tamás, Johanna Sápi, and Pe-
ter Szalay. Népegészségügyi problémák számítógépes mod-
ellezése. Informatika és Menedzsment az Egészségügyben:
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