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1
Introduction

The message of the Kaizen strategy is
that not a day should go by without
some kind of improvement being made
somewhere in the company.

Masaaki Imai (1930-2023)
Japanese management consultant

Father of Continuous Improvement

Industry 4.0 (I4.0) was coined as an umbrella for modernizing smart automation, data
exchange/processing, and manufacturing technologies [R1]. The connectivity of equipment,
machines, and various supporting devices to the Industrial Internet of Things (IIoT) within
a manufacturing facility is a critical player in I4.0 [R2], that enables the communication
between humans and machines, and offers data-driven insights and solutions. An intelli-
gent manufacturing system can be monitored efficiently with optimized resources regard-
ing human labor [R3], production time [R4], energy [R5], and operational cost [R6]. Mod-
ern machines come with various ways of transmitting data and communicating with each
other, creating a connected Cyber-Physical Production System (CPPS) [R7], enabling the
automatic deployment of management principles [R8].

1.1 Current development of Lean 4.0 and Operator 4.0

Lean Manufacturing (LM) is a production management doctrine stemmed from Toyota Mo-
tor Company [R9] and widely accepted in various industries, e.g., logistics [R10], automo-
tive assembly [R11], carton production [R12], electrical and electronics [R13], handicraft
[R14, R15], and maintenance [R16]. LM focuses on cutting waste and improving operation
performance [R17], with the core concepts are:

• identifying wastes in production processes to eliminate them [R18]

• shortening the lead time of production [R19]

• reducing inventory and stock levels [R19]

• standardizing tasks and motion to stabilize the output quality [R20]

• developing a continuous flow of information and materials [R18, R11]

• balancing the manufacturing line to avoid bottleneck [R21]

1



1. Introduction

• employing a comprehensive scheme to maintain productivity [R22].

Continuous improvement is an essential initiative in maintaining the efficiency of LM
system [R23], with kaizen activities conducted by a group of employees to solve an organi-
zational problem [R24]. Lean 4.0 is a new generation of LM with the implementation of I4.0
technologies [R25, J1], creating a unique effect for LM deployment designing, operating,
monitoring, and optimizing manufacturing systems [R26, R27], enhancing the flexibility
and reconfigurability [R28].

I4.0 technologies enabled the integration of human operators with manufacturing pro-
cesses and equipment into Human-Cyber-Physical Systems (H-CPSs) [R29, R30, R31] as
a new generation of workers/operators (i.e., Operator 4.0 (O4.0) [R32]), with O4.0 types
corresponding to different I4.0 technology gadgets [R33, R34]. Not only giving a tool-set to
support human workers, the O4.0 concept puts them back at the center of manufacturing,
as well-stated by Rosenbrock [R35]: Humans should never be subservient to machines and
automation, but machines and automation should be subservient to humans.

The current development of O4.0 is scattered and intermittent [J2], despite a growing
research interest in human factors within industries. The O4.0 concept was only consid-
ered the main interest in a few theoretical and statistical studies. Within experimental
studies, the O4.0 types experienced an imbalanced development due to different readiness
levels and customization possibilities of the respective core technologies. O4.0 pillars need
more time for the core technologies to be elaborated and circulated in the market, with
more practical studies required to materialize the current concepts and proposals.

1.2 The motivation toward Industry 5.0

The Industry 5.0 (I5.0) formulated by the European Commission (EC) calls for a sustain-
able, human-centric, and resilient industry [R36], by utilizing rapid developments of sen-
sors, wearables, actuators, and communication technologies [R37, R38]. Fostering the
transition toward the I5.0 will be the key objective of every modern economy. From or-
ganizational contribution, the EU is the first player in the field with tremendous corporate
efforts to establish and facilitate the transition. One such activity is the direct inclusion of
the I5.0 paradigm into Horizon Europe calls, which reorients previous focus (mainly tech-
nological and economic sustainability) to include human-centrism, resilience, and a holistic
sustainability approach.

However, other stakeholders welcome this initiative with scattered and unbalanced ef-
forts. They were primarily focused on augmented workforce initiative, collaborative, social,
and resilient aspects [R39, R40, R41]. The German industry generally focuses more on the
virtual, healthy, smart, and resilient aspects [R42]. Other aspects were design principles,
ethics, and regulations that linked to team robotics and the Human Digital Twin (HDT),
and the development of mobile work approaches [R42, R43]. The O5.0 approach gained lit-
tle practical relevance in the United States, as the human operators are rarely addressed
in employed activities [R44, R45], except the application of augmented reality (AR) head-
sets for worker support [R45]. The 14th Five-Year Plan on Intelligent Manufacturing in
China essentially promoted the application of AR, virtual reality (VR), and mixed reality
(MR) for supporting the work of operators [R46].

Answering the call of I5.0, the ideal symbiosis work system consisting of H-CPS and
adaptive automation is proposed as Operator 5.0 (O5.0) [R47, R33], which aims at a so-
cially sustainable manufacturing workforce, proposing resilience requirements for human
operators and human-machine systems. Incorporating Lean 4.0 can further improve sus-
tainable operation, while O4.0 and O5.0 contribute directly to human centricity and the
self-resilience of a system [J2]. The benefits from the organizational, system, and operator
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1. Introduction

viewpoints when adopting Lean 4.0 along with O4.0/O5.0 solutions can be categorized into
four types as illustrated in Fig. 1.1:

• Sustainable operation: efficient organization and supply chain operations.

• Human-system collaboration: enhanced the efficiency and convenience.

• Human-centric consideration: bringing benefits for workers based on their needs.

• Social resilience: larger-scale benefits for the workforce and society.

Figure 1.1: The expectable benefits towards the Operator 5.0. Source: Own work [J2].

1.3 Gaps and hurdles in front of Industry 5.0

Many companies still utilize legacy machinery that performs acceptable operations, even
though the lack of connectivity, power consumption, and carbon emissions are not as good
as modern ones. The IoT upgrade for better utilization of existing infrastructure of legacy
equipment and software with IoT connectivity is named brownfield development, or retrofit-
ting [R48, R49, R50, R51]. Retrofitting targets include the hardware of machinery and the
production method, operator, and management [R52]. However, there are technical con-
cerns due to the non-scalability of retrofitting solutions between different manufacturing
industries [R50]. The most challenging obstacle of a retrofitting project is that there are
machine tools from different manufactured times, having different communication proto-
cols [R53]. Such a legacy system with minimal connectivity is not eligible for data-driven
management approaches, which require data collection and analysis [R54]. Due to the
lack of sensors and actuators, process control needs to be conducted manually by observ-
ing, sensing, estimating, and adjusting the machine parameters [R55].

The need for retrofitting solutions emerges in Small and Medium-sized Enterprises
(SMEs) [R56], which are the most vulnerable to being left behind with I4.0 development
[R57]. Lessons from the previous I4.0 implementation show that the fragmented approach
with domain-specific technical developments will lead to more challenges from the man-
agement perspective [R58]. Several I4.0 maturity models aim to assist comprehensive

3



1. Introduction

guidance over this problem, however, most of them show a gap for a holistic, structured,
organizational alignment approach [R59]. In the I5.0 threshold, the ambiguity of digitally
transforming legacy manufacturing systems remains untouched, with a lack of updated
guidance that fulfills the previous gap of I4.0.

Though the transition toward I5.0 is inevitable with many appearing signs, there is a
lack of foundation and technical readiness for the evolution from O4.0 toward O5.0. Both
paradigms are underdeveloped with a low number of studies and disruptively connection
[R60, J2]. As can be seen in Fig. 1.2, human-centric technology development was men-
tioned in almost every O5.0 experimental study (28 over 32), dominant over the other as-
pects, i.e., sustainability and resilience. Within these studies, the asymmetric development
between O4.0 pillars is shown. Instead of a holistic view, researchers rather focused on how
to leverage worker productivity and minimize ergonomic pain [R61, R62, R63, R64].

Figure 1.2: Experimental studies with the I5.0 focus: Resilience was not favored, while the
O4.0 types were not equally developed. Source: Own work [J2].

On top of that, the technical readiness of the O4.0 solutions in particular, and the
I4.0 human-centric technologies in general, was not ready for the I5.0 application. There
are missing links between the I5.0 with other technical aspects of the I4.0, and with so-
cial aspects of the O4.0. Lack of multi-disciplinary knowledge urges for high-level scien-
tific evidence and applicability of human integration into H-CPS [J3]. Inter- and multi-
disciplinary efforts should be conducted to link knowledge from different fields, creating a
trustful and solid foundation for future improvements.

The five most frequently mentioned drivers and restrainers of adopting human-centric
technology and O4.0 solution were illustrated in Fig. 1.3, with the arrow size reflecting
the appearance frequency of the factor [J2]. The most significant driver was the in-depth
analysis and management of a manufacturing process. Equally important was the well-
designed interaction between humans and machines. Since human factor study in the
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1. Introduction

manufacturing context required the incorporation of many disciplines, the lack of multi-
disciplinary knowledge was the strongest restrainer. Lack of standards and guidelines, and
technological accuracy concerns posed the same negative impact. Data-related concern,
with associated handling, management activities, and security, was the least mentioned
factor.

Figure 1.3: Drivers and Restrainers of adopting human-centric technology. Source: Own
work [J2].

1.4 The addressed problems within the thesis

This thesis looks for solutions that utilize sensor technologies and the available toolbox of
data science [R65], to address problems within the stated industrial context.

Without high investment in new equipment and technologies, companies can retrofit
existing equipment with the IIoT capability of low-cost sensors and actuators [R66], gen-
erating great opportunities to re-design business and expand service activities while fa-
cilitating data-driven business strategy making [R67]. In Chapter 2, I studied how sensor
technology and data science can be deployed in retrofitting and Lean 4.0 projects. After con-
ducting a systematic overview of the existing I4.0 solutions to upgrade the old-fashioned
system into a connected one, it can be seen that sensor technology can be applied for hard-
ware improvement, then data science can support advanced management such as Lean 4.0
and O4.0. The ultimate success of retrofitting is the readiness of real-time KPIs, which
give insight into system operation [R68]. Therefore, the potential of Lean 4.0 can be un-
locked even on legacy systems, through the integration of operational technology (OT) and
information technology (IT), in which the Indoor Positioning System (IPS) is a promising
candidate [R69]. In the second section of this chapter, I studied the use of IPS as a low-cost
retrofitting solution, that can offer a set of Lean KPIs with a real-time value stream for the
implementation of Lean 4.0.

Observation with Gemba walk is the most popular method for assessing human per-
formance in LM [R70]. With I4.0 technologies, innovative ways are expected to replace
the traditional expert-dependent and time-consuming ones. The advancement of Artificial
Intelligence (AI) camera sensors enables capturing a tremendous amount of data from in-
tended objects. One ideal candidate for this approach is the Microsoft Kinect sensor due
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to its advanced 3D depth-sensing technology [R71], with its marker- and calibration-free
characteristics are appropriate for industrial application [R72]. In Chapter 3, I developed
a Lean 4.0 solution for assessing worker performance with a Kinect sensor. The proposed
pattern mining-based continuous improvement approach is aligned with I5.0 objectives
since it is human-centric and aims at sustainably building a resilient workforce.

In a manufacturing environment, when workers face the work content with demanding
physical or psychological tasks that exceed their abilities or resources [R73, R74], stress
appears as mental or physical tension [R75], with either positive or negative effects [R76].
A low level of acute stress is associated with vigilant or sustained attention, therefore pro-
duces the optimal performance [R77] with enhanced mental and physical efficiency [R78].
To utilize the positive arousal state of acute stress while avoiding negative overload or any
long-term accumulation of occupational stress, more knowledge should be developed to
understand the effect of work content on human workers [R79, R80], as well as the stress-
performance relationship. This insight provides a foundation for work content design, and
helps to monitor and adjust any unfavorable work content timely with the early stress
sign. In Chapter 4, I elaborated a foundation for the Operator 4.0 stress-performance mon-
itoring and simulation solutions, with several research topics. In the first section of this
chapter, I explored the evidence of using Heart Rate Variability (HRV) as an indicator of
Acute Work-Content Related Stress (AWCRS), to provide a basis for Just-in-the-Moment
Adaptive Interventions (JITAI) to optimize worker performance.

Psychological stress should be incorporated into the HDT as a vital role in human be-
havior and performance [R81, R82]. To further integrate humans into the Human-Cyber-
Physical System (H-CPS) [R83], an in-depth stress-performance model with subtle human
details and functional status [R84, R85] is expected to simulate, predict, and monitor the
well-being of human workers/operators in I5.0. In the second section of this chapter, I
developed a system dynamics conceptual model for the simulation of Acute Work-Content
Related Stress and the performance of human workers.

The lack of controlled experiments and validated evidence prevents the applicability
of physiological parameters (i.e., heart rate) as indicators for AWCRS [J4]. Most of the
datasets on human research are generated in a laboratory environment and lack focus
on element factors of work content, which limits the realistic generalization. In the last
section of this chapter, I explained how the Work-content Effect on a BArista (WEBA)
dataset can be generated, which facilitates further study of the AWCRS effect on human
performance.

Finally, the conclusion and possible industrial application are mentioned in Chapter 5.
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2
Retrofitting and IPS technology as solutions
for Lean 4.0 and Industry 5.0

Thesis 1:
I developed a near-online retrofitted monitoring function to generate
Lean KPIs based on analysis of the position data extracted from the
Indoor Positioning System (IPS) to support the Lean 4.0 implementa-
tion.

Publications relevant to the thesis: [J5, J1, J6].

2.1 Retrofitting-based development with sensor technology
as Industry 5.0 solution

Though the IoT capability is a built-in function for modern machines, many legacy ma-
chines are still in operation with limited or without digital communication. The need to
connect them became popular to improve overall production efficiency. In the I5.0 era
[R36], manufacturers should enhance workforce empowerment as a way to support their
workers during production tasks [R86]. This integration of human employees should be
built upon the achievement of I4.0 technology-driven orientation as a way toward a digi-
tized production of the future [R87]. Retrofitting should adopt concepts such as O4.0 [R29,
R33, R32], O5.0 [R47], thus the retrofitted system with the data analysis and monitoring
capability can gradually benefit its operator. Besides, continuous improvement in process
monitoring, quality management, and energy utilization are criteria that need to be con-
sidered sustainable metrics.

A systematic literature review was conducted in databases of Scopus, Web of Science
(WoS), and Google Scholar, with relevant keywords within the desired scope as "retrofit*",
"brownfield", "legacy", "Industry 4.0", "Industry 5.0", "maturity", "strateg*", "implement*".
Full-text scanning was carried out on 98 studies, to provide insights from successful case
studies in brownfield developments. Extracted details from these retrofitting projects are
discussed in the next sections.

2.1.1 Enabling technologies - Existing Solutions for Retrofitting

In this subsection, enabling technologies and solutions for retrofitting projects are reviewed
in four groups of activities: sensor and actuator deployment, connectivity enhancement,
data management, and operational application.
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Sensors and Actuators deployment

Several retrofitting projects perform the sensors and actuators deployment at the initial
phase as the first step to integrating the physical and virtual worlds. Sensors and ac-
tuators go in pair with an interested process parameter [R88], thus their simultaneous
consideration and selection can develop a functional Digital Twin (DT) from low-level. In
this layer, sensors and actuators play a vital role in process automation in general and the
IoT approach in particular.
Sensors deployment

Existing legacy equipment lacks sensors to indicate their operating status [R89], thus
additional sensors should be integrated. Several researchers stated the difference between
a general-purpose sensor and an IoT-specific purpose sensor [R90]. Though there is a sig-
nificant difference between on- and off-the-shelf sensors in the market, an overview was
conducted of which were deployed in previous retrofitting projects without digging into
that difference. The types of deployed sensors are categorized in Table A.1, Appendix A.

The sensors can be divided into measuring the parameters of the production environ-
ment (e.g., temperature and humidity) or measuring the machine parameters (e.g., vibra-
tion, energy consumption, tension) [R56]. The use of sensor types is closely related to
the process parameters and quality, mentioned later at the end of this section. Energy
retrofitting is still an underdeveloped concept [R91]; thus, the use of energy sensors in
past projects is scarce. A system of high-frequency sensors is deployed to track the energy
utilization of various equipment in the food processing system to enhance energy efficiency
[R92]. Meanwhile, accelerometers and temperature sensors are among the most frequently
used, and on-the-shelf products are preferred in many studies. The type of chosen sensors
is different from industries such as textile [R68], food processing [R93], and car assem-
bly [R94]. On the other hand, within the same industry (e.g., metal cutting [R95, R91,
R96]), different sensors are chosen due to the different machine status and various oper-
ational needs. This fact reflected the realistic heterogeneity of the legacy system and the
un-scalability of the retrofitting solution.

Along with the usage of the commercial sensor, there are types of sensors that are espe-
cially suitable for retrofitting purposes, such as the ultra-thin silicon chips [R97]. There is
an evaluation of alternative manufacturing methods for 3D Mechatronics Integrated De-
vices (MID) sensors for retrofitting purposes [R96]. With this ongoing interest, retrofitting-
purpose sensors will be available on the shelf shortly.
Actuators deployment

Legacy systems usually require human manipulation with adjusting and controlling
tasks. For brownfield development, these manual tasks can be performed by actuators
to ease the attentive presence of human workers. Several actuators and their usage in
retrofitting development are given in Table A.2 of the Appendix A. The existing legacy ac-
tuators can be incorporated with automation capability to facilitate process control [R98].
An additional actuator or end-effector can be deployed to extend the system capability for
performing the related process [R99, R23]. An IT-based integration of additional sensors
and actuators with the existing legacy system can be established with a self-built inva-
sive unit [R100], thus providing a digital retrofit solution for operational purposes such as
process automation, production control, or quality assurance. An industrial wireless sen-
sor and actuator network can perform distributed sensing, data fusion, and collaboratively
decision-making with human workers [R101].

In most scenarios, the existing legacy actuators can be integrated into the system con-
trol, thanks to the newly established system connectivity [R102]. The application of inte-
grated control, control algorithm, and process simulation helps to manipulate the actuators
effectively, with predefined control sequences [R98]. Process and quality control functions
can be incorporated into the local automation, in pair with respective sensors [R103].
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In other cases, new sensors and actuators are deployed [R100]. Additional actuators
can perform controlling on process variables automatically in a real-time manner [R104],
with the signal being monitored by respective sensor readings, or governed by an embed-
ded board that can receive user command, or automated by a retrofitting platform [R49].
The search for the suitable sensor and matching actuator can adopt the static or dynamic
model creation in [R88]. Noticeably, besides existing variables, the retrofitting attempt
may introduce new variables that share an impact on the process [R105]. New actuator
deployment can extend the capability of the existing hardware, thus incorporating new
aspects into the system [R99], such as safety [R104, R53]. The actuator types can be self-
built or commercial, depending on the specific need of the retrofitting purpose. Self-built
actuators opened a wider range of applications as they can adapt to the design of existing
mechanisms and structure [R106] or provide a unique function [R107]. The safety aspect
can be integrated into the intrinsic design of the actuator [R106].

Connectivity enhancement

The weak point of a legacy system is that there are homogeneous IT systems and machines
with different interfaces and protocols [R88]. This connectivity enhancement came into the
retrofitting projects after the sensors were deployed, as communication is a crucial char-
acteristic of I4.0 [R49]. Once the connectivity is established, new options for operation
monitoring, forecasting, and controlling can be available on the shop floor [R99]. PLCs
already have taken place in legacy systems. They will continue to exist for a long life-cycle
time, thus urging a reasonable need to integrate them into IIoT infrastructure [R108]. The
first subsection of this section is devoted to the development of retrofitting the manufactur-
ing systems with PLCs. In the second subsection, the IoT components deployed to retrofit
the connectivity of legacy systems are described.
I4.0 PLCs retrofitting

Many retrofitting projects involved the use of a PLC. In legacy manufacturing systems,
PLCs are still in charge of controlling the production processes with relatively long life cy-
cles, with their natural characteristics of being hardware-based and mission-critical. How-
ever, due to their limited processing and communication capabilities, plant monitoring and
data analysis cannot be incorporated into I4.0 architecture [R109]. In this scenario, I4.0
retrofitting attempts were made to access these data of PLCs and forward them into new
interconnected environments. In other cases, the deployment of new PLCs is also consid-
ered a way to automate processes and enhance field-level control of the legacy manufactur-
ing system. Noticeably, there are cases in which reliability concerns, vendor restrictions,
and outdated programming environments make the PLC irreplaceable, obstructing the
retrofitting attempts [R109].

Retrofitting efforts aim at broadening the capability of existing PLCs or accessing and
integrating their data [R102]. Several retrofitting concepts for interfacing legacy PLCs
in I4.0 scenarios are proposed in [R109], which consider the case of factories containing
PLCs from different manufacturers. The LoRaWAN connectivity is integrated into a PLC
in [R110], which enhances the field device connection. To retrofit an old system, new PLCs
can be deployed to perform logic control on system modules such as conveyors [R111].
Generally speaking, to integrate legacy PLCs with limited connectivity into an IoT system,
several components such as communication protocols, programming language, and execu-
tion environment should be taken. A middle layer can be formed based on the features of
the existing PLCs to enhance the connectivity that makes the system fully I4.0-compliant
[R112]. This connectivity enhancement will be discussed in the following subsection.
I4.0 connectivity retrofitting

Regarding establishing the shared communication and connectivity between devices
and networks, hardware such as micro-controllers, micro-computers, and gateways are
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added, and protocols such as communication, messaging, and platforms should be de-
fined [R95]. Embedded controllers and micro-controllers (e.g., NodeMCU and Arduino)
can be implemented for embedded control, and process automation, especially with contin-
uous production type [R113, R114]. Micro-computers such as Raspberry Pi are considered
promising low-cost and effective candidates to integrate into the existing machine and
enhance data acquisition, and simultaneous processing [R115]. Raspberry Pi is the dom-
inant candidate for its reasonable price, simple configuration, and ease of operation with
an open-source ecosystem. The connectivity of legacy systems can be enhanced by utiliz-
ing on-the-shelf gateways, and industrial providers such as Laird, SECO, and Siemens are
trustable partners for the choice. A self-developed kit such as SmartBoxes is deployed in
the retrofitting of the industrial loom and metal forming jigs and fixtures [R88]. Mean-
while, traditional field-bus such as PROFINET have been under development to enable
the use of legacy devices. A virtual PROFINET architecture is proposed and validated
through experiment as a promising low-cost and reduced-resources solution [R116]. For
wireless communication technology, enhancement adoption based on LoraWAN technol-
ogy is proposed as a gateway toward legacy networks [R117], which shows the flexibility
and scalability of the application. Another similar approach emphasized the usage for IoT
development in brownfields [R110, R109].

There are many promising candidates for retrofitting, such as Profibus, CAN-Open,
and DeviceNet, which are proposed as the core communication protocol in Reference Ar-
chitecture Model Industry 4.0 (RAMI 4.0) [R118]. OPC UA is an appropriate option with
simple data acquisition, monitoring, control, and analysis [R66]. A case study is conducted
to integrate OPC UA with legacy devices with proprietary protocols [R119]. Alternatives
such as OPC DA and AMQP are utilized, dependent on the specific case of legacy system
[R120]. Deployed protocols must comply with the recent industrial standard, as legacy
machines are usually accompanied by old communication protocols [R121]. An integrated
solution such as Modbus-OPC UA wrapper is proposed to adapt to a large part of legacy
machines [R122]. Noticeably, the variants of Modbus, such as Modbus RTU and Modbus
TCP, can also be coupled with protocol converters, consequently enhancing the retrofitting
possibilities. Programming platform such as Node-RED is mentioned as a low-cost execu-
tion environment, and favorable for legacy PLCs [R109, R110]. In general, the connectivity
enhancement for a legacy system is implemented according to an architecture that the au-
thors usually suggested in their projects [R123, R57, R109]. These architectures are the
prerequisite output that needs to be designed in the very beginning stage of retrofitting
projects.

Data management

Up to this level, the process data are available and need to be connected to integrated
storage for further processing [R124]. With the data shortage in quantity and quality as
the nature of the legacy system, smart data modeling, simulation, and visualization is
a promising approach to full automation ideas [R125]. Separate software is mentioned
for different purposes. Industrial big data management tools are used for comprehensive
platforms due to their abundant add-on packages, such as Apache Kafka [R121]. Free ser-
vices such as Blynk [R126] are also an option for a low-cost solution. Commercial cloud
platforms are deployed from Microsoft, Amazon, Siemens, Google, and SAP. Real-time pro-
cessing capability is the desired requirement in choosing the product [R68, R127]. On the
availability of data, machine learning techniques can be applied for further optimization
[R94]. By integrating legacy devices into the cloud-based IoT platform, even the geograph-
ically dispersed manufacturing system can be monitored remotely [R128]. In general, the
availability of data is the foundation for the higher application toward smart manufactur-
ing [R129], which is discussed in the next section separately. It is worth mentioning that
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once the legacy system is retrofitted with the data visualization [R130] and equipped with
web service [R49], or mobile HMI [R104, R126]. The operators will be the ones who benefit
the most from their work. This aspect is the main focus of the next industrial revolution,
thus reflected in the concept of O4.0 discussed in the following.

Operational application

After the aforementioned retrofitting work is done, the automation and connectivity level of
the factory is enhanced. Therefore, monitoring and management activity [R131] supported
with data is available in hand. This application level is on the top of the IoT level, which
deals with management philosophies and techniques.
Process management

With the retrofitted system, there are process management philosophies can be applied.
A legacy system without any advanced PLC or Supervisory Control and Data Acquisition
(SCADA) system infrastructure usually faces unexpected downtime, which undermines
the business [R92]. Noticeably, the most prevailing advantage that comes from retrofitting
is the process parameters tracking ability of the system [R122]. Taking into considera-
tion that process critical parameters consideration is one of the beginning steps in the
conducted projects [R100, R132], this advantage is the inherent characteristic. This ad-
vantage is preferred in processing industries with continuous manufacturing systems such
as oil extraction, food processing, water processing, and mining [R105, R93, R133, R123,
R102]. It can lead to process automation which cuts down the manual work [R49]. With
process automation, the loss of raw materials can be decreased by the automatic activation
of valves, switches, and actuators [R102]. Equipment conditions can also be kept a close
eye on in the same way [R134], based on the acquired data. Machinery parameters, which
are vital for production, usually being under monitoring [R135, R113]. Tool condition mon-
itoring is applicable for machine tools that have machining tools that need to be replaced
for quality and safety purposes, such as CNC machining [R136].

Thanks to the data-driven management for each elementary process, an IoT-based man-
ufacturing monitoring system can be constructed as the guiding rule for future ways of im-
proving overall performance and management [R129]. Based on the elementary processes
in the system, the material flow in the work cell, in particular, [R137], or in the facility
in general [R138], can be monitored. Scheduling tasks will be more manageable and can
be conducted automatically [R139]. This advantage can link to the concept of just-in-time
production discussed in the later subsection. The process optimization can be taken fur-
ther based on the available data, and process-oriented knowledge [R124] regarding the
produced quality, machine condition, or material flow. The highest application in this as-
pect is production monitoring, in which the production KPIs or objectives can be adjusted
and manipulated remotely [R102].
Quality management

Quality management is essential in every manufacturing plant. For the legacy system,
the lack of connection between machines makes it more challenging to discover the source
of quality defect and variation, as well as track the passage of the defect order [R125].
However, along with the retrofitting process, there are philosophies of quality management
that are ready to be deployed. By applying along with the fused technologies, the operator
decision factor can be eliminated [R127], and human inconsistency can be reduced, thus
reducing the quality variation and defect products as well as scrap materials [R139].

