
ÓBUDA UNIVERSITY

A Thesis submitted for the degree of Doctor of Philosophy

SOFT COMPUTING METHODS FOR
CLASSIFICATION PROBLEMS IN INTELLIGENT

SPACE

Balázs Tusor

Supervisor

Prof. Dr. Annamária R. Várkonyi-Kóczy

Doctoral School of Applied Informatics and Applied
Mathematics

March 2021

Members of the Comprehensive Examination Committee:

Members of the Defense Committee:

Date of the defense:

Acknowledgements

First and foremost I would like to express my deepest gratitude to my Supervisor Prof. Dr.

Annamária R. Várkonyi-Kóczy for her generous support and guidance. I highly appreciate

and acknowledge the ideas, enthusiasm, expertise, time and especially the enormous

patience with which she supported me to complete my Ph.D. Thesis.

I gratefully acknowledge the support of the Doctoral School of Applied Informatics and

Applied Mathematics, Óbuda University.

I am also thankful to the Hungarian Scientific Research Fund (OTKA K105846 and

K78576), for providing the funding which allowed me to undertake parts of this research, as

well as the Research & Development Operational Program for the project "Modernization

and Improvement of Technical Infrastructure for Research and Development of J. Selye

University in the Fields of Nanotechnology and Intelligent Space", ITMS 26210120042,

co-funded by the European Regional Development Fund.

I would like to sincerely thank the support of my colleagues throughout the years of my

research at Óbuda University and J. Selye University, and especially my good friends, Dr.

Adrienn Dineva and Dr. Gabriella Simon-Nagy, for their invaluable help during my Ph.D.

course.

Lastly, I would like to express my thanks to my family for all their love and support.

iii

Contents

1 Introduction 1
1.1 Research Aims and Their Relevance in the Context of the State of the Art . 2

1.2 Organization of the Thesis and Main Directions 3

1.3 Research Methodology . 7

2 Hand Posture Modeling for Intelligent Space Applications 8
2.1 The Intelligent Space . 10

2.2 Hand Detection and Data Preprocessing 11

2.3 Fuzzy Hand Posture Models . 14

2.4 Fuzzy Hand Posture Recognition . 16

2.4.1 Fuzzy Reasoning-based Classification 20

2.4.2 The Training Session . 21

2.4.3 FHPM-based Hand Recognition 21

2.5 Experimental Results . 22

2.6 Evaluation and Applicability . 23

2.7 Summary of New Results . 24

2.7.1 Thesis Group I. 25

2.7.1.1 Thesis Statement I.1. 25

2.7.1.2 Thesis Statement I.2. 25

3 A New Clustering Method for the Acceleration of the Training of Artificial
Neural Networks 26
3.1 The Issue of Structural Complexity in Neural Networks 27

3.1.1 Feed-forward Artificial Neural Networks 27

3.1.2 Radial Basis Function Neural Networks 27

3.1.3 The Problem of Structural Complexity 28

3.2 The Clustering Algorithm . 29

3.3 Experimental Results . 31

iv

3.3.1 Experiments Regarding ANNs . 32

3.3.1.1 A Simple Problem: Easily Separable Classes 32

3.3.1.2 A More Complex Problem: Slight Overlapping 35

3.3.2 Experiments Regarding CFNNs 37

3.3.2.1 General Time Reduction (Incremental Training) 37

3.3.2.2 General Time Reduction (Non-Interrupted Training) . . . 38

3.3.2.3 The Effect of Clustering Distance 39

3.3.3 Experiments Regarding RBFs . 41

3.3.3.1 No Overlapping Classes 41

3.3.3.2 Some Overlapping in Classes 43

3.3.3.3 Significant Overlapping in Classes 43

3.4 Evaluation and Applicability . 45

3.5 Summary of New Results . 45

3.5.1 Thesis Statement II. 47

4 An Intelligent Space Control System Framework 48
4.1 Knowledge Representation . 51

4.1.1 Knowledge Structure . 52

4.1.2 Dictionaries . 52

4.1.3 Relationships between Concepts and Instances 54

4.1.3.1 Descriptive edges . 54

4.1.3.2 Quantifier edges . 55

4.1.3.3 Specification edges . 56

4.1.4 Observation-based Learning . 57

4.2 The General Architecture of the Proposed iSpace Control System Framework 58

4.2.1 Intelligent Detection . 59

4.2.2 Command Interpretation and Command Processing 59

4.2.2.1 Command Types . 59

4.2.2.2 Command Parsing . 60

4.2.2.3 Command Interpretation 61

4.2.2.4 Instruction and Output Manager 62

4.2.3 Knowledge Representation in the iSCS 63

4.2.3.1 Hypothesis Storage . 63

4.2.4 Autonomous Action Planner . 64

4.2.4.1 Hypothesis Training . 64

4.2.4.2 Hypothesis Trigger Checking 65

4.3 Simulation . 66

v

4.4 Evaluation . 68

4.5 Summary of New Results . 69

4.5.1 Thesis Statement III. 71

5 Adaptive Fuzzy Rule-based Classification with Fuzzy Filter Networks 72
5.1 The Fuzzy Filter Network . 74

5.1.1 The Architecture of the Classifier 74

5.1.2 The Training of the Classifier - Radial Representative Clustering . . 76

5.1.2.1 Analytical Radial Representative Clustering 78

5.1.2.2 Reduction . 80

5.1.3 Parallel Fuzzy Filter Network . 81

5.1.3.1 Parallel Training . 81

5.1.3.2 Parallel Evaluation . 82

5.2 Experimental Results . 83

5.2.1 Experiment 1: Sequential Color Filtering 83

5.2.2 Experiment 2: Parallel Color Filtering 86

5.3 Evaluation and Applicability . 88

5.4 Summary of New Results . 89

5.4.1 Thesis Group IV. 90

5.4.1.1 Thesis Statement IV.1. 90

5.4.1.2 Thesis Statement IV.2. 90

6 Real-time Classification with Fuzzy Hypermatrices 91
6.1 Fuzzy Hypermatrices . 92

6.1.1 The General Architecture . 92

6.1.2 Training . 94

6.1.3 Evaluation . 97

6.2 Parallel FHM Color Filtering . 98

6.2.1 Parallel Training . 98

6.2.2 Parallel Evaluation . 100

6.3 Experimental Results . 100

6.3.1 Sequential Experiments . 100

6.3.1.1 Comparison with Classic Lookup Tables 101

6.3.1.2 Investigating the Effect of the Range Parameter 102

6.3.2 Parallel FHM Experiments . 104

6.3.2.1 Training Speed . 104

6.3.3 Evaluation Speed and Performance 106

vi

6.4 Applicability . 109

6.4.1 Spatial Complexity . 110

6.4.2 Time Complexity . 111

6.5 Summary of New Results . 111

6.5.1 Thesis Group V. 112

6.5.1.1 Thesis Statement V.1. 112

6.5.1.2 Thesis Statement V.2 112

7 Real-time Classification with Sequential Fuzzy Indexing Tables 113
7.1 Sequential Fuzzy Lookup Tables . 115

7.1.1 Constant Length SFITs . 115

7.1.1.1 The Architecture of Constant Length SFITs 115

7.1.1.2 The Training Procedure of c-SFITs 117

7.1.1.3 The Evaluation Procedure of c-SFITs 119

7.1.2 Variable Length SFITs . 120

7.1.2.1 The Architecture of v-SFITs 120

7.1.2.2 The Training of v-SFITs 121

7.1.2.3 The Evaluation of v-SFITs 122

7.2 Experimental Results . 123

7.2.1 Constant Length SFIT Experimental Results 123

7.2.1.1 The Wisconsin Breast Cancer Dataset 124

7.2.1.2 The Seismic Bumps Dataset 125

7.2.2 Variable Length SFIT Experimental Results 126

7.2.2.1 Classification of English words 126

7.2.2.2 Classification of Shape Descriptors 129

7.3 Applicability of the SFIT classifier . 130

7.3.1 Time Complexity of the SFIT classifier 130

7.3.2 Spatial Complexity of the SFIT classifier 131

7.3.3 A Practical Application . 132

7.4 Summary of New Results . 133

7.4.1 Thesis Group VI. 134

7.4.1.1 Thesis Statement VI.1. 134

7.4.1.2 Thesis Statement VI.2. 135

8 Conclusions 136

9 Possible Targets of Future Research 140

vii

10 New Results 144
10.1 Thesis Group I. 144

10.1.1 Thesis Statement I.1. 144

10.1.1.1 Thesis Statement I.2. 144

10.1.2 Thesis Statement II. 145

10.1.3 Thesis Statement III. 145

10.1.4 Thesis Group IV. 145

10.1.4.1 Thesis Statement IV.1. 145

10.1.4.2 Thesis Statement IV.2. 146

10.2 Thesis Group V. 146

10.2.1 Thesis Statement V.1. 146

10.2.2 Thesis Statement V.2. 146

10.3 Thesis Group VI. 146

10.3.1 Thesis Statement VI.1. 147

10.3.2 Thesis Statement VI.2. 147

Appendix List of Symbols 154

Appendix A Statistical Measures A-1

Appendix B References A-3
B.1 Publications Strictly Related to the Thesis Work A-3

B.1.1 Journal Articles . A-3

B.1.2 Book Chapters . A-3

B.1.3 Conference Papers . A-4

B.2 Further Publications of the Author . A-6

viii

Chapter 1

Introduction

In recent decades, with the spreading of machine intelligence, “smart environments” have

become a popular tool for humans to collect information, form the environment, get

assistance, etc. The Intelligent Space (iSpace) [1] is an intelligent environmental system

that offers various services for improving the comfort and safety of everyday life as well as

for achieving personalized healthcare and independent living for disabled persons. The

main and ultimate goal of such systems is to build an environment that is human centered,

comprehends human interaction and satisfies them [2].

The iSpace, which has been developed at the University of Tokyo, is a special intelligent

implementation of the Ubiquitous Computing paradigm [3] and a variant of the widely

known "Smart Environment" (e.g. "Smart Home") frameworks. Intelligent Space can be

any smart area such as a room, railway station, underpass, road crossing, or even a whole

town, that is equipped with intelligent sensors and agents. The main feature of the iSpace is

that the intelligence itself is not present in the agents but it is distributed in the whole space.

The main advantages of this component based architecture are that the iSpace can easily be

constructed or modified by the installation or replacement of so-called Distributed

Intelligent Networked Devices (DINDs) responsible for monitoring a part of the space,

processing the sensed data, making local decisions, and communicating with other DINDs

or agents if necessary. Thus, a further advantage of such a system is that the agents in the

space do not have to possess any complex logic.

Any room or area can be converted to an iSpace by installing DINDs into it. Although,

when building iSpace into an existing area we have to keep in view that the system should be

human centered, should not be disturbing for the people who are using it and the installation

should not alter the area overly. Another important feature of the iSpace is that it builds

models of the environment; it can observe the events and actions taking place in the room

or area and is able to react to them if necessary, in order to achieve some kind of change or

1

give information to the users, help in orientation or anticipate crisis situations. It can also

comprehend human interactions: the user can give commands to the Intelligent Space to use

certain services. Therefore, the system should be easy to use for the people in it, without the

need for them to spend much time learning about how the system is to be used.

1.1 Research Aims and Their Relevance in the Context of
the State of the Art

Machine learning is an important field of computer science that automatically creates models

(usually from a priori knowledge) in order to implement a pattern recognition or regression

function. It has an important role in iSpace applications as well, classification and pattern

recognition is essential to process data from various sensors (e.g. video, voice and other

sounds, temperature, CO2 rate, etc.) in order to provide a service (voice recognition, text

parsing etc.), tracking the location of robotic agents (task coordination or ability extension)

or human users (danger assessment, hand gesture recognition).

The Intelligent Space is a widely researched framework. Numerous new methods and

applications had been developed for it since its establishment. Robot control [4] is one of

the central areas in iSpace research. [5] has proposed a mapping method for the robotic

agents of the iSpace, [6] has developed a human following mobile robot control using the

data of distributed sensors, while [7] has proposed an obstacle avoidance method for car-like

mobile robots. [8] has described a new virtual iSpace control framework, while in [9] an

intercontinental iSpace setup is described that has been created between the Hashimoto Lab

at the University of Tokyo in Japan and the Advanced Diagnosis Automation and Control Lab

at North Carolina University in the USA, in which a mobile robot in the former laboratory

was controlled by a path-tracking controller in the latter one, etc.

Jeni et al. [10][11] and [12] have developed a mobile agent control system using

reinforced learning. [13] has created an image based object localization method, then has

proposed facial expression recognition system in [14] using near infrared cameras. Yokoi et

al. [15] have developed a hand localization method that uses ultrasonic and inertial sensors,

while Niitsuma et al. [16] have introduced the design of spatial memory, in which

knowledge is assigned to given areas of 3D physical space, which can be recalled on

command (by pointing a finger at it). In [17] they have proposed an observation system that

can track human activity regarding given objects, then expanded on the idea to develop a

method that localizes objects by observing the physical interaction a human user has with it.

In [18] this idea has been expanded upon, incorporating human-object interactions in it as

well. Subsequently, [19] has extended it with visual and vibration displays.

2

[20] has created a new method for ethologically inspired human-robot interaction,

which has been expanded on by [21], who proposed an attachment behavior model for

social robots in the iSpace. [22] has developed an ethologically inspired nonverbal

human-robot communication method for ambient assisted living applications. [23] has

proposed a human movement profile classifier using Self Organized Maps [24], then has

developed a human activity recognition system using conditional fields [25] and particle

swarm optimization [26].

As many of the previously mentioned researches show, classification methods can be very

advantageously used in iSpace applications. The goal of my research thus far has also been

introducing new methods that can extend the toolkit available for the iSpace. For this, I have

developed a new hand posture detection method for a gesture-based man-machine interface

(Thesis I) in the iSpace; a new clustering method for reducing neural network training time

(Thesis II), a general iSpace control system framework (Thesis III) and various classification

methods (Theses Group IV-VI) for pattern recognition.

1.2 Organization of the Thesis and Main Directions

The main objectives of my thesis work are the following:

• Thesis Group I presents a new hand posture detection method for a gesture-based

man-machine interface.

To reliably describe human hand postures, I have developed so-called Fuzzy Hand

Posture Models (Thesis I.1) that use 14 distinct features. Furthermore, I have

introduced a new neural network structure named Circular Fuzzy Neural Networks

(CFNNs, Thesis I.2) for the processing of the 3D coordinate points. CFNNs are a

trimmed and fuzzified variant of Artificial Neural Networks (ANNs, [27]). In order to

achieve a fuzzy neural network [28], a pair of ANNs is used to approximate the lower

and upper bounds of each fuzzy [29] membership function value. To reduce the

increased training time requirement that is caused by the doubled complexity of the

network, the number of connections between the input layer and the hidden layer

neurons are reduced: each input coordinate value is given to only 3 neighboring

hidden layer neurons.

The first and the last hidden layer neurons are considered neighbors as well, hence it

is a circular structure. The output of the method is the label of the hand posture model

that is the most similar to the detected one, considering its shape. Since the proposed

fuzzy hand posture feature set consists of 14 features, three separate CFNNs are used

to map the 15 input coordinate triplets into 5-5-4 outputs. The resulting 14 fuzzy

3

features (represented by the lower and upper interval limits) are processed with a

fuzzy inference machine that finds the closest known hand posture to it. The

performance of the method has been shown for 6 different hand postures, on which

the conducted experiments have shown a 96% classification precision on average.

• Complexity is a very important factor for neural networks, which typically scales

with the number of dimensions of the problem. It is a significant problem for the

CFNNs as well: the time requirement for training (with the general neural network

back propagation algorithm) scales significantly with the number of input samples

(considering the high dimensionality of the hand detection problem), even with the

reduced complexity gained from the connection trimming.

In Thesis II, to further enhance the training speed of Artificial Neural Networks (such

as the Circular Fuzzy Neural Networks), I have introduced a new clustering method.

The proposed method is based on the k-means method, but instead of creating k

clusters and assigning every sample into cluster with the nearest mean value, it groups

each sample (in the order the data is received) with the rest of the samples that are

closer than an arbitrary similarity factor d, and returns the center of each group. The

method has been shown to decrease training time significantly, at the cost of a slight

decrease in classification precision, depending on similarity factor δ used in the

clustering algorithm. Smaller δ values generally results in less training time reduction

but also less loss of precision. For example, in one conducted experiment on the 6

hand postures, the initial 120 samples (20 each) had been reduced to only 42, which

has decreased the training by 39% but also reduced the precision from 97% to 95.2%.

On the other hand, using a slightly smaller δ value has resulted in a 32.8% reduction

of training time while no loss of precision. The same clustering method has also been

used to calculate the parameters of Radial Basis Function (RBF, [30]) networks.

• In Thesis Group III a new control system framework is proposed for the Intelligent

Space.

I have also introduced a new graph-based knowledge representation method for

storing a priori knowledge. It is designed as a graph-based structure, where each

individual node represents a concept or action. The nodes are homogeneous, their

identification is done through dictionaries that assign labels to each, thus ensuring

language independence. The relations between the concepts are described through

edges between their respective nodes, making it possible to store and retrieve

complex information (the a priori knowledge) in the system. Based on observed

4

commands given by the user, it creates hypotheses (a posteriori knowledge). Each

hypothesis is bound to one or more conditions and each time the system observes the

same command in under very similar circumstances (e.g. around the same time of the

day) then the reliability factor of the hypothesis is increased. If the given conditions

are met for a sufficiently reliable hypothesis (with reliability factor exceeding an

arbitrary threshold) then its command is automatically issued by the system. Its

effectiveness has been observed in a virtual Intelligent Space where the daily life of

one inhabitant is simulated, who gives the iSpace orders according to his or her needs.

• The focus of Thesis Group IV is a new rule-based classifier called Fuzzy Filter

Network based on a modified RBF neural network architecture (Thesis IV.1).

The base idea is that instead of calculating the activated linear combination of the

input data (like in the case of an RBF network), the proposed method realizes simple

pattern matching by using the radial basis functions for proximity detection, then

simply choosing the class or label associated to the pattern (characterized by the

center and width parameters of the basis functions) as output. This classifier has the

advantage of being very simple to implement, train (by clustering) and modify the

trained knowledge (by adding or removing patterns). I have designed a new

clustering approach for the training of the fuzzy filter network: the Analytical Radial

Representative clustering method. The algorithm implements a so-called bottom-up

approach, calculating the appropriate cluster radiuses in a single phase. The efficacy

of the thus trained network is shown through experiments. Beside the sequential

implementation, I have designed a parallel realization as well (Thesis IV.2), which

reduced the complexity of both the training (down from O(PNm) to O(Nm)) and

the operation (down from O(PN) to O(P)) of the classifier (considering N attributes

and P samples).

• The focus of Thesis Group V is a new lookup table [31] based classifier that is

extended with fuzzy logic, called Fuzzy Hypermatrices (FHMs, Thesis V.1).

The method maintains multi-dimensional arrays that store the precalculated class

labels and fuzzy membership function values for all input attribute value

combinations. The input attribute values are directly used to address the array. It

achieves a very fast and simple classification, with the downside that it requires a

significant amount of memory to operate (scaling with the number of attributes and

the size of their domains), thus its applicability is restricted to problems with low

dimensionality, such as color filtering (in HSV or RGB color spaces [32]). I have also

developed a parallel implementation of the FHM method (Thesis V.2) that has been

5

shown to be able achieve a ∼5100-7100% speed increase in image processing

compared to the non-parallelized FHMs.

• The focus of Thesis Group VI is a fuzzy classifier called Sequential Fuzzy Indexing

Tables (constant length SFIT or c-SFIT) that uses a sequence of one 1D and N 2D

fuzzy lookup tables in to achieve a more memory-efficient classification than FHMs

on problems with a constant number (N) of attributes (Thesis VI.1).

It has a layered structure, where each layer contains a lookup table that combines the

value of an attribute belonging to that layer to the combination gained in the previous

layers. Thus in each layer, the proposed method reduces the size of the problem space

in which the class of the input pattern is. This significantly reduces the arrays that are

needed to be stored in the memory, compared to FHMs. The performance of the

classifier has been tested on benchmark data sets and compared to that of other state

of the art classifiers, such as Ordered Weighted Averaging Operators [33] and

Neuro-Fuzzy [34] classifiers. The proposed classifier performs with slightly less

precision but faster than the other methods.

I have extended the Sequential Fuzzy Indexing Tables classifier to work on variable

length data as well (v-SFIT, Thesis VI.2), at the cost of doubling the structure to hold

the class markers separately. The proposed methods have also been successfully

applied in an iSpace-based dietary assistant application that uses a c-SFIT for storing

food items based on their nutrition data and a v-SFIT for storing the names of food

items.

The experimental results and complexity evaluation of each presented method are given

at the end of their respective chapter.

6

1.3 Research Methodology

During the course of my research, the new methods have been developed and tested using

different computers, of which the configurations are summed up in Table 1.1. These are

referenced in the following chapters whenever test results are presented, by their ID. Since

the only thing that is unique for each of these particular computers is the amount of RAM, it

is used to easily differentiate between them (as well as emphasize the difference in strength

of technical advancement). For PC-16 the graphics card is also detailed, because it is the

only device I have used for parallel computing research, which uses the GPU to enhance the

computational speed of some of the presented methods. The software used to implement

said methods have been either MS. Visual Studio (using C++) or Matlab.

Table 1.1: The computer configurations used during my research.

ID CPU RAM Additional Notes

PC-1
Intel® Pentium® 4

@3.00 GHz
1 GB Desktop PC, MS. Windows XP+SP3

PC-2
Intel® Core™ 2 Duo,

T5670 @1.80 GHz
2 GB HP Compaq 6720s, MS. Windows 7 32-bit

PC-3
Intel® Pentium® 4

@3.00 GHZ
3 GB Desktop PC, MS. Windows XP 32-bit

PC-4
Intel® Core™ i5-2450M

@2.50GHz
4 GB HP ProBook 4540s, MS. Windows 7 32-bit

PC-8
Intel® Core™ i5-4590

@ 3.30 GHz
8 GB Desktop PC, Windows 7 64-bit

PC-16
Intel® Core™ i5-4590

@ 3.30 GHz
16 GB

Desktop PC, Gigabyte® GeForce™ GTX 960

graphics card with 4GB GDDR5 RAM

7

Chapter 2

Hand Posture Modeling for Intelligent
Space Applications

Today, computers play an increasing role in our everyday life. The applications of intelligent

systems that aim to improve the living conditions and quality of everyday life are also gaining

more and more importance. In ideal case, these systems are realized in such a way that the

usage of the systems becomes as easy as possible, while the presence of the system does not

bother its user at all. This leads to the basic idea of “ubiquitous computing”, proposed by

[3]. One example for ubiquitous computing applications is the Intelligent Space (iSpace) [1],

which has been developed at the University of Tokyo. ISpace is a room or area that has

built-in intelligence: it can monitor the events and actions taking place in the room or area

and it is able to react to them.

It has become an essential expectation towards the Intelligent Space to make

communication with the environment possible for the user using simple, natural signs.

Hand gestures are among these kinds of communication methods. In this chapter, a new

hand posture and gesture modeling and recognition system is presented that is able to

determine the shape of the detected hand based on the coordinate model computed by the

hand detection and tracking system proposed in [35] . Hence, creating an intuitive interface

for the iSpace to make possible for the user to communicate with the environment by using

hand gestures.

The comfortableness of the way of communication between humans and the iSpace is of

vital importance from the point of view of usability of the system. The more natural the

interaction is, the wider the applicability can be. Because of this, I decided to use one of the

basic human talents, coordinated complex moving of the hands, for communication. The

idea is that after that the sensors of the iSpace detect and separate the hands of the humans,

the intelligence of the system determines the postures and movements and translates them

8

to desired actions. In this chapter, I present a hand posture and gesture modeling and

recognition system that is able to determine the shape of the detected hand based on the

coordinate model computed by the hand detection and tracking system proposed in [35].

Hence, creating an intuitive interface for the iSpace to make possible for the user to

communicate with the environment by using hand gestures.

Numerous systems have been developed for hand gesture recognition. Here, I briefly

summarize three characteristic approaches which, similarly to the introduced system, use

information directly or indirectly obtained from images made by one or more cameras. The

system proposed by [36] is based on the idea of divide and-conquer strategy: it breaks hand

gestures to basic hand postures and movements, which can be treated as primitives for

syntactic analysis based on grammars. The system consists of a two-level architecture that

decouples hand gesture recognition into two stages: the low-level hand posture detection

and tracking and the high-level hand gesture recognition and motion analysis. For the

low-level hand posture detection, it uses a statistical approach based on Haar-like features

[37], while for the high-level hand gesture detection it employs a syntactic approach based

on the linguistic pattern recognition technique to fully exploit the composite property of

hand gestures. The detected hand postures and motion trajectories are sent from the low

level to the high level of the architecture as primitives for the syntactic analysis so that the

whole gesture can be recognized according to the predefined grammars.

[38] proposes a fuzzy rule-based approach that uses a data glove to recognize hand

gestures for the LIBRAS (Língua Brasileira de Sinais, Brazilian Sign Language) system.

The method classifies the given hand postures based on the angles of the finger joints. Each

gesture is broken into a list of monotonic segments, which determine a finite state machine

that is used to recognize the posture.

In the system proposed in [39] Pseudo 2D Hidden Markov Models (P2-DHMMs) are

used for hand gesture recognition. The basic idea is the real-time generation of gesture

models for hand gesture recognition in the content analysis of video sequence from a CCD

camera. To avoid the problem caused by the exponential complexity of the algorithm of fully

connected two-dimension hidden Markov models, the connectivity of the network has been

reduced in several ways, thus gaining P2-DHMMs, which retains all of the useful HMMs

features. The models can be trained similarly to neural networks.

The fuzzy neural network architecture proposed by [40] is based on incorporating the

idea of fuzzy ARTMAP [41] in feature recognition neural networks [42]. The inputs of the

neural network consist of fuzzy membership function values, which are determined from

the gray level value of each pixels of the monochrome image. A gesture recognition fuzzy

neural network is used (with four layers, excluding the input layer) for feature recognition.

9

The implemented system offers a flexible framework for gesture recognition, and can be used

efficiently in scale invariant systems.

This chapter is organized as follows. Section 2.1 describes the most important features

and the architecture of the Intelligent Space. Section 2.2 gives a brief overview of the

procedure that detects the human hand and produces the input data for the new recognition

system proposed. Section 2.3 presents the Fuzzy Hand Posture Model, an intuitive hand

posture model that is used for modeling the human hand. In Section 2.4, an overview of the

proposed system is given together with the detailed description of its parts and of the

functioning of the system. In Section 2.5 an analysis the performance of the new technique

and make comparison to other hand gesture recognition methods is presented in

Section 2.6. Finally, Section 2.7 summarizes the new results.

2.1 The Intelligent Space

The Intelligent Space (iSpace) is a smart environmental system originally developed at the

Hashimoto Laboratory (at the University of Tokyo, Japan). Similarly to other Smart Home

frameworks, the main goal of the Intelligent Space is to build an environment that

comprehends human intentions and satisfies them [2]. This means that the system should be

easy to use for the people in it: they should be able to express their will through intuitive

actions and there should be no need for them to learn how the system is to be used. Beyond

supporting humans, the iSpace should provide an interface also to its artificial agents, e.g.

to the robots offering physical services to the humans using the iSpace.

The most characteristic feature of the iSpace is that the intelligence is distributed in the

whole space, not in the individual agents. Thus, the agents in the space do not require

complex logic and sensors, since the Intelligent Space itself monitors the area, evaluates the

computations, and gives instructions to the agents.

The system can also react with its environment and provide information or physical

services to its users. Another requirement for the system is that it should be human

centered, and should not be disturbing for the people who are using it. Furthermore, the

installation of the Intelligent Space into an existing area should not alter that area overly.

The most characteristic feature of the iSpace is that the intelligence is distributed in the

whole space, not in the individual agents. Thus, the agents in the space do not require

complex logic and sensors, since the Intelligent Space itself monitors the area, evaluates the

computations, and gives instructions to the agents.

The iSpace is an active information space because information can be requested by the

clients and provided by the system through active devices. It is thus a so-called soft

10

environment: it has the capability to adapt itself to its clients [1].

Any room or area can be converted to an Intelligent Space by installing so-called

Distributed Intelligent Networked Devices (DINDs) into it. A DIND consists of three main

components (Fig. 2.1): a sensor which can monitor a part of the space, a processing unit

that processes the sensed data and makes decisions, and a network module that makes

possible for the DIND to communicate with other DINDs or with agents of the iSpace via

wireless LAN. The advantages of this component based architecture are that the iSpace can

easily be constructed or modified by the installation or replacement of DINDs.

