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Chapter 1

Introduction

The study of partial differential equations had already appeared within the analysis of

physical models in the works of Euler, Lagrange and Laplace by the 18th century. Mo-

tivated by mathematical and physical problems, PDEs became an essential research area,

both as standalonemathematical discipline aswell asmodeling various problems in physics,

providing a bridge between pure mathematics and applications.

Arising in the context of several natural phenomena, PDEs have some well known,

famous applications, like wave, Schrödinger, Maxwell, diffusion, Monge-Ampère and

Navier-Stokes equations, respectively. The Laplace equation modeling the stationary state

of the heat equation is the most simple variant of the elliptic class of PDEs besides the

Poisson equation. The elliptic class of problems being generalization of the Laplace equa-

tion, is suitable to describe equilibrium states, or problems which are independent from

the time. Mechanical or physical applications often induce not only continuous, but also

discontinuous functions, where the idea is to ”fill the gaps” of the discontinuities with a

set-valued generalized gradient of a locally Lipschitz function, e.g. von Kármán laminated

plates problem, where the external force acts on adhesively connected laminated plates,

analysed by Bocea, Panagiotopoulos and Rădulescu [9]. In this way, the appearance of

non-smooth problems (thus, set-valued mappings) induces differential inclusions rather

than differential equations.

Elliptic PDEs are usually studied on Sobolev spaces combined with powerful vari-

ational methods. Analyzing some fine properties of the energy functional associated to

the studied problem, and exploiting variational methods like minimax or minimization

principles, we may find critical points and prove in this way existence, uniqueness and

1



CHAPTER 1. INTRODUCTION 2

multiplicity results. In case of discontinuous functions, non-smooth variational methods

should be applied.

The primary objective of the thesis is to present recent research results in the study of

elliptic differential inclusions. Applying recent geometrical researches, we show how to

apply variational methods not only on Euclidean spaces but also on curved cases.

The thesis is based on the following papers:

(i) A. Kristály, I.I. Mezei and K. Szilák. Differential inclusions involving oscillatory

term. Nonlinear Analysis, 197 (2020), 111834. [D1 publication]

(ii) K. Szilák. A non-smooth Neumann problem on compact Riemannian manifolds.

SACI 2021 IEEE 15th International Symposium on Applied Computational Intelli-

gence and Informatics.

(iii) A. Kristály, I.I. Mezei and K. Szilák. Elliptic differential inclusions on non-compact

Riemannian manifolds. Nonlinear Analysis-Real World Applications, 69 (2023),

103740. [D1 publication]

(iv) K. Szilák. Schrödinger-Maxwell differential inclusion system. SACI 2023 IEEE

17th International Symposium on Applied Computational Intelligence and Infor-

matics.

(v) Á. Mester, K. Szilák, A Dirichlet inclusion problem on Finsler manifolds, CINTI

2023, IEEE 23rd International Symposium on Computational Intelligence and In-

formatics, November 20-22, 2023, Budapest, Hungary.

In the sequel a brief overview follows about the chapters. The thesis contains six chap-

ters. Chapter 2 is devoted to present those results and notations which are indispensable

in our investigations. In more details, this chapter gives a brief introduction into the cal-

culus of locally Lipschitz functions, Riemannian manifolds, Sobolev spaces, functional

inequalities and spectral estimates.

In Chapter 3, motivated by mechanical problems – where the external forces are non-

smooth – we study an elliptic inclusion problem with a non-smooth oscillatory and a non-

smooth, generic, p-order perturbation function in two settings. First, we consider the case

when the oscillatory term oscillates near to the origin and the perturbation is of order p > 0

at origin. Applying various non-smooth variational methods, we provide a quite complete
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picture about the number of distinct, non-trivial weak solutions for the studied problem,

depending on parameters p, λ and k, and we also prove a novel competition phenomena.

As a counterpart, we also prove similar results whenever the nonlinear term oscillates at

infinity and the perturbation is of order p > 0 at infinity. This chapter is based on the

paper by Kristály, Mezei and Szilák [27].

In Chapter 4, considering a non-smooth elliptic problem on Riemannian manifolds, we

discuss a differential inclusion, as a new application of a recent non-smooth Ricceri-type

result. We prove that the studied inclusion problem has at least three distinct weak solu-

tions whose norms are controlled whenever a suitable perturbation occurs. This chapter

is based on Szilák [48].

Chapter 5 is devoted to focus onto a broad class of curved spaces. More precisely,

we consider both Cartan-Hadamard manifolds and non-compact Riemannian manifolds

with non-negative Ricci curvature. Within these geometric settings, we study an elliptic

inclusion problem involving a singular term and a non-smooth nonlinearity, by proving

various non-existence and existence results. In particular, four non-trivial G-invariant

weak solutions are established in the above two settings (where G is a certain subgroup

of isometries of the Riemannian manifold). In the first case, the nonlinear term is sub-

quadratic, meanwhile in the second case it is super-quadratic at infinity. It turns out that

the usual variational methods cannot be applied due to the lack of compactness, which will

be recovered by isometric actions, combined with the principle of symmetric criticality.

This chapter is based on the paper by Kristály, Mezei and Szilák [28].

In Chapter 6, motivated by physical problems, we consider a Schrödinger-Maxwell

inclusion system involving a non-linear term, which is superlinear at the origin and sub-

linear at infinity. Similarly to Chapter 5, we again focus on Cartan-Hadamard manifolds

and non-compact Riemannian manifolds with non-negative Ricci curvature, respectively.

Introducing a ”single variable” energy functional, we prove a non-existence result when-

ever the parameter λ is small enough, and by compensating the lack of compactness with

isometric actions, we establish two non-trivial weak solutions for the inclusion system

whenever the parameter λ is large enough. This chapter is based on Szilák [49].



Chapter 2

Preliminaries

2.1 Non-smooth analysis

When we are going to work with non-smooth functions, the classical analysis cannot be

used. A wide class of such functions is provided by locally Lipschitz functions on Ba-

nach spaces, whose calculus has been developed mainly by Clarke [12]. In particular, the

classical Gateaux derivative should be replaced by the generalized directional derivative

in the sense of Clarke. This section is devoted to recall all these notions which will play

fundamental role in our further investigations. Let X be a real Banach space with the

norm ‖ · ‖.

Definition 2.1.1. A function f : X → R is locally Lipschitz if every point u ∈ X possesses

a neighborhood U ⊂ X such that

|f(u1)− f(u2)| ≤ K‖u1 − u2‖, ∀u1, u2 ∈ U, (2.1)

for a constant K > 0 depending on U .

Definition 2.1.2. The generalized directional derivative of the locally Lipschitz function

f : X → R at u ∈ X in the direction v ∈ X is given by

f 0(u; v) := lim sup
w→u
t↘0

f(w + tv)− f(w)

t
.

If f : X → R is a function of class C1 on X , then f 0(u; v) = 〈f ′(u), v〉 for all

u, v ∈ X. Hereafter, 〈·, ·〉 and ‖ · ‖∗ stand for the duality mapping on (X∗, X) and the

norm on X∗, respectively.

4
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Definition 2.1.3. The Clarke subdifferential ∂f(u) of f at a point u ∈ X is the subset of

the dual space X∗ given by

∂f(u) :=
{
ξ ∈ X∗ : 〈ξ, v〉 ≤ f 0(u; v), ∀v ∈ X

}
.

Proposition 2.1.1. (Clarke [12]) Let f : X → R be a locally Lipschitz function. The

following assertions hold:

(i) For every u ∈ X , ∂f(u) is a nonempty, convex and weak∗-compact subset of X∗.

Moreover, ‖ξ‖∗ ≤ K for all ξ ∈ ∂f(u), withK > 0 from (2.1).

(ii) For every u ∈ X, f 0(u; ·) is the support function of ∂f(u), i.e.,

f 0(u; v) = max {〈ξ, v〉 : ξ ∈ ∂f(u)} , ∀v ∈ X.

(iii) The set-valued map ∂f : X ⇝ X∗ is weakly∗ closed. In particular, if X is finite

dimensional, then ∂f is an upper semicontinuous set-valued map.

(iv) The function (x, v) 7→ f ◦(x; v) is upper semicontinuous.

(v) (Lebourg’s mean value theorem) Let U be an open subset of a Banach spaceX and

u, v be two points of U such that the line segment [u, v] = {(1 − t)u + tv : 0 ≤

t ≤ 1} ⊂ U . If f : U → R is a Lipschitz function, then there exist w ∈ (u, v) and

ξ ∈ ∂f(w) such that f(v)− f(u) = 〈ξ, v − u〉.

(vi) If g : X → R is of class C1 on X , then ∂(g + f)(u) = g′(u) + ∂f(u) and (g +

f)0(u; v) = 〈g′(u), v〉+ f 0(u; v) for every u, v ∈ X.

(vii) (−f)0(u; v) = f 0(u;−v) for every u, v ∈ X .

(viii) ∂(sf)(u) = s∂f(u) for every s ∈ R and u ∈ X .

(ix) Chain rule: let us consider the composite function f = g ◦ h where h : X → Rn

and g : Rn → R are given functions. Let denote hi, i ∈ {1, ..., n} be the component

functions of h. We assume hi is locally Lipschitz near x and g is too near h(x).

Then f is locally Lipschitz near x as well. Let us denote by αi the elements of ∂g,

and let α = (α1, ..., αn); then

∂f(x) ⊂ co{
∑

αiξi : ξi ∈ ∂hi(x), α ∈ ∂g(h(x))},

where co denotes the weak-closed convex hull.
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2.2 Riemannian geometry

Riemannian geometry studies smooth manifolds equipped with a family of inner products.

Assigning an inner product to each tangent space on a smooth way, the objective of the

Riemannian geometry is to understand deep relationships between distance, volume, cur-

vature, geodesics, Jacobi fields, exponential maps, etc.; for comprehensive materials, see

e.g. Jost [20] and Lee [34].

Definition 2.2.1. LetM be a smooth manifold. TxM denotes the tangent space at x ∈M ,

and TM =
⋃

x∈M TxM is the tangent bundle.

Definition 2.2.2. LetM be a smooth manifold. IfM is endowed with a correspondence

g which assigns an inner product (i.e. symmetric, bilinear, positive-definite form) gx :

Tx(M) × Tx(M) → R to each tangential space TxM at x ∈ M such that the mappings

gij(x) = 〈 ∂
∂xi

, ∂
∂xi

〉 is of class C∞, then the metric g is called Riemannian metric. In this

case, (M, g) is a Riemannian manifold.

Definition 2.2.3. Let (M, g) be an n-dimensional Riemannian manifold and x ∈ M .

If u, v ∈ TxM are two linearly independent vectors of TxM , then for the subspace S,

spanned by u and v, the sectional curvature is defined by

K(S) =
Rmx(v, w, w, v)

|v ∧ w|
,

where Rmx stands for the curvature tensor.

The sectional curvature K of (M, g) is bounded from below if for all x ∈ M and

u, v ∈ TxM there exists some c ∈ R such that K(u, v) ≥ c.

Definition 2.2.4. Let (M, g) be an n-dimensional Riemannian manifold. Assuming that

e1, . . . , en is an orthonormal system of TxM , the Ricci curvature in the direction v = e1 ∈

TxM is defined by

Ricx(v) =
n∑

i=2

K(ei, v).

The Ricci curvature Ric of (M, g) is bounded from below if for all x ∈ M and v ∈

TxM there exist some c ∈ R, such that Ricx(v) ≥ c; in this case we denote Ric(M,g) ≥ c.

Definition 2.2.5. Let dg(x, y) be the Riemannian distance function associated to the Rie-

mannian metric g. The open geodesic ball with center x ∈M and radius r > 0 is defined

by Bx(r) = {y ∈M : dg(x, y) < r}.
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Let (M, g) be a Riemannian manifold, and k is an integer. The k − th covariant

derivatives of the function u ∈ C∞(M) is denoted by ∇k
gu (with∇0

gu = u).

The Laplace-Beltrami operator defined by 4gu = div(∇gu) can be expressed in the

local coordinates (x0, . . . , xn) as

4gu = gij
∂2u

∂xi∂xj
− Γk

ij

∂u

∂xk
.

The volume of the subset D ⊂ M is given by Vg(D) =
∫
D
1dvg in (M, g), where dvg is

the canonical volume element of (M, g).

Definition 2.2.6. If Ric(M,g) ≥ 0, the asymptotic volume ratio is given by

AVR(M,g) = lim
r→∞

Vg(Bx(r))

ωnrn
,

where ωn = πn/2/Γ(1 + n/2) is the volume of the Euclidean unit ball in Rn.

Due to the Bishop-Gromov comparison principle, the asymptotic volume ratio is well-

defined, and AVR(M,g) ∈ [0, 1] provides deep geometric information about the manifold;

for instance, AVR(M,g) = 1 if and only if (M, g) is isometric to the Euclidean space Rn.

Quantitatively speaking, closer value of AVR(M,g) to 1 implies topologically closer man-

ifold (M, g) to the Euclidean space Rn, expressed in terms of the trivialization of higher

homotopy groups ofM , see Munn [40].

2.3 Sobolev spaces

Sobolev spaces play an important role in PDEs, allowing us to study weak solutions of

differential equations, even when there is no solution in the classical sense.

Before defining the Sobolev spaces, we recall the notion of weak derivatives.

Definition 2.3.1. Let assume that Ω ⊂ Rn. Dαu ∈ L1
loc(Ω) denotes the αth weak deriva-

tive of the function u ∈ L1
loc(Ω), if for all test functions v ∈ C∞

0 (Ω)∫
Ω

u(x)Dαv(x)dx = (−1)|α|
∫
Ω

Dαu(x)v(x)dx,

whereDαu = ∂|α|u
∂x

α1
1 ,...,xαn

n
and α = (α1, . . . , αn) stands for multi-indexes with the notation

|α| :=
∑n

i=1 αi.
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Definition 2.3.2. Let Ω ⊂ Rn be an open domain, k be a non-negative integer, and 1 ≤

p ≤ ∞, the Sobolov space is defined by the set

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ k}.

The W k,p
0 is the closure of C∞

0 in the space W k,p. The Sobolev space W k,p(Ω) is

equipped with the norm

‖u‖Wk,p =

∑
|α|≤k

∫
Ω

|Dαu|pdx

 1
p

.

For p = ∞, the norm is the usual sup-norm. When p = 2, the Sobolev spaceW k,2(Ω) is

a Hilbert space, denoted by Hk(Ω), equipped with the scalar product

〈u, v〉Hk =
∑
k≤|α|

∫
Ω

DαuDαvdx.

In particular, the Sobolev space H1 has the norm

‖u‖H1 =

(∫
Ω

u2 + (∇u)2dx
) 1

2

and scalar product

〈u, v〉H1 =

∫
Ω

uv +∇u∇vdx.

Note that the Sobolev space is a Banach space, being reflexive whenever 1 < p <∞.

2.3.1 Sobolev spaces on Riemannian manifolds

Definition 2.3.3. Let (M, g) be a Riemannian manifold. With a non-negative integer k

and any 1 ≤ p ≤ ∞, the Sobolev space Hk,p(M) is the closure of the space

Ck,p = {u ∈ C∞(M) : ∀j = 0, . . . , k,

∫
M

|∇j
gu|pdvg <∞}

with respect to the norm

‖u‖Hk,p =

(
k∑

j=0

∫
Ω

|∇j
gu|pdvg

) 1
p

.

When p = 2, the space W k,2(M) is a Hilbert space, denoted by Hk(M), which is

equipped with the scalar product in local coordinates

〈u, v〉H1 =
k∑

l=0

∫
M

gi1j1 . . . giljl(∇l
gu)i1...il(∇l

gv)j1...jldvg.
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2.4 Variational principles

Variational calculus plays a central role in many physical phenomena. It is not only a

powerful tool in the optimization of functionals, but also provides numerous principles and

theorems to treat smooth and non-smooth PDEs. Since we are dealing with non-smooth

problems, the variational calculus becomes a basic tool in our thesis.

Hereafter we collect those principles and theorems, which are required in our studies.

For a comprehensive treatment, see Kristály, Rǎdulescu, Varga [31] and Chang [11].

In the sequel letX be a Banach space. We start with the definition of the critical point.

Definition 2.4.1. Let F : X → R be a locally Lipschitz functional. A point x ∈ X is said

to be a critical point of F , if 0 ∈ ∂F (x).

In the sequel we recall crucial compactness conditions which are used to guarantee

critical points in variational calculus. Before doing this, for the locally Lipschitz function

F , we definem(x) = min{‖ξ‖∗ : ξ ∈ ∂F (x)}.

Definition 2.4.2. The locally Lipshitz function F : X → R satisfies the Palais-Smale

condition at level c ∈ R (in short (PS)c), if every sequence {xn} ⊂ X such thatF (xn) → c

andm(xn) → 0, possesses a convergent subsequence.

Definition 2.4.3. The locally Lipschitz F : X → R satisfies the Cerami condition at

level c (in short (C)c), if every sequence {xn} ⊂ X such that F (xn) → c and (‖xn‖ +

1)m(xn) → 0, possesses a convergent subsequence.

Remark 2.4.1. It is clear that (PS)c implies (C)c.

Theorem 2.4.1. Let X be reflexive Banach space. If the locally Lipschitz function F :

X → R satisfies the (PS)c condition with level c and is bounded from below, then c =

infX F is a critical value of the function F , i.e., there exists x ∈ X such that 0 ∈ ∂F (x)

and F (x) = c.

A non-smooth version of the famous Mountain Pass Theorem, initially established by

Ambrosetti and Rabinowitz [2], can be stated as follows:

Theorem 2.4.2. (Mountain Pass Theorem) Let X be a Banach space and F : X → R be

a locally Lipschitz function. We assume that there exist x1 ∈ X , ρ > 0 and α > 0 such
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that ‖x1‖ > ρ, F (0) ≤ 0 and

inf
∥x∥=ρ

F (x) ≥ α > F (x1).

If F satisfies the (C)c condition at level

c = inf
γ∈Γ

max
t∈[0,1]

F (γ(t)),

where

Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = x1},

then c is a critical value of F , and c ≥ α.

Various forms of Theorem 2.4.2 is known in the literature, due to Kristály, Motreanu

and Varga [29], Motreanu and Panagiotopoulos [39], etc.

Beside the above Mountain Pass Theorem, which guarantees a critical point, we shall

use a Ricceri-typemultiplicity theorem for locally Lipschitz functions, seeKristály,Marzan-

towicz and Varga [25]; its original form for C1 functions can be found in Ricceri [44]:

Theorem 2.4.3. (Non-smooth Ricceri’s multiplicity theorem) Let (X, ‖ · ‖) be a real

Banach space, X1 and X2 be two Banach spaces such that embeddings X ↪→ X1 and

X ↪→ X2 are compact. Let Λ be a real interval, h : [0,∞) → [0,∞) be a non-

decreasing convex function and assume we have given two locally Lipschitz functions

φ1 : X1 → R, φ2 : X2 → R such that the locally Lipschitz function Eλ,µ : X → R,

Eλ,µ = h(‖ · ‖) + λφ1 + µg ◦ φ2 satisfies the (PS)c condition for every c ∈ R, λ ∈ Λ,

µ ∈ [|λ| + 1] and g ∈ Gτ , τ ≥ 0, where Gτ = {f ∈ C1(R,R)|f is bounded, and f(t) =

t for any t ∈ [−τ, τ ]}. Assume that h(‖ · ‖) + λφ1 is coercive on X for all λ ∈ Λ and

there exists ρ ∈ R such that

sup
λ∈Λ

inf
x∈X

[h(‖ · ‖) + λ(φ1(x) + ρ)] < inf
x∈X

sup
λ∈Λ

[h(‖ · ‖) + λ(φ1(x) + ρ)],

then there exists a non-empty open set A ⊂ Λ and r > 0 with the property that for

every λ ∈ A there exists µ0 ∈ [|λ| + 1] such that, for each µ ∈ [0, µ0] the functional

Eλ,µ = h(‖ · ‖) + λφ1 + µφ2 has at least three critical points in X whose norms are less

than r.
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2.4.1 Elliptic PDEs

One can prove that weak solutions of certain elliptic PDEswith boundary value constraints

coincide with the critical points of the energy functional associated to the problem. We

provide a simple (didactic) example to support this fact, which will be used as a guide in

our further studies.