The detection of a defective product can be recognized directly by product specification-
related sensors such as tension with fabric product [R140], or indirectly with other deriva-
tive parameters such as noise with gears [R127]. In the next step, when the process param-
eters that affect product quality are defined and kept track of, and quality data is collected
throughout the production phase, the variation that causes the quality problem can be
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tracked easily [R139]. Thus, it leads to a higher level of quality management: defect pre-
vention, in which the possible defect can be prevented proactively, regardless of the human
decision on which product is good or bad [R127]. At the organization level, the historical
data can be used for further improvement on quality aspect [R124], including the param-
eters self-adjustment of the machine [R140], or the group work of operators in diagnosing
the manufacturing processes [R127].
Digital twin

DT is one of the critical players in I4.0 development in terms of plant-wide optimization
[R141]. The development of DT is desired in many retrofitting projects, as the goal of
full-scope digitization is to be the foundation for other managerial activities, and resource
planning [R111]. DT can be used as the tracking simulator and integrated with the existing
legacy control system of brownfield manufacturing facilities [R142].

The generation of DT is a significant step toward complete digitization. The most fre-
quently used method of DT elaboration is sensors-based, with the use of the sensors men-
tioned in the previous section. The operational status of the machine is not enough [R143],
thus additional sensor must be installed for DT elaboration. A vision system is a conve-
nient tool to gather data from the physical world, for instance, a camera system [R111],
or LiDAR scanning [R142]. Other commercial tools also proved their applicability in the
industrial context, such as Microsoft HoloLens [R144] and Smart Glasses [R107].

In some retrofitting projects, the authors were unable to elaborate the DT of the whole
system; thus, a critical part of the system is chosen to build the DT upon [R105]. Another
way to develop the DT is with the aid of simulation software. Siemens Tecnomatix Process
Simulate is the most preferred tool due to the capability of obtaining soft real-time data
directly from the OPC UA server [R103]. In this way, a large-scale DT can be developed,
with the whole facility restored in the digital world [R111].
Security

Data security initiatives that protect the system from intentional and accidental de-
struction are one of the main obstacles in SMEs [R145]. As brownfield development is
about modifying and fusing new technologies into the existing factories, where most of
their dated machines only have been through a few security updates, the risk aroused
[R146]. This aspect of the old system is a raging problem, as they have been designed
with little sense of security in mind, thus making them vulnerable to many types of at-
tack [R147]. Taken into consideration that legacy machines only have limited built-in
IT security functions (i.e., default password, no access control, undocumented back-doors)
[R148], and their security perimeter mechanism is opposed to the desired zero-trust net-
work [R146], a retrofitted system can be more vulnerable for cyber-attacks. The use of
sensors in the retrofitted system can create multiple attack surfaces, such as data proofing
and sensor data transmission breaches [R147]. The retrofitting solution with Raspberry
Gateway is cheap, thus posing a threat to security problems [R48]. Noticeably this solu-
tion has been applied widely in many previous projects. Thus another industrial-grade
hardware platform should be taken instead of this low-cost option.

Due to the few retrofitting studies that mentioned the security aspect, it can be seen
that this problem is underrated compared to the newly developed system. However, it may
become more severe soon [R146], as the use of retrofitted machinery may continue to be in
place for a long time from now. Several solutions are given to secure the weakness in legacy
machine connections, such as integrating legacy machines into a blockchain framework to
prevent cyber-attacks on weak connections between them [R147], or adding an industrial
gateway [R149]. In a textile retrofitting project, a centralized server is utilized instead of
a cloud solution for the sake of data security [R55]. This problem raises the fact that a
full-scope IoT architecture may not apply to every legacy system without considering its
intrinsic characteristics, and can be handled by providing appropriate data access with
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General Data Protection Regulation (GDPR) consideration [R133]. Attempts to retrofit the
security of legacy systems could introduce new bugs and vulnerabilities [R148], and it is
also hard to ensure that new systems are thoroughly tested. New technologies such as
Secure Multi-Party Computation and Distributed Ledger Technology should be deployed
[R150], which followed comprehensive design principles to bring the retrofitted system an
immutable and transparent registry.

2.1.2 Retrofitting developments as stepping stones for Industry 5.0

From the previous section, it can be seen that the technologies now are abundant and
very well-suited for brownfield development. However, while retrofitting works are im-
plemented in the I4.0 context, the next I5.0 is introduced. This new industrial revolution
is the extension of I4.0 with a sustainable mindset and focuses on human workers. In
preparing for this strategic transformation, several important I4.0 retrofitting-specific de-
velopments are described, considering the foundations for I5.0. Based on Energy 4.0 in en-
ergy management, the new possibilities of Lean 4.0, the concept of O4.0, and new methods
of Maintenance 4.0, these developments to I5.0 focus are established, providing guidance
for managers to consider the corresponding targets.

Industry 5.0

I5.0 is still a new innovative concept but has shown some of its future aspects from early
research, such as the future of work between human-robot [R151], a symbiotic factory
where human-machine can contribute their value [R152]. The EU stated that the I4.0 had
positively impacted digitization and Artificial Intelligence (AI) -driven technologies to in-
crease production efficiency. Now is a proper time to move on to I5.0, where societal and
environmental problems should be emphasized [R36], with a focus on human-centricity,
sustainability, and resilience. With this sustainability in mind, human workers will be
accepted as an irreplaceable factor of any manufacturing system, thus requiring a human-
centric approach from both economic and productivity points of view [R60]. Sustainability
is also strongly emphasized, as different opportunities for sustainable manufacturing in
I4.0 are discussed [R137]. Retrofitting is an enabler for the existing manufacturing equip-
ment approaching economic and environmental dimensions of sustainability. It can also
be considered as machine preparation to enable smart communication and capabilities for
technological aspects and business requirements as well [R153].

Taking into consideration the different emphasis between I4.0 and I5.0 [R154], novel
innovation trends for I5.0 are enabled by several technological aspects [R155]. Several
primary pillars can be listed as individualized human-machine interaction technologies,
DT, and simulation for human-machine systems modeling, data transmission, and storage,
analysis technologies, technologies for energy efficiency, renewable, storage, and autonomy
[R156]. A retrofitting project can bring benefits to its operators in learning, manipulating,
and performing their production tasks [R144]. Along with a detailed understanding of the
process, and favorable conditions for quality management, retrofitting can be considered
as a way to aim at a sustainable business model [R100].

This promising result urges a comprehensive approach for retrofitting to improve en-
ergy management and reliability, sustainability aspects of a manufacturing system, and
enhance the working efficiency of its human operator in the forthcoming I5.0. The follow-
ing parts are the specific developments considered stepping stones for I5.0.
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Energy 4.0

Energy efficiency is an emerging topic in the modern manufacturing system, with the term
Energy 4.0 indicating the digital transformation of the energy sector as a sustainable goal
in the I4.0 context [R157]. The energy utilization can be an objective for retrofitting [R91].
However, the energy footprint is unconnected and hidden from the database with a legacy
system, making it hard to apply any optimization.

Energy improvement is one key sustainability focus in I5.0. After retrofitting, the en-
hanced energy utilization is mentioned as one of the most promising results [R91], making
it closer to the scope of I5.0. The energy footprint can be tracked with the sensor deploy-
ment [R158, R92], creating an IoT-based architecture for energy efficiency tracking [R159].
Based on the trained data from the normal energy consumption, the abnormal ones such
as high consumption and unbalanced energy load can be pointed out, with corresponding
notification and alert [R92]. A recommendation can be given, aiming at a higher efficient
operating condition [R49]. In ideal cases, the improvement in the energy aspect can be
performed through actuators and switches based on predefined energy indicators [R106,
R51]. This step reflects the self-optimization ability of the system.

Maintenance 4.0

A legacy system puts a heavy burden on maintenance activities, as outdated machinery
lacks technical documents and historical degradation records [R143]. The retrofitting ap-
proach can provide old machines with predictive maintenance and does not require cost-
intensive re-engineering activities [R160]. The availability of process monitoring sensors
in the I4.0 framework offers a favorable condition for predictive maintenance [R161, R162],
which is a core concept of smart maintenance and Maintenance 4.0 [R163]. Besides, there
are more advantages of the system that can be expected, and they can be defined as en-
abling factors for Maintenance 4.0, with their benefits demonstrated in several industries.

The first significant advantage of retrofitting the legacy system is the operating time
recognition of machinery, which the operators usually need to perform by hand [R164]. Af-
ter this step, the maintenance-related parameters such as Overall Equipment Efficiency
(OEE), Mean Time Between Failures (MTBF), and Mean Time To Repair (MTTR) can be
calculated for further production efficiency assessment [R165]. Then with the use of ma-
chine learning, the failure state of the machinery can be recognized by learning from the
normal-state data [R166]. When the system runs into a problem, then the machine part
and the mechanism in which the situation happened can be pointed out, making it easier
to locate and replace the broken part [R167].

For higher applications, predictive maintenance initiative is supported, as the mainte-
nance task can be suggested and planned based on the historical data [R92]. The special-
ized maintenance DT can offer suggestions of condition-based or corrective maintenance
activity [R143]. Instead of the traditional maintenance approach of time-based replace-
ment, the retrofitted system can save unnecessary maintenance work and spare parts
due to the integrated condition monitoring capability [R88]. These advancements enhance
maintenance efficiency, while the maintenance cost can be cut down.

Operator 4.0

The O4.0 is mentioned as the future of human workers [R29, R33]. At the first stage of
I4.0 brownfield development, employees should be involved and motivated to support the
change, as one of the three main elements in the smart retrofitting concept [R107]With the
elaborated DT, cognitive O4.0 can enable a smarter decision-making environment [R168].
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The ideal advantages for the O4.0 initiative after retrofitting are given in Table A.3, Ap-
pendix A, along with benefits for the operators that can be expected.

Along with these benefits, an enterprise can overcome the lack of educated operators to
increase its competitiveness [R140]. Providing the person in charge of each process with its
relevant parameters can be considered as analytical support for his task [R88]. This aspect
fosters the decentralized decision-making capability of workers, allowing them to take part
in more knowledge tasks in sustainable manufacturing from the human factor [R137]. In
some particular conditions, the human worker is the primary motivation to retrofit the
legacy system [R169] so that its workers can feel more comfortable with their work [R170].
With the machine failures detected by the system, special tuition and knowledge are not
required from the operator, thus leaving him a more relaxed work environment [R134].

O4.0 and even I4.0-related managers play crucial roles in the manufacturing processes;
thus, their convenience must be of higher priority when retrofitting a system [R52]. With
the assistance of the developed system, human intervention can be decreased, and the
operators can have more time to concentrate on the process optimization [R139]. In the
meantime, by isolating the error of operators, consequently reducing the number of non-
conformance products, the operation efficiency can be improved [R102].

A critical aspect of sustainable manufacturing is the development of human resources
[R36]. For this purpose, two retrofitting advantages that need to be considered are job
training effectiveness and the prevention of accidents. With the advances in technology,
data visualization augmented reality can aid the job instruction for workers, helping them
to learn the tasks quickly with actual situations example [R144, R140]. On the other hand,
the system has more built-in safety functions that can halt or stop production once a hazard
is detected to prevent a further accident or danger that can happen on the shop floor [R132,
R129]. It can be observed that, by applying new technologies in a human-centric approach
in a retrofitting project, not only the managers but also the operators will be the ones who
get the crucial benefit during their daily performance [R170].

As workforce resilience is severely tested during the COVID-19 pandemic, its impor-
tance is realized, along with other possible adverse realities such as resource scarcity,
climate change, and skill gaps that can be added into the manufacturing context. The
concept of O5.0 is built upon the vision and paradigm of O4.0 to guarantee manufacturing
operations continuity, especially in difficult and unexpected conditions [R29].

Lean 4.0

The implementation of I4.0 technologies creates a unique effect for LM deployment in the
operational strategy [R27]. LM shares the same continuous improvement approach with
the technical improvement of I4.0, thus considered as assistance for smart retrofitting
[R107]. Consequently, legacy manufacturing systems can adapt themselves to bring ad-
vantages under the proposed Lean 4.0, as some examples are listed in Table A.4, Appendix
A.

A critical aspect of LM supported by retrofitting is work standardization. The recorded
data from the retrofitted system are suitable for this purpose [R102]. The Just-In-Time
(JIT) production can be facilitated to create a smoother material flow and avoid exces-
sive stock [R137]. A more balanced, stable material flow can be supported by removing
the bottlenecks, which are easily discovered by the retrofitted system [R171, R127]. The
flexibility and agility of the manufacturing equipment can be enhanced due to the Quick
Change-Over (QCO) that is supported by the re-configurable system [R138]. Other LM
concepts, such as reducing the waiting time of machines and equipment, can be achieved
[R132, R140], especially useful in industries well-known for long change over time (i.e.,
steel mill and mining) [R52, R102]. Continuous improvement is an essential factor in LM
in general and in maintaining the effective usage of the system in the organization [R23].
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The core of this concept is the kaizen activity, which is done by a group of people to solve
an organizational problem [R24]. For the retrofitted system, this kind of activity is highly
supported due to the availability of data, the visualization of the critical parameters, and
the human-centric approach when designing the retrofitting solution [R89].

These aforementioned I4.0 developments can be considered stepping stones for the I5.0
initiative. As their characteristics indicated, the gained benefits bring manufacturers ad-
vantages and readiness for further development. Fig. 2.1 represents the connection be-
tween these I4.0 developments and the focus of I5.0. At first, in terms of Sustainability,
the efficient usage of energy and manufacturing resources, from the concepts of Energy 4.0
and Lean 4.0, respectively. These concepts support a strong foundation for a sustainable
operation of the firm at the micro-level and the whole value chain of the economy at the
macro level. Lean-digitized manufacturing not only offers companies survivability in the
I4.0 context but also a prior sustained competitiveness [R172]. Energy utilization is an
essential factor that may create an immediate impact on sustainability [R157].

Figure 2.1: The retrofitting developments as stepping stones for Industry 5.0. Source: Own
work [J5].

The O4.0 concept focuses on the human-centricity aspect, as workers and operators ben-
efit from technology and digital transformation, which helps them fulfill their job require-
ments with less effort and higher value-added contribution [R29]. Then the self-resilience
of O5.0 concept can be applied, aiming toward a system effect from both human-machine
system resilience and human operator resilience [R47]. Meanwhile, the advantages of
Maintenance 4.0 enhance the Resilience of the system, as its readiness and reliability are
strengthened and can provide input for a learning Human-Machine system for resilience
prediction and control [R173]. Due to the reported advantages, these developments are
recommended as targets for every retrofitting project.

2.2 The use of IPS for the implementation of Lean 4.0

One of the most promising IT elements that can support Lean 4.0, is the Indoor Positioning
System (IPS) [R69], which enables full traceability of manufacturing processes. A typical
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IPS is an indoor wireless positioning technology [R174] that works with radio-frequency,
optical, or acoustic tags and chips. The IPS tags are always active and continuously broad-
cast signals to beacons [R174]. Tags and fixed reference points can be transmitters, re-
ceivers, or both, resulting in numerous possible technology combinations [R175]. IPS can
identify object location in a closed structure, thus widely applied in an office building, hos-
pitals, facilities, and warehouses [R176].

Compared with other technologies including RFID and bar-code scanners, IPS is ro-
bust to any layout change and can exclude human error and systematic flexibility. Due
to intrinsic appropriateness for monitoring logistics units within a facility - from items up
to packages, transport units, and pallets - IPS has been widely applied in many aspects
such as cycle time optimization [R177], monitoring production line activities [R34], logis-
tics management [R178], pallet management [R179], safety management [R180].

2.2.1 Proposed framework

RFID-based systems are especially suitable for monitoring LM parameters [R181]. Uti-
lizing RFID tags within an IPS is a favorable approach in different industries, such as
construction [R182], fast-moving consumer goods production [R183], automotive part man-
ufacturing [R184], automobile assembly manufacturing [R185], agriculture equipment ma-
chine part manufacturing [R186] and the job shop floor environment [R187]. In a manu-
facturing shop floor environment, IPS can be beneficial as it can enrich data acquisition
for LM [R188] and it can be used to obtain dynamic spaghetti diagrams used for the vi-
sualization of the value streams [R189]. The proposed framework that utilizes IPS data
for a Lean 4.0 manufacturing system is presented in Fig. 2.2. The prior knowledge such
as information about the process, and the technology are used as "supportive data", to es-
tablish the base of the standardized process, such as planned routing, process cycle time.
The information on the overall layout is added, as well as some designated areas for buffer
inventory, waiting for queues, and maintenance preparation.

In addition to IPS data, acquired data from manual input (e.g., bar-code scanner) or ex-
isting technologies such as machines, and event logs from MES system, other sensors/wear-
ables can be incorporated to provide a comprehensive view of the current system state.
During "data processing", process- and data mining are performed on the collected and
contextualized data, to explore frequent patterns of material flow and states of the produc-
tion process. After the filtering of redundant data based on machine logs, the raw data
will contain only timestamps and position data. Software with built-in visualization and
animation tools such as Disco [R190] is applied in this step. Based on the standard routing
of each product, the automated process discovery with a fuzzy miner in Disco software is
set up to show the main processing steps while preserving the highest level of abstraction.
The aftermath is the reconstructed process with the extra re-work loop or reverse flow are
maintained. By comparing the mined process with the standard routing and cycle time,
operational wastes can be discovered and become input to further calculation of LM KPIs.
The method for calculating these KPIs is described in Table 2.1.

Additional states of manufacturing processes and resources (e.g. temporal inventories)
can be defined and assigned to the product and material flows. The explored states and
additional timestamps provided by the IPS process mining algorithms can be utilized to
update the Value Stream Mapping (VSM). As the final results, the movement heatmap
is sketched based on the mined data and the facility layout, to visualize the materials
movement with congestion and bottleneck. To analyze deeper one operation period, a Gantt
diagram can be extracted for each selected period. Compared with the data only collected
from the MES, the waiting time as temporary inventory, and reverse flow of re-work will
appear as many missing periods in the Gantt diagram, as these material flows are not
officially registered in the MES database. When incorporating the IPS data to monitor the
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real-time position of the process flow, these motion-based anomalies can be detected, and
enrich the information in the Gantt diagram.

After data processing and computation of LM KPIs, different system improvement tech-
niques can be applied, such as "production planning" for optimal layout, material route,
optimal labor assignment, and "production control" with adaptive sequence, dynamic bal-
ancing, dynamic takt-time, JIT preparation. Another initiative that can be considered is
the Plan-Do-Check-Act (PDCA) cycle of continuous improvement, which is a typical fea-
ture of LM. It can be seen that the usage of IPS data supports the Lean 4.0 data-driven
development in several steps, as marked in yellow color in Fig. 2.2.

Fig. 2.3 shows how IPS supports the continuous improvement with PDCA [R191]. The
core element is the process model (represented as the VSM block) which contains all the
essential information about manufacturing processes. The improvement cycle updates the
model with the help of IPS data, by continuously and automatically monitoring the produc-
tion. The developed framework can discover the real process model based on the IPS data
with the toolset of process mining. The resulting models are used to update the VSMs and
evaluate the performance of the process by calculating the Lean KPIs. The most apparent
benefit of Lean 4.0 KPIs is the readiness for decision-making and optimization based on
real-time information about the manufacturing system.

Figure 2.2: The proposed framework of Lean 4.0 data-driven development. Source: Own
work.
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Table 2.1: Proposed method for Lean 4.0 data acquisition and mining with IPS usage.

Lean
concept KPIs Method of recognition Deployed sensors

Shortest
lead time

Average lead
time

= (position at finish area + timestamp) (position
at beginning area + timestamp) Position sensor +

bar-code scannerAverage cycle
time

= position data at the same workstation + time
stamp

Added value ra-
tio

= vibration data + position data at the same work-
station + time stamp

Vibration sensor + po-
sition sensor + bar-
code scanner

7 wastes

Waste of mo-
tion =vibration data + standard allowance time

Vibration sensor + po-
sition sensor + bar-
code scanner

Waste of trans-
portation

= time stamp + position data between worksta-
tion

Position sensor + bar-
code scanner

Dead stock and
slow-moving in-
ventory

Not applicable

Waiting time = time stamp + vibration data between two sta-
tionary period

Vibration sensor +
bar-code scanner

Defect Not applicable
Less in-
ventory

Number of WIP Not applicable
Inventory value Not applicable

Stan-
dardized
work

Standardized
work deviation = real measured cycle time the standard time

Time to fetch
necessary part

=standard time for the next step - timestamp of
the previous step

Position sensor + bar-
code scanner

Continu-
ous flow

Takt-time Not applicable

Queueing time = time stamp between two workstation trans-
portation (with position data at each workstation)

Vibration sensor +
bar-code scanner

Lot size Not applicable
Line bal-
ance

Line balance
factor

= deviation of (measured time pre-defined takt
time) in each workstation

Quick
change-
over

Set-up time Not applicable

Change-over
time

= time stamp + position data from the last product
in the old batch to the first product in the new
batch

Positioning sensor +
bar-code scanner

Figure 2.3: IPS data as the key element of PDCA methodology. Source: Own work.
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2.2.2 Use case in automotive production

A Lean 4.0 project is conducted in an automotive company producing metal parts, to moni-
tor a production area of five CNC machines, one assembly station, one assembly line, and a
packaging station. The orders (tasks) follow different paths during production, depending
on the production routing. This project aims to monitor the cycle times, identify the wait-
ing and queueing times, and reduce transportation waste. Due to the changing number
and variations of product families, this activity is not a one-time improvement. One small
change in the product architecture can cause changes in the assembly sequence, which
leads to significant performance losses. Traditionally, LM masters will detect these 3M
(Muda - Mura - Muri) via eye observation, then make re-calculation and re-arrangement
to find a new optimal point. By following the proposed framework, manufacturing activ-
ities can be easily tracked and automatized. The position data from the moving carts is
analyzed to identify whether they are not in a pre-defined value-added area (like assembly
stations). The extracted cycle times are used to find the potential wastes (changing times,
manual work) and focus on these areas, such as defining a standardized digital work in-
struction that depends on the current position information of the semi-finished product.
Fig. 2.4 illustrates the IPS hardware architecture.

Figure 2.4: The hardware architecture of the applied IPS (based on Sunstone-RTLS Ltd.).

The applied Ultra-Wide Band (UWB)-based real-time locating system (RTLS) uses ac-
tive tags and 15 anchors for localization, installed on the 2000m2 shop floor. The anchors
are connected to two central units. The raw sensory data are transferred into the posi-
tion calculation server. The position calculation is based on the TDoA (Time Difference Of
Arrival) method and applies the Kalman filter to obtain more accurate information. The
IPS is installed to track 40 carts with semi-finished products moving (manually) between
the workstations. Each cart has a dedicated IPS tag, and the IPS sends information to the
MES if the actual cart with the defined (paired) product has arrived at the actual station.
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Whenever a semi-finished product is put on a cart, the operator pairs the order number
with the tag ID with a timestamp. The position data accuracy is around a half meter,
enough to get an accurate spaghetti diagram from each produced order.

The collected position data contains the tag IDs with the x-y position [m] according to
the predefined coordinate system (fitted for the shop floor layout). Table 2.2 describes an
example of the raw data. The raw data are collected for every manufacturing activity (“Job
ID” column), which includes the moment when the tag entered the zone (“Timestamp”
column) and the corresponding zone in the shop floor area (“Workplace” column). Since
every tag is reused whenever the previous product is finished, a key table is provided that
decodes the tag ID to the beginning time of the production (“Beginning time” column) to
distinguish the products that are produced at a different time that used the same tag. In
this example, the raw data are a list of different customized product variants observed by
the tags and chosen for analysis, with the related activities recorded.

Table 2.2: The raw data from the proposed IPS system.

(a) Event timestamp

JobID Timestamp Workplace
Job 1 20/5/2019 10:50:05 AM Heller 3
Job 1 20/5/2019 10:57:23 AM KTK
Job 1 20/5/2019 11:01:30 AM Daewoo
Job 1 20/5/2019 11:07:39 AM D-Hole
Job 1 20/5/2019 11:12:21 AM AO-1
Job 1 20/5/2019 11:14:44 AM Packing 2
Job 1 20/5/2019 11:20:20 AM Heller 3
Job 1 20/5/2019 11:25:04 AM Daewoo

(b) Product information

Beginning time TagID
1/9/2019 12:00:01 AM 2103
1/9/2019 12:00:31 AM 2103
1/9/2019 12:01:01 AM 2103
1/9/2019 12:01:31 AM 2103
1/9/2019 12:02:00 AM 2103
1/9/2019 12:02:30 AM 2103
1/9/2019 12:03:00 AM 2103
1/9/2019 12:03:59 AM 2103

These data are updated every three seconds (the sample time can be set - maximum
1kHz) to capture most of the motion of the carts. The factory layout with the zone (work-
station) definitions are provided by the rectangles (Fig. 2.6a) to match the activity order.
This layout is elaborated based on the facility layout, with designated areas represented
where the production activities are carried on, considering the capability of the IPS hard-
ware. The entering and exiting times define the time that a product spends on one process
step. The MES stores the information (resources, produced pieces, quality issues) for every
Task ID, which includes the Start time when the tag entered the zone (Workplace). By
tracking the location of all components together, the IPS provides the overall heat map of
the most frequent transporting patterns of all the tags (Fig. 2.5). The busiest worksta-
tions and machines are visible, serving as a traffic indicator. The shop floor with a tracked
motion of one product is shown in Fig. 2.6a, which illustrates that the analysis of the
positional data allows the identification of temporary stations and the motion paths.

After filtering outliers and glitching errors, these raw data were input into Disco soft-
ware. The level of abstraction of the process was adjusted to be at least 80% matched with
the process steps in standard routings. The applied process mining algorithm discovers the
process model as presented in Fig. 2.7. Due to the process flexibility of the manufacturing
press, the extracted model is not trivial and varies over time, therefore the model is contin-
uously updated based on the real-time position data. The discovered process flows serve as
input for work standardization projects. According to the most frequently conducted steps,
a pattern of main material flow is recognized in Fig. 2.7a, where the main workstations
and machines are highlighted in blue. There is no leading process flow. Along with the
material flow map, the average cycle times are recorded, as illustrated in Fig. 2.7b. The
thickness of the arrows represents the time delay between the two stations.
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Figure 2.5: Heat map of all tags.

(a) Tracked path of one product on the shop floor. The rectangles define the workstations
and the dots represent the position data. The timeline is presented by the colors of the
dots.

(b) The discovered status based on position data. The blue stars are the transportation
while the orange markers are the queueing positions.

Figure 2.6: The analysis of the positional data supports the identification of the internal
inventories, the waiting and cycle times.
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(a) The frequency of the material flows, with colors representing utilization of the work-
stations.

(b) The stations as nodes with colors reflecting the discovered average cycle times. The
HELLER stations are the bottlenecks of the process. The transition times on the arrows
highlight the hidden wastes.

Figure 2.7: A production flow discovered by process mining based on IPS and MES data.

2.2.3 Calculation of the IPS based indicators

IPS sends signals to the MES when the actual cart arrives at the pre-defined station. The
lean analyses are performed on the production data from MES and the position data from
IPS. The IPS data is used to calculate the process waste and analyze the transportation
path. Thus, the hidden temporary storage and queuing times were identified. The mined
data, along with the average lead time of product variants, are provided in Table 2.3. The
transportation waste is determined by comparing the followed path of a tag with the stan-
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dard route. Along with the total lead time of a product tag (calculated from the interval
between the arrival of the first and departure from the last workstation), the motion waste
is recognized as idle time within each workstation. The waste identification result is shown
in Table 2.4 for six product IDs after one production day.