ISpace applications, existing and under development, (see e.g [2] and [43]) aim at such

tasks as the monitoring of physiological functions of humans, the positioning and tracking

of humans, the localization and control of mobile robots, finding paths for them by using

itineraries taken by people, etc. A detailed overview of the iSpace can be found e.g. in [1],

[43], and [2].

Figure 2.1: The architecture of a Distributed Intelligent Networking Device.

2.2 Hand Detection and Data Preprocessing

This subsection briefly describes the subsystem extracting and classifying various hand

postures from the images of a stereo camera pair, which is achieved in two steps: first, the

frames of the cameras are processed, yielding a series of three dimensional point locations.

Then, these spatial points are processed by a soft computing based intelligent modeling

component.

The inputs of the proposed hand posture detection system are produced by the hand

tracking and recognition system proposed in [35]. It detects the human hand by using two

cameras (Fig. 2.2 (a)), which are monitoring the same scene from two different positions

and preprocesses the data into a three dimensional coordinate model. The 3D model of the

11

hand consists of the spatial location of the feature points of the detected hand. The procedure

works the following way: Firstly, it locates the areas in the pictures of the two cameras where

visible human skin can be detected using histogram back projection [42]:

backproj(x, y) = H(hue(x, y)) (2.1)

where backproj() means the single channel backprojection image, H is the hue histogram,

hue() is the single channel hue plane of the input image and (x, y) are coordinates in the

image. This means that to a given color model (histogram) of a given object (human skin),

as a result, the probability distribution of skin is obtained.

The next step is the extraction of feature points considering curvature extrema: peaks

(e.g., fingertips), and valleys (such as the roots of the fingers, see [44], [45]). After that, the

selected feature points are matched in a stereo image pair. The matching occurs separately

for the peaks and the valleys using the fuzzy based matching algorithm proposed by [28]. It

works in the following way: First, the candidate pairs (i.e., points lying within a given fuzzy

neighborhood of their corresponding epipolar lines) are located. Then, for each candidate

point pair detected in the stereo image pair, the sum of the differences of their neighborhoods

weighted by a 2-D fuzzy set is calculated:

∑
x,y∈w,x′,y′∈w′

|I(x, y)− I ′(x′, y′)| · µa(x′, y′) · µb(x′, y′) (2.2)

where I(x, y) and I ′(x′, y′) mean the intensity values in the left and right images,

respectively; and µa and µb denote the membership functions used as weighting functions.

Figure 2.2: The setup of the preprocessing system (a) and the considered hand postures (b)− (g).

12

The environments of the feature points are denoted by w and w′. The pairing that yielded

the smallest sum of the weighted difference is considered to be matching.

This results in a variable number of feature points (depending on the given inputs). Since

neural networks in general require a constant number of inputs, further so-called subdivision

points are used as well. The subdivision points are determined in the left frame as one

or more division points of the sections determined by two consecutive feature points. The

subsections have the same length within one section, but not necessarily all of them are

of the same length (here, the length of a section means the number of contour points it

includes). The number of subdivision points, for each section, is proportional to the length

of that section. The total number of subdivision points depends on the number of feature

points: These two values, together, should yield a constant number, which equals the number

of inputs of the CFNNs. In case of complete lack of feature points, the whole contour is

equidistantly subdivided (so the total number of feature and subdivision points would be the

desired number of outputs). The subdivision points of the left frame are then matched against

contour sections on the right frame, again, using the fuzzy point-matching algorithm [45].

Finally, the three dimensional coordinates of the feature points are calculated using the

known camera matrices (for further details see [35]). The result of the procedure consists of

15 spatial coordinate points (a choice made by [35], finding a compromise between using a

simple model with too few points (resulting in a lower overall potential classification

accuracy) or a more complex model that is more efficient in describing a hand (thus making

it easier to differentiate between different postures, but in turn raising the computational

complexity as well)). Fig. 2.3 shows an example for the visualized results of the procedure.

From the detected spatial coordinate model the system determines the hand posture and

recognizes the hand gesture from the identified sequence of hand postures.

Figure 2.3: The Coordinate Model of a Detected Hand Posture.

13

It was found that this procedure gives acceptable results if the hand lies apart from the

homogeneous background and does not lie too near the camera. (In the first case, the contour

might become noisy due to the hand region touching the shadow while in the latter one, peaks

and valleys may fail to be detected.)

2.3 Fuzzy Hand Posture Models

In order to efficiently distinguish different hand postures, I have developed Fuzzy Hand

Posture Models (FHPMs). An FHPM describes the human hand using fuzzy hand feature

sets [P. 12].

In order to be able to distinctively identify each individual hand posture, three different

types of fuzzy descriptors (each being a fuzzy feature set) had been appointed, each one

describing a certain type of features of the given hand posture (Fig. 2.4). The first set consists

of four fuzzy features; they describe the distance between the fingertips of each adjacent

finger. Both the second and the third sets consist of five-five fuzzy features: former describes

how bent is finger, while the latter describes the relative angle between the bottom finger

joint and the plane of the palm of the given hand.

Figure 2.4: The fuzzy descriptors.

14

Table 2.1: Features for the Hand Posture of "Victory"

Feature

group

Relative distance

between adjacent

fingers

Relative angle

between the lowest

joint of each finger

and the plane

of the hand

Relative bending

angle of each finger

Feature a b c d A B C D E α β γ δ ε

Fuzzy

Value
L M S S M S S L L M L L S S

Each feature is marked by a linguistic variable that can only have one of the three

following values: small, medium, or large. Each feature descriptor group is an answer to

a certain question:

(a) How far are the finger X and the finger Y from each other? (4 features: a...d)

(b) How big is the angle between the lowest joint of finger W and the plane of the palm?

(5 features: one for each finger (A...E))

(c) How bent is the finger Z? (5 features: one for each finger (α...ε))

For each FHPM, 14 linguistic variables (which are used to describe the 14 features

introduced above) are stored in the ModelBase. With this model we can distinguish

theoretically 314 different hand postures, which is more than enough even for the most

complex sign languages.

In the following, an example is presented to demonstrate how a hand posture can be

described by the FHPM features: Fig. 2.3 shows the well-known victory sign. The relative

position of the fingers from each other and their bentness is clearly visible. From that, we can

determine the values of all the 14 linguistic variables. Table 2.1. lists the linguistic values of

the features in each of the three feature groups for the hand posture of "victory".

15

2.4 Fuzzy Hand Posture Recognition

For hand posture recognition, the proposed system uses a specialized fuzzy neural network

architecture and fuzzy inference. The idea is based on transforming the coordinate model of

the detected hand into a Fuzzy Hand Posture Model by Circular Fuzzy Neural Networks and

then to identify it by applying fuzzy inference. The proposed system consists of six modules:

◦ ModelBase

◦ GestureBase

◦ Target Generator

◦ Circular Fuzzy Neural Networks (CFNNs)

◦ Fuzzy Inference Machine (FIM)

◦ Gesture Detector

Fig. 2.5 shows the architecture of the system. The system receives the coordinate model

of the detected hand as input, transforms it into a Fuzzy Hand Posture Model using CFNNs,

then determines the shape of the hand from the calculated FHPM with the usage of the

Fuzzy Inference Machine (FIM). The Gesture Detector module observes the output of the

FIM, searches for matches with predefined patterns in the GestureBase. The hand gesture is

identified in case of fuzzy matching with any stored hand gesture or is refused if the hand

gesture is unknown for the GestureBase.

Figure 2.5: Block Diagram of the Hand Posture and Gesture Identification System.

16

Figure 2.6: An example for the ModelBase with 6 manually defined models (left) and the

GestureBase with 2 manually defined models (right))

The features for each model are stored in the ModelBase, as linguistic variables (with

possible values: small, medium, large). One of the easiest realizations of the ModelBase can

be e.g. using XML files. Fig. 2.6 (left) shows an example for 6 predefined models.

The GestureBase contains the predefined hand gestures. Each hand gesture is identified

by its name and is described by up to 5 string values, which are existing Fuzzy Hand Posture

Model names. The string values are listed in the sequence parameter. The parameter quantity

denotes how many FHPMs the given hand gesture model consists of. Fig. 2.6 (right) shows

an example for the realization of the GesturBase.

The Target Generator is used to calculate the array of desired target parameters (T) for

the Circular Fuzzy Neural Networks and the Fuzzy Inference Machine using the ModelBase.

The input parameters of the Target Generator module are:

◦ d - identification value (ID) of the model in the ModelBase. It can simply be the name

of the given model or an identification number.

◦ SL - a linguistic variable for setting the width of the fuzzy triangular sets, thus tuning

the accuracy of the system.

For faster computation, the implemented version of the system uses triangular shaped

fuzzy sets with centers set to the following numerical values: small = 0.3; medium = 0.5;

large = 0.7.

17

Figure 2.7: The 9 types of considered fuzzy feature sets considering small, medium and large labels

for fuzzy set centers and widths.

The other parameter of the fuzzy sets is their width. This parameter is adjustable with

a linguistic variable SL. In case of SL chosen to be small, medium or large, the widths of

the fuzzy feature sets equal to 0.33, 0.66, and 1, respectively (Fig. 2.7). Eq. (2.3) is used to

compute the ends of the interval that represents the given fuzzy feature set:

(a, b) = (center − 0.2 · width, center + 0.2 · width) (2.3)

where a, b denotes the lower and upper ends of the interval, center corresponds to the

numerical value of the given feature, and width equals to the numerical value of linguistic

variable SL). T is thus a 2×14 array of interval ends (one pair for each feature).

Remark: as it can be seen in Fig. 2.7, not all of the domain is covered with the 3 triangular

sets. This introduces a limitation for the system to only recognize models that are similar

enough to the known models (the sensitivity of this similarity is set by SL). Therefore, the

output of the system is unknown in cases where the detected hand posture is too different

from the stored ones.

For the task of converting the coordinate model of the given hand to a Fuzzy Hand Posture

Model, I have developed Circular Fuzzy Neural Networks based on fuzzy neural networks

with interval arithmetics (proposed by [28] (Fig. 2.8), who implemented the fuzzy neural

network architecture as a pair of artificial neural networks (ANNs), where one ANN is set to

calculate the lower and of the fuzzy intervals while the other one is set for the upper ends).

The networks have fuzzy numbers in their weights, biases, and in the output of each

neuron. Each fuzzy number is represented by the interval of its alpha cut at value 0, i.e.

by the base of the triangular fuzzy set. Thus, each fuzzy number is determined by two real

numbers: the lower and the upper ends of the given interval.

18

Figure 2.8: The topology of Fuzzy Neural Networks.

The novelty of the CFNN network lies in its modified, circular topology. In order to

enhance the speed of the training session and to take advantage of the fact that the input data

consists of coordinate triplets, the topology of the network has been modified. Originally,

each input was connected to all hidden layer neurons. In the modified network topology

only 9 inputs (corresponding to 3 adjacent coordinate triplets) are connected to each. This

way every hidden layer neuron processes the data of 3 adjacent coordinates. The topology

between the hidden layer and the output layer neurons has not been changed. This way,

the network has been realigned into a circular network, see Fig. 2.9. For the sake of better

visibility not every connection is shown. In the outer circle layer the input coordinates can

be found, in the middle circle the hidden layer neurons are placed, and in the inner circle the

output layer neurons of the network are located.

Since the coordinate model consists of 15 three dimensional coordinates, the fuzzy neural

networks have 45 inputs. In order to increase the robustness, instead of using one network

with 14 output layer neurons, three different networks are used with the only difference in

the number of the output layer neurons. The first network computes the first group of fuzzy

features, having 4 neurons in the output layer. The second and third networks have 5-5

neurons in the output layer. Furthermore, all the networks consist of one hidden layer with

15–15 neurons.

19

Figure 2.9: The Topology of the Circular Fuzzy Neural Networks.

These reductions cause a dramatic decrease in the required training time, while the

precision and accuracy of the networks are not affected.

2.4.1 Fuzzy Reasoning-based Classification

The last step of the hand posture identification procedure is the fuzzy reasoning based

classification. This part compares the output of the CFNNs to all fuzzy hand posture models

stored in the ModelBase and chooses the model that corresponds the most to the model

presented by the CFNNs. The algorithm works as follows: For each model in the

ModelBase, the intersection value between their fuzzy feature sets and the fuzzy feature

sets of the given FHPM is calculated, thus we gain βi for each of its features. The minimum

of βi shows the correspondence ratio between each model and the given FHPM. The

maximum value of the correspondence ratios indicates which model is the most

corresponding to the detected hand posture.

The ID of each recognized hand posture model is put in a queue, which is monitored

by the Gesture Detector module. It searches for hand gesture patterns predefined in the

20

GestureBase, and in case of matching it gives the ID (in my implementation: the name) of the

detected hand gesture as the output of the system, i.e. it identifies the gesture. The reliability

of the identification system can be improved by applying a “fault tolerant” sign language,

i.e. when there is a dH > 2 Hamming distance among the meaningful hand posture series.

In this case, a detected unknown hand posture sequence caused by false detection(s) can be

corrected to the nearest known hand gesture.

2.4.2 The Training Session

The training of fuzzy neural networks with interval arithmetics is done with the general

back-propagation algorithm [46], with slight modifications to account for the decreased

connections [P. 13].

Furthermore, in order to increase the speed of the training of the CFNNs, I have

developed a new training procedure. In order to decrease the quantity of the training

samples, instead of directly using the training data in the training phase, they are first

clustered and the CFNNs are trained by the centers of the obtained clusters (that are still 45

real numbers or 15 spatial coordinate points).

The clustering procedure is based on the k-means method with a simple modification:

comparing a given sample to the clusters one by one, the sample gets assigned to the first

cluster with the distance of its center to the given sample less than an arbitrary value. If there

is no such cluster then a new cluster is appointed with the given sample assigned to it. The

clustering is used on only one type of hand model at one time, so the incidental similarity

between different type of hand models will not cause problems in the clustering phase. The

algorithm for this phase is described in more detail in Chapter 3.

2.4.3 FHPM-based Hand Recognition

The experimental options for the training session of the CFNNs were the following:

◦ Learning rate (back-propagation): 0.8

◦ The coefficient of the momentum method (back-propagation): 0.5

◦ The error threshold (back-propagation): 0.1

◦ SL (target generator): small

◦ Clustering distance: 0.5

21

Table 2.2: The results of training 6 different type of hands using preclustered training data

Name of the

Hand Posture

Model

Quantity of

Chosen

Samples

Cardinality of

the Clustered

Training Set

Cardinality of

the Training

Dataset

Correctly

Identified
%

Open hand 20 10 80 75 93.75

Fist 20 12 80 78 97.5

Three 20 4 80 78 97.5

Thumb-up 20 7 80 78 97.5

Point 20 4 80 78 97.5

Victory 20 5 80 68 85

2.5 Experimental Results

During the conducted experiments, the effectiveness of the training was investigated on

PC-2, with the implementation done in Microsoft Visual Studio 2005, using C++. Table 2.2

summarizes the identification results of the experimental system which is able to

differentiate among six hand models (Open hand, Fist, Three, Thumb-up, Point, and

Victory) [P. 5][P. 1][P. 14]. For better visualization, Fig. 2.2 shows these hand postures. The

set of the generated coordinate model samples has been split into two separate, training and

testing, sets. The training set consists of 20 samples from each of the three FHPMs.

The clustering procedure reduced the quantity of the training sets, thus instead of 120

only 42 coordinate models were trained to the CFNNs. The networks are trained with

choosing SL = small. The FIM could identify the models in the testing set (with 80 samples

of each models) with an average accuracy of 94.8%. The testing set does not contain the

training set.

While the CFNNs were trained with SL = small value, in the inference phase SL = large

has been used, which increased the accuracy of the Fuzzy Inference Machine.

22

2.6 Evaluation and Applicability

As it was shown, the correct identification rate proved to be 85-97.5%, with the ’Victory’ sign

being the hardest to learn (85%), and the other considered hand postures being recognized

at an even higher rate. While the classification accuracy is high, the method has two main

disadvantages: even with the reduced complexity, the CFNNs take up to 6.5 hours to train

(considering the experimental equipment). This can be reduced with the added clustering

step, though that at best halved the necessary time (further analysis on the effects of the

clustering step on the speed of the training is done in the next chapter, in Subsection 3.3.2).

One solution to this problem is the usage of parallel computing techniques, which have

became more advanced since this research have been done, and thus constitutes a possible

future upgrade of the system. Even so, the training phase can be done offline and thus the

training time is not a significant problem considering the main purpose of the system (that is

hand posture identification).

It is worth discussing the computational complexity of the CFNNs and the FIM, as they

are the main processes in the proposed hand posture recognition method (excluding the

preprocessing system developed by [35]). As it has been already mentioned, the reason for

the cropped connections between the input and the hidden layer, aside from aiming for a

more localized data processing, is complexity reduction and subsequently, making the

training and evaluation phases of the networks faster, compared to standard MLPs. The

time complexity of the operation of MLPs (trained with the Backpropagation (BP)

algorithm) can be derived from their general architecture [47]: For each sample, the

weighted sum of the inputs (N) are taken for all hidden layer neurons (J), then the same is

done with the output of all hidden layer neurons in the output layer. Thus, the time

complexity can be expressed as O(P · (N · J + J · K)). Whereas, the CFNNs have

O(P · (n · J + J ·K)) complexity, where n is the number of inputs connected to the hidden

layer neurons. Since this n is small by design (n = 3 << N = 45), the complexity is

reduced to O(P · (3 · J + J ·K)) ⊆ O(P · J ·K).

The training (from the BP algorithm [46]) uses an evaluation phase for all samples, for

as many epochs (%) as necessary to reach the desired error threshold. Thus, the complexity

is O(% · P · J ·K), in contrast to the O(% · P · (N · J + J ·K)) of the MLPs.

Finally, the time complexity of the FIM is O(P ·N ·m), where m is the number of hand

posture models, as it is simply doing a linear search through the models to see which one is

the most similar to the model generated by the CFNN from the inputs.

A significant advantage of the presented method overall is that it does not require

expensive equipment like data gloves (unlike systems like [38]), though it does need two

23

cameras (which are still cheaper than a data glove) set up in a rig and precalibrated for

stereo vision (which can be automatized). Another advantage is that it works with few

training samples, as the experiments have shown where the system could use 20 random

samples from each hand (which was further reduced by the clustering step) was able to

learn to correctly classify ~85-97.5% of the rest of the samples.

The advantage of using FHPMs as shape descriptors is that they are intuitive, making it

easy for a human administrator to define hand models. Unlike other widely used

region-based descriptors (derived from geometrical moments of the hand region, e.g. Hu

invariants [48] and Zenike moments [49]), FHPMs are contour-based (similarly to Fourier

Descriptors [50], where the features are derived from the contour using Fast Fourier

Transform). Although FHPMs are theoretically rotation invariant like Zenike moments and

Hu invariants, the proposed itself system is not (meaning that instances of the same hand

with different orientation seem to be different models), due to the preprocessing step (the

generation of the 3D point sequence). On the other hand, the system is scale invariant

considering the hand models, as the preprocessing step scales the detected 3D point-series

into a uniform frame. Another significant disadvantage of the system comes from the

limitations of the image processing system that only works before homogeneous

backgrounds, and it is presumed that the hand is fully visible on both input images or not

visible at all, and that the hand is being steady. A further assumption is that stretched

fingers are well separated and that the hand stays parallel to the cameras. The dependence

on the rotation is also the consequence of using CFNNs, as each input has a fixed position

in the network (as classical neural networks are generally not independent on the ordering

of the input parameters).

2.7 Summary of New Results

In this chapter, I have presented a new hand posture detection method that can be used

in a gesture-based man-machine interface. In order to be able to distinctively identify each

individual hand posture, I have proposed a new fuzzy feature set that can describe hand

postures with 14 features that can be designated into 3 feature groups.

The method receives the data from an image processing system that uses two cameras

and a Fuzzy Matching Algorithm to calculate the 3D coordinates of the shape of the hand

and outputs 15 spatial feature points. The set of these feature points are processed with a

new neural network structure named Circular Fuzzy Neural Network, mapping the 45

numerical values onto 14 intervals (the 14 fuzzy features). The output of the neural networks

is identified using fuzzy inference.

24

The output of the proposed hand posture recognition method is the label of the hand

posture model that is the most similar to the detected one, or unknonw if there is none that

is similar enough. The performance of the method has been shown for 6 different hand

postures, where the correct identification rate proved to be 85-97.5%, with the ’Victory’

sign being the hardest to learn (85%), and the other considered hand postures being

recognized at an even higher rate (>93%).

2.7.1 Thesis Group I.

2.7.1.1 Thesis Statement I.1.

I have proposed a new fuzzy hand posture model that uses a fuzzy feature set consisting
of 14 features over 3 feature groups. I have also developed a new hand posture detection
method for the identification of hand postures. The input of the method is provided by an

image processing system that uses two cameras and a Fuzzy Matching Algorithm to calculate

the 3D coordinates of the shape of the hand. The 3D coordinates are processed by a set of

Circular Fuzzy Neural Networks that map the coordinates into a set of 14 triangular fuzzy

sets. The acquired fuzzy sets are processed by a fuzzy inference machine that provides the

output of the method: the label of the hand posture model that is the most similar to the

detected one. The performance of the method has been shown for 6 different hand postures.

Related publications: [P. 1], [P 5], [P. 12], [P. 13], [P. 14]

2.7.1.2 Thesis Statement I.2.

I have developed a new neural network structure named Circular Fuzzy Neural
Network. The structure of the new network is derived from interval-based Fuzzy Neural

Networks by trimming the number of connections between the input and hidden layer

neurons in order to achieve a faster yet more localized processing (one hidden layer neuron

only processes the output of a given number of neighboring input layer neurons). The other

significant difference comes from the circular shape of the new network, as the first neuron

in each layer is regarded as a neighbor of the last neuron in the same layer. The new

classifier is used to convert a set of 3D coordinates into 14 fuzzy features. It has been

validated for 6 different hand postures.

Related publications: [P. 1], [P 5], [P. 13], [P. 14]

Number of independent citations as of May 2021, according to Google Scholar: 87

25

Chapter 3

A New Clustering Method for the
Acceleration of the Training of Artificial
Neural Networks

Many engineering problems involve some kind of machine learning tasks. Clustering is one

such task, in which the goal is to find a structure in a collection of unlabeled data. The

procedure assigns a set of objects into groups whose members are similar in some way and

are dissimilar to the objects belonging to other groups (so called clusters). Clustering can be

defined as the probably most important unsupervised learning problem and in most cases it

leads to a (usually iterative) multi-objective optimization task. Many difficulties may occur

during the clustering, caused by e.g. multi-dimensional spaces, time/data complexity, finding

an adequate distance measure, non-unambiguous interpretation of the results, overlapping of

the clusters, etc.

Such problems, like probability estimation, feature selection, feature extraction, data

mining, statistical data analysis, pattern recognition, general machine learning etc. can

strongly be related to clustering. Classification methods like Artificial Neural Networks

(ANNs) and Radial Basis Function Neural Networks (RBFNNs) can also significantly profit

from a preclustering step before training, either by gaining a more compact representation

of the training data so the necessary training time can be reduced (which is beneficial for

ANNs), or even information about the structure of the classifier (e.g. the RBFNNs).

In this chapter, first the problem of structural complexity is stated in Section 3.1 in

regards to ANNs and RBFs. Then in Section 3.2 the proposed clustering algorithm is

presented, while experimental results are presented in Section 3.3 for three different neural

network architectures: Feed-forward Artificial Neural Networks (Subsection 3.3.1),

Circular Fuzzy Neural Networks (Subsection 3.3.2), and Radial Basis Function Neural

26

Networks (Subsection 3.3.3). Finally, in Section 3.4 the applicability and time complexity

of the proposed method is presented. Finally, Section 3.5 summarizes the new results.

3.1 The Issue of Structural Complexity in Neural Networks

3.1.1 Feed-forward Artificial Neural Networks

Feed-forward Artificial Neural Networks (FFANNs or simply ANNs) are systems based on

the operation of biological neural networks. They are networks built of many simple

processing units (neurons) arranged into two or more layers. Each unit can be connected to

all units in the next layer. The most important ability of ANNs is that they are able to find

relationship (structure) among the elements of unstructured data sets and can learn complex

functions from input/output data-pairs, which means that they can adjust their parameters

using iterative training algorithms in order to achieve accurate input-output mapping.

Another advantage is that they are relatively easy to implement in any application.

The utilization of ANNs is widespread, covering possibly the whole engineering field.

Although, besides the advantages, a big drawback of their usage is that they usually need

a significant amount of time to be trained, which scales with the structural parameters of

the networks and the quantity of input data. Although, this can be done offline; the training

has a non-negligible cost, and further, can cause a delay in the operation. CFNNs proposed

in Chapter 2 solve this by reducing the structure itself, but do so at the cost of potentially

lowering the learning ability as well if the problem requires a higher number of neurons.

3.1.2 Radial Basis Function Neural Networks

Radial Basis Function Neural Networks (RBFNNs or simply RBFs [51][30]) are

feed-forward artificial neural networks with two active layers, which use the linear

combination of radial basis functions that are used as activation functions. Their application

areas mainly involve function approximation, time series prediction, control, etc.

The general architecture of RBFs can be seen in Fig. 3.1. The network first calculates the

activation value (gi(X)) from the input data (X) using radial basis functions, each function

having a center (ci) and a width (σi) parameter of the base function (which usually differ for

each neuron). In the output layer, the weighted sum is generated from the values resulted

in the previous step and their weight parameters (wi) (with an optional additional bias value

(g0), which is usually 1), resulting in the response of the network (y).

27

Figure 3.1: The architecture of Radial Basis Function Neural Networks.

In the training phase of RBFs the hidden layer realizes an unsupervised training through

nonlinear mapping using radial basis functions, to tune the center and width parameters of

each function. A widespread solution for this is using clustering methods, e.g. the k-means

method [52]. The output layer realizes a supervised training phase, e.g. the back-propagation

algorithm.

Like that of the ANNs, the utilization of RBFNNs is widespread nowadays. And also

similarly to ANNs, the determination of the optimum structure for the networks is not trivial,

particularly the number of neurons that are required to solve the given problem. Even though

the c-means method is effective for determining the center parameters of each neuron, the

number of clusters is needed to be set by the users themselves. The clustering algorithm

proposed in this chapter is not only able to calculate the center parameters, but it can also

give the number of neurons thus the very structure of the network.

3.1.3 The Problem of Structural Complexity

When solving complex problems with neural networks, one of the biggest problems is the

approximation of the necessary complexity of the NN model. It is well known that it has to

majorate the complexity of the system or problem to be modeled which usually leads to a

situation where the complexity of the model significantly exceeds that of the problem. This

may result in a complexity explosion and serious problems in the fitting and/or evaluation

of the model. The main problem is that there is not any real systematic method for the

estimation of the needed (minimum) complexity. Engineers usually apply one of two

strategies: The first one starts of a small model and increases its complexity iteratively if it

turns out to be insufficient. The other method follows the opposite direction: It starts of a

model with overestimated complexity which is reduced step by step by deleting

unnecessary parts.

28

The problem leads back to Hilbert’s 13th [53] (and also to his 23th) conjectures (“The

existence of a continuous function of three variables which cannot be decomposed as the

finite superposition of continuous functions of two variables” and “Further development of

the calculus of variations”, respectively) [54] and to the works of Kolmogorov [55] and his

student Arnold [56], [57]. Arnold disproved Hilbert’s 13th conjecture in 1957 by showing

a constructive evidence to the problem while Kolmogorov proved a general representation

theorem in the same year stating that any continuous real-valuedN variable function defined

over the [0,1]N compact interval can be represented with the help of appropriately chosen 1

variable functions and sum operation.

The universal approximation theorem has come into the focus again with the spreading

of soft computing, fuzzy, and neural network techniques. It has been proven that if an

arbitrary function is approximated by a set of functions of a certain type then the universal

approximation property holds only if the number of building functions (fuzzy sets or hidden

neurons) is unlimited (see e.g. [58],[59],[60]).

In this chapter, I introduce a new data preprocessing procedure for NNs used for

classification that can be used to the training (and to determine the structure) of RBFs.

According to the experiences derived from the conducted experiments, the developed

method increases the speed of the training of the three considered neural networks:

FFANNs, RBFNNs and CFNNs. The technique applies the following idea: instead of

directly using the training data in the training phase, the data is clustered first and the ANNs

are trained using only the centers of the obtained clusters. This results in that the amount of

training data and by this the necessary training time can be decreased significantly, thus

speeding up the learning process of these NN models (by reducing the complexity through

the creation of a more compact representation of the training data).

3.2 The Clustering Algorithm

The main idea of the new training procedure is that instead of directly using the training

data in the training phase of NNs, the data is clustered and the NNs are trained by using the

centers of the obtained clusters.

