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Chapter 1

Introduction

The study of partial differential equations had already appeared within the analysis of

physical models in the works of Euler, Lagrange and Laplace by the 18th century. Mo-

tivated by mathematical and physical problems, PDEs became an essential research area,

both as standalonemathematical discipline aswell asmodeling various problems in physics,

providing a bridge between pure mathematics and applications.

Arising in the context of several natural phenomena, PDEs have some well known,

famous applications, like wave, Schrödinger, Maxwell, diffusion, Monge-Ampère and

Navier-Stokes equations, respectively. The Laplace equation modeling the stationary state

of the heat equation is the most simple variant of the elliptic class of PDEs besides the

Poisson equation. The elliptic class of problems being generalization of the Laplace equa-

tion, is suitable to describe equilibrium states, or problems which are independent from

the time. Mechanical or physical applications often induce not only continuous, but also

discontinuous functions, where the idea is to ”fill the gaps” of the discontinuities with a

set-valued generalized gradient of a locally Lipschitz function, e.g. von Kármán laminated

plates problem, where the external force acts on adhesively connected laminated plates,

analysed by Bocea, Panagiotopoulos and Rădulescu [6]. In this way, the appearance of

non-smooth problems (thus, set-valued mappings) induces differential inclusions rather

than differential equations.

Elliptic PDEs are usually studied on Sobolev spaces combined with powerful vari-

ational methods. Analyzing some fine properties of the energy functional associated to

the studied problem, and exploiting variational methods like minimax or minimization

principles, we may find critical points and prove in this way existence, uniqueness and
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CHAPTER 1. INTRODUCTION 2

multiplicity results. In case of discontinuous functions, non-smooth variational methods

should be applied.

The primary objective of the thesis is to present recent research results in the study of

elliptic differential inclusions. Applying recent geometrical researches, we show how to

apply variational methods not only on Euclidean spaces but also on curved cases.

The thesis is based on the following papers:

(i) A. Kristály, I.I. Mezei and K. Szilák. Differential inclusions involving oscillatory

term. Nonlinear Analysis, 197 (2020), 111834. [D1 publication]

(ii) K. Szilák. A non-smooth Neumann problem on compact Riemannian manifolds.

SACI 2021 IEEE 15th International Symposium on Applied Computational Intelli-

gence and Informatics.

(iii) A. Kristály, I.I. Mezei and K. Szilák. Elliptic differential inclusions on non-compact

Riemannian manifolds. Nonlinear Analysis-Real World Applications, 69 (2023),

103740. [D1 publication]

(iv) K. Szilák. Schrödinger-Maxwell differential inclusion system. SACI 2023 IEEE

17th International Symposium on Applied Computational Intelligence and Infor-

matics.

(v) Á. Mester, K. Szilák, A Dirichlet inclusion problem on Finsler manifolds, CINTI

2023, IEEE 23rd International Symposium on Computational Intelligence and In-

formatics, November 20-22, 2023, Budapest, Hungary.

In the sequel a brief overview follows about the chapters. In Chapter 2, motivated by

mechanical problems – where the external forces are non-smooth – we study an elliptic

inclusion problem with a non-smooth oscillatory and a non-smooth, generic, p-order per-

turbation function in two settings. First, we consider the case when the oscillatory term

oscillates near to the origin and the perturbation is of order p > 0 at origin. Applying

various non-smooth variational methods, we provide a quite complete picture about the

number of distinct, non-trivial weak solutions for the studied problem, depending on pa-

rameters p, λ and k, and we also prove a novel competition phenomena. As a counterpart,

we also prove similar results whenever the nonlinear term oscillates at infinity and the



CHAPTER 1. INTRODUCTION 3

perturbation is of order p > 0 at infinity. This chapter is based on the paper by Kristály,

Mezei and Szilák [11].

In Chapter 3, considering a non-smooth elliptic problem on Riemannian manifolds, we

discuss a differential inclusion, as a new application of a recent non-smooth Ricceri-type

result. We prove that the studied inclusion problem has at least three distinct weak solu-

tions whose norms are controlled whenever a suitable perturbation occurs. This chapter

is based on Szilák [23].