Table 2.3: Real-time Lean KPI from the proposed IPS system

Lean KPIs Value Unit Lean KPIs Value Unit
Product variants 169 variants Average cycle time of step 1 89.8 minutes
Main steps 5 steps Average cycle time of step 2 3 minutes
Maximum re-work loop 12 steps Average cycle time of step 3 86.8 minutes
Average lead time 660 minutes Average cycle time of step 4 132 minutes
Maximum/minimum lead
time 2880/30 minutes Average cycle time of step 5 112 minutes

Number of jobs in progress 14 cases Average value-added ratio 51.59 percent

Table 2.4: Waste captured by the novel IPS system.

Part
no. Product ID Transporta-

tion waste (m) Lead time (s) Waste time (s) Waste ratio (%)

1 H179618 0.347960646 2054 1995 9%
2 H179620 24.23493139 22207 5511 25%
3 H179622 3.22646171 29634 88 0%
4 H179816 0.29573319 61 6 10%
5 H179835 61.78363592 16595 1406 8%
6 H179872 124.8997761 38528 14806 38%

After one full working day (two shifts), the total productivity aftermath is calculated as
a waste of time and distance. The waste time represents how much time the actual batch
excessively spent in the production area, by comparing the designed processing time for
each zone with the actual time. In this example, the waste time ratio is 36.8%, which tells
us that the resource utilization is not well handled. The moving activities of all tags allow
the distance to be accumulated. By comparing this value to the predefined transportation
path in the facility, the excessive path was 197m.

A Gantt diagram has been developed to further study what is the reason for the long
transition times of the semi-finished products (see Fig. 2.8a). The rows of the Gantt chart
show the orders (Tasks) and colors represent the workstations. The Unknown station
shows the period where no data is available (from MES). These periods are denoted in
Fig. 2.8a with red lanes and these periods could be the source of the long period between
two stations on the results of process mining and could be the hidden wastes of the manu-
facturing process. The Unknown period is the 19.74% of the studied period.

The IPS data from 22 days were utilized for further root cause analysis. The velocity is
calculated to determine the Waste of transportation periods. Fig. 2.6b shows an example of
that period with the blue stars. Temporary storage is the positions that are closely located
out of the pre-defined zones (workstations). When the carts with the products are located
in a pre-defined zone (but it is not logged to the MES, thus not under production), these
products are assumed to be queued before the actual workstation (see the orange points on
Fig. 2.6b). Fig. 2.8b shows the new Gannt-chart with three more defined stations related
to queueing, temporary storage, and transportation. The results are shown in Fig. 2.9,
where the Queueing time and Wasting time are almost 20% of the analyzed manufacturing
time. Table 2.5 summarises these times for each station. The AO2 station has the most
significant queuing time and needs to be improved primarily.
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(a) Gantt diagram based on MES data

(b) Gantt diagram based on IPS and MES data

Figure 2.8: The Gantt diagrams show the production status of a given product, with more
insights from IPS information.

Figure 2.9: The average time distribution based on the IPS and MES data.
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Table 2.5: The cycle and queueing times are calculated with the IPS data.

Workplace Average Cycle
Time (minute)

Queueing Time
(minute) Produced Tasks

Waiting time 119.47 - 54
Waste of transportation 2.73 - 27
AO2 77.73 102.86 56
DAEWOO 84.71 84.05 49
DHOLE 88.69 5.09 163
HELLER1 99.36 91.80 72
HELLER2 228.53 46.74 34
HELLER3 197.16 59.56 32
HELLER4 124.82 42.18 146
M4KTK 61.91 84.61 145
PACK2 30.30 47.72 31

The IPS serves as a monitoring system that contributes to the daily work of LM spe-
cialists. An alarm system can be set up at each workstation to notify if the working or
the waiting times exceed predefined limits; so the line advisor can take supportive actions
on time. The integrated application IPS and process mining supports the redesign of the
layout thanks to its ability to detect bottlenecks and hidden states within processes.

2.3 Chapter summary

An approach of retrofitting-based development as an I5.0 solution is suggested. After align-
ing the business situation and market potential with the long-term vision of the firm, an
organizational approach should be taken to ensure radical and systematic developments.
Firstly, retrofitting-based development should follow a comprehensive approach that cov-
ers every operational dimension to ensure a fully digital transformation. These dimensions
can be realized by adopting a maturity model and the strategy planning mindset in the
initial assessment phase. Secondly, managerial purposes can only be deployed with a bal-
anced and integrated technical enhancement in every IoT layer. Thirdly, the process and
quality management can only be achieved by employing an integrated solution with care-
fully selecting, target-specific sensors and actuators, effective connection, with additional
tools for analysis and decision support. This consideration should be kept in mind during
cost-benefit evaluation. Fourthly, the I5.0 focus on a worker-friendly and stress-free work
environment will be built upon the stepping stones from the existing I4.0 development.

The final result of the retrofitting project is the readiness of KPIs, which enable the
implementation of Lean 4.0 with the real-time value stream. The process mining-based
analysis of the collected data from the IPS can provide insight into the key factors that
determine the productivity and efficiency of production systems. The concept of continuous
development is embedded into the PDCA cycle, which has been proven effective in reduc-
ing non-value-added activities [R192]. The usage of IPS in Lean 4.0 is expected to soon
be dominant due to its hardware maturity, the readiness of data, and the need from the
manufacturer. A case study is conducted in a manufacturing firm to show the possible out-
put of Lean 4.0 KPIs and improvement based on activity data. The accuracy of the result
from the system is much dependent on the hardware characteristics. The most frequent
error happens when the location sensor cannot distinguish between two adjacent areas.
Due to the current technology limitation, the defined areas need to be separated by a dis-
tinctive distance. Fortunately, with process mining tools, meaningless noise and error can
be excluded. However, with a large amount of operation data and production monitoring
parameters, the management dashboard needs to be discussed and adjusted by managers.
The consultant of an LM expert in setting the KPIs is recommended.
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3
Lean 4.0 solution for assessing worker
performance with Kinect sensor

Thesis 2:
I developed an algorithm using supervised learning combined with
pattern mining to determine ergonomic metrics and movement pat-
terns based on skeletal data recording, supporting ergonomic assess-
ment and human resources development within Lean 4.0 continuous
improvement.

Publications relevant to the thesis: [J7].

This thesis seeks an innovative use of camera sensors with integrated data process-
ing algorithms to automatically assess labor performance and Overall Labor Effectiveness
(OLE) [R193]. The traditional way of assessing the ergonomics and well-being aspects of
human workers are self-reports [R194], observational-based assessments like Rapid Upper
Limb Assessment (RULA) [R195], Manual Handling Assessment Charts (MAC) [R196]),
or direct measurements with sensors [R197], video-based assessment [R198]. However,
as these assessments are dependent on the experience of the observers [R199], Motion
Capture (MoCap) technologies are more preferred, along with the rapid development of
advanced algorithmic methods such as filtering and Machine Learning (ML).

A low-cost Motion Analysis System (MAS) built from commercial MoCap sensors can
be deployed to study the work movements, ergonomics, performance, and productivity im-
provement [R200]. One ideal candidate for this approach is the Microsoft Kinect sensor
due to its advanced 3D depth-sensing technology, with its marker- and calibration-free
characteristics appropriate for industrial application [R72]. Many solutions to improve
industrial working conditions have been developed based on the Kinect tracking ability,
such as RULA assessment with corrected skeleton data in a manufacturing environment
with occlusions [R201], or RULA assessment by calculating the joints angles or estimating
the angles by volumetric pixel for assembly operation [R202], ergonomic movement assess-
ment in water pump assembly workstation [R200], or optimization of the walking path of
workers in paced automotive assembly [R203].

With the advancement of data science and ML algorithms [R65, R204], different data
processing methods including unsupervised and supervised learnings are applied to auto-
matically extract human-related metrics, saving time and effort from human experts. After
extracting the ergonomics feature from depth images with ellipsoid wrappers, a random
forest classifier is deployed for posture classification and ergonomics assessment [R205].
A deep neural network is deployed to predict the RULA score from the projected 2D pose
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[R206]. In addition, pattern mining is a data mining task deployed to discover the pattern
from a set of data. Its application is widely used in many research areas in manufacturing
operation management of machines [R207]. With the aid of a matrix profile, motif search-
ing can be done more efficiently [R208]. By applying these data mining techniques to the
skeleton data from the Kinect sensor, the performance of workers can be diagnosed auto-
matically. However, most experiments mentioned above are applied for offline analysis,
and the results are used for re-designing the process after the production has taken place.
There is no direct application for improving human performance on a larger scale (i.e., a
manufacturing line) or in a long-term scheme (i.e., developing a work enlargement, or work
rotation plan based on the characteristics of the work movement). These initiatives require
exhaustive observation and analysis of work movement and prior knowledge of the human
workers. Consequently, setting up a new manufacturing line with multiple workstations
can pose a complicated and time-consuming problem.

Though the I4.0 concept has resulted in technological and social changes that reshape
manufacturing processes [R209], it is not able to address deep social tensions such as
the well-being of workers [R154]. Innovative I5.0 enabling technologies should be devel-
oped, thus supporting and empowering workers, optimizing human-machine interaction,
enhancing human physical capabilities, and skill-matching between humans and tasks
on the factory floor [R155]. In addition, the introduction of indicators that aim at work-
force well-being, resilience, and overall sustainability is emphasized as one of the essential
differences between I4.0 and I5.0 [R154]. These human-centric indicators should be de-
signed for each industrial ecosystem and integrated into the system management to ensure
progress in improving human performance. The above-mentioned bottlenecks (i.e., lack of
automation and incorporated human-centric assessment indicators) make the available
surveillance technology not yet ready to replace Gemba observation for field application in
manufacturing facilities. Regarding these challenges, this thesis focuses on utilizing the
tremendous data from current camera sensors (e.g., Kinect) to automatically generate the
human performance assessment, and how to align the assessment result with the human-
centric improvement, considering I5.0 objectives. The novelty of the proposed approach lies
in the application of supervised learning and pattern mining algorithms on the captured
data, which can be the core of organizational performance improvement initiatives.

3.1 Human performance assessment with Kinect sensor skele-
ton data

Camera sensors are widely used for surveillance, however, their application for produc-
tion monitoring is limited. Some industrial customers require their manufacturers not
to store any product-related images due to proprietary reasons. Thus, skeleton data is a
suitable option for analysis. In this section, a method of using supervised learning and
pattern mining algorithms to diagnose the skeleton data for assessing human performance
is presented and shows sufficient knowledge for further human-centric improvements. A
real-time usage model for industrial applications is given with the available open-source
packages, with possible improvements discussed.

The raw skeleton data from the Kinect sensor can be processed as described in Fig. 3.1.
After extracting the skeleton data from Kinect for Windows SDK, coordinate transforma-
tion, re-sampling, and filtering are applied. These steps are mathematical operations based
on the camera setup information, which will be introduced in the next section. Supervised
learning algorithms are applied in the work movement identification step to segmentize
and recognize working status and movements. This classification can be done by consid-
ering intrinsic characteristics of work movements, such as the position and kinematics of
the head and the hands. For instance, the head will be the stationary joint with a very low
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velocity, and the hands will be the most active joint during the work session. The working
zones in which the hands are actively moving can be determined, considering that these
zones do not contain any other stationary joints such as the head. Kinematics values (i.e.,
velocity) can also be utilized as thresholds to identify the movement.

Motif-searching algorithms are applied to find the similarities between the extracted
movements in the pattern-mining step. The interest objects are the time series of the joint
coordinates, along with their kinematic values. The mined patterns reflect the working
behavior of the workers, from ergonomic and productivity aspects. Other work character-
istics (e.g., cycle time) can also be recognized. The overall results can be synthesized into
the performance assessment of each worker or the line of multiple workers. Based on these
assessments, short- and long-term strategies to improve human performance can be elabo-
rated, keeping in mind the objectives of I5.0. With the recognized work patterns, statistical
features can be extracted to build a Human Activity Recognition (HAR) model [R210]. The
recognized result can be used to predict the worker movement for a real-time application.
The details of these steps will be discussed in the following sections.

Figure 3.1: The proposed flowchart to process Kinect skeleton data. Source: Own work.

3.1.1 Processing the raw data

To capture the work movements, the Kinect should be located within the working space.
Considering OC is the origin of the camera coordinate system, the origin of the world co-
ordinate system OW is defined by the perpendicular projection of the origin OC into the
floor. Each joint PW = [xW , yW , zW ] in the world system is captured as one corresponding
point PC = [xC , yC , zC ] in camera system. Since the Kinect tracking ability is limited in a
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predefined space, the main working position should be placed within the full-length visi-
bility of from 0.8 to 3 meter in the camera system. The furthest corner of the working zone
should not exceed three meters; thus, the Kinect can capture all work movements. Any
frame with excessive joint coordinate from this value will be considered as the worker is
out of the work zone and filtered out. The setup parameters should be recorded for the
later data analysis. For clarification, HZ is defined as the distance between OC to OW in
the Z direction, HY is the horizontal distance from the OW to the approximate center of
the captured object in the Y direction, and HX is the distance between OW to object in X
direction. The α is the rotation angle of the Kinect around its X axis. The camera setup is
described in Fig. 3.2.

The Kinect v2 provides the skeleton data of 25 different body joints (Fig. 3.3a). Each
joint has 3D coordinates recognized in the Kinect coordinates system (Fig. 3.3b), and in the
form of time-series in X, Y , and Z directions (Fig. 3.3c). After acquiring the raw skeleton
data in the Kinect coordinate system, the coordinate transformation can be done with the
pytransform3d package [R211].

The Kinect v2 supports tracking the skeleton for up to 30 frame per second, and this
frame rate is excessive for assessment purposes. In industrial engineering practice, the
MODular Arrangement of Predetermined Time Standards (MODAPTS) is widely adopted
[R212], thus the raw Kinect data was re-sampled to 1 MOD (1 MOD = 0.129 seconds).
This resampling enables the comparison of extracted movement patterns with standard
movements from MODAPTS as a benchmark [R213].

In the filtering step, frames without any skeleton or containing joints further than three
meters in X or Y direction were filtered out. The left frames captured the movements of the
worker in the observation space, including both working and non-working status. Super-
vised learning and the kinematic value of the work were used to segment the movements.
Supervised learning (i.e., clustering and classification) was applied to the position data of
the limbs to define the work zones. The target objects for clustering are the hands and
the head, representing the moving and stationary parts of the body. While supervised
learning identifies the work zone, the kinematic value of the limbs confirms it. As working
movements may not exceed the allowable velocity, faster movement can be identified as
non-working. The details of identifying work movement will be discussed in detail in the
next section.

After defining the frames that contain the work movement, the time series of joint
coordinates can be used as input data for pattern mining. Besides the raw coordinates, the
informative derivatives are:

• The distance between joints: The Euclidean distance between two arbitrary joints
(e.g., the distance between two hands).

• The angle between three joints: The 3D angle formed by three arbitrary joints (e.g.,
the arm extension angle that is formed by the shoulder, elbow, and wrist).

• The kinematic characteristics of an arbitrary joint (e.g., moving distance, velocity,
acceleration, jerk) can be calculated from the displacement in time of the raw coordi-
nates of the joint.

Once these time series are extracted, different work performances by one worker or
multiple workers can be compared. Pattern mining techniques (such as AB-Join, multi-
variate, and consensus motif searching) by open-source packages (i.e., STUMPY [R208])
are applied to find the motif pattern that happened within them, analyze their character-
istics, to have an insight into how the worker performs his work. Based on the movement
patterns in the form of time-series of the joints, statistical features can be extracted to
build a Human Activity Recognition (HAR) model [R210]. The recognized result can be
used to predict the worker movement for a real-time application.
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Figure 3.2: The Kinect camera setup suggestion on the shopfloor. Source: Own work.

(a) Kinect body joint system. (b) Kinect coordinate system.

(c) Example of the 3D coordinates of one joint - the right hand.

Figure 3.3: The Kinect sensor description and the raw skeleton data. Source: (a),(b):
Adapted from Kinect documentation; (c) Own work.
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3.1.2 Identifying work movement and work characteristics

Firstly, the relevant data that contains the working movement of the worker can be ex-
tracted based on the decision tree illustrated in Fig. 3.4. The steps can be described as:

• Step 1: Whether the worker is in his workstation: The standing zone is assumed to
be where the worker spends most time working; thus, it can be defined by applying
supervised learning such as clustering (e.g., kNN, perceptron) on the position data of
the head and the hand joints, considering the head will be the stationary joint and the
hands the most active joints during the work session. These zones can be confirmed
by the position of the head and its low velocity.

• Step 2: Check for abnormal kinematic value in stationary joins: If the worker is
working, the head should be moving slowly within the standing zone. If the worker is
walking, the velocity is much higher than the working state.

• Step 3: Each of the hands is moving or not: To recognize that the worker is working
and not standing idle, the kinematic characteristics of the two hands are calculated.
Based on the moving distance, velocity, and acceleration of each hand, the frames in
which he is performing work can be recognized. After this step, the Gantt chart of the
working state can be created, as described in the following section.

• Step 4: Extract the work movement: After the aforementioned steps, the relevant
frames in which the worker is performing work movement can be defined, with the
ergonomics assessment can be applied. The given work instruction can be utilized to
identify the movement, and the motif-searching techniques can be applied to find the
movement pattern. These techniques will be described in the next section.

Figure 3.4: The decision tree to filter the relevant movements. Source: Own work.

The rationale of clustering is described in Fig. 3.5, which shows the top-view working
posture of a worker. Since the working surface is parallel to the XY surface, X and Y
coordinates are sufficient to filter the working movements, in relative position to the head.
The primary work zone is the comfortable region for repetitive access in front of the worker,
while the close vicinity is the secondary work zone for occasional access, and further away
is the tertiary work zone for seldom access [R214]. For ergonomic reasons, the parts will be
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placed in the primary work zone, and the hands will repetitively move around it to perform
the working movements. The hands will be actively moving within the secondary work
zone for other movements such as waiting, resting, and taking additional parts. Based on
these characteristics, the position of the head and two hands will define different clusters
in the X-Y plane. For each frame, the vector [xleft, yleft, xright, yright] is defined, in which:

• [xleft, yleft] is the X and Y coordinates of the left hand.

• [xright, yright] is the X and Y coordinates of the right hand.

Then by applying a clustering algorithm (i.e., kNN) on the set of the hand point vectors,
the cluster centers which have the same size of four with the hand vectors, in the form of[
xcleft, y

c
left, x

c
right, y

c
right

]
can be achieved. Each is represented as one line connecting the

centroids for the left and right hands. The number of clusters is dependent on the working
area. If the working area is small, a smaller number of clusters is needed. In Fig. 3.5
two clusters can be seen: the cluster 1 (c = 1) is right in the primary work zone, and
the cluster 2 (c = 2) is in the secondary work zone. These cluster centers have different
positions, which represent different working postures. By recognizing the clusters of the
hand positions, the working status of the worker can be defined when the hands access the
respective working zones. The same process can be applied to position data of the hands in
the X and Z plane, which will show the different heights at which the hands were working.

Figure 3.5: The positions of the head and hands in working posture. Source: Own work.

The second thing to notice is the head position during work. While working, the head
of the worker mostly stayed within a small region, while his hands moved around the
processing parts. The zone in which the head stays will be of an elbow distance to the
primary work zone for a comfortable working posture. A straight line can always be drawn
to separate the hand points and the head points, representing the physical edge of the
table or the conveyor and forming an area where the head barely appears. The line can be
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defined by any linear classification algorithm (i.e., perceptron). The region where the head
stays during work can be named the standing region, while the region where only the hand
points can be found is named the working region. Based on ergonomics working distance,
the boundary between the standing and working regions can be defined by offsetting the
conveyor edge. It is recommended to use an elbow-wrist length from the conveyor edge
(450mm) to determine the standing region, assuming the worker stands straight during
work. The working region is defined on the conveyor, so that the maximum distance from
the standing region to the working region equals an upper limb length (750mm). These
data can be taken from anthropometric measurements of Europeans [R215], and adjusted
according to the male-female ratio of the workforce population.

The other factor to consider is the velocity of the moving limbs. If the worker is working,
the head should be moving slowly within the pre-defined standing zone. If the worker is
walking, the velocity is much higher than the working state. The same principle can be
applied to the hand. The criteria described in Table 3.1 are considered based on the position
and velocity of the head and the hands. Therefore, several elementary movements, along
with the working and non-working statuses, can be identified.

Table 3.1: The criteria to distinguish working movements.

No. Head position Head velocity Hand position Hand velocity State
1 Out of the

standing re-
gion.

Out of the
workstation.

2 In the standing
region.

High (> vheadmax ) Moving in the
workstation.

3 In the standing
region.

Low (≤ vheadmax ) At least one hand in
the working region.

High (> vhand
max ) Reaching.

4 In the standing
region.

Low (≤ vheadmax ) At least one hand in
the working region.

Low (≤ vhand
max ) Working with

one hand.
5 In the standing

region.
Low (≤ vheadmax ) Both hand in the

working region.
Low (≤ vhand

max ) Working with
both hands.

6 In the standing
region.

Low (≤ vheadmax ) Both hand in the
working region.

Too low (≈ 0), for ≥
tmax

Staying idle.

The recommended working posture is the worker has his head in the standing region
and moving with a velocity lower than vheadmax , and has at least one of his hands in the
working region with a velocity lower than vhandmax . These limits are taken from the raw data
and consulted by the production supervisors. As illustrated in Fig. 3.6, by filtering out
the head position with a higher velocity than vheadmax = 0.2m

s , the clusters show the head
position in the standing area. The distant points indicate the worker is resting out of the
workspace. The same velocity threshold can be set for the hand movements with vhandmax .
However, to filter out the resting status of the hands, its timestamps should be examined.
If the hand moves in a very low velocity (i.e., ≤ 0.05m

s ) and remains for a period longer than
tmax (with tmax = 3MODs = 0.516sec), it can be considered staying idle. This tmax is chosen
as three MODs as the sufficient time for a worker to move his arm and get something.

As the work is done in cycles, cyclic behaviors and associated characteristics can be
found in the time-series data:

• Work cycle time: There are several ways to perform this recognition, such as accessing
the auto-correlation of the time series of the distance between two hands or clustering
the coordinates of the two hands and looking for the sign of moving to the original
position. The cycle time can be recognized when the hands come back to their original
position, with the same working distance between the two hands. This concept can
be applied to the location of the head, but on a larger scale than inside a workstation.
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• Personal efficiency: The utilization efficiency of a worker can be calculated by compar-
ing his movement to the standard proposed by industrial reference (i.e., MODAPTS).
The value-added ratio can be calculated based on the segmentation between working
and non-working periods. This information can be used to calculate the OLE, one
important KPI for the HR department and production planning [R193].

• Body part utilization: The usage frequency and characteristics of the different parts
of the body can be considered once the movements are recognized and their times-
tamps are collected. For simplicity, states such as working and non-working, working
with comfort gestures, and non-comfort gestures can be defined. The assessed result
can be visualized as a Gantt chart for better improvement in the later phase.

• Body asymmetry: Body symmetry is an essential factor, as it prevents fatigue in the
short term and occupational disease in the long term. The period in which only one
side of the body is working can be calculated and can be a target for improvement.

• Work complexity: The work complexity within a workstation can be assessed by sev-
eral criteria, e.g., cycle time, performance variation (i.e., the same work performed
by the same or different workers), and body asymmetry. This information can be
used to design and balance the workload, thus alleviating the time variation in each
workstation and optimizing the line [R216].

An example of cyclic behaviors can be seen in Fig. 3.7. In this scenario, the worker
works on a conveyor and takes the product to a nearby cart. After completing the cluster-
ing on the head positions, three cluster centers were identified as C1, C2, and C3, which
represent the conveyor, the open area as the worker walks from the conveyor to the cart,
and the cart itself. The right part of the figure shows the cluster labels over the frame.
The worker worked in the conveyor for 300 frames before moving to the cart, and came
back to the conveyor at the 550th frame as indicated by an abrupt change of the cluster
label. This sign indicates that he started a new cycle, and the recognized cycle time is
t̂C = 550(MODs), or 70.95 seconds.

Figure 3.6: Head positions filtered by velocity in the first workstation. Source: Own work.
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Figure 3.7: The cyclic pattern in the head position clustering labels. Source: Own work.

This recognition can be more precise in a smaller area of a workstation, with the clus-
ters of the hand positions. If several recordings are taken, the recognized cycle time will be
the average value of all cycles. Other important parameters can be defined such as:

• The cycle time difference is the ratio of the absolute difference between the recognized
cycle time t̂C versus the theoretical value tC , over the theoretical value.

Cdiff =
|t̂C − tC |

tC
(3.1)

• The cycle time variation is the ratio of the absolute difference between the maximum
value of recognized cycle time t̂max

C versus the minimum value t̂min
C , over the theoret-

ical value tC .

Cvar =
|t̂max
C − t̂min

C |
tC

(3.2)

For one recording of one worker in one workstation, based on the classified work move-
ments, the total ratio of each movement can be calculated as a relative percentage of the
entire recording duration. More information can be extracted on the manufacturing line
scale for several workstations with different workers as discussed in next section.

3.1.3 Movement patterns and possible application

Pattern mining techniques incorporated in STUMPY were applied, with different features
were searched to highlight work characteristics of the monitored objects as follows:

• Mining a repetitive task conducted by one worker multiple times with AB-join, to
recognize the normalities and the abnormalities. The starting time of each compared
segment is chosen based on the cyclic patterns after clustering. The search window
can be adjusted to equal a long duration, e.g., 78 MOD, equals to 10 seconds.

• Applying consensus motif search on the same work movements between different
workers, to recognize the personal work behaviors. The compared segments are not
limited to certain cycles. Since more deviation exists in this case, the search window
is limited to micro-movement with shorter intervals, i.e., 50 MODs.

When assessing the repetitive task of one worker, the normalities exhibit skill compe-
tence (e.g., the time variation between each cycle), and the abnormalities show the achieve-
ment in learning a new movement, or a recent physical problem. When comparing the
same moving pattern of one worker to the others, the technical skill competence of the
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workers can be assessed. This information is helpful for the workstation allocation [R217].
The best movement can be found and used as a reference for best practice sharing between
workers as a byproduct. This practice helps to improve the performance of the workforce
systematically. These patterns can guide the process engineers to work on their accumu-
lated database from their workforce. The optimized work movement and the acceptable
patterns can be recorded for later reference when setting up a new production line and
training purposes.

Another critical application of movement pattern results is the real-time ergonomics
assessment, based on the time series of several elements, such as the distance of the hand
from the hips and the angles between the joints. Instead of the traditional assessment done
by a human expert, the standards can be integrated into the physical limit for the distance
and angle between joints and limbs, thus making it easier to implement real-time monitor-
ing and warning. These assessments can be used as a clue for further improvements.

When multiple workstations are set together to form a manufacturing line, the er-
gonomics assessment can be performed on each station with the same principle. By com-
paring the work pattern performed by different workers in the same workstation, the er-
gonomics setup of that workstation can be assessed. For example, the workstation that
causes the same bending posture for most workers should be elevated, and the specific
worker with the bad working posture can have customized support.

3.1.4 Machine learning model for automated application

As several ML algorithms are proposed in this approach with available open-source pack-
ages that have data streaming possibilities, a real-time assessment model by Kinect sen-
sor can be built for more convenient usage. This model can automatically process the
acquired data and perform the HAR function with more in-depth analysis such as move-
ment recognition and prediction. To facilitate end-to-end ML software development, the
iterative-incremental process in the Machine Learning Model Operationalization Manage-
ment (MLOps) [R218] is adopted. A framework with three main steps: Model Design,
Development, and Operation, is illustrated in Fig. 3.8, with step-by-step details in building
such an ML application for a particular manufacturing industry.