Fig. 3.2 shows the block diagram of the general supervised learning scheme extended

with a clustering step. The goal of the training is to tune the model in order to make the output

of the model (y) approximate the desired output (d) of the examined unknown system using

the value (c) determined by the criteria function (typically a function of the approximation

error). The model input is the cluster center (u′) of the cluster which the actual input (u)

belongs to.

29

Figure 3.2: The new supervised learning scheme extended with clustering.

The purpose of the clustering step is to create a more general representation of the input

data, in an attempt to reduce the number of training samples and the effect of noise.

The role of the inserted clustering step is to reduce the quantity of the input data (u) used

during the training and parallel with it to preserve the information contained in the original

data set as much as possible, thus making the time required for learning the mapping of

the unknown system to be modeled shorter while preserving the accuracy of the systems

performance as if it was trained with the original data set. The results of the clustering step

are the centers of the appointed clusters (u′).

The principle of the new technique is similar to the algorithm of that of the well-known

k-means clustering method [52], but while in the original k-means algorithms the samples are

compared to all of the existing clusters (k clusters are randomly assigned from the training

data) and the sample is assigned to the best fitting (nearest) cluster; in my method, the given

sample is compared to the existing clusters one by one and the procedure stops if a “near

enough” cluster is found. I.e., the sample gets assigned to the first cluster where the distance

between the cluster’s center and the given sample is less than a predefined, arbitrary value

(distance factor). If there is no such cluster then a new cluster is appointed with the given

sample assigned to it.

Fig. 3.3 shows the flowchart of the algorithm. The clustering is used on only one class at

one time, so the incidental similarity between patterns of different classes will not cause any

problem during the training.

30

Figure 3.3: The algorithm of the time reduced clustering step.

The most important parameter of the new clustering method is the clustering distance (δ).

Its value has a direct effect on the complexity of the training and on the accuracy of the

classification. Choosing it too low results in too many clusters (nearing the complexity of

the original training data set) while big clustering distances result in a fewer number of

clusters, but less accurate classification.

3.3 Experimental Results

The effectiveness of the new training and clustering technique applied in various neural

network models has been measured by the speed increase achieved in the training session

and the classification accuracy (described by Eq.(A.6) in the Appendix) of the thus trained

networks. Three series of experiments have been conducted, in which ANNs, RBFs and

CFNNs have been used.

31

3.3.1 Experiments Regarding ANNs

The effectiveness of the new training and clustering technique applied in feed-forward neural

network models has been measured by the speed increase achieved in the training session.

The experiments have been conducted for ANNs who had to learn to classify 2 dimensional

inputs. Four different networks have been trained and compared in each experiment: one

using the original data set and three using clustered datasets (generated by different clustering

distances). The original data set in all cases consists of 500 samples (though the classes do

not necessary contain exactly the same amount of samples; however their ratio has been set

to more or less equal). After the training, each network has been tested on a separate test

data set (not used during the training) containing 1000 samples.

For easier reference, let us denote the three clustered data sets (generated by different

clustering distances) used in all experiments by Ai, Bi, and Ci (clustering distance for Ai
equals 0.05, for Bi: 0.1, and for Ci: 0.25; where i stands for the number of the experiment)

and the cropped data sets by A′i, B
′
i, and C ′i, accordingly (e.g. A′i is cropped so that it has as

many samples taken from the original classes by chance as Ai does).

Both ANN experiments have been conducted on PC-3. The experimental options for the

training session of the ANNs in all experiments have been set to the following:

• Learning rate: 0.8

• Coefficient of the momentum method: 0.1

• Number of hidden layer neurons: 10

• Error threshold: 0.01 (except for networks A3 and A′3, where 0.05 was used)

In the following, three typical examples, representing different problem complexities, are

presented.

3.3.1.1 A Simple Problem: Easily Separable Classes

The first ANN example covers a relatively simple problem where three easily separable,

non-overlapping classes are to be separated. In Fig. 3.4 (a) the original, unclustered data

set can be seen. The first neural network (with parameters corresponding to the description

above) has been trained with this (unclustered) data set. Fig. 3.4 (b) shows the responses of

the trained network on the whole input domain [0..1]×[0..1], by using a resolution of 0.05.

As it can be well seen, the trained network can solve the problem successfully and is able to

classify the key regions correctly.

32

Figure 3.4: The original training data set (a) of the 1st ANN experiment, The performance of the

network trained with the original training data set on the whole domain (b) and the centers of the

resulted clusters along with the classification results of the networks trained with the clustered training

data sets on the whole domain (c), (d), (e). Figures (f), (g), (h) right under them present the responses

of the networks trained by the corresponding clustered data, over the training domain.

33

Table 3.1: The Relative Speed Increase and Classification Accuracy of the ANN Networks using

Data Preclustered with Different Clustering Distances (δ) in Experiment 3.3.1.1.

Network
No. of

Centers

Req.

Time for

Training

Relative

Speed

Increase

Classification

Accuracy on the

Unclustered Data

Classification

Accuracy on the

Testing Dataset

Unclustered 500
2 min.

38 s
- - -

δ = 0.05 75 44 s 359% 499/500 (99.8%) 997/1000 (99.7%)

δ = 0.1 21 22 s 718% 481/500 (96.2%) 956/1000 (95.6%)

C
lu

st
er

ed

δ = 0.2 7 6 s 2633% 450/500 (90%) 898/1000 (89.8%)

Fig. 3.4 (c),(d),(e) shows the acquired cluster centers got by using the three, above defined

clustering distances on the input data. As it is expected, the clustering done with the smallest

clustering distance results in the most and the clustering done with the largest clustering

distance results in the least number of clusters (and thus cluster centers). To provide a better

opportunity for the comparison, Fig. 3.4 (f),(g),(h) presents the responses of the networks

trained by the clustered data, over the training domain.

Table 3.1 shows the number of clusters, as result of the clustering, the time required to

train the neural networks, and the speed increase relative to the time required to train the

network with the original, unclustered data set. It also shows the accuracy of all the trained

networks on the test data set. Compared to the original 500 data points, the clustering that

uses the largest clustering distance results in only 7 clusters (and thus 7 cluster centers),

while the clustering using the smallest clustering distance results in 75 clusters. The network

trained with the original data set can achieve 100% accuracy, while among the networks

trained with the clustered data sets, the worst accuracy equals 89.8% (in case of the largest

clustering distance), and the best accuracy reaches 99.7% (in case of the smallest clustering

distance). The training using the original data set needs 2 minutes and 38 seconds, while

the training of network C1 takes only 6 seconds (2633% speed increase or 96% decrease in

training time compared to the original). B1 takes 22 seconds (718% speed increase or 86%

decrease in training time) and A1 takes 44 seconds (359% speed increase or 72% decrease in

training time). The table also shows the classification accuracy of the trained networks over

the training and the test data sets. Out of the three results, A1 proves to be the most accurate,

achieving almost 100% accuracy on both data sets.

34

The original training data set (a) of the 1st ANN experiment, The performance of the

network trained with the original training data set on the whole domain (b) and the centers

of the resulted clusters along with the classification results of the networks trained with the

clustered training data sets on the whole domain (c), (d), (e).

3.3.1.2 A More Complex Problem: Slight Overlapping

The second ANN example presents a similar structure but more complex problem as is

shown in the previous one. In this case, the problem includes 5 clusters. Fig. 3.5 (a) shows

the original, unclustered data set. The training of the neural network (with parameters

corresponding to the description above) proved to be unsuccessful in this case, as well; the

problem is too complex for the used network with the given parameters.

Fig. 3.5 (b),(c),(d) presents the acquired cluster centers, similarly to the previous two

examples and Fig. 3.5 (e),(f),(g) shows the responses of the trained networks on the whole

domain. Table 3.2 lists the number of resulting clusters, the time required to train the neural

network, and the accuracy of the trained networks measured over the test data set. Despite

of the failed attempt of training the ANN with the original data set, the network has again

successfully learned the classification when the three clustered data sets have been used. The

C3 network achieves an accuracy of 96.6% in 53 minutes and 11 seconds and B3 can also

achieve a relatively high, 89.8% accuracy in less than 3 minutes. For comparison, Table 3.2

also shows the accuracy figures of the networks on the original training data set as well as on

the test data set. It is interesting to remark that C3 can achieve even better results on the test

data set (97.8%), while B3 proves to be only slightly less accurate (96.7%). Further, despite

of A3 providing only 71.6% accuracy on the training data set, it achieves a 82.3% accuracy

over the test data set.

Table 3.2: The Relative Speed Increase and Classification Accuracy of the ANN Networks using

Data Preclustered with Different Clustering Distances (δ) in Experiment 3.3.1.2.

Network
Number of

Samples

Required

Time for

Training

Classification

Accuracy on the

Unclustered data

Classification

Accuracy on the

Testing Dataset

Unclustered 500 Could not learn - -

δ = 0.05 134 53 min. 11 sec. 483/500 (96.6%) 978/1000 (97.8%)

δ = 0.1 44 2 min. 39 sec. 443/500 (89.8%) 967/1000 (96.7%)

C
lu

st
er

ed

δ = 0.2 16 27 seconds 359/500 (71.6%) 823/1000 (82.3%)

35

Figure 3.5: The original training data set (a) of the 2nd ANN experiment, and the centers of the

resulted clusters along with the classification results of the networks trained with the clustered training

data sets on the whole domain (b), (c), (d). Figures (e), (f), (g) right under them present the responses

of the networks trained by the corresponding clustered data, over the training domain.

36

3.3.2 Experiments Regarding CFNNs

In the experiments regarding CFNNs, the system has to learn to identify the six different

hand postures seen in Chapter 2 (for better visualization, Fig. 2.2 (b)− (g) shows these hand

postures: “Open hand”, “Fist”, “Three”, “Point”, “Thumb-up” and “Victory”).

The effectiveness of the new training and clustering technique can be measured by the

speed increase achieved in the training session. Two sets of CFNNs are trained: one using the

unclustered sample set and one using the clustered sample set. (A set of CFNNs consists of

the 3 CFNNs (A, B, and C), described in the previous section.) Two experiments (clustered

and unclustered training) have been conducted; the networks use the same input samples in

both cases. The distance factor δ is set to 0.5 during the clustering step.

The experimental options for the training session of the CFNNs in both experiments have

been set to the following:

• Learning rate: 0.8

• Coefficient of the momentum method: 0.5

• SL: small

While the CFNNs have been trained with SL = small value, in the inference phase

SL = large has been used, which increased the accuracy of the Fuzzy Inference Machine.

The whole input data set consists of 600 samples of the previously mentioned 6

different hand postures, each hand posture having 100-100 samples. 20-20 samples are

selected for each hand posture forming the unclustered training set, which thus consists of

120 samples. However, after the clustering step this is reduced to 42 samples, which is still

capable of representing the original 120 samples during the training without sacrificing too

much accuracy in the performance of the networks. The testing set consists of the 480

samples that are not used for training.

The first two experiments have been conducted on PC-1, while the third experiment has

been conducted on PC-2.

3.3.2.1 General Time Reduction (Incremental Training)

In the first CFNN experiment, the CFNNs are trained in multiple phases incrementally. The

training phases differ only in the error threshold parameter that indicates how much each

CFNN needs to reduce the error of the training. Since the initial error in this example is

about ~0.5 and the desired error e is 0.12, that interval has been divided into 3 sub-phases.

37

Table 3.3: Time Required for Error Threshold Intervals (hours:minutes) and the Relative Speed

Increase Between the Unclustered and Clustered Cases (e.g. Network A with Unclustered and

Clustered Data).

Time Required for Error Threshold Intervals (hh:mm)

and Relative Training Speed Increase (%)Network

type e ∈ [0.5− 0.25] e ∈ [0.25− 0.15] e ∈ [0.15− 0.12]

A 0:28 1:56 2:24

B 0:50 2:14 2:28

U
nc

lu
st

er
ed

C 0:53 0:52 2:40

A 0:16 (∼175%) 1:39 (∼117%) 1:18 (∼185%)

B 0:32 (∼156%) 1:03 (∼213%) 1:01 (∼243%)

C
lu

st
er

ed

C 0:31 (∼171%) 0:46 (∼113%) 0:58 (∼276%)

Table 3.3 shows the time required for each training phase for both networks that used

unclustered and clustered input samples using different error thresholds (e). The reduction

ratio of the required time is included in the result of the networks that uses clustered input

data. The biggest reduction happens usually in the last phase of the training, resulting in

~234% speed increase on average, while the average speed increase for the whole training

session considering all regarded networks is ~183%.

3.3.2.2 General Time Reduction (Non-Interrupted Training)

In the second CFNN experiment, the three networks are trained in a single phase (one for

each feature group). In Table 3.4. a detailed comparison is shown based on typical runs of

the training of CFNNs that are applying the two types of teaching (i.e. using unclustered

and clustered data). In the first type of experiments the decrease in the required time equals

44.4% (~180% speed increase), while the accuracy of the networks is decreased by 2.9%

(as using the unclustered data the system misclassifies 9 samples out of 480, while using the

clustered data it misclassifies 23 samples out of 480). In the second session the decrease in

the required time is 32.5% (~148% speed increase), while the accuracy of the networks is

decreased by 2.3% (with the unclustered data the system misclassifies 9 samples out of 480,

while with the clustered data it misclassifies 20 samples out of 480). The biggest reduction in

training time results in a speed increase of ~207%, while the smallest results in ~122%. The

results also suggest that using only one phrase makes the time required for training shorter

than when using multiple phases to reach the same error threshold.

38

Table 3.4: The Required Training Times for each Feature Group Gi focusing on Error Threshold

Range 0.5-0.12 and the Relative Speed Increases (the Unclustered Cases Being the Reference Times).

Feature

Group

Required Time

(hours:mins)
Relative Speed Increase

Unclustered 4:27

Clustered
A

2:09
∼207%

Unclustered 3:08

Clustered
B

2:22
∼132%

Unclustered 4:05

Clustered
C

3:21
∼122%

3.3.2.3 The Effect of Clustering Distance

In the third CFNN experiment the training of the CFNNs has been done on multiple data

sets coming from clustering the same training data set (that has been used in the previous

experiments) using different clustering distances. Table 3.5. shows the quantity of clusters

resulted from using 3 different δ clustering distances (0.5, 0.4 and 0.35). The results

evidently show that the clustering distance is inversely proportional to the number of

clusters resulting from the clustering. While δ = 0.5 results in 42 clusters, δ = 0.4 results in

55, and δ = 0.35 results in 65 clusters. It is also noticeable that because of the clustering, the

number of samples of some hand posture types can be reduced significantly (e.g. hand

posture “Three” can be represented by 4 or 5 cluster centers instead of 20 samples).

Table 3.6 shows a comparative analysis about the time requirement of the training of the

CFNNs with the data sets resulting from the clustering for different distances.

Table 3.5: The Number of Clusters Resulted from Multiple Clustering Steps using Different

Clustering Distances.

δ
Number of clusters for each hand type

Open hand Fist Three Point Thumb-up Victory
∑

UC 20 20 20 20 20 20 120

δ = 0.5 10 13 4 7 4 5 42

δ = 0.4 13 16 5 9 5 8 55

δ = 0.35 13 17 5 12 10 8 65

39

Table 3.6: Comparative Analysis on the Characteristics of the Differently Clustered Datasets,

Considering the Decrease in Training Time and Classification Accuracy (ACC; Using the Unclustered

Case as Reference).

Measured attribute
Measured

value

Difference

in ratio

Total time spent on training (h:mm) 6:30 -
Unclustered

Average ACC 97% -

Total time spent on training (h:mm) 3:57 39% decrease
δ = 0.5

Average ACC 65.2% 1.8% decrease

Total time spent on training (h:mm) 4:22 32.8% decrease
δ = 0.4

Average ACC 97% 0% decrease

Total time spent on training (h:mm) 5:46 11.1% decrease
δ = 0.35

Average ACC 97% 0% decrease

Table 3.7: Detailed Information About the Classification Accuracy of the Differently Clustered

Datasets (i.e. the Number of Correctly Identified Cases for each Hand Posture).

Clustering DistanceHand

Posture Type UC 0.5 0.4 0.35

"Open hand" 77/80 76/80 76/80 76/80

"Fist" 72/80 77/80 76/80 76/80

"Three" 78/80 74/80 79/80 80/80

"Point" 80/80 77/80 78/80 79/80

"Thumb-up" 80/80 78/80 80/80 78/80

"Victory" 79/80 75/80 77/80 77/80

Average (in ratio) 97% 95.2% 97% 97%

It can be seen that while δ = 0.5 results in a 39% decrease in the required training time

for the price of 1.8% decrease in the classification accuracy, δ = 0.4 and δ = 0.35 results in

32.8% and 11.1% decrease in the required training time, respectively. However, in the last

two cases the classification accuracy is not decreased at all. This suggests that it is possible

to achieve a speed increase with little or no loss considering classification accuracy.

Finally, Table 3.7 shows detailed information about the classification accuracy of the

40

differently clustered data sets (UC stands for unclustered). The systems taught by the

clustered data are even more accurate for some hand posture types than the system trained

with unclustered input data. Each field of the table shows how many of the hand posture

samples were correctly identified out of how many samples. These experiments show that

δ = 0.4 can be an ideal choice for the clustering distance in the clustering step.

3.3.3 Experiments Regarding RBFs

While in ANNs and CFNNs the main role of the clustering step was to reduce the training

data with little or no loss regarding its ability to represent the original, unclustered data (thus

creating a compressed data set), in the last set of experiments the proposed method is also

used to determine the structural complexity of RBF neural networks (i.e. the number of

hidden layer neurons).

In the experiments the RBF implementation (in Matlab) described in [61] has been

used, which utilizes a single-step analytic learning method. The simplified description of

the operation of the algorithm is the following. First, for every center (in each neuron) the

algorithm calculates the distance from each input data points, and then calculates the

Gaussian values using the distances, thus getting N by C matrix φ, where N is the number

of data samples and C is the number of neurons (centers). Finally, the method produces the

weight matrix by dividing matrix φ by the matrix of the target data (D). (For more

information, see [61].)

In the following, three characteristic experiments are presented for RBFs. The training

data consists of 500, while the testing data consists of another 1000 randomly chosen data

points. In the experiments various amounts of RBF centers are applied, according to the

amount of centers that the clustering step results in.

3.3.3.1 No Overlapping Classes

In the first RBF experiment, the data points of 5 different classes are laid out according to

Fig. 3.6(a). There is a big set of data in the middle of the domain (marked with green).

Another crescent moon shaped data patch (red) can be found near to class 1. Two further

small classes black and magenta) are in two of the corners of the domain, while the rest of

the domain is filled with the elements of the last, fifth class (blue). In this simple case, there

is not any overlapping among the classes.

41

Figure 3.6: The domain of the problem in the three experiments: (a) with no overlapping, (b) with

some overlapping and (c) significant overlapping of the class areas.

Figure 3.7: The relationship between the complexity and the classification accuracy of the network

for the three experiments.

The relationship between the complexity and the classification accuracy of the network

(measured on the testing data set) has been investigated. In Fig. 3.7(a) the obtained accuracy

figures are depicted for RBFs built of different numbers of neurons. In these cases, the

42

initial parameters of the functions are chosen randomly. Corresponding to the result of the

data analysis, the accuracy more or less reaches its peak around 40 neurons. The marked

point shows the point indicated by the clustering results (δ=0.14), which seems to be a good

choice concerning complexity and accuracy issues. It can also be seen that this particular

implementation of RBF is not sensitive to over-learning, which usually occurs in case of too

many neurons in case of other RBF architectures.

3.3.3.2 Some Overlapping in Classes

The second RBF example presents a much more difficult problem. The data points of 5

different classes are laid out according to Fig. 3.6(b). Two ring shaped bigger sets of classes

(red and green) can be found in the middle of the domain having significant overlapping.

(Overlapping can occur for many reasons. E.g., there can be other dimensions in the data

that are either unknown or are too expensive to be dealt with.) The interiors of the rings form

two non-overlapping classes (black and magenta) with smaller quantities of data. The rest of

the domain is filled with the data points of the fifth class (blue).

The relationship between the complexity and the classification accuracy of the network

(measured on the testing data set) has been investigated in this case as well (see Fig. 3.7(b)).

The accuracy starts to be stabilized around 60 neurons. The marked point shows the point

indicated by the clustering results (δ=0.12), which can be viewed as quasi-optimum in terms

of the complexity and accuracy trade-off of the network. Although, looking at the results

40 neurons seems to be a good choice as well, Fig. 3.7(b) clearly shows that despite the

acceptable accuracy of the case, the network is not stable yet from accuracy point of view.

3.3.3.3 Significant Overlapping in Classes

In the third RBF example, the data points of 5 different classes are laid out according to

Fig. 3.6(c). Similarly to the second experiment, there is significant overlapping among the

different classes.

Table 3.8 shows the classification accuracy of the trained RBF networks in case of

different clustering distances for all 3 RBF experiments (the data from the first, second and

third experiment is labeled A, B and C, respectively), as well as the number of neurons

resulted from the clustering step. As it can be seen, the accuracy of the model on the

training and on the (separate) testing data sets correlates well. It can also be followed how

the number of neurons (resulted from the clustering step) is changing in contrast to the

clustering distance (marked with red font color). The optimum clustering distance is mostly

dependent on the layout of the original data points, so (at least in theory) it can be

determined by analyzing the layout of the data points.

43

Table 3.8: The Number of Resulting RBF cluster centers Considering Different Clustering Distances,

and the Classification Accuracy of the Trained RBF Networks Considering Different Clustering

Distances (in percentages).

Number of

RBF Centers

Accuracy on the

Training Set (%)

Accuracy on the

Testing Set (%)Clustering

Distance δ A B C A B C A B C

0.4 11 11 12 88.2 70 77,4 86.6 72.4 73.2

0.3 17 18 16 91.4 68.2 75 91.9 70.9 69.1

0.2 24 28 29 91.4 73 84,2 91.8 72.9 79

0.15 38 41 N/A 93.4 80 N/A 92.9 77.2 N/A

0.14 41 45 N/A 95.2 79.2 N/A 94 76.2 N/A

0.13 45 56 N/A 94.8 79.6 N/A 93.8 76.9 N/A

0.12 57 61 N/A 96.4 80.4 N/A 94 76.9 N/A

0.11 65 74 N/A 96.8 80.4 N/A 93.4 76.7 N/A

0.1 74 87 81 96.4 81.2 88.6 93.5 77.4 81.6

0.05 191 201 193 96.8 81 88.8 94.6 77.2 81.2

0.02 399 N/A N/A 97 N/A N/A 94 N/A N/A

By applying this optimum clustering distance, a good approximation of the optimum

complexity of the RBFNN can be achieved. In this example, it is around 0.14, resulting

in 41 clusters and more than 94% accuracy which nears the best obtainable less than 95%

accuracy of the model.

Remark: for training set C, the experiment has been run on fewer in-between steps, which is

why the table has some missing data values. The results, however, are similar to the results of

the first experiment, though in this case the accuracy is not as high, because of the significant

overlapping of two classes.

The relationship between the complexity and the classification accuracy of the network

(measured on the testing data set) has been investigated in this case as well. Fig. 3.7(c)

shows that the accuracy rises sharply at first and then slows down to finally be stabilized

around 80 neurons. The marked point shows the point indicated by the clustering results

(δ=0.1), which can be viewed as quasi-optimum in terms of the complexity and accuracy

trade-off of the network. This example illustrates that the obtainable accuracy can slightly

be better when starting of the clustered initial centers than when the initial parameters are

44

randomly chosen.

3.4 Evaluation and Applicability

According to the efficiency analyses, in case of CFNNs, the introduction of the

preclustering step has reduced the training-time in average by more than 32% together with

a reduction of the number of input samples by approximately 54%. (The difference between

CFNNs and regular feed-forward ANNs is that the weights, biases, and outputs of CFNNs

are fuzzy numbers (based on Fuzzy Neural Networks proposed in [28]), further their

topology is realigned to a circular topology, and the connections between the input and

hidden layers are trimmed.)

The time complexity of the clustering algorithm is O(N ×P × k) where k is the number

of resulting clusters. In the worst case where δ is chosen to be too large, k approaches P and

the complexity is O(N × P 2). Therefore, if the task is to enhance the training speed of a

classifier by making a compression of the training data, then it is recommended to experiment

with different k values to find a balance between information loss from the compression and

the time reduction.

The advantage of the proposed approach over the k-means clustering method is that we do

not need to know the suitable number of clusters (k) which is a necessary an input parameter

of the k-means algorithm, but rather, the proposed algorithm automatically presents k as part

of its output. On the other hand, some level of a priori knowledge is necessary about the data

itself, so range parameter δ (the sensitivity of the clustering) can be set.

3.5 Summary of New Results

In this chapter, I have presented a new data preprocessing procedure as a new supervised
training method for NNs (used for data classification). In order to achieve that, I have
proposed a new clustering method. The clustering step produces a compression of the

input data which in turn reduces the complexity of the neural network training (as the latter

is heavily dependent on the amount of training data) and thus reduces the training time,

along with a certain level of decrease in classification accuracy. The clustering step can be

tuned with distance factor δ.

The proposed method has been investigated for three different NN structures:

• For Feed-Forward Artificial Neural Networks the relation between the relative

training speed increase and the loss in accuracy has been investigated. As expected,

there is a trade-off between the two quantities, although as shown in

45

Experiment 3.3.1.1, the speed increase can be as much as 359% of the original

training speed at the cost of a classification accuracy rate of 0.3%. On the other hand,

it has also been shown in Experiment 3.3.1.2 that there are cases where the problem is

too complex for an FFANN to learn (where the classes cannot be easily separated

using the given dimensions of the data), but with the preclustering step the network

can still learn it with a high accuracy (which, depending on the chosen distance factor,

can be as high as 97.8%). This is because the resulting reduced dataset, while retains

roughly the same amount of information from the original dataset, it can potentially

remove inconsistencies that made the separation of classes hard or even impossible.

• For Circular Fuzzy Neural Networks the proposed method is used for compressing the

datasets of Fuzzy Hand Posture Models (proposed in Chapter 2), in order to reduce the

time required for the training phase. It has been found that using a distance measure

of 0.4 can reduce the required training time by 32.8% while not causing any decrease

in classification accuracy (i.e. the implicit information carried by the reduced dataset

is more or less the same as that of the original dataset).

• For Radial Basis Function Networks the proposed method is used to determine the
number of neurons in the hidden layer, i.e. the structural complexity of the

classifier. The experiments have shown that the complexity of a given problem is

inversely proportional with the value of δ that leads to a quasi-optimal structure. E.g.

a problem with little or no inconsistency in the data ("overlapping" classes) can be

learned using fewer neurons that results from relatively high δ, while more complex

problems require smaller distance factor values and result in a higher number of

clusters (and thus, neurons). The method has been shown to achieve a classification

accuracy of ~94% on the testing dataset for simple problems and ~76.9-81.6% for

more complex problems.

46

3.5.1 Thesis Statement II.

In order to enhance the training speed of Artificial Neural Networks, I have introduced
a new supervised Neural Network training method including an input sample clustering
step. The proposed method generates clusters of similar input data samples and returns the

centers of the clusters. The training is done by using the corresponding cluster centers instead

of the input samples. The method has been shown to decrease training time significantly, at

the cost of a slight decrease in classification precision. The new method has been validated

on Artificial Neural Networks, Circular Fuzzy Neural Networks and Radial Basis Function

Networks.

Related publications: [P. 6], [P. 15], [P. 16], [P. 17]

Number of independent citations as of May 2021, according to Google Scholar: 5

47

Chapter 4

An Intelligent Space Control System
Framework

Today, with the spreading of machine intelligence, smart environments have become an

important research area. Their aim in general is to increase humans’ life comfort, offer

support to disabled persons thus helping them in their full and independent life (ambient

assisted living), etc. Smart environments can range from smaller areas like intelligent

classrooms, through medium sized areas like smart homes, to larger areas like modernized

hospitals, parks, or even a whole city.

Many research projects have taken aim to design such a system for various application

areas. To mention a few, Microsoft’s Easy Living Technologies [62] aims to develop an

architecture that aggregates a diverse array of devices through a middleware (i.e. a program

that offers common services to applications outside of the ones offered by the operating

system), to create a more comfortable and coherent user experience. The Interactive

Workspace Project [63] at Stanford University proposed an augmented work sharing

environment for smart offices and laboratories. Another example is [64] that proposed a

cloud-assisted agent-based Smart home environment that provides a framework for activity

recognition in smart home applications.

ISpace control systems, existing and under development (see e.g [2] and [43]), just like

other smart environment projects, aim at tasks such as monitoring of physiological

functions of human users, positioning and tracking of humans, localization and control of

mobile robots, finding paths for robots by using itineraries taken by people, etc. A detailed

overview of the iSpace can be found e.g. in [1], [43], and [2].

The main difference between iSpace-based and other control systems is that in the

former, it is presumed that the various sensors and non-human agents that the system is in

contact with have a bare minimum "competence" level (i.e. their overall capabilities do not

48

necessarily exceed what is required to provide the functionality that is expected of them).