Example 2.4.1. Let Ω ⊂ Rn be an open domain, and we consider the following Dirichlet

problem  −∆u(x) ∈ ∂F (u(x)), x ∈ Ω;

u(x) = 0, x ∈ ∂Ω,
(P0)

where ∆ denotes the usual Laplace operator, and F is a locally Lipschitz function. The

natural energy functional E : H1
0 (Ω) → R associated to the problem (P0) is defined as

E(u) = 1

2
‖u‖2H1

0
−
∫
Ω

F (u(x))dx.

It turns out that E is well-defined and locally Lipschitz. Additionally, if u ∈ H1
0 is a

critical point, then 0 ∈ ∂E(u). In particular, for every v ∈ H1
0 (Ω) such that the mapping

x 7→ ξxv ∈ L1(Ω), ξx ∈ ∂F (u), we have∫
Ω

∇u(x)∇v(x)dx−
∫
Ω

ξx(x)v(x)dx = 0. (2.2)

Applying the Green’s theorem with the boundary condition it follows that∫
Ω

∇u(x)∇v(x)dx = −
∫
Ω

∆u(x)v(x)dx. (2.3)

At this point we may integrate 2.3 into 2.2, and obtain that

−
∫
Ω

∆u(x)v(x)dx =

∫
Ω

ξx(x)v(x)dx (2.4)

for all test function v ∈ H1
0 (Ω), which means indeed that u is a weak solution of the

problem (P0).

One can readily observe that, as we mentioned in the introduction, studying PDEs can

be reduced to find critical points of the energy functional associated to the problem. In par-

ticular, analyzing coercivity, Palais-Smail condition, lower semicontinuity of the energy

functional, existence and multiplicity results can be established by variational calculus

(e.g. minimax principle or direct minimization arguments).
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Sobolev compact embeddings can be exploited to prove the Palais-Smale or Cerami

compactness condition. However, in the case when we are dealing with non-compact

settings, this direct machinery is not working. In such cases, the lack of compactness has

to be compensated with certain isometric actions together with the principle of symmetric

criticality, see 2.4.3. In the sequel, we recall these notions/results.

2.4.2 Isometries

Let (M, g) be a Riemannian manifold and Isomg(M) be the group of isometries of (M, g).

Let us assume that G is a connected subgroup of Isomg(M), and let

FixM(G) = {x ∈M : σ(x) = x, ∀σ ∈ G}

be the set of fixed points of the isometry groupG in (M, g). TheG-orbit of a point x ∈M

is Ox
G = {σ(x) : σ ∈ G}. The continuous action of the group G onM is coercive if for

every t > 0 the set Ot := {x ∈ M : diam(Ox
G) ≤ t} is bounded, see Skrzypczak and

Tintarev [46, 47]; here diam(S) denotes the diameter of S ⊂ M . The action of G on

H1(M) is defined by

(σu)(x) = u(σ−1(x)) for all σ ∈ G, u ∈ H1(M), x ∈M,

where σ−1 is the inverse of the isometry σ. A function u is said to be radially symmetric

with respect to the point x0 ∈M , if u depends on the Riemannian distance dg(x0, ·).

It is standard to prove that G acts continuously and linearly on H1(M). For instance,

if σ1, σ2 ∈ G, it turns out that for every u ∈ H1(M), σ ∈ G and x ∈M, we have

(σ1 ◦ σ2)u(x) = u((σ1 ◦ σ2)−1(x)) = u(σ−1
2 (σ−1

1 (x))) = (σ2u)(σ
−1
1 (x))

= (σ1(σ2u))(x).

2.4.3 Principle of symmetric criticality.

Let G be a compact Lie group acting linear isometrically on the Banach space (X, ‖ · ‖),

i.e., the action G × X → X , (σ, u) 7→ σu is continuous and for every σ ∈ G the map

u 7→ σu is linear such that ‖σu‖ = ‖u‖ for every u ∈ X . Let

FixX(G) = {u ∈ X : σu = u, ∀σ ∈ G};
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we notice that FixM(G) and FixX(G) should not be confused. A function h : X → R is

G-invariant, if h(σu) = h(u) for all σ ∈ G and x ∈ X . According to Krawcewicz and

Marzantowicz [22] (see also Costea, Kristály and Varga [13, Section 3.4]), the principle

of symmetric criticality for locally Lipschitz functions can be stated as follows.

Proposition 2.4.1. (Krawcewicz and Marzantowicz [22]) Let G be a compact Lie group

acting linear isometrically on the real Banach space (X, ‖ · ‖) and h : X → R be a

G-invariant, locally Lipschitz functional. If h|G denotes the restriction of h to FixX(G)
and u ∈ FixX(G) is a critical point of h|G then u is also a critical point of h.

The smooth version of the principle of symmetric criticality has been provided by

Palais [42] and later extended to various non-smooth settings.

2.5 Functional inequalities and spectral estimates

2.5.1 Cartan-Hadamard manifolds

Throughout this subsection, let (M, g) be an n-dimensional Cartan-Hadamard manifold

(simply connected, complete Riemannianmanifold with non-positive sectional curvature),

n ≥ 3.

Embeddings on Cartan-Hadamard manifold

We notice that in this geometric context, there exists Cn > 0 such that

‖u‖L2∗ ≤ Cn

(∫
M

|∇gu|2dvg
)1/2

, ∀u ∈ C∞
0 (M),

see e.g. Hebey [19, Chapter 8], where 2∗ = 2n/(n− 2) is the critical Sobolev exponent.

Moreover, the best Sobolev embedding constant Cn is precisely its Euclidean counterpart

ATn, provided by Aubin [3] and Talenti [50], whenever the Cartan-Hadamard conjecture

holds on (M, g) (e.g. in dimensions 3 and 4). In high-dimensions, the sharp constant

Cn > 0 is not known; however, a non-optimal form can be given by means of the Croke-

constant as in Hebey [19, p. 239].

A density argument combinedwith a simple interpolation shows that the Sobolev space

H1(M) is continuously embedded into Lq(M) for every q ∈ [2, 2∗]; more precisely, there
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existsK−
q > 0 such that

‖u‖Lq ≤ K−
q ‖u‖H1 , ∀u ∈ H1(M). (2.5)

Hardy inequality

Let x0 ∈M be fixed. The Hardy inequality holds on (M, g), which reads as

(n− 2)2

4

∫
M

u2(x)

d2g(x0, x)
dvg ≤

∫
M

|∇gu|2dvg, ∀u ∈ H1(M), (2.6)

where (n−2)2

4
is sharp and never achieved, see e.g. D’Ambrosio and Dipierro [15], and

Kristály [24].

McKean’s spectral gap

If the sectional curvature has the property K ≤ −κ for some κ > 0, then McKean’s

spectral gap theorem asserts that

γ(M,g) := inf
u∈H1(M)\{0}

∫
M

|∇gu|2dvg∫
M

u2dvg
≥ (n− 1)2

4
κ. (2.7)

The inequality (2.7) is sharp, see e.g. on the n-dimensional hyperbolic space Hn
κ with

constant sectional curvature K = −κ; we also notice that the infimum in (2.7) is not

achieved by any function u ∈ H1(M).

2.5.2 Riemannian manifolds with non-negative Ricci curvature

In this subsection we consider an n-dimensional (n ≥ 3) complete non-compact Rieman-

nian manifold (M, g) with Ric(M,g) ≥ 0.

Embeddings on Riemannian manifold with non-negative Ricci curvature

In the geometric context when (M, g) is a complete non-compact Riemannian manifold

with Ric(M,g) ≥ 0, a necessarily and sufficient condition to have the Sobolev embedding is

the fact that AVR(M,g) > 0, see Coulhon and Saloff-Coste [14] and Hebey [19]. Moreover,

a recent result of Balogh and Kristály [6] asserts that if AVR(M,g) > 0 then

‖u‖L2∗ ≤ AVR− 1
n

(M,g)ATn

(∫
M

|∇gu|2dvg
)1/2

, ∀u ∈ H1(M),
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where the constant AVR− 1
n

(M,g)ATn is sharp; here ATn stands for the best Sobolev embed-

ding constant in the Euclidean Sobolev inequality on Rn, see Aubin [3] and Talenti [50].

In particular, H1(M) is continuously embedded into Lq(M) for every q ∈ [2, 2∗]; more

precisely, there existsK+
q > 0 such that

‖u‖Lq ≤ K+
q ‖u‖H1 , ∀u ∈ H1(M). (2.8)

Hardy inequality

Given x0 ∈M fixed, the Hardy inequality on (M, g) is verified as

AVR
2
n

(M,g)

(n− 2)2

4

∫
M

u2(x)

d2g(x0, x)
dvg ≤

∫
M

|∇gu|2dvg, ∀u ∈ H1(M), (2.9)

see Kristály, Mester and Mezei [26]. The sharpness of the constant in (2.9) is not known

unless we are in the classical Euclidean setting.

2.5.3 Embeddings on compact Euclidean spaces

Theorem 2.5.1. (Sobolev embedding theorem) Let Ω ⊂ Rn be an open set of class C1.

The embedding W 1,p(Ω) ↪→ Lq(Ω) is continuous, whenever one of the following condi-

tions hold for the real parameters p, q:

(i) 1 ≤ p < n and p ≤ q ≤ p∗;

(ii) p = n and p ≤ q <∞;

(iii) n < p ≤ ∞ and q = ∞,

where 1
p∗

= 1
p
− 1

n
, the number p∗ being the critical Sobolev exponent.

Theorem 2.5.2. (Rellich-Kondrachov theorem) Let Ω ⊂ Rn be of class C1 and bounded.

Then the embeddingW 1,p(Ω) ↪→ Lq(Ω) is compact, whenever one of the following con-

ditions holds for the real parameters p, q:

(i) 1 ≤ p < n and 1 ≤ q ≤ p∗;

(ii) p = n and p ≤ q <∞;

(iii) n < p ≤ ∞ and q = ∞.
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2.5.4 Embeddings on compact Riemannian manifolds

Theorem 2.5.3. Let (M, g) be a compact Riemannian manifold of dimension n.

(i) (Sobolev embedding theorem) If 1
q
≥ 1

p
− k

n
, then the embedding Hk,p ↪→ Lq is

continuous.

(ii) (Rellich-Kondrachov theorem) If 1
q
> 1

p
− k

n
, then the embedding Hk,p ↪→ Lq is

compact.

Theorem 2.5.4. Let (M, g) be a compact n-dimensional Riemannian manifold.

(i) The embedding Hk,p(M) ↪→ Lq(M) is continuous if p ≤ q ≤ np
n−p

and compact

whenever p ≤ q < np
n−p

.

(ii) If ∂M 6= ∅, the embedding Hk,p(M) ↪→ Lq(∂M) is continuous if p ≤ q ≤ p(n−1)
n−p

and compact whenever p ≤ q < p(n−1)
n−p

.

2.5.5 Embeddings on non-compact Riemannian manifolds

Let (M, g) be a complete, non-compact, n-dimensional Riemannian manifold and G be a

compact connected subgroup of Isomg(M). Recalling the main results of Farkas, Kristály

and Mester [18], if one of the following curvature conditions hold

(i) (M, g) is a Cartan-Hadamard manifold and FixM(G) is a singleton, or

(ii) Ric(M,g) ≥ 0, AVR(M,g) > 0 and G is coercive,

then the embedding H1
G(M) ↪→ Lq(M) is compact for q ∈ (2, 2∗).

We notice, that the embedding above is also compact for q ∈ (2, 2∗) whenever the

Ricci curvature is bounded from below and the injectivity radius is positive.
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Differential inclusions - compact case
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Chapter 3

Differential inclusions involving

oscillatory terms

PDEs with perturbations that play central roles in physical and mechanical problems, have

been subject of several investigations. Let consider the following elliptic PDE with per-

turbation 
−∆u(x) = f(u(x)) + λg(u(x)), x ∈ Ω;

u ≥ 0, x ∈ Ω;

u = 0, x ∈ ∂Ω,

(Pλ)

where ∆ is the usual Laplace operator, Ω ⊂ Rn is a bounded open domain (n ≥ 2), and

f : R → R is a continuous function verifying certain growth conditions at the origin and

infinity, g : R → R is another continuous function which is going to compete with the

original function f . When both functions f and g are of polynomial type of sub- and super-

unit degree, the existence of at least one or two nontrivial solutions of (Pλ) is guaranteed,

depending on the range of λ > 0, see e.g. Ambrosetti, Brezis and Cerami [1], Autuori and

Pucci [4], de Figueiredo, Gossez and Ubilla [16]. In these papers variational arguments,

sub- and super-solution methods as well as fixed point arguments are employed.

Another important class of problems of the type (Pλ) is studied whenever f has a

certain oscillation (near the origin or at infinity) and g is a perturbation.

Although oscillatory functions seemingly call forth the existence of infinitely many

solutions, it turns out that ’too classical’ oscillatory functions do not have such a feature.

Indeed, when f(s) = c sin s and g = 0, with c > 0 small enough, a simple use of the

Poincaré inequality implies that problem (Pλ) has only the zero solution. However, when

18
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f strongly oscillates, problem (Pλ)with 0 perturbation has indeed infinitelymany different

solutions; see e.g. Omari and Zanolin [41], Saint Raymond [45]. A novel competition

phenomena for the case g(s) = sp (s > 0) has been described for (Pλ) by Kristály and

Moroşanu [30].

In mechanical applications, in turn, the perturbation may manifest in a discontinuous

manner as a non-regular external force, see e.g. the gluing force in von Kármán laminated

plates, cf. Bocea, Panagiotopoulos and Rădulescu [9], Motreanu and Panagiotopoulos

[39] and Panagiotopoulos [43]. We consider the problem (Pλ) formulated into a more

general form 
−∆u(x) ∈ ∂F (u(x)) + λ∂G(u(x)), x ∈ Ω;

u ≥ 0, x ∈ Ω;

u = 0, x ∈ ∂Ω,

(Dλ)

where F and G are both non-smooth, locally Lipschitz functions having various growths,

while ∂F and ∂G stand for the generalized gradients of F and G, respectively.

Extending the main results of Kristály and Moroşanu [30] we study the inclusion (Dλ)

in two different settings, i.e., we analyze the number of distinct solutions of (Dλ)whenever

∂F oscillates near the origin/infinity and ∂G is of order p > 0 near the origin/infinity.

The organization of the present chapter is the following. In Section 3.1 we state our

main assumptions and results, providing also some examples of functions fulfilling the as-

sumptions. Section 3.2 contains a generic localization theorem for differential inclusions,

while Sections 3.3 and 3.4 are devoted to the proof of our main results.

3.1 Main theorems

Let F,G : R+ → R be locally Lipschitz functions and as usual, let us denote by ∂F

and ∂G their generalized gradients in the sense of Clarke. Hereafter, R+ = [0,∞). Let

p > 0, λ ≥ 0 andΩ ⊂ Rn be a bounded open domain, and consider the elliptic differential

inclusion problem
−∆u(x) ∈ ∂F (u(x)) + λ∂G(u(x)), x ∈ Ω;

u ≥ 0, x ∈ Ω;

u = 0, x ∈ ∂Ω.

(Dλ)
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The cases when ∂F oscillates near the origin or at infinity are studied in separated

sections.

3.1.1 Oscillation near the origin

We assume that the beforementioned locally Lipschitz functions F and G satisfy the fol-

lowing conditions:

(F0
0) : F (0) = 0;

(F0
1) : −∞ < lim infs→0+

F (s)
s2

; lim sups→0+
F (s)
s2

= +∞;

(F0
2) : l0 := lim infs→0+

max{ξ:ξ∈∂F (s)}
s

< 0;

(G0
0) : G(0) = 0;

(G0
1) : There exist p > 0 and c, c ∈ R such that

c = lim inf
s→0+

min{ξ : ξ ∈ ∂G(s)}
sp

≤ lim sup
s→0+

max{ξ : ξ ∈ ∂G(s)}
sp

= c.

Remark 3.1.1. Hypotheses (F0
1) and (F0

2) imply a strong oscillatory behavior of ∂F near

the origin.

It is easy to prove that 0 ∈ H1
0 (Ω) is a solution of the differential inclusion (Dλ).

In the sequel we present a continuous oscillatory function and a locally Lipschitz func-

tion satisfying assumptions (F0
0)− (F0

2) and (G0
0)− (G0

1), respectively:

Example 3.1.1. Let us consider F0(s) =
∫ s

0
f0(t)dt, s ≥ 0, where f0(t) =

√
t(1

2
+

sin t−1), t > 0 and f0(0) = 0, or some of its jumping variants. One can prove that

∂F0 = f0 verifies the assumptions (F0
0) − (F0

2). For a fixed p > 0, let G0(s) = ln(1 +

sp+2)max{0, cos s−1}, s > 0 and G0(0) = 0. It is clear that G0 is not of class C1 and

verifies (G0
1) with c = −1 and c = 1, respectively; see Figure 3.1 representing both f0

and G0 (for p = 2).
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Figure 3.1: Graphs of f0 and G0 around the origin, respectively.

In what follows, we provide a quite complete picture about the competition concerning

the terms s 7→ ∂F (s) and s 7→ ∂G(s), respectively. First, we are going to show that when

p ≥ 1, then the ’leading’ term is the oscillatory function ∂F ; roughly speaking, one can

say that the effect of s 7→ ∂G(s) is negligible in this competition. More precisely, we

prove the following result.

Theorem 3.1.1. (Kristály, Mezei and Szilák [27]) (Case p ≥ 1) Assume that p ≥ 1 and

the locally Lipschitz functions F,G : R+ → R satisfy (F0
0)− (F0

2) and (G0
0)− (G0

1). If (i)

either p = 1 and λc < −l0 (with λ ≥ 0), (ii) or p > 1 and λ ≥ 0 is arbitrary,

then the differential inclusion problem (Dλ) admits a sequence {ui}i ⊂ H1
0 (Ω) of distinct

weak solutions such that

lim
i→∞

‖ui‖H1
0
= lim

i→∞
‖ui‖L∞ = 0.

In the case when p < 1, the perturbation term ∂G may compete with the oscillatory

function ∂F ; we have the following theorem:

Theorem 3.1.2. (Kristály, Mezei and Szilák [27]) (Case 0 < p < 1) Assume 0 < p < 1

and that the locally Lipschitz functionsF,G : R+ → R satisfy (F0
0)−(F0

2) and (G0
0)−(G0

1).

Then, for every k ∈ N, there exists λk > 0 such that the differential inclusion (Dλ) has at

least k distinct weak solutions {u1,λ, ..., uk,λ} ⊂ H1
0 (Ω) whenever λ ∈ [0, λk]. Moreover,

‖ui,λ‖H1
0
< i−1 and ‖ui,λ‖L∞ < i−1 for any i = 1, k; λ ∈ [0, λk]. (3.1)
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3.1.2 Oscillation at infinity

We assume that the beforementioned locally Lipschitz functions F and G satisfy the fol-

lowing conditions:

(F∞
0 ) : F (0) = 0;

(F∞
1 ) : −∞ < lim infs→∞

F (s)
s2

; lim sups→∞
F (s)
s2

= +∞;

(F∞
2 ) : l∞ := lim infs→∞

max{ξ:ξ∈∂F (s)}
s

< 0;

(G∞
0 ) : G(0) = 0;

(G∞
1 ) : There exist p > 0 and c, c ∈ R such that

c = lim inf
s→∞

min{ξ : ξ ∈ ∂G(s)}
sp

≤ lim sup
s→∞

max{ξ : ξ ∈ ∂G(s)}
sp

= c.