Figure 3.8: The proposed Machine Learning Model development. Source: Own work.
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In the Model Design, the engineering requirements for industrial practice should be
defined. These requirements should consider the nature of the work movement (i.e., how
many joints are required to perform the work) and the workplace (i.e., how many work-
stations need to be under observation), the suitable sensors (i.e, video-based or wearables),
the types of connectivity and database that are compatible. After that, a use case should be
well-defined for a smaller facility area where there is no obtrusion from other objects. For
the use case, the engineers may prefer the line with a similar type of work movement (such
as assembly or material handling), and each workstation has a pre-defined work cycle and
designated area of work. An open workstation with no designated area and no cyclic work
pattern can be troublesome to assess, even with human observation. The data availability
will be checked and tested with the sensor. The essential criteria here can be: how long the
recording duration should be, how much data distortion is caused during work (due to the
natural obtrusion of the worker), and how long the distortion last (due to the appearance of
facility equipment, such as the conveyor). The engineers need to consider if these skeleton
data are sufficient for the assessment.

In the Model development, the architecture, such as data acquisition and storage, should
be ready, and the connectivity should be established. Time series databases (such as In-
fluxDB or OpenTSDB) can be suitable candidates for storing the processed raw data from
Kinect. The number of required Kinect sensors and the setup positions are also considered.
Based on the available data, the model can be developed with real-time ML and pattern-
mining algorithms and packages. The teaching criteria for supervised learning should be
described in this step. The model then should be tested and validated by the confusion
matrix between principal movements that can be recognized.

In Model operation, the model can be deployed with the established data pipeline and
become ready for real-time monitoring application. There should be pre-defined signs to
trigger the model (i.e., abrupt changes of the cluster label during the production period).
These signs may come from the natural characteristics of the work movement.

By applying these MLOps principles, the early adoption and fast delivery of the resul-
tant real-time industrial application can be expected. The practicability of this approach
is promising for ML-based software, which aligns with the key assessment metrics from
high-performing software development organizations [R219].

3.1.5 Human performance improvement in Industry 5.0

Since human performance makes a significant contribution to the efficiency of the line,
enhancing the former will affect the latter. In the previous paragraphs, the different move-
ments can be mined from Kinect skeleton data, and their application for human perfor-
mance assessment is discussed. Thanks to these results, the normal and abnormal pat-
terns in the movement of workers can be considered, and industrial managers can seek
improvement on two scales: individual level or systematic level:

• Individual improvement: the changes that can be applied to each specific individ-
ual, affecting the work of a single worker, or changing a workstation layout (e.g.,
customized skill training, ergonomics posture training, work-cell arrangement).

• Systematic improvement: the changes that can be applied to more than one worker,
affecting the work of multiple workers, or changing the entire manufacturing line
(e.g., workload design principles, line balancing, job rotation)

As inspired by the Human Resource Development (HRD) approach of Lean manufac-
turing [R220], these improvements can also be categorized into short-term and long-term
initiatives. As I5.0 aims to build a resilient workforce, the long-term HRD is one of the
main pillars for the sustainable and competitive growth of a firm.
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• An example of an HRD short-term initiative is developing customized job training,
providing workers with specialized training based on their skills. A cross-training
program between workstations is proved to have a positive impact on worker per-
formance [R221], taking into consideration the specific skills of each worker. The
combination of individualized skill-based training and assignment plans will eventu-
ally lead to an increase in overall efficiency [R222]. By endorsing workers to improve
their skills, greater flexibility can be achieved within the workforce [R223].

• An example of an HRD long-term initiative is the job rotation, switching the worker
between a routine of different workstations with different skills to avoid occupational
hazards [R224] and physical ergonomic risks [R225]. This initiative will alleviate the
boredom of the workers [R226], reduce the physical workload [R227], and enhance the
ability of the firm to cope with unexpected changes and uncertainties [R228], while
increasing the work satisfaction [R229] in the long term.

Considering that the I5.0 objectives are human-centricity, sustainability, and resilience,
the improvements mentioned above facilitate the firm to achieve its I5.0 goals. Their cor-
responding contribution to the I5.0 objectives is as illustrated in Fig. 3.9.

Figure 3.9: The proposed human-centric improvements with Industry 5.0 focuses. Source:
Own work.

• By examining the work behavior and preference of a worker in a workstation, indi-
vidual improvement can be made to help him achieve higher performance, according
to his special physical condition. As this individual improvement can establish a new
standard in designing and performing work, human-centric improvements in the firm
can be continuously facilitated.

• After the short-term improvements in one workstation, systematic improvement can
be deployed on a manufacturing line. The results will improve the performance of
more workers, ensuring robustness and resilience productivity.

• The long-term HRD plan plays a vital role in permeating the effect within the work-
force and ensuring the long-term sustainability of the firm. As the PDCA circle is
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carried on, short- and long-term improvements are achieved, and the resilience level
of the whole workforce is increased.

In I5.0, these improvements can be data-driven and carried out continuously, as the
skeleton data from the Kinect sensor is sufficient, and with the aid of a real-time ML
model. The overall initiative is depicted in Fig. 3.10 with a PDCA framework established
around the organizational database of movement records from workers.

Figure 3.10: The proposed PDCA circle with pattern mining framework. Source: Own
work.

As the traditional kaizen starts with observation, the pattern mining is deployed in the
CHECK phase. A Kinect data acquisition system is established to collect human-centric
data. The target objects are movements of workers in a specific workstation, for a partic-
ular shift. Any arbitrary type of additional sensor can further enhance the data accuracy,
such as wearables, smartphones, etc. Then ML and pattern mining tools can be applied to
the acquired data with preliminary and in-depth analysis. The mined patterns are stored
in a database structured by each operator, work instruction, and specific conditions of the
environment. This storage serves as the organizational database for human-centric im-
provement. Additional data properties such as the cell setup, the work instruction, and
the line allocation can be stored for later reference.

In the ACT phase, movement pattern mining results are categorized into ergonomics
assessment or personal work behavior, or in ergonomics and economics performance [R230].
These results can be compared with the database records to modify and adjust the KPIs
and long-term HRD strategy or reasoning for recognition and reward activities.

In the PLAN phase, the individual and systematic improvements can be planned based
on the result records and the benchmark from the database. While individual improve-
ments aim to utilize human skills and customized development for the individual, system-
atic improvements focus on a larger scale and on short-term effects, such as balancing a
line, creating a skill training schedule, or a job rotation plan for the next month. These
HRD plans can take the historical records from the database as a benchmark.

The DO phase integrates the planned improvements through the on- or off-the-job
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training and best practice sharing with other implementations, such as modifying and
rearranging the work cell. The changes in this phase should be recorded in the database
as a change management practice. After any change, the effect of kaizen implementation
is recorded in the CHECK phase, with the new movement patterns recognized and diag-
nosed. It is noticeable that the proposed PDCA approach is built in a human-centric way,
utilizing the movement pattern mining techniques fully.

3.2 Use case in an electrical product assembly line

The previous section discussed the usage of Kinect skeleton data to assess human worker
performance and generate improvement ideas. In this section, a use case is described to
show the practical application of the proposed approach. The real problem is discussed
in the following paragraphs, with the purpose of the improvement projects and the uti-
lized equipment setup. Then the data processing details and assessment results are given.
Based on this foundation, improvement ideas to improve the human performance of this
manufacturing line at both individual and systematic levels are generated.

3.2.1 Use case description of an assembly line

A case study is conducted in an electronic assembly line consisting of Nws = 12 worksta-
tions, denoted by wi, where i = 1, 2 . . . Nws. The main assembly tasks of every workstation
are performed on a moving conveyor, requiring both hands to work on the current product.
As the assembly tasks require manpower, the human workers are irreplaceable. The work-
flow description in each workstation is roughly defined from the previous similar product
in the product family. However, as the manufacturing time is dated and measured by the
performance of the old batch of workers, the task time becomes unreliable and cannot be
used to ramp up a new production line.

The improvement purpose is stated by the management board, along with the descrip-
tion of the technical apparatus and software being used. As product assembly depends
on manual tasks, when the need to increase productivity is demanding, the practical way
is to enhance the performance of workers. The traditional way of improvement is to per-
form frequent Gemba walks and make careful observations, which takes time and expert
knowledge to deliver a possible improvement idea. Besides, the sustainable optimization
approach should regard the physical and fatigue limit of the human body, not only the
economic aspects. The traditional observation method can be replaced by using the Kinect
sensor and applying pattern mining techniques to automatically solve the problem of as-
sessing human worker performance.

The experiment is designed as in Fig. 3.11, in which each workstation in the assembly
line is equipped with one Microsoft Kinect sensor from the most convenient angle to ob-
serve the working gestures of the workers. Each workstation is limited within a defined
space and assigned a predefined workflow, and the conveyor moves at a predefined pace.
The total number of workers is Nw = 15 workers, which is larger than the number of work-
station Nws, and denoted by oj , where j = 1, 2, . . . Nw. The recorded shift is denoted by (sk),
where k = 1, 2, . . . Nk, with Nk as the number of shifts per day.

The recorded skeleton data from Kinects are stored under the label of each worksta-
tion, each operator, and each shift, with the syntax of yyyymmdd.wX.oY.sZ. For example,
20220506.w1.o2.s1 is the recording in the first workstation, with the work done by the sec-
ond operator in the first shift of the sixth of May, 2022. Data is extracted with Kinect for
Windows SDK and programmed in Python language.
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Figure 3.11: The designed experiment in an assembly line with Kinect sensors.

3.2.2 Performance assessment results by pattern mining

In this section, supervised learning is applied to segmentize the movements and pattern
mining tools are used to find the work characteristics in the form of time series.

Identify work movements for each workstation

The first step is to recognize whether the worker is in his workstation and performing work
movements. Considering that the assembly movements are performed on a conveyor, the
conveyor edge is a rigid physical separation between the position of the working hands and
the head during the production period and can be identified as described in Fig. 3.12, with
the data from the first workstation.

Figure 3.12: The steps to perform the conveyor detection in the first workstation.

The conveyor detection utilizes a supervised ML algorithm, such as k-nearest neighbors
(kNN) clustering, followed by a linear classifier (i.e., perceptron) as follows:

• At first, a set of data with the head and two hands positioned in the X-Y plane are col-
lected as training data for the kNN model. This set is taken from the working period,
so the head and two hands are separated in the different regions by the conveyor.
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• Secondly, the kNN model is used to predict the label of the whole data set. The
decision boundary is not perfectly a straight line, as the hands and head points can
be mixed in some regions (i.e., while the worker walks toward the conveyor).

• Thirdly, based on the suggested label, a set of hand positions can be identified, whose
neighbors are hands only, without any head position. It can be named the "pure hand
region", and mostly this region is on the conveyor. There are a few unusual cases
where the pure hand region is out of the conveyor, but they are neglectable.

• Fourthly, a set of hand positions from the pure hand region is taken to train the linear
classifier, as scattered as possible, along with the head position.

• Fifthly, the conveyor edge is detected. Based on ergonomics working distance, the
boundary of the standing and working regions can be defined by offsetting the con-
veyor edge. The offset value is mentioned in the previous section, taking into consid-
eration the male-female ratio of the facility workforce.

• Based on the perceptron classifier result, the whole data set will be examined.

Noticeably, the conveyor edge detected here does not reflect the actual edge of the phys-
ical conveyor. However, it can serve a similar function as a rigid boundary between the
working and standing regions and is critical for movement identification purposes. Based
on these criteria, the different movements in one workstation can be recognized as depicted
in Fig. 3.13, with the conveyor represented.

Figure 3.13: The different movements in the first workstation with the conveyor.

The velocity limits (vheadmax and vhandmax ) are taken from the raw data, as the 90th percentile
of respective velocity in all recordings, from all workers. After consulting the production
supervisors and taking into consideration the nature of the assembly work, vheadmax = 0.2m

s
and vhandmax = 0.8m

s were chosen. A hand moves at a very low velocity (i.e., ≤ 0.05m
s ) for a

period longer than tmax = 3MODs = 0.516s will be considered staying idle. Applying the
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same procedure, the whole conveyor with its workstations and the head and hand position
of workers can be constructed as in Fig. 3.14. The first workstation (w1) has a broader
distribution of the head and hands location; since it is the beginning of the line, the worker
needs to take the raw product from a separate cart. The other workstations have smaller
scatter since the workers mostly perform their work in a smaller defined space.

Figure 3.14: An elaborated section of the assembly line.

Cycle time recognition

Due to the characteristics of assembly work, the hands of the workers follow a periodic
trajectory in the working space (i.e., they come back to the original area when they start a
new cycle). Since most of the work movements are done on the flat surface of the conveyor,
the Z component is not considered. One work cycle can be traced with the cyclic pattern
of the hand position. In this section, the cycle time is recognized by applying K-means
clustering on the vector [xleft, yleft, xright, yright].

The result of clustering applied in one workstation with its different recordings is il-
lustrated in Fig. 3.15. In Fig. 3.15a, the cluster centroids from the first recording of a
workstation are illustrated. Based on the cluster label plotted in Fig. 3.15b, it can be ob-
served that there are two work cycles A1 and A2, last 200 and 305 frames, respectively. For
one work cycle, the hands move near the clusters C0 and C1 for a while, then into the clus-
ters C2, C3 and C4 which are further away. For every new work cycle, the hands come back
to cluster C0 and C1 and repeat the pattern, which results in an abrupt change from clus-
ter C4 to C0 (the quick movement in a short period - defined by tmax = 3MODs = 0.516sec
will not be considered, as the worker sometimes forget the tools and reaching out to take
it).

The existing cluster centroids are applied to predict the cluster labels of the other
recordings from the same workstation in Fig. 3.15c. The second recording shows the
worker working on the conveyor in the same position. However, as the rack for the work-in-
process (WIP) is further from the first recording, he needs to reach out further than cluster
C4 to take it to start a new work cycle. Consequently, the cycle B1 lasts longer for 340
frames, as shown in Fig. 3.15d. The cycle times from these two recordings are calculated
in Table. 3.2.
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(a) Clusters result from the first recording (b) Work cycle from the first recording

(c) Clusters result from the second recording (d) Work cycle from the second recording

Figure 3.15: Cycle time recognition in different recordings from one workstation.

Table 3.2: The calculated cycle time from two recordings in one workstation.

No. Work cycle Number of frames Number of MODs Time (sec)
1 A1 200 200 25.8
2 A2 305 305 39.345
3 B1 345 345 44.505

Average cycle time 283.3 36.55

Body part utilization

The hands are the most frequently used limbs in assembly work, thus the utilization ratio
of two hands is essential information for industrial managers. Based on the movement
identification, the timestamps of the head and the hands between each working duration
can be recorded. A Gantt chart is built, as illustrated in Fig. 3.16 to show the status of
the worker during the work period. It can be seen in the first recording, that the worker
spent most of the time in the standing region, but only partly in his working state, and
even less time spent on working the assembly task with two hands. From this information,
the utilization ratio can be calculated for this workstation, as metrics exhibited in Table
3.3. By comparing recordings from two different workers, it can be observed that both
workers only worked with both hands for half of the total recording time, and slightly
worked more with only the right hand than with only the left hand. Besides, the worker
in the second recording utilized his right hand more dominantly than the other worker.
Further investigation is needed to see if it is due to the workstation arrangement or the
natural right-handedness.
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Figure 3.16: The Gantt chart of the worker statuses in one workstation.

Table 3.3: The assessment result of body part utilization of the worker in one workstation.

Recording 1 Recording 2
No. Metrics MODs Seconds Ratio

(%)
MODs Seconds Ratio

(%)
1 Total recorded duration 900 116.10 100 896 115.58 100
2 In standing region 879 113.39 98 867 111.84 97
3 In working state 626 80.75 70 623 80.37 70
4 Working with both hands 418 53.92 46 458 59.08 51
5 Only left hand working 69 8.90 8 36 4.64 4
6 Only right hand working 117 15.09 13 97 12.51 11

Movement pattern searching with kinematic characteristics

The interesting kinematic characteristics are the moving velocity and acceleration of each
hand of a worker in the form of time series, and they will be the object for the pattern-
searching step. Besides this information, the calculation of RULA angles (such as arm
abduction, arm extension, etc. [R231]) can be considered for a similar approach. However,
only kinematic time series are chosen to be diagnosed further. Based on the previous result
of cycle time recognition and body part utilization in Fig. 3.17, these characteristics for a
specific part of the work cycle can be analyzed. Knowing that both of the hands are working
in the cluster C0 and C1 during the first period of the first work cycle, a closer look at the
kinematic characteristics in Fig. 3.18 can show us that though the two hands were working
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together, the right hand was more preferred, characterized by a higher velocity value, and
a more extended period with acceleration.

Figure 3.17: The kinematics of two hands in the first area of one workstation.

Figure 3.18: Kinematics characteristics of left and right hands.

The motif searching technique is applied to looking for the same movement patterns
that appear during the work period, performed by the same or different workers. Finding
the same pattern of one worker will show an insight into individual work, while the same
pattern by many workers helps us find the best movement practice. By applying the AB-
Joins on the velocity time-series of the left hand from two different recordings, a motif can
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be found as illustrated in Fig. 3.19. The respective movements of the workers with their
left hands are shown in Fig. 3.19a. The movement happens when the worker finishes one
work cycle and needs to bring a new product from the rack into the conveyor to start a
new one. The trajectory of the left hand as the dotted lines in Fig. 3.19b indicate that the
worker in the second recording has a better way of performing the work; thus he did not
need to turn his body around.

(a) The motif in the velocity of the left hand. (b) Actual movements.

Figure 3.19: The matched motif in left-hand movements of workers in the first workstation.

To recognize the movement pattern performed by both hands, multi-dimensional motif
searching can be applied on the time series of the velocity of both hands. As in Fig. 3.20, the
time series from different recordings are joined together in Fig. 3.20a, and similar move-
ments with both hands are spotted in Fig. 3.20b. The dotted lines marked the trajectories
of the wrist-elbow-shoulder system indicate that the upper body movements are similar;
however, different workers have different working postures. To expand the motif searching
for many workers, a time-series consensus search can be performed on simple data, such
as the Z-coordinates of the left hand: a consensus of a "swing" movement is found in dif-
ferent recordings as in Fig. 3.21a, while different workers executed it differently with his
left hand as indicated by dotted lines in Fig. 3.21b.
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(a) The positions while the motif happens. (b) The actual movements.

Figure 3.20: The matched motif of two hand movements performed by different workers.

(a) The positions while the motif happens. (b) The motif and the actual movements.

Figure 3.21: Consensus motif in the height of the left hand performed by different workers.
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By aggregating the metrics from the constituent workstations, an overall picture of the
assembly line can be constructed as in Table 3.4. Seven criteria are proposed to assess
each workstation, and their ideal values can be set from the historical standards. The
information from the first six workstations is given here for demonstration purposes.

Table 3.4: The assessment result from the first six workstations in the assembly line.

Metric Calculation Unit Ideal value w1 w2 w3 w4 w5 w6

Utiliza-
tion ratio

The average of working dura-
tion over the recorded dura-
tion.

% The higher
the better

70 69 69 65 58 67

Hard-to-
perform
ratio

The average of working du-
ration where the gestures
exceed RULA recommended
limit angle.

% The lower the
better

21 14 19 6 23 12

Cycle
time dif-
ference

The difference between the
recognized cycle time over the
line takt-time

% The lower the
better

15 32 22 18 35 19

Cycle
time
variation

The cycle time variation from
different cycles over the rec-
ognized cycle time

% The lower the
better

34 17 26 41 39 13

Left-
hand
utiliza-
tion

The duration when the left
hand is working.

% The higher
the better

55 61 57 26 35 59

Right-
hand
utiliza-
tion

The duration when the right
hand is working.

% The higher
the better

61 52 29 15 25 63

Body
asymme-
try

The total accumulated dura-
tion in which only one hand
is working.

% The lower the
better

18 22 36 24 21 14

3.2.3 Possible human-centric improvements

Based on the aforementioned assessment, several improvement ideas can be brainstormed
as described in Table 3.5 follow in the order of execution priority. The sole intention is
to create a favorable physical work condition that suits the current human workers, from
the workstation scale to the line scale. The suggested relationships between the possible
improvements with the assessed value are proposed in Fig. 3.22.

Figure 3.22: The criteria hierarchy of possible improvements. Source: Own work.
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Table 3.5: The possible improvement ideas based on the assessment result.

Indicators Physical meaning Possible im-
provement

Possible initiative

High cycle time varia-
tion & High difference
between left and right-
hand utilization

The work procedure is compli-
cated The workload is not dis-
tributed equally for the hands.

Modifying
work instruc-
tion

Enhance hand utilization
Enhance body symmetry
Reduce work complexity

Low utilization ratio &
High or varied hard-to-
perform ratio

More irrelevant movements
than working. The worksta-
tion layout does not fit for the
workers.

Re-arranging
work-layout

Reduce non-value-added
moving
Avoid reaching and awk-
ward gestures

High variation of hard-
to-perform ratio, cycle
time difference, and cy-
cle time variation

The workstation is not opti-
mized. The work procedure is
complicated.

Line balanc-
ing

Reduce the complexity of
work procedure. Risk-
based line balancing

Unbalanced value of left
and right-hand utiliza-
tion & Varied value of
body asymmetry ratio

The workstations require dif-
ferent parts of the body and dy-
namic asymmetry.

Job rotation Rotate workers to balance
their body usage

High cycle time vari-
ation & Varied body
asymmetry ratio or best
movement is found

The un-skilled workers cause
the cycle time variation. There
is better movement in er-
gonomics or fatigue aspects.

Job training Serve the rotation plan
Increase individual skills
Multiple the best move-
ment

A high value in the cycle time variation of the same workstation by different workers
indicates that the work procedure is hard to follow; thus different workers require different
times to finish a work cycle. Low utilization of the hands can be due to rest or hesitation
during work. A high difference between left and right-hand utilization can be an indicator
of a poor work design. These problems (as in workstation w4) should be addressed in
the workstation scale using the Left and Right-Hand process chart. The process engineer
should reduce the work complexity and aim at equal use of two hands.

The low utilization ratio within a workstation indicates that the worker paid more time
for other movements (i.e., walking, searching, quality checking) than working, and the high
hard-to-perform ratio means he suffers from the unreasonable arrangement of the work
cell. Varied values of the hard-to-perform ratio by different workers indicate that the cell
arrangement is not suited for most of the workforce. As these problems occurred in work-
station w5, a new arrangement should be made to remove unnecessary body movement
based on the ergonomics of most of the workers. If the work procedure is not optimized,
time variation is too high, and uncertain; then the line becomes harder to balance. The
solution for this line is to stabilize the worker performance in its workstation (such as
in workstation w1, w4, and w5), then re-balance the line based on the new value or add
risk-based factors into the calculation of the line performance.

The unbalanced usage of the body parts can cause localized muscle fatigue and occu-
pational disease for a long time. The varied value of the body asymmetry ratio proved the
heterogeneity of the work in the workstation. To avoid these negative consequences, work-
ers should be rotated between workstations based on these values (i.e., w1 and w2), both
short- and long-term. The cycle time is another essential factor to consider when assessing
the fatigue impact of the body asymmetry. The high variation of cycle time performed by
one worker can indicate that the worker lacks work proficiency. Along with preparing for
the proposed work rotation plan, job training initiatives should aim at increasing the skills
of individuals and sharing the best movement within the workforce. One best example is
the movement described in Fig. 3.19.
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3.3 Chapter summary

An approach of pattern mining the skeleton data from the Kinect sensor to assess human
worker performance is proposed, which takes advantage of supervised learning and mo-
tif searching algorithms to discover the characteristics of work movement. Online matrix
profile is integrated to handle streaming data and facilitate real-time usage. As the work
movements are segmented, the work behavior can be diagnosed, and these data can be
used to develop a HAR model for recognition and prediction. A case study is conducted on
an electrical assembly line to validate the approach. With the data processing rooted in
MODAPTs standards, the productivity aspect can be diagnosed by comparing the move-
ments with the ideal sample. The work performance of each workstation and the whole
manufacturing line can be assessed in several aspects, saving human expert efforts and
generating data for further mining activities. The individual and systematic improvement
plans are beneficial for the organization in both the short and long term.

Some recommendations are associated with the use of the Kinect sensor. Firstly, data
distortion due to the limited capability of the Kinect sensor and the occlusion of the human
body can be solved by installing multiple Kinect sensors [R200]. If any obstruction causes
distortion, these distorted frames can be classified due to the intrinsic value of human
movement limitations, such as distance and angle between joints. The proposed procedure
can apply to MoCap sensors in general besides the Kinect sensor. As there are plenty of
commercial sensors on the shelf that are suitable and capable of delivering the same result,
industrial managers can choose the hardware that fits their needs.
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4
Operator 4.0 stress-performance foundation
for monitoring and simulation

Thesis 3:
Based on the proposed system dynamic conceptual model from the evi-
dence of validated relationships between Acute Work Content-Related
Stress (AWCRS) and the work performance of human operators from
the literature, I developed an extended formula for Overall Labor Ef-
fectiveness (OLE) calculation to predict complex human behavior un-
der the effect of AWCRS.
Thesis 4:
I generated an experiment to collect a data set to reflect the effect of
work content factors on the workload, AWCRS perception, heart rate,
and human performance in real-life working conditions.

Publications relevant to the theses: [J3, J4].

4.1 Stress effect in industrial manufacturing environment

Work-related stress appears when workers face work demands that outweigh their abil-
ities, from main sources are work content and work context [R75, R232], which conse-
quently affected work performance [R233]. Repeated exposure to stressful work content
generates both acute and chronic stress, posing a detrimental effect on physical and men-
tal health [R234]. Acute stress with a short duration (i.e., seconds to minutes), which can
pose either positive or negative effects [R76]. To avoid any long-term accumulation of oc-
cupational stress, any unfavorable work content should be adjusted timely with the early
signs of Acute Work-Content-Related Stress (AWCRS) [J4].

A low level of AWCRS is associated with sustained attention [R82], improved decision-
making with stimulated cognitive functioning, augmented cognitive capacity [R235], pro-
duce the optimal performance [R77]. A higher value or prolonged duration under acute
stress causes more anxiety [R236] and risk preference [R237], and a long exposure leads to
chronic stress with long-term psychological disorders [R238], accumulated allostatic load
with declined cognitive and physical functioning [R239].

To provide timely intervention or work content adjustment, many studies claim to suc-
cessfully capture the personal perceived workload with real-time monitoring procedures
and platform [R240], however, none of them achieve the true instantaneous value. The ef-
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fects of acute and chronic effects were not separated [J4]. This requires a multi-disciplinary
approach with activity recognition from sensors and subjective and objective assessments.
I collected evidence to examine if Heart Rate Variability (HRV) can be a valid and reliable
indicator of AWCRS in real-time during industrial work.

A systematic literature review was conducted in four databases: Scopus, IEEEXplore,
PubMed, and Web of Science. The publication type was limited to English-written publi-
cations in journals, with the period between January 2000 and June 2022. Four groups of
keywords have been identified:

• The first group of keywords involves terms: "industr*", "product*" and "manufactur*".

• The second group contains only the term "stress*", representing a general approach
including both acute and chronic stress.

• The third group contains the terms "Heart rate variability" and "HRV".

• The fourth group indicates the objects of HRV measurement: "worker", "operator",
and "employee".

The PRISMA-based flowchart of the selection process is illustrated in Fig. 4.1.