E.g. a window controller agent only needs to know how to open or close windows, it does

not need to understand commands issued by the human user, for which it can rely on

another system; and similarly, an item carrier robot only needs to lift and carry items from

point A to point B, if it also can rely on another system that can "see" in its stead and

coordinate its path. Implementing such a functionality is one of the main ideas behind the

Intelligent Space.

There are several requirements that the hardware and software architecture of the iSpace

has to satisfy. As stated in [43], these are:

• Modularity: building the system from a set of connected modules ensures the

possibility of run-time reconfiguration when a component is added or removed from

the system.

• Scalability: the iSpace must be able to adapt itself to environments of various sizes

and shapes; furthermore, it should be possible to integrate local systems into larger

ones.

• Ease of integration it should be easy to integrate existing intelligent components into

the system.

• Low cost of the components: as the iSpace is built of many smaller components, the

economic factor is determined by the cost of the components.

• Ease of configuration and maintenance: it is expected that it should be easy to set

up and maintain an existing system. This implicitly carries the requirement for

adaptability, meaning that the control system should also have the capability to learn

by itself, in order to automatically adapt to a changing environment, thus, reducing

the amount of configuration and maintenance the user has.

In this chapter, a new iSpace Control System (iSCS) framework is presented that I

have developed in order to implement a smart environment that can provide services to users

based on the available resources, and satisfies the requirements listed above: it is modular,

scalable, easy to integrate, can be built from low cost components, is easy to configure and

maintain and capable of tuning itself to adapt to changes.

The basic schematic of the iSCS can be seen in Fig. 4.1. The system is designed in a

modular way: each of the four parts in it contain multiple modules, which are customizable

with the available devices in mind.

49

Figure 4.1: The simplified architecture of the iSpace Control System framework.

The modules of the intelligent detection part can process the data from various detectors

(such as cameras and microphones), transforming it to the form of commands that the

modules of the command preprocessor part can interpret using a suitable knowledge

representation, and give instructions to executive agents (i.e. devices that can directly

provide the user with a given service) and output agents (devices that communicate toward

the users, such as screens and speakers). Furthermore, the system can learn to issue such

commands though the modules of the autonomous action planner, using the data from

sensors (providing e.g. temperature data) and the output of the intelligent detection module.

To implement a sufficiently advanced reasoning method (to understand commands) for

the new iSCS framework, a suitable knowledge representation system is required. There are

also various different knowledge representation approaches in the literature which can be

applied in man-machine co-operation, as well. Among of the most prominent approaches

are conceptual graphs (CG) (see [65]) that have primarily been developed for data base

interfaces, to make easier for humans to understand the data and to make inquiries. This

approach applies the concepts as basic primitives and the concepts themselves are types

which incorporate every instance that shares that type. In [66] a CG-based knowledge

model is proposed to represent concepts, terminologies, methods, and processes in Software

Architecture. The knowledge is classified into a hierarchy of 4 levels: fundamental

concepts, domain knowledge, process knowledge, and task knowledge. [67] proposes a

graph-based knowledge representation for a Geographic Information System (GIS), to

represent spatial and non-spatial data (nodes), also including spatial relationships (edges)

50

between spatial objects and use the model for generating a dataset composed of both types

of data.

Another example is [68], where the authors propose Feature Event Dependency Graphs

(FEDG). It focuses on representing the fact level knowledge in a compressed manner without

losing any important information. FEDGs is efficient in retrieving user concerned knowledge

patterns and is especially useful in discovering latent knowledge and in effective reasoning.

In FEDGs, the information is represented by feature events (nodes) and the weighted context

links and dependency links (i.e. directed edges) between them.

In order to describe knowledge that the iSCS framework holds about abstract concepts

and real instances, I have designed a new knowledge representation system that uses a

graph-based structure. The new approach belongs to the wider family of conceptual graphs

mentioned above and can be considered as a more specialized version of CG. The proposed

system also enables automatic observation-based learning for the control system it is

implemented in. Hypotheses are used to store the observed a posteriori knowledge (gained

by analyzing the details of commands issued by the user), which are used for the

automatized operation.

This chapter is organized as follows: In Section 4.1 knowledge representation is

described in details. Section 4.2 describes the general architecture of the proposed iSpace

Control System framework. Section 4.3 presents a simulation to illustrate its operation, and

Section 4.4 evaluates the proposed framework and gives a comparison to other systems.

Finally, Section 4.5 summarizes the new results.

4.1 Knowledge Representation

In order to describe knowledge that the system holds about abstract concepts and real

instances, I have designed a new knowledge representation system. In the proposed

framework, knowledge is defined as information about the relationship between abstract

concepts, as well as between their real world instances. This knowledge, however, is

restricted to information that is useful for the functionality of the control system (e.g.

information such as "coffee is a drink" and "a window controller can open a window" is

directly useful for its operation, while facts like "a brick can break a window" is not. As a

result, the size of the structure remains in manageable proportions, which also directly

affects the speed with which the system can use it for inference (i.e. to find which device in

the iSpace can execute a given instruction).

51

4.1.1 Knowledge Structure

To put the knowledge defined above into a form that an automated control system can

process, a graph-based structure is used. The advantage of graph-based structures lies in

their flexibility (they are easy to alter by adding, modifying or deleting nodes or edges) and

readability (they are also easy to read and understand by humans). This knowledge is stored

in a so-called knowledge base, which can be implemented as simple lists.

Each node represents an abstract concept or a real-world instance. Thus, the structure is

divided into two parts: the abstract and instance domains. In the abstract domain the nodes

denote the known concepts (e.g. the concept of windows) and the directed edges between

them describe their relationship, thus describing the knowledge of the system about the world

in general. In the instance domain the nodes represent existing objects (i.e. known instances

of the abstract concepts).

The nodes themselves are homogeneous and nameless, their identification is done

through dictionaries.

4.1.2 Dictionaries

In the new knowledge representation schema, dictionaries are used to map labels (one or

more words (i.e. expressions)) to the appropriate nodes. Multiple labels can be assigned to

the same node (synonyms) and multiple nodes can be assigned to the same label (ambiguity).

The most basic form of a dictionary is an ordered list of tuples containing the labels

and the identifiers of their corresponding nodes (along with a unique ID number for each

entry): [ID|Label|NodeID]. The search in such a structure can be done linearly with

O(N) complexity (where N is the number of entries) or O(log2N) if binary search is used

(if sorted by the desired value, e.g. by NodeID), or even O(1) if a hash or indexing table is

used (although at the cost of a larger structure.).

The construction and maintenance of the dictionary and the associated knowledge base

happens simultaneously: whenever a new node is created or deleted, a new entry is also

added to or omitted from the dictionary. The two main domains can have the same,

common dictionary or they can have separate ones. The advantage of the former is

simplicity considering storage, while the latter is faster (e.g. no need to look through

abstract nodes to find instance nodes).

Remark: Dictionaries of different languages can be assigned to the same knowledge

base, in which case a primary dictionary (or dictionary pairs, if the two domain is kept

separately) is needed to be distinguished and maintained constantly when changes are made

to the knowledge base, with the rest being optional, at the discretion of the administrator.

52

Figure 4.2: An illustrative example for the structure of the knowledge representation.

Fig. 4.2 depicts the distinction between the abstract and instance domains, as well as

the dictionaries: the two domains have two separate dictionaries. In the figure an example is

shown how human knowledge about the existing windows and their controllers in a room can

be represented using the new schema. A window can be opened and closed by its controller.

These actions depend heuristically on the temperature of the room and how used up is the air

in the room (i.e. the measurable reasons why the user would want the window to be opened).

For the sake of simplicity, the outside temperature and the current time is not shown in

the figure (although they are also considerable reasons in this particular example). Let us

consider that there are two windows and window controller devices in the room (denoted by

the side of the room where they are located: east or south), and the controllers are associated

with the appropriate windows they can do actions to, thus it is trivial which device can

operate on which window. With this structure, an iSpace control framework can simply be

made where the user can instruct the iSpace to open or close one or both windows.

53

4.1.3 Relationships between Concepts and Instances

In the new schema, different types of edges are used to depict different kinds of

relationships between entities and actions. The edges can be sorted into 3 categories:

descriptive, quantifier and specification edges. In the following, nodes are denoted with

NA, where A is a given concept that is represented by the node. Furthermore, a (i.e. lower

case symbols) represents numerical values.

4.1.3.1 Descriptive edges

Descriptive edges describe the relationship between abstract concepts.

• Inheritance edges connect a general and a more specific concept. An inheritance edge

connects node NA to node NB, if A belongs to type or category B. E.g., coffee is

a drink. NA inherits the properties of NB: any other edges connected to B are

regarded as if they were connected to NA as well. They are denoted by an empty

triangle-headed arrow towards the more general concept.

• Ability edges are three-way directed connections, where node NA is connected to

nodes NB and NC , if concept A can do B to concept C. B is typically the concept

of an action (e.g. opening or closing something). For example, drink machines

can make drinks, where A is node drink machine, B is node make and C

is node drink. In visual representation, the action node B is marked with a small

circle, and the direction is pointing toward C.

• Heuristics edges are directed edges between entities that provide heuristic information

that can be considered for learning. Node NA is connected to node NB, if concept B

can be heuristically bound to concept A. For example, actions done to coffee are

dependent of time and mood, if the main determining factors for the given user are

the current time and his/her mood when he/she instructs the system to make coffee.

Heuristic edges are denoted by an arrow with label [H].

Fig. 4.3 depicts these relationships. For easier view, the labels assigned to each node are

written into the nodes. The figure encodes the following the knowledge:

• tea, coffee, and cappuccino are drinks,

• drink machines can make drinks,

• and actions done to drinks are heuristically dependent on time and mood.

54

Figure 4.3: Example for the structure of the knowledge representation: inheritance, ability, heuristic

and meta edges.

This makes it possible that if the control system received a task like "Make coffee!", then it

can deduce from the structure that coffee is a drink, and drink machines can make drinks.

Furthermore, if the system is such that it can learn from tasks, then it will know that the

values of time and mood are needed to be considered regarding this particular task.

4.1.3.2 Quantifier edges

Edges can be used to assign numerical (crisp and fuzzy) values to concepts as well. Two

types of edges are distinguished into this category:

• Meta edges assign crisp numerical values to concept pairs: node NA is connected to

nodeNB, if conceptA has a numerical value inB quality. E.g., if a meta edge between

current value and day (of the week) is 6, that encodes the information that it is

the 6th day of the week currently (which is Saturday, if the indexing of the week starts

with Sunday with value 0). In the following, let us denote the value of the meta edge

between nodes NA and NB with VA,B.

Meta edges make it possible to appoint variables, for storing the values of sensors

or any other numerical values. A variable is defined by 4 attributes: current value

(CV), minimum value (mV), maximum value (MV) and sensitivity (SEN). Therefore,

a variable node is a node that is connected to nodes NCV , NmV , NMV and NSEN

through meta edges. The attribute value u for variable U can be gained from VU,CV ,

the range where u can take values from (u ∈ [mv,MV]) are VU,mV and VU,MV , and

55

finally, VU,SEN is used to help handling uncertainty. Using the previous examples, e.g.

time and mood are variables.

Fig. 4.3 depicts meta edges that connect time and mood (presuming that the control

system that employs the knowledge representation can detect such thing) to the 4

aforementioned nodes (thus, defining them as variables). In the figure, it can be seen

that the current time is 7:00 (700), the value of time can range from 0 to 23:59 (using

the MMHH format to gain a single numerical value), the mood of the user can take up

value between 0 and 3, with the current mood being 0 (more information about this in

Section 4.3).

• Fuzzy edges assign fuzzy membership functions (FMF) to concept pairs. Node NA is

connected to node NB with a fuzzy edge, if concept A has fuzzy membership function

µB assigned to it. The input value x that is used to determine the FMF value µ(x) is

gained from the meta edge between NA and NCV (i.e., VA,CV):

MA,B = µB(VA,CV) (4.1)

where MA,B fuzzy edge holds the output value of the given FMF µB between nodes

NA and NB, given x = VA,CV . Fig. 4.4 depicts the FMF for B=weekend, where the

input x comes from the current value of A = day (x ∈ [0, 6]), while the minimum

and maximum values that x can take in the membership function are given by Vday,mV
and Vday,MV , respectively. Vday,SEN determines the width of the boundary areas of the

FMF. Fuzzy edges are generally useful for the learning functionality of the system.

4.1.3.3 Specification edges

The edges in the specification category are connections between either an abstract node and

an instance node, or between two instance nodes.

Figure 4.4: Fuzzy membership function for weekend (of the week). Input variable x is given by

Mday,CV , while Mday,SEN determines the width of the boundary areas of the FMF.

56

• Instance edges specify a real-world entity (be it an object or living being) to be an

instance of a given abstract concept. They are denoted by arrows with label [I], and

store the IDs of a given device (e.g. window controller) or other entity (e.g.

coffee). In practice, the ID can be the network address of the given device.

• Association edges mark a connection between two instance domain nodes (that are

the instances of abstract nodes connected to each other by an ability edge). Their main

role is to provide additional information in cases where there are multiple instances of

the same kind of abstract concepts, e.g. multiple windows in a room, with a window

controller connected to each (this case can be seen in Fig. 4.2). Association edges are

denoted by an arrow with label [A].

4.1.4 Observation-based Learning

Many control systems benefit from learning, be it about the habits of the user or a changing

aspect of its environment. Observation-based learning is one of the most typical (and natural)

approaches where the task is to analyze the features of given events, and create models that

help recognizing those events afterwards.

In the proposed knowledge representation system, these models are called hypotheses.

A hypothesis (in this framework) can be regarded as an assumption that each event occurs

whenever a certain set of conditions (that are specific to each event) are met. For example,

in case of an intelligent office, the event is the user giving orders to the system. He/she

orders coffee to be made around 8:00 every workday (i.e. when Mday,weekend < τ (where

τ ∈ [0, 1] is an arbitrary threshold) which means it is not currently weekend). If the control

system takes note of the command and the values of the variables when the command was

received (based on the given heuristics), and finds that the command was issued multiple

times with very similar variable values (where VZ,SEN defines what "similar" means for a

given variable Z: 0 allows no deviation, while VZ,SEN ≥ 0 values allow some level of

diversion), then the next time the same conditions occur, the control system can confidently

issue the same command. Thus, the user can walk in for a fresh cup of coffee waiting for

him/her.

57

4.2 The General Architecture of the Proposed iSpace
Control System Framework

Based on the presented new knowledge representation, I have developed a new iSpace

Control System (iSCS) Framework.

Fig. 4.5 shows the general architecture of the framework, where the inputs for the

system are provided by different kinds of detectors and sensors. The former are devices that

are capable of detecting commands given by human users (e.g. microphones for audible or

cameras for visual commands, like hand signs), while the latter ones are simple devices

which can measure simple properties of the environment (like its temperature). Executive

agents are electric devices that are able to satisfy the needs of the user (e.g. window

controllers). They are assumed to have just enough built-in intelligence to be able to do

their predefined task. The iSpace is connected to them, as well. When executive agents are

registered by the administrator, setting their type as well in the knowledge base (e.g. a

window controller). Finally, output agents are simple devices that the iSCS can use

to communicate towards the user, e.g. screens and speakers.

Figure 4.5: The detailed architecture of the iSpace control system framework.

58

The iSCS framework consists of 4 main parts (as seen in Fig. 4.5):

• Intelligent Detection, that detects commands given by human users and turns them

into strings of words that can be processed by other modules.

• Command Processor, that processes the preprocessed commands and instructs the

appropriate executing agents to carry them out.

• Knowledge Representation, that defines the way knowledge is described and stored

in the system.

• Autonomous Action Planner, that is responsible for observation-based learning and

the trigger-based autonomous actions of the system.

4.2.1 Intelligent Detection

In the Intelligent Detection part, Command Preprocessor modules (CPPM) extract usable

commands from the data provided by the detectors. This can be done using different methods

of man-machine interaction, be it through verbal communication, hand gesture-based sign

languages, text messages, etc.

Furthermore, additional information can be used through the Additional Information

Preprocessor modules (AIPM) to gain valuable data. Such information can be e.g., the

mood of the user ([69] proposed such a method).

These modules are designed to be easily extendable or replaceable by other modules to

make the operation of the iSCS more flexible and robust.

4.2.2 Command Interpretation and Command Processing

In order to achieve an advanced level of command processing, the system has to use grammar

rules. These contain rules that determine how the words and sentences can be built with

regards to the language. The modules of the Command Processor part analyze the given

command (with regards to its language and grammar) and instruct the appropriate executive

agents to carry it out.

4.2.2.1 Command Types

Two types of commands are be defined in the iSCS Framework: instructions and prohibitions

(Fig. 4.6).

59

Figure 4.6: Structure of the (i) instruction and (ii) prohibition type commands.

Instructions are simple commands. They are given by the user to induce change in

the environment. The first parameter of an instruction describes the action that is needed to

be executed, possibly followed by an optional "all" word, which means that the action is

needed to be executed to all available objects (e.g., "open all windows"). The second

parameter describes the object of the action which can be followed by optional numerical

values.

Prohibitions are commands that are given by the user to alter the behavior of the

system by binding one or more commands that were already learned to additional

conditions, thus, inducing change among the hypotheses. Their structure is basically the

same as that of the instructions, except that they start with "DO NOT" and have (at least

one) additional text parameters, which usually represent fuzzy variables. E.g., in case of the

prohibition command "DO NOT make coffee on weekends!". Weekend is

defined by the fuzzy membership function shown in Fig. 4.4. Remark: if the sensitivity of

day (i.e. Mday,SEN) is more than 0, then small parts of the surrounding days (e.g. very early

Monday and late Friday night) count as "almost Weekend", adding flexibility to the

system (due to fuzzy logic).

4.2.2.2 Command Parsing

The Command Parsing module(CPM) first determines the type of the command, and then

parses it. The latter step depends on the type of the command (due to the differences in

the command structures described in the previous subsection). The input of the CPM is the

preprocessed command and its output is the parsed command.

It is presumed that the command is in a predefined format (which, in the simplest case

is based on the strictly defined word order of the English language), so the algorithm of the

60

parsing phase is quite trivial for simple cases. To mention an example, in case of instructions

the first word is always the action and the second one is either the "all" word or (after the

removal of the occurring articles, like "the") a noun that gives the object of the command.

On the other hand, more advanced parsing can be used as well, for which Fig. 4.7 shows

an illustration. The system first parses the sentence to separate words, then analyzes each

part. From that, it produces a graph, where the bigger circles are references to the appropriate

concepts of the knowledge base, while the smaller ones connected to them are features of

those words (e.g. an article belonging to the noun, is it plural or singular, etc.). Lastly, the

squares denote the words-part of speech. This way the commands that the human users can

give become more flexible, the users do not need to stick to a rigid order of words if it is

unnatural in their native language.

4.2.2.3 Command Interpretation

The purpose of the Command Interpretation module (CIM) is to determine which executive

agent is able to carry out a given command. Its input is the preparsed command and its

output is the network address or reference of an executive agent. The CIM only processes

instruction commands since prohibition type commands are not needed to be executed (they

are processed by the Autonomous Action Planner part instead). The algorithm searches for

three key nodes, in order: the object node Nobj , the action node Nact and the executive node

Nexec. These three nodes are needed to be connected via an ability edge.

The object node is a node that either corresponds to the object of the command (through

the dictionary) or can be reached from the corresponding node through inheritance and/or

synonym edges with a constraint that the node is needed to have at least one instance (a node

in the instance domain, which is bound to the object node with an instance edge).

Figure 4.7: Example for the command parsing.

61

The action node is a node that either is corresponding to the action of the command,

or can be reached from the corresponding node through inheritance, similarly to that of the

object node, with the difference that the action node does not need to have any instance.

The executive node is a node that can be found the same way as the object nodes, with the

difference that its instance is needed to be associated with the instance of the object node.

Thus, the algorithm effectively does the following: First, it finds out what concept the

object of the command is (by looking up the ID of the node assigned to the given label, then

searching through the list of the nodes, combined with the list of the inheritance edges), then

what action is needed to be done to the object (similarly); and finally, what concept can do

that action to the object. If the algorithm cannot locate the three previously defined nodes,

then it stops: the instruction cannot be carried out. If it finds three nodes that satisfy all of

the constrains defined above, it returns the address or reference of the executive agent that is

stored in the instance node of the executive node. Therefore, an instruction can be executed

if the resulting NY node is not an empty (NULL) value:

NY =

Nexeci , if∃Eability
Nexec,Nact,Nobj

and ∃Einstance
Nobj ,Nobji

and ∃Einstance
Nexec,Nexeci

and ∃Eassociation
Nobji ,Nexeci

NULL, otherwise

(4.2)

where Nobji and Nexeci are the instance nodes of Nobj and Nexec, respectively, and ET
N1,N2

is

an edge with type T between two given nodes N1 and N2, and ∃ is the symbol for existence

in mathematical logic.

Remark: Not all objects have instances that constantly exist, e.g. coffee does not exist in the

desired form of a "cup of coffee" until the machine makes it. In the proposed system this

problem is solved by creating so-called void nodes that serve as an instance to such concepts

(and are associated with the instance of the coffee machine).

Let us consider the example from Subsection 4.1.3. The user issues the command: Make

coffee! The algorithm first identifies node drink as Nobj , since it is the ancestor of the

node NCOFFEE (see Fig. 4.3). Then it identifies node NMAKE as Nact. Finally, it recognizes

the nodeNDRINK MACHINE asNexec. If it has an instance (even though the instances are not

shown in that figure) that is associated to the instance of NDRINK , then the system returns

the address or reference of the drink machine agent stored in the found instance node.

4.2.2.4 Instruction and Output Manager

The task of the Instructor module (IM) is to instruct the executive agents (that the iSCS is

connected to) indicated by the CIM (with NY) to execute the task in order to provide the

desired service for the user.

62

In advanced man-machine co-operation the communication is usually bi-directional, i.e.

the iSCS has to be able to construct questions or give information in a way that the user

can easily understand. This is the main function of the Output Manager module (OMM).

In case of verbal communication, this can be solved by the usage of voice synthesizers (see

e.g. [P. 1]) or by simply writing the message out to a screen.

4.2.3 Knowledge Representation in the iSCS

The knowledge representation in general has already been described in the previous section.

In the iSCS Framework the structure is stored in a so-called knowledge base, which consists

of the lists of the nodes and the edges. Whenever the "world" of the iSpace is altered in any

way, the changes should appear in the appropriate domains of the knowledge base as well.

The effect of "physical" changes (addition or removal of sensors, detectors, agents, etc.)

should appear in the instance domain, while "property" changes (temperature of the room,

etc.) should appear in the abstract domain. The content of the knowledge base is maintained

by the system administrator, or a human user with high enough permission levels. The

modifications, however, are easy to make as the they only require the addition, modification

or deletion or given nodes or edges. In practice, this can be simply done through a suitable

graphical user interface. Simple grammar rules (defining e.g. the order of the words in a

sentence, etc.) are used during command parsing and while constructing the messages that

the system needs to send to the user via the output agents.

4.2.3.1 Hypothesis Storage

Due to the support for observation-based learning in the knowledge representation, the iSCS

Framework is able to build hypotheses about the habits of its users, which means that the

commands are treated as events. The hypotheses are stored in the hypothesis storage (using

a simple list). A hypothesis consists of a compact form of the command (i.e. the IDs of

the involved nodes), optional numerical values (for commands where the user wants to set a

given value, e.g. the alarm clock), gained from the command the hypothesis is based on.

Figure 4.8: A hypothesis made from the command "Turn off the lights".

63

Every hypothesis has at least one trigger. A trigger is a set of conditions that are valid at

the moment of the detection of the command (i.e. their current values when the event was

detected). Thus, each condition is set up from the current values and the sensitivity values

of the variables that are heuristically connected to the given object of the command. Every

trigger has a justification value, which keeps account of the times the command has been

issued by the user under the same conditions. Lastly, each condition can be either permitted,

or forbidden. This means that permitted conditions will be true if the current values during

the checking are aligned with the values of the condition, while forbidden conditions are the

opposite: they will be true if their values do not align with the current ones.

For example, Fig. 4.8 shows the structure of the hypothesis that was made using the

command "Turn off the lights". The command is written in the first row (since

there are no additional numerical values, they are -1 by default). It is followed by the list

of triggers, each having its own justification value and set of conditions. Let us assume that

light is only connected to time with a [H] edge, thus it is used as condition node with the

current value and sensitivity (which shows that the user issued the command at 22:00, and

the time can deviate by 15 minutes (the latter is set by the system administrator)). Lastly, the

condition is permitted, thus it will only be true when the current time is around 22:00.

4.2.4 Autonomous Action Planner

The part of the intelligence of the iSCS, so-called Autonomous Action Planner (AAP) is

responsible for learning via hypotheses and for decision making: whether or not to take

actions according to what the system has learned.

4.2.4.1 Hypothesis Training

The task of the Hypothesis Trainer module (HTM) is maintaining the hypotheses stored in

the system according to the received commands. The algorithm (Fig. 4.9) of the hypothesis

training works as follows: If the command is an instruction, then the system searches for a

hypothesis that has the same action, object, and more or less the numerical parameters (within

the range defined by the sensitivity parameter of the given variables). If no such hypothesis

is found, then a new one is created using the parameters of the command, a new trigger and

new conditions are added with the variable nodes that are connected to the subject node with

heuristic edges. There will be as many conditions as many heuristic edges are connected

to the subject node. The current value and sensitivity of each condition is derived from the

current value and sensitivity of the variable (see example in Subsection 4.2.3.1). If there

already is such a hypothesis, then the algorithm checks its triggers.

64

Figure 4.9: The algorithm for the Hypothesis Trainer Module.

If there is a trigger with conditions triggered by the current values of the variables, the

algorithm increases the justification value of that trigger and the algorithm ends. If there are

no triggers with fulfilled conditions, then a new trigger is added using heuristics just like it

is explained above.

If the command is a prohibition, then the algorithm searches for a corresponding

hypothesis. If the found hypothesis does not have any triggers, it adds a new trigger to it

(along with the conditions, as explained above). If it has at least one, then the system adds a

new condition to all its triggers using the fuzzy membership function of the prohibition and

setting the new conditions to permitted=false.

4.2.4.2 Hypothesis Trigger Checking

Using the information from the observations, the system can anticipate the user issuing the

same command the next time the conditions of the maintained hypotheses align with the

actual variable values. The task of the Hypothesis Trigger Checking module (HTCM) is

to frequently check the conditions of the hypotheses in the hypothesis storage and compare

them to the current values of the variables in their trigger list.

A hypothesis is triggered if the conditions of at least one of its triggers is fulfilled:

• the current values (VZ,CV of each considered variable Z) is within the deviation defined

by the sensitivity parameter of the variable (VZ,SEN),

65

• all considered fuzzy membership functions return a value over an arbitrary threshold τ

• and the justification value of the hypothesis is higher than an arbitrary value Θ.

If a hypothesis is triggered, then the HTCM sends the command of the hypothesis to the

CIM, which instructs the appropriate executive agents to carry it out.

4.3 Simulation

Figure 4.10: The virtual room in which the iSpace application framework has been implemented and

tested.

In order to demonstrate the functionality of the system, it has been implemented in a

virtual room, where a simulated man is living his everyday life. He gives commands to

the iSCS integrated to the room to have his needs satisfied. The system is equipped with

detectors that can detect the given command.

Fig. 4.10 shows the simulation from the view of one of the four cameras (set up in the

four corners of the room). As it can be seen, the room has a coffee making machine, an alarm

clock, as well as an automated window and curtains. The user is sitting at his home office

workstation. The implementation itself has been done using Visual Studio 2015, C++ and

OpenGL on PC-3. The program indicates all the important environmental variable values,

and the virtual user communicates directly with the iSpace.

66

The system also has an emotion estimator as an additional intelligent detector to gauge

the mood of the user. The mood in this case is set to one of 4 simple categories (0:sad,

1:happy, 2:frustrated, 3:neutral). The room is also equipped with executive agents: a coffee

machine, an alarm clock as well as multiple windows and curtains, along with their respective

controllers.

The man living in the virtual room has his own schedule for work, leisure and resting.

He gives certain commands to the iSCS in certain times (for example, "open the

curtains" after waking up at 7:00 (in a bad mood), "make coffee" at 7:33 and 12:00

(which turns his mood into neutral), "turn on the heating" if the temperature is

lower than 18°C (64.4°F), etc.). The system makes and manages hypotheses based on these

commands. The justification threshold θ is set to 2, thus the system is only able to give out

the command of the triggered hypotheses if the command has been detected at least 2 times

under the same circumstances. The value of τ is set to 0.5.