Remark 3.1.2. Hypotheses (F∞
1 ) and (F∞

2 ) imply a strong oscillatory behavior of the

set-valued map ∂F at infinity.

In the sequel we present a continuous oscillatory function and a locally Lipschitz func-

tion satisfying assumptions (F∞
0 )− (F∞

2 ) and (G∞
0 )− (G∞

1 ) respectively:

Example 3.1.2. We consider F∞(s) =
∫ s

0
f∞(t)dt, s ≥ 0, where f∞(t) =

√
t(1

2
+

sin t), t ≥ 0, or some of its jumping variants; one has that F∞ verifies the assumptions

(F∞
0 ) − (F∞

2 ). For a fixed p > 0, let G∞(s) = spmax{0, sin s}, s ≥ 0; it is clear that

G∞ is a typically locally Lipschitz function on [0,∞) (not being of class C1) and verifies

(G∞
1 ) with c = −1 and c = 1; see Figure 3.2 representing both f∞ and G∞ (for p = 2),

respectively.

Figure 3.2: Graphs of f∞ and G∞ at infinity, respectively.
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In the sequel, we investigate the competition at infinity concerning the terms s 7→

∂F (s) and s 7→ ∂G(s), respectively. First, we show that when p ≤ 1 then the ’leading’

term is the oscillatory function F , i.e., the effect of s 7→ ∂G(s) is negligible. More

precisely, we prove the following result:

Theorem 3.1.3. (Kristály, Mezei and Szilák [27]) (Case p ≤ 1) Assume that p ≤ 1 and

the locally Lipschitz functions F,G : R+ → R satisfy (F∞
0 )− (F∞

2 ) and (G∞
0 )− (G∞

1 ). If

(i) either p = 1 and λc ≤ −l0 (with λ ≥ 0),

(ii) or p < 1 and λ ≥ 0 is arbitrary,

then the differential inclusion (Dλ) admits a sequence {ui}i ⊂ H1
0 (Ω) of distinct weak

solutions such that

lim
i→∞

‖u∞i ‖L∞ = ∞. (3.2)

Remark 3.1.3. Let us denote by 2∗ the usual critical Sobolev exponent. In addition to

(3.2), we also claim that limi→∞ ‖u∞i ‖H1
0
= ∞ whenever

sup
s∈[0,∞)

max{|ξ| : ξ ∈ ∂F (s)}
1 + s2∗−1

<∞. (3.3)

In the case when p > 1, it turns out that the perturbation term ∂G may compete with

the oscillatory function ∂F ; more precisely, we have the following theorem:

Theorem 3.1.4. (Kristály, Mezei and Szilák [27]) (Case p > 1) Assume that p > 1 and

the locally Lipschitz functions F,G : R+ → R satisfy (F∞
0 ) − (F∞

2 ) and (G∞
0 ) − (G∞

1 ).

Then, for every k ∈ N, there exists λ∞k > 0 such that the differential inclusion (Dλ) has at

least k distinct weak solutions {u1,λ, ..., uk,λ} ⊂ H1
0 (Ω) whenever λ ∈ [0, λ∞k ].Moreover,

‖ui,λ‖L∞ > i− 1 for any i = 1, k; λ ∈ [0, λ∞k ]. (3.4)

Remark 3.1.4. If the condition (3.3) holds and p ≤ 2∗− 1 in Theorem 3.3, then we claim

in addition that

‖u∞i,λ‖H1
0
> i− 1 for any i = 1, k; λ ∈ [0, λ∞k ].

3.2 Localization: a generic result

In this section we study the generalized form of the differential inclusion problem (Dλ),

namely  −4u(x) + ku(x) ∈ ∂A(u(x)), u(x) ≥ 0, x ∈ Ω;

u(x) = 0, x ∈ ∂Ω,
(Dk

A)
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where k > 0 and A : [0,∞) → R is a locally Lipschitz function with A(0) = 0 and

(H1
A) : there existsMA > 0 such that

max{|∂A(s)|} := max{|ξ| : ξ ∈ ∂A(s)} ≤MA

for every s ≥ 0;

(H2
A) : there are 0 < δ < η such that max{ξ : ξ ∈ ∂A(s)} ≤ 0 for every s ∈ [δ, η].

For simplicity, let us extend the function A by A(s) = 0 for s ≤ 0; the extended

function is locally Lipschitz on the whole R. The natural energy functional E : H1
0 (Ω) →

R associated with the differential inclusion problem (Dk
A) is defined by

E(u) = 1

2
‖u‖2H1

0
+
k

2

∫
Ω

u2dx−
∫
Ω

A(u(x))dx,

which is well-defined and locally Lipschitz on H1
0 (Ω).

Let us consider the number η ∈ R from (H2
A) and the set

W η = {u ∈ H1
0 (Ω) : ‖u‖L∞ ≤ η}.

Our localization result reads as follows (see [30, Theorem 2.1] for its smooth form):

Theorem 3.2.1. Let k > 0 and assume that hypotheses (H1
A) and (H2

A) hold. Then

(i) the energy functional E is bounded from below on W η and its infimum is attained

at some ũ ∈ W η;

(ii) ũ(x) ∈ [0, δ] for a.e. x ∈ Ω;

(iii) ũ is a weak solution of the differential inclusion (Dk
A).

Proof. (i) Using hypothesis (H1
A) we have that the energy functional E is bounded from

below onH1
0 (Ω). Moreover, due to the compactness of the Sobolev embedding, it turns out

that E is sequentially weak lower semi-continuous on H1
0 (Ω). In addition, it is clear, that

the setW η is weakly closed, being convex and closed in H1
0 (Ω). Thus, there is ũ ∈ W η

which is a minimum point of E on the setW η, see Zeidler [51].

(ii) We introduce the set L = {x ∈ Ω : ũ(x) /∈ [0, δ]} and suppose indirectly that the

measure m(L) > 0. We define the functions γ(s) := min(max(s, 0), δ) and w := γ ◦ ũ,

and claim that w ∈ H1
0 (Ω). Indeed, since γ(0) = 0 and γ is a Lipschitz function, the
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superposition theorem ofMarcus andMizel [37] implies thatw ∈ H1
0 (Ω). By the definiton

of γ, we have 0 ≤ w(x) ≤ δ for a.e. Ω and combiningw ∈ H1
0 (Ω)with assumption (H2

A),

w ∈ W η concludes.

Let us decompose the set L into L1 and L2,

L1 = {x ∈ L : ũ(x) < 0} and L2 = {x ∈ L : ũ(x) > δ}.

In particular, L = L1 ∪ L2, and by definition, it follows that

w(x) =


ũ(x), for all x ∈ Ω \ L,

0, for all x ∈ L1,

δ, for all x ∈ L2.

Let us consider the expression

E(w)− E(ũ) = 1

2

[
‖w‖2H1

0
− ‖ũ‖2H1

0

]
+
k

2

∫
Ω

[
w2 − ũ2

]
dx−

∫
Ω

[A(w(x))− A(ũ(x))]dx

= −1

2

∫
L

|∇ũ|2dx+ k

2

∫
L

[w2 − ũ2]dx−
∫
L

[A(w(x))− A(ũ(x))]dx.

On account of k > 0, we have

k

∫
L

[w2 − ũ2]dx = −k
∫
L1

ũ2dx+ k

∫
L2

[δ2 − ũ2]dx ≤ 0.

Taking into consideration that A(s) = 0 for all s ≤ 0, we conclude∫
L1

[A(w(x))− A(ũ(x))]dx = 0.

By means of the Lebourg’s mean value theorem, for a.e. x ∈ L2, there exists θ(x) ∈

[δ, ũ(x)] ⊆ [δ, η] such that

A(w(x))− A(ũ(x)) = A(δ)− A(ũ(x)) = a(θ(x))(δ − ũ(x)),

where a(θ(x)) ∈ ∂A(θ(x)). Due to assumption (H2
A), it turns out that∫

L2

[A(w(x))− A(ũ(x))]dx ≥ 0.

Combining the above estimates, we obtain that E(w)−E(ũ) ≤ 0. On the other side, since

w ∈ W η, claim (i) imply that E(w) ≥ E(ũ) = infW η E , thus every term in the difference

E(w)− E(ũ) should be zero; in particular,∫
L1

ũ2dx =

∫
L2

[ũ2 − δ2]dx = 0.
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The latter relation implies in particular thatm(L) = 0, which is a contradiction, complet-

ing the proof of (ii).

(iii) Since ũ(x) ∈ [0, δ] for a.e. x ∈ Ω, an arbitrarily small perturbation ũ + εv of ũ

with 0 < ε � 1 and v ∈ C∞
0 (Ω) still implies that E(ũ + εv) ≥ E(ũ); accordingly, ũ is a

minimum point for E in the strong topology of H1
0 (Ω), thus 0 ∈ ∂E(ũ). Consequently, it

follows that ũ is a weak solution of the differential inclusion (Dk
A).

Remark 3.2.1. In the sequel we need a truncation function of H1
0 (Ω), see also [30]. To

construct this function, let B(x0, r) ⊂ Ω be the n-dimensional ball with radius r > 0 and

center x0 ∈ Ω. For s > 0, we introduce the function

ws(x) =


0, if x ∈ Ω \B(x0, r);

s, if x ∈ B(x0, r/2);

2s
r
(r − |x− x0|), if x ∈ B(x0, r) \B(x0, r/2).

(3.5)

We observe that ws ∈ H1
0 (Ω), ‖ws‖L∞ = s and

‖ws‖2H1
0
=

∫
Ω

|∇ws|2dx = 4rn−2(1− 2−n)ωns
2 ≡ C(r, n)s2 > 0; (3.6)

hereafter ωn stands for the volume of B(0, 1) ⊂ Rn.

3.3 Proof of Theorems 3.1.1 and 3.1.2

Before giving the proof of Theorems 3.1.1 and 3.1.2, in the first part of this section we

study the following differential inclusion problem −4u(x) + ku(x) ∈ ∂A(u(x)), u(x) ≥ 0, x ∈ Ω;

u(x) = 0, x ∈ ∂Ω,
(Dk

A)

where k > 0 and the locally Lipschitz function A : R+ → R verifies

(H0
0) : A(0) = 0;

(H0
1) : −∞ < lim infs→0+

A(s)
s2

and lim sups→0+
A(s)
s2

= +∞;

(H0
2) : there are two sequences {δi}, {ηi} with 0 < ηi+1 < δi < ηi, limi→∞ ηi = 0, and

max{∂A(s)} := max{ξ : ξ ∈ ∂A(s)} ≤ 0

for every s ∈ [δi, ηi], i ∈ N.
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Theorem 3.3.1. Let k > 0 and assume hypotheses (H0
0), (H0

1) and (H0
2) hold. Then there

exists a sequence {u0i }i ⊂ H1
0 (Ω) of distinct weak solutions of the differential inclusion

problem (Dk
A) such that

lim
i→∞

‖u0i ‖H1
0
= lim

i→∞
‖u0i ‖L∞ = 0.

Proof. We may assume that {δi}i, {ηi}i ⊂ (0, 1). For any fixed number i ∈ N we

define the truncated locally Lipschitz function Ai : R → R by

Ai(s) = A(τηi(s)), (3.7)

where A(s) = 0 for s ≤ 0 and τηi(s) = min(ηi, s).

Applying the truncated locally Lipschitz function Ai(s), i ∈ N instead of A(s) in

(Dk
A), we introduce the problem (Dk

Ai
), and for later usage one can associate the energy

functional with that, namely Ei : H1
0 (Ω) → R, i ∈ N.

We notice that for s ≥ 0, recalling the chain rule, we have

∂Ai(s) =


∂A(s) if s < ηi,

co{0, ∂A(ηi)} if s = ηi,

{0} if s > ηi.

The fact that on the compact set [0, ηi], the upper semicontinuous set-valued map s 7→

∂Ai(s) attains its supremum imply that there existsMAi
> 0 such that

max |∂Ai(s)| := max{|ξ| : ξ ∈ ∂Ai(s)} ≤MAi

for every s ≥ 0, i.e., the assumption (H0
2,Ai

) holds. Applying (H0
1) on [δi, ηi], i ∈ N

implies that (H0
1,Ai

) is verified as well.

Accordingly, the assumptions of Theorem 3.2.1 are clearly verified for every i ∈ N

with [δi, ηi], thus there exists u0i ∈ W ηi such that

u0i is the minimum point of the functional Ei onW ηi , (3.8)

u0i (x) ∈ [0, δi] for a.e. x ∈ Ω, (3.9)

u0i is a solution of (Dk
Ai
).

Taking into account relations above, u0i is a weak solution also for the differential inclusion

problem (Dk
A).

What is still remaining is that there are infinitely many distinct elements in the se-

quence {u0i }i. To conclude it, we first prove the following two lemmas:
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Lemma 3.3.1. If the assumptions of Theorem 3.3.1 hold, we have

Ei(u0i ) < 0 for all i ∈ N. (3.10)

Proof. The left part of (H0
1) implies the existence of some l0 > 0 and ζ ∈ (0, η1) such

that

A(s) ≥ −l0s2 for all s ∈ (0, ζ). (3.11)

We may have L0 > 0 such that

1

2
C(r, n) +

(
k

2
+ l0

)
m(Ω) < L0(r/2)

nωn, (3.12)

where r > 0 and C(r, n) > 0 come from (3.6). Based on the right part of (H0
1), we can

find a sequence {s̃i}i ⊂ (0, ζ) such that s̃i ≤ δi and

A(s̃i) > L0s̃
2
i for all i ∈ N. (3.13)

Let i ∈ N be a fixed number and letws̃i ∈ H1
0 (Ω) be the function from (3.5) corresponding

to the value s̃i > 0. Combining the fact that ws̃i ∈ W ηi , with expressions (3.11), (3.13)

and (3.6) we have

Ei(ws̃i) =
1

2
‖ws̃i‖2H1

0
+
k

2

∫
Ω

w2
s̃i
dx−

∫
Ω

Ai(ws̃i(x))dx

=
1

2
C(r, n)s̃2i +

k

2

∫
Ω

w2
s̃i
dx−

∫
B(x0,r/2)

A(s̃i)dx

−
∫
B(x0,r)\B(x0,r/2)

A(ws̃i(x))dx

≤
[
1

2
C(r, n) +

k

2
m(Ω)− L0(r/2)

nωn + l0m(Ω)

]
s̃2i .

Accordingly, with (3.8) and (3.12), we deduce that

Ei(u0i ) = min
W ηi

Ei ≤ Ei(ws̃i) < 0, (3.14)

which proves the claim. □

Lemma 3.3.2. Under the assumptions of Theorem 3.3.1, we have

lim
i→∞

Ei(u0i ) = 0 for all i ∈ N. (3.15)

Proof. For every i ∈ N, combining the Lebourg’s mean value theorem with relations

(3.7), (3.9) and assumption (H0
0), we can conclude that

Ei(u0i ) ≥ −
∫
Ω

Ai(u
0
i (x))dx = −

∫
Ω

A1(u
0
i (x))dx ≥ −MA1m(Ω)δi.
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Since limi→∞ δi = 0, the latter estimate and (3.14) prove the claim (3.15). □
Based on (3.7) and (3.9), we have that Ei(u0i ) = E1(u0i ) for all i ∈ N. This relation

with (3.10) and (3.15) implies that the sequence {u0i }i contains infinitely many distinct

elements.

We now prove the last statement of the theorem. On one hand, combining the fact that

(3.9) implies ‖u0i ‖L∞ ≤ δi for all i ∈ N with limi→∞ δi = 0, limi→∞ ‖u0i ‖L∞ = 0 clearly

follows. On the other hand, by using k > 0, (3.7), (3.9) and (3.14) we can conclude that

1

2
‖u0i ‖2H1

0
≤ 1

2
‖u0i ‖2H1

0
+
k

2

∫
Ω

(u0i )
2dx <

∫
Ω

Ai(u
0
i (x))dx =

∫
Ω

A1(u
0
i (x))dx

≤MA1m(Ω)δi, for all i ∈ N.

The latter expression with limi→∞ δi = 0 imply that limi→∞ ‖u0i ‖H1
0
= 0, which completes

the proof of Theorem 3.3.1. □
Proof of Theorem 3.1.1. We split the proof into two parts.

(i) Case p = 1. We assume that λ ≥ 0 with λc < −l0 and let us fix λ̃0 ∈ R such that

λc < λ̃0 < −l0.With these choices we define

k := λ̃0 − λc > 0 and A(s) := F (s) +
λ̃0
2
s2 + λ

(
G(s)− c

2
s2
)

for every s ∈ [0,∞).

(3.16)

The fact thatA(0) = 0 implies that the assumption (H0
0) holds. Since p = 1, by assumption

(G0
1) we have

c = lim inf
s→0+

min{∂G(s)}
s

≤ lim sup
s→0+

max{∂G(s)}
s

= c.

In particular, for sufficiently small ε > 0 there exists γ = γ(ε) > 0 such that

max{∂G(s)} − cs < εs, ∀s ∈ [0, γ],

and

min{∂G(s)} − cs > −εs, ∀s ∈ [0, γ].

For s ∈ [0, γ], Lebourg’s mean value theorem and G(0) = 0 imply that there exists

ξs ∈ ∂G(θss) for some θs ∈ [0, 1] such that G(s) − G(0) = ξss. Accordingly, for every

s ∈ [0, γ] we have that

(c− ε)s2 ≤ G(s) ≤ (c+ ε)s2. (3.17)
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Combining (3.17) with the assumption (F 0
1 ) give us

lim inf
s→0+

A(s)

s2
≥ lim inf

s→0+

F (s)

s2
+
λ̃0 − λc

2
+ λ lim inf

s→0+

G(s)

s2

≥ lim inf
s→0+

F (s)

s2
+
λ̃0 − λc

2
+ λc

> −∞

and

lim sup
s→0+

A(s)

s2
≥ lim sup

s→0+

F (s)

s2
+
λ̃0 − λc

2
+ λ lim inf

s→0+

G(s)

s2
= +∞,

which imply that the assumption (H0
1) follows.

The generalized gradient of the locally Lipschitz function A

∂A(s) ⊆ ∂F (s) + λ̃0s+ λ(∂G(s)− cs), (3.18)

with λ ≥ 0 give us

max{∂A(s)} ≤ max{∂F (s) + λ̃0s}+ λmax{∂G(s)− cs}. (3.19)

Since p = 1, combining expression 3.19 with assumptions (F0
2) and (G0

1), the following

estimation follows

lim inf
s→0+

max{∂A(s)}
s

≤ lim inf
s→0+

max{∂F (s)}
s

+ λ̃0 − λc+ λ lim sup
s→0+

max{∂G(s)}
s

≤ l0 + λ̃0

< 0.