Chapter 4 is devoted to focus onto a broad class of curved spaces. More precisely,

we consider both Cartan-Hadamard manifolds and non-compact Riemannian manifolds

with non-negative Ricci curvature. Within these geometric settings, we study an elliptic

inclusion problem involving a singular term and a non-smooth nonlinearity, by proving

various non-existence and existence results. In particular, four non-trivial G-invariant

weak solutions are established in the above two settings (where G is a certain subgroup

of isometries of the Riemannian manifold). In the first case, the nonlinear term is sub-

quadratic, meanwhile in the second case it is super-quadratic at infinity. It turns out that

the usual variational methods cannot be applied due to the lack of compactness, which will

be recovered by isometric actions, combined with the principle of symmetric criticality.

This chapter is based on the paper by Kristály, Mezei and Szilák [12].

In Chapter 5, motivated by physical problems, we consider a Schrödinger-Maxwell

inclusion system involving a non-linear term, which is superlinear at the origin and sub-

linear at infinity. Similarly to Chapter 4, we again focus on Cartan-Hadamard manifolds

and non-compact Riemannian manifolds with non-negative Ricci curvature, respectively.

Introducing a ”single variable” energy functional, we prove a non-existence result when-

ever the parameter λ is small enough, and by compensating the lack of compactness with

isometric actions, we establish two non-trivial weak solutions for the inclusion system

whenever the parameter λ is large enough. This chapter is based on Szilák [24].



Part I

Differential inclusions - compact case
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Chapter 2

Differential inclusions involving

oscillatory terms

PDEs with perturbations that play central roles in physical and mechanical problems, have

been subject of several investigations. Let consider the following elliptic PDE with per-

turbation 
−∆u(x) = f(u(x)) + λg(u(x)), x ∈ Ω;

u ≥ 0, x ∈ Ω;

u = 0, x ∈ ∂Ω,

(Pλ)

where ∆ is the usual Laplace operator, Ω ⊂ Rn is a bounded open domain (n ≥ 2), and

f : R → R is a continuous function verifying certain growth conditions at the origin and

infinity, g : R → R is another continuous function which is going to compete with the

original function f . When both functions f and g are of polynomial type of sub- and super-

unit degree, the existence of at least one or two nontrivial solutions of (Pλ) is guaranteed,

depending on the range of λ > 0, see e.g. Ambrosetti, Brezis and Cerami [1], Autuori and

Pucci [2], de Figueiredo, Gossez and Ubilla [8]. In these papers variational arguments,

sub- and super-solution methods as well as fixed point arguments are employed.

Another important class of problems of the type (Pλ) is studied whenever f has a

certain oscillation (near the origin or at infinity) and g is a perturbation.

Although oscillatory functions seemingly call forth the existence of infinitely many

solutions, it turns out that ’too classical’ oscillatory functions do not have such a feature.

Indeed, when f(s) = c sin s and g = 0, with c > 0 small enough, a simple use of the

Poincaré inequality implies that problem (Pλ) has only the zero solution. However, when

5



CHAPTER 2. INCLUSIONS WITH OSCILLATORY TERMS 6

f strongly oscillates, problem (Pλ)with 0 perturbation has indeed infinitelymany different

solutions; see e.g. Omari and Zanolin [19], Saint Raymond [22]. A novel competition

phenomena for the case g(s) = sp (s > 0) has been described for (Pλ) by Kristály and

Moroşanu [13].

In mechanical applications, in turn, the perturbation may manifest in a discontinuous

manner as a non-regular external force, see e.g. the gluing force in von Kármán laminated

plates, cf. Bocea, Panagiotopoulos and Rădulescu [6], Motreanu and Panagiotopoulos

[18] and Panagiotopoulos [20]. We consider the problem (Pλ) formulated into a more

general form 
−∆u(x) ∈ ∂F (u(x)) + λ∂G(u(x)), x ∈ Ω;

u ≥ 0, x ∈ Ω;

u = 0, x ∈ ∂Ω,

(Dλ)

where F and G are both non-smooth, locally Lipschitz functions having various growths,

while ∂F and ∂G stand for the generalized gradients of F and G, respectively.

Extending the main results of Kristály and Moroşanu [13] we study the inclusion (Dλ)

in two different settings, i.e., we analyze the number of distinct solutions of (Dλ)whenever

∂F oscillates near the origin/infinity and ∂G is of order p > 0 near the origin/infinity.