Figure 4.1: The PRISMA-based flowchart diagram of the selection process.
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4.2 Real-time Acute Work-Content- Related-Stress monitor-
ing with HRV

HRV is a well-known stress indicator with intrinsic mathematical chaotic characteristics
[R241]. Stress recognition by assessing HRV is proven by neurobiological evidence [R242].
With the attributes of non-invasive, safe, easy-to-use, and simple diagnostic tests, HRV
measure can replace traditional cardiovascular diagnostic tools [R243] to assess job-related
cardiovascular stressors [R244], and exhibit different induced effects by acute and chronic
stress [R245]. Real-time stress monitoring is the core concept for Just-in-the-Moment
Adaptive Interventions (JITAI) [R246], with the deployment of individual tracking devices
to create a monitoring system [R247], detect the stress and tiredness level of workers and
deliver safety cyber-intervention [R240]. However, as the technology is ready, the concern
becomes whether HRV can be an indicator of AWCRS in an industrial environment.

4.2.1 The study of stress caused by work content

Work environment and additional stressors

Observational studies were conducted in real manufacturing environments; thus involved
additional stressors besides the work content, such as noise [R248], hazardous exposure
[R249], temperature and humidity [R250]. Experimental studies were performed in a lab-
oratory environment (except for the study of Hsu et al. [R251]); thus, tight control could be
deployed upon other work environment factors, such as different ambient oxygen contents,
different weights, and safety shoes [R252], or fixed posture during the experiment [R253].

Work-content type and induced stress

Observational studies considered a few work-content factors derived from the existing work
environment and cannot be adjusted. Shift work was the most frequent factor, with a day
or night shift [R249] or different shift patterns [R248]. The second frequent object was
the general job demand and job control [R254, R250]. Physical workloads were the least
frequent object [R254].

Experimental studies show a variety of work-content factors. The physical aspect was
the most studied factor, such as physical efforts [R255], lifting movements [R252], and
repetitive tasks [R253]. The cognitive requirement aspect was the second most frequently
mentioned factor with the intrinsic demand of the work [R256] or different difficulties,
[R253]. Tele-operation task with robots and machines was the next frequent topic [R257,
R258], comparing the effectiveness of the proposed consoles.

The work-content types were physical workload [R250, R252], or mental workload
[R255, R253] or both [R255]. It was ambiguous to compare the levels of work content in
these studies, as they took the information from the perception of workers without a spe-
cific description of the jobs, and there was no common scale of the experimental designs.

Stress evaluation

Separated evaluations were conducted to validate the stress status, with the most popular
tool being questionnaires. Karasek Job Content Questionnaire (JCQ) [R259] was used
most frequently [R248, R254], and Effort-Reward Imbalance (ERI) [R260] was the second
popular option [R254, R249]. Some studies employed more than one tool [R254, R249].
NASA Task Load Index (NASA-TLX) was used for working with equipment [R261], or with
machines [R256], or assessing cognitive task performance [R262]. Other tools were Cohen
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Perceived Stress scale [R249], visual scale [R255], Situation Awareness Rating Technique
(SART) [R256], Borg CR-10 scale [R253].

Stress was also evaluated based on physiological parameters, such as by comparing
electrocardiography (ECG) recordings from resting and working periods [R250, R255, R251,
R258]. The same approach was used with heart rate, and respiration rate [R252], elec-
tromyography (EMG) [R256, R261]. Other physiological signals were employed scattered,
such as O2 consumption and energy expenditure [R250], end-tidal CO2 [R256], respiration
rate [R252], blood pressure and blood sample [R249, R263].

Another additional stressor, such as workplace noise and ambient oxygen content, was
assessed with the Ising questionnaire [R248] and the ventilation response [R252], respec-
tively. Self-designed parameters, e.g., the number of correct responses or answers [R255,
R253], task efficiency and danger indices [R257], were used. Biological specimens (e.g.,
urine or saliva samples) were deployed to strengthen the assessment [R249, R263, R253].

HRV measurement instruments

Several studies employed professional electrocardiogram (ECG) machines [R248, R254,
R249, R263, R250, R256, R261, R252, R253], while others employed sensors such as wrist-
band ECG [R264], or wearable such as Polar S810 [R255], Polar RS800CX [R251], Sam-
sung Gear S smart-watch [R258] for the mobility demand of the experiments. There were
no data accuracy complaints.

HRV baseline measurement condition

Usually the baseline is measured in the non-working state, such as during sitting still
[R250, R255, R264, R251, R253], or during sleeping [R248, R254, R249, R263]. Other base-
line conditions were training sessions [R252] and short breaks during experiment [R258,
R256]. The baseline duration varied from ten minutes [R256] to two hours [R252]. Notice-
ably, there was no baseline condition representing the normal working status.

HRV measurement condition

With the studies adopted throughout-the-day measurement approach [R248, R254, R249,
R263], the HRV measurement lasted for the whole working day, or working shift. The rest
studies measured HRV in a shorter duration, varying from five minutes [R252, R258] up
to the whole working period [R250, R255, R256, R261, R253].

4.2.2 Association of HRV with AWCRS

The HRV in the included studies were categorized into time- and frequency-domain:

• Time-domain: HR (mean heart rate, beats/minute), RR (RR interval, seconds), CVRR
(coefficient of variance of RR intervals), SDNN (standard deviation of RR intervals,
milliseconds), SDNNi (square root of the mean squared difference of successive RR
intervals, milliseconds), SDRR (standard deviation of the IBIs for all sinus beats),
RMSSD (root mean square of successive differences), NN50 (the number of pairs of
successive RR intervals that differ by more than 50 ms), pNN50 (the proportion of
NN50 divided by the total number of RR intervals)

• Frequency-domain: LF (low-frequency, milliseconds), nLF (normalized low frequency),
%LF (percentage of LF power represents the relative power in proportion to the
total power), HF (high-frequency, milliseconds), nHF (normalized high frequency),
%HF (percentage of HF power represent the relative power in proportion to the total
power), LF/HF (LF/HF ratio), VLF (very-low-frequency band).
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With workers facing high-demand tasks and high strain [R250], higher carrying load
[R250], or a higher task frequency [R252], a higher elevation of holding handheld scanner
[R261], the HR was elevated, and shift workers had a higher mean HR than day workers
[R248]. However, with a light scanner [R261], the effect of different elevations became
insignificant. HR decreased during consecutive sessions of physical tasks [R253]. The
difficulty level of the cognitive task did not significantly affect HR value [R253].

The RR interval decreased when workers in stress condition [R258], with a heavier
workload of working with light scanners in high elevation [R261], or higher lifting fre-
quency [R252]. However, this result differed between the two study replications. CVRR
increased with the new control method in Ref. [R257]. SDNN was higher with high car-
rying weight [R250], laser scanner device [R261], higher task frequency or requirement of
more muscles to perform [R255]. SDNN also decreased with increased force exertion level
[R255] and was associated with age increase [R250]. SDRR showed different behavior with
the type of safety shoes and within replications [R252]. SDNNi was elevated with rotat-
ing night shifts [R248]. RMSSD reduced in workers experienced faster changing night
shift [R263], and higher ERI ratio [R263]. This association depended on other factors such
as age [R254]. RMSSD did not show a similar trend within two replication in the study
of Ref. [R252]. During the consecutive sessions of physical tasks, RMSSD was increased
[R253]. NN50 showed a discrepancy between two replications in the study of Ghableb et al.
[R252], and the proportion of NN50 divided by the total number of RR intervals, pNN50,
were differentiated by the types of safety shoes with a specific lifting frequency.

LF decreased when the operators experienced stress during work without biofeedback
training [R264] or working with a 3D scanner at a high elevation level [R261]. However, in
the same study, LF was also decreased in operators working with a light 3D scanner. In-
creased working surface height decreased the nLF [R251]. On the contrary, %LF increased
under high JCQ demand and rotating night shift [R254]. HF decreased with a high level
of attention demand [R256] and a higher elevation level of handheld devices [R261]. HF
was more responsive to physical movements, as suggested in the same study. However,
the reverse effect was observed with different laser scanners. HF increased during phys-
ical tasks but showed no association with cognitive difficulty levels [R253]. nHF elevated
with increased working surface height [R251]. The LF/HF ratio was significantly lower
within workers working on higher surfaces [R251] or with a higher elevation of handheld
device [R261], or higher lifting frequency [R252]. VLF was decreased value corresponding
to higher lifting frequency [R252]. Lower oxygen content resulted in decreased VLF value,
but only with the frequency of one lift per minute.

4.2.3 The usage of HRV to assess AWCRS

No Randomized Controlled Trial (RCT) was conducted to assess the association between
HRV and AWCRS, and none reported a high level of valid evidence of HRV as an indicator
of AWCRS. The study design in the included studies was not robust against bias, as some
studies only adopted a partly randomization procedure [R261, R253].

In some circumstances, there were associations between HRV and AWCRS. With work-
place noise and job strain, AWCRS from physical activity can be reflected by HRV [R248].
HRV contributed to the proposed ALI to measure the stress-related wear and tear of the
body [R263]. AWCRS from the physical workload and walking speed in the sugar industry
[R250], or in lifting work [R252], tele-operation between humans and machines [R257],
during equipment control [R258], working at height [R251], sustained monitoring work
[R256], work with a 3D scanner [R261] were also be reflected by HRV. These studies rec-
ommended HRV as a task performance measure and a feedback source to design the work.

On the other hand, the rest studies stated different suggestions. There was no asso-
ciation of HRV with AWCRS, or the effect on HRV was caused by multiple stressors and
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could be separated to make any clear statement. The association was unclear and only
appeared in 35 − 44 years old workers [R254]. The mental workload corresponded closely
to task differences as indicated by HRV, only when the physical workload was negligible
or consistent [R255]. On the other hand, the cognitive task difficulties did not yield a sig-
nificant effect [R253]. The effect of biofeedback training on the cognitive performance of
the operator could be a long-term effect than an immediate one [R264]. No suggestion on
HRV usage was given in Ref. [R249, R253]. More studies are needed to have a deeper
understanding before using HRV as a stress indicator.

Though in most studies, stressful situations were associated with reduced HRV, none
of them were adequately designed to provide a sound scientific conclusion, nor did they
successfully confirm the relationship between AWCRS and HRV. As HRV strongly depends
on too many factors (e.g., work context, individual physical and mental status), its real-
time usage for stress monitoring can be problematic. Based on the available evidence, a
firm conclusion cannot be drawn as to whether HRV is a candidate indicator of AWCRS
in an industrial manufacturing environment that deserves further investigation and val-
idation work. Researchers can either develop a well-isolated simulation with pre-defined
settings to discover the association and interpolate the result with relevant constraints
during real-time monitoring, or utilize HRV along with other additional metrics within a
strictly controlled environment. Future research should study the effect of work-content
factors separately before combining them.

4.3 Conceptual model for simulation of Acute Work-Content
Related Stress and performance of human worker

Within industrial manufacturing systems, workers can perceive psychological stress (here-
inafter referred to as "stress") from three main sources [R265]: the physical environment
[R266], the work setting (i.e., work context), and the work content which is the demand
of assigned tasks [R75, R232]. As the first two sources have stable effects, the work con-
tent is the dominant source directly related to physical symptoms [R267]. When workers
face physically or psychologically demanding tasks that exceed their abilities or resources,
the perceived workload becomes a stressor [R74], causing physiological stress as mental
or physical tension [R75, R268]. Too much work content causes high perceived workload,
stress, and fatigue that negatively impacts productivity performance and health outcome
[R269, R270]. Thanks to the development of wearable, stress status can be monitored
and detected in real-time with physiological parameters [R271, R272]. An ideal applica-
tion is a platform for real-time monitoring of workload and stress [R273], thus interfering
with the work content adjustment, or Just-in-the-moment Adaptive Interventions (JITAI)
when the perceived workload reaches an unfavorable level [R274, R246]. Besides the cur-
rent approach of stress recognition using big data analysis from simulated experiment
[R275, R273], a computational model reflecting the workload perception and the natural
work-content-induced stress process can serve as a base simulation and prediction tools
for enhanced stress recognition accuracy, paving the wave for work-content design and
adjustment as interventions, thus optimizing the performance.

Simulation models for a similar purpose have not incorporated altogether these aspects
in the model structure and simulation mechanism. Dear et. al. [R276] modeled produc-
tivity loss, but only heat stress was considered, without discrete value calculation. The
agent-based simulation model in Ref. [R277] employed a stress level calculation and pre-
dicted productivity with task objects coming in time steps, but the tasks were only relevant
to an IT office, with a lack of physical demand. Similar incompatibility can be found with
the discrete-event stress-performance simulation of financial document processing tasks
[R278]. The human performance in the automotive line in Ref. [R279] is calculated with
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time step, but the work content definition is simplified, without a personal profile. There
are dynamic models and platforms [R280, R240] aimed at simultaneous stress and atten-
tion monitoring for individual [R281, R282, R247], to predict potential stress, tiredness,
comfort level [R283, R240, R284]; however, due to a lack of elaborated stress mechanisms
and interdisciplinary approach [R285], they are not able to simulate the stress effect from
combination of work-content factors, which is critical for the design and assessment of
industrial work content and stress-relieving interventions.

Consequently, a model constructed with these considerations significantly contributes
to the development of work content planning as a simulation tool, and provides a base of
expected behavior for real-time stress-performance monitoring. A qualitative system dy-
namics conceptual model is proposed, regarding the stress and performance of an individ-
ual worker under the effect of the work content in a certain work environment and setting.
The system dynamics approach is chosen as the modeling technique since it can reflect and
assess multiple non-linear behaviors and multi-loop structures over time [R286] within a
complex system of a human being (e.g., with physical, mental, and psychological behav-
iors modeled as internal sub-systems) while considering its interactions with the work
environment and work requirement as external sub-systems. During model development,
stress behaviors and the effect of relevant work-content factors, and personal profiles with
basic workload preferences were considered, which enable task design and stress profile
customization. In return, the model distinguishes static and dynamic effects that reflect
subtle stress-performance associations under different work scenarios. Based on the work
content configuration and stress mechanism, stress-relieving interventions were suggested
along with demonstrated usage in the use case.

4.3.1 Problem formulation and Preliminaries

This section describes the building pillars of the model with relevant preliminary theories,
stress behaviors, and effects collected from the literature. The "workload" from industrial
tasks is the "primary stressor", along with the "personal perception profile" of the worker,
and the "circumstantial factors" from the environment as the "secondary stressor". The
stress mechanism is elaborated, with relevant integrated stress states, interventions, and
associations with personal performance.

Primary stressor: Task load - Workload

As work content is considered the main source, the primary stressor in this model includes
the task requirement that the worker needs to perform in a predefined work position. This
subsection defines the elementary "task load" components (physical and mental) with the
scope for each type, distinguishes between the "task load" and perceived "workload", and
defines the "workload component interaction".
Physical and mental task load

Although stress is a mental state, physical "task load" (regarding energy, muscle, phys-
ical strain) has an interactive effect on mental "task load" (regarding cognitive activities)
[R287] and also contributes significantly to stress formation. The proposed model considers
both these types as primary dynamic stressors:

• The physical "task load" with three components: posture, force, and time as inspired
by Berlin et al. [R288], and can be measured by separate measures such as REEDCO
Posture Score Sheet [R289] for posture, force in Newton and time in second, or collec-
tive measure such as Cardiovascular Load (CVL) [R290].

• The mental "task load" with four components according to the VACP model [R291]:
visual, auditory, cognitive, and psychomotor. This load can be measured by subjective
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methods such as self-reported questionnaires, i.e. Borg Workload Scale and National
Aeronautics and Space Administration Task Load Index (NASA-TLX) [R292].

Scopes of physical and mental "task load" are given in Table 4.1, and their relationship
with "personal perception" is illustrated in Fig. 4.2. Each "task load" has three physical and
four mental components. "Workload" components can pose additional "interacted load",
thus the "workload" is the combination of "perceived workload" and "interacted load".

Table 4.1: The two types of workload included in the proposed model.

Measured in rel-
evant studies

Com-
po-
nent

Scope Direction of effect

P
hysicalw

orkload

HR [R293, R294,
R295], energy
expenditure
[R295], RPE
[R296, R295],
calorie
consumption
[R297], oxygen
uptake [R294],
blood pressure, gas
exchange [R296]

. Pos-
ture

Task-required
posture

Non-ergonomic, demanding postures, leg imbal-
ance, with out-range movements cause pain [R298]
and tiredness [R288].

Force The required
force

High force level leads to muscle fatigue [R299] and
degrades physical force capacity quickly [R300].

Time The cycle time
for a task, and
work pace be-
tween tasks

Short cycle time induces stress [R301], long cy-
cle time requires sustained force. Fast work pace
[R302] with repetitive motions [R303] causes mus-
culoskeletal disorders and harmful effects [R300,
R304]. Cycle time with a flexible work/rest ratio
allows control and stress relaxation [R305].

M
entalw

orkload

NASA-TLX [R293,
R297], MRQ, JCQ
[R259], VACP
varieties [R306],
ECG, EMG, EEG,
eye movement,
HR, HRV,
respiration, etc.
[R307]

. Visual Required
visual efforts

Demanding visual task or bad visual ergonomics
[R308] degrades the task performance.

Audi-
tory

Required audi-
tory efforts

Listening effort can lead to fatigue [R309], thus de-
creases hearing abilities and performance [R310]

Cogni-
tive

Required cog-
nitive efforts

High cognitive demand results in greater muscle
activity [R311], decreased motivation [R312], fin-
ish time and performance [R313].

Psycho-
motor

Required
psychomotor
efforts

Intensive psychomotor requirements place an ad-
ditional burden and mental engagement [R314].

HR: Heart rate. HRV: Heart rate variability. RPE: Rating of Perceived Exertion. JCQ: Job Content Ques-
tionnaire, MRQ: Multiple Resource Questionnaire. VACP: Visual, Auditory, Cognitive, Psychomotor. ECG:
Electroencephalography, EMG: Electromyogram, EEG: Electroencephalogram

Figure 4.2: The relationship between "task load", "workload", and "personal perception".
Source: Own work.
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Task load and workload
While "task load" is the task requirement designed by production engineers, the "work-

load" is the perceived load that is subjective and dependent on individuals [R315]. To
comply with this approach, each task should be designed with a known level of the above-
mentioned load components. One approach to model and diagnose the effect of "task load"
on human workers is quantifying the "workload" using multiple resources (visual, auditory,
cognitive, and psychomotor), with an additive value at the beginning and being subtracted
at the end of the task duration [R316]. However, this technique is insufficient to reflect the
fact that one person can feel an elevated workload when tired, or under unfavorable work-
ing conditions (i.e., noise, heat [R317], being close to a robot [R318]), or workers with more
experience perceive a lower "workload" [R319] for the same task. Therefore, the "workload"
in this model is introduced as a value that is dependent on each personal profile.
Interacted load

"Workload" components can interact with each other, based on their amplitude, occur-
ring time, and duration [R287], thus creating an additional "interacted load". This can
happen within a type of "workload" as suggested by the cube model for physical "workload"
[R320], e.g., a combination of poor posture and fast repetitive task [R321], or due to the
effect of one type on another, such as demanding physical "workload" leads to decreasing
situational awareness [R262] and higher mental "workload" [R255], while physical capac-
ity (regarding fatigability and recovery) is negatively affected by mental "workload" [R322].
This model defines "interacted load" as an additional amount of "workload", that occurs if
"workload" components exceed a predefined value.

Personal perception: Personal profile - Personal capacity - Basic task load

This subsection describes how each worker perceives a "workload" from a "task load" dif-
ferently, based on the "personal profile" and "personal capacity", with the "basic task load"
defined as the work preference.
Personal profile

Every worker has a unique "personal profile" of professional and occupational back-
grounds, setting up the initial conditions before a working day, and how he receives a
stressful work demand. An adjustable set of factors is proposed, which are characterized
by long effect periods (months, years) and are categorized into different groups:

• Static profile: Factors that require time to undergo a natural increment or degrada-
tion without external intervention, and can be considered static, e.g., work experi-
ence, age, physical impairment, and chronic stress effect.

• Dynamic profile: Factors that have long effect periods but are subjected to change
under possible training and intervention during the working session, such as training
experience, skill decay, and problem-solving ability.

• Stress-related profile: Factors that are explicitly related to the stress accumulation
mechanism of a person, such as stress endurance, thresholds for task demand and
capability, sustained attention value and duration, acute stress value and duration.

Table 4.2 describes the factors that were considered during the development of the
personal profile in the proposed model.
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Table 4.2: Different factors considered in a personal profile.

Factor Scope Direction of effect

Static
profile

Work ex-
perience

The duration of working
in a position with simi-
lar requirements.

Performance gradually increases with work experience but
decreases slightly after 20 years due to work boredom
[R323].

Age effect The effect of aging on
personal working ca-
pacities.

Posture, muscular power, and psychomotor functions de-
cline with age, especially after 50 [R324, R325]; with lower
sustained attention limit, reduced training and learning ef-
ficiency [R325], reduced stress resilience and adaptation
[R326].

Physical
impair-
ment

The impaired health
condition reduces work
functioning [R327].

Workers with physical impairment have reduced work capa-
bility and productivity [R328], requiring improved resources
and support to avoid stress and frustration [R329].

Shift
work

The accumulating
hours working in night
shift or rotating shift.

Working at night with abnormal working hours [R330,
R331] plus the risk of sleepiness decreases the psychomo-
tor [R332], cognitive [R333] and posture capacity [R334].

Sleep
quality

The sleep-wake cycle of
undisturbed sleep pat-
tern.

Frequently disrupted and restricted sleep causes disorders
that reduce stress endurance [R335], thus leading to mental
fatigue and burnout [R336].

Chronic
stress
effect

The accumulated long-
term stress from daily
life events.

Chronic stress reduces cognitive ability [R337], increases
vulnerability to mental illness, and decreases the stress re-
covery ability [R338].

Job moti-
vation

The incentive level to
carry out the assigned
task in the work posi-
tion.

Well-motivated workers have better stress endurance to
avoid emotional exhaustion [R339], and are willing to spend
more effort and persistence on their task [R340].

D
ynam

ic
profile

Training
experi-
ence

The duration of being
trained in the current
assigned position.

A sufficient amount of training helps to increase psychomo-
tor fatigue threshold [R341] and prevent significant psy-
chomotor performance degradation [R342].

Learning
ability

The reduced task time
variation and defect
rate in repetitive tasks.

The actual cycle time will be reduced after a certain num-
ber of finished products [R343] due to familiarity with the
operation and tools [R344].

Skill
decay

The task time variation,
reflecting the skill profi-
ciency in the current po-
sition.

The position-related skills naturally undergo a gradual ex-
ponential decay. Regular reviews and refresher training
help to maintain the values [R345].

Problem-
solving
ability

The skills and confi-
dence to solve produc-
tion problems.

High problem-solving ability increases job control [R301],
thus reducing the perceived workload from occurred prob-
lems and positively impacting the performance [R346].

Stress-related
profile

Stress en-
durance

The personal resilience
against sustained at-
tention and stressful
situations.

Mental toughness as a personality helps the worker in
stress coping [R347], and becomes stress resilient with a low
level of anxiety and enhanced physical endurance [R348].

Task de-
mand
threshold

The personal limit of
workload that is accept-
able for the worker.

When the task demand requires higher effort than the
worker can dedicate, the perception of workload becomes a
negative process with decrements in performance or willing-
ness to perform [R349].

Capa-
bility
threshold

The personal limit of
capability degradation
that the worker does
not feel a burden.

Significant physical and mental capacities deterioration
that exceeds the "natural degradation" can cause reduced
professional efficacy, which refers to feelings of insufficiency,
incompetence, under-productiveness [R350] and burnout
[R351].

Sustained
attention
threshold

The minimum and max-
imum value and dura-
tion of sustained atten-
tion.

Tasks that lack alertness with a low level of sustained atten-
tion cause drowsiness [R352], while a prolonged duration of
vigilance stimulates acute stress [R77].

Acute
stress
threshold

The maximum value
and duration of acute
stress before it trans-
forms into chronic
effect.

Exposure to a certain level of acute stress results in sus-
tained remodeling of neuroarchitecture, which leaves a long-
term disorder outcome last for 24 hours or more [R353].
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Personal capacity
Work capacity was widely analyzed in clinical research [R354] as the work physical and

mental capacity. Each individual with a certain level of physical fitness has a predefined
Physical Work Capacity (PWC) [R355], representing the available energy [R356]. Mental
capacity can be determined similarly [R357]. While physical work capacity is affected
by personal experience, training, motivation, and environmental factors [R358], mental
capacity is influenced by innate characteristics [R359], historical medical record [R360],
and both capacity types be affected by common factors such as age [R361].

Each worker has a "personal capacity" with six components corresponding to "task
load", namely posture, force, visual, auditory, cognitive, and psychomotor, except for the
"time" load. Inspired by the concept of workload margin [R362] and maximal mental ca-
pacity [R357], these capacities behave as resources with a "natural degradation" over time,
while further reduction happens when the worker experiences the negative effect of stress
(e.g., encountering a heavy task load or complex problem), which named "stress degrada-
tion". An ideal worker with normal physical and mental condition (i.e., no physical impair-
ment) has 100 percent of each "work capacity" at the beginning. Each "personal profile"
sets up a different "initial personal capacity" less than this optimal value, e.g., a worker
with a minor injury in an arm starts the working session with 90% of posture capacity and
80% of force capacity, while having 100% of all mental capacities. The "Personal capacity"
of a worker when he receives a task indicates the actual capacity at that time and makes
him perceive the same "task load" differently [R363]. Except for time, six other "personal
capacity" components follow the same behavior as illustrated in Fig. 4.3.

Figure 4.3: The relationship between "task load", "workload", "basic task load", and "per-
sonal capacity". Source: Own work.

When the work began on the first milestone, the worker hardly felt any deviation be-
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tween "task load" and "workload". Under the "natural degradation" through time toward
the sixth milestone, the difference becomes significant. Fatigue happens at the fifth mile-
stone when he perceives a task as demanding and over the current "personal capacity",
though the "task load" remains the same. The "basic task load" can generate a "workload"
that does not exceed "personal capacity" at the end of the work shift. With the "capacity
degradation" equals the total of "natural degradation" and "stress degradation", fatigue
can come earlier (i.e., at the fourth milestone), and even the "basic task load" can pose an
overload status at the end of the working session. In contrast, a "motivated capacity" can
be achieved as an arousal state, under which the worker has a vigilant state and slower
capacity decreases.

Instead of a "personal capacity" for the time factor, a worker will have a "time varia-
tion" which reflects the work proficiency, and this variation will be reduced by the learning
effect [R364]. New workers during the skill decay period may have higher "time variation"
than old and experienced ones [R345]. As the available "time" in a work shift is equal for
every worker, therefore the "time" factor does not follow the "natural degradation". How-
ever, time already affects the accumulation and relaxation of all stress types, while the
occurrence of "time pressure" increases the "perceived workload" [R365], defect/problem
probability [R366], and "capacity degradation" of the worker. Though the worker perceived
the time "task load" as an indirect factor, he still has a preference for a working pace, which
can be considered as the "basic time load", as mentioned in the next subsection.
Basic task load

Considering each worker has a limited PWC, the physical "basic task load" is the safety
margin to work on a specific task with no sign of fatigue throughout a work session [R367].
The "basic task load" can be identified with physiological indicators such as the Rating of
Perceived Exertion (RPE) and relative Heart Rate (HR) [R296], for a predefined duration
(i.e., 4-hours, 8-hours, etc.) based on the Maximum Acceptable Work Time (MAWT) [R294].
The mental "basic task load" can be defined similarly [R357].