Therefore, we may have a sequence {si}i ⊂ (0, 1) converging to 0 such that

max{∂A(si)}
si

< 0,

i.e., max{∂A(si)} < 0 for all i ∈ N. By using the upper semicontinuity of s 7→ ∂A(s),

we may choose two numbers δi, ηi ∈ (0, 1)with δi < si < ηi such that ∂A(s) ⊂ ∂A(si)+

[−εi, εi] for every s ∈ [δi, ηi], where εi := −max{∂A(si)}/2 > 0. In particular, we have

max{∂A(s)} ≤ 0 for all s ∈ [δi, ηi]. Thus, we may fix two sequences {δi}i, {ηi}i ⊂ (0, 1)

such that 0 < ηi+1 < δi < si < ηi, limi→∞ ηi = 0, andmax{∂A(s)} ≤ 0 for all s ∈ [δi, ηi]

and i ∈ N. Accordingly, the assumption (H0
2) is verified as well, thus we are in the position

now that we can apply Theorem 3.3.1 with the inclusion (3.18) and choices (3.16), i.e.,
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there exists a sequence {ui}i ⊂ H1
0 (Ω) of different elements such that

−4ui(x) + (λ̃0 − λc)ui(x) ∈ ∂F (ui(x)) + λ̃0ui(x) + λ(∂G(ui(x))− cui(x)),

x ∈ Ω;

ui(x) ≥ 0, x ∈ Ω;

ui(x) = 0, x ∈ ∂Ω.

In particular, ui solves problem (Dλ), i ∈ N, which completes the proof of (i).

(ii) Case p > 1. Let λ ≥ 0 be arbitrary fixed and choose a number λ0 ∈ (0,−l0). Let

k := λ0 > 0 and A(s) := F (s) + λG(s) + λ0
s2

2
for every s ∈ [0,∞). (3.20)

We can observe that F (0) = G(0) = 0, thus the hypothesis (H0
0) holds.

Since p > 1, assumption (G0
1) gives us that,

lim
s→0+

min{∂G(s)}
s

= lim
s→0+

max{∂G(s)}
s

= 0. (3.21)

In particular, for sufficiently small ε > 0 there exists γ = γ(ε) > 0 such that

max{∂G(s)} − csp < εsp, ∀s ∈ [0, γ]

and

min{∂G(s)} − csp > −εsp, ∀s ∈ [0, γ].

For a fixed s ∈ [0, γ], by Lebourg’s mean value theorem and G(0) = 0 we conclude

again that G(s) − G(0) = ξss. Accordingly, for sufficiently small ε > 0 there exists

γ = γ(ε) > 0 such that (c − ε)sp+1 ≤ G(s) ≤ (c + ε)sp+1 for every s ∈ [0, γ]. Thus,

since p > 1,

lim
s→0+

G(s)

s2
= lim

s→0+

G(s)

sp+1
sp−1 = 0.

Therefore, by using (3.20) and assumption (F0
1), we conclude that

lim inf
s→0+

A(s)

s2
= lim inf

s→0+

F (s)

s2
+ λ lim

s→0+

G(s)

s2
+
λ0
2
> −∞,

and

lim sup
s→0+

A(s)

s2
= ∞,

which means that (H0
1) follows. Combining the generalized gradient of the locally Lips-

chitz function A,

∂A(s) ⊆ ∂F (s) + λ∂G(s) + λ0s, (3.22)
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and λ ≥ 0, we have that

max{∂A(s)} ≤ max{∂F (s)}+max{λ∂G(s) + λ0s}.

Combining expression 3.21 with assumptions (F0
2) and (G0

1), the following estimate

follows

lim inf
s→0+

max{∂A(s)}
s

= lim inf
s→0+

max{∂F (s)}
s

+ λ lim
s→0+

max{∂G(s)}
s

+ λ0

= l0 + λ0

< 0,

and the upper semicontinuity of ∂A implies the existence of two sequences {δi}i and

{ηi}i ⊂ (0, 1) such that 0 < ηi+1 < δi < si < ηi, limi→∞ ηi = 0, and max{∂A(s)} ≤ 0

for all s ∈ [δi, ηi] and i ∈ N; therefore, hypothesis (H0
2) follows. Now we are in the

position that we can apply again Theorem 3.3.1 with the inclusion 3.22 and choises 3.20,

i.e., there is a sequence {ui}i ⊂ H1
0 (Ω) of different elements such that

−4ui(x) + λ0ui(x) ∈ ∂A(ui(x)) ⊆ ∂F (ui(x)) + λ∂G(ui(x)) + λ0ui(x),

x ∈ Ω;

ui(x) ≥ 0, x ∈ Ω;

ui(x) = 0, x ∈ ∂Ω,

which means that ui solves problem (Dλ), i ∈ N. This completes the proof of Theorem

3.1.1. □

Proof of Theorem 3.1.2. The proof is done in two steps:

(i) We use the same assumptions and definitions as in the proof of Theorem 3.1.1 (ii),

i.e. we assume λ0 ∈ (0,−l0), λ ≥ 0 and similarly to the proof of Theorem 3.1.1, let us

define

k := λ0 > 0 and Aλ(s) := F (s) + λG(s) + λ0
s2

2
for every s ∈ [0,∞). (3.23)

The generalized gradient of the locally Lipschitz function A for every s ≥ 0 is given by

∂Aλ(s) ⊆ ∂F (s) + λ0s+ λ∂G(s).

On account of the assumption (F0
2), there is a sequence {si}i ⊂ (0, 1) converging to 0

such that

max{∂Aλ=0(si)} ≤ max{∂F (si)}+ λ0si < 0.
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Thus, due to the upper semicontinuity of (s, λ) 7→ ∂Aλ(s), we can choose three sequences

{δi}i, {ηi}i, {λi}i ⊂ (0, 1) such that 0 < ηi+1 < δi < si < ηi, limi→∞ ηi = 0, and

max{∂Aλ(s)} ≤ 0 for all λ ∈ [0, λi], s ∈ [δi, ηi], i ∈ N.

Without any loss of generality, we may choose

δi ≤ min{i−1, 2−1i−2[1 +m(Ω)(max
s∈[0,1]

|∂F (s)|+ max
s∈[0,1]

|∂G(s)|)]−1}. (3.24)

For every i ∈ N and λ ∈ [0, λi], let Aλ
i : [0,∞) → R be defined as

Aλ
i (s) = Aλ(τηi(s)), (3.25)

and the energy functional Ei,λ : H1
0 (Ω) → R associated with the differential inclusion

problem (Dk
Aλ

i
) is given by

Ei,λ(u) =
1

2
‖u‖2H1

0
+
k

2

∫
Ω

u2dx−
∫
Ω

Aλ
i (u(x))dx.

Similarly to the proof of Theorem 3.1.1, it can be proved that for every i ∈ N and λ ∈

[0, λi], the function Aλ
i verifies the hypotheses of Theorem 3.2.1. Accordingly, for every

i ∈ N and λ ∈ [0, λi]:

Ei,λ attains its infinum onW ηi at some u0i,λ ∈ W ηi (3.26)

u0i,λ(x) ∈ [0, δi] for a.e. x ∈ Ω; (3.27)

u0i,λ is a weak solution of (Dk
Aλ

i
). (3.28)

By the choice of the function Aλ and k > 0, u0i,λ is also a solution to the differential

inclusion problem (Dk
Aλ), so (Dλ), thus the claim follows.

(ii) It is clear that for λ = 0, the set-valued map ∂Aλ
i = ∂A0

i verifies the hypotheses of

Theorem 3.3.1. In particular, Ei := Ei,0 is the energy functional associated with problem

(Dk
A0

i
). Consequently, the elements u0i := u0i,0 verify not only (3.26)-(3.28) but also

Ei(u0i ) = min
W ηi

Ei ≤ Ei(ws̃i) < 0 for all i ∈ N. (3.29)

Similarly to Kristály and Moroşanu [30], we may find a {θi}i sequence with negative

terms such that limi→∞ θi = 0. Due to the expression (3.29) we conclude that

θi < Ei(u0i ) ≤ Ei(ws̃i) < θi+1. (3.30)
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Let us choose

λ
′

i =
θi+1 − Ei(ws̃i)

m(Ω)maxs∈[0,1] |G(s)|+ 1
and λ′′

i =
Ei(u0i )− θi

m(Ω)maxs∈[0,1] |G(s)|+ 1
, i ∈ N,

and for a fixed k ∈ N, set

λ0k = min(1, λ1, ..., λk, λ1
′
, ..., λk

′
, λ1

′′
, ..., λk

′′
) > 0.

Having in our mind these choices, for every i ∈ {1, ...., k} and λ ∈ [0, λ0k] we have

Ei,λ(u0i,λ) ≤ Ei,λ(ws̃i) =
1

2
‖ws̃i‖2H1

0
−
∫
Ω

F (ws̃i(x))dx− λ

∫
Ω

G(ws̃i(x))dx

= Ei(ws̃i)− λ

∫
Ω

G(ws̃i(x))dx

< θi+1, (3.31)

and due to u0i,λ ∈ W ηi and to the fact that u0i is the minimum point of Ei on the setW ηi,

by the expression (3.30), we also have

Ei,λ(u0i,λ) = Ei(u0i,λ)− λ

∫
Ω

G(u0i,λ(x))dx ≥ Ei(u0i )− λ

∫
Ω

G(u0i,λ(x))dx > θi. (3.32)

Therefore, by estimations (3.31) and (3.32), for every i ∈ {1, ..., k} and λ ∈ [0, λ0k], we

can find

θi < Ei,λ(u0i,λ) < θi+1,

thus

E1,λ(u01,λ) < ... < Ek,λ(u0k,λ) < 0.

We observe that u0i ∈ W η1 for every i ∈ {1, ..., k}, so Ei,λ(u0i,λ) = E1,λ(u0i,λ) because of

the truncated function Aλ
i (s), see (3.25). Therefore, it follows that for every λ ∈ [0, λ0k],

E1,λ(u01,λ) < ... < E1,λ(u0k,λ) < 0 = E1,λ(0).

Based on these inequalities, it turns out that the elements u01,λ, ..., u0k,λ are distinct and

non-trivial whenever λ ∈ [0, λ0k].

Now, we are going to prove the estimate (3.1). We have for every i ∈ {1, ..., k} and

λ ∈ [0, λ0k]:

E1,λ(u0i,λ) = Ei,λ(u0i,λ) < θi+1 < 0.
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By Lebourg’s mean value theorem and the estimation (3.24), we have for every i ∈

{1, ..., k} and λ ∈ [0, λ0k] that

1

2
‖u0i,λ‖2H1

0
<

∫
Ω

F (u0i,λ(x))dx+ λ

∫
Ω

G(u0i,λ(x))dx

≤ m(Ω)δi[max
s∈[0,1]

|∂F (s)|+ max
s∈[0,1]

|∂G(s)|]

≤ 1

2i2
.

This completes the proof of Theorem 3.1.2. □

3.4 Proof of Theorems 3.1.3 and 3.1.4

We consider again the differential inclusion problem −4u(x) + ku(x) ∈ ∂A(u(x)), u(x) ≥ 0, x ∈ Ω;

u(x) = 0, x ∈ ∂Ω,
(Dk

A)

where k > 0 and the locally Lipschitz function A : R+ → R verifies

(H∞
0 ) : A(0) = 0;

(H∞
1 ) : −∞ < lim infs→∞

A(s)
s2

and lim sups→∞
A(s)
s2

= +∞;

(H∞
2 ) : there are two sequences {δi}, {ηi} with 0 < δi < ηi < δi+1, limi→∞ δi = ∞, and

max{∂A(s)} := max{ξ : ξ ∈ ∂A(s)} ≤ 0

for every s ∈ [δi, ηi], i ∈ N.

The counterpart of Theorem 3.3.1 reads as follows.

Theorem 3.4.1. Let k > 0 and assume the hypotheses (H∞
0 ), (H∞

1 ) and (H∞
2 ) hold. Then

the differential inclusion problem (Dk
A) admits a sequence {u∞i }i ⊂ H1

0 (Ω) of distinct

weak solutions such that

lim
i→∞

‖u∞i ‖L∞ = ∞. (3.33)

Proof. The proof is similar to the one performed in Theorem 3.3.1; we shall show

the differences only. We associate the energy functional Ei : H1
0 (Ω) → R with problem

(Dk
Ai
), where Ai : R → R is given by

Ai(s) = A(τηi(s)), (3.34)
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with A(s) = 0 for s ≤ 0. One can show that there existsMAi
> 0 such that

max |∂Ai(s)| := max{|ξ| : ξ ∈ ∂Ai(s)} ≤MAi

for all s ≥ 0, i.e, hypothesis (H∞
1,Ai

) holds. Moreover, (H∞
2,Ai

) follows by (H∞
2 ). Thus,

Theorem 3.3.1 can be applied for all i ∈ N, i.e., we have an element u∞i ∈ W ηi such that

u∞i is the minimum point of the functional Ti onW ηi , (3.35)

u∞i (x) ∈ [0, δi] for a.e. x ∈ Ω,

u∞i is a weak solution of (Dk
Ai
).

By (3.34), u∞i turns to be a weak solution also for differential inclusion problem (Dk
A).

In what follows, we prove that there are infinitely many distinct elements in the se-

quence {u∞i }i.

Lemma 3.4.1. Under the assumptions of the Theorem 3.4.1, we have

lim
i→∞

Ei(u∞i ) = −∞. (3.36)

Proof. By the left part of (H∞
1 ) we can find lA∞ > 0 and ζ > 0 such that

A(s) ≥ −lA∞ for all s > ζ . (3.37)

Let us choose LA
∞ > 0 large enough such that

1

2
C(r, n) +

(
k

2
+ lA∞

)
m(Ω) < LA

∞(r/2)nωn. (3.38)

On account of the right part of (H∞
1 ), one can fix a sequence {s̃i}i ⊂ (0,∞) such that

limi→∞ s̃i = ∞ and

A(s̃i) > LA
∞s̃i

2 for every i ∈ N. (3.39)

We know from (H∞
2 ) that limi→∞ δi = ∞, therefore one has a subsequence {δmi

}i of

{δi}i such that s̃i ≤ δmi
for all i ∈ N. Let i ∈ N, and recall wsi ∈ H1

0 (Ω) from (3.5) with

si := s̃i > 0. Then ws̃i ∈ W ηmi and according to (3.6), (3.37) and (3.39) we have

Emi(ws̃i) =
1

2
‖ws̃i‖2H1

0
+
k

2

∫
Ω

w2
s̃i
dx−

∫
Ω

Ami
(ws̃i(x))dx

=
1

2
C(r, n)s̃2i +

k

2

∫
Ω

w2
s̃i
dx−

∫
B(x0,r/2)

A(s̃i)dx

−
∫
(B(x0,r)\B(x0,r/2))∩{ws̃i

>ζ}
A(ws̃i(x))dx

−
∫
(B(x0,r)\B(x0,r/2))∩{ws̃i

≤ζ}
A(ws̃i(x))dx

≤
[
1

2
C(r, n) +

k

2
m(Ω)− LA

∞(r/2)nωn + lA∞m(Ω)

]
s̃2i + M̃Am(Ω)ζ,
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where M̃A = max{|A(s)| : s ∈ [0, ζ]} does not depend on i ∈ N. This estimate combined

by (3.38) and limi→∞ s̃i = ∞ yields that

lim
i→∞

Emi
(ws̃i) = −∞.

By equation (3.35), one has

Emi
(u∞mi

) = min
W ηmi

Emi
≤ Emi

(ws̃i),

thus our claim holds. □
We notice that the sequence {Ei(u∞i )}i is non-increasing. Indeed, let i < k; due to

(3.34) one has that

Ei(u∞i ) = min
W ηi

Ei = min
W ηi

Ek ≥ min
W ηk

Ek = Ek(u∞k ),

which completes the proof of (3.36).

The proof of (3.33) goes in a similar way as in [30]. □

Proof of Theorem 3.1.3. We split the proof into two parts.

(i) Case p = 1. Let λ ≥ 0 with λc < −l∞ and fix λ̃∞ ∈ R such that λc < λ̃∞ < −l∞.

With these choices, we define

k := λ̃∞ − λc > 0 and A(s) := F (s) +
λ̃∞
2
s2 + λ

(
G(s)− c

2
s2
)

for every s ∈ [0,∞).

(3.40)

It is clear that A(0) = 0, i.e., (H∞
0 ) is verified. A similar argument for the p-order pertur-

bation ∂G as before shows that

lim inf
s→∞

A(s)

s2
≥ lim inf

s→∞

F (s)

s2
+
λ̃∞ − λc

2
+ λ lim inf

s→∞

G(s)

s2

≥ lim inf
s→∞

F (s)

s2
+
λ̃∞ − λc

2
+ λc > −∞,

and

lim sup
s→∞

A(s)

s2
≥ lim sup

s→∞

F (s)

s2
+
λ̃∞ − λc

2
+ λ lim inf

s→∞

G(s)

s2
= +∞,

i.e., (H∞
1 ) is verified.

Since

∂A(s) ⊆ ∂F (s) + λ̃∞s+ λ(∂G(s)− cs), s ≥ 0, (3.41)
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it turns out that

lim inf
s→∞

max{∂A(s)}
s

≤ lim inf
s→∞

max{∂F (s)}
s

+ λ̃∞ − λc+ λ lim sup
s→∞

max{∂G(s)}
s

= l∞ + λ̃∞

< 0.

By using the upper semicontinuity of s 7→ ∂A(s), two sequences {δi}i, {ηi}i ⊂ (0,∞)

can be fixed such that 0 < δi < si < ηi < δi+1, limi→∞ δi = ∞, and max{∂A(s)} ≤ 0

for all s ∈ [δi, ηi] and i ∈ N. Thus, (H∞
2 ) is verified as well. By applying the inclusion

(3.41) and Theorem 3.3.1 with the choice (3.40), there exists a sequence {ui}i ⊂ H1
0 (Ω)

of different elements such that

−4ui(x) + (λ̃∞ − λc)ui(x) ∈ ∂F (ui(x)) + λ̃∞ui(x) + λ(∂G(ui(x))− cui(x)),

x ∈ Ω;

ui(x) ≥ 0, x ∈ Ω;

ui(x) = 0, x ∈ ∂Ω,

i.e., ui solves problem (Dλ), i ∈ N.

(ii) Case p < 1. Let λ ≥ 0 be arbitrary fixed and choose a number λ∞ ∈ (0,−l∞).

Let

k := λ∞ > 0 and A(s) := F (s) + λG(s) + λ∞
s2

2
for every s ∈ [0,∞). (3.42)

Since F (0) = G(0) = 0, hypothesis (H∞
0 ) clearly holds. Moreover, by (G∞

1 ), for suffi-

ciently small ε > 0 there exists s0 > 0, such that (c − ε)sp+1 ≤ G(s) ≤ (c + ε)sp+1 for

every s > s0. Thus, since p < 1,

lim
s→∞

G(s)

s2
= lim

s→∞

G(s)

sp+1
sp−1 = 0.

Accordingly, by using (3.42) we obtain that hypothesis (H∞
1 ) holds. A similar argument

as above implies that

lim inf
s→∞

max{∂A(s)}
s

≤ l0 + λ∞ < 0,

and the upper semicontinuity of ∂A implies the existence of two sequences {δi}i and

{ηi}i ⊂ (0, 1) such that 0 < δi < si < ηi < δi+1, limi→∞ δi = ∞, and max{∂A(s)} ≤ 0

for all s ∈ [δi, ηi] and i ∈ N. Therefore, hypothesis (H∞
2 ) holds. Now, we can apply
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Theorem 3.3.1, i.e., there is a sequence {ui}i ⊂ H1
0 (Ω) of different elements such that

−4ui(x) + λ∞ui(x) ∈ ∂A(ui(x)) ⊆ ∂F (ui(x)) + λ∂G(ui(x)) + λ∞ui(x),

x ∈ Ω;

ui(x) ≥ 0, x ∈ Ω;

ui(x) = 0, x ∈ ∂Ω,

which means that ui solves problem (Dλ), i ∈ N, which completes the proof. □

Proof of Theorem 3.1.4. The proof is done in two steps:

(i) Let λ∞ ∈ (0,−l∞), λ ≥ 0 and define

k := λ∞ > 0 and Aλ(s) := F (s) + λG(s) + λ∞
s2

2
for every s ∈ [0,∞).