Fig. 4.11 shows two of the hypotheses that the system has learned in 4 (in-simulation)

days, one of which is based on the instruction "make coffee" (Fig. 4.11(left)). The

command has been issued around 7:17, 7:33 and 12:00. The mood of the user was

frustrated (2) and neutral (3). One other hypothesis (Fig. 4.11 (top right)) has been created

from the command "Set the alarm to 7:00!" (top right). Each time the user

issued it, a new trigger was made or an existing one got its justification value incremented

(starting from 0).

The system has started issuing automated commands for hypotheses that have triggers

Θ ≥ 2, so it instructs the coffee machine to make coffee at the right time and detected user

mood combinations.

Figure 4.11: Hypotheses learned from the commands Make coffee (left), Set the alarm to

7:00 (top right) and DO NOT set the alarm to 7:00 on Saturdays (bottom right).

The latter was made from the previous one (with the same command), by adding a new condition to

stop it from triggering on the 5th day of the week (i.e. Saturday).

67

However, as it can be seen in the figure, there are two conditions that trigger within a

short time frame, which means that the user would get two cups of coffee in the morning,

despite he usually only asks for one. The main reason for this is that the user did not ask for

coffee in the same, exact time every morning, but slightly different times, and two of these

times were further from each other than 15 minutes. This problem can be easily solved by

either raising the value of Vtime,SEN , or adding a so-called cooldown timer to the system that

prevents it from issuing the same command multiple times in a set time frame.

Furthermore, the weekday and weekend schedules of the virtual man are different, though

the system does not know about this at the first time, so it sets the alarm to 7:00 on Friday

night. The first thing the user does after his unscheduled awakening on Saturday is giving

the prohibition command "DO NOT set the alarm to 7:00 on Saturdays!".

The system promptly adds this new condition to the existing hypothesis (Fig. 4.11 (bottom

right)), and since Friday late night counts into weekends given that a FMF is used to describe

the concept of weekend, the system will not make this mistake again.

Remark: issuing prohibitions does not have to happen after the hypothesis have triggered

under undesirable circumstances, the user could have added the restricting condition to it

beforehand as well.

4.4 Evaluation

In the simulation, has been shown that the proposed new Intelligent Space application

framework is able to comprehend, interpret and execute detected and preprocessed

commands given by a human user, if the commands are given in the anticipated form (in

this case, simple English sentences). The system has been able to learn reoccurring

commands that reoccur in the similar conditions, with the usage of heuristics and execute

them when the conditions are fulfilled without requiring the user to give these commands

again. During the simulations with the current implementation the system, it has been able

to learn all the instructions and prohibition commands given by the virtual inhabitant of the

virtual room.

Although the proposed iSCS framework belongs to the Intelligent Space applications,

there can be found differences between it and a conventional intelligent room system such as

presented in [70]. Comparing the architectures, in [70] a structure with 3 layers is proposed,

where the perceptual systems (which determine what is happening in the room) are in the

lowest layer.

In the second layer, a uniform agent based interface can be found associated to every

device installed in the room and on the third layer there are application agents which

68

provide, with fairly limited levels of knowledge, functionality for specific types of uses in

the Intelligent Space. On the contrary, the proposed system has a modular architecture and

is managed apart from the sensors and executive agents. The advantage of using this

flexibly designable knowledge base-based control procedure is that sensors, detectors, and

executive agents can be added and removed anytime without reconfiguring the system; only

a new entry or modification in the knowledge base is needed. Another important difference

is that the proposed iSCS is designed to understand sentences instead of just keywords,

which can be more comfortable to use for the human users. The system itself is still under

development; in the current implementation it can only process the simplest English

sentences. Improving this is one of the numerous ways to improve the capability and

efficiency of the system.

A further feature that sets the presented system aside from other such systems is the

application of fuzzy membership functions, which provides a simple way to represent and

actively use more complex concepts, like "weekend", as well as help handling uncertainty.

The proposed knowledge representation system principally belongs to the wider family

of conceptual graphs mentioned above and can be considered as a more specialized version

of CG, however, with significant differences:

• The proposed system has been specifically developed for control systems.

• While in conceptual graphs the concepts (the nodes) themselves are types, the

proposed system separates abstract concept nodes and their real-world instance

nodes,

• In CG the nodes are implicitly labeled, while in the proposed system the labels are

loosely attached to the nodes (using dictionaries to assign labels to node IDs), the

proposed method does not define constrains like CG does, etc.

• In the proposed system, specific edges carry most information, as they encode the

relationship between concepts and instances, while CGs define relationship nodes for

that end.

4.5 Summary of New Results

I have developed a new smart environment application called iSpace Control System
(iSCS) framework. The system acquires data from the environment it is situated in, and

commands from human users that is parsed and interpreted in order to provide the user with

various services, which are carried out by agents in the iSpace. Thus, said agents do not need

69

to possess such capabilities, they only need to be able to carry out their specific function.

The system consists of intelligent detection modules that process data from sensors, and

command processor modules that interpret the received command, determine which known

agent can carry it out, then notify the agent to do so. By analyzing the details of the received

commands, the autonomous action planner modules of the system can learn what to do

(i.e. which commands to issue) automatically when certain conditions are met (derived from

the observations).

The iSCS satisfies the main iSpace requirements: it is designed to have a modular

structure, and as a result, any part of the system can be extended with or exchanged to new

ones, so changes and improvements made to the system can be carried out easily. The

system is scalable, meaning it can be used in environments with any size and volume, by

extending with a sufficient amount of additional modules, sensors and agents. It is easy to

integrate into any environment with low cost components (e.g. placing cheap, widely

available single board computers with cheap sensors, like cameras and microphones).

Finally, the system is easy to configure and maintain, due to the flexibility of the knowledge

representation and the observation-based hypothesis learning.

I have designed a new knowledge representation system that uses a graph-based

structure to describe information about concepts and instances, as well as about the

relationship between them. The novelty of the presented structure lies in its specific edge

types and that it stores and handles theoretical (abstract) and practical (real-word)

knowledge separately. It is also able to build upon uncertain and ambiguous knowledge by

using fuzzy membership functions and variables. As a result, the proposed knowledge

model makes it easy to store, retrieve, modify, and extend theoretical and practical

knowledge, making it ideal for the iSCS to interpret commands and to associate them with

physical means and actions, to adapt to changes and learn new (both certain and uncertain)

knowledge which aspects are especially important when the system is involved in e.g.

man-machine communication. Another valuable property of the presented knowledge

representation system is that the core knowledge representation itself is independent of
natural languages, given that the information is carried by the edges that define the

relationships between various nodes, so reasoning can be done with them even if the

language component (i.e. the dictionaries) was taken away. This makes it simple to add

more languages to the system.

I have implemented and tested the proposed ISCS framework and the knowledge
representation system in a virtual 3D environment, using Visual Studio 2005, C++ and

OpenGL. In the simulation, it has been shown that the new iSCS framework (using the new

knowledge representation system) is able to comprehend, interpret and execute detected

70

commands given by a user. Furthermore, the iSCS framework has been shown to be able to

learn commands that are issued multiple times in similar conditions with the usage of

heuristics, and execute them automatically when the conditions are fulfilled without

requiring the user to give these commands again.

4.5.1 Thesis Statement III.

I have developed a new iSpace Control System (iSCS) framework consisting of
intelligent detection modules, command processor modules, and autonomous action
planner modules, together constituting a smart environment system that can provide
services to users based on the available resources and agents. I have also designed and
implemented a new graph-based knowledge representation system to describe a priori
knowledge for control systems.
The knowledge representation uses a graph-based structure that provides a flexible and easy

to use architecture. The new knowledge representation system also enables automatic

observation-based learning, in which hypotheses are used to model the observed a posteriori

knowledge (gained by analyzing the details of commands issued by users), which are used

for the automatized operation.

The iSCS satisfies the following requirements: modularity, scalability, ease of integration,

can be built from low cost components and easy to configure and maintain, mainly due to

the wide availability of cheap Single Board Computers and sensors that can be used to

implement the iSCS framework. The functionality of the system has been validated in a

simulated environment.

Related publications: [P. 2], [P. 7], [P. 18], [P 19], [P. 20, [P. 21]

Number of independent citations as of May 2021, according to Google Scholar: 1

71

Chapter 5

Adaptive Fuzzy Rule-based Classification
with Fuzzy Filter Networks

Color filtering is an important field of image processing. It is typically used for enhancing the

quality of the image output, but it can also be used for identifying or even locating objects

with known color tones in camera images. Such a function is very beneficial for smart

environments such as the Intelligent Space [2]: being able to provide location information

for robots in the surveilled area, detecting events that require the call for help (e.g. an elderly

person falls and cannot get up), etc.

There have been numerous machine learning methods that have been used for color

filtering in the last 3 decades. Among the many different approaches, the most typically

applied ones are Artificial Neural Networks (ANNs, [47]) have been advantageously used

for many problems such as fruit ripeness recognition [71], traffic sign recognition [72],

ocean color measurements [73], dermatological disease detection [74], etc. Although they

are flexible classifiers with a very strong generalization ability (recognizing unseen data),

their main disadvantages involve slow training and low interpretability.

k-Nearest Neighbor (kNNs, [75]) classifiers have also been used for color classification

regarding beef quality identification [76], grape leaf disease identification[77], tomato

ripeness classification[78], hair color detection in face recognition systems[79], etc. Their

advantages are simplicity (since the training is practically non-existent, in turn they

calculate a proximity function for each stored training data point during the evaluation

phase), and generally high accuracy. On the other hand, their computational complexity is

high, (as they need to do all calculation during the evaluation).

Another often used approach for color-based classification is Support Vector Machines

[80]. They have been successfully applied in face detection [81], vision-based pest detection

[82], vehicle color identification [83], tomato ripeness [84], etc. Although SVMs provide

72

robust classification, they do not perform very well when the data set has more noise i.e.

target classes are overlapping.

Aside from the mentioned ones, there are two common disadvantage among the listed

classifiers: low levels of interpretability (i.e. the data administrator cannot simply "look into"

the knowledge model the classifiers have built to gain additional insight to the problem), and

that their acquired knowledge is hard to purposefully configure after training (i.e. making the

classifier ’forget’ certain information, or learn new information without changing the already

obtained knowledge).

Rule-based systems are yet another approach, where the classification of the input data

is based on predefined IF-THEN rules. Such rules can be either crisp or fuzzy, and are

usually described by sets of feature-value assignments, which makes it easy for a human

data administrator to understand the implicit knowledge of the system (by looking at the

individual rules), while also being able to modify it by adding, altering or removing rules.

Rule-based classifiers have been effectively applied in many problems, such as online

sentiment analysis [85][86], self-driving cars [87], malaria diagnosis [88], data stream

classification [89], human activity recognition [90] etc. Fuzzy rule-based systems have been

applied in color filtering problems as well, e.g. [91] and [92].

In this chapter, a new fuzzy rule-based classifier is introduced that can be used for color

filtering. The so-called Fuzzy Filter Network (FFN) classifier is derived from the classic

Radial Basis Function (RBF) networks: using the same structure, but instead of gaining the

output value from the weighed and activated outputs of the neurons, the FFN classifier uses

each neuron to calculate the distance between the inputs and a given rule. The output of the

system is thus the class associated with the rule that is the closest to the inputs, i.e. the one

that is the most similar to known models.

The training of the classifier entails the determination of the parameters of the rules that

belong to each neuron in the hidden layer, which can be done through clustering. To achieve

this, I have developed a new clustering method, which aims to make a covering of the

problem space with hyperspherical multidimensional clusters. The two main parameters of

the clusters are the center and range parameters, which are directly used in the neurons. In

order to gain these parameter values, the new so-called Analytical Radial Representative

(ARR) clustering method designates all input data points as an individual cluster center,

sets their radiuses to half the distance to the closest cluster center (of a different class), then

increases them to cover as much of the problem space as possible, without causing significant

overlapping between the areas covered by the individual clusters.

Finally, in order to enhance the speed of the classifier, I have designed a parallel version
of the FFN classifier, alongside with the parallel version of the ARR clustering method. The

73

performance of both sequential and parallel FFNs are illustrated through experiments.

This chapter is organized as follows: In Section 5.1 the proposed filter network is

described, as well as the clustering algorithms used for training the network. In Section 5.2

experimental results are described to illustrate the efficiency of the classifier, while in

Section 5.3 an evaluation is given and the applicability is analyzed. Finally, Section 5.4

summarizes the new results.

5.1 The Fuzzy Filter Network

5.1.1 The Architecture of the Classifier

The idea behind the new filter network [P. 8] is treating classification problems as

(fuzzy [29]) inference problems. The reason why Radial Basis Function networks are ideal

for this is that they are already realizing some sort of fuzzy inference in their neurons: their

Gaussian activation function (like a fuzzy membership function) computes the similarity

distance between the given (center and width) parameters of the neurons to the input data.

The center and width parameters of each neuron can be derived from the parameters of the

training data samples. Additionally, the categories of the samples (as they are given in

supervised learning) are assigned to the corresponding neurons, either by an extra variable

or simply by using the weight parameter of the neuron. This way, each neuron stores a

filtering rule by its [center, width, and category] parameters.

Remark: For distance measure in this thesis work, Euclidean distance is used:

d(A,B) = ‖A−B‖ =

√√√√N−1∑
i=0

(Ai −Bi)2 (5.1)

where Ai and Bi are elements i of 1D vectors A and B, respectively; and N is the length

(dimension) of both A and B.

Overall, only the output layer of the RBF is needed to be altered significantly, where

the RBF normally calculates the weighted sum of the outputs of the neurons: instead, in the

proposed architecture the highest value of the outputs of the neurons is determined. Thus,

while in the original system, its output is simply the weighted sum of the output of the

neurons in the hidden layer; in the proposed FFN the output is the category or class of the

neuron with the highest output, or in other words, the class of rule that is the most similar to

the input data:

y =


wargmax

∀j
(g(x,Cj ,σj)) if g(x,Cj, σj) ≥ θ

0 otherwise
(5.2)

74

where 1D vector w stores the class labels assigned to each neuron, θ is an arbitrary threshold

value; Cj and σj are the center and width parameters of neuron j, respectively. The argmax()

function returns the j index belonging to the largest calculated Gaussian function value. The

threshold parameter θ ∈ [0, 1] is used to set the sensitivity of the classifier: lower θ values

allow for more vague similarity, while higher values make the classification stricter.

Fig. 5.1 illustrates the architecture of the Fuzzy Filter Network, where X is the vector

of the input parameters (presuming a problem with N attributes); Cj and σj stand for the

center and width parameters of neuron j (j ∈ [0, J − 1]), respectively (J being the number

of neurons); and g(x,Cj, σj) denotes the Gaussian activation function of neuron j:

g(X,Cj, σj) = e
−
‖X−Cj‖2

2·σ2
j (5.3)

Remarks: The value calculated by g(x,Cj, σj) can serve both as a proximity measure,

and a fuzzy membership function value that reveals at what rate the given input x is part of

the given fuzzy sets that constitute the given rule j. Thus, it can indicate how certain the

system regarding any given output y.

Figure 5.1: The architecture of the Fuzzy Filter Network.

75

Furthermore, it is easy to see that g(x,Cj, σj) implements a fuzzy inference (with Cjk
being the kth coordinate value of Cj) considering fuzzy rule j (that consists of a set of N

membership functions for N dimensional problems):

g(x,Cj, σj) = e
−
||x−Cj ||

2

2·σ2
j = e

−

√
|X0−Cj,0|2+...+|xN−1−Cj,N−1|2

2

2·σ2
j =

e
−
|x0−Cj,0|

2+...+|xN−1−Cj,N−1|
2

2·σ2
j = e

(−1)|x0−Cj,0|
2

2·σ2
j

·...·
(−1)|xN−1−Cj,N−1|

2

2·σ2
j =

e
−
|x0−Cj,0|

2

2·σ2
j · ... · e

−
|xN−1−Cj,N−1|

2

2·σ2
j =

N−1∏
k=0

e

−|xk−Cj,k|
2

2·σ2
j

(5.4)

which is the fuzzy product t-norm [93] of the Gaussian membership functions of the

individual parameters (k ∈ [0, N − 1]).

The determination of the rule parameters (i.e. the training of the network) can be done

by using all the training data points directly (setting the center parameters as the parameters

of the data samples (Cj = xj), and either calculating the radiuses from the dataset (based on

the distances between data points) or using a single, uniform measure for the radius).

However, it is important to note that the quantity of training data samples can be very high,

which in turn slows down the operation of the network significantly. In cases where the

network is used in a loop (e.g. in online image processing) the operational speed of the

network is very important. One effective way to reduce the set of rules to a more manageable

amount is clustering. For this, two new clustering methods are presented in the following

subsection.

5.1.2 The Training of the Classifier - Radial Representative Clustering

During the training of the classifier, the goal is to determine the center (C) and width (σ)

parameters of each rule belonging to each neuron in the hidden layer.

To achieve this, I have developed a novel clustering method, based on the idea of taking

the set of input data points x, considering them all clusters of their own, then removing

the ones that are not necessary to represent a reliable covering of the problem space with

hyperspheres (i.e. multidimensional areas with the same radius in all dimensions, e.g. circles

in 2D, spheres in 3D, etc.). Let us call this the Radial Representative clustering principle.

As a result of the training phase, the set of the training samples is divided into two

disjunctive subsets: active and inactive clusters. Active clusters are used as rules in the

system, while inactive clusters are either deleted, or kept for future training purposes. In

the following, the "activeness" status of a cluster j is marked with Ψj . It can take 3 values:

indeterminate (Ψj = −1), inactive (Ψj = 0) or active (Ψj = 1).

76

Remark: Depending on the problem, the dataset that contains the observed knowledge of

the problem can be either balanced, or imbalanced [94]. In the former case, the distribution

of classes among the samples is relatively even. However, in the latter case, the number of

samples from one class outweighs the number of samples from all other classes. This can be

taken advantage of: the more numerous class can be considered as a default or background

class, that is the most likely candidate for unknown places of problem (i.e. areas that are not

represented in the training dataset). Color filtering problems are such problems, where the

task is to recognize given color tones, while the rest of the tones can be regarded as a single,

default class that is present where the desired color tones are not. Because of this, only the

rules for the non-default classes are needed to be stored, and if the fuzzy output membership

function value of the system is less than an arbitrary value, then it can be concluded that the

result is most likely the default class.

In the following, let us introduce the concept of adversity among samples: Given a

dataset X , sample x ∈ X is adversarial towards a given sample z ∈ X (z 6= x), if their

classes are different (κz 6= κx). Since clusters are built around single samples, this definition

is applied to them as well: given a set of rules R, cluster j ∈ R is adversarial towards a

given cluster i ∈ R (i 6= j), if κi 6= κj .

The system is set up so at the "border" of each cluster j (i.e. points that are rj distance

from Cj) the value of g(x,Cj, σj) should be 0.5 (so all points in the domain withing the area

of the cluster return a value between 0.5 and 1). Thus, the width (σj) of the corresponding

rule j can be calculated from radius rj of cluster j (given Eq. (5.3)):

0.5 = e−
r2j

2·σ2

ln0.5 = −
r2
j

2 · σ2

σ =

√
(−1) · r2

j

2 · ln0.5

(5.5)

Remark: Before clustering, redundant and inconsistent data is removed from the training

dataset. Redundancy is defined as the presence of two or more instance of the same training

sample (with the same attribute and class values). Sample x is redundant, if ∃z ∈ X:

∀k ∈ [0, N − 1] : x, z ∈ X and xk = zk and x 6= z and κx = κz (5.6)

where xk and zk are the kth attributes of samples x and z, respectively, and similarly, κx and

κz are the class labels of said samples.

On the other hand, inconsistency is defined as the presence of two or more training

samples with the same attribute values but different class values. Sample x is inconsistent

77

with regards to sample z, if

∀k ∈ [0, N − 1] : x, z ∈ X and xk = zk and x 6= z and κx 6= κz (5.7)

The removal of the former is done by simply comparing each sample to all others, and

removing all but the first occurrence. The latter is a bit more complicated, as it influences

the classification accuracy of the classifier trained with the data. Its implementation depends

on the problem: for problems with balanced data, one sample in each group of inconsistent

samples is randomly chosen and kept while the others are disregarded; while in a case of

imbalanced data, it can be simply taken as default class (i.e. being more careful not to

falsely identify a negative sample as positive).

Initially, two different approaches have been considered when I have designed the

Radial Representative clustering method: a top-down approach that begins with appointing

the biggest possible cluster radiuses and in the following steps, then iteratively reducing the

cluster radiuses until an optimal coverage is achieved (in which all input samples are

correctly classified using the given clusters); and a bottom-up approach, in which the

cluster radiuses are started from the smallest necessary sizes, and can only be increased in

order to achieve an optimal coverage of the problem space.

The main difference between the two approaches is in their time complexity: since the

top-down approach uses an iterative operation to decrease the cluster sizes, then checks all

previously appointed clusters in each step to make sure that the change have not reduced the

overall classification ability (i.e. making sure that samples that have been correctly classified

with the clusters before the change, will be correctly classified after the change as well).

This results in a much slower operation, which is why only the bottom-up approach has been

implemented and used in the Fuzzy Filter Network.

5.1.2.1 Analytical Radial Representative Clustering

The Analytical Radial Representative clustering method approaches the solution in a

bottom-up manner, in order to gain the center and radius parameters of each cluster. It starts

with all training samples being active clusters, setting their radiuses to the smallest

necessary measure and only increases them if there is an opportunity to do so. The detailed

algorithm can be followed in Fig. 5.2:

• First (yellow parts), it initializes distance array D (where Di will store the smallest

distance from sample i in the problem domain), and index vector Λ for the indices of

the closest adversarial sample j for each sample i (i.e. if j is the closest to i, then

Λi = j).

78

Figure 5.2: The algorithm for the Analytical Radial Representative Clustering approach.

• After that, for each sample, the closest adversarial sample is determined and noted in

D, along with the index of the closest sample in Λi (light green cycle).

• The radiuses of all clusters are set to half of the smallest found distances (stored in D;

dark green parts).

• Finally (cyan cycle), for each cluster i: where the rj radius of the closest adversarial

cluster j is less than ri, ri is increased in order to account for the deficit (so the two

borders "meet"). This is done for all P clusters.

Fig. 5.3 illustrates the analytical approach: first the smallest distances are calculated

between adversarial clusters (a), which are marked with arrows that point towards the closest

sample. Notice that some arrows are pointing both ways, these mark sample pairs that are

mutually the closest to each other, so their final radius is set to cover half of their distance (b).

However, samples with no arrow pointing at them have the potential to cover a larger area

without intersecting with the area of the cluster marked as closest to them (marked with

dashed circle). In the last step (c) these radiuses are increased, so the final radiuses for each

cluster i:

ri =

{
d(Ci, Cj)− rj | j = argmin

∀j 6=i
(d(Ci, Cj))

}
(5.8)

where cluster j is the closest to cluster i.

79

Figure 5.3: Illustration for the Analytical Radial Representative clustering method for a 3-class

problem: (a) distance calculations, (b) range setting and (c) range increase. The color of each data

point pi shows its class.

Remarks. For balanced data, Eq. 5.8 provides the final radiuses. However, for

imbalanced data, this would lead to skewed results, because the training data often do not

cover the whole of the problem domain, so it is highly possible that unseen negative

(default) class points would get into the area of the appointed clusters. Thus, for imbalanced

data additional calculation is added to limit the radisues by an arbitrary range value ρ:

ri =

ri if ri ≤ ρ

ρ otherwise
(5.9)

5.1.2.2 Reduction

After the clustering, there is an additional reduction phase to make sure that the resulting set

of clusters only contains clusters that contribute to the accuracy of the network, i.e. clusters

that are covered by other (non-adversarial) clusters should be eliminated, since they do not

contribute to the classification and so only increase the computational complexity by having

to evaluate them as well. Thus, the algorithm compares non-adversarial clusters, and if a

cluster i is covered by a larger cluster j, then i is set as inactive. Only active clusters are put

into the result of the clustering step.

Fig.5.4 shows the algorithm of the reduction step. It simply compares each active cluster

i to all active clusters j that has the same class. If cluster j covers i (i.e. ri is smaller than rj
even if we add their distance (d(Ci, Cj) + ri < rj)) then cluster i is set to inactive, and the

stops comparing i to any other clusters, goes on to the next cluster instead.

80

Figure 5.4: The algorithm for the reductions step.

5.1.3 Parallel Fuzzy Filter Network

While the advantages of the FFN classifier are that they are simple to use and modify (as one

only needs to add, remove or modify the parameters of the neurons), the main disadvantage

is that they require a significant amount of computation, as all clusters are needed to be

examined for each input sample. In case of image processing problems, this is a serious issue

as typically there are at least hundreds of thousands of pixels in the input image. In order

to accelerate the training and operation, I have created a new, parallel implementation of

the FFN classifier (called parallel Fuzzy Filter Netwwork or pFFN) using parallel computing

[P. 9]: the evaluation process is applied to input data (all pixels in the image) at the same time,

or at least as many pixels at once that are allowed by the parallel computing capabilities of

the given computing platform.

5.1.3.1 Parallel Training

Fig. 5.5 shows the summary of the parallel training algorithm. Just like that of the sequential

version, the goal of the parallel training process of the classifier is to build a list of clusters

with a manageable size that represents as much of the (non-background class) training data

as possible.

• The initial training list can potentially contain samples that are either redundant

(Eq. (5.6)) or inconsistent (Eq. (5.7)) with each other, thus the first step is filtering

these samples out. This can be done sequentially (comparing the samples one by one

with O(N · P 2) time complexity); or in parallel. Depending on the size of the

problem and the computational capabilities of the system, it can be fully parallel (if

N · P 2 processes can be launched at once, then it can be done with a technique called

parallel reduction [95], O(N · log2P)) or semi-parallel (P processes are launched,

81

Figure 5.5: The simplified algorithm for the parallel clustering method used to train the parallel FFN.

each compares a given sample to the others sequentially, resulting in an O(N · P)

time complexity algorithm).

• The training data (that is clean of any redundancies and inconsistencies) is then

processed by the parallel clustering step. The applied new method is a simplified

version of the analytical approach presented in Subsection 5.1.2.1: for each sample j,

the distance from the nearest adversarial sample i is calculated:

ri = min
∀j
{d(Ci, Cj) | κ(j) 6= κ(i)} (5.10)

where d(Ci, Cj) is the same distance metric between the centers of clusters i and j

described in previous subsections (Eq. 5.1), while κ(k) is the class label of any cluster

k.

• Using the obtained data, the list of the clusters is filtered once more: the default class

samples are filtered out (in case of imbalanced data), as well as clusters that are covered

by larger clusters of the same class.

• Finally, parameter σi for each remaining (active) cluster i is calculated from the radial

data (using (Eq. (5.5) and (5.9)). This can be done in a single parallel step for all

clusters.

5.1.3.2 Parallel Evaluation

Ideally, the evaluation should be done by assigning a process to each input sample – rule

combination, but that would require an amount of processes that cannot be provided in most

problems nowadays, considering the limited computational power (the limit of the number

of parallel processes) of contemporary graphics cards. Thus, the classifier can realistically

process the input data in two ways in the evaluation phase:

82

• One by one. This approach is more fitting for streaming data, where the samples

are made available one by one. An easy way to handle this in the proposed pFFN

is assigning one process for each cluster to calculate the Gaussian activation function

with their respective rules, then parallel reduction can be used to get the largest value,

along with the index of the rule (so its class can be determined). Since it is fully

parallel, the time complexity for ω rules is O(N · log2ω) (given the time complexity of

the parallel reduction).

• In batches (i.e. multiple inputs at once). This approach is more typical for image

processing problems like color pattern recognition, in which case one process is

assigned to a given input sample (e.g. a single pixel and its color triplet). Given the

limits on contemporary graphic cards, one process is assigned to each input (e.g. a

single pixel), in which each rule is evaluated in a sequentially using (Eq. (5.2)) and

(Eq. (5.3)), thus, all pixels can be classified at the same time. Since it is semi-parallel,

the time complexity is O(N · ω).

Similarly to the sequential case, the resulting class label for each pixel is accepted only

if the corresponding maximum value is larger than an arbitrary threshold parameter Θ, given

by Eq. 5.2.

5.2 Experimental Results

In order to show the capabilities of the network and the new FFN classifier, four experiments

are described in this section, of which the first two (regarding the comparison of the IRR and

ARR clustering methods) have been conducted on PC-4, and the last two (color filtering) one

has been implemented and evaluated on PC-16 using MS Visual Studio 2015, CUDA 9.0 and

OpenCV 3.3.0.

5.2.1 Experiment 1: Sequential Color Filtering

The first experiment presents a real application, where the task is to locate the areas that

contain given color tones in images. The classification is based on the HSV (Hue,

Saturation and Value) color coordinates of the pixels (examined one-by-one). The main

goal of this experiment is to examine how fast the trained system can process images

sequentially and in parallel, as well as analyze their statistical performance measures [96].