Seven "basic task load" components corresponding to the seven "task load" components
should be measured and set up individually from the beginning of the work, and validated
after certain intervals. Any loads that exceed these values will pose a demanding situation.
The "basic time load" has two components: "basic task time" (i.e., the duration required to
finish a task) and "basic pace time" (the interval between two adjacent tasks). Any devia-
tion from the basic values can create "time pressure" [R319], which imposes an additional
demand and perceived strain on the worker [R368]. The relationship between the "basic
time load" component and the time effect in the model is illustrated in Fig. 4.4. If the "time
variation" of the worker varied within the "no perceived pressure" region around the "basic
task time", there is no effect of time load on the perceived workload (e.g., task 1, 3, 5, and
6). Once the required time of incoming tasks exceeds the basic time load, a "time pressure"
appears (task 4). If the task is too easy or the allowed time is longer than needed (e.g., task
7), no pressure is perceived and no stress is accumulated, but the stress "relaxation rate" is
increased. The effect of the "basic pace time" is similar: for tasks 1, 2, and 3 that come at a
normal pace, there will be no "time pressure". Between tasks 3 and 4, the worker has time
to recover from stress status. However, if one task is missed due to a problem or rework
(e.g., task 5), then the worker will face "time pressure" when the next task comes, similar
to the situation of two tasks coming in a short period (tasks 7 and 8).
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Figure 4.4: The relationship between basic time load and time pressure. Source: Own
work.

Secondary stressor: Circumstantial stressor - Stress exposure

This subsection discussed the environmental and work setting factors as "circumstantial
stressors", along with their effect under exposure.
Circumstantial stressors

Other factors that are related to the work environment and setup (e.g., buffer level
[R301], the physical environment [R369]) also determine how the worker perceives the
primary stressors from the "task load", thus posing an additional "workload". Therefore,
these "circumstantial stressors" are considered secondary stressors, and can be categorized
based on their temporal behavior:

• Static stressors: Factors depending on the surroundings, work setting, and initial
setup, such as environmental disturbance and buffer level. These factors are set up at
the shift beginning and remain unchanged throughout the working session, therefore
can be considered static.

• Dynamic stressors: Factors heavily depend on the natural characteristics of the work
and have varying values throughout the working session, such as working hours,
failure rate, and work pace are also dynamic stressors.

Table 4.3 describes several "circumstantial stressors" and their effects.
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Table 4.3: Different circumstantial stressors integrated into the proposed model.

Factor Scope Direction of effect

W
ork

setting:Static

Envi-
ronment
distur-
bance

The comfort
from physical,
functional and
psychological
aspects [R80].

Physical environment can either support the tasks, activities,
learning efficiency [R370] and the cognitive function [R371] with
comfort condition, or slows them down with uncomfortable condi-
tion and stress [R266].

Work
pace

The interval of
incoming tasks.

Intensive pace than normal will be demanding and cause stressful
perception [R301].

Buffer ca-
pacity

The number of
WIP in buffer in-
ventory.

No buffer caused reduced output due to personal task time varia-
tion [R372], low inventory instills fear of causing idle time, thus the
slow worker tends to work faster [R373], too high inventory cause
waste and idle time. A suitable buffer allows pace control and com-
pensates for task time variation, thus reducing stress [R305].

Pattern
change

The changes in
the assigned
incoming tasks
or product se-
quences, or job
rotation.

The change in work pattern reduces the monotony and ergonomic
risk [R374, R375] and supports the recovery from demanding tasks
and position [R376], reduces assembly errors and enhances product
quality [R377].

Er-
gonomic
layout

The ergonomic
design of the
work cell and
work layout.

Worker- and work-oriented ergonomics improves performance
[R378], while ergonomic difficulty hinders work movements, thus
induces stress [R301].

Support
readiness

Social support
from co-workers
or advisors.

Support from team and supervisors reducing stress [R301, R259],
while absentee co-workers increase work pace and intensity, thus
increasing physical demand and stress [R301].

W
ork

characteristic:D
ynam

ic

Weekly
working
hours

The accumu-
lated working
hours from the
beginning of the
week.

Longer weekly working hours than desired increases physical de-
mand [R305], decreases all the capabilities, and increases stress
during the extra hours [R301, R379].

Failure
rate

The occurring
rate of failures or
problems during
work.

Failures/defects create blame feelings that persist for a long time
after occurrence [R301], high occurring frequency poses additional
pressure [R305].

Body
asymme-
try

The asymmet-
ric difference
of body part
utilization.

Asymmetric task design or work behavior reduces work capacity
[R380], causing muscle fatigue [R381] and musculoskeletal pain
[R382], thus negatively impacting the perceived workload and re-
ducing the recovery rate [R381].

Finished
product

The accumulat-
ing number of
finished prod-
ucts.

The cycle time is shortened due to the learning effect after a cer-
tain number of finished products [R343]. The visualization of fin-
ished individual output facilitates personal commitment, therefore
reducing perceived stress [R305].

Problem
complex-
ity

The difficulty
of the occur-
ring failure/de-
fect/problem.

Complex problem with no previous training poses extra workload,
causing idle time. Problems that lead to line stoppages induce
stressful impressions [R305, R301].

Circumstantial stress exposure
When an individual with a "personal profile" is exposed to a "circumstantial stressor"

(i.e., being assigned to a certain workstation (WS), with a certain physical setup), two types
of effects can be distinguished:

• Static effect: The "initial personal capacity" of a worker is affected by the natural
characteristics of the assigned WS and associated tasks, in both positive and negative
directions. Unfavorable setups (i.e., poor lighting, unergonomic design, heat, noise)
cause a capacity reduction or additional load [R383], or vice versa, additional buffer
quantity gives more time for responding that increases the "basic work pace". These
effects are pre-determined at the beginning, and consistent during the work session.

66



4. Operator 4.0 stress-performance foundation for monitoring and simulation

• Dynamic effect: Stressors such as occurring problems and machine failures randomly
occur, pose an additional "workload" and contribute to a faster "capacity degradation"
than the "natural degradation" (e.g., poor lighting reduces visual capacity).

Fig. 4.5 provides an example describing the effect on an individual worker (i.e., worker
"A") from the static "circumstantial stressors" such as unergonomic design, Work-In-Process
(WIP) buffer, and poor lighting, or with dynamic ones such as material defect and machine
breakdown in different workstations (WSs) of a production line. In the first WS with an
unergonomic cell design, his posture, force, and psychomotor capacities are reduced further
than his "initial personal capacity", with 10%, 15%, and 5% respectively. Due to perform-
ing uncomfortable movements, his posture capacity degrades 15% faster than the "natural
degradation". In the second WS, the input materials usually have low quality, worker "A"
therefore feels additional visual and cognitive load to check carefully the incoming mate-
rials. Thanks to the high number of WIP buffers in this WS, he has an additional 10% of
capacity to cope with the time requirement of the task. In the last WS, due to the poor light-
ing condition, worker "A" loses 10% from his basic task time as he needs more time to react
and recognize problems, and loses 15% of his visual capacity, while his visual capacity de-
grades at the rate of 110% than the "natural degradation". Frequent machine breakdowns
in this WS create time and cognitive loads to adjust the machines, which makes worker
"A" feel more "workload".

Figure 4.5: The static and dynamic effect when worker "A" is exposed to circumstantial
stressors. Source: Own work.
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Stress mechanism

This subsection describes the "workload reception" process when the worker encounters a
task and the stress mechanism that happens afterward.
Workload reception

In the working process, under an ongoing task, there are two aspects a worker experi-
ences a demanding situation:

• Perceived situational demand: The difference between the incoming "task load" and
the "basic task load" is the "perceived situational demand". The more surplus value
of task components, or more task components which exceed the "basic task load", the
more challenging the incoming task is. The average value of "perceived situational de-
mand" is calculated from these component differences, considering the current "per-
sonal capacity" at the time of receiving the task. If the average overload exceeds
a certain personal threshold for "Demand", the worker can feel this difference and
perceive the task as too demanding from a physical or mental aspect.

• Perceived capability: is achieved similarly by comparing the current "capacity degra-
dation" with the "natural degradation". If the stressors cause the "capacity degrada-
tion" to be drastically reduced compared to the natural rate, it can create the feeling
of lacking the required capability to perform the work. The average value of "per-
ceived capability" is calculated from the component differences regarding the current
"personal capacity", and if it exceeds a personal threshold for "Capability", the worker
perceives himself as incapable of handling the incoming "task load".

The current "personal capacity" of the worker plays an intermediate role in calculat-
ing both above-mentioned average values. Lower capacity levels show a tiredness and
exhaustion status, thus the worker feels the load more demanding and sees himself more
vulnerable, even when facing the same level of "task load". Generally, when the "Demand"
is greater, while the "Capability" is lower than the personal threshold, then the worker
will consider his current task as a kind of threat and trigger his stress response mecha-
nism. Fig. 4.6 illustrates an example "task load" reception process of an individual worker
"A". Knowing his "basic task load", an incoming "task load" that has a posture score of 7
on the REEDCO scale and a visual score of 3.7 on the VACP scale is challenging, makes
him hardly perceives the other easy task components (e.g., the required force is only 20N ,
less than his preference of 50N ). Only the challenging task components are considered
for calculating the "Demand" score, regarding the elasticity of his current "personal capac-
ity". The same relative comparison is between his actual "capacity degradation" and his
"natural degradation". The posture, time, visual, and psychomotor capacities that degrade
faster than the normal rate affect his incompetent feelings, and be used to calculate the
"Capability" score. As the "Demand" score is higher and the "Capability" is lower than his
threshold, worker "A" perceived this "task load" demanding.
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Figure 4.6: The task reception of perceived situational demand and perceived capability of
worker "A". Source: Own work.

Stress accumulation, recovery, and transformation
The stress process undergoes the transition from the demanding task that the worker

received, to his perceived attention, vigilance/"sustained attention" [R384], "acute stress",
and "chronic stress". Each type of stress has an accumulation and a recovery period before
transforming into another type.

Monotonous and easy tasks result in disengagement and drowsiness, yielding nega-
tive individual and cooperative outcomes [R385]. When perceiving a "demanding task",
"sustained attention" is accumulated with an "accumulation rate", creating the positive
vigilance attention [R352] that breaks out the risk of "boredom" and ignites the "arousal"
of the worker with an elevated corticosteroid stress hormone (cortisol in humans) [R386]
which enhances the working memory [R387]. Under this condition, the worker experiences
high awareness with "enhanced capacity" (i.e., the "capacity degradation" rate is reduced
than the "natural degradation"), thus improving his efficiency [R388]. "Sustained atten-
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tion" has a "natural relaxation" rate that differs individually, which takes effect in the idle
periods between going tasks and form lapses when mind wandering can happen and the
worker disengages from the current task pressure [R389].

However, this positive effect will be reversed if the stressor exists for a long period
[R390]. If accumulated "sustained attention" accumulates over an "attention endurance"
or intensity level [R391], namely "value threshold" or "duration threshold", it becomes
another source of stress [R77, R280], and "acute stress" is activated. In a normal healthy
adult, these short-lived acute reactions decrease and disappear when the stressors cease
[R392], thus this short-term stress also has a "relaxation rate" activated if the perceived
attention returns to a normal level. Similar to "sustained attention", "acute stress" is
relaxed only when it is not accumulated, but at a slower rate. This recovery process takes
place during work time (internal recovery). Once "acute stress" is in effect, the positive
effect of "sustained attention" fades, and the worker feels his capacities degrading faster
than the "natural degradation".

"Chronic stress" accumulates with a similar mechanism: if the "acute stress" exceeds
the personal threshold value and duration, "chronic stress" appears with long-term influ-
ences on the "personal profile" (i.e., reduced stress endurance), leaving the worker with less
"initial personal capacity" before a new working day. The appearance of "chronic stress"
comes along with "fatigue", while "burnout" is the extreme state with an over-arousal level.

When facing demanding tasks for a long time based on the task duration or repetition,
the physiological stress of worker "A" will undergo the accumulation and transformation
mechanism of different stress types as in Fig. 4.7.

Figure 4.7: The accumulation and transformation mechanism of different types of stress.
Source: Own work.
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Each stress type has an accumulation and a recovery period before transforming into
another type. When perceiving a "demanding task", "sustained attention" is accumulated
with an "accumulation rate", breaks out the risk of "boredom" and ignites the "arousal" of
the worker with "enhanced capacity" and improved efficiency. If accumulated "sustained
attention" accumulates over "attention endurance", "acute stress" is activated with neg-
ative effects. These stresses have a "natural relaxation" rate that takes effect in the idle
periods between going tasks. If the "acute stress" exceeds the personal threshold value and
duration, then "chronic stress" appears, which brings long-term influences on the "personal
profile", and takes a longer time to relax, therefore not included in this model.

Stress-induced states - Intervention - Performance

This subsection describes different stress-induced states that are incorporated into the pro-
posed model, how personal performance can be predicted from predefined parameters, and
different interventions can be considered. This model does not consider the detrimental
effects and relaxation of "chronic stress".
Stress-induced states

Under the effect of work-content, the worker may experience different states with char-
acterized symptoms and behaviors as follows:

• Under-load: an easy, not challenging, and repetitive "task load" causes boredom and
asleep transition [R352, R385, R393], leads to human labor waste, occupational dis-
comfort, and mental illness [R394]. "Under-load" is considered as detrimental and
stressful as "overload" [R395], and prolonged exposure also leads to "fatigue" and in-
juries [R396]. Interestingly, this condition is neglected in many relevant research
[R397]. In this model, this state is characterized by a repetitive pattern of "sustained
attention" for a long duration without the appearance of demanding tasks.

• Optimal performance: A moderate "workload", under an acceptable "circumstantial
stressor" helps the worker escape the "under-load" condition with an aroused vig-
ilance and engaged with the current task [R77] thus yield the best performance
[R269]. This state can be recognized with the regular accumulation and relaxation of
"sustained attention", with a low and intermittent quantity of "acute stress".

• Overload: When the worker perceives an excessive "task load" exceeding his "per-
sonal capacity", stress is stimulated by both increased need for work capacity and
current capacity decrease [R393], negatively affects job satisfaction, and performance
[R398]. In this model, a continuous "acute stress" existence causes a faster "personal
capacity" degradation.

• Fatigue: Working with any physical or mental "overload", or using a maximum capac-
ity for a long duration leads to "fatigue" [R399], which results in decreasing muscle
performance in different body parts [R400], cause the worker to fail to maintain a
required force, or feel tired and lack of energy [R401], leads to reduced functional
capacity and performance decrements [R402]. This state can be identified when one
component of the "personal capacity" is depleted.

• Burn-out: Under adverse working conditions with the existence of "chronic stress",
the worker is burdened with overwhelming exhaustion and impaired job functioning
[R403], thus his productivity and coping skills are significantly reduced [R404]. This
state is associated with the depletion of all "personal capacity" components, thus the
worker can quit his position even in the middle of the working session.
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Both "under-load" and "overload" states lead to lower performance [R387], and a medium
workload condition can induce an optimal level of response and learning, which results in
"optimal performance" [R77]. The next paragraph discusses how the "performance profile"
can be analyzed based on the previously elaborated factors.
Performance profile

Inspired by the Lean philosophy, personal performance is assessed with three aspects of
the Overall Labour Effectiveness (OLE) [R405]: "availability-", "productivity-", and "qual-
ity performance". In other studies, "productivity performance" is measured as the number
of completed orders per time unit [R373], supervisor reports [R403] or effective working
time [R297], while "quality performance" is measured by the number of correctly assem-
bled parts [R406]. However, considering the stochastic nature of human behavior, this
model only predicts these performances as the probability that one single worker can per-
form an appropriate output quantity and quality. At the beginning of the working session,
the worker has a 100% probability for these three performances, according to his "initial
personal capacity". These performances will vary according to the external influence fac-
tors during the work session. The "optimal performance" of a worker with maximum OLE
can be reached when he can keep the predefined work pace, maintaining a good physical
maneuver and focused attention. In the long term, his OLE still decays due to the natural
depletion of his "personal capacity". The cooperation between workers is not considered as
additional factors are required.

Personal performance is assessed with three aspects of the Overall Labour Effective-
ness (OLE) as suggested in Fig. 4.8 in the framework of force field analysis. Availability
performance is assessed by the capability of keeping a predefined work pace, which is sup-
ported by time and psychomotor capacities. If these capacities degrade faster than the
"natural degradation" (due to stress), then the worker becomes less able to keep the stan-
dard pace. Availability performance is hindered by distraction possibilities such as work
pace increment and problem occurrence rate. Productivity performance is affected by phys-
ical degradation (which is dependent on the force and posture capacities), and the physical
degradation under stress (dependent on the degradation of force and posture capacities
caused by stress). Quality performance is associated with quality-related attention (which
is related to the degradation of cognitive and visual capacities, i.e., for tasks that require a
visual check of input materials). As "sustained attention" can help the worker stay focused,
the quality attention compensation also contributes to "quality performance".
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Figure 4.8: The Overall Labor Effectiveness with relevant factors. Source: Own work.

Stress-relieving intervention
The elaborated conceptual model is not only capable of reflecting personal performance

under specific working conditions but can be used as a platform to deploy stress-relieving
interventions, which are modifications or interfered activities that can be applied to change
the stress process. Some interventions have a lagged effect or take time to shape such
as giving rewards [R407] or job motivation [R408], increasing stress endurance [R409],
whose effect is hard to measure and control, therefore, only interventions with shorter
effect duration and aiming at "sustained attention" and "acute stress" are considered.

4.3.2 Human-centric stress-performance simulation

To validate the proposed concept, a qualitative system dynamics model was constructed
in the Vensim simulation environment [R410]. This section describes the industrial back-
ground with a predefined "personal profile" representing a worker of interest, to test the
modeling capability of reflecting the above-mentioned working process, stress mechanism,
and stress-induced statuses under different scenarios.

Description of industrial assembly line environment

To narrow down the scope of the use case, some assumptions are made as follows:
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• At the shift beginning, the worker has a "personal capacity", which is affected by his
"Personal profile".

• At the end of the simulated duration, the remaining capacities in case of stress-free
work can be estimated, therefore the "natural degradation" can be determined.

• The "circumstantial stressors" of the assigned workstation have a static effect on the
worker, at a constant rate that is proportional to their uncomfortable level.

• When encountering incoming "task load" as stressors during working, the worker
experiences a situational demand that is proportional to the perceived "workload".

• For simplicity, it is assumed that the components of the perceived "workload" are
under their thresholds, thus there will be no "interacted load".

• The "accumulation rate" and "natural relaxation" of each stress type can be measured
by the unit of "stress per second".

• Three types of stress have their effect in different confidence intervals of 15, 30, and 60
minutes for "Sustained attention", "Acute stress", and "Chronic stress", respectively.

• When the worker is under the effect of a stress type, his "stress degradation" is pro-
portional to the current amount of that stress.

• At the shift beginning, the worker has a 100% probability of yielding the expected
"availability-", "productivity-", and "quality performance", which can be estimated
from his "basic task load". These performance constituents are naturally degrading
but can be optimized, or prolonged until the end of the predefined shift length.

Fig. 4.9 described the components of the use case and their relationship. After defin-
ing the personal profile and work capacity of the worker of interest, the circumstantial
stressors in his workstation with associated tasks are assessed. Based on these data, his
stress-induced state and performance profile can be simulated.
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Model structure and important variables

For better comprehension, the model structure in the Vensim environment was developed
in separate views, with each view represented in separate figures in the Appendix B, where
the details of the use case setup with the important variables are also described.

Work positions in an assembly line are characterized by different work-content require-
ments with a common feature of repetitiveness, which requires the design of the "task load"
and a "work pace". For simplicity, this model demonstrates one assembly position, which
requires a fair posture score (5 on the REEDCO scale), a force of 10N, an average task time
of 30 seconds, 90-second work pace, a visual quality check with a sample product, low re-
quirement of auditory on checking the working tools, a fairly simple autonomous task and
discrete actuation during assembly (scored 3, 3, 2.5 and 2 on the VACP scale, respectively).
According to the designed standardized work, this workstation has a lower lighting quality
than the industrial standard, with 10% body asymmetry.

The "personal profile" is created with different work preferences and stress-related pro-
files and assumes that the worker is medium-aged with good experience, normal physical
condition, good learning ability, in the stable phase of skill decaying period, with interme-
diate problem-solving skills, and an average ability to cope with stress. He has a "basic
task load" slightly higher than the required "task load" (e.g., 25N to 10N, respectively),
which means he can work through a working day with no negative consequences. Extreme
conditions such as sleepiness and serious physical disabilities are more complicated and
require in-depth modification, therefore excluded in this use case.

Simulated scenarios

A random function is used to generate the "task load" components, and the arrival time
of new tasks is created randomly around a "basic work pace" of three minutes. The fixed
duration of the simulation is 8 hours (480 minutes), with a 15-minute lunch break. Four
scenarios were simulated:

• Working with a normal schedule: The "task load" components are generated ran-
domly but close to the "basic task load". It is expected that the worker can maintain
his performance during the work day with a fairly remaining "personal capacity".

• Working with high workload: This scenario introduces a "task load" that is higher
than the "basic task load", or the worker has a physical impairment that leads to a
shortage of working capacities.

• Working with additional breaks: The first intervention is to provide a ten-minute
short break after every hour to prevent stress accumulation and facilitate relaxation.

• Working with a reduced work-pace: The second intervention is to reduce the "task
load" at the end of the working day, by reducing the work pace, to prevent the above-
mentioned mild stress.

Simulated results

Working with a normal schedule
Fig. 4.10 exhibits the simulated response from worker "A". His "Sustained attention"

level was accumulated slightly, and "Acute stress" appeared several times due to demand-
ing tasks and occurring problems. However, he has enough time between ongoing tasks
and demanding situations to get relieved. His OLE was stable at the beginning, though
slightly decreased due to his work capacity degradation. Due to the positive effect of "Sus-
tained attention", his OLE reached an optimal level between the 60th to 180th minutes

76



4. Operator 4.0 stress-performance foundation for monitoring and simulation

before lunch break. Noticeably, the "Acute stress" and "Sustained attention" were still re-
laxing throughout during the lunch break. After the lunch break, though the task loads
were still the same, his performance kept decreasing which led to a negative effect of "Acute
stress". After a working day, "A" perceived an increasing workload with a high number of
demanding tasks, and a very infinitesimal level of "Chronic stress". He has utilized all of
his work capacities without leaving a long-term stressful feeling about his job. However,
if he continues to work overtime, even with the same amount of workload (not to mention
the occurred failure/problem), then he will encounter the "Fatigue" status, when his per-
formance decreases more significantly, with a remarkable sign of "Acute stress", or even
"Chronic stress".

Figure 4.10: The simulated results of worker "A" in the 8 hour working day.

In the first scenario, the model successfully reflected the relationship between "task
load", "workload", and "personal capacity", with different stress accumulation and relax-
ation behaviors. The worker started working at his full initial "personal capacity", with
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increasing attention and interest in the task. An "optimal performance" peak can be rec-
ognized in the bell-shaped OLE curve when the work capacity is still sufficient, and the
"sustain attention" level is within the personal threshold without any extra stress. Due to
the "natural degradation", the performance degrades slightly at the end, thus the worker
experiences mild stress which does not accumulate into serious "chronic stress" and can be
relieved with reasonable after-work activity and a good sleep to regenerate working capac-
ity and vigor [R411]. However, if the working day lasts longer (i.e., overtime hours), the
stress symptoms will exaggerate with significantly decreased performance [R412].
Working with high workload

The simulated results from the second scenario can be seen in Fig. 4.11.

Figure 4.11: The simulated results of worker "A" under overload condition.

Our worker experienced demanding situations from the early time of the morning shift,
while the "Sustained attention" can not be accumulated in the beginning, then built up
quickly and reached a higher level than the personal threshold from the middle of the
morning shift. "Acute stress" existed almost all of the morning shift and did not cease, thus
suggesting the "Overload" and "Fatigue" status, with the sign of "Chronic stress". The sit-
uation stops escalating during the lunch break but gets worse during the afternoon shift.
His OLE performance curve slightly increased in the morning when he encountered the
first hour of hardship, but degraded much faster until the end of the day, which can be due
to the extremely stressful perception when the worker feels the tasks are out of his capa-
bility and control. Our worker left work with a low value of remaining "personal capacity",
an obvious sign of "Fatigue" at the end of the day. A significant value of "chronic stress",
whose effects last for a longer period, will reduce his vigor for the next day and affect his
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working capacities, as he becomes more vulnerable to "burn-out". The more serious the
negative impact of "fatigue", the harder the recovery from the on-job effort [R413]. It can
be concluded that the work is too stressful for his capability and experience. In reality, this
scenario happens when a high-level task load is assigned to an inexperienced worker, or a
temporary physical impairment happens that reduces his personal initial working capac-
ity, or an uncomfortable physical environment condition, a negative impact of "Overload"
can happen immediately. Working for a long time in this condition ensures a "Burn-out" in
occupational life, with a long-term reduction of "Personal capacity". This scenario empha-
sized the importance of a well-designed job with tailored work content for individuals.
Working with additional breaks and with a reduced work-pace

The third and fourth simulated scenarios reflecting the working schedule with work-
content interventions are exhibited in Fig. 4.12. When additional breaks were added
hourly (left), the number of tasks naturally reduced, which led to less demanding situa-
tions. This is because his "Sustained attention" did not have enough time to accumulate,
and the worker did not have enough attention and preparation for the coming tasks. Thus,
he perceived a higher value of demand requirement and is more vulnerable to demanding
tasks, which results in a higher peak value of "Acute stress", which harms his cognitive
performance and further degrades his work capacity. When a reduced work pace is applied
after the lunch break (right), though the working capacities were already decreased in the
afternoon shift, the "Sustained attention" was still building up while having enough time
between coming tasks to relax, resulting in less "Acute stress", also no imposed "Chronic
stress".

In the third scenario, though there is no chronic stress, the OLE of the worker of interest
constantly decreases, due to the natural degradation of working capacities and lack of
quality attention. This is a sign that he might work in the "Underload" status. In the
fourth scenario, the OLE of this worker was increased even in the afternoon shift, which
can be explained by a high vigilant attention level, with enough time for his muscles to
rest and reflect upon coming tasks.

Figure 4.12: The simulated results with deployed interventions.

The third and fourth scenarios showed the capability of the proposed model with stress-
relieving interventions, that were designed as a work-content modification. The first inter-
vention with additional breaks did not improve the performance of the worker but rather
set him in the "under-load" status with a reduced "sustained attention" level, thus he faced
more demanding situations due to a lack of preparation and focus. Though this interven-
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tion created no "chronic stress", his performance was continuously degrading, which can
harm his safety and long-term well-being [R414]. In the fourth scenario, the worker had
time to rest between incoming tasks in the afternoon shift. Though the tasks were still de-
manding, the "sustained attention" had enough time to accumulate and exert its positive
effect. Only a trivial sign of "acute stress" appeared, and no "chronic stress" was left at the
end of the working day. The OLE of the worker even slightly increased in the afternoon
shift, as he is well aware of his performance. Practically, this intervention can have a form
of rotating into less demanding work positions.

4.4 Facilitate further study of Acute Work-Content Related
Stress with WEBA dataset

The ideal HDT craves the digital representation of human beings with their unique char-
acteristics directly coupled to system design and its performance [R415, R416]. However,
to comprehensively elaborate a decent human digital representation in a certain work oc-
cupation, many gaps should be considered. Human factors are sensitive to work intrinsic
and extrinsic factors, physically and mentally. To diagnose the individual perception of
workload and further adjust the work characteristics according to personal preference,
separating the work content and work context factors is necessary. Unfortunately, the
work-content effect was poorly formulated in the past [J4]. Several studies focused on only
environmental stress [R266] or physical [R227] or mental workload [R417], without an
interdisciplinary approach to separate their individual and interactive effect.