One has clearly that ∂Aλ(s) ⊆ ∂F (s) + λ∞s + λ∂G(s) for every s ∈ R. On account of

(F∞
2 ), there is a sequence {si}i ⊂ (0,∞) converging to∞ such that

max{∂Aλ=0(si)} ≤ max{∂F (si)}+ λ∞si < 0.

By the upper semicontinuity of (s, λ) 7→ ∂Aλ(s), let the sequences {δi}i, {ηi}i, {λi}i ⊂

(0,∞) such that 0 < δi < si < ηi < δi+1, limi→∞ δi = ∞, and

max{∂Aλ(s)} ≤ 0

for all λ ∈ [0, λi], s ∈ [δi, ηi] and i ∈ N.

For every i ∈ N and λ ∈ [0, λi], let Aλ
i : [0,∞) → R be defined by

Aλ
i (s) = Aλ(τηi(s)), (3.43)

and accordingly, the energy functional Ei,λ : H1
0 (Ω) → R associated with the differential

inclusion problem(Dk
Aλ

i
) is

Ei,λ(u) =
1

2
‖u‖2H1

0
+
k

2

∫
Ω

u2dx−
∫
Ω

Aλ
i (u(x))dx.

Then for every i ∈ N and λ ∈ [0, λi], the function Aλ
i clearly verifies the hypotheses of

Theorem 3.2.1. Accordingly, for every i ∈ N and λ ∈ [0, λi] there exists

Ei,λ attains its infimum at some ũ∞i,λ ∈ W ηi (3.44)

ũ∞i,λ ∈ [0, δi] for a.e. x ∈ Ω;
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ũ∞i,λ(x) is a weak solution of (Dk
Aλ

i
). (3.45)

Due to (3.43), ũ∞i,λ is not only a solution to (Dk
Aλ

i
) but also to the differential inclusion

problem (Dk
Aλ), so (Dλ).

(ii) For λ = 0, the function ∂Aλ
i = ∂A0

i verifies the hypotheses of Theorem 3.3.1.

Moreover, Ei := Ei,0 is the energy functional associated with problem (Dk
A0

i
). Conse-

quently, the elements u∞i := u∞i,0 verify not only (3.44)-(3.45) but also

Emi
(u∞mi

) = min
W ηmi

(Emi
) ≤ Emi

(ws̃i) for all i ∈ N, (3.46)

where the subsequence {u∞mi
}i of {u∞i }i and ws̃i ∈ W ηi appear in the proof of Theorem

3.4.1.

Similarly to Kristály and Moroşanu [30], let {θi}i be a sequence with negative terms

such that limi→∞ θi = −∞. On account of (3.46) we may assume that

θi+1 < Emi
(u∞mi

) ≤ Emi
(ws̃i) < θi. (3.47)

Let

λ
′

i =
θi − Emi

(ws̃i)

m(Ω)maxs∈[0,1] |G(s)|+ 1
and λ′′

i =
Emi

(u∞mi
)− θi+1

m(Ω)maxs∈[0,1] |G(s)|+ 1
, i ∈ N,

and for a fixed k ∈ N, we set

λ∞k = min(1, λ1, ..., λk, λ1
′
, ..., λk

′
, λ1

′′
, ..., λk

′′
) > 0.

Then, for every i ∈ {1, ...., k} and λ ∈ [0, λ∞k ], due to (3.47) we have that

Emi,λ(ũ
∞
mi,λ

) ≤ Emi,λ(ws̃i)

=
1

2
‖ws̃i‖2H1

0
−
∫
Ω

F (ws̃i(x))dx− λ

∫
Ω

G(ws̃i(x))dx

= Emi
(ws̃i)− λ

∫
Ω

G(ws̃i(x))dx

< θi.

Similarly, since ũ∞mi,λ
∈ W ηmi and u∞mi

is the minimum point of Ti on the set W ηmi , on

account of (3.47) we have

Emi,λ(ũ
∞
mi,λ

) = Emi
(ũ∞mi,λ

)− λ

∫
Ω

G(ũ∞mi,λ
)dx

≥ Emi
(u∞mi

)− λ

∫
Ω

G(ũ∞mi,λ
)dx

> θi+1.
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Therefore, for every i ∈ {1, ..., k} and λ ∈ [0, λ∞k ],

θi+1 < Emi,λ(ũ
∞
mi,λ

) < θi < 0,

thus

Emk,λ(ũ
∞
mk,λ

) < ... < Em1,λ(ũ
∞
m1,λ

) < 0.

Because of (3.43), we notice that ũ∞mi,λ
∈ W ηmk for every i ∈ {1, ..., k}, thus Emi,λ(ũ

∞
mi,λ

) =

Emk,λ(ũ
∞
i,λ). Therefore, for every λ ∈ [0, λ∞k ],

Emk,λ(ũ
∞
mk,λ

) < ... < Emk,λ(ũ
∞
m1,λ

) < 0 = Emk,λ(0),

i.e, the elements ũ∞m1,λ
, ..., ũ∞mk,λ

are distinct and non-trivial whenever λ ∈ [0, λ∞k ]. The

estimate (3.4) follows in a similar manner as in [30]. □



Chapter 4

A non-smooth Neumann problem on

compact Riemannian manifolds

In many cases, a recent Ricceri result [44] can be easily invoked to solve partial differential

equations involving C1 functions; for a non-smooth version, see Kristály, Marzantowicz

and Varga [25]. Extending their results in several aspects, the aim of this chapter is to

present an application of the non-smooth Ricceri’s multiplicity theorem [25] to discuss a

differential inclusion problem on a compact Riemannian manifolds.

In section 4.1 our main result is established, while section 4.2 stands for its proof. This

chapter summerizes results of Szilák [48].

4.1 Main results

Let (M, g) be a connected, compact Riemannian manifold of dimension n ≥ 3 with

boundary ∂M . Introducing notations 2∗ = 2n
n−2

and 2
∗
= 2(n−1)

n−2
, we study the follow-

ing inhomogeneous Neumann boundary differential inclusion problem −∆gu(x) + k(x)u ∈ λK(x)∂F (u(x)), x ∈M ;

∂u
∂n ∈ µD(x)∂G(u(x)), x ∈ ∂M,

(Dλ,µ)

where k,K : M → R and D : ∂M → R are positive continuous functions, µ and

λ > 0, ∆g denotes the Laplace-Beltrami operator on (M, g), ∂
∂n is the normal derivative

with respect to the outward normal n on ∂M . In addition, F and G are locally Lipschitz

functions, ∂F and ∂G denote their generalized gradients in the sense of Clarke and we

assume they verify the following conditions:

42
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(F0) : F (0) = 0 and there exists C1 > 0 and p ∈ [2, 2∗) such that

|ξ| ≤ C1(1 + |s|p−1), ∀ξ ∈ ∂F (s), s ∈ R;

(F1) : lim sups→0
max{|ξ|:ξ∈∂F (s)}

s
= 0;

(F2) : lim sup|s|→∞
F (s)
s2

≤ 0;

(F3) : there exists s0 ∈ R such that F (s0) > 0;

(G0) : there exists C2 > 0 and q ∈ [2, 2
∗
) such that

|ξ| ≤ C2(1 + |s|q−1), ∀ξ ∈ ∂G(s), s ∈ R.

Example 4.1.1. The function F (s) = min{s3,
√
s} is locally Lipschitz and one can prove

that it satisfies conditions (F0)− (F3) for p = 2.

Remark 4.1.1. Let us note that whenever K(x)/k(x) = C3 and D(x) = C4 for some

constants C3, C4 > 0, furthermore s ∈ R solves the inclusion system formed by s ∈

C3λ∂F (s) and 0 ∈ ∂G(s) for some λ > 0, then the constant function u(x) = s, x ∈ M,

verifies both inclusions in (Dλ,µ).

Let us introduce the norm

‖u‖k =
(∫

M

|∇u|2dvg +
∫
M

k(x)u2dvg
) 1

2

.

Let denote αm = minx∈M k(x), αM = maxx∈M k(x) andKM = maxx∈M K(x). Now we

can give the following estimation for ‖ · ‖k:

min{1,
√
αm}‖u‖H1 ≤ ‖u‖k ≤ max{1,

√
αM}‖u‖H1 ,

which means that ‖ · ‖k turns out to be equivalent to the ‖ · ‖H1-norm.

The energy functional Eλ,µ : H1(M) → R associated with (Dλ,µ) is defined by

Eλ,µ(u) = N (u) + λF(u) + µG(u),

where

N =
1

2
‖u‖2k,

F(u) = −
∫
M

K(x)F (u(x))dνg,

G(u) = −
∫
∂M

D(x)H(u(x))dνg.
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One can prove that the energy functional is well defined and locally Lipschitz.

We say that u ∈ H1(M) is a weak solution of the problem (Dλ,µ) if there exists mea-

surable mappings x 7→ ξx ∈ ∂F (u(x)) and x 7→ ηx ∈ ∂G(u(x)) such that for all the test

function w ∈ H1(M) the functions x 7→ λK(x)ξxw(x) and x 7→ µD(x)ηxw(x) belong

to L1(M) and∫
M

∇gu(x)∇gw(x)dvg +
∫
M

k(x)u(x)w(x)dvg = λ

∫
M

K(x)ξxw(x)dvg,

together with ∫
∂M

∂u

∂n
w(x)dσg = µ

∫
∂M

D(x)ηxw(x)dσg,

where σg stands for the surface measure on ∂M. According to Chang [11], the critical

points of the energy functional Eλ,µ are the solutions of our problem (Dλ,µ); see also

Kristály, Marzantowicz and Varga [25].

We present the main result of this chapter:

Theorem 4.1.1. (Szilák [48]) Let F : M → R and G : M → R be functions that fulfill

the assumptions (F0) − (F3) and (H0), respectively. Then there exist a number η and a

non-degenerate compact interval A ⊂ (0,+∞) such that for every λ ∈ A there exists

µ0 ∈ (0, λ + 1] so that whenever µ is small enough i.e. µ ∈ [0, µ0], the inclusion (Dλ,µ)

has at least three solutions which are in norm less than η.

The proof of Theorem 4.1.1 uses the non-smooth variational calculus recalled in sub-

section 2.4.1 together with Theorem 2.4.3; the main ingredients are the three critical points

theorem of Ricceri for locally Lipschitz functions and the non-smooth Palais-Smale con-

dition.

4.2 Proof of Theorem 4.1.1

We assume the assumptions of Theorem 4.1.1 are fulfilled. First we need a lemma, whose

proof requires the function

β(t) = inf{F(u) : u ∈ H1(M),N (u) < t}.

Lemma 4.2.1. We have that

lim
t→0+

β(t)

t
= 0. (4.1)
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Proof. The proof is similar to that in Kristály, Marzantowicz and Varga [25]. Com-

bining Lebourg’s Mean-Value Theorem with assumptions (F0) and (F1), for any ε > 0

one has Lε > 0 such that

|F (t)| ≤ C1εt
2 + C1Lε|t|p for all t ∈ R.

Thus, we obtain that

F(u) ≥ −C1εKM‖u‖2H1 − C1KMLεK
p
p‖u‖

p
H1 , (4.2)

where Kp > 0 denotes the constant in the continuous Sobolev embedding H1(M) ↪→

Lp(M).

Let us define a set for t > 0 by

S = {u ∈ H1(M) : ‖u‖2H1 < 2t}.

Let t > 0. We recall the fact that ‖·‖k is equivalent to ‖·‖H1-norm, consequently applying

(4.2) it turns out that

0 ≥ infu∈S F(u)

t
≥ −C12εKM − C1KMLεK

p
p2

p
2 t

p
2
−1,

which clearly proves Lemma 4.2.1 due to arbitrariness of ε and by the fact that t→ 0+. □

Recalling (F3), let us define a function u0 ∈ H1(M) by u0 := s0 for all x ∈ M .

Thus, if we combine the fact that F (0) = 0 with F (s0) > 0, s0 6= 0, gives the estimate

F(u0) < 0. Accordingly, applying (4.1) one can fix t0 ∈ (0,N (u0)) and ρ0 > 0 such that

−β(t0) < ρ0 < −t0
F(u0)

N (u0)
< −F(u0). (4.3)

At this point we define the function γ : H1(M)× I → R by

γ(u, λ) = N (u) + λF + λρ0, where I = [0,∞).

Similarly to Kristály, Marzantowicz and Varga [25], applying (4.3), the following lemma

can be easily proved.

Lemma 4.2.2. We have that

sup
λ∈I

inf
u∈H1(M)

γ(u, λ) < inf
u∈H1(M)

sup
λ∈I

γ(u, λ).

In what follows, fixing a linear function around the origin g ∈ Gτ , τ ≥ 0 (see [25]),

we study the analytic properties of the modified energy functional Ẽµ,λ : H1(M) → R,

namely

Ẽµ,λ(u) =
1

2
‖u‖2k + λF(u) + µ(g ◦ G)(u).
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4.2.1 Analytic characteristics of Ẽµ,λ

We shall prove that the modified energy functional Ẽµ,λ is coercive, bounded from below

and satisfies the Palais-Smale compactness condition.

It turns out that Ẽµ,λ is locally Lipschitz and well-defined, furthermore applying (F2)

one can prove that 1
2
‖ · ‖2k + λF is coercive. Consequently it follows that Ẽµ,λ is coercive

as well.

Lemma 4.2.3. The locally Lipschitz functional Ẽµ,λ satisfies (PS)c condition at every level

c ∈ R.

Proof. Let a series {uk}k be a Palais-Smale sequence for Ẽµ,λ, i.e. m(uk) → 0 as k → 0,

where m(uk) = min{‖ξ‖∗ : ξ ∈ ∂Ẽµ,λ(uk)}. Since the modified energy functional is

coercive, the sequence {uk} is bounded on H1(M). Thus, up to a subsequent, {uk}k
converges weakly in H1(M) and strongly in Lp(M), p ∈ [2, 2∗) and in Lq(∂M), q ∈

[2, 2
∗
). Our objective is to show that for up to a subsequence, {uk}k converges strongly

in H1(M).

The generalized directional derivative of the modified energy functional for all u, v ∈

H1(M) is given by

(Ẽµ,λ)◦(u, v) ≤
1

2
〈N ′

(u); v〉+ λF◦(u, v) + µ(g ◦ G)◦(u, v).

Calling latter inequality with parameters u = uk and v = u−uk, then u = u and v = uk−u

one has

N (uk − u) ≤ λ
(
F◦(uk, u− uk) + F◦(u, uk − u)

)
+ µ
(
(g ◦ G)◦(uk, u− uk) + (g ◦ G)◦(u, uk − u)

)
− Ẽ◦

µ,λ(uk, u− uk)− Ẽ◦
µ,λ(u, uk − u).

On one hand, sincem(uk) → 0, it follows that

lim
k→∞

inf
(
Ẽ◦
µ,λ(u, uk − u) + Ẽ◦

µ,λ(uk, u− uk)
)
≥ 0.

On the other hand, combining the fact that uk → u in Lp(M) and in Lq(∂M) with the

upper semicontinuity of F◦(·, ·) imply that lim supk→∞ F◦(uk, u − uk) ≤ F◦(u, 0) = 0.

Similarly, lim supk→∞ G◦(uk, u− uk) ≤ 0 follows.

Combining estimations above with the fact thatN (uk−u) ≥ 0we obtain that u→ uk

strongly in H1(M), which imply that the (PS)c condition follows.



CHAPTER 4. INCLUSION WITH NEUMANN BOUNDARY 47

4.3 Three critical points

At this point we can apply the non-smooth critical points theorem, see Theorem 2.4.3,

by choosing X = H1(M), X̃1 = Lp(M), X̃2 = Lq(∂M) with p ∈ [2, 2∗), q ∈ [2, 2
∗
),

Λ = I = [0,+∞), h(t) = t2

2
, t ≥ 0 and let us fix g ∈ Gτ , τ ≥ 0, λ ∈ Λ and µ ∈ [0, λ+1].

Thus, since 1
2
‖ · ‖2 + λF is coercive onH1(M) for all λ ∈ I , the Lemma 4.2.2 holds and

the functional Ẽµ,λ(u) = 1
2
‖u‖2k + λF(u) + µ(g ◦ G)(u) for all u ∈ H1(M) fulfills the

(PS)c condition, we have at least three critical points with H1(M) norm less than η and

Theorem 4.1.1 follows. □

Remark 4.3.1. Differential inclusions of the above type can be investigated also in the

setting of Finsler manifolds, see [38]; for unity of the exposition, we do not enter into

details.



Part II

Differential inclusions - non-compact

case
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Chapter 5

Elliptic differential inclusions on

non-compact Riemannian manifolds

PDEs may appear not only on bounded domains of Euclidean structures; physical and

mechanical phenomena quite frequently require the application of inclusion problems on

the broad class of curved spaces. Considering a complete, n-dimensional, non-compact

Riemannian manifold (M, g) with certain curvature restrictions (n ≥ 3), we study the

following differential inclusion problem

Lu(x) = −∆gu(x)− µ
u(x)

d2g(x0, x)
+ u(x) ∈ λα(x)∂F (u(x)), x ∈M. (D)

Here L denotes an elliptic type operator, ∆g represents the Laplace-Beltrami operator on

(M, g), dg :M ×M → R is the distance function associated with the Riemannian metric

g, x0 ∈ M is a fixed point, µ, λ ∈ R are some parameters. The function α : M → R is

a measurable potential, F : R → R is a locally Lipschitz function and ∂F stands for the

Clarke subdifferential of F .

On one hand, variational elliptic differential inclusions as (D) – or slightly different

versions of them formulated in terms of variational-hemivariational inequalities – have

been subject of several investigation in the last three decades, mostly in Euclidean spaces

(both for bounded and unbounded domains), see e.g. Kristály and Varga [33], Liu, Liu and

Motreanu [35], Liu, Livrea, Motreanu and Zeng [36], etc. On the other hand, various forms

of (D) have been investigated both on compact and non-compact Riemannian manifolds

(mostly without the singular term), see e.g. Berchio, Ferrero and Grillo [7], Bonanno,

Molica Bisci and Rădulescu [8], etc.

49
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We consider problem (D) under two different curvature conditions. More precisely,

we assume that the Riemannian manifold (M, g) satisfies one of the following conditions:

(i) Cartan-Hadamard manifold,

(ii) The Ricci curvature is non-negative.

This chapter is devoted to focus on non-existence, existence and multiplicity results

for the differential inclusion problem (D) by assuming curvature hypothesis (i) or (ii),

together with additional grows conditions on the locally Lipschitz functionF (at the origin

and infinity). It turns out that the variational methods cannot be used directly. Indeed,

since suchmanifolds are not compact, it is not possible to use certain Sobolev embeddings;

as we mentioned in the introduction, the lack of compactness has to be compensated with

the application of isometric actions and the principle of symmetric criticality.

The chapter is organized as follows. In section 5.2 we prove a non-existence result,

established within Theorem 5.1.1. In section 5.3 we discuss our first existence/multiplicity

results in the sub-quadratic case, by proving Theorem 5.1.2. Finally, section 5.4 is devoted

to handle the super-quadratic case, i.e., Theorem 5.1.3.

This chapter summerize results of Kristály, Mezei, and Szilák [28].

5.1 Main theorems

First, we discuss non-existence results under the above special curvature conditions; to do

this, we assume on the potential α :M → R that

(Hα) : α ≥ 0 and α ∈ L1(M) ∩ L∞(M) \ {0},

and additionally on the locally Lipschitz function F : R → R that

(H0) : there exists C0 > 0 such that

|ξ| ≤ C0|t|, ∀ξ ∈ ∂F (t), t ∈ R.