2.1 Main theorems

Let F,G : R+ → R be locally Lipschitz functions and as usual, let us denote by ∂F

and ∂G their generalized gradients in the sense of Clarke. Hereafter, R+ = [0,∞). Let

p > 0, λ ≥ 0 andΩ ⊂ Rn be a bounded open domain, and consider the elliptic differential

inclusion problem
−∆u(x) ∈ ∂F (u(x)) + λ∂G(u(x)), x ∈ Ω;

u ≥ 0, x ∈ Ω;

u = 0, x ∈ ∂Ω.

(Dλ)

The cases when ∂F oscillates near the origin or at infinity are studied in separated

sections.
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2.1.1 Oscillation near the origin

We assume that the beforementioned locally Lipschitz functions F and G satisfy the fol-

lowing conditions:

(F0
0) : F (0) = 0;

(F0
1) : −∞ < lim infs→0+

F (s)
s2

; lim sups→0+
F (s)
s2

= +∞;

(F0
2) : l0 := lim infs→0+

max{ξ:ξ∈∂F (s)}
s

< 0;

(G0
0) : G(0) = 0;

(G0
1) : There exist p > 0 and c, c ∈ R such that

c = lim inf
s→0+

min{ξ : ξ ∈ ∂G(s)}
sp

≤ lim sup
s→0+

max{ξ : ξ ∈ ∂G(s)}
sp

= c.

Remark 2.1.1. Hypotheses (F0
1) and (F0

2) imply a strong oscillatory behavior of ∂F near

the origin.

In what follows, we provide a quite complete picture about the competition concerning

the terms s 7→ ∂F (s) and s 7→ ∂G(s), respectively. First, we are going to show that when

p ≥ 1, then the ’leading’ term is the oscillatory function ∂F ; roughly speaking, one can

say that the effect of s 7→ ∂G(s) is negligible in this competition. More precisely, we

prove the following result.

Theorem 2.1.1. (Kristály, Mezei and Szilák [11]) (Case p ≥ 1) Assume that p ≥ 1 and

the locally Lipschitz functions F,G : R+ → R satisfy (F0
0)− (F0

2) and (G0
0)− (G0

1). If (i)

either p = 1 and λc < −l0 (with λ ≥ 0), (ii) or p > 1 and λ ≥ 0 is arbitrary,

then the differential inclusion problem (Dλ) admits a sequence {ui}i ⊂ H1
0 (Ω) of distinct

weak solutions such that

lim
i→∞

‖ui‖H1
0
= lim

i→∞
‖ui‖L∞ = 0.

In the case when p < 1, the perturbation term ∂G may compete with the oscillatory

function ∂F ; we have the following theorem:

Theorem 2.1.2. (Kristály, Mezei and Szilák [11]) (Case 0 < p < 1) Assume 0 < p < 1

and that the locally Lipschitz functionsF,G : R+ → R satisfy (F0
0)−(F0

2) and (G0
0)−(G0

1).
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Then, for every k ∈ N, there exists λk > 0 such that the differential inclusion (Dλ) has at

least k distinct weak solutions {u1,λ, ..., uk,λ} ⊂ H1
0 (Ω) whenever λ ∈ [0, λk]. Moreover,

‖ui,λ‖H1
0
< i−1 and ‖ui,λ‖L∞ < i−1 for any i = 1, k; λ ∈ [0, λk]. (2.1)

2.1.2 Oscillation at infinity

We assume that the beforementioned locally Lipschitz functions F and G satisfy the fol-

lowing conditions:

(F∞
0 ) : F (0) = 0;

(F∞
1 ) : −∞ < lim infs→∞

F (s)
s2

; lim sups→∞
F (s)
s2

= +∞;

(F∞
2 ) : l∞ := lim infs→∞

max{ξ:ξ∈∂F (s)}
s

< 0;

(G∞
0 ) : G(0) = 0;

(G∞
1 ) : There exist p > 0 and c, c ∈ R such that

c = lim inf
s→∞

min{ξ : ξ ∈ ∂G(s)}
sp

≤ lim sup
s→∞

max{ξ : ξ ∈ ∂G(s)}
sp

= c.