Regarding the research on the effect of work content on AWCRS, the lack of properly
controlled experiments and validated evidence prevents the applicability of physiological
parameters such as the HRV [J4] as real-time indicators. Most of the datasets on human
research are generated in a laboratory, which limits realistic generalization, especially
where the population of the research usually are students within one university. However,
it is problematic to design a real-life experiment with a well-controlled condition. The lack
of available data, especially from real-life scenarios, hinders HDT development [R416].

This experiment conceptualizes the effect of work content on humans from different
aspects such as emotion, perceived workload and stress, and performance. A specific oc-
cupation of the barista is used to generate the Work-content Effect on a BArista (WEBA)
dataset, though the principles are intended for all other occupations and industrial posi-
tions alike. The reason for choosing this occupation is due to the intrinsic nature of its
task: The work sequence is not continuous, and the employee has time in the middle of the
task to rest. Fortunately, this characteristic provides a chance to scrutinize the momentary
effect of the work content factor on human behavior. With the proposed conceptualization
and work content consideration, the working conditions in a coffee shop are utilized to
generate a real-life dataset in the best way of reflecting the interested aspects. Further
utilization of the WEBA dataset to generate in-depth knowledge of human working behav-
ior is highly encouraged, as well as other exploratory research on different aspects of the
work content, and from different occupations.

4.4.1 Research scenario and conceptualization approach

Inspired by the work of Lazarus et al. [R265], possible stress sources of this work position
are categorized into the "work environment" [R266], the work setting which is known as
"work context" [R75], and the "work content" which is the demand of the assigned tasks
[R75, R232]. As the main object of interest is the work content, work context, and work
environment factors are isolated as discussed in the next subsections, with the intrinsic
characteristics that made the chosen coffee shop ideal for the data collection purpose also
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explained. The generated outcome includes the output as the finished orders from cus-
tomers which accumulated in the monetary value of revenue, and the work content effect
is captured with the perceived workload, kinetic, and physiological signal. The categoriza-
tion of study aspects is illustrated in Fig. 4.13.

Figure 4.13: Categorization of study aspects: the work process consists of "work content"
and "work context" within "work environment", results is "output" and "work content ef-
fect".

4.4.2 Work environment

The floor plan of the coffee shop in the study is illustrated in Fig. 4.14. Due to the small
scale, whichever bartender works their shift can only stand in two "zones" to work, with
pre-defined tasks associated with that zone as follows:

• Zone 1 is the primary working zone, where the barista makes coffee or drinks, and
does the dishwashing. There are two areas to prepare the drinks, the "prep. area 1"
and "prep. area 2", which are opposite. There is one under-counter three-door fridge
that is under the preparation area 1 and the coffee machine, and one freezer to store
the ingredients such as milk and fresh lemon. The washing basin is on the corner,
with the drying rack hanging above.

• Zone 2 is the secondary zone, where the barista takes the order, issues bills, and then
performs the plating before bringing the order to customers.

The main work cell in Zone 1 has a determined layout illustrated in Fig. 4.15, with fixed
positions for materials, machines, and tools within the reach distance for convenience. The
main working surfaces are in 90 centimeter, a convenient height for light work [R418]. All
the baristas are trained with the same work sequence, and thus remain the same layout
throughout their working sessions. Before the data collection, a Lean expert assessed the
ergonomic risk factors of the work layout in Zone 1 according to RULA tools, considering
the work activities in this zone mostly are upper limb tasks. After re-arranging some hard-
to-reach items, and preparing a sufficient quantity for each tool to avoid searching during
work, the final score was 2 for most of the main activities.

Since the coffee shop is a closed space as exhibited in Fig. 4.16, the working environ-
ment is stable with parameters illustrated in Table 4.4. To avoid effects from the outside
environment, data collection is canceled during extreme weather such as too-high or too-
low temperatures, rain, and snow.
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Figure 4.14: Floor plan of the studied coffee shop: The ground floor with indoor tables (left)
and the gallery with indoor tables (right).

Figure 4.15: Details of layout in Zone 1. The side view (left) with the three-door-fridge
located under the preparation area 1 and the top view (right).
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Figure 4.16: The work environment in the studied coffee shop: (a) The ground floor of the
coffee shop from outside. (b) The gallery with four tables and an air conditioner on the wall.
(c) The bar counter with two working zones marked by dotted yellow lines. One barista is
working with the coffee machine in Zone 1. (d) The staircase is in the corner of the ground
floor.

To comply with the General Data Protection Regulation (GDPR), no video or image was
captured. Instead, sensors were installed with fixed locations within the working environ-
ment to facilitate activity recognition of surrounding events, while wearable sensors were
equipped on the barista to recognize her performed activities. The technical specification
and intended usage of all these sensors are explained in Table 4.5, while the installed
positions are illustrated in Fig. 4.17.
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Table 4.4: Parameters of environmental condition in the coffee shop.

Name Value
(unit)

Measured
method

Controlled condition

Light 58 (lx) SensorTek
STK33911
light sensor
on Samsung
Galaxy S23

The lighting condition is static during the work with only one
main switch.

Noise 66
(dB)

Noise sensor
on Samsung
Galaxy S23

The coffee shop is located in a deep and quiet alley, with no
sound from the street. The only sound in the shop is the repet-
itive instrumental music.

Dust content - - The coffee shop is located far from the street, in an environ-
ment with no dust sources such as construction and insects
or animals. There is no dust appearing during the working
process.

Airflow 255
(cfm)

Handheld
Anemometer

The airflow is regulated by the air conditioner, which is placed
on the gallery to avoid direct flow into the working area.

Temperature 23 (C) Indoor ther-
mometer

Due to the close space and controlled airflow, the inside tem-
perature is stable throughout the whole day within the season.

Humidity - - The indoor environment is in normal condition with no signif-
icant source of water with an open surface. The humidity is
stable thanks to the air-conditioner.

Odour - - There were required cleaning activities at the beginning and
the end of the working day.

Figure 4.17: The deployed fixed and wearable sensors: (a) The motion sensor Tapo T100
and door activity sensor Tapo T110. (b) One Tapo T100 (blue circle) with its active zone
(blue line) and Tapo T110 (yellow circle) is attached to the front door. (c) One Tapo T100 is
attached to the staircase. (d) Two Tapo T100 are attached in the boundary of the defined
Zone 1 and Zone 2. (e-f) Two Tapo T110 are attached to two hinges of the cake fridge and
the three-door fridge. (g) During the working session, the barista wears one armband HR
sensor (1) on her non-dominant hand, one armband acceleration sensor (2) in her dominant
hand, and another acceleration sensor (3) placed in her apron.
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Table 4.5: Deployed sensors for activity recognition.

Sensor Intended usage Set up Data acquisition

F
ix

ed
se

ns
or

TP-Link Tapo
T100

Notify when someone
enters the front door,
goes through the stair-
case, or enters the de-
fined zones.

Next to the front
door, on the stair-
case, and the margin
of two working zones

Record the movement events as
timestamps, transmitted to Tapo
H100 Hub via the local wireless
network.

TP-Link Tapo
T110

Recognize the open-
ing/closing activity
of the front door, the
fridge, the freezer, and
the cake fridge.

Attached to the
hinge of the front
door, the freezer, the
three-door fridge,
and the cake fridge.

Record the opening/closing events
as timestamps, transmitted
through Tapo H100 Hub via the
local wireless network.

Raspberry
Pi with
Adxl345 3-
Axis Digital
accelerome-
ter

Recognize the opera-
tions being carried out
on the coffee machines.

The accelerometer is
attached to the cof-
fee machine with a
25 Hz sampling fre-
quency.

Record a time series, stored in lo-
cal memory, and transmitted to
a personal computer through an
SCP connection.

TP-Link Tapo
H100 Hub

Receive the signals
from other TP-Link
Tapo sensors, stored in
a log file.

Placed within the
local wireless net-
work.

Data copied to a personal com-
puter through Rust API Client via
the local wireless network.

W
ea

ra
bl

es

Polar Verity
Sense

Record the Heart Rate
(HR) of the barista dur-
ing work.

Wear on the non-
dominant hand.

Record a time series, stored in the
local memory of the device, ex-
tracted through the Polar flow mo-
bile application.

Metamotion-
S sensor

Record the acceleration
of the hand movement
of the barista during
work.

Wears on the dom-
inant hand, sample
at 12.5 Hz.

Record a time series, stored in the
local memory of the device, ex-
tracted through the MetaBase mo-
bile application.

Mobile phone
acceleration
sensor

Record the body accel-
eration of the barista
during work.

Set at 25 Hz sam-
pling frequency, and
put in the apron.

Record a time series, stored in the
local memory of the phone, ex-
tracted through the Sensor logger
mobile application.

4.4.3 Work content and work context

Work content

Besides the setup work environment, the work content and work context factors are cat-
egorized in this section. According to the World Health Organization (WHO) [R75], the
work content includes the demanded activities and consideration of the assigned tasks,
while work context is the background other than the work-content activities [R75]. These
factors are categorized as follows:

• Work content: The factors belonging to this group come from three constituent re-
quirements that represent the work of a barista: physical and temporal workload (as
inspired by the work of Berlin et al. [R288]), along with mental workload (as the
workload measured by subjective methods [R292]). These requirements are closely
associated with the number and frequency of incoming customers, the required type
and quantity of coffee cups made, and generated revenue.

• Work context: Besides the work content, any other activity and interaction that are
not directly associated with the work, but related to the scope of working in the pre-
defined work environment are grouped into the work context category.

As the main focus, the work content is defined beforehand as a part of the experiment
design. A typical order consists of a drink, a glass of tap water, and possibly a cake. While
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a water glass or a standardized cake does not require any special consideration to pre-
pare other than standard steps, the drink does. Based on discussions with the shop owner
and the current baristas, the current drink menu is divided into two levels of prepara-
tion difficulty: easy and difficult. The coffee-based drinks (mixtures of espresso base with
possible flavored syrup, steamed milk, and milk foam) are considered easy by the barista,
with fewer steps and less required attention, while chocolate-based drinks (mixtures of
chocolate base) are considered more difficult, with high attention demand to fulfill the out-
put quality. As the espresso base is processed by the coffee machine and the chocolate
base is prepared beforehand and stored in a dispenser, the activities for all order prepa-
ration only require physical movements of pushing buttons on the coffee machine or the
dispenser, mixing, whisking, and plating, without any cooking. Details of requirements
while preparing orders with these drinks are illustrated in Fig. 4.18. Based on the defined
work content, it is necessary to recognize the constituent work-content-related activities,
factors, and interactions, thus estimating their occurrence and effect during a working
period, which accumulates into the work content. These process- and barista-centered ac-
tivities are defined and categorized in Table 4.6, which allows them to be recognized, or
captured from the WEBA dataset.

Figure 4.18: The components of typical orders: coffee-based and chocolate-based (upper),
and a finished order with a drink, a water glass, and a piece of cake (lower).

It can be seen that the work content of the barista requires more effort from the phys-
ical aspect, including the most frequent product-oriented activity, including taking orders,
making drinks, plating, serving, etc. Other working activities are not significant, such as
dispensing the chocolate base from the chocolate dispenser, since the barista only needs
to pull the trigger until fulfilling the measuring cups with prepared marks, therefore no
sensor is deployed to recognize it. From the mental aspect, the work content relates to the
difficulty of making the orders, considering that all employees were trained in the same
way, with a similar standard of product quality. It is assumed that the difficulty of each
order creates a different impact on the perceived workload of individual, mainly depending
on their work experience in the shop. Regarding the temporal aspect, the intensity of in-
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coming customers with the quantity of each order will create time pressure on the barista.
To highlight the effect of this factor, sample data were collected from the preparation of dif-
ferent drinks by each barista during the beginning of the working shift, when the barista
can work at a normal speed in comfortable conditions with no time pressure. During rush
hours, customers were coming but could not wait to be served. Though they left, their pres-
ence still posed a temporal load on the barista. Although the work duration also affects the
perception of workload, such as working for long hours can cause additional exhaustion,
this factor is not incorporated into the work content, as its effect is limited by assigning
fixed work shift duration for every participant during the dataset generation.

Table 4.6: Work content factors with elemental tasks of the barista.

Tasks Scope Captured by the acquired data

P
hy

si
ca

l

Taking or-
ders

Interact with customers,
write order notes, issuing
bills

Happens when a new customer enters the shop, then
the barista enters Zone 2, standing with no body ac-
celeration and small hand acceleration.

Take out the
materials

Take the milk, foaming
product from the fridge or
freezer.

When the fridge or freezer doors are opened.

Operate
the coffee
machine

Prepare the espresso base
for coffee-based drinks.

The vibration signals from the coffee machine (sev-
eral vibration samples labeled with drink type are in-
cluded)

Prepare
drinks

Perform repetitive hand-
work of making drinks

When the barista enters Zone 1, standing with no
body acceleration and small hand acceleration.

Prepare the
cake

Take the cake from the
cake fridge or the freezer.

When the cake fridge doors are opened.

Plating the
orders

Take one tray and place the
products on it.

The barista standing in Zone 2 with no body accelera-
tion and has small hand acceleration.

Serving out-
side ∗

Serve or clean ordered tray
outside

Bring the tray of ordered products to or from outside
tables, with body movement has pulses of walking,
leave the working zones, and open the front door.

Serving out-
side ∗

Serve or clean ordered tray
outside

Bring the tray of ordered products to or from outside
tables, with body movement has pulses of walking,
leave the working zones, and open the front door.

Serving
upstairs ∗

Serve or clean ordered tray
upstairs

Bring the tray of ordered products to or from upstairs
tables, with body movement has pulses of walking up-
stairs, going through the staircase.

Washing
dishes

Washing the accumulated
dirty dishes.

The barista stands in Zone 1, with no body accelera-
tion and has a small hand acceleration.

M
en

ta
l

Difficulty
level of the
orders.

The difficulty levels of the
ordered drinks

Based on the order notes collected after the shift.

Interaction
with cus-
tomers

Mutual communication
while taking orders and
issuing bills

As this interaction is the intrinsic characteristic of the
work, its effect is assessed by questionnaires after the
shift

Tem-
po-
ral

Waiting cus-
tomers

A new customer comes in ] Opening activity at the front door, with customers
step inside.

∗: These activities require a pair of two-way commutating walkings. If the barista did not leave the
working zones, one activity or both two of the pair were conducted by the customers themselves,
e.g., self-serve or take-away orders.
]: During rush hours, customers come and leave after lined up waiting.

Work context

Besides the above-listed activities that are directly related to the work content, the work
context contains the other intrinsic tasks that add up to the work content, or the interac-
tions that can generate extra emotional and psychological stimulation during work. These
activities and interactions are categorized into different groups as in Table 4.7. To keep
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the most steady conditions for focusing on the work-content influence and avoid threats
to the internal validity (i.e., history factor), extraneous factors such as some activities and
interactions are limited, reduced, or avoided during the data collection. For activities that
can not be controlled, such as the personal rest duration when there is no customer, its
data can be recognized based on associated characteristics.

Table 4.7: Work context activities and interactions during a working session.

Activity -
Interaction

Normal fre-
quency

Controlled condition during WEBA dataset collec-
tion / Associated characteristics

A
ct

iv
it

y

Cleaning the shop Twice per day These durations before and after opening hours are ex-
cluded from the data collection period.

Working in collabora-
tion with colleagues

None Only one barista works at a time with no other colleagues.
They only appear in special conditions when the barista
feels the workload is unbearable.

Rest or do personal
work

Frequently The barista is out of any working zone, has no body accel-
eration and very small hand acceleration, HR slows down.

Personal activities Randomly When there is no activity in working zones, no sign of new
customers.

In
te

ra
ct

io
n

Interaction with man-
agers

Several times
per day

The manager is advised not to appear during the data col-
lection, and maintain no contact via phone as well.

Interaction with col-
leagues

Once per day The transition period of 30 minutes is avoided during data
collection.

Interaction with sup-
pliers

Twice per
week

Supplier encounters are avoided during the data collection.

Interaction outside of
work context

Randomly Participants are advised not to use their phones during the
data collection.

Encounter with un-
expected abnormal
events or accidents ∗

Randomly If any event is recognized as abnormal or unusual from
everyday routine, the data in 15 minutes after that event
will be discarded.

∗: If the event has a severe effect on the barista, the data from the whole shift will be discarded.

4.4.4 Work content assessment

Different measures were taken at the end of a shif to assess the amount of work content.
The served quantity of drinks and cakes was taken from the point-of-sale system, with the
revenue is used as an objective measure. The International PANAS Short Form (I-PANAS-
SF) [R419] measures the emotional perception, while a paper/pencil version of the NASA
Task Load Index (NASA-TLX) measures the perceived workload [R420]. Details of these
measures are mentioned in Table 4.8.

Table 4.8: Measures to assess the work content.

Name Scope How to measure

O
bj

ec
ti

ve

Total drinks
made

The number of drinks served Recorded from order notes from the
barista after the measured shift.

Ratio of
easy/all drink

The ratio of easy drinks over the total
number of drinks made

Recorded from order notes from the
barista after the measured shift.

Number of
cakes served

The number of cakes served Recorded from order notes from the
barista after the measured shift

Total made
revenue

Total revenue from the measured shift in
Hungarian forint (HUF)

Extracted from issued bills from cash
register machine.

Su
bj

ec
ti

ve

Emotion Positive and negative feelings from the
work in the shift.

I-PANAS-SF questionnaire, filled out
after the shift.

Perceived
workload

The mental, physical, and temporal as-
pects of work demand, with impressions
about performance, effort, and frustration.

NASA-TLX questionnaire, filled out
after the shift.
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4.4.5 WEBA dataset generation

This section describes the other data that are collected from human participants, and de-
ployed methods to make the work schedule and data generation plan.

Human participant

In the current phase, possible participants are the five baristas who are already working
in the coffee shop, with different experience levels. The participation was voluntary, with
consent forms provided while the investigators explained the research objectives and an-
swered aroused questions. Besides the above-mentioned data, no photo or video was taken.
According to the company policy, each barista has attended a work capability assessment
before they enter the job, and repeated yearly. Before experimenting, the participants were
scanned with a medical history questionnaire, to avoid negative effects from recent disap-
pointments sleep problems, or hidden diseases that can influent the collected HR. Once the
participant is involved, a baseline collection is performed with two days of 24-hour contin-
uous HR measurement, except for the personal hygiene period. One of the two days is the
week-end, while the other day is a weekday. Participants were instructed to carry out their
daily routines without any abnormal activities.

Characteristics during data collection

Different factors that affect the relationship of perceived workload with the work content
can be considered:

• The time of work shift during the day: Currently, the coffee shop runs with a schedule
of two shifts: morning and afternoon, each lasting for five or six hours from 9 and 2
pm, respectively. To avoid the effect of working long hours, each participant can only
work one shift per day. The measurement always started from the beginning of the
shift, after the initial routine cleaning.

• The experience of the barista: The working experience of the barista also determines
how he/she reacts to workload and stress. Currently, the experience of working with
drink types in the chosen coffee shop can be divided into two levels: less than one
year and more than one year.

• The revenue level: Increasing revenue means increasing workload. The revenue can
be divided into two levels: lower and higher than a value of 35000 HUF, which equals
101 United States Dollar (USD).

• The order difficulty, which is represented by the ratio of easy/all drinks within a
shift also affects the perceived workload. With the same number of drinks made,
the higher value of this ratio means more easy drinks were made, which posed less
mental workload on the barista.

Noticeably, though some of these factors can be scheduled (e.g., the experiment of the
barista, the time of shift), in real-life conditions, other factors appeared randomly (i.e., the
revenue of a shift). Therefore, there is no need to perform masking the condition assign-
ment from the participants. Different from a laboratory experiment with a well-controlled
environment, this experiment is carried out continuously until the resulting space is filled
with the desired factor levels and also continued through different seasons to avoid the
seasonal effect (such as more chocolate-based drinks being consumed in cold weather). In
this way, the sampling and selection bias faded away, and the Hawthorne effect [R421] is
also neglectable as the participants do not know data from which measured days will be
used for further analysis. The structure of the WEBA dataset is shown in Fig. 4.19.
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Figure 4.19: The WEBA dataset structure: the background data of each participant (left),
and the measured data after each shift (right).

4.5 Chapter summary

The current research on AWCRS in the industrial environment is still developing, mainly
from an engineering perspective. More elaboration and distinction of AWCRS from other
stress types are necessary. Though stressful situations were associated with reduced HRV
in many studies, none of them were adequately designed to provide a sound scientific con-
clusion. As HRV strongly depends on too many factors (e.g., work context, individual phys-
ical and mental status), its real-time usage for stress monitoring can be problematic. Fur-
ther research can either develop a well-isolated simulation with pre-defined settings to dis-
cover the association and interpolate the result with relevant constraints during real-time
monitoring, or utilize HRV along with other additional metrics within a strictly controlled
environment. A good example is the study proving that the impulsive sound could elevate
the workload [R422]. In addition, the association of HRV with the acute stress condition
should be measured beforehand, such as the HRV can be sampled from the normal working
condition as a reference, not only from the resting period.

Once the association between AWCRS and HRV was thoroughly studied, JITAI could
be applied to improve human worker performance, which aligns with the vision of Operator
4.0 and long-term benefits in the forthcoming Industry 5.0 and Society 5.0 [R423]. More
experiments, RCTs, and clinical trials are needed to adopt a proper design and validate
this approach before any commercialized platform can be built for real-time monitoring of
HRV to manage AWCRS.

4.5.1 Modelling the effect of Acute Work-Content Related Stress on per-
formance

A conceptual model is developed to reflect the AWCRS of industrial workers under the
effect of work-content factors and predict their OLE performance. Though the model is
constructed based on the diagnosed literature, its factors and scope are not fixed within
these boundaries. Besides proposed parameters and their directions of effect, additional
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modifications should be considered based on different applying contexts, such as the char-
acteristics of the workforce population, or the nature of the work. Other aspects (e.g., the
effect of a learning curve, or skill decay) can be examined similarly. Throughout four sim-
ulated scenarios, the results from the proposed model sufficiently meet the expectations
from the literature. The usage of this model results in a better understanding of human
worker capacities, regarding the interaction of their workers with the working conditions,
line setup, and task requirements.

Model capability

Industrial engineers can take advantage of diagnosing individual reactions, to find the
most suitable work-content levels and settings thus better utilizing a "personal profile".
Well-designed "task load" with sufficient task variety or pattern change can utilize the
working capacities of workers, and available social support can motivate the worker to vol-
untarily engage with their tasks without compromising physical and mental health [R424,
R425]. Through the loop of planning and simulation, a deep knowledge of worker capacities
and thresholds can be achieved along with their behaviors, thus industrial engineers can
design and arrange the allocated tasks accordingly. Further studies and experiments can
be designed to check the causality and effect of each factor within the model, by controlling
the relevant factors and adjusting the interested element. Subtle associations between
work-content factors and the perceived stress of the worker in a complex manufacturing
system can be studied, such as the number of WIP in the product-mix production system
[R426].

The proposed model enables real-time work monitoring with possible work-content
modification and timely intervention. For a long-term vision, a human-centric development
strategy can be elaborated based on individual data collected during model usage. Not only
tailored work content but built-in interventions can also be diagnosed and applied based on
the status and recorded performance of each individual, for the sake of personal as well as
workforce development. Possible suggestions for individual level can be gradual training
to improve skill acquisition and avoid skill decaying [R427], and customized assistance for
impaired or disabled workers [R428]. On the scale of workforce development, companies
can have a record of the optimal allocation for their workforce, while each worker will have
the opportunity to learn about their work capacities, strengths, and weaknesses, which
helps them choose a suitable work schedule and life-long career for their work-life balance.

Model limitation

The first limitation is the lack of quantitative measures and numerical thresholds, which
limits this conceptual model to a qualitative tool. Though there are different scales and
measurements for workload assessment, physically and mentally [R429], however, the
quantified association between these scales is not available, nor is there a relative com-
parison between them. Many factors have well-known directions of effect (i.e., years of
experience, age), but their representative curves lack quantitative milestones. The inho-
mogeneous measurement of factors (i.e., some are measured by physiological parameters
or bio-markers, some by questionnaire) is challenging in both model development and us-
age phases. Several variables do not have specific measurement scales, such as stress
endurance and personal stress threshold. The accumulation/relaxation rate of different
types of stress has also not been elaborated in the previous literature. Consequently, the
model is not able to predict the exact stress level according to current popular stress mea-
surement scales. However, users can qualitatively predict the increasing, or decreasing
behavior of stress and performance status of each individual, as a time-based function.
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The second limitation is the significant customization for each individual regarding
their unique physiological features. It is widely accepted that years of experience have a
positive effect on performance, however, the scale of this effect on individuals is unclear.
Not to mention the basic workload should be measured based on the natural ability of each
worker, the sensitivity and relaxation rate for each type of stress is also dependent on the
cortisol level regulation of each individual [R430], which is in the close influence of the
HPA axis [R431]. The efficiency of stress recovery is also affected by working hours [R432]
and environmental noise [R433], which are varied individually, and reflect different symp-
toms of stress burden on a single person [R434]. Low self-esteem, stressful life changes,
and recent minor life events can also affect individual stress recovery under acute stres-
sors [R435]. These associations require in-depth detailed personal customization regarding
historical medical and stress disorder records.

Another limitation is the limited amount of high-level evidence, i.e., RCT. A combina-
tion of both objective and subjective measurements can be used to validate the human
status [R362], as the use of a sole physiological parameter such as HRV to validate the
AWCRS is still in the immature phase [J4]. The effectiveness and impact duration of pro-
posed interventions should also be validated before implementation during the simulation,
as they yield different effects under various usage contexts, such as caffeine and caffeinated
energy drinks can have both positive (e.g., increased alertness, reaction time, and cognitive
performance [R436]) and negative (e.g., decreased sleep quality [R437, R438]) effects with
unknown risk/benefit ratio [R437]. The job rotation intervention can pose different effects
within different work settings [R439]. Last but not least, in a practical manufacturing
environment, not only the personal performance be considered, but the collective perfor-
mance of workers in a manufacturing line should be investigated. Different workers with
different stress effects may affect collaborative work [R373].

4.5.2 The contribution of WEBA dataset

The WEBA dataset is introduced as a reflection of the effect of work content on the personal
workload perception, stress, performance, and heart rate (HR) of a barista in real-life work-
ing conditions. By in-depth analysis of the work characteristics from a multi-disciplinary
approach, and utilizing a specific condition with event-driven sensors and wearable tech-
nology, a controlled environment is created in the closest way to a laboratory experiment.
With a well-structured conceptualization and setup, the work content factors are empha-
sized and become the main stressors that impose their effect on the participants. The
WEBA dataset contributes to the further development of understanding the work content
effect on labor performance and well-being.

The WEBA dataset contributes a missing piece of evidence enabling in-depth studies
about the applicability and reliability of HR as an instantaneous AWCRS indicator [J4],
thus preparing Just-in-the-moment adaptive interventions [R246]. By the detailed descrip-
tion of the experiment, the possibility of using HR and acceleration signals as indicators
for personal perceived workload can be diagnosed. Last but not least, a similar approach
can be used to generate another dataset in other real-life conditions. Researchers are en-
couraged for further research with a similar approach to different occupations and work
conditions, thus paving the way for a realistic HDT in the I5.0 context, with real-time
monitoring of human factors.
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5
Conclusion

My thesis solved four main problems within the context of implementing Lean 4.0 and
Operator 4.0 solutions as illustrated by red boxes in Fig. 5.1. The proposed solutions for
the identified problems are given in blue boxes. As the literature pointed out, brownfield
development is fundamental in terms of the continuous development of I4.0 and I5.0, with
abundantly available I4.0 technology.