In the sequel we need the definition of the weak solution associated to the problem (D):

an element u ∈ H1(M) is a weak solution of (D) if there exists a measurable selection

x 7→ ξx ∈ ∂F (u(x)) such that the map x 7→ α(x)ξxw(x) belongs to L1(M) for every
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test-function w ∈ H1(M) and one has∫
M

∇gu(x)∇gw(x)dvg − µ

∫
M

u(x)w(x)

d2g(x0, x)
dvg +

∫
M

u(x)w(x)dvg (5.1)

= λ

∫
M

α(x)ξxw(x)dvg.

The first result of the present chapter reads as follows.

Theorem 5.1.1. (Kristály, Mezei, and Szilák [28]) (Non-existence) Let (M, g) be an n-

dimensional complete non-compact Riemannian manifold, n ≥ 3, and assume that the

potential α : M → R and the locally Lipschitz function F : R → R satisfy assump-

tions (Hα) and (H0), respectively. Assume in addition that one of the following curvature

conditions holds:

(i) K ≤ −κ for some κ ≥ 0, (M, g) is simply connected and

(i1) either κ = 0, µ ≤ (n−2)2

4
and |λ|C0‖α‖L∞ ≤ 1,

(i2) orκ > 0, µ ≤ (n−2)2

4
and (n−2)2(|λ|C0‖α‖L∞−1) ≤ (n−1)2

(
(n−2)2

4
− µ+

)
κ,

where µ+ = max(µ, 0);

(ii) Ric(M,g) ≥ 0, µ ≤ AVR
2
n

(M,g)
(n−2)2

4
and |λ|C0‖α‖L∞ ≤ 1.

Then the differential inclusion (D) has only the zero solution.

The proof of Theorem 5.1.1 is based on a direct computation combined with Hardy-

type inequalities and sharp spectral gap estimates on Riemannian manifolds.

In order to produce existence or even multiplicity of non-zero solutions to (D), we

require on the locally Lipschitz function F : R → R the following assumptions:

(H)1 : lim
t→0

max{|ξ| : ξ ∈ ∂F (t)}
t

= 0;

(H)2 : lim
|t|→∞

max{|ξ| : ξ ∈ ∂F (t)}
t

= 0;

(H)3 : F (0) = 0 and there exist t−0 < 0 < t+0 such that F (t±0 ) > 0.

Remark 5.1.1. Note that (H1) and (H2)mean that the function t 7→ max{|ξ| : ξ ∈ ∂F (t)}

is superlinear at the origin and sublinear at infinity, respectively; in particular, by using

Lebourg’s mean value theorem, we observe that F is sub-quadratic at infinity.

Remark 5.1.2. By the upper semicontinuity of the set-valued function t 7→ ∂F (t) and

conditions (H1) and (H2), we can observe that the hypothesis (H0) is also valid for a
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suitably large value of C0 > 0; in particular, Theorem 5.1.1 can be applied (under the

assumptions (Hλ), (H1) and (H2)), and for sufficiently ’small’ values of |λ| only the zero

solution exists for the differential inclusion (D).

Whenever λ is large enough, multiplicity result can be established involving additional

assumptions in order to balance the lack of compactness of the Riemannian manifolds we

are dealing with. The next theorem provides a multiplicity result with a sub-quadratic

nonlinearity at the infinity.

Theorem 5.1.2. (Kristály, Mezei, and Szilák [28]) (Multiplicity: sub-quadratic nonlinear-

ity at infinity) Let (M, g) be an n-dimensional complete non-compact Riemannian mani-

fold, n ≥ 3, and G be a compact connected subgroup of Isomg(M) such that FixM(G) =

{x0} for the same x0 ∈ M as in problem (D). Let α : M → R be a potential satisfying

(Hα) which depends only on dg(x0, ·) and the locally Lipschitz function F : R → R sat-

isfying assumptions (Hi), i ∈ {1, 2, 3}, respectively. In addition, we assume that one of

the following curvature assumptions holds:

(i) (M, g) is of Cartan-Hadamard-type and

(ii) Ric(M,g) ≥ 0, AVR(M,g) > 0, 0 ≤ µ < AVR
2
n

(M,g)
(n−2)2

4
and G is coercive.

Then there exists λ0 > 0 such that for every λ > λ0 the differential inclusion (D) has at

least four non-zero G-invariant solutions in H1(M).

The proof of Theorem 5.1.2 uses elements from the variational calculus described in

section 2.4.1. In the sequel, we establish a counterpart of Theorem 5.1.2 whenever F is

super-quadratic at infinity. In order to prove more existence and multiplicity results, we

introduce additional constraints on the locally Lipschitz function F : R → R :

(H4) : F (0) = 0 and there exist ν > 2 and C > 0 such that

2F (t) + F 0(t;−t) ≤ −C|t|ν , ∀t ∈ R;

(H5) : there is q ∈
(
2, 2 + 4

n

)
such that max{|ξ| : ξ ∈ ∂F (t)} = O(|t|q−1) as |t| → ∞.

Here, F 0(t; s) is the generalized directional derivative ofF at the point t ∈ R and direction

s ∈ R. Note that by (H1) and (H4), F is super-quadratic at infinity.

Theorem5.1.3. (Kristály,Mezei, and Szilák [28]) (Existence/Multiplicity: super-quadratic

nonlinearity at infinity) Let (M, g) be an n-dimensional complete non-compact Rieman-

nian manifold, n ≥ 3, and G be a compact connected subgroup of Isomg(M) such that
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FixM(G) = {x0} for the same x0 ∈M as in problem (D). Let α ∈ L∞(M) be a potential

which depends only on dg(x0, ·) and essinfx∈Mα(x) = α0 > 0, while the locally Lipschitz

function F : R → R satisfies the assumptions (Hi), i ∈ {1, 4, 5}, respectively. If one

of the curvature assumptions (i) or (ii) holds from Theorem 5.1.2, then for every λ > 0

the differential inclusion (D) has at least a non-zero G-invariant solution in H1(M). In

addition, if F is an even function, (D) has infinitely many distinct G-invariant solutions

in H1(M).

The proof is based on the same geometric arguments as in Theorem 5.1.2 (curvature

constraints, isometric actions), combined with the non-smooth mountain pass or fountain

theorem involving the Cerami compactness condition.

5.2 Non-existence of solutions: proof of Theorem 5.1.1

Let u ∈ H1(M) be a solution of (D), i.e., relation (5.1) holds for every w ∈ H1(M). Let

us choose w = u in (5.1), we obtain∫
M

|∇gu(x)|2dvg − µ

∫
M

u2(x)

d2g(x0, x)
dvg +

∫
M

u2(x)dvg = λ

∫
M

α(x)ξxu(x)dvg,

where ξx ∈ ∂F (u(x)) is a suitable selection, x ∈ M , such that x 7→ α(x)ξxv(x) belongs

to L1(M). Combining assumptions (Hα) and (H0)with the latter relation we establish the

estimation ∫
M

|∇gu(x)|2dvg − µ

∫
M

u2(x)

d2g(x0, x)
dvg +

∫
M

u2(x)dvg (5.2)

≤ |λ|C0‖α‖L∞

∫
M

u2(x)dvg.

Assume by contradiction that u 6= 0.

5.2.1 Proof of (i): K ≤ −κ for some κ ≥ 0

We distinguish two cases.

(i1) Let κ = 0. If µ ≤ (n−2)2

4
, by the Hardy inequality (2.6) and relation (5.2), it turns

out that ∫
M

u2(x)dvg < |λ|C0‖α‖L∞

∫
M

u2(x)dvg;
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here we used the fact that equality cannot occur in the Hardy inequality (2.6) unless u = 0.

Consequently, if |λ|C0‖α‖L∞ ≤ 1, we arrive to a contradiction, i.e., we necessarily have

u = 0, concluding the proof of (i1).

(i2) Let κ > 0. Assume first that 0 < µ ≤ (n−2)2

4
. Then by the Hardy inequality (2.6)

we have that

µ

∫
M

u2(x)

d2g(x0, x)
dvg <

4µ

(n− 2)2

∫
M

|∇gu(x)|2dvg,

where we again used the fact that no equality occurs in (2.6) for non-zero functions. Thus,

by (5.2) it follows that(
1− 4µ

(n− 2)2

)∫
M

|∇gu(x)|2dvg < (|λ|C0‖α‖L∞ − 1)

∫
M

u2(x)dvg. (5.3)

First, if |λ|C0‖α‖L∞ ≤ 1, sinceµ ≤ (n−2)2

4
, latter relation gives a contradiction. Second, if

|λ|C0‖α‖L∞ > 1, by our assumption (n−2)2(|λ|C0‖α‖L∞−1) ≤ (n−1)2
(

(n−2)2

4
− µ

)
κ

we obtain that µ < (n−2)2

4
; moreover, relation (5.3) and the assumption imply that∫

M

|∇gu(x)|2dvg <
(n− 1)2

4
κ

∫
M

u2(x)dvg.

However, the latter inequality is in contradiction to McKean’s spectral gap theorem, see

(2.7). Therefore, we necessarily have u = 0, concluding the proof of (i2) for µ > 0.

If µ ≤ 0, then our assumption reduces to |λ|C0‖α‖L∞ − 1 ≤ (n−1)2

4
κ and by (5.2) one

has that ∫
M

|∇gu(x)|2dvg ≤ (|λ|C0‖α‖L∞ − 1)

∫
M

u2(x)dvg.

Therefore, we obtain that∫
M

|∇gu(x)|2dvg ≤
(n− 1)2

4
κ

∫
M

u2(x)dvg.

Since no equality occurs inMcKean’s spectral gap estimate (2.7) for any non-zero function

u ∈ H1(M), we arrive to a contradiction. In conclusion, we necessarily have that u = 0,

which ends the proof of (i2) also for µ ≤ 0.

5.2.2 Proof of (ii): Ric(M,g) ≥ 0

Since µ ≤ AVR
2
n

(M,g)
(n−2)2

4
, the Hardy inequality from (2.9) (together with the fact that no

non-zero function realizes the equality) and relation (5.2) imply that∫
M

u2(x)dvg < |λ|C0‖α‖L∞

∫
M

u2(x)dvg.

Consequently, if |λ|C0‖α‖L∞ ≤ 1, we arrive to a contradiction; thus u = 0. This ends the

proof of (ii). □
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5.3 Sub-quadratic case: proof of Theorem 5.1.2

Throughout this section we assume the hypotheses in Theorem 5.1.2 are satisfied. The

proof is divided into several steps.

5.3.1 Truncation and non-smooth energy functional (Step 1)

Let s+ = max(s, 0) be the non-negative part of s. Introducing the truncated locally Lip-

schitz function F+(s) = F (s+), s ∈ R, the energy functional E+ : H1(M) → R to the

slightly modified problem (D), considering F+ instead of F , is defined as

E+(u) =
1

2
Nµ(u)− λF+(u),

where

Nµ(u) =

∫
M

|∇gu(x)|2dvg − µ

∫
M

u2(x)

d2g(x0, x)
dvg +

∫
M

u2(x)dvg

and

F+(u) =

∫
M

α(x)F+(u(x))dvg.

On one hand, it is clear that Nµ is of class C1 on H1(M) and due to the Hardy in-

equalities (i.e., (2.6) and (2.9)), for the corresponding values of µ from the statement of

the theorem, N 1/2
µ turns out to be equivalent to the usual norm ‖ · ‖H1 on H1(M), i.e.,

cµ‖u‖2H1 ≤ Nµ(u) ≤ ‖u‖2H1 , ∀u ∈ H1(M), (5.4)

where

0 < cµ =

1− 4µ
(n−2)2

, in the case (i);

1− AVR− 2
n

(M,g)
4µ

(n−2)2
in the case (ii).

Lemma 5.3.1. The truncated functionF+ is well-defined and locally Lipschitz onH1(M).

Proof. The fact that F+ is well-defined follows implicitly by the following argument.

By (H1) and (H2), for every ε > 0 there exists δϵ ∈ (0, 1) such that

|ξ| ≤ εt, ∀ξ ∈ ∂F+(t), ∀0 < t < δϵ & t > δ−1
ϵ . (5.5)

Fix ε0 > 0. Since ∂F+ is an upper semicontinuous set-valued map with non-empty com-

pact values, we also have for some Kϵ0 > 0 that |ξ| ≤ Kϵ0t for every ξ ∈ ∂F+(t) and

t ∈ [δϵ0 , δ
−1
ϵ0
]. The latter fact with (5.5) implies that

|ξ| ≤ Cϵ0t, ∀ξ ∈ ∂F+(t), ∀t > 0,
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where Cϵ0 = max{ε0, Kϵ0}. Now, let u ∈ H1(M) and Uu be any open bounded neigh-

borhood of u in H1(M), i.e., for some K > 0 we have ‖w‖H1 ≤ K for every w ∈ Uu. If

u1, u2 ∈ Uu, then by Lebourg’s mean value theorem, for a.e. x ∈M there exist γ ∈ [0, 1]

and ξγx ∈ ∂F+((1− γ)u1(x) + γu2(x)) such that

|F+(u1(x))− F+(u2(x))| = |ξγx ||u1(x)− u2(x)|

≤ Cϵ0(|u1(x)|+ |u2(x)|)|u1(x)− u2(x)|.

By Hölder’s inequality and the trivial embedding H1(M) ⊂ L2(M), we have that

|F+(u1)−F+(u2)| ≤
∫
M

α(x)|F+(u1(x))− F+(u2(x))|dvg

≤ 2Cϵ0‖α‖L∞K‖u1 − u2‖H1 ,

which means that F+ is Lipschitz on H1(M). □
On one hand, applying argument as in Clarke [12, Section 2.7] (see also Costea,

Kristály and Varga [13]) shows that for every closed subspace W of H1(M) we have

that

∂(F+|W )(u) ⊆
∫
M

α(x)∂F+(u(x))dvg, ∀u ∈ W ;

here, F+|W is the restriction of the functional F+ to the subspaceW and the latter inclu-

sion has the following interpretation: to every ξ ∈ ∂(F+|W )(u) there exists a measurable

selection x 7→ ξx ∈ ∂F+(u(x)) such that the map x 7→ α(x)ξxw(x) belongs to L1(M)

for every w ∈ W and

〈ξ, w〉 =
∫
M

α(x)ξxw(x)dvg.

On the other hand, by using Fatou’s lemma, Lebourg’smean value theorem, Lebesgue’s

dominated convergence theorem, and a careful limiting argument, see e.g. Kristály [23]

in the Euclidean setting, it turns out that

(F+|W )0(u;w) ≤
∫
M

α(x)(F+)0(u(x);w(x))dvg, ∀u,w ∈ W. (5.6)

Let u ∈ H1(M) be a critical point of E+, i.e., 0 ∈ ∂E+(u). We are going to prove that

u is a non-negative solution to the differential inclusion (D). First we have that

1

2
N ′

µ(u) ∈ λ∂F+(u),



CHAPTER 5. INCLUSIONS ON NON-COMPACT RIEMANNIAN MANIFOLDS 57

i.e., for every test-function w ∈ H1(M) one has∫
M

∇gu(x)∇gw(x)dvg − µ

∫
M

u(x)w(x)

d2g(x0, x)
dvg +

∫
M

u(x)w(x)dvg

= λ

∫
M

α(x)ξxw(x)dvg,

with the above interpretation for the right hand side.

Let u− = min(0, u) be the non-positive part of u and note that it belongs to the space

H1(M), see Hebey [19, Proposition 2.5]. If we put v = u− into the latter relation, we

obtain that ξxu−(x) = 0 for a.e. x ∈ M since ξx ∈ ∂F+(u(x)) (thus ξx = 0 whenever

u(x) < 0). In consequence, Nµ(u−) = 0, thus u− = 0, i.e., u ≥ 0. In particular,

ξx ∈ ∂F+(u(x)) = ∂F (u(x)), therefore the latter relation is precisely (5.1), which means

that u ∈ H1(M) is a non-negative solution of (D).

5.3.2 Isometry actions (Step 2)

Recalling the notions from subsection 2.4.2, we prove the following lemma.

Lemma 5.3.2. The locally Lypschitz energy functional E+ is G-invariant.

Proof. (i): SinceG contains isometries of (M, g), the functionalsu 7→
∫
M
|∇gu(x)|2dvg

and u 7→
∫
M
u2(x)dvg are both G-invariant; in particular, ‖σu‖H1 = ‖u‖H1 for every

σ ∈ G and u ∈ H1(M). Indeed,

‖σu‖2H1 =

∫
M

(|σu(x))|2 + |∇g(σu(x))|2dvg(x)

=

∫
M

|u(σ−1(x))|2 + |∇g(σ
−1(x))|2dvg(x)

=

∫
M

|u(y)|2 + |∇gu(y)|2dvg(y)

= ‖u‖2H1 . (5.7)

(ii) Since FixM(G) = {x0}, it turns out that for every σ ∈ G and y ∈ M , we

have dg(x0, σ(y)) = dg(σ(x0), σ(y)) = dg(x0, y); therefore, the change of variables

y = σ−1(x) implies that∫
M

(σu)2(x)

d2g(x0, x)
dvg(x) =

∫
M

u2(σ−1(x))

d2g(x0, x)
dvg(x) =

∫
M

u2(y)

d2g(x0, σ(y))
dvg(σ(y))

=

∫
M

u2(y)

d2g(x0, y)
dvg(y).
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In particular, the functional u 7→ Nµ(u) is G-invariant on H1(M).

(iii) Furthermore, since α : M → R depends only on dg(x0, ·), it is also G-invariant,

and one can prove by a change of variables that for every σ ∈ G and u ∈ H1(M),

F+(σu) =

∫
M

α(x)F+((σu)(x))dvg(x) =
∫
M

α(x)F+(u(σ−1(x)))dvg(x)

=

∫
M

α(σ(y))F+(u(y))dvg(σ(y)) =
∫
M

α(y)F+(u(y))dvg(y)

= F+(u),

i.e.,F+ isG-invariant onH1(M). In conclusion, the energy functional E+ = Nµ/2−λF+

is G-invariant on H1(M). □
We introduce the subspace of G-invariant functions, namely

H1
G(M) := FixH1(M)(G) = {u ∈ H1(M)|σu = u for all σ ∈ G},

and the restricted energy functional to H1
G(M) as E+

G := E+|H1
G(M).

Now, we are in the position to use the principle of symmetric criticality, see Proposition

2.4.1. If u ∈ H1
G(M) is a critical point of the restricted energy functional E+

G then u is

also a critical point of the initial energy functional E+.