Remark 2.1.2. Hypotheses (F∞
1 ) and (F∞

2 ) imply a strong oscillatory behavior of the

set-valued map ∂F at infinity.

In the sequel, we investigate the competition at infinity concerning the terms s 7→

∂F (s) and s 7→ ∂G(s), respectively. First, we show that when p ≤ 1 then the ’leading’

term is the oscillatory function F , i.e., the effect of s 7→ ∂G(s) is negligible. More

precisely, we prove the following result:

Theorem 2.1.3. (Kristály, Mezei and Szilák [11]) (Case p ≤ 1) Assume that p ≤ 1 and

the locally Lipschitz functions F,G : R+ → R satisfy (F∞
0 )− (F∞

2 ) and (G∞
0 )− (G∞

1 ). If

(i) either p = 1 and λc ≤ −l0 (with λ ≥ 0),

(ii) or p < 1 and λ ≥ 0 is arbitrary,

then the differential inclusion (Dλ) admits a sequence {ui}i ⊂ H1
0 (Ω) of distinct weak

solutions such that

lim
i→∞

‖u∞
i ‖L∞ = ∞. (2.2)
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Remark 2.1.3. Let us denote by 2∗ the usual critical Sobolev exponent. In addition to

(2.2), we also claim that limi→∞ ‖u∞
i ‖H1

0
= ∞ whenever

sup
s∈[0,∞)

max{|ξ| : ξ ∈ ∂F (s)}
1 + s2∗−1

< ∞. (2.3)

In the case when p > 1, it turns out that the perturbation term ∂G may compete with

the oscillatory function ∂F ; more precisely, we have the following theorem:

Theorem 2.1.4. (Kristály, Mezei and Szilák [11]) (Case p > 1) Assume that p > 1 and

the locally Lipschitz functions F,G : R+ → R satisfy (F∞
0 ) − (F∞

2 ) and (G∞
0 ) − (G∞

1 ).

Then, for every k ∈ N, there exists λ∞
k > 0 such that the differential inclusion (Dλ) has at

least k distinct weak solutions {u1,λ, ..., uk,λ} ⊂ H1
0 (Ω) whenever λ ∈ [0, λ∞

k ].Moreover,

‖ui,λ‖L∞ > i− 1 for any i = 1, k; λ ∈ [0, λ∞
k ]. (2.4)

Remark 2.1.4. If the condition (2.3) holds and p ≤ 2∗− 1 in Theorem 2.3, then we claim

in addition that

‖u∞
i,λ‖H1

0
> i− 1 for any i = 1, k; λ ∈ [0, λ∞

k ].



Chapter 3

A non-smooth Neumann problem on

compact Riemannian manifolds

In many cases, a recent Ricceri result [21] can be easily invoked to solve partial differential

equations involving C1 functions; for a non-smooth version, see Kristály, Marzantowicz

and Varga [10]. Extending their results in several aspects, the aim of this chapter is to

present an application of the non-smooth Ricceri’s multiplicity theorem [10] to discuss a

differential inclusion problem on a compact Riemannian manifolds.

This chapter summerizes results of Szilák [23].

3.1 Main results

Let (M, g) be a connected, compact Riemannian manifold of dimension n ≥ 3 with

boundary ∂M . Introducing the notations 2∗ = 2n
n−2

and 2
∗
= 2(n−1)

n−2
, we study the fol-

lowing inhomogeneous Neumann boundary differential inclusion problem −∆gu(x) + k(x)u ∈ λK(x)∂F (u(x)), x ∈ M ;

∂u
∂n ∈ µD(x)∂G(u(x)), x ∈ ∂M,

(Dλ,µ)

where k,K : M → R and D : ∂M → R are positive continuous functions, µ and

λ > 0, ∆g denotes the Laplace-Beltrami operator on (M, g), ∂
∂n is the normal derivative

with respect to the outward normal n on ∂M . In addition, F and G are locally Lipschitz

functions, ∂F and ∂G denote their generalized gradients in the sense of Clarke and we

assume they verify the following conditions:

10
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(F0) : F (0) = 0 and there exists C1 > 0 and p ∈ [2, 2∗) such that

|ξ| ≤ C1(1 + |s|p−1), ∀ξ ∈ ∂F (s), s ∈ R;

(F1) : lim sups→0
max{|ξ|:ξ∈∂F (s)}

s
= 0;

(F2) : lim sup|s|→∞
F (s)
s2

≤ 0;

(F3) : there exists s0 ∈ R such that F (s0) > 0;

(G0) : there exists C2 > 0 and q ∈ [2, 2
∗
) such that

|ξ| ≤ C2(1 + |s|q−1), ∀ξ ∈ ∂G(s), s ∈ R.