Remark: The descriptions and formulas for the applied statistical performance measures can

be found in Section A. of the Appendix. Given that the problem revolves around an

imbalanced dataset (the amount of background tones significantly outweigh the sought

83

ones), thus balanced accuracy (Eq.(A.7)) is regarded instead of the classic classification

accuracy (Eq.(A.6)).

Another indicator considers the recall and precision ratios [97]: while recall indicates

how likely the classifier is to detect the given class, precision shows how "trustworthy" the

classifier is in its positive findings.

The problem itself is a 2-class classification problem (as one pixel either falls into such

an area or not). Two sequential FFN classifiers have been trained: one using HSV, while the

other using the RGB color space. Similarly, two pFFN has been trained as well, however,

their results turned out to be the same (with insignificant differences), so here only one set

of results are presented. All the networks have been trained with the same range parameter

(ρ = 15), and the tests have been done for the whole scale of the threshold parameter (θ ∈
[0, 1]).

The training data set is made by manually marking the important areas (that contain

color tones needed to be learned) in one or more training images (e.g. Fig. 5.6 (top left),

with resolution 640×480). The system extracts these data points as the sought class and

sets the rest of the color triplets in the image as background colors. The resulting dataset

is then filtered of redundancies and inconsistencies. This yields a much lower number of

color triplets (e.g. for the figure, it returned 25138 samples (1898 positive (with a tone

of the human skin) and 23240 negative (not a tone of the human skin)). The subsequent

training (the modified analytical algorithm) results in 1574 clusters (of the sought human

skin areas; the background class clusters are not kept) for the sequential FFNs and 1622 for

the pFFN. Interestingly although the two implementations realize the same algorithm overall,

but small differences of the code (mainly regarding parallelization techniques) makes the two

approaches slightly different.

In Fig. 5.6 (top right) the results of the training can be seen on one of the training images,

showing that the new classifier managed to learn the problem. Only the sequential cases

are shown in the figure, because there are no significant differences between those and the

results of the pFFN.

In the example image sequence shown in the figure, the average evaluation time for each

is ~51.7 seconds. As it can be seen, most of the areas are correctly covered. Although,

with new color triplets appearing that are not present in the training image, a certain level

of distortion emerges in the subsequent images Fig. 5.6 (bottom left and right). On the

other hand, the pixels classified as false positive are notably scattered, which still reliably

enables the determination of the skin regions by choosing the areas if the results are filtered

afterwards for pixel density.

84

Figure 5.6: The training image of the first experiment (top left), the classification result for the

training image (top right) and two subsequent images of the third experiment: the system found skin

areas in the highlighted areas (bottom left and right).

Figure 5.7: Statistical performance measures for the two sequential FFNs and the pFFN: (a) Balanced

Accuracy, (b) precision and (c) recall.

In Fig. 5.7, statistical performance measures can be seen that have been gained by using

a training image (e.g. Fig. 5.6 (top left)), then evaluating the classifiers for all threshold θ

85

Figure 5.8: Statistical performance measures for the two sequential FFNs and the pFFN: (a) balanced

accuracy, (b) precision and (c) recall.

(θ ∈ [0, 1]) values. As it can be seen, the three classifiers have roughly the same balanced

accuracy (BA), with the pFFN achieving a slightly higher rate. At θ = 0 the classifiers mark

all pixels in the image as positive, which puts their BA around 50% (since they correctly

mark all positive areas). This means, however, that even though their recall is 100% at that

point (i.e. they mark all positive pixels), their precision is near zero (i.e. the vast majority

of the positive findings are wrong). As θ increases, however, their precision stabilizes. They

reach their classification peak at θ = 0.1, then their recall steadily decreases (as the filter

lets through less and less pixels, as their fuzzy membership values (i.e. their proximity to

the closest rule) are regarded with a more and more strict threshold). With this, their BA

also slowly decreases, but their precision stays steady until they reach θ = 1, where the

recall of the sequential classifiers hit zero (and subsequently, their precision peaks at 100%).

The pFFN, on the other hand, manages to provide a small amount of recall, with a decent

precision as well.

Fig. 5.8 shows the accuracy of the same networks, but using the image after the previous

one in the sequence. As it can be seen, even though the performance values decreased (as

new color variants of the sought tones appeared in the image due to the noise of the camera),

their general curve shapes stayed the same.

5.2.2 Experiment 2: Parallel Color Filtering

In the second experiment, the performance of the proposed classifier implementations is

investigated for a 4-class image processing problem, where aside from human skin areas, the

classifiers need to mark to color tones of specific objects too. Similarly to the previous one,

the task is to mark areas of images based on color information (e.g. areas with human skin

tones). Similarly to the previous one, this experiment has been conducted on multiple image

86

sequences, one of which is the one used in the previous experiment.

Again, three FFN classifiers (a pair of sequential FFNs using RGB and HSV color spaces,

and one pFFN using the HSV color space (again, the RGB tests proved to be the same, with

insignificant differences)) have been trained and evaluated multiple times (ρ = 15), for the

whole range of θ ∈ [0, 1].

Using the image in Fig. 5.6 (top left) as a reference example, the two sequential FFNs

took ~57 seconds to train on average using the input images with resolution 640 × 480,

resulting in 4119 rules for the RGB, while 4118 rules for the HSV version. The pFFN

returned 3666 rules. The parallel training takes ~12.3 seconds on average, of which ~88%

is spent with the redundancy and inconsistency removal, which is realized in a semi-parallel

way (due to the limitations of the computation ability of the available graphics card in

PC-16).

Fig. 5.9 showcases an example of the conducted experiments: the training image (top

left) alongside the training mask (top middle) and the testing image (top right). In the bottom

row, we can see the output of the sequential FFN for HSV (bottom left) and RGB (bottom

middle) color spaces, as well as that of the pFHM. All images show the θ = 0.1 case, when

the recall and balanced accuracy are at their height for all three classifiers. The processing of

images on average takes ~126 seconds for the sequential FFNs, while for the pFFN it only

takes ~0.65 seconds (~193 times faster).

Figure 5.9: A training image (top left), the training mask (top middle) and the testing image (top

right), the output of the sequential FFN for HSV (bottom left) and RGB (bottom middle) color spaces,

as well as that of the pFHM (bottom right).

87

Figure 5.10: Statistical performance measures for the two sequential FFNs and the pFFN: (a)

balanced accuracy, (b) precision and (c) recall.

Fig. 5.10 sums up the performances of the classifiers for all θ values, which is similar

to what the previous experiment presented. However, the classifiers managed to achieve a

higher balanced accuracy (peaking at ~88-89% at θ = 1) and overall higher precision. Their

recall rate is above 75% around θ = 0.1.

The speed of the trained classifier was also tested on a single (non-batched) input, where

the parallel operation can be fully exploited (each process computing a comparison to a

single cluster). The time required to evaluate a single input (a color tone) takes ~0.019 ms

(an O(logω) time complexity).

Remark: although it might seem reasonable to just use this latter (non-batched) method

to process the image pixel by pixel considering it only takes ~21.88 µs, but that can add

up even for a small image to more than what the batch processing provides (e.g. it takes

~5.836 s/image for an image with size 640×480, as opposed to the ~0.305 s/image speed of

the batch (whole image) processing).

5.3 Evaluation and Applicability

The time complexity of the Analytical Radial Representative clustering algorithm is linear

in the number of attributes (N , which influences the distance calculations) and quadratic in

the number of input samples (P)): O(N · P 2).

The operational time complexity of the sequential FFN (which involves sequentially

computing the distance of the input data points from each of the ω rules and taking the rule

that is the closest to the given inputs) is O(N · P · ω). It is significant for a large number of

inputs, like in image processing (as Experiment I. shows), even for relatively small images

(640×480).

The parallel FFN, on the other hand, has the operational time complexity of O(N · ω),

88

Figure 5.11: The operation time of the pFFN classifier in function of the number of rules (ω).

which is a significant reduction given that the number of neurons (ω) is usually much smaller

than the number of input samples (P). In practice, this means that instead of more than 10

seconds, the time required is reduced to ~0.3 seconds. Fig. 5.11 visualizes the dependence of

the operation time (of the semi-parallel implementation) on the number of rules (i.e. ω). It is

based on the averages of 48 evaluation sessions using the images from the sequence shown in

the previous section. As it can be seen, it shows a near linear increase in the microscopic level

(though with slowly increasing degree of slope), but on the macroscopic level, this implies an

exponential increase. This shows the importance of finding a rule-base for a given problem

with optimal cardinality: one with the lowest number of rules that can sufficiently cover the

problem space (balancing between classification performance and speed).

Remark: It is still worth noting that even for 10000 rules, the operation time stays below 2

seconds (on PC-16).

5.4 Summary of New Results

In this chapter, I have presented a new rule-based classifier is proposed for supervised

classification problems, the so-called Fuzzy Filter Network (FFN). The new classifier is

derived from the classic Radial Basis Function (RBF) networks: using the same structure,

but instead of gaining the output value from the weighed and activated outputs of the

neurons, the FFN classifier uses each neuron to calculate the distance between the inputs

and a given rule. The output of the system is thus the class associated with the rule that is

the closest to the inputs, i.e. the one that is the most similar to known models.

The training of the classifier entails the determination of the parameters of the rules

that belong to each neuron in the hidden layer, which can be done through clustering. In

order to implement the training, I have developed a new clustering method, which aims

to make a covering of the problem space with hyperspherical multidimensional clusters.

The two main parameters of the clusters are the center and range parameters, which are

89

directly used in the neurons. In order to gain these parameter values, the new so-called

Analytical Radial Representative (ARR) clustering method designates all input data points

as an individual cluster center, sets their radiuses to half the distance to the closest cluster

center (of a different class), then increases them to cover as much of the problem space

as possible, without significant overlapping between the areas covered by the individual

clusters.

Finally, in order to enhance the speed of the classifier, I have designed a parallel version
of the FFN (pFFN), alongside with the parallel version of the ARR clustering method. The

performance of both sequential and parallel FFNs are illustrated through experiments.

5.4.1 Thesis Group IV.

5.4.1.1 Thesis Statement IV.1.

I have proposed a new fuzzy rule-based classification method called Fuzzy Filter
Networks that is based on a topological modification of Radial Basis Function neural
networks. I have also introduced a new clustering algorithm called Analytical Radial
Representative clustering in order to train the new fuzzy rule-based classifier. The
algorithm follows the bottom-up approach.
Its training is done through clustering, where the clusters that cover the problem domain

based on the training data are calculated. Said clusters are used as rules during the operation

of the classifier, during which each hidden layer neuron calculates a Gaussian fuzzy

membership function value based on each rule. The output of the classification is the class

label associated with the rule that is the closest to the input values. The classification

performance of the filter network using the proposed clustering algorithm as training has

been evaluated through a color filtering experiment.

Related publications: [P. 3], [P. 22], [P. 8]

5.4.1.2 Thesis Statement IV.2.

I have designed a parallel realization of the new Fuzzy Filter Network classifier, which
reduces the complexity of both the training and the operation of the classifier. The

efficacy of the method is shown through a color filtering experiment.

Related publications: [P. 9]

Number of independent citations as of May 2021, according to Google Scholar: 2

90

Chapter 6

Real-time Classification with Fuzzy
Hypermatrices

Classifiers are regularly used in most fields of science and engineering. The majority of

classifiers in literature apply a complex algorithm to calculate the output values from the

input values (such as ANNs/MLPs), or apply a proximity-based approach to find a known

rule or model that resembles the most to the input data vector (such as Fuzzy Filter

Networks [P. 3]). The disadvantage of these methods is that the more complex their

evaluation algorithm is, the slower it usually gets in function of the amount of input data.

There is, however, an approach that aims to minimize the amount of computations for

each input data sample. Lookup Tables (LUTs) are structures that implement a direct

association between the input data vector and the desired output, in the form an array that

uses the input data attributes as array coordinates, and stores the desired values (either class

IDs or precalculated function values) in the corresponding array element.

The LUT method is most often used in network routing applications (e.g. [98]), but it also

has been successfully applied for color filtering in image processing applications, typically

using a matrix-like table to store the 2D histogram of certain attributes (see, e.g. [32]). The

two attributes can be chosen arbitrarily from a color system; however, they are generally

chosen not to correspond to illumination or intensity, in order to avoid complications caused

by various lighting effects, like shadows. The table is filled with the number of occurrences

belonging to each color tones in the training images then normalized by the largest value,

thus creating a 2-parameter likelihood function that determines the probability of each color

tone in one step. For color filtering, the problem space is generally a 3D array and the color

coordinate values (RGB, HSV, etc.) provide the address to the given elements.

One of the most significant advantages for LUTs is that they can be implemented as

hardware [99] [100] using a multiplexer (for simple cases) or a field-programmable gate array

91

(FPGA [101], for higher dimension problems); directly integrating them into the measuring

process and thus the operation even faster.

In this chapter, the results of a research are presented that aimed to create a classifier

that has a lower computational complexity than most other classifiers, in order to achieve

a very fast operation for real-time systems. The new classification method, called Fuzzy
Hypermatrices (FHMs, [P. 4]), utilizes the LUT method for classification, but while the

previously described color filtering technique ([32]) uses probabilities (which are affected

by the frequency of occurrences, i.e., the more times a color tone appears the more likely it

belongs to the given class), the new method applies fuzzy logic to determine the degree of

certainty in each cell of the array (thus, the number of occurrences of a tone does not matter

at all). By this, a certain degree of generalization ability can be added to the classifier.

Furthermore, I have developed a parallel version of the FHM classifier that has been

shown to be able to process images with a significantly lower time complexity than that of the

sequential version, and provide a significantly better classification performance than parallel

Fuzzy Filter Networks [P. 9] (a parallelized improvement of an classifier from my previous

work).

The rest of the chapter is as follows: Section 6.1 describes the general architecture and

training of the classifier, while Section 6.2 proposes a parallelized version. Section 6.3 shows

experimental results, Section 6.4 investigates the applicability of the proposed method and

lastly, Section 6.5 summarizes the new results.

6.1 Fuzzy Hypermatrices

The new method can be defined as a multi-dimensional lookup table approach that is

enhanced with fuzzy logic. This is done by regarding not only the input data points, but the

area around them in the problem space as well, and thus, the classifier can generalize from

the knowledge it gains through training (which means that it can recognize inputs that are

similar to the ones it has already learned).

6.1.1 The General Architecture

The general architecture of the classifier uses one multidimensional array (so-called

hypermatrix) to represent the implicit knowledge of the system derived from the training

data (i.e. the known positions of the individual classes in the problem space (Ψ), e.g. color

tones in the 3D color space) and as many additional hypermatrices (with the same sizes as

the former) as many classes are needed to be distinguished, in order to store the

92

precalculated fuzzy membership function values of the classes (hence the labeling Fuzzy

Hypermatrices (FHMs)).

Let us denote the hypermatrix containing the known locations of the classes (in the

problem domain Ψ) with C, and the arrays that hold the fuzzy membership values with Mκ

(where κ is the label of the appropriate class). C is used during the training phase(s), while

the evaluation step requires only Mκ.

Many filtering problems have to deal with imbalanced data [94], in which the samples

of one class (usually designated as the negative, or as in this thesis work, the default class)

significantly outweighs the number of one or more positive classes. The advantage of this

is that the default class does not have to be stored, since in theory it can be presumed that it

fills every place in the problem domain that the other classes do not. This slightly reduces

both the storage space that is required for the structure and the evaluation time. Latter is

important if the classifier is applied in a loop (e.g. pixel-wise classification of an image)

during real-time processing.

In general, the output of the system considering N input parameters and a default class

is as follows [P. 23][P. 24]:

y(x0, ...xN−1) =

λ if Mx0,...xN−1,λ ≥ θ

default otherwise
(6.1)

where x0, ...xN−1 correspond to the input parameter values and θ stands for an arbitrary

threshold value that is used to set the sensitivity of the system (typically 50%). λ is the

identifier of the class with the highest stored fuzzy membership function value, which can

be calculated as

λ = argmax
∀κ

(
Mx0,...,xN−1,κ

)
(6.2)

Thus, the usage of the classifier for multiclass cases is simply checking the values of the

fuzzy hypermatrices of each class considering the input parameter values (x = x0, ..., xN−1):

the class of the highest such value (that is higher than the arbitrary threshold θ) is the output.

For 2-class problems it is even simpler, since there is only one FHM to check.

Fig. 6.1 shows an illustrative example for a 4 class (with class 0 being the default class)

case with 2 attributes. In the figure, (a) shows the problem domain where each class has its

markers pinpointing places where the samples occur in the training data set. As a general rule

of thumb, if a place would be occupied simultaneously by two different classes according

to the data set (i.e. inconsistency occurs) then the marker is considered as default instead.

Fig. 6.1 (b), (c), and (d) show the fuzzy hypermatrices for classes 1, 2, and 3, respectively.

Here, linear (triangular) fuzzy sets are applied, with their center being at the position of the

class marker and their area spreading till the closest adversarial marker.

93

Figure 6.1: An example for a 2D FHM classifier with 4 classes (considering class 0 as default class,

thus it does not have an M0 associated with it): (a) 2D array of the classes; (b,c,d) fuzzy arrays of the

fuzzy membership functions; (f) depicts how the largest fuzzy values of each of the classes cover the

problem space, and (g) shows the resulting covering in terms of the class labels.

Manhattan distance (or taxicab geometry) [102] is used to limit these areas (by an

arbitrarily chosen range parameter ρ) further regulating the generalization ability of the

system (against overgeneralization) in case of sparse matrices. If a class contains two

overlapping fuzzy sets, the values at the overlapping areas are not aggregated; the larger one

is used instead. Character type arrays can be stored more efficiently than integer or floating

point arrays, hence this research uses values from 0 to 100 to describe the fuzzy sets.

Fig. 6.1 (f) and (g) shows how the structure of the FHM looks like from the perspective of

the evaluation, i.e. the highest fuzzy membership function values (M̄x0,x1) returned at each

element (f), alongside their classes (C̄x0,x1) (g).

6.1.2 Training

During the training of the FHM, imbalanced data is presumed, so the goal is to make a model

of the non-negative areas of the problem space Ψ (i.e. where the non-negative class labels

from the training data an be found).

94

Figure 6.2: The training algorithm behind Fuzzy Hypermatrices.

The training consists of two major parts: filling one class array C with the class labels of

the input data using the input data values to get the location of the appropriate element; then

using the contents of C, fill each fuzzy arrays Mκ around the non-negative labels.

Remark: In the next algorithm, the following denotations are used for the elements of the

given arrays: Cx = Cx0,..,xN−1
and Mx,κ = Mx0,..,xN−1,κ, i.e. for the sake of simplicity, the

input vector is written instead of listing its attributes.

Fig. 6.2 shows the algorithm of the training. It begins with initializing the arrays: setting

all contents of M and C to -1’s and 0’s, respectively. Then, the first sample x is taken

alongside its class κ, and mapped to a given positive integer domain:

x̃i = aixi − bi (6.3)

where ai and bi are arbitrary coefficients for each attribute and thus, x̃i ∈ N ∪ {0}, ∀i ∈
[0, N − 1]. Their values are chosen regarding the data at hand. Remark: for integer valued

95

data with already limited domain (e.g. color triplets) this step can be skipped.

The gained integer valued vector is used to examine element Cx̃:

• If its value is -1, that means these values have not been processed yet (a new color

tone), the element is set to its class κ.

• If its value is 0, then the same values have already been seen with the default class (i.e.

a color tone from the background), so nothing will be done to it (using a pessimistic

approach, i.e. in case of inconsistencies the system presumes that the tone must be of

the default class, instead of a sought tone, due to noise).

• If its value is greater than 0 but does not match κ, then using the same pessimistic

approach as above, set it to 0.

This is done to all samples. If there are none, the system changes aspect and instead

of the list of the input values, it begins looking over the elements of class array C (i.e.

the elements of the problem space Ψ at positive integer (N ∪ {0}) points). For each element

u ∈ ΨN∪{0} that is marked positive (Cu > 0), the largest subspace ψu ⊂ ΨN∪{0} is considered

that is around u within a range of ρ that does not contain any u′ elements that are adversarial

towards u (i.e. their class label is different form that of u).

Thus, a reduced multidimensional area is determined around u, in which the fuzzy

membership function values of each element v (v 6= u) is calculated using their relative

distance from u and from the border of the area. Remark: this allows for asymmetrical

areas, as it can be seen in e.g. Fig. 6.1 (e), where one class 3 can only "spread" towards one

direction due to the limiting factor of the other classes. The calculation of v′ is done by

finding the intersection point between the line defined by uv and the bounding box of the

area (which can be done with line clipping algorithms [103][104]).

Using the resulting vector v′, for each v ∈ ψu in this area the fuzzy membership function

(using triangular fuzzy sets) is calculated:

µ = 1− d(u, v)

d(u, v′)
(6.4)

If µ is larger than the previously held Mv,κ value (κ being the class associated with u),

then Mv,κ is overwritten by µ and Cv is set to κ. This is done for all v ∈ ψu.

Remarks: The shape of the applied fuzzy membership function is arbitrary (e.g.

triangular, Gaussian, Epanechnikov ([105], see Fig. 6.3), etc). Inconsistency filtering is

implicitly part of the training algorithm, as it can be immediately detected if a color is

already contained by array M or not.

96

Figure 6.3: (a) Triangular, (b) Gaussian and (c) Epanechnikov fuzzy membership functions.

6.1.3 Evaluation

As it has been mentioned, the evaluation of the FHM classifier is simply checking the values

of the fuzzy arrays for each input samples in a sequential manner, and accepts the class

for which this value is the largest. Fig. 6.4 shows the evaluation algorithm in detail. As

mentioned, it processes the input set X sample by sample. First, the an unprocessed input

is taken and mapped with Eq.(6.3) to gain x̃, which is then used to find the largest value of

Mx̃,κ:

µ = max
∀κ
Mx̃,κ (6.5)

If µ is at least θ, then the class of the largest value of the fuzzy matrices is marked as the

output for sample x:

y = argmax
∀κ

Mx̃,κ (6.6)

Otherwise, 0 is returned for sample x. This is done till all samples are processed.

Figure 6.4: The evaluation algorithm behind Fuzzy Hypermatrices.

97

6.2 Parallel FHM Color Filtering

Although the sequential FHM is very fast, it can still be accelerated by evaluating all input

samples concurrently. In this section, a new algorithm is given for both the training and

evaluation that uses parallel computing.

Similarly to that of the sequential case, the structure of parallel Fuzzy Hypermatrices

(pFHMs) consist of one class array Ĉ, but implemented in the form of a single 1D vector, to

make it easier to handle for parallel functions. The elements of Ĉ are addressed as follows:

let z be an element of the positive integer valued problem space (z ∈ ΨN∪{0}). The position

of z in Ĉ is given by the following function:

A(z) =
N−1∑
i=0

(
zi ·

N−1−i∏
j=0

Dj

)
(6.7)

where Di is the size of the domain of dimension i of the problem space. For example, using

a suitable color space, the element of color tone z = [1 2 3] (z0 = 1, z1 = 2, z2 = 3) can be

found at A(z) = 1 · 2562 + 2 · 2561 + 3 · 2560 = 66051.

Furthermore, the pFHM structure has a single fuzzy array M̂ (with the same size as Ĉ),

in which the fuzzy information of all classes are aggregated.

6.2.1 Parallel Training

During the training, a temporary class and fuzzy arrays C̆ and M̆ are created and filled.

These arrays have Qκ times the size of the final arrays: they are divided into Qκ sectors, and

each sector is representation of the problem space regarding a given class.

Fig. 6.5 shows an example: in the figure, each sector contains the color space (with size

D = 2563). The idea behind this is that each class is calculated simultaneously, then the

resulting structure is filled with the largest values from each class.

Figure 6.5: The architecture of the arrays in the pFHM model (for color filtering). In practice, the

most efficient way to implement it is as a 1D array, where each 2563 sized block belongs to a given

class.

98

Although there is an additional dimension (the class label) κ, the address function can

easily be used to gain the given element in C̆ and M̆ :

A(z, κ) = κ ·
N−1∏
j=0

Dj +
N−1∑
i=1

zi ·
N−1−i∏
j=0

Dj (6.8)

Using a color filtering example again, is κ = 2 and z = [1 2 3]: A(z, κ) = κ · 2563 + z0 ·
2562 + z1 · 256 + z2 = 33620483.

After setting up the class array C̆, it is filled with the input data, with one process

launched for each data point x the training dataset X:

C̆A(x, κ) = 1, ∀x ∈ X (6.9)

where κ is the class of x. Remark: non-integer inputs x are mapped to x̃ beforehand using

Eq.6.3, so in the following x̃ is used.

The next step is inconsistency filtering, in which all elements z in the positive integer

problem space ΨN∪{0} are regarded across all sectors (i.e. looking at what classes have been

associated with it):

∀z ∈ ΨN∪{0}, ∀κ ∈ [1, Qκ − 1], ∃κ′ ∈ [0, N − 1], κ 6= κ′, CA(z,κ) 6= 1, CA(z,κ′) = 1 :

CA(z,κ) = 0 and CA(z,0) = 1
(6.10)

i.e. if there is another class (κ′ ∈ [0, N − 1], κ 6= κ’) that is marked as 1 (CA(z,κ′) = 1),

then there is inconsistency: element z needs to be set to the default class (CA(z,0) = 1 and

CA(z,κ) = 0 (∀κ ∈ [1, Qκ − 1])).

After this, the array M̆ for the fuzzy membership function values is created (with the

same size as class array C̆), which is filled in the areas around each element z where

CA(z,κ) = 1, ∀κ ∈ [1, Qκ − 1] (i.e. only non-default classes are regarded for pFHMs as

well).

Let ψz ∈ ΨN∪{0} be the positive integer subspace around z, in which the fuzzy values are

needed to be calculated. For each element z’ in subspace ψz, the fuzzy membership function

value is calculated using a suitable function (e.g. the following is the Epanechnikov function

[105]):

M̆A(z′,κ) = 1− d(z, z′)2

ρ2
, ∀z′ ∈ ψz, C̆A(z,κ) = 1, κ > 0 (6.11)

Remark: Although it is possible to take adversarial elements into account just like in the case

of sequential FHMs, but in order to reduce the necessary training time, the presented pFHM

implementation uniformly takes the area around the given elements (within ρ range).

99

Finally, the sectors of arrays C̆ and M̆ are compressed into arrays Ĉ and M̂ , by selecting

the element with the highest fuzzy value in each class sector:

ĈA(z,0) =

{
C̆A(z,κ) : κ = argmax

∀j

(
M̆A(z,j)

)}
(6.12)

for all coordinates a, b, c ∈ [0, 255]. The final fuzzy array M̂ is calculated similarly:

M̂A(z,0) =

{
M̆A(z,κ) : κ = argmax

∀j

(
M̆A(z,j)

)}
(6.13)

6.2.2 Parallel Evaluation

In the evaluation step, a process is launched for input sample x̃ is given by:

y =

ĈA(x̃,0) if M̂A(x̃,0) ≥ θ

0 otherwise
(6.14)

This is done for all input samples at once (as long as the number of inputs is less than the

number of processes the given graphic cards can handle).

6.3 Experimental Results

In the following, in order to demonstrate the performance of the FHM classifier, three series

of image processing related examples are presented (conducted on PC-4) and the results of

one set of experiments is shown to illustrate the effectiveness of pFHMs (using PC-16).

6.3.1 Sequential Experiments

In the first series of experiments, the speed and accuracy of the sequential classifier is

investigated. The goal of this color filtering problem is to recognize human skin areas in

camera pictures. This task is important for applications like human face and facial emotion

recognition, hand posture and gesture identification for natural human-computer interfaces,

etc.

Thus, the objective is to find and mark the pixels that are in certain regions of the 3D

(HSV) color space, while ignoring the ones that are outside of these regions. Let us consider

the former as positive, and the latter as negative (i.e. the default class). The training data

has been generated from images (see, e.g. Fig. 6.6) where the locations of the human skin

areas (the samples of the positive class) are manually marked. Each pixel in the images (with

resolution 640×480) is a sample, of which its HSV color coordinates are considered together

100

with its class. Moreover, since in this case the negative class can be considered as the default

class, it is sufficient to calculate and store the positive FHM only.

6.3.1.1 Comparison with Classic Lookup Tables

In the first set of experiments the training speed, classification speed and performance of

the FHM is compared to that of the standard lookup table (LUT) method. The training data

is from a sequence of images taken in the former Intelligent Space Laboratory of Óbuda

University. In the training images, the human skin areas have been manually marked, so the

task is to identify these areas in the image. Since noise from the camera can be expected, the

goal is to mark the pixels with the sought color tones in a high enough density so they can be

found using simple image processing methods after classification, e.g. morphological tools.

Two different configurations are used for the LUT classifier: one using all 3 components

of the HSV color space, and a classic LUT that only uses the hue and saturation

components (in order to improve the classification rate by neglecting the component that

involves luminance).

Figure 6.6: A training image for the first experiment (top left), classification accuracy of the trained

Fuzzy Hypermatrix (ρ = 5, top right) classifier, as well as the trained 2D (bottom left) and 3D Lookup

Table (bottom right) on the next image of the sequence.

101

The applied LUT training algorithm (with a minor modification in order to take

inconsistency into account) is the following. For each pixel marked as positive in the

training image, increment the value associated with its color tone, otherwise decrement it.

After finishing all pixels in the image, replace all negative values in the matrix by 0, then

normalize all values by the largest value. The inputs of the training algorithm are the same

as in the previous experiment.

Table 6.1 shows the average speed results. The training of the 2D LUT classifier takes

4.918 seconds on average per image, while the 3D LUT requires slightly more, 5.044

seconds, more or less the same as the FHMρ=5. The classification speed of the 2D LUT is

0.092 s on average per image, while the 3D LUT is 0.138 seconds, same as the FHMρ=5.

Fig. 6.6 highlights the results for the regarded classifiers using one of the images as input

testing input (top left). The classifiers have been trained with the image before it in the

sequence. As it can be seen, the FHMρ=5 managed to mark the skin regions fairly densely,

while the other two performed worse, as they could only recognize the color tones they have

been trained with, while the FHM was able to generalize its obtained knowledge to tones

it have not seen during the training. This proves the base presumption that adding fuzzy

logic can implement a certain level of generalization ability in a classifier that had none

by default. Another interesting thing to note that considering the LUTs, disregarding the

luminance color parameter can indeed lead to slightly better results, as it makes the classifier

slightly less sensitive to any changes in shading.

6.3.1.2 Investigating the Effect of the Range Parameter

In the second set of experiments, the multi-class classification capabilities of the FHM

classifiers are demonstrated, for FHMs trained with different range (ρ) values. The task of

the systems is similar to that of the previous experiment, but with multiple objects that have

to be found aside from the skin regions.

Table 6.1: The average speed of the classifiers in the first experiment.

Classifier
Average training time

required for one image (s)

Average testing time

required for one image (s)

2D LUT 4.918 0.092

3D LUT 5.044 0.138

FHMρ=5 5.454 0.138

102

Figure 6.7: Training image for the second experiment (left) and result of the training for this

particular training image (right).

Table 6.2: The average balanced accuracy, recall and precision of the classifiers in the second

experiment, as well as the average training and evaluation times per image.

Classifier Recall Precision
Balanced

Accuracy

Training

Time

Evaluation

Time

FHMρ=5 47.10% 84.85% 73.52% 5.454 s 0.1535 s

FHMρ=15 42.68% 82.95% 71.3% 16.75 s 0.1543 s

FHMρ=30 41.06% 82.29% 70.5% 88.438 s 0.154 s

Five different classes are used: the default class (colors of the unmarked pixels in the

training image), the human skin regions (marked with yellow), as well as 3 different objects:

the seat of the chair (blue), the trash can (magenta) and the monitor screen (with a constant

image displayed on it, marked with red). Fig. 6.7 shows a training image and the output of

the classification system after the training session, which is similar for all three FHMs.

As expected, the training speed of the classifiers are very much dependent on the range

parameter. Table 6.2 shows the average speed results. In case of ρ = 5 the training time

is 5.454 seconds on average per image, 16.75 seconds for ρ = 15, and 88.438 seconds for

ρ = 30. Thus, as expected, the training time scales with the range parameter, although in a

non-linear fashion. However, the average evaluation times are ranging from 0.152 to 0.155

seconds on average per image for all FHMs, so even though the training time is significantly

longer for FHMρ=30, the evaluation time is still the same for all three classifiers.

103

Figure 6.8: Classification accuracy of FHMρ = 5 (left) and FHMρ = 15 (right) for a test image.

Furthermore, the table shows (θ = 50) statistical performance measures regarding the

classifiers. Since the problem consists of imbalanced data (99% of which are negative

values), balanced accuracy measure is used instead of classification accuracy, that gives a

better estimation of the performance of the classifiers. Furthermore, the average recall and

precision rates have been calculated as well. Interestingly, FHMρ=5 achieved the best

results from all metrics: although its recall is just below 50% (meaning that it can detect

about half (47.1%) of the positive (i.e. the sought) pixels), its precision is very high

(84.85%, which means that the ones it marks as positive have a very high chance to be true

positives). Opposite from what would be expected, the results get worse with higher ρ range

values (though not drastically).

Fig. 6.8 shows a comparison between the performance of FHMρ=5 and FHMρ=15. The

latter classifier proves to be slower, but manages to cover slightly more areas correctly.

Considering accuracy, FHMρ=15 and FHMρ=30 prove to be more or less similar, in spite of

the larger range (and thus, the longer training time) of FHMρ=30.

6.3.2 Parallel FHM Experiments

In this subsection, a comparison between the sequential and parallel version of the FHM

and FFN classifiers are given based on experiments conducted on PC-16 (that has CUDA

compute ability 5.2). The implementations have been done in Microsoft Visual Studio 2015,

using CUDA 9.0 and OpenCV 3.3.0.

6.3.2.1 Training Speed

First, the training and evaluation speeds of the sequential and parallel FHM classifiers is

analyzed. The images have been taken from the series used in the previous experiment, of

which some are highlighted: e.g. Fig. 6.9 depicts one of the training images (left), with the

104

manually marked classes in it (right). The subsequent images from the same series are used

for testing. Similarly to the previous experiments, the goal is to mark the pixels with the

desired color tones. In the resulting image the objects are to be located based on the density

of the classified pixels.

Figure 6.9: A training image (left) and the corresponding mask that marks the different classes

(right).

Table 6.3: The Steps of the Training Phase and the Time Requirements of the Sequential and Parallel

Implementations (P=307200, P ′=37218, ω=4124).

Operation
Required time (ms) Time Complexity

Sequential Parallel Sequential Parallel

Extracting data from the image

to set up the list of centers
118 1.07379 O(P) O(1)

Redundancy and

inconsistency filtering
31747 13086.49 ∼ O(P 2) O(P)

Calculating radial information 6900 762.233 O(P ′2) O(P ′)

Filtering out background

and covered clusters
17043 195.2792 O(P ′) O(P ′)

Calculating σ parameters 0.1 0.01952 O(P ′) O(1)

Total 55808.1 14045.09 O(P 2) O(P)

105

Table 6.3 compares the speed and time complexity of sequential FFNs to that of parallel

FFNs (pFFNs). As it can be seen, the most time-consuming step for both filters is the

inconsistency filtering, but while the former makes ~P
2

2
comparisons

(P=640×480=307200) to incrementally build the shorter list, the latter uses a semi-parallel

approach for the training (dividing the processing of the input data array into a sequence of

multiple subarrays, and using parallel computing to process the elements of each subarray).

The filtered list (P ′) contains considerably less training samples (P ′=37218), though it

still takes the sequential algorithm 6.9 seconds on average to calculate the ranges of each

clusters and 17 seconds to filter out the covered and background clusters. The parallel

algorithm does these in 0.762 and 0.195 seconds (9 and 87 times faster), respectively. The

required total time for the training is 55.8 seconds for the sequential implementation on

average, while 14 seconds for the parallel one, achieving an almost fourfold (392%) overall

speed increase. Although in theory a larger amount of acceleration is expected, but in

practice there are limiting factors, such as the speed of moving data back and forth between

the host and the device (CPU and GPU), the launching and maintaining of concurrent

processes, etc.

The sequential implementation of the FHM filter takes ~1.2 seconds to train on average,

while the parallel version requires ~3.089 seconds, of which the calculation of the fuzzy

membership function values take 3.058 seconds. This is because L × (2ρ + 1)3 concurrent

processes are used (where L is the number of marked values that serve as the centers of

the 3D fuzzy sets that have a uniform discrete radius of ρ). To illustrate the magnitude of

the amount of concurrent processes, let us consider one of the training images in which

L=37084 and ρ=10. In this case the number of required concurrent processes is 343434924,

which causes significant computational overhead during the training.

6.3.3 Evaluation Speed and Performance

The classifiers (trained using the inputs and mask in Fig.6.9) were tested on images with

different sizes. On the images with the smallest resolution (640×480) the sequential FHM

and the pFHMs achieve an operational speed of ~105.8 ms and ~2.04 ms, respectively (which

means the parallel version achieves a speed increase more than 50 times over the sequential

one); while the FFNs are much slower, taking 117.247 seconds and ~658 ms, respectively

(where the parallel version achieved a >99% decrease in training time over the sequential

one). The required time drastically increases for the (sequential) FFN on the images with

size 960×720, while the other filters only get 25-119% increase. The even larger images

have proved too much for the FFN implementations (in case of the parallel FFN, due to its

semi-parallel implementation, the kernels simply take too much time and thus time out), but

106

the FHMs are resilient enough to process even 1080p images. Furthermore, the pFHM can

process such images in a time as low as ~7 ms (achieving a frame rate of more than 142 FPS

(frames per second)).

Table 6.4: The Evaluation Speed [ms] of the Filters on Images with Different Resolutions

Filter 640×480 960×720 1280×960 1440×1080

FHM 105.8 230.4 420 518.8

pFHM 2.04 3.84 5.919162 7.085222

FFN 117247 458832 n/a n/a

pFFN 658.17 1472.18 n/a n/a

Figure 6.10: A testing image (top left) for a 3-class problem (color filtering) and the results given

by the sequential FHM classifier (top right), the pFFNHSV
ρ=15 filter (bottom left) and the pFHM filter

(bottom right). The different color classes are denoted as follows: chairs are marked with red, garbage

bin marked with magenta and human skin regions marked with yellow.

107

Figure 6.11: The performance of the pFFNHSV
ρ=15 (orange), pFHMRGB

ρ=10 (blue) pFHMHSV
ρ=10 (red)

classifiers: (a) Precision-Recall curve, (b) balanced accuracy, (c) recall (in function of θ) and (d)

precision (in function of θ).

Finally, the classification performance of the pFFN and the pFHMs have been examined.

For the latter, RGB and HSV color spaces have been regarded: i.e. which one yields the

better classification performance. The pFFN has been trained with full clustering distance in

the HSV color space (pFFNHSV
ρ=15), while both the pFHMRGB

ρ=10 and pFHMHSV
ρ=10 classifiers have

been trained with ρ = 10. In the results, correctly identified pixels (i.e. the returned class

matches with the ground truth (which has been manually made)), count as true positives,

while incorrect positive classification counts as false positive. True negative is counted as

a background colored pixel classified as such, and false negative is the case when a sought

color tone is deemed as a background tone.

Fig. 6.10 shows a testing image and the output of each classifier. Statistical metrics

have been used to measure the performance, by evaluating each classifier multiple times and

averaged for different values of θ threshold. The results are shown in Fig. 6.11:

• In (a) the precision-recall curve [106] can be seen, which shows that the pFFNHSV
ρ=15

108

(orange) generally has an inverse proportional correlation between its recall and

precision (i.e. it either gives many guesses about the positives of which only a low

percentage is true, or gives only a few of which most are true). The two pFHMs on

the other hand generally provide a high level of precision (~73-76%), for a wider

range of the recall value. This implies a more stable classifier.

• In (b) the balanced accuracy can be followed in function of θ. The pFHMs generally

show a good performance (~80-87%), while the pFFNHSV
ρ=15 shows a slow decline as the

threshold increases.

• In (c) and (d) the recall and precision rates are shown in function of θ. As it can be

seen, the pFFNHSV
ρ=15 marks all the actually positive pixels in the image, but in the

process it marks everything in the image, achieving a near zero precision in the

process. For higher threshold, the precision is increasing as the classifier is getting

more and more cautious with marking pixels as positive (i.e. the recall rate is

decreasing). The precision and recall rates of the pFHMs generally stay stable until

the threshold exceeds θ = 90%.

Remark: The PR curve has been generated in Matlab 2018b, while the other three

figures in Google Spreadsheets (the latter cannot use multiple series in the horizontal

axis, which is necessary for the PR curve).

Overall, the two pFHMs achieved a more stable operation, although they have not

achieved a recall rate over ~75% (i.e. missed about 1/4 of the areas), but as it can be seen in

Fig 6.10 (which shows the θ = 50% case), they still mark the areas in high enough density

so the sought objects can still be easily found with post-processing (e.g. noise filtering:

because of their high precision, the misfires only appear as sparse noise). Remark:

Interestingly, of the two FHMs, the one using the RGB color space (pFHMRGB
ρ=10) has

consistently performed slightly better than its HSV counterpart (while in case of RNNs, the

opposite is the case). Investigating the reason for this the subject of further research.

6.4 Applicability

Although the lookup table-based method is proven to be much faster than rule-based

approaches (e.g. FFN), this enhanced operational speed comes at the cost of increased

memory usage as the whole problem space is required to be stored in the memory (as shown

in the previous subsection). While the problem space is of manageable size for color

filtering, for bigger problem domain sizes and higher dimensionality the memory

109

requirements can quickly surpass the capabilities of the available hardware the system is

implemented on.

The advantage of using FFN-based filters is that they are easy to manually modify by

adding, deleting, or changing existing rule parameters. Furthermore, it is much more

compact in structure size, but it also requires a significant amount of computation, making it

much slower. On the other hand, the LUT-based Fuzzy Hypermatrices can be implemented

on the hardware level to process the output of the measuring instruments (like a camera,

tristimulus colorimeter or a colorimetric spectrophotometer) automatically, due to its simple

structure and functionality.

6.4.1 Spatial Complexity

Since the hypermatrices are needed to be coordinated by integer values, the classifier is most

suitable for problems with discrete attribute values (or categories). One excellent example

for that is color tone identification.

For a given problem, the applicability of the method can be determined easily. Let us

denote the amount of memory necessary to store the structure with SM . It can be calculated

according to Eq. (6.15), assuming character type hypermatrices (thus, each cell takes 1 byte

to store) [P. 25]:

SM = (Qκ + 1) ·
N∏
i=1

Di (6.15)

where Di corresponds to the number of integer elements of the domain of attribute i, N

stands for the number of attributes, and Qκ denotes the quantity of classes that are not

equivalent to the default class. As it can be seen, the amount of memory necessary to store

the structure is most sensitive for the amount of attributes and the length of their respective

domains.

Overall, the sequential FHM classifier has a spatial complexity of O(N · DN
i), which

makes it unfeasible for higher dimension problems (with 5 or more attributes), or problems

with large problem domains.

On the other hand, color filtering has already been mentioned multiple times, because

the proposed classifier is very well suited to this application area. The most commonly used

color spaces (e.g. RGB, HSV) have only 3 attributes and their domain lengths are typically

256 for each dimension.

Applying Eq. (6.15), it gives that ~33.5 MB is enough to store a 2-class problem (where

one of the classes is considered as default), and ~Qκ·16.7 MB for Qκ classes, making it

easily manageable for modern computers.

110

The parallel version also suffers from the same downside in general (having the spatial

complexity of O(DN
i)), but choosing to aggregate the fuzzy arrays into a single one makes

it more usable for parallel color filtering problems.

Remark: One advantage of the FHMs considering their spatial complexity, however, is

that they are independent from the number of inputs. Thus, the size of the structure remains

the same regardless of the amount of the input data it has been trained with. It is also worth

noting that theoretically the classifier can be used in higher dimensions, if the domain of

each dimension is very low (e.g. each attribute can only have a binary value). On the other

hand, with the dimensions the complexity of the implementation is increasing.

6.4.2 Time Complexity

The time complexity of the training of sequential FHMs is O(P · ρN).

The time complexity of the evaluation on the other hand is drastically lower: since the

algorithm only needs to regard a given number of array elements for each input sample, its

time complexity is O(P · κ), for P inputs. If the fuzzy arrays are aggregated into a single

one during the training, then this drops to O(P). For the parallel version this is reduced even

further, since all inputs are processed simultaneously (it is not O(1) (i.e. not constant, so

not completely independent on the amount of input data), however, as P still influences the

amount of processing elements (kernels) that are needed to be launched, so there is always a

low amount of dependence on P).

6.5 Summary of New Results

In this chapter, I have proposed a new classification method, so-called Fuzzy
Hypermatrices (FHMs) that extends the classic lookup table classifier structure in order to

achieve a fast and robust classifier. Ther base idea behind the classifier is the introduction of

fuzzy logic into classic lookup table structures in order to gain generalization ability.

The method is shown to perform at high speed and high precision on low dimension
problems with imbalanced data, such as color filtering, through multiple experiments

where the performance of the classifier is analyzed for multiple (range) parameter values,

comparing it to that of classic lookup table classifiers and Fuzzy Filter Networks [P. 9]. The

proposed classifier consistently achieved a better classification performance than the other

ones.

Furthermore, through the experiments, I have proven that the presumption of

introducing fuzzy logic can indeed add a certain level of generalization ability in a
classifier that had none by default (like lookup tables) is true.

111

I have also developed a parallel version of the FHM classifier (pFHM), which

achieved a much (~50 times) faster online operation compared to the sequential version.

Through the conducted experiments, it is shown that the pFHM classifier provide
real-time color filtering with an balanced accuracy of ~80-87% and precision of
~73-76% on the testing data, which is enough to make it possible to find the sought objects

based on the density of the marked pixels.

The classifier overall provides a robust classification performance (maintaining roughly

the same level of precision and recall for most threshold values), while providing a very fast

operation. The limitation is that it is restricted to problems with a low number of dimensions

(<5), since the spatial complexity is an exponential function of the dimension number.

Although computational complexity of the operation of the pFHM classifier is not

completely independent on the number of inputs, it is still low enough to be advantageously

used in real-time systems.

6.5.1 Thesis Group V.

6.5.1.1 Thesis Statement V.1.

I have introduced Fuzzy Hypermatrices, a new classification method that extends
lookup table classifiers in order to achieve a fast and robust classifier. I have
introduced generalization ability to the method by implementing Fuzzy logic
implicitly into the structure. The method is shown to perform at high speed and high

precision on low dimension problems, such as color filtering.

Related publications: [P. 4], [P. 23], [P. 24], [P. 25]

6.5.1.2 Thesis Statement V.2

I have developed a parallel version of the FHM classifier that is able to process images
with a significantly lower time complexity than that of the sequential version, and
provide a more stable classification performance than pFFNs.

Related publications: [P. 4], [P. 23], [P. 24], [P. 25] [P. 26]

Number of independent citations as of May 2021, according to Google Scholar: 1

112

Chapter 7

Real-time Classification with Sequential
Fuzzy Indexing Tables

In one of my earlier works, I have introduced Fuzzy Hypermatrices (FHMs) [P. 4], which

are Lookup Table-based classifiers for real-time pattern recognition of low dimension data.

However, since most practical classification problems have a higher number of attributes

(more than 4), the development of a new method was necessary: one that follows the

LUT-principle (realizing a simple, direct association between input and output values), but

is also more flexible in structure than FHMs and requires less space to store, while

maintaining a high level of classification accuracy.

Another aspect of the problem is data attribute number dynamism. Most classifiers have

been designed for classification problems with a constant, fixed number of input

parameters. For cases with variable length data classification, the data is usually converted

into a form with a constant number of attributes and processed with an appropriate

traditional fixed-length input method, like artificial neural networks (ANNs, [46]).

Among the classifiers designed to be able to work with variable length data, Recurrent

Neural Networks (RNNs, [107]) are the most widely used methods for classification,

regression, and prediction of sequential data, such as text, speech, or time series. They are

used in numerous fields of instrumentation and measurement, in fault detection (e.g. in

[108] the RNN is applied to model sensor nodes, their dynamics, and interconnections

between them in a wireless sensor network); defect propagation (e.g. [109] utilizes an RNN

to process statistical parameters from vibration signals of a defect-seeded rolling-element

bearing, for the prognosis of machine health status); power system control (e.g. in [110]

RNN is used for high-speed phasor detection and adaptive identification of control and

protection signals), etc. The main difference between ANNs and RNNs is that in the latter

each neural unit has a recurrent connection from the previous time step, so it not only uses

113

data from the inputs but from the state of the neuron from the previous step as well.

Among the various training methods that have been proposed for RNNs, the so-called

backpropagation through time (BPTT, [111]) method is one of the most typically applied,

which realizes the temporal aspect of the neuron like a regular feed-forward network where

the consecutive layers represent consecutive time steps (one layer for each time step). Then

the network can be trained with the classic backpropagation algorithm. However, their

training is made difficult by the so-called problem of vanishing/exploding gradients [112],

which is generally a problem for neural networks with gradient based methods, but it is

even more prominent in case of RNNs.

Long Short-Term Memory (LSTM, [113]) RNNs have been developed as a solution for

this problem. They utilize memory cells with a unit recurrent connection between each time

step. So-called gate layers are defined for each memory cell in order to control the inputs

and outputs or serve as a reset option to flush the memory. These gates are responsible for

regulating the flow of information and thus, preventing the gradients from vanishing, while

the gradient exploding can be avoided by enforcing a hard constraint over the norm of the

gradient.

In this chapter, I present the results of a research that aimed to develop a new kind of

LUT-based classifier that can achieve two goals: a very fast operation with using a more

compact structure than that of Fuzzy Hypermatrices, and reliable variable-length sample

classification. For this end, I have developed a new pattern recognition method that is called

Sequential Fuzzy Indexing Tables (SFIT). SFITs are multidimensional extensions of FHMs:

instead of storing the whole problem space in a single array, they use a sequence of 1D and

2D arrays, composed into a layered architecture. This change makes it possible to implement

constant length (c-SFIT) and variable length (v-SFIT) versions of the classifier as well.

The structure of this chapter is as follows. Section 7.1 describes the proposed

classification method in details: the general architecture and the training and evaluation

procedures for both approaches. Section 7.2 illustrates the operation through experiments

and shows experimental results comparing the performance of the classifier to that of other

classifiers. Finally, Section 7.3 investigates the applicability by analyzing the time

(Subsection 7.3.1) and spatial complexity (Subsection 7.3.2) of the SFIT classifier, as well

as presents a practical application (Subsection 7.3.3). Finally, Section 7.4 summarizes the

new results.

114

7.1 Sequential Fuzzy Lookup Tables

The base idea of the SFIT classifier is looking at the problem space from the aspect of a road

map with a single starting point. The road system (in the problem space) is created using the

values of the observed data (X) of the problem. Each road (a given sample x ∈ X) leads

through a series of junctions, where each outgoing street is labeled by a given value: the next

path to be taken is decided using the attribute values of x. At the end of each road is a class

value κ that belongs to x. An illustration can be seen in Fig. 7.1 showing the concept.

In practice, this means that the classification of sample x takes N steps for an N

dimension problem, using an appropriate attribute value xi to choose the next step, and by

that, restricting the problem space by one dimension with each step.

The structure of the SFIT classifier is designed to model the important parts of such

problem space (where the known class values are located, given the training samples) and to

implement a method that makes restrictions on the problem space by combining the attribute

values, in order to find the class that is assigned to them. It has a layered architecture, where

each layer is associated with an attribute. The first layer serves as a starting point, assigning

a unique ID to each unique value of its attribute (based on the training data). Let us call

these unique IDs index markers, or simply markers. In the subsequent layers, the markers

represent the combination of unique values of each attribute. Each layer adds one attribute

value to the combination, restricting the problem space dimension by dimension.

Figure 7.1: A road map illustration where the goal is to find the class κ that belongs to a given sample

x. The search is done using the attribute values (xi) to select the next path at each junction. The path

sequence taken by x is marked by red, while the others are not continued (they are marked with three

dots.)

7.1.1 Constant Length SFITs

7.1.1.1 The Architecture of Constant Length SFITs

The structure of the c-SFIT can be seen in Fig. 7.2. Just like the mentioned hypothetical

road map, it consists of N layers (representing the set of junctions in each step). The arrays

115

follow each other sequentially. In each layer Li, there can be four arrays: an index array ΛLi ,

a fuzzy array MLi , and statistical arrays GLi and υLi . The first layer only has the former two

arrays, because the data of the latter two can be calculated using data from layer previous to

them (Li−1).

Index array ΛLi that indicates which path the classification step needs to take in the next

step, in the form of index markers (or markers for short). Let us denote the number of

markers in layer Li with γLi . The markers are used in combination with the input values to

address the index arrays (of the subsequent layers).

Remark: since arrays require positive integer numbers, all x̃i input values that do not satisfy

this requirement are transformed into the positive integer values x̃i using (Eq.(6.3)).

The index array of the first layer (ΛL0) consists of a single row, and addressed with the

first attribute value (x̃0). The rest of the layers ΛLi (∀i ∈ [1, N − 1] the corresponding

attribute value x̃i and the index marker gained in the previous layer (let us denote it with ηi−1

provide the inputs, to gain the marker ΛLi
xi,ηi−1

that is used in the next step (for the next layer).

For each index array ΛLi , there is a fuzzy array MLi of equal size in the same layer. It

assigns fuzzy membership function values to each marker, as well as to the areas around

them in a ρ range (but only within the same row as the marker). The fuzzy value at each

marker is 1 (i.e. 100%), while in its ρ area it decreases gradually. Thus, similarly to the

case of FHMs, for SFITs the MLi arrays implement a certain level of generalization ability,

with which the classifier can recognize samples that are very similar to the ones it has been

trained with.

Furthermore, additional statistical information is stored in the form of matrices GLi and

column-vectors υLi for all non-root layers. The former keeps a count for each class that is

associated to each marker in the previous layer (effectively, the classes distribution), while

the latter notes the most regularly occurring class for each marker in the previous layer

(i.e. the class with the highest number in the corresponding row of GLi).

If there are multiple classes that share the same occurrence number in the same row, the

first such class is chosen. By using this statistical information, the system becomes more

robust and achieves a certain level of anytime operation [114]: stopping the evaluation step

at any of these layers, the most likely answer is always available.

Fig. 7.2 shows the architecture of the classifier. It depicts an example of a 3D, 3-class

problem. The structure has been trained with the 4 samples that can be seen on the right hand

side: [5 1 6 | α2], [5 1 3 | α0], [2 6 0 | α2] and [1 3 1 | α1], where the first 3 values (attribute

values x̃0, x̃1 and x̃2) are the attribute values and the assigned class label (κ) is denoted by αi
(i ∈ [0, 2]). Certain areas in the arrays are colored to better illustrate the changes that each

sample caused in the structure during the training.

116

Figure 7.2: The structure of the c-SFIT classifier for a 3-dimensional, 3 class problem. The structure

of the 3 layers is showcased: the index arrays (ΛLi), the fuzzy arrays (MLi) and the statistical arrays

GLi and υLi . The training samples can be seen on the upper right corner, while the evaluation of a

sample is showcased in blue color.

The figure also illustrates the evaluation of the system for input [6 2 4 | ?]. The index

value (marker) for x̃0 = 6 is looked up in the index matrix of the first layer, gaining the row

index of the second layer. Combining it with x̃1 = 2 the index value for the last layer is

gained. In the last layer, ΛL2
0,4 is checked, and class label α0 is found, and subsequently

returned as output.

Remark: if ΛL2
0,4 had no known value associated to it, the system would have given an

estimated answer, due to the stored statistical information: y = υL2
0 = α0.

7.1.1.2 The Training Procedure of c-SFITs

The training of the c-SFIT classifier consists of 3 main phases. The first phase involves a

quick analysis on the training data set in order to determine the necessary coefficients

required to build the structure. Since the matrices in each layer need positive integer

coordinates, the input data (x) values are mapped to a suitable domain, which can be done

with a simple linear transform function, then rounding it to the closest integer number (x̃i),

using Eq.(6.3).

The size of the domain associated with each attribute is calculated (Di for attribute i):

Di ≈ ai (max (Xi)− bi) (7.1)

117

where Xi is the set of all values of attribute i of all available training samples (X), while ai
and bi are linear coefficients associated with attribute i. They are determined by analyzing

of the training data: bi = min(xi) (∀xi ∈ Xi), while ai is set manually depending on the

problem. The latter also provides a tool to tune the sensitivity of the system (as fine details

in the data might be lost during the rounding step (e.g. the floating point values x0=2.1 and

x1=2.3 are both rounded to the same integer value (x̃=2), but with a=10 they are treated as

two different values (x̃0=21 and x̃1=23))), and also manipulate the size of the domains (Di)

directly, so larger domains can be manageable with limited memory storage. For integer

valued problems this step can also be skipped.

With the domain sizes known, the arrays in each layer are initialized next. This can be

done in two ways. One way is starting with 1D arrays with length Di that are dynamically

extended by adding new rows whenever it is necessary during the training. This makes the

training time longer, but the arrays are of optimal size all the time. The other way is done by

estimating the number of rows for each array, which can be done by analyzing the amount of

unique values for each layer above; then the unused rows are simply deleted after training.

This results in a faster training phase, but the estimation is needed to be more or less accurate.