5.3.3 Spectral gap estimate for F+/Nµ on H1
G(M) (Step 3)

We are going to prove that for every admissible µ from the statement of the theorem, one

has

0 < sup
u∈H1

G(M)\{0}

F+(u)

Nµ(u)
< +∞. (5.8)

Let q ∈ (2, 2∗) and fix arbitrarily ε > 0 together with the number δϵ > 0 appearing

in (5.5). By the boundedness of the function t 7→ max |∂F+(t)|
tq−1 on [δϵ, δ−1

ϵ ] and due to (5.5),

there exists lϵ > 0 such that

0 ≤ |ξ| ≤ εt+ lϵt
q−1, ∀t ≥ 0, ξ ∈ ∂F+(t) = ∂F (t). (5.9)

Note that we have

0 ≤ |F+(t)| ≤ εt2 + lϵ|t|q, ∀t ∈ R. (5.10)

Indeed, for t ≥ 0 we apply Lebourg’s mean value theorem together with (5.9), while for

t ≤ 0, we have by definition that F+(t) = F (0) = 0, thus the latter relation trivially

holds.
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Consequently, taking into account the continuous Sobolev embedding, estimate (5.10)

shows that for every u ∈ H1
G(M) we have

0 ≤ |F+(u)| =

∣∣∣∣∫
M

α(x)F+(u(x))dvg
∣∣∣∣ ≤ ∫

M

α(x)
∣∣F+(u(x))

∣∣ dvg
≤ ‖α‖L∞

(
ε‖u‖2H1 + lϵ(K

±
q )

q‖u‖qH1

)
,

where K±
q > 0 are the continuous embedding constants. Accordingly, for every u ∈

H1
G(M) \ {0} one has that

0 ≤ |F+(u)|
Nµ(u)

≤ c−1
µ ‖α‖L∞

(
ε+ lϵ(K

±
q )

q‖u‖q−2
H1

)
,

where cµ > 0 is the constant from (5.4). Due to the fact that q > 2 and ε > 0 is arbitrarily

fixed, it turns out that

F+(u)

Nµ(u)
→ 0 as ‖u‖H1 → 0, u ∈ H1

G(M). (5.11)

The counterpart of (5.11) at ’infinity’ reads as

F+(u)

Nµ(u)
→ 0 as ‖u‖H1 → +∞, u ∈ H1

G(M). (5.12)

Indeed, combining the boundedness of t 7→ max |∂F+(t)|
t1/2

on [δϵ, δ−1
ϵ ] with the estimate (5.5),

one can find Lϵ > 0 such that

0 ≤ |ξ| ≤ εt+ Lϵt
1/2, ∀t ≥ 0, ξ ∈ ∂F+(t) = ∂F (t).

Due to hypothesis (Hα), one has that α ∈ L4(M). Then using Lebourg’s mean value

theorem, continuous embeddings and Hölder’s inequality, we can proceed as before, ob-

taining

0 ≤ |F+(u)| ≤
∫
M

α(x)
∣∣F+(u(x))

∣∣ dvg ≤ ε‖α‖L∞‖u‖2H1 + Lϵ‖α‖L4‖u‖
3
2

H1 . (5.13)

Consequently, for every u ∈ H1
G(M) \ {0} we have

0 ≤ |F+(u)|
Nµ(u)

≤ c−1
µ

(
ε‖α‖L∞ + Lϵ‖α‖L4‖u‖−

1
2

H1

)
.

This estimate together with the arbitrariness of ε > 0 immediately imply (5.12).

In particular, (5.11) and (5.12) imply that the second inequality in (5.8) holds. In order

to check the first inequality in (5.8), we recall by (H3) that there exists t+0 > 0 such that

F (t+0 ) > 0.Moreover, by (Hα), since α 6= 0 and it depends only on dg(x0, ·), there exists
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an open x0-centered annulus on M with radius 0 ≤ r < R, i.e. Ax0(r, R) = {x ∈ M :

r < dg(x0, x) < R}, such that essinfAx0 (r,R)α = α0 > 0. For sufficiently small ε > 0

(e.g. ε < (R− r)/3), we consider the function wϵ :M → R defined by

wϵ(x) =



t+0
ϵ
(dg(x0, x)− r) if dg(x0, x) ∈ (r, r + ε),

t+0 if dg(x0, x) ∈ [r + ε, R− ε],

t+0
ϵ
(R− dg(x0, x)) if dg(x0, x) ∈ (R− ε, R),

0 if x /∈ Ax0(r, R).

Note that wϵ ∈ H1
G(M) and wϵ ≥ 0. Moreover,

F+(wϵ) =

∫
M

α(x)F (wϵ(x))dvg =
∫
Ax0 (r,R)

α(x)F (wϵ(x))dvg

≥ α0F (t
+
0 )Vg(Ax0(r + ε, R− ε))

−‖α‖L∞ max
t∈[0,t+0 ]

|F (t)|(Vg(Ax0(r, r + ε)) + Vg(Ax0(R− ε, R))).

By continuity reason, there exists ε0 > 0 such that for every ε ∈ (0, ε0),

F+(wϵ) ≥ α0F (t
+
0 )Vg(Ax0(r, R))/2 > 0.

On the other hand, by (5.4) and the eikonal equation (|∇gdg(x0, ·)| = 1 a.e. on M ) we

have the estimate

Nµ(wϵ) ≤ ‖wϵ‖2H1 ≤ (t+0 )
2(1 + ε−2)Vg(Ax0(r, R)) < +∞.

Consequently, it turns out that

0 <
F+(wϵ0/2)

Nµ(wϵ0/2)
≤ sup

u∈H1
G(M)\{0}

F+(u)

Nµ(u)
,

which shows the validity of the first inequality in (5.8).

5.3.4 Analytic properties of E+
G (Step 4)

We shall prove three basic properties of E+
G on H1

G(M), namely, coercivity and bounded-

ness from below, as well as the validity of the non-smooth Palais-Smale condition.

Let λ > 0 be arbitrarily fixed and µ be in the admissible range (cf. the statement of

the theorem). First, we observe by (5.4) and (5.13) that for every u ∈ H1
G(M) we have

E+
G (u) =

1

2
Nµ(u)− λF+(u)

≥
(cµ
2

− ελ‖α‖L∞

)
‖u‖2H1 − λLϵ‖α‖L4‖u‖

3
2

H1 .
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In particular, for sufficiently small ε > 0, e.g. 0 < ε < cµ
2
λ−1‖α‖−1

L∞ , it follows that E+
G is

bounded from below and coercive, i.e., E+
G (u) → +∞ whenever ‖u‖H1 → +∞.

Let {uk}k ⊂ H1
G(M) be a Palais-Smale sequence for E+

G , i.e., for someM > 0, one

has |E+
G (uk)| ≤ M andm(uk) → 0 as k → ∞, wherem(u) = min{‖ξ‖∗ : ξ ∈ ∂E+

G (u)}.

We want to prove that, up to a subsequence, {uk}k strongly converges to some element

in H1
G(M). Being E+

G coercive, the sequence {uk}k ⊂ H1
G(M) is bounded in H1

G(M).

Therefore, due to the fact that H1
G(M) can be compactly embedded into Lq(M), q ∈

(2, 2∗) (see Preliminaries subsection 2.5.5), up to a subsequence, one has that

uk → u weakly in H1
G(M); (5.14)

uk → u strongly in Lq(M), q ∈ (2, 2∗). (5.15)

By the definition of E+
G we have that

(E+
G )

0(uk; u− uk) =
1

2
〈N ′

µ(uk), u− uk〉+ λ(−F+)0(uk; u− uk);

(E+
G )

0(u; uk − u) =
1

2
〈N ′

µ(u), uk − u〉+ λ(−F+)0(u; uk − u).

Note that
1

2
〈N ′

µ(uk), u− uk〉+
1

2
〈N ′

µ(u), uk − u〉 = −Nµ(uk − u).

By adding the above relations it turns out that

Nµ(uk − u) = λ
(
(F+)0(uk;−u+ uk) + (F+)0(u;−uk + u)

)
−(E+

G )
0(uk; u− uk)− (E+

G )
0(u; uk − u). (5.16)

In the sequel, we are going to estimate the terms in the right hand side of latter expression.

First, by inequality (5.6) and (5.9) together with the fact that ∂F+(t) = {0} for t ≤ 0, we

have

I1k := (F+)0(uk;−u+ uk) + (F+)0(u;−uk + u)

≤
∫
M

α(x)
[
(F+)0(uk(x); uk(x)− u(x)) + (F+)0(u(x); u(x)− uk(x))

]
dvg

=

∫
M

α(x)
[
max{ξk(uk(x)− u(x)) : ξk ∈ ∂F+(uk(x))}

+max{ξ(u(x)− uk(x)) : ξ ∈ ∂F+(u(x))}
]
dvg

≤ ‖α‖L∞

∫
M

[ε(|uk(x)|+ |u(x)|) + lϵ(|uk(x)|q−1

+ |u(x)|q−1)]|u(x)− uk(x)|dvg

≤ 2ε‖α‖L∞(‖uk‖2H1 + ‖u‖2H1) + lϵ‖α‖L∞(‖uk‖q−1
Lq + ‖u‖q−1

Lq )‖uk − u‖Lq .
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By the arbitrariness of ε > 0 and the convergence property (5.15), the latter estimate shows

that

lim sup
k→∞

I1k ≤ 0.

Let ξk ∈ ∂E+
G (uk) be such thatm(uk) = ‖ξk‖∗. Thus, we have that

I2k := (E+
G )

0(uk; u− uk) ≥ 〈ξk, u− uk〉 ≥ −‖ξk‖∗‖u− uk‖H1 .

Consequently, sincem(uk) = ‖ξk‖∗ → 0 as k → ∞, we have that

lim inf
k→∞

I2k ≥ 0.

Moreover, for every ξ ∈ ∂E+
G (u), we also have that I3k := (E+

G )
0(u; uk−u) ≥ 〈ξ, uk−u〉;

thus, by the weak convergence property (5.14) we have that

lim inf
k→∞

I3k ≥ 0.

Now, combining estimates above with relation (5.16), we have that

0 ≤ lim sup
k→∞

Nµ(uk − u) ≤ lim sup
k→∞

I1k − lim inf
k→∞

I2k − lim inf
k→∞

I3k ≤ 0,

i.e., Nµ(uk − u) → 0 as k → ∞. Due to (5.4), it turns out that uk → u strongly in the

H1-norm as k → ∞, which is the desired property. □

5.3.5 Local minimum point for E+
G : first solution (Step 5)

Let

λ+0 := inf
u∈H1

G(M)

F+(u)>0

Nµ(u)

2F+(u)
.

Due to Step 3, see (5.8), one has that 0 < λ+0 <∞.

If we fix λ > λ+0 , one can find w̃λ ∈ H1
G(M) with F+(w̃λ) > 0 such that

λ >
Nµ(w̃λ)

2F+(w̃λ)
≥ λ+0 .

Thus, by the latter inequality we have

C1
λ := inf

H1
G(M)

E+
G ≤ E+

G (w̃λ) =
1

2
Nµ(w̃λ)− λF+(w̃λ) < 0.

Due to the fact that E+
G is bounded from below and verifies the non-smooth Palais-Smale

condition (see Step 4), C1
λ is a critical value of E+

G , see Theorem 2.4.1, in particular there
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exists u1λ ∈ H1
G(M) such that E+

G (u
1
λ) = C1

λ < 0 and 0 ∈ ∂E+
G (u

1
λ). Since E+

G (u
1
λ) < 0 =

E+
G (0), it turns out that u1λ 6= 0. Although we just have continuous Sobolev embeddings

on H1(M), the lack of compactness is compensated by isometric actions, and applying

principle of symmetric criticality imply that u1λ is a critical point also for the initial energy

functional (see Step 2), i.e., 0 ∈ ∂E+(u1λ). According to (the final part of) Step 1, u1λ ∈

H1
G(M) is a positive G-invariant weak solution to the differential inclusion (D).

5.3.6 Minimax-type critical point for E+
G : second solution (Step 6)

Let λ > λ+0 . Due to (5.10), for sufficiently small ε > 0 (e.g., cµ
4
> ελ‖α‖L∞) and for

every u ∈ H1
G(M) one has that

E+
G (u) =

1

2
Nµ(u)− λF+(u)

≥
(cµ
2

− ελ‖α‖L∞

)
‖u‖2H1 − λ‖α‖L∞lϵ(K

±
q )

q‖u‖qH1 ,

where q ∈ (2, 2∗) and K±
q > 0 are the embedding constants from (2.5) and (2.8), respec-

tively. Let

ρλ = min

{
‖w̃λ‖H1 ,

( cµ
2
− ελ‖α‖L∞

2λ‖α‖L∞lϵ(K±
q )

q

) 1
q−2

}
.

The choice of ρλ > 0 and Step 4 show that

inf
∥u∥H1=ρλ;u∈H1

G(M)
E+
G (u) ≥

1

2

(cµ
2

− ελ‖α‖L∞

)
ρ2λ > 0 = E+

G (0) > E+
G (w̃λ).

The latter estimate shows that the functional E+
G has the mountain pass geometry. On

account of Step 4, since E+
G satisfies the non-smooth Palais-Smale condition, we may

apply the mountain pass theorem with γ(0) = 0 and γ(1) = w̃λ, see 2.4.2, guaranteeing

the existence of critical point u2λ ∈ H1
G(M), such that 0 ∈ ∂E+

G (u
2
λ). Since E+

G (u
2
λ) > 0,

u2λ 6= u1λ. The rest of the proof is similar to the end of Step 5, which shows that u2λ ∈

H1
G(M) is indeed a positive, G-invariant weak solution to the differential inclusion (D),

different from u1λ.

Naturally we may study the case with similar steps as before, whenever the problem

(D) is considered with F−(t) = F (t−), where t− is the non-positive part of t.
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5.3.7 Repetition of Steps 1-6 for E− (Step 7)

LetF−(t) = F (t−), t ∈ R, where t− = min(t, 0). The locally Lipschitz energy functional

E− : H1(M) → R is defined as

E−(u) =
1

2
Nµ(u)− λF−(u),

where

F−(u) =

∫
M

α(x)F−(u(x))dvg.

One can show that if u ∈ H1(M) is a critical point of E−, i.e., 0 ∈ ∂E−(u), then it is a

non-positive solution of (D), cf. Step 1.

One can prove in a similar way as in section 5.3 thatF− isG-invariant onH1
G(M), and

if u ∈ FixH1(M)(G) =: H1
G(M) is a critical point of E−

G := E−|H1
G(M) then 0 ∈ ∂E−(u) as

well, cf. Step 2.

Instead of the spectral gap estimate (5.8), one can prove

0 < sup
u∈H1

G(M)\{0}

F−(u)

Nµ(u)
< +∞,

cf. Step 3, and similar analytic properties are valid for E−
G as in Step 4 (i.e, coercivity,

boundedness from below, and the validity of the non-smooth Palais-Smale condition).

Here, we use again the compact embedding.

Finally, if

λ−0 := inf
u∈H1

G(M)

F−(u)>0

Nµ(u)

2F−(u)
,

by the previous part we know that 0 < λ−0 < ∞ and similarly to Steps 5 and 6, we can

guarantee for every λ > λ−0 a local minimum point u3λ ∈ H1
G(M) of E−

G with E−
G (u

3
λ) < 0

and a minimax-type point u4λ ∈ H1
G(M) of E−

G with E−
G (u

4
λ) > 0; in particular, u3λ 6= u4λ

and none of them is trivial. These elements are alsoG-invariant, non-positive solutions to

the differential inclusion (D).

If we choose λ0 = max(λ+0 , λ−0 ), we can apply the above arguments, providing four

different, non-zero G-invariant solutions to the differential inclusion (D) for every λ >

λ0, two of them being non-negative and the other two being non-positive. The proof is

complete. □
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5.4 Super-quadratic case: proof of Theorem 5.1.3

We assume in the sequel that the hypotheses of Theorem 5.1.3 are fulfilled. We again

divide the proof into some steps.

5.4.1 Functional setting (Step 1)

In view of the previous section, this part is standard. Indeed, the energy functional E :

H1(M) → R is defined as

E(u) = 1

2
Nµ(u)− λF(u),

where

F(u) =

∫
M

α(x)F (u(x))dvg.

Note that by (H1) and (H5), for every ε > 0 there exists Cϵ > 0 such that

|ξ| ≤ ε|t|+ Cϵ|t|q−1, ∀t ∈ R, ξ ∈ ∂F (t). (5.17)

Consequently, one has

|F (t)| ≤ εt2 + Cϵ|t|q, ∀t ∈ R. (5.18)

Since 2 < q < 2 + 4
n
< 2∗, by using Lebourg’s mean value theorem and (5.17), one can

prove that F is well-defined and locally Lipschitz onH1(M). It is now standard to show

that any critical point u ∈ H1(M) of E is a solution of (D).

5.4.2 Isometry actions (Step 2)

One can prove in a similar way as in section 5.3 that E isG-invariant onH1(M).Moreover,

the principle of symmetric criticality (Proposition 2.4.1) implies that ifu ∈ FixH1(M)(G) =:

H1
G(M) is a critical point of EG := E|H1

G(M) then u is also a critical point of E .

5.4.3 Super-quadracity of F at infinity (Step 3)

We are going to prove that

F (t) ≥ C

ν − 2
|t|ν , ∀t ∈ R, (5.19)
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where ν > 2 and C > 0 come from hypothesis (H4); this means in particular that F is

super-quadratic at infinity (as ν > 2). To do this, let h : R → R be defined by

h(t) = t−2F (t)− C

ν − 2
|t|ν−2, t 6= 0,

and h(0) = 0. Note that h is well-defined and locally Lipschitz (indeed, by (H1) and

F (0) = 0 we have that F (t) = o(t2) as t→ 0). One has

∂h(t) = −2t−3F (t) + t−2∂F (t)− C|t|ν−4t, ∀t ∈ R \ {0}.

We shall prove (5.19) for t ≥ 0, the case t ≤ 0 being similar. Whenever t = 0, (5.19)

clearly holds. Let t > 0; then by Lebourg’s mean value theorem, there exist θ ∈ (0, t) and

ξh ∈ ∂h(θ) such that h(t) = h(t) − h(0) = ξht. In turn, there exists ξF ∈ ∂F (θ) such

that ξh = −2θ−3F (θ) + θ−2ξF − Cθν−3 and by (H4) we have that

h(t) = ξht = (−2θ−3F (θ) + θ−2ξF − Cθν−3)t

= −θ−3(2F (θ) + ξF (−θ) + Cθν)t

≥ −θ−3(2F (θ) + F 0(θ;−θ) + Cθν)t

≥ 0,

which concludes the proof. In particular, combining (5.18) with (5.19), we necessarily

have that

ν ≤ q. (5.20)

5.4.4 Non-smooth Cerami compactness condition for EG (Step 4)

Let {uk}k ⊂ H1
G(M) be a Cerami sequence for EG, i.e., for some M > 0, one has

|EG(uk)| ≤ M and (1 + ‖uk‖H1)m(uk) → 0 as k → ∞, where m(u) = min{‖ξ‖∗ :

ξ ∈ ∂EG(u)}. Our objective is to prove that, up to a subsequence, {uk}k strongly con-

verges to some element in H1
G(M).

To do that we first prove the following lemma.

Lemma 5.4.1. Under the assumptions of the theorem 5.1.3 the Cerami sequence {uk}k ⊂

H1
G(M) of EG(u) is bounded in Lν(M).

Proof. For every k ∈ N, let ξk ∈ ∂EG(uk) be such that ‖ξk‖∗ = m(uk). We observe

that

E0
G(uk; uk) ≥ 〈ξk, uk〉 ≥ −‖ξk‖∗‖uk‖H1 ≥ −(1 + ‖uk‖H1)m(uk).
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Since (1+ ‖uk‖H1)m(uk) → 0 as k → ∞, there exists k0 ∈ N such that for every k > k0

one has that E0
G(uk; uk) ≥ −1. Consequently, inequality (5.6) (which is also valid due to

(5.17)) and hypothesis (H4) imply for every k ∈ N that

2M + 1 ≥ 2EG(uk)− E0
G(uk; uk)

= Nµ(uk)− 2λF(uk)−
1

2
〈N ′

µ(uk); uk〉 − λ(−F)0(uk; uk)

= −λ
(
2F(uk) + F0(uk;−uk)

)
≥ −λ

∫
M

α(x)
(
2F (uk(x)) + F 0(uk(x);−uk(x))

)
dvg

≥ λC

∫
M

α(x)|uk(x)|νdvg.

Since α ∈ L∞(M) and essinfx∈Mα(x) = α0 > 0, the latter estimate implies that

2M + 1 ≥ λCα0‖uk‖νLν , ∀k ∈ N.

Consequently, {uk}k is bounded in Lν(M). □
Now we are in the postion to prove the following lemma.