We present the main result of this chapter:

Theorem 3.1.1. (Szilák [23]) Let F : M → R and G : M → R be functions that fulfill

the assumptions (F0) − (F3) and (H0), respectively. Then there exist a number η and a

non-degenerate compact interval A ⊂ (0,+∞) such that for every λ ∈ A there exists

µ0 ∈ (0, λ + 1] so that whenever µ is small enough i.e. µ ∈ [0, µ0], the inclusion (Dλ,µ)

has at least three solutions which are in norm less than η.



Part II

Differential inclusions - non-compact

case

12



Chapter 4

Elliptic differential inclusions on

non-compact Riemannian manifolds

PDEs may appear not only on bounded domains of Euclidean structures; physical and

mechanical phenomena quite frequently require the application of inclusion problems on

the broad class of curved spaces. Considering a complete, n-dimensional, non-compact

Riemannian manifold (M, g) with certain curvature restrictions (n ≥ 3), we study the

following differential inclusion problem

Lu(x) = −∆gu(x)− µ
u(x)

d2g(x0, x)
+ u(x) ∈ λα(x)∂F (u(x)), x ∈ M. (D)

Here L denotes an elliptic type operator, ∆g represents the Laplace-Beltrami operator on

(M, g), dg : M ×M → R is the distance function associated with the Riemannian metric

g, x0 ∈ M is a fixed point, µ, λ ∈ R are some parameters. The function α : M → R is

a measurable potential, F : R → R is a locally Lipschitz function and ∂F stands for the

Clarke subdifferential of F .

On one hand, variational elliptic differential inclusions as (D) – or slightly different

versions of them formulated in terms of variational-hemivariational inequalities – have

been subject of several investigation in the last three decades, mostly in Euclidean spaces

(both for bounded and unbounded domains), see e.g. Kristály and Varga [15], Liu, Liu and

Motreanu [16], Liu, Livrea, Motreanu and Zeng [17], etc. On the other hand, various forms

of (D) have been investigated both on compact and non-compact Riemannian manifolds

(mostly without the singular term), see e.g. Berchio, Ferrero and Grillo [4], Bonanno,

Molica Bisci and Rădulescu [5], etc.

13
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We consider problem (D) under two different curvature conditions. More precisely,

we assume that the Riemannian manifold (M, g) satisfies one of the following conditions:

(i) Cartan-Hadamard manifold,

(ii) The Ricci curvature is non-negative.

This chapter is devoted to focus on non-existence, existence and multiplicity results

for the differential inclusion problem (D) by assuming curvature hypothesis (i) or (ii),

together with additional grows conditions on the locally Lipschitz functionF (at the origin

and infinity). It turns out that the variational methods cannot be used directly. Indeed,

since suchmanifolds are not compact, it is not possible to use certain Sobolev embeddings;

as we mentioned in the introduction, the lack of compactness has to be compensated with

the application of isometric actions and the principle of symmetric criticality.

This chapter summerize results of Kristály, Mezei, and Szilák [12].

4.1 Main theorems

First, we discuss non-existence results under the above special curvature conditions; to do

this, we assume on the potential α : M → R that

(Hα) : α ≥ 0 and α ∈ L1(M) ∩ L∞(M) \ {0},

and additionally on the locally Lipschitz function F : R → R that

(H0) : there exists C0 > 0 such that

|ξ| ≤ C0|t|, ∀ξ ∈ ∂F (t), t ∈ R.

The first result of the present chapter reads as follows.