In the second phase, the training samples are processed one by one. For each layer Li
(i ∈ [1..N − 1]), it is checked if it i is the only attribute. If it is not the last unprocessed

attribute, then the value of fuzzy matrix MLi
η,x̃i

is checked, where η is the marker from the

previous layer. For the first layer (L0), the initial value of η is 0 since ΛL0 and ML0 are 1D

arrays.

If the fuzzy value is 1, then this value already has a marker associated to it (which

addresses a row in the next layer), so the corresponding index value can be determined:

η = ΛLi
η,x̃i

(7.2)

which is used to note which row will be observed in the next layer.

If the value of the fuzzy array MLi is less than one, then there is no marker that is

associated directly with the attribute value combinations thus far, so one is created by

incrementing the number of records (γLi) by one:

γLi = γLi + 1 (7.3)

Then, the area around (η, x̃i) in ΛLi and MLi is updated in the following way:

for ∀j ∈ [x̃i − ρ, x̃i + ρ]:

µ(j) = 1− |x̃i − j|
ρ

(7.4)

118

ΛLi
η,j =

γLi , if µ(j) > MLi
η,j

ΛLi
η,j, otherwise

(7.5)

MLi
η,j =

θ, if µ(j) > MLi
η,j

MLi
η,j, otherwise

(7.6)

where the fuzzy membership function value (i.e. the extent of how much a given value

belongs to a given index marker in ΛLi (i ∈ [0..N − 1])) is calculated by µ(j) (in this case,

a simple linear measure from the location of said index marker in the corresponding row of

ΛLi). E.g. if x̃i = 5, ρ = 3 and the position in question is j = 4, then µ(j) = 0.66 (i.e.,

66%).

The index and fuzzy matrices are only updated where the new fuzzy value is bigger than

the old one, thus it does not interfere with previously absolved knowledge (i.e. fuzzy sets

belonging to already existing markers). After that, the statistical matrix in the next layer

(GLi+1) is updated and the index marker is set to the new value and the process goes on to

the next attribute and the layer Li+1.

G
Li+1

η,t = G
Li+1

η,t + 1 (7.7)

η = γLi (7.8)

When the last attribute is reached, then the class ID belonging to the training sample

is noted in index array ΛLN−1 with its fuzzy value in MLN−1 , as well as the area around it

(for ∀j ∈ [x̃i − ρ, x̃i + ρ]).

The last phase of the training is calculating statistical vectors υLi for i ∈ [1, N − 1], for

each row k:

υLik = argmax
∀j

(GLi
k,t) (7.9)

7.1.1.3 The Evaluation Procedure of c-SFITs

The evaluation step of the classifier is as follows: first, if the input data values are not in

positive integer format, then they are transformed using the coefficients determined at the

start of the training:

x̃i ≈ max
∀i

(1,min
∀i

(aixi − bi, Di)) (7.10)

119

for all attribute i, in order to ensure that the transformed values stay in their respective

domains (x̃i ∈ [0, Di]).

For each attribute i ∈ [0, N−1], similarly to the training, first it is checked if the currently

examined attribute is the last one or not. If it is not the last one, then the fuzzy value of MLi
η,x̃i

is checked (η=1 in the first layer). If the fuzzy value is 0, then the evaluation ends and

returns with unknown class if i = 1, or outputs υLiη if i ∈ [1, N − 2]. If it is larger than 0,

then the corresponding new index value η is determined using Eq. (7.2), then the next layer

is examined using the next attribute value (i = i+ 1).

For the last attribute (i = N − 1) the value of fuzzy class matrix MLi
η,x̃i

is checked. If its

value is not 0, then the algorithm results in the class label stored in ΛLN−1:

y = Λ
LN−1

η,x̃N−1
(7.11)

If the fuzzy value is zero, then the classifier can still provide an answer due to the

statistical data:

y = υLiη (7.12)

Fig. 7.2 illustrates the evaluation step with the path highlighted by dashed arrows, for

input [6 2 4 | ?]. The index marker for x̃0 = 6 is looked up in the index matrix of the first

layer, gaining the row index η = 0 of the second layer. Combining it with x̃1 = 2 the index

value η′ = 0 for the last layer is gained. In the last layer, ΛL2

η′,x̃2
= ΛL2

0,4 is checked, and the

system returns with y = α0.

7.1.2 Variable Length SFITs

In order to make the classifier capable of efficiently processing data with variable length

samples, I have extended the c-SFIT architecture: a pair of new arrays are added to each

layer in order to store the class labels (Λ̂) and the fuzzy membership function values (M̂)

that belong to them.

7.1.2.1 The Architecture of v-SFITs

Thus, Variable length SFITs (v-SFITs) are an extension of c-SFITs. Aside from the attribute

values and the class, the length of each sample (Nx) is explicitly taken into account. The

number of layers is set to Ntextmax (i.e. the length of the longest sample in the input dataset

X). The main difference between c-SFITs and v-SFITS is that since the route of evaluation

(illustrated by the dashed arrays in Fig. 7.2) can stop before the last layer, the class labels

are stored in a separate array Λ̂Li instead in each layer Li. Furthermore, to secure the same

120

Figure 7.3: The structure of the v-SFIT classifier, for an up to 3 dimensional problem with 3 classes

and variable length samples.

level of generalization ability of the system as that of the c-SFITs, an additional fuzzy array

M̂Li in each layer assigns fuzzy values to each non-zero element in Λ̂Li . The size of the two

additional arrays are the same as that of the index array in the same layer.

Fig. 7.3 illustrates the structure and operation of v-SFITs for a 3-dimensional, 3 class

problem (ρ=1). The dataset that can be seen in Fig. 7.2 is extended with 3 new data samples:

[3 | α1], [1 4 | α1], and [5 2 | α0]. As it can be seen by the placement of the colored areas in

the arrays (still colored accordingly to the samples that first affected those array cells), the

order of the training samples is significant and can change the content of the structure.

7.1.2.2 The Training of v-SFITs

The training of the v-SFIT classifier is summarized in Fig. 7.4. Most of the algorithm is the

same as that of the constant length case: data analysis and the determination of the structure

parameters, as well as the processing of the first attribute for each layer (steps marked with

yellow color in the figure), then the processing of intermediary layers (marked with cyan).

The algorithm differs when the last attribute of the training sample (i = Nx-1) is reached

(marked with brown color): the array elements in the area around (η, x̃i) in Λ̂Li and M̂Li is

updated for ∀j ∈ [x̃i − ρ, x̃i + ρ] using Eq. (7.4) and

Λ̂Li
η,j =

γLi , if µ(j) > M̂Li
η,j

Λ̂Li
η,j, otherwise

(7.13)

M̂Li
η,j =

θ, if µ(j) > M̂Li
η,j

M̂Li
η,j, otherwise

(7.14)

121

Figure 7.4: The training algorithm of the v-SFIT classifier.

The last phase of the training is, just like in the constant length case, calculating statistical

vectors υLik for i ∈ [1, N − 1], for each row k using Eq. (7.9).

7.1.2.3 The Evaluation of v-SFITs

The evaluation step of the v-SFIT classifier for attributes i ∈ [0, N − 2] is the same as that of

the c-SFITs: first the data is transformed into an appropriate domain (positive integers, e.g.

with Eq. (7.10)), then for each attribute i (i ∈ [1, Nx]), it is checked if the currently examined

attribute is the last one or not considering the length (Nx) of the sample. If attribute i is not

the last one, then the fuzzy value of MLi
η,x̃i

is checked (η = 0 in the first layer). If the fuzzy

value MLi
η,x̃i

is 0, then the evaluation ends and returns with unknown class in the first layer

(i = 0), or υLiη if i ∈ [1, N − 2].

If the fuzzy value is more than 0, then the corresponding new index value η is determined

using Eq. (7.2), then the next layer is examined using the next attribute value (i+ 1).

While processing the last attribute (i = NX − 1, if the evaluation have not ended in a

previous layer), the value of fuzzy class matrix M̂Li
η,x̃i

is checked. If its value is not 0, then

the algorithm gives the class label stored in Λ̂Li:

y = Λ̂Li
η,x̃i

(7.15)

If the fuzzy value is zero or if the input data has more attributes than the size of the

structure (NX > N), then the classifier can still provide an answer due to the statistical data:

y = υLiη (7.16)

122

Fig. 7.3 also illustrates the steps of the evaluation for input sample [1 4 3 | ?]. The index

value (marker) for x̃0 = 1 is looked up in the index matrix ΛL0
0,1 of the root layer, gaining

the row index of the second layer (L1). Combining it with x̃1 = 4, the index value for the

last layer (L2) is gained. In the last layer, Λ̂L2
2,3 is checked, and since it has no known value

associated to it, the system returns with the estimated answer: υL2
2 = α1.

7.2 Experimental Results

In order to test the performance (classification accuracy and speed) of the SFIT classifier, the

system has been tested on two benchmark data sets. The experiments have been conducted

in Matlab™ R2013a (on PC-8). Furthermore, in order to provide a comparison between the

performance of the proposed classifier and other methods in literature, three fuzzy classifiers

are also investigated. The program codes can be found in the File Exchange of Matlab

Central. The conducted experiments have been done in Matlab™ R2012a (on PC-16).

7.2.1 Constant Length SFIT Experimental Results

The first classifier is the Fuzzy K-Nearest Neighbor (FKNN, [115]) algorithm (Matlab code

by [116]). It is based on the K-Nearest Neighbor method that uses clustering to select k

samples of the training data set, and during the evaluation phase the input data gets classified

as the class of the trained sample closest to it. The fuzzy improvement of the method assigns

a membership function (in function of the distance from the given trained samples) instead

of a crisp label, thus making the process more robust.

The second classifier (Matlab code by [117]) is a similarity-based classifier as well [33].

The classification is done by comparing the inputs to so-called ideal vectors and the

assigned class is the class of the vector to which the input is the most similar (i.e. has the

highest similarity value). Lukasiewicz structures [118] with fuzzy values are used in order

to get similarity values. To aggregate the gained vector into a similarity value Ordered

Weighted Averaging (OWA) operators are applied. The weight parameters are calculated

with a quantifier guided aggregation. Four different quantifiers are used: basic, quadratic,

exponential and trigonometric linguistic quantifiers.

The third classifier [34] (code made by [119]) is a Neuro-Fuzzy (NF, [120]) approach. It

proposes a fast scaled conjugate gradient (SCG, [121]) method for the training of NF

classifiers, by estimating the first order gradient of the parameters with a least square

estimator (LSE, [122]) instead of calculating it from the training data. This is claimed to

reduce the training time of the NF classifier by 20-50%, making large-scale problems more

computable with personal computers.

123

Remark: for the three classifiers the implementations are only available with the training

and testing phases merged in a single function, therefore the average processing time of the

two phases are measured as a single operation.

7.2.1.1 The Wisconsin Breast Cancer Dataset

The first c-SFIT experiment uses the Wisconsin Breast Cancer (WBC, [123]) data set. It

consists of 683 data samples, each sample having 9 attributes and can be associated with

two possible classes. The classifiers are investigated for various parameter values and

(complementary) training to testing set ratios (the samples are selected randomly in each

training phase). The F-KNN is investigated for various cluster numbers (1, 3, 5, 10, 15, 20,

25) and its classification accuracy and required times is averaged. The OWA-based

similarity classifier is investigated for its 4 different quantifiers, and the best performing one

is noted with respect of the considered input data.

Table 7.1: Average Training and Testing Speed and Classification Accuracy for the Wisconsin Breast

Cancer Dataset

Training

to testing

set ratio

Classifier

Average

classification

accuracy (%)

Training

time (s)

Testing

time (s)

70 : 30%

F-KNN 96.68 0.23061

OWA, exponential 96.09 0.0983

Neuro-Fuzzy 95.18 1.0933

c-SFIT (δ=0.5) 94.04 0.1237 0.0253

80 : 20%

F-KNN 96.28 0.1701

OWA, exponential 96.05 1.2920

Neuro-Fuzzy 96.10 1.0776

c-SFIT (δ=0.4) 93.72 0.1313 0.0165

90 : 10%

F-KNN 97.22 0.0965

OWA, exponential 96.76 0.3558

Neuro-Fuzzy 96.27 1.2086

c-SFIT (δ=0.4) 94.70 0.1566 0.0083

124

The Neuro-Fuzzy classifier is tested for 100 epochs (during the experiments, using more

than that generally did not result in a better classification rate, the system could converge to

the highest possible performance considering the training data within 100 epochs).

The results of the first experiment are summarized in Table 7.1. The F-KNN classifier

provides the best performance generally in terms of accuracy (~96-97%), while the other

three perform only slightly worse (~94-96%). The Neuro-Fuzzy classifier is generally the

slowest, while the F-KNN and c-SFIT are the fastest (with the exception of the OWA

classifier with exponential quantifier in the 70 to 30% case.)

7.2.1.2 The Seismic Bumps Dataset

The second c-SFIT experiment [124] is a real-time case study. The available data is about

mining operations in Polish coal mines in the Upper Silesian coal basin. The goal of the

classification is seismic hazard assessment, based on the data of various seismic sensors.

Table 7.2: Average Training and Testing Speed and Classification Accuracy for the Seismic Bumps

Dataset

Training

to testing

set ratio

Classifier

Average

classification

accuracy (%)

Training

time (s)

Testing

time (s)

70 : 30%

F-KNN 91.57 0.3337

OWA, exponential 93.41 4.0339

Neuro-Fuzzy 92.73 3.1275

c-SFIT (δ=0.001) 91.38 0.942381 0.1355

80 : 20%

F-KNN 91.53 0.2455

OWA, exponential 94.54 3.0183

Neuro-Fuzzy 92.97 2.9943

c-SFIT (δ=0.0005) 91.21 0.7967 0.0917

90 : 10%

F-KNN 91.38 0.1402

OWA, exponential 93.41 2.0032

Neuro-Fuzzy 93.40 3.7734

c-SFIT (δ=0.0005) 91.70 0.8963 0.0455

125

The data set consists of 2584 multivariate data with 15 attributes (although 18 attributes

are listed, of which the last 3 are constant zeros, therefore they can be neglected) and 2

classes: ‘hazardous’ and ‘non-hazardous’ situation. With an appropriate and fast classifier,

such situations can be detected in time and withdraw the workers from the danger zone. The

way of training is the same as in the previous experiment.

The results can be seen in Table 7.2. In general, the OWA classifier with quadratic

quantifier provides the best accuracy (~94%), followed by the Neuro-Fuzzy (~93%) and the

F-KNN and c-SFIT classifiers (~91%). However, both of the two most accurate classifiers

take ~2-4 seconds to operate in general, while the F-KNN and the c-SFIT tale about or less

than 1 second to learn the training data and evaluate the testing data. Furthermore, it can be

seen that the c-SFIT classifier requires a relatively large fuzzy set width (δ) in the previous

experiment due to the relatively small attribute domains, in this experiment some domains

(sensory variables) are very large thus a very small width parameter is more advantageous.

7.2.2 Variable Length SFIT Experimental Results

To evaluate the performance of the proposed v-SFIT classifier, it has been tested on two

problems with varying length data. The experiments have been conducted in Matlab™

R2012a, on PC-16.

7.2.2.1 Classification of English words

In the first v-SFIT experiment, the data consists of common English words (verbs, nouns and

adjectives) and the task is to classify them based on their part of speech. Since many words

fall into two or three categories at the same time, the combined classes count as additional

classes and thus, it is considered a 7 class problem. The distribution of the data samples

can be seen in Table 7.3. There are overall 6075 words in the dataset and the longest word

is 17 letters long. The ASCII code of each letter is used as input data, thus the problem

can be regarded as a general variable length pattern recognition problem. For example, the

word “act” corresponds to (97 99 116 | 3), considering it being both a verb and a noun (thus

belonging to class 3).

In order to provide a comparison between the performance of the proposed classifier, a

speed-optimized LSTM RNN is investigated as well. It has been proposed and implemented

by [125], in which a matrix-based batch learning paradigm with backpropagation through

time is proposed in order to accelerate the training of the LSTM RNN. It makes vectored

calculation for each layer thus, speeding up the training procedure. It applies padding with

zeros to fill in empty spaces due to varying amount of samples. It has been demonstrated

126

in the chapter that this method provides a faster and more accurate convergence over the

traditional stochastic gradient descent (SGD) methods.

Five different testing sets are generated from the training set of words. The first three are

emulating the effect of noise, randomly adding or subtracting a certain amount (δ) from the

value of the characters. To make each testing sample, the generator function takes the base

set (the training data), selects a random sample then adds a random value z (z ∈ [−δ, δ])
to its attribute values. The fourth set (shortened, see Table 7.4) is made by deleting the last

character of randomly selected samples (making them shorter), while the last set (elongated)

is produced by adding a random character to random samples (also selected from the training

samples). Both classifiers are tested with 5000-5000 samples (randomly generated the way

described above) for each kind of testing sets and the results are averaged. Since the training

data are not independent from each other (one word can be the extension of another), Type II

v-SFIT is used.

As described in Section 7.1, the training of the classifier begins with the analysis of the

input data set, or more precisely, the values of each attribute. In this case, the input data

is integer valued, so the transformation (from x to x̃) can be skipped. The domain (D) of

each attribute is 256 (as the ASCII code of each letter is considered), which determines the

column dimension of the arrays in each layer. The row number comes from estimating the

number of markers (γ) in each layer. These numbers can also be estimated by the quantity of

training samples (in this case, 6075) if it is not overly high (too big arrays can cause memory

deficiency), then after the training the unused records can be cropped from the arrays. The

optimized LSTM network takes ~60 seconds on average to learn the problem (6075 training

samples, using 2 memory cells per block, two gate layers, and batches with size of 405).

On the other hand, the v-SFIT processes the training samples in ~1.1 seconds.

Table 7.3: The Distribution of Training Data in the First Problem.

Classes Training Sample Quantity Class ID

Verb 585 1

Noun 3947 2

Verb and noun 238 3

Adjective 1157 4

Adjective and verb 22 5

Adjective and noun 120 6

Adjective, noun, and verb 6 7

127

The output of the LSTM network is rounded to the closest integer. The accuracy of both

classifiers is measured in the ratio between the amount of correctly classified samples and

the total amount of samples.

Table 7.4 shows the performances of the two classifiers. The LSTM network performs

with 68-69% accuracy on average, while the v-SFIT performs ~9-13% better on the

shortened, elongated, and lightly perturbed data set. Both perform with about the same

accuracy on the moderately perturbed data set, while the LSTM works better on the noisiest

data set. This is due to that in the problem the markers (the unique values, in this case the

letters) in each layer tend to be very close to each other (well within the size of the width of

the fuzzy sets (ρ), thus leaving little or no room for the generalization ability of the system)

considering their values. Otherwise, the v-SFIT can correctly classify any new words that

are similar to known ones (the distance between their letters is not larger than ρ).

Due to the matrix-based batch testing, the LSTM performs faster (~0.032 seconds) than

the online, sample-by-sample method that v-SFIT applies (~0.34 - 0.378 seconds). However,

the latter also has the advantage that the further training of the network can be done quickly,

because it simply adds to the already learned data without the need to retrain the structure

as in the case of neural networks (as long as the new data values are still within the original

domains).

Table 7.4: Comparison Between the Performance of v-SFIT and LSTM RNN Classifiers in the First

Problem

Classifier

Testing data

Added noise
Shortened Elongated

δ = 1 δ = 2 δ = 3

Optimized LSTM 69% 69% 68% 69% 68%

v-SFIT 82% 70% 63% 79% 80%

128

7.2.2.2 Classification of Shape Descriptors

In the second v-SFIT experiment, an image processing problem is considered. 36 shape

images (Fig. 7.5) have been selected from the MPEG-7 image database [126], then processed

by a shape extractor system [P. 43] that extracted and analyzed the interesting points (e.g.

corners) of the shapes. The interesting points break the shape down to segments, then each

segment is classified considering their length and the angles between them, after that each

segment is classified (ranging from 0 to 149) by a simple fuzzy classifier. The output of the

algorithm is a sequence of these integer numbers, each sequence being unique to a given

shape (while being rotation and scale invariant). The resulting dataset consists of 36 samples

with lengths varying between 5 and 21. For example, the extractor algorithm has found

5 interesting points on the triangle shape, labeling them [119 31 148 101 31]. (For more

information about the extractor system, please see [P. 43].) The samples have been used to

train an Artificial Neural Network (ANN [46]) and the v-SFIT classifier. The number of

neurons used for the ANN is 100, and the average training time is 1.76 seconds, the classifier

converges in 4 iterations. The v-SFIT takes 0.03 seconds to train.

The testing data has been made with the same method as in the previous experiment.

1000 samples have been generated for each testing cycle. The average testing times are

0.0075 seconds and 0.117 seconds for the ANN and v-SFIT, respectively. Table 7.5 shows

the accuracy of the classifiers. ANN performs with a 72.2-75.3% accuracy on the noisy

data, while the v-SFIT achieves a 97.7-98.74% average accuracy. The ANN has performed

significantly worse (~ 25%) on the elongated testing set and could not classify the shortened

testing set at all. On the other hand, due to using additional statistical data, the v-SFIT

achieved a 100% recognition rate on both. This clearly shows the strength of the classifier

when it comes to variable length pattern recognition even from a low amount of training

samples, which is generally a problem for neural networks.

Remark: this experiment was done using a regular RNN and a Non-Linear Autoregressive

Neural Network with external inputs (NARX [127]) as well (both classifiers are part of the

Machine Learning toolbox of Matlab 2012b), but neither networks managed to provide an

accuracy better than 38% in the conducted experiments.

Figure 7.5: The shapes used in the second problem, from the MPEG-7 data set. The grouped images

belong to the same class.

129

Table 7.5: Comparison Between the Performance of v-SFIT and Artificial Neural Networks (ANNs)

Testing data
Accuracy

ANN v-SFIT

Added noise, δ=1 75.3% 98.74%

Added noise, δ=2 73.7% 97.88%

Added noise, δ=3 72.2% 97.9%

Shortened 0% 100%

Elongated 25.5% 100%

7.3 Applicability of the SFIT classifier

7.3.1 Time Complexity of the SFIT classifier

The training procedure of the SFIT classifier consists of allocating the arrays, then filling the

structure. The latter involves the modification of 2ρ+ 1 array elements for each attribute and

all samples, which adds up to a time complexity of

O(ρ ·N · P) (7.17)

This shows that the training speed of the classifier is linearly dependent on both the

number of attributes and the amount of input samples. The evaluation is even faster, as only

one array cell is needed to be accessed (in the index/class array, as well as the fuzzy arrays):

O(N · P) (7.18)

This is true for both c-SFITs and v-SFITs (although the allocation of the structure in the

memory takes twice as much time for v-SFIT due to the additional arrays, but that step is

generally much faster than the filling of the structure).

To put it into perspective, the training and the evaluation of the FKNNs (one of the

classifiers used in Section 7.2.1 and have proven to have about the same classification

accuracy as the SFIT, albeit its training is faster because it takes advantage of the batch

learning method (learning over groups of patterns)) has a time complexity of O(P 2 · log(k))

and O(P · log(k)), respectively (according to [128]), where P is the number of samples,

and k is the clustering variable (although the same paper have proposed a faster algorithm

that reduces them to O(P 2) and O(P), respectively).

130

7.3.2 Spatial Complexity of the SFIT classifier

Another important aspect to note is the size of the structure.

Considering the WBC problem, in order to keep the whole problem workspace in the

memory, one would need to store a 9D Fuzzy Hypermatrix (109 elements), while the c-SFIT

architecture only requires to store 58345 elements in the form of 24 2D (the index, fuzzy and

statistical arrays GLi for i ∈ [0, N − 1]) and 8 1D arrays (υLik , ∀i ∈ [1, N − 1]). The formula

to calculate the memory requirements (Sc-SFIT, in bytes) of the appropriate FHM (Eq. (6.15))

and the proposed c-SFIT classifier structure:

Sc-SFIT = (SΛ + SM)(D0 +
N−1∑
j=1

γj−1Dj) + SG(
N−1∑
j=1

γj−1 ·Qκ + γj) (7.19)

where Qκ is the number of classes in the problem, N is the amount of attributes, Di is the

domain size of attribute i, Di is the domain size of the attribute associated with layer Li, and

γj is the number of rows in layer Lj . Finally, SΛ, SM and SG are the bit sizes of the applied

variable types for the index, fuzzy and statistical arrays, respectively. This depends on the

size of the largest attribute domain in the given problem (e.g. if allDi ∈ [0, 65535], then they

can be stored in an unsigned short type array (each array cell taking 2 bytes), while the type

unsigned int takes 4 bytes for each array cell but can store a range of values up to 4.29·109.

The size of v-SFITs is roughly twice of the size of c-SFITs, since they maintain additional

class and fuzzy arrays:

Sv-SFIT = 2 · (SΛ + SM)(D0 +
N−1∑
j=1

γj−1Dj) + SG(
N−1∑
j=1

γj−1 ·Qκ + γj) (7.20)

While the column dimension for each array can be calculated (Di for attribute i), the

row dimension depends on the number of markers in the previous layer (γi−1), which is not

easy to estimate without counting all occurring value-combinations. However, an upper limit

can be estimated: γ will never be higher than the number of input samples (P). The spatial

complexity therefore for both SFIT architectures:

O(N · P ·Dmax +N · P ·K) (7.21)

This leads to a significant reduction in the size of the structure compared to FHMs. For

example, regarding the experiment in Subsection 7.2.1.1 (on the WBC dataset), using

Eq. (6.15) and Eq. (7.19), we can see that the amount of memory to store the structure of

the FHM (ST=1, Di=10, N=9, K=2) is ~3 GB, while for the proposed classifier SM=1,

SΛ=2, SG=2, N=9, K=2, Dj=10 and γj=~222 for all j ∈ [0, N − 1]) it is ~64 KB. It clearly

131

shows that the classifier succeeds in that goal to surpass the capabilities of the system it was

based upon.

7.3.3 A Practical Application

A practical application of the SFIT classifier has been used in a dietary assistant application

in [P. 29] and [P. 30], where the goal is to implement a system that can help its user achieve a

healthier diet. The base idea is taking the current eating habits (the food and drink items) of

the user, calculate its nutrition values, compare them to the recommended daily intake (RDI)

then find the item that either contributes the lowest values, or causes at least one value to

exceed the RDI values. For this, the system calculates a fitness function over the stored data

to find the lowest scoring item. Then calculates the new current nutrition values by taking

the nutrition values of the lowest scoring item out, then uses the deficit from the RDI to apply

an interval search on the database of the items.

Figure 7.6: The SFIT classifier as an indexed data storage: c-SFIT to store nutrition values (left) and

v-SFIT to act as a dictionary (right). In the former, crisp data is stored (no need for generalization) so

there is no need for fuzzy matrices. In the latter, fuzzy matrices are used but they have been emitted

from this figure for better visibility. Remark: IU stands for International Units.

132

This item database is realized by a c-SFIT and stores 31 nutrition data (Nnutrition = 31)

for each of the 8790 food items (Pitems = 8790) from the SR18 database [129]

(Fig. 7.6(left)), and takes up ~990 MB of memory.

Furthermore, a v-SFIT is used as a dictionary (Fig. 7.6(right)) holding the 8790 words

with a maximum length of 60 (Ndictionary = 60) and taking ~176 MB. The size difference is

due to the sizes of the domains: the domain of the dictionaries only encompasses the ASCII

codes of the letters from 65 (’A’) to 122 (’z’), which is generally much smaller than that of

the nutrition data.

After the system has found the item that falls into the intervals gained from the deficit of

the current nutrition values and the RDI, it recommends that item to the user as a substitute

to the worst performing item. This way, the user can optimize their diet bit by bit, in their

own pace.

7.4 Summary of New Results

In this chapter, I have presented a new kind of LUT-based classifier that can achieve
two goals: a very fast operation with using a more compact structure than that of
Fuzzy Hypermatrices, and reliable variable-length sample classification. For this end,

I have developed a new pattern recognition method that is called Sequential Fuzzy Indexing

Tables (SFIT). SFITs are multidimensional extensions of FHMs: instead of storing the whole

problem space in a single array, they use a sequence of 1D and 2D arrays, composed into

a layered architecture. This change makes it possible to implement constant length SFITs
(c-SFIT) and variable length SFITs (v-SFIT).

SFITs in general have a layered structure, where each layer contains a lookup table that

combines the value of an attribute belonging to that layer to the combination gained in the

previous layers. Thus in each layer, the proposed method reduces the size of the problem

space in which the class of the input pattern is. This significantly reduces the arrays that
are needed to be stored in the memory, compared to Fuzzy Hypermatrices, another

classifier that uses the Lookup Table principle to achieve a very fast operation but at the cost

of an exponential spatial complexity.

The main difference between c-SFIT and v-SFIT is that the latter has additional arrays in

order to store the class labels separately. Although this change effectively doubles the spatial

complexity of the structure, but it makes the SFIT able to process samples with different