Lemma 5.4.2. Under the assumptions of the theorem 5.1.3 the Cerami sequence {uk}k ⊂

H1
G(M) of EG(u) is bounded in H1

G(M).

Proof. By (5.18), for every small ε > 0 there exists C̃ϵ > 0 such that for every k ∈ N,

M ≥ EG(uk) =
1

2
Nµ(uk)− λF(uk)

≥
(cµ
2

− ελ‖α‖L∞

)
‖uk‖2H1 − λC̃ϵ‖α‖L∞‖uk‖qLq .

In particular, if cµ
4
> ελ‖α‖L∞ , then there existsMϵ > 0 and Cϵ > 0 such that

‖uk‖2H1 ≤Mϵ + Cϵ‖uk‖qLq , ∀k ∈ N. (5.21)

On account of (5.20), we distinguish two cases:

a) ν = q. Since {uk}k is bounded in Lν(M) and ν = q, by (5.21) we also have that

{uk}k is bounded in H1
G(M).

b) ν < q. Let η ∈ (0, 1) be such that 1
q
= 1−η

ν
+ η

2∗
. By (5.21) and a standard

interpolation inequality we have that

‖uk‖2H1 ≤Mϵ + Cϵ‖uk‖qLq

≤Mϵ + Cϵ‖uk‖(1−η)q
Lν ‖uk‖ηqL2∗

≤Mϵ + Cϵ(K
±
q )

ηq‖uk‖(1−η)q
Lν ‖uk‖ηqH1 , (5.22)
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whereK±
q > 0 are the embedding constant. Since q < 2+ 4

n
, we have that ν > 2 > n(q−2)

2
.

We observe that ν > n(q−2)
2

together with 1
q
= 1−η

ν
+ η

2∗
is equivalent to ηq < 2. The latter

inequality and (5.22) imply that {uk}k is bounded in H1
G(M). □

Now, we can proceed as in Step 4, see section 5.3; in this way we conclude that {uk}k
strongly converges (up to a subsequence) to some element in H1

G(M).

5.4.5 Existence/multiplicity of critical points for EG (Step 5)

Under the assumptions of the theorem, one can prove as above that EG has the mountain

pass geometry. By Step 4 and on account of the mountain pass theorem for locally Lips-

chitz functions, see e.g. Kourogenis and Papageorgiou [21], we conclude the existence of

a non-zero critical point for EG. When F is even, we may apply the non-smooth fountain

theorem involving the Cerami compactness condition, see e.g. Kristály [23], guaranteeing

the existence of a sequence of critical points for the functional EG. All these points are

G-invariant solutions to the differential inclusion (D), which concludes the proof. □



Chapter 6

Schrödinger-Maxwell differential

inclusion system

Electrostatic variations of Schrödinger-Maxwell systems have been subject of several in-

vestigations, see Kristály, Repovš [32], Azzollini and Pimenta [5], describing a charged

quantum-mechanical particle interacting with the electromagnetic field: −∆u(x) + eu(x)φ(x) = f(u(x)), x ∈ R3;

−∆φ(x) = eu2(x), x ∈ R3,

where ∆ denotes the Laplace operator, φ : R3 → R is the electric potential, e is the

electron charge constant, while the function u : R3 → R is the field associated to the

particle. Recent researches focus to curved spaces, see e.g. Farkas and Kristály ([17]),

where existence results for Schrödinger-Maxwell systems are provided on non-compact

Hadamard manifolds, involving sublinear or oscillatory terms at infinity.

Considering a broad class of non-compact Riemannian manifolds, we study a non-

smooth Schrödinger-Maxwell inclusion system, equipped with a nonlinear term on the

non-compact Riemannian manifold (M, g), namely −∆gu(x) + u(x) + u(x)φ(x) ∈ λα(x)∂F (u(x)), x ∈M ;

−∆gφ(x) + φ(x) = 4πu2(x), x ∈M,
(SM)

where∆g denotes the Laplace-Beltrami operator on (M, g), λ > 0 is a parameter, and the

unknown terms u, φ : M → R. In the sequel, α : M → R is a potential, and ∂F stands

for the generalized gradient of the locally Lipschitz function F : R → R in the sense of

Clarke (see [12]), satisfying the following conditions:

69
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(F1) : limt→0+
max{|θ|:θ∈∂F (t)}

t
= 0;

(F2) : limt→∞
max{|θ|:θ∈∂F (t)}

t
= 0;

(F3) : F (0) = 0;

(Cα) : The function α : M → R is radially symmetric with respect to some x0 ∈ M

and infM α > 0.

The main objective is to prove non-existence and existence results depending on the

parameter λ for the inclusion system (SM), equipped with non-linear term, not only on

Hadamard manifolds, but also on Riemann manifolds with non-negative Ricci curvature.

It turns out, similarly to the chapter 5, that the lack of compactness has to be compensated

by applying isometric actions and the principle of symmetric criticality in order to use

variational methods. Similarly to Farkas and Kristály [17], due to the coupled system we

have to introduce a ”single variable” energy functional. Our aim is to extend the result

of Farkas and Kristály [17] to non-smooth functions and examine the problem on two

different classes of curved spaces.

Section 6.1 is devoted to present our main results, while in section 6.2 we prove The-

orem 6.1.1. This chapter is based on results proved in Szilák [49].

6.1 Main results

A pair (u, φ) ∈ H1(M) × H1(M) is a weak solution of the inclusion system (SM) if

there exists a measurable mapping x 7→ ξ ∈ ∂F (u(x)) such that for all test-functions

v, ψ ∈ H1(M) one has∫
M

∇gu(x)∇gv(x)dvg +
∫
M

u(x)v(x)dvg +
∫
M

u(x)φ(x)v(x)dvg

= λ

∫
M

α(x)ξv(x)dvg

and ∫
M

∇gu(x)∇gψ(x)dvg +
∫
M

φ(x)ψ(x)dvg = 4π

∫
M

u2(x)ψ(x)dvg.

6.1.1 Maxwell equation

Let us consider the Maxwell equation, namely

−∆gφ(x) + φ(x) = 4πu2(x), x ∈M.
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A straightforward extension of Kristály and Repovš result (see [32]), based on the Lax-

Milgram theorem (see [10]), implies that the equation above admits the existence of the

unique solution φu : H1(M) → H1(M) for all u ∈ H1(M).

Note, that ‖φu‖2 =
∫
M
φuu

2dvg, φu ≥ 0; and u 7→
∫
M
φuu

2dvg is convex.

Our main theorem can be stated as follows:

Theorem 6.1.1. (Szilák [49]) Let (M, g) be an n-dimensional complete non-compact Rie-

mannian manifold, n ≥ 3, andG be a compact connected subgroup of Isomg(M), x0 ∈M

is fixed, and FixM(G) = {x0}. Let assume that the potential α and the locally Lipschitz

function F satisfy hypotheses (Cα), (F1)-(F3), respectively. Moreover, let assume that

one of the following curvature assumptions holds:

(a) (M, g) is Cartan-Hadamard type,

(b) Ric(M,g) ≥ 0, AVR(M,g) > 0 and G is coercive.

Then there exist λ1 > λ0 > 0 such that the differential inclusion system (SM) has only

the trivial solution for 0 < λ < λ0, and has two different non-trivial solutions whenever

λ > λ1.

6.2 Proof of Theorem 6.1.1

6.2.1 Energy functionals

The energy functional L : H1(M) × H1(M) → R associated to the inclusion system

(SM) is defined as

L(u, φ) = 1

2
‖u‖2H1 +

1

2

∫
M

φ(x)u2(x)dvg

− λ

∫
M

α(x)F (u(x))dvg −
1

16π

∫
M

|∇gφ(x)|2dvg

− 1

16π

∫
M

|φ(x)|2dvg.

We note that the energy functional is well defined and locally Lipschitz. Since our ob-

jective is to apply variational methods and we are dealing with an inclusion system (SM),

similarly to Farkas and Kristály [17], we define a ”single-variable” locally Lipschitz en-

ergy functional Eλ : H1(M) → R to that, namely

Eλ(u) = N (u)− λF(u),
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where

N (u) =
1

2
‖u(x)‖2H1 +

1

2

∫
M

φu(x)u
2(x)dvg,

F(u) =

∫
M

α(x)F (u(x))dvg.

6.2.2 Eλ is G-invariant

Recalling again subsection 2.4.2, in order to be able to use the principle of symmetric

criticality, we claim that the energy functional Eλ is G-invariant on H1(M). Applying

an appropriate change of variable y = σ−1(x), for all σ ∈ G and u ∈ H1(M) we have

that ‖σu‖H1 = ‖u‖H1 , see (5.7). By (Cα), the function α is radially symmetric. Thus,

applying again the change of variable y = σ−1(x), for all σ ∈ G and u ∈ H1(M)we have

F((σu)(x)) =

∫
M

α(x)∂F ((σu)(x))dvg(x) =
∫
M

α(x)∂F (σ−1(x))dvg(x)

=

∫
M

α(y)∂F (y)dvg(y)

and it follows that F is G-invariant.

Applying again the change of variables y = σ−1(x), one can prove for all σ ∈ G and

u ∈ H1(M) that φσu(σ(x)) = φu(x) and we have∫
M

φσu(x)(σu)
2dvg(x) =

∫
M

φu(y)u
2(y)dvg(y),

which proves that
∫
M
φuu

2dvg is also G-invariant.

Combining these facts, our claim follows. □
Similarly to chapter 5, we introduce again the subspace of G-invariant functions,

namely

H1
G(M) := FixH1(M)(G) = {u ∈ H1(M)|σu = u for all σ ∈ G}

and also the restricted single variable energy functional ontoH1
G(M) as Eλ,G := Eλ|H1

G(M).

6.2.3 Analytic properties of Eλ,G(u)

In this subsection we show some basic properties of the single variable energy functional

Eλ,G(u), namely boundnesses from below, coercivity and the non-smooth Palais-Smale

condition.
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Based on (F2), we can find δ > 0 for every ε > 0 such that if s ≥ δ > 0, then |ξ| ≤ εs

where ξ ∈ ∂F (s). By (F3) we have F (0) = 0. Thus, an appropriate continuous Sobolev

embedding and the Lebourg’s mean value theorem imply that

F(u) =

∫
u≤δ

α(x)F (u(x))dvg +
∫
u>δ

α(x)F (u(x))dvg

≤ ‖α‖L1(M)max
s<δ

|F (s)|+ ε‖α‖L∞(M)‖u‖2H1 .

Accordingly, the estimate

Eλ,G(u) = N (u)− λF(u)

=
1

2
‖u‖2H1 +

1

2

∫
M

φu(x)u
2(x)dvg − λF(u(x))

≥ ‖u‖2H1

(1
2
− λε‖α‖L∞(M)

)
− λ‖α‖L1(M)max

s≤δ
|F (s)|

shows that if ε is small enough, more precisely ε < 1
2λ∥α∥L∞(M)

, then the energy functional

Eλ,G is bounded from below and coercive, i.e., Eλ,G(u) → +∞ whenever ‖u‖H1 → +∞.

6.2.4 Eλ,G satisfies the non-smooth Palais-Smale condition onH1
G(M)

Based on (F1) and (F2), for every ε > 0 one has two numbers δ1, δ2 > 0, such that

|ξ| ≤ εs for all ξ ∈ ∂F (s), ∀0 < s < δ1 and s > δ2.

Let us fix ε > 0 together with the numbers δ1 and δ2. By assumptions (F)1 and (F)2, it

turns out that there exists lε > 0 such that for some q ∈ (2, 2∗) we have

0 ≤ |ξ| ≤ εs+ lεs
q−1, ∀s ≥ 0, ξ ∈ ∂F (s). (6.1)

Let {uk}k ⊂ H1
G(M) be a Palais-Smale sequence, i.e. Eλ,G(uk) is bounded and

m(uk) → 0 as k → 0, where m(uk) = min{‖ξ‖∗ : ξ ∈ ∂Eµ,λ(uk)}. Due to the coer-

civeness of Eλ,G, it turns out that {uk} ⊂ H1
G(M) is bounded. Thus, the Sobolev compact

embeddings (see Preliminaries subsection 2.5.5 ) imply that up to a subsequent, {uk}k
converges weakly in H1(M) and strongly in Lq(M), q ∈ (2, 2∗).

Let us consider the generalized directional derivative of the energy functional Eλ,G for

all u, v ∈ H1(M):

E◦
λ,G(u, v) =

1

2
〈N ′

(u); v〉+ λ(−F)◦(u, v).
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Applying the latter inequality with parameters u = uk and v = u − uk, then u = u and

v = uk − u one has

1

2
‖uk − u‖2H1 = −1

2

∫
M

φuk−u(uk − u)2(x)dvg

+ λF◦(uk; uk − u) + λF◦(u; u− uk)

− E◦
λ,G(uk; u− uk)− E◦

λ,G(u; uk − u).

On one hand, sincem(uk) → 0, it follows that

lim
k→∞

inf
(
E◦
λ,G(u, uk − u) + E◦

λ,G(uk, u− uk)
)
≥ 0.

On the other hand, for all measurable mappings x 7→ ξ ∈ ∂F (u(x)) and x 7→ ξk ∈

∂F (uk(x)) we have the following estimate

Sk := λF◦(uk; uk − u) + λF◦(u; u− uk)

≤ λ

∫
α(x) [F ◦(uk; uk − u) + F ◦(u; u− uk)] dvg

= λ

∫
α(x) [max{ξk(uk − u)}+max{ξ(u− uk)}] dvg

≤ ε(‖uk‖H1 + ‖u‖H1)‖uk − u‖H1 + lε(‖uk‖q−1
Lq + ‖u‖q−1

Lq )‖uk − u‖Lq

where lε is defined in the equation (6.1).

Thus, by the arbitrariness of ε > 0 and uk → u inLq(M), as k → ∞where q ∈ (2, 2∗),

one has that lim supk→∞ Sk ≤ 0. Since φuk−u(uk − u)2 ≥ 0, it follows that uk → u in

H1
G(M), which ends the proof. □

6.2.5 Relations between energy functionals

On one hand, assuming that the pair (u, φ) ∈ H1(M) ×H1(M) is a critical point of the

locally Lipschitz energy functional L, more precisely 0 ∈ ∂L(u, φ), one can prove that

the pair (u, φ) is the weak solution of the inclusion system, see section 2.4.1.

On the other hand, the pair (u, φ) is the critical point of L if and only if φ = φu and u

is the critical point of the single variable energy functional Eλ. With the same notation as

above, for every test function v ∈ H1(M) we have

∂Eλ(u)(v) =
∫
M

∇gu(x)∇gv(x)dvg +
∫
M

φu(x)u(x)v(x)dvg (6.2)

− λ

∫
M

α(x)ξv(x)dvg.
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Accordingly, in order to solve the problem (SM), it is enough to find critical points for

the singe variable energy functional. However, due to the lack of compactness we have

to use isometric actions. Since subsection 6.2.2 proves that Eλ is G-invariant, applying

the non-smooth symmetric criticality principle 2.4.3 implies that if uG is a critical point of

Eλ,G, then it is also a critical point of the locally Lipschitz energy functional Eλ. Now, we

are in the position to find critical points for the energy functional Eλ,G, thus guaranteeing

weak solutions to the inclusion system (SM).

6.2.6 First solution for large parameters

In what follows, we prove the existence of the first solution. Let q ∈ (2, 2∗). According

to assumptions (F1)− (F3) and appropriate Sobolev embeddings, for all u ∈ H1
G(M) we

have

0 ≤ F(u) ≤
∫
M

α(x)F (u(x))dvg ≤
∫
M

α(x)|F (u(x))|dvg

≤ ‖α‖L∞(ε‖u‖2H1 + lε(K
±
q )

q‖u‖qH1),

whereK±
q are the continuous embedding constants.

Since

N (u) =
1

2
‖u(x)‖2H1 +

1

2

∫
M

φu(x)u
2(x)dvg,

it follows that lim∥u∥2
H1→0

F(u)
N (u)

= 0 and lim∥u∥2
H1→∞

F(u)
N (u)

= 0. Consequently, one has a

number λ1 > 0 such that

0 < λ1 = inf
F(u)>0

N (u)

F(u)
<∞;

if λ > λ1, one can find ω ∈ H1
G(M) such that F(ω) > 0 and λ > N (ω)

F(ω)
> λ1. It means,

that

C1
λ = inf

u∈H1
G(M)

Eλ,G(u) ≤ N (ω)− λF(ω) < 0.

We have shown that the energy functional Eλ,G is bounded from below, and satisfies the

Palais-Smale condition, thus C1
λ is a critical value. In particular, we can garantee a critical

point u1λ ∈ H1
G(M) for the energy functional Eλ,G such that Eλ,G(u1λ) < 0 = Eλ,G(0).

According to section 6.2.5, u1λ is a non-trivial weak solution to the problem (SM).
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6.2.7 Second solution for large parameters

This subsection is devoted to present our second non-trivial weak solution. Let q ∈ (2, 2∗)

and λ > λ1. One has that

Eλ,G(u) =
1

2
‖u‖2H1 +

1

2

∫
M

φu(x)u
2(x)dvg − λF(u)

≥ ‖u‖2H1(
1

2
− λε‖α‖L∞)− λ‖α‖L∞lε(K

±
q )

q‖u‖qH1 .

Fixing a small ε > 0 (e.g. ε < 1
2λ∥α∥L∞ ), one has θ > 0, e.g. θ = ( 1−2λε∥α∥L∞

3λ∥α∥L∞ lε(K
±
q )q

)
1

q−2

such that

inf
∥u∥H1=θ

Eλ,G(u) > Eλ,G(0) = 0 > Eλ,G(ω).

Consequently, the energy functional Eλ,G satisfies the mountain pass geometry. Section

6.2.4 proves that Eλ,G fulfills the non-smooth Palais-Smale condition, thus applying the

non-smooth mountain pass theorem we can guarantee another critical point u2λ ∈ H1
G(M),

i.e.,

0 ∈ ∂Eλ,G(u2λ),

Eλ,G(u2λ) = C2
λ = inf

γ∈Γ
max
t∈[0,1]

Eλ,G(γ(t)) > 0,

where Γ is the set of continuous functions given by

Γ =

{
γ ∈ C([0, 1];H1

G(M)) : γ(0) = 0, γ(1) = ω

}
.

Based on the fact thatC1
λ < 0 < C2

λ, section 6.2.5 implies that we have a second nontrivial

weak solution u2λ for the inclusion system (SM).

6.2.8 Non-existence of solutions for small parameters

We are going to show that the inclusion system (SM) has just the trivial solution whenever

0 < λ < λ0, where λ0 will be defined later. Let assume that (u, φu) ∈ (H1(M)×H1(M))

is the weak, non-trivial solution of the problem. Recalling (6.2) with v = u gives for all

u ∈ H1(M) that

‖u‖2H1(M) +

∫
M

φu(x)u
2(x)dvg = λ

∫
M

α(x)ξu(x)dvg,

where ξ ∈ ∂F (u) and x ∈ (M, g). Accordingly, by combining assumptions (F1) − (F3)

with the fact that ∂F is upper semicontinuous, one has a constant K1 > 0 such that
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|ξ| ≤ K1s for all ξ ∈ ∂F (s), s > 0. Consequently, we obtain that

‖u‖2H1(M) +

∫
M

φu(x)u
2(x)dvg ≤ λ‖α‖L∞K1‖u‖2H1 .

If 0 ≤ λ < 1
∥α∥∞K1

=: λ0, then the inequality has just the trivial u = 0 solution. Thus, the

Maxwell equation also has just the trivial solution φu = 0. Indeed, we can just garantee

the trivial solution pair (u = 0, φu = 0) for the inclusion system (SM), which clearly

proves our claim.
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