Theorem 4.1.1. (Kristály, Mezei, and Szilák [12]) (Non-existence) Let (M, g) be an n-

dimensional complete non-compact Riemannian manifold, n ≥ 3, and assume that the

potential α : M → R and the locally Lipschitz function F : R → R satisfy assump-

tions (Hα) and (H0), respectively. Assume in addition that one of the following curvature

conditions holds:

(i) K ≤ −κ for some κ ≥ 0, (M, g) is simply connected and

(i1) either κ = 0, µ ≤ (n−2)2

4
and |λ|C0‖α‖L∞ ≤ 1,
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(i2) orκ > 0, µ ≤ (n−2)2

4
and (n−2)2(|λ|C0‖α‖L∞−1) ≤ (n−1)2

(
(n−2)2

4
− µ+

)
κ,

where µ+ = max(µ, 0);

(ii) Ric(M,g) ≥ 0, µ ≤ AVR
2
n

(M,g)
(n−2)2

4
and |λ|C0‖α‖L∞ ≤ 1.

Then the differential inclusion (D) has only the zero solution.

In order to produce existence or even multiplicity of non-zero solutions to (D), we

require on the locally Lipschitz function F : R → R the following assumptions:

(H)1 : lim
t→0

max{|ξ| : ξ ∈ ∂F (t)}
t

= 0;

(H)2 : lim
|t|→∞

max{|ξ| : ξ ∈ ∂F (t)}
t

= 0;

(H)3 : F (0) = 0 and there exist t−0 < 0 < t+0 such that F (t±0 ) > 0.

Remark 4.1.1. Note that (H1) and (H2)mean that the function t 7→ max{|ξ| : ξ ∈ ∂F (t)}

is superlinear at the origin and sublinear at infinity, respectively; in particular, by using

Lebourg’s mean value theorem, we observe that F is sub-quadratic at infinity.

Remark 4.1.2. By the upper semicontinuity of the set-valued function t 7→ ∂F (t) and

conditions (H1) and (H2), we can observe that the hypothesis (H0) is also valid for a

suitably large value of C0 > 0; in particular, Theorem 4.1.1 can be applied (under the

assumptions (Hλ), (H1) and (H2)), and for sufficiently ’small’ values of |λ| only the zero

solution exists for the differential inclusion (D).

Whenever λ is large enough, multiplicity result can be established involving additional

assumptions in order to balance the lack of compactness of the Riemannian manifolds we

are dealing with. The next theorem provides a multiplicity result with a sub-quadratic

nonlinearity at the infinity.

Theorem 4.1.2. (Kristály, Mezei, and Szilák [12]) (Multiplicity: sub-quadratic nonlinear-

ity at infinity) Let (M, g) be an n-dimensional complete non-compact Riemannian mani-

fold, n ≥ 3, and G be a compact connected subgroup of Isomg(M) such that FixM(G) =

{x0} for the same x0 ∈ M as in problem (D). Let α : M → R be a potential satisfying

(Hα) which depends only on dg(x0, ·) and the locally Lipschitz function F : R → R sat-

isfying assumptions (Hi), i ∈ {1, 2, 3}, respectively. In addition, we assume that one of

the following curvature assumptions holds:

(i) (M, g) is of Cartan-Hadamard-type and
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(ii) Ric(M,g) ≥ 0, AVR(M,g) > 0, 0 ≤ µ < AVR
2
n

(M,g)
(n−2)2

4
and G is coercive.

Then there exists λ0 > 0 such that for every λ > λ0 the differential inclusion (D) has at

least four non-zero G-invariant solutions in H1(M).

In the sequel, we establish a counterpart of Theorem 4.1.2 whenever F is super-

quadratic at infinity. In order to prove more existence and multiplicity results, we in-

troduce additional constraints on the locally Lipschitz function F : R → R :

(H4) : F (0) = 0 and there exist ν > 2 and C > 0 such that

2F (t) + F 0(t;−t) ≤ −C|t|ν , ∀t ∈ R;

(H5) : there is q ∈
(
2, 2 + 4

n

)
such that max{|ξ| : ξ ∈ ∂F (t)} = O(|t|q−1) as |t| → ∞.

Here, F 0(t; s) is the generalized directional derivative ofF at the point t ∈ R and direction

s ∈ R. Note that by (H1) and (H4), F is super-quadratic at infinity.