Figure 5.1: The contribution of the thesis: The retrofitting solution with IoT sensors; The
production monitoring and Lean 4.0 implementation with IPS system; The assessment of
human performance by Kinect sensor that facilitates Lean 4.0 workforce improvement; and
The foundation for enhancing human performance with stress-performance knowledge.

In Chapter 2, to guide the retrofitting-based development with sustainability goals of
I5.0, I categorized existing I4.0 sensors to upgrade the old-fashioned system into targeted
layers for digitization, providing managers and decision-makers a holistic picture of how to
conduct brownfield developments, organize the development activities, permeate the dig-
itization spirit, and prepare for possible obstacles. I also collected evidence to prove that
brownfield retrofitting with sensor technology can support Operator 4.0, and Lean 4.0 as
Industry 5.0 solutions. In the same chapter, I proposed the use of a low-cost IPS with ad-
ditional sensors for production monitoring. Based on a re-designed set of Lean KPIs, the
production insight with fused data from IPS and MES systems can be utilized for direct-
ing Lean 4.0 improvement projects. A continuous improvement with the PDCA approach
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based on IPS data can facilitate continuous improvement initiatives. In Chapter 3, my
proposed framework of using skeletal data from Kinect sensor can replace the traditional
human performance assessment by a human expert, while an automated application will
be enabled by MLOps principles. As continuous improvement within a workforce scale is
a special interest in both Lean 4.0 and O4.0, I suggested a PDCA cycle with data from the
Kinect sensor, based on the work movements from the pattern mining results. In Chapter
4, I established several foundations for utilizing human performance based on the stress-
performance association of human workers in the industrial environment. The applica-
bility of HRV as an indicator for AWCRS serves as a scientific foundation for later stress
monitoring solutions. A suggested conceptual model for simulating the stress-performance
can be the core of a modern HDT, support monitoring human performance, and adjust the
work content in a real-time manner. Finally, I utilized activity sensors and wearables,
along with process analysis, to contribute a dataset for later research on AWCRS.

New scientific results

Thesis 1: I developed a near-online retrofitted monitoring function to gener-
ate Lean KPIs based on analysis of the position data extracted from the Indoor
Positioning System (IPS) to support the Lean 4.0 implementation.

The proposed IPS architecture incorporates different kinds of sensors to acquire not
only position data but also other data such as vibration, which enables them to recog-
nize motion and transportation activities. Based on the acquired data, I redefined and re-
designed the traditional set of Lean KPIs to be derived automatically. I also presented how
positional data from IPS can enrich the Lean 4.0-based continuous development toolkit,
with a detailed guideline of an IPS-enabled LM project. Process mining is applied for de-
veloping Value Stream Mapping (VSM), for recording processes and identifying waste. I
proved that IPS is effective in supporting the implementation of Lean 4.0 projects, and the
proposed method enables further system optimization, which assists managers in monitor-
ing their manufacturing systems effortlessly with an IPS system [J6, J1].

Thesis 2: I developed an algorithm using supervised learning combined with
pattern mining to determine ergonomic metrics and movement patterns based
on skeletal data recording, supporting ergonomic assessment and human re-
sources development within Lean 4.0 continuous improvement.

I proposed an approach to assess the human worker performance based on the skeleton
data from the Kinect sensor by applying pattern mining and supervised learning algo-
rithms, with integrated data processing algorithms to provide an automatic way of assess-
ing labor performance. I verified that the analyzed results are suitable for ergonomics
assessment and human resources development within Lean 4.0 continuous improvement.
I suggested the integration of MLOps with relevant open-source packages for a real-time
application. The assessment result can be utilized for performance enhancement and indi-
vidual and systematic human-centric improvement in short- and long-term organizational
HRD plans. This monitoring system is effective for the development and dynamic opera-
tion of O4.0 solution, facilitates the future of human workers in manufacturing industries,
and especially contributes to the Healthy Operator pillar of the O4.0 and O5.0 concepts
[J7].

Thesis 3: Based on the proposed system dynamic conceptual model from the
evidence of validated relationships between Acute Work Content-Related Stress
(AWCRS) and the work performance of human operators from the literature, I
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developed an extended formula for Overall Labor Effectiveness (OLE) calcula-
tion to predict complex human behavior under the effect of AWCRS.

I proposed a qualitative conceptual model to reflect the acute stress of industrial work-
ers under the effect of work-content factors and predict their OLE performance. The model
not only helps to structure the unclear relationship between work-content factors and in-
duced stress but also conceptualizes personal performance in the industrial work environ-
ment. With an interdisciplinary perspective, the incorporated effects reflect many subtle
aspects of worker behavior when receiving work-content elements as stressors. The pro-
posed approach with a conceptual model enables different work-content-related planning,
and the simulation, monitoring stress conditions on industrial operators, which could in-
crease their work efficiency. The model helps to foresee the effect of possible changes and
compare the expected performance of workers under different work conditions, thus sup-
porting production supervisors in their daily monitoring tasks to harvest optimal human
resource utilization and plan human-centric improvements.

Thesis 4: I generated an experiment to collect a data set to reflect the effect
of work content factors on the workload, AWCRS perception, heart rate, and
human performance in real-life working conditions.

I conceptualized the effect of AWCRS on human beings from different aspects such as
emotion, perceived workload, and performance, utilizing an enclosed work environment
of a coffee shop to collect the "Work-content Effect on a BArista" (WEBA) dataset. Pro-
cess analysis and sensor technologies are applied to capture the effect of work content.
The WEBA dataset can be considered a reflection of work content factors on the personal
workload perception of baristas in real-life working conditions. This dataset contributes a
missing piece of evidence for the use of real-time HRV monitoring and facilitates further
research about AWCRS.

Lean 4.0 offers companies survivability in the I4.0 context and prior sustained compet-
itiveness. The O4.0 concept focuses on the human-centricity aspect, as workers and opera-
tors benefit from technology and digital transformation, which helps them fulfill their job
requirements with less effort and higher value-added contribution, and the self-resilience
of the O5.0 concept facilitates a system effect from both human-machine system resilience
and human operator resilience. The application of sensor technology and data science
for these organizational improvements can be considered stepping stones for the I5.0 ini-
tiative. As their characteristics indicated, the gained benefits bring manufacturers advan-
tages and readiness for further development. Fostering the O5.0 transition is necessary for
industrial stakeholders and requires knowledge of the favorable context and correspond-
ing enablers. Thus it is worth considering how the I4.0 smart technologies and the O4.0
paradigm could adapt to the I5.0 requirements, and how the smooth transition toward the
O5.0 can impact workplace sustainability, social issues, and resilience. Industrial man-
agers and practitioners can refer to this work for better preparation and implementation
of O4.0 technologies to support the daily production tasks of their operators.
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Appendix A
Deployed sensors and actuators and benefits
of retrofitted systems

The types of deployed sensors in retrofitting projects are categorized in Table A.1.
Several actuators and their usage in retrofitting development are given in Table A.2
Table A.3 shows the advantages for O4.0 from retrofitted systems.
Advantages of Lean 4.0 from retrofitted systems are listed in Table A.4.
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A. Deployed sensors and actuators and benefits of retrofitted systems

Sensor (Description) Specific type Industries & Use cases

Temperature sensor
(Measure the temperature
of the subject)

General type Textile [R164, R56, R55], Metal
cutting [R95], Food processing
[R120]

Thermal couple Metal forming [R102]
LM35 Didactic plant [R49]
DHT11 Flexible Manufacturing System

(FMS) [R129]
Sensorkits Car assembly [R94]
Thermocouples perfluoroalkoxy K-
type

Electronic manufacturing [R132]

Pressure sensor (Measure
the pressure within a pipe
or a furnace, or any close
space)

General type Food processing [R120], Didactic
plant [R49]

Honeywell Silicon Ceramic gauge-
type

Electronic manufacturing [R132]

Setra 280E; Foxboro 841GM-CI1;
Foxboro IDP-10

Oil extraction [R105]

Flow sensor (Measure the
flow of the substances)

Foxboro Magnetic Flowtransmitter Oil extraction [R105]
Foxboro Vortez DN 50 Oil extraction [R105]
General type Didactic plant [R49]

Position sensor (Define the
position of the interest
object in a defined space)

Festo cylinder position sensor Assembly line [R103]
Radio-frequency Identification
(RFID) chip

Fabric knitting [R140]

Baumer Ident RFID tag FMS system [R440]
Laser displacement sensor (LDS) Aluminium casting [R99]

Acoustic sensor (Measure dis-
tance with acoustic waves)

Self-built sensor Oilfield [R133]

Current sensor (Measure
the amplitude of current
inside a wire)

Inductive current clamp sensor Sen-
sorkits

Car assembly [R94]

Non-invasive SCT-013 Didactic plant [R49], Industrial
robot [R106]

Non-invasive current transformer Didactic plant [R49]
CO2 sensor (Measure the part
per million of CO2)

General type Metal cutting [R95]

Energy sensor (Measure the
amount of consumed energy)

Schneider Electric Power Tag Metal cutting [R91]

Motion sensor (Detect the
movement of objects)

Camera motion sensor Iron & Steel production [R135]

Magnetic sensor (Sense the
magnetic field generated dur-
ing the machinery movement)

Hall-effect sensors Industrial motor-driven system
[R167], Textile [R56]

Metal sensor (Detect metal
material appearance)

MSPA13 NPN transistor Industrial robot [R106]

Color sensor (Detect the color
of a material)

TSC230 RGB FMS system [R129]

Accelerometer (Measure
the vibration, or
acceleration of the machine
structure)

General use accelerometers without
specific type

Industrial equipment [R207], Tex-
tile [R164], Metal cutting [R137]

Bosch BMX160 Metal cutting [R96]
Bosch BMA280 Computer Numerical Control

(CNC) machining [R160], Indus-
trial robot [R441]

ADXL345 Limestone processing [R113,
R114]

Bruel & Kjaer 4535-B-001 Metal cutting [R136]
Sensorkits Car assembly [R94]
Raspberry-Pi accelerometer Metal cutting [R143]
MMA7361 Aluminium casting [R99]

Visual sensor (Capture the
movement, position, or
characteristics of objects)

Raspberry Pi 1.3 camera High-bay warehouse [R442]
USB camera Industrial robot [R106]
Yarn breakage sensor Textile [R56]
Knot sensor Textile [R56]

Table A.1: Most frequently used sensors to retrofit legacy system.
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A. Deployed sensors and actuators and benefits of retrofitted systems

Method of deploy-
ing actuators

Retrofitting usage Specific type Industries & Use
cases

Integrate existing
actuators to control
the process
variables

Adjust and control the state
of liquid inlet/outlet flows.

General control and binary
valves

Oil & Gas process-
ing [R98]

Level switch Water processing
[R122]

Control the weld tool path. ABB6640 robot controller Metal de-burring
and grinding [R139]

Control the direction and
speed of a conveyor.

Siemens three phase asyn-
chronous motor

Material handling
[R126]

Detect the status of a mech-
anism.

Limit switch Assembly line
[R103]

Control the steam pressure
of the metal pressing ma-
chines.

Hydraulic pressure recu-
perators, Steam valves

Metal forming
[R102]

Control the velocity of the
conveyor.

Motor control switch Material handling
[R138]

Control the process of
gassing and ventilation.
Control conveyors and
fixtures.

Pneumatic and hydraulic
valves

Sand core [R443]

Employ new
actuators to control
the process
variables

Adjust and control the state
of the gas/liquid inlet/outlet
flows.

Pneumatic solenoid valve
ECKARDT MB6713

Oil extraction
[R105]

Solenoid valve Didactic plant [R49]
Control the on/off and
emergency states

Self-built switch and con-
troller

Metal machining
[R104]

Control machine tools spin-
dle speed.

Speed drive & Spindle de-
scent meter

Metal machining
[R104]

Employ new
actuators to extend
the capability of
existing hardware

Serve as end actuator to an
robotic arm.

Self-built gripper. Industrial robot
[R106]

Transport a sensor to the
interested location for mea-
surement.

Linear motor and encoders,
general type

Aluminium casting
[R99]

Transport the machined
part to the interested loca-
tion.

Pneumatic linear actuator Aluminium casting
[R99]

Prevent injuries from spin-
dle rotation during machin-
ing process.

Self-built movable protec-
tion screen

Metal machining
[R104]

Providing clamping force
for the welding fixture

Pneumatic clamps Metal forming [R68]

Clean the cutting tool after
machining

Self-built mechanism. CNC machining
[R107]

Close the protective door
and vice of the CNC ma-
chine.

FESTO pneumatic cylin-
ders with solenoid valves

Experimental plant
[R53]

Table A.2: Most frequent used actuators to retrofit legacy system.
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A. Deployed sensors and actuators and benefits of retrofitted systems

Main advan-
tages

Description Industries & Use cases

Analytical sup-
port

The worker can be supported by the rele-
vant data and visualization to analyze the
situation and make quick decisions based
on given tutorials.

Steel Mill [R52], Oilfield [R133], Fab-
ric knitting [R140], Metal casting [R125],
CNC machining [R107], Electrical cabinet
maintenance [R88], Metal cutting [R143],
Material handling [R126], FMS system
[R129], Metal forming [R102]

Stress-free
work environ-
ment

Faults and machine failures are easy to de-
tect without human consideration and re-
quire less work experience.

Plastic injection [R134], Oil extraction
[R105], Steel Mill [R52], Metal cutting
[R137], Fabric knitting [R140], FMS sys-
tem [R129]

Higher-value
contribution
from human
worker

Due to the data-based automation, the
worker can have more time for value-added
tasks, than monitoring the machine, wait-
ing, doing manual data collection

Textile [R164], Metal cutting [R137],
Fabric knitting [R140], Industrial robot
[R106], Metal de-burring and grinding
[R139]

Human error
reduction

The unintended error from the manipu-
lation of the workers is stopped by the
system, to avoid consequences of absent-
mindedness.

Steel Mill [R52], Car assembly [R94],
Metal de-burring and grinding [R139],
Metal forming [R102]

Supported job
training and
learning

Provided the visualized data of normal and
abnormal events, and real situation exam-
ples for the personnel training.

Textile [R68], Metal casting [R170], Oil
extraction [R105], Steel Mill [R52], Metal
forming [R144, R68], Oilfield [R133], Fab-
ric knitting [R140], Textile [R56]

Healthy opera-
tor

Occupational Safety & Health (OSH) haz-
ard will be prompted to the operator timely
through the user interface, and smart-
watch. The system can be stopped in a pre-
ventive manner.

Electronic manufacturing [R132], Oil ex-
traction [R105], Oilfield [R133], FMS sys-
tem [R129]

Table A.3: Operator 4.0 benefits on retrofitted system

Main advantages Description Industries & Use cases
Work process stan-
dardization

The work process can be standardized to
avoid waiting time.

Metal forming [R102]

Just-in-time produc-
tion

Materials and tasks can be scheduled at
the exact time of need, avoiding excessive
stock of waiting lines.

Metal cutting [R137]

Quick Changeover Shorten the time to changeover between
different states of the equipment configu-
ration or product variant.

Material handling [R138]

Reduce ma-
chine/equipment
waiting/waste time

Reduce idle time, or time to set-up,
time to repair of machine/equipment, and
stoppage time by recognizing and control-
ling its state.

Electronic manufacturing [R132], Steel
Mill [R52], Oilfield [R133], Fabric knit-
ting [R140], Metal forming [R102]

Remove bottlenecks
in material flow

Rearrange the processes to avoid bottle-
necks that cause production deficiency.

Aluminium production [R171], Gear
production [R127]

Continuous im-
provement

Process optimization and root cause anal-
ysis activity can be developed gradually
with the available data.

Aluminium production [R171], Fab-
ric knitting [R140], Textile [R56],
Metal casting [R125], Gear production
[R127], Metal forming [R89]

Table A.4: The possible advantages of Lean 4.0 in retrofitted system
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Appendix B
Structure and details of the simulation with
proposed conceptual model

For better comprehension, the model structure in the Vensim environment was developed
in separate views, with each view represented in the following figures. Fig. B.1 exhibits
the static effect of the "Personal profile" on the initial "Personal capacity" of a worker at
the beginning of the working day. The dynamic effects of circumstantial stressors on the
perceived workload and working capability degradation are depicted in Fig. B.2. Fig.
B.3 visualized the model structure to generate task load components, and how the work
capacities are modeled by stock variables.

Fig. B.4 described the structure to create the accumulation and relaxation mechanism
of different stress types and their effects on workload and capacity degradation. The OLE
is defined by its constituent as exhibited in Fig. B.5.

The details of the use case setup with the important variables are described in Table
B.1. For the sake of simplicity, a non-denationalization technique is used in this model,
with partial removal of physical dimensions from its equations. It is also worth mentioning
that in this qualitative model, the stress-related variables ("sustained attention", "acute
stress", and "chronic stress") are not real values with physical meaning, but variables that
represent the accumulation and relaxation behavior of these stress types.
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Figure B.1: The initial personal capacities are defined based on the personal profiles

Figure B.2: The personal initial work capacities are defined based on the personal profiles.
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Figure B.3: The task perception with different task load components.
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Figure B.4: The stress accumulating mechanism during a working session.
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Figure B.5: The personal initial work capacities are defined based on the personal profiles
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B. Structure and details of the simulation with proposed conceptual model

Table B.1: Model important variables with value and equation.

Variable (#) Explanation Value/Equation

P
ersonalprofile

Work experi-
ence (C)

The positive effect on personal ini-
tial cognitive and psychomotor ca-
pacities, task demand threshold.

A lookup function by year value from an
exponential curve.

Age effect (C) The negative effect on all personal
initial capacity (except time).

A lookup function by year value from an
exponential curve.

Physical im-
pairment (C)

The negative effect on all per-
sonal initial capacities and capabil-
ity threshold.

A lookup function by impairment score
(assessed by the physical performance
test [R444]).

Shift work
(C)

Zero effect for the day shift and a
negative effect for the night shift.

A lookup function by working hours from
shift beginning.

Sleep quality
(C)

The negative effect on all per-
sonal initial capacities and capabil-
ity threshold.

A lookup function by sleep quality score
[R445].

Chronic
stress effect
(C)

The negative effect on stress en-
durance.

A lookup function by allostatic load level
(assessed by biochemical marker [R446]).

Job motiva-
tion (C)

The positive effect on stress en-
durance.

A lookup function by work motivation
score [R447].

Training ex-
perience (C)

The positive effect on all personal
initial capacities.

A lookup function by training hours.

Learning
ability (C)

The positive effect on personal task
time and task time variation.

A lookup function by the number of fin-
ished products from the learning curve
[R448].

Skill decay
(A)

The percent of task time variation. A lookup function by hours of working
from the skill decaying curve [R345].

Problem-
solving abil-
ity (C)

The positive effect of individual
problem-solving skills on reducing
the perceived workload from occur-
ring failures/problems.

A lookup function by the personal
problem-solving score [R449].

Stress en-
durance (A)

The personal threshold for different
types of stress.

Stress endurance = - Chronic stress effect
- Sleep quality - Weekly working hours

Task demand
threshold (A)

Personal threshold for perceived sit-
uational demand.

Task demand threshold = Basic task load*

+ Job motivation + Work experience
Capability
threshold (A)

Personal threshold for working ca-
pacity degradation.

Capability threshold = Average of Natural
degradation rates - Physical impairment

Stress
threshold
(C)

Personal threshold for different
types of stress.

Stress threshold = Lookup functions by
perceived stress score [R450] for each type
of stress + Stress endurance.

C
ircum

stantialstressor

Environ-
mental dis-
turbance
(C)

Zero effect if the environment is
in normal condition, negative effect
with unfavorable conditions.

A lookup function by environmental com-
fort parameters [R451]

Work pace
(C)

The predefined value for work pace
between incoming tasks.

An input constant in minutes.

Buffer capac-
ity (C)

The task time variation that is al-
lowed by the number of work-in-
process buffers.

A lookup function by buffer quantity.

Pattern
change (C)

The positive effect on reduced cog-
nitive workload and psychomotor
degradation.

A lookup function by the boredom cost of
employee [R452].

Ergonomic
layout (C)

The positive effect on reduced pos-
ture and psychomotor workloads.

A lookup function by RULA [R453] score.

Support
readiness (C)

The positive effect from external
support on cognitive capacity.

A lookup function by social support score
(assessed by JCQ [R259])

Weekly work-
ing hours (C)

The negative effect on stress en-
durance.

A lookup function by weekly working
hours from an exponential curve.

Failure rate
(C)

The occurring rate of failure/prob-
lem.

An input constant in minutes.

Continued on the next page
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B. Structure and details of the simulation with proposed conceptual model

Variable (#) Explanation Value/Equation
Body asym-
metry (C)

The percentage of asymmetry when
using body parts.

An input constant in percent.

Finished
products (A)

The accumulating number of fin-
ished products after incoming task.

Finished products = Task schedule / (Work
pace + Actual task time)

Problem com-
plexity (C)

The difference of additional work-
load caused by problem compared to
the basic task load.

An input constant in percent, with differ-
ent values for different complexity levels.

Initialcondition

Initial
personal
capacity* (A)

The work capacities of each individ-
ual (except time) at the beginning of
work session, depending of personal
profile and the circumstantial stres-
sors in the assigned position.

Initial personal capacity = 100 - Effect
from personal profile + Effect from Cir-
cumstantial stressor

Task time
variation (A)

The percent of time variation from
preferred basic task time, depending
on the individual skill level with the
tasks in the assigned position.

Task time variation = Training experience
+ Learning ability + Skill decay

W
ork

load

Basic task
load** (C)

The personal preference of task load,
measured for each individual.

An input constant in REEDCO Score,
Newton, seconds, and VACP score respec-
tively.

Task load**

(A)
The task requirement, designed by
industrial engineers.

An input constant in REEDCO Score,
Newton, seconds, and VACP score respec-
tively.

Workload**

(A)
The perceived difference between
basic task load and incoming task
load, of each task load component.

Workload = (Task load - Basic task
load)/Basic task load + Dynamic effect
from circumstantial stressors

Task sched-
ule (C)

The timing of incoming task. An input sequence of 0 and 1, indicating
the status of idle and incoming tasks dur-
ing the working duration.

Problem
occurence (C)

The timing of happening problems,
as a sequence of 0 and 1, with 1
indicating the occurrence of prob-
lem/failure.

An input sequence * Problem complexity

Working pro-
cess (A)

A sequence of 0 and 1, representing
the schedule of generated incoming
tasks and occurring problem/failure.

Task generation = IF THEN ELSE ( Task
schedule + Problem occurrence = 0 , 0, 1 )

P
ersonalcapacity

Working
capacity * (S)

The current level of working capaci-
ties of each individual, started from
the "Initial personal capacity" in the
beginning and degraded throughout
the shift.

Personal capacity = Personal initial capac-
ity - Total degradation

Actual task
time (A)

The duration that the worker fin-
ishes a task.

Actual task time = Basic task time * (100
+ Random value of ( Task time variation )
)

Natural
degradation *

(C)

The capacity degradation rate in a
normal working session.

An input constant in percent per minute.

Stressed
degradation *

(A)

The degradation rate that happens
during stressful working duration.

Stressed degradation = Stress effect on ca-
pacity degradation

Total degra-
dation * (F)

The total degradation of a working
capacity at a certain time

Total degradation = Natural degradation
+ Stressed degradation

Stress
m

echanism

Average
situational
demand (A)

The average demand from the per-
ceived workload.

Average situational demand = Average of
all Workload

Average
capability
degradation
(A)

The average degradation of working
capacity.

Average capability degradation = Average
of all Working capacity

Perceived
situational
demand (A)

A sequence of 1 and 0 indicating
the status of considering the current
task demand exceeds the personal
threshold or not, respectively.

Perceived situational demand = IF THEN
ELSE ( Average situational demand ≥
Task demand threshold, 1, 0 )

Continued on the next page
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B. Structure and details of the simulation with proposed conceptual model

Variable (#) Explanation Value/Equation
Perceived
capability
degradation
(A)

A sequence of 1 and 0 indicating
the current capacity degradation ex-
ceeds the personal threshold or not,
respectively.

Perceived capability degradation = IF
THEN ELSE ( Average capability degra-
dation ≥ Capability threshold, 1, 0 )

Perceived de-
manding task
(A)

A sequence of 0 and 1 indicating
the status of considering the incom-
ing tasks as not demanding and de-
manding, respectively.

Perceived demanding task = IF THEN
ELSE ( Perceived situational demand = 1
:AND: Perceived capability degradation =
1 , 1, 0 )

Stress accu-
mulation rate
(F)

The accumulation of each type of
stress when perceiving the current
task is demanding.

Task schedule * Perceived demanding
task * stress unit

Stress value
(S)

Accumulated values of each type of
stress.

Stress value = Stress accumulation rate -
Stress relaxation rate

Stress effect
on perceived
load (A)

The additional load from stress
types on perceived workload, nega-
tive value (reduced perceived work-
load) in case of sustained attention,
positive value in other cases (in-
creased perceived workload).

Stress effect on perceived load = ( Stress
value / Stress threshold ) * Workload

Stress effect
on capacity
degradation
(A)

The effect from stress, negative
value in case of sustained attention,
positive value in others.

Stress effect on capacity degradation = (
Stress value / Stress threshold ) * Natural
degradation

Stress relax-
ation rate (F)

The natural relaxation rate from
stress value, that is in effect while
there is no incoming task, or that
stress is not accumulating.

Stress relaxation rate = IF THEN ELSE
(Task schedule = 0, ( Stress value - Stress
threshold) / Stress threshold, 0)

P
erform

ance
profile

Pace keeping
ability (A)

The ability of each individual to keep
the "basic work pace" during the
working session.

Pace keeping ability = Task time variation
+ ( Psychomotor capacity / Personal initial
psychomotor capacity ) + Buffer capacity

Distraction
occurrence
(A)

The probability of distraction or fin-
ishing the task late.

Distraction occurrence = Failure rate + (
Time task load / Basic task time ) + ( Work
pace / Basic work pace )

Physical
reaction (A)

The readiness of physical reaction to
perform expected work movement.

Physical reaction = Posture capacity / Per-
sonal initial posture capacity + Force ca-
pacity / Personal initial force capacity

Physical
degradation
(F)

The degradation of physical capabil-
ity to meet the planned productivity
demand.

Physical degradation = Posture stress
degradation / Total posture degradation
+ Force stress degradation / Total force
degradation

Attention
compensa-
tion (A)

The positive effect of Sustained at-
tention on quality performance.

Attention compensation = Stress effect on
perceived load (with the value of Sus-
tained attention) + Support readiness

Attention
degradation
(F)

The degradation of quality-oriented
attention.

Attention degradation = Visual stress
degradation / Total visual degradation +
Cognitive stress degradation / Total cog-
nitive degradation

Availability
(A)

The probability that the worker is
ready for incoming tasks.

Availability = Pace keeping ability - Dis-
traction occurrence

Productivity
(A)

The probability that the worker is
able to perform correct task move-
ment in time.

Productivity = Physical reaction - Physi-
cal degradation

Quality (A) The probability that the worker can
produce a task output that meets
quality expectation level.

Quality = Attention compensation - Atten-
tion degradation

OLE (A) The personal probability of effective
work.

OLE = Availability * Productivity * Qual-
ity

#: C: Constant / A: Auxiliary / F: Flow / S: Stock
*: posture/force/visual/auditory/cognitive/psychomotor (except "time")
**: posture/force/time/visual/auditory/cognitive/psychomotor
stress: sustained attention / acute stress / chronic stress
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