Theorem4.1.3. (Kristály,Mezei, and Szilák [12]) (Existence/Multiplicity: super-quadratic

nonlinearity at infinity) Let (M, g) be an n-dimensional complete non-compact Rieman-

nian manifold, n ≥ 3, and G be a compact connected subgroup of Isomg(M) such that

FixM(G) = {x0} for the same x0 ∈ M as in problem (D). Let α ∈ L∞(M) be a potential

which depends only on dg(x0, ·) and essinfx∈Mα(x) = α0 > 0, while the locally Lipschitz

function F : R → R satisfies the assumptions (Hi), i ∈ {1, 4, 5}, respectively. If one

of the curvature assumptions (i) or (ii) holds from Theorem 4.1.2, then for every λ > 0

the differential inclusion (D) has at least a non-zero G-invariant solution in H1(M). In

addition, if F is an even function, (D) has infinitely many distinct G-invariant solutions

in H1(M).



Chapter 5

Schrödinger-Maxwell differential

inclusion system

Electrostatic variations of Schrödinger-Maxwell systems have been subject of several in-

vestigations, see Kristály, Repovš [14], Azzollini and Pimenta [3], describing a charged

quantum-mechanical particle interacting with the electromagnetic field: −∆u(x) + eu(x)ϕ(x) = f(u(x)), x ∈ R3;

−∆ϕ(x) = eu2(x), x ∈ R3,

where ∆ denotes the Laplace operator, ϕ : R3 → R is the electric potential, e is the

electron charge constant, while the function u : R3 → R is the field associated to the

particle. Recent researches focus to curved spaces, see e.g. Farkas and Kristály ([9]),

where existence results for Schrödinger-Maxwell systems are provided on non-compact

Hadamard manifolds, involving sublinear or oscillatory terms at infinity.

Considering a broad class of non-compact Riemannian manifolds, we study a non-

smooth Schrödinger-Maxwell inclusion system, equipped with a nonlinear term on the

non-compact Riemannian manifold (M, g), namely −∆gu(x) + u(x) + u(x)ϕ(x) ∈ λα(x)∂F (u(x)), x ∈ M ;

−∆gϕ(x) + ϕ(x) = 4πu2(x), x ∈ M,
(SM)

where∆g denotes the Laplace-Beltrami operator on (M, g), λ > 0 is a parameter, and the

unknown terms u, ϕ : M → R. In the sequel, α : M → R is a potential, and ∂F stands

for the generalized gradient of the locally Lipschitz function F : R → R in the sense of

Clarke (see [7]), satisfying the following conditions:

17
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(F1) : limt→0+
max{|θ|:θ∈∂F (t)}

t
= 0;

(F2) : limt→∞
max{|θ|:θ∈∂F (t)}

t
= 0;

(F3) : F (0) = 0;

(Cα) : The function α : M → R is radially symmetric with respect to some x0 ∈ M

and infM α > 0.

The main objective is to prove non-existence and existence results depending on the

parameter λ for the inclusion system (SM), equipped with non-linear term, not only on

Hadamard manifolds, but also on Riemann manifolds with non-negative Ricci curvature.

It turns out, similarly to the chapter 4, that the lack of compactness has to be compensated

by applying isometric actions and the principle of symmetric criticality in order to use

variational methods. Similarly to Farkas and Kristály [9], due to the coupled system we

have to introduce a ”single variable” energy functional. Our aim is to extend the result of

Farkas and Kristály [9] to non-smooth functions and examine the problem on two different

classes of curved spaces.

This chapter is based on results proved in Szilák [24].

5.1 Main results

Our main theorem can be stated as follows:

Theorem 5.1.1. (Szilák [24]) Let (M, g) be an n-dimensional complete non-compact Rie-

mannian manifold, n ≥ 3, andG be a compact connected subgroup of Isomg(M), x0 ∈ M

is fixed, and FixM(G) = {x0}. Let assume that the potential α and the locally Lipschitz

function F satisfy hypotheses (Cα), (F1)-(F3), respectively. Moreover, let assume that

one of the following curvature assumptions holds:

(a) (M, g) is Cartan-Hadamard type,

(b) Ric(M,g) ≥ 0, AVR(M,g) > 0 and G is coercive.

Then there exist λ1 > λ0 > 0 such that the differential inclusion system (SM) has only

the trivial solution for 0 < λ < λ0, and has two different non-trivial solutions whenever

λ > λ1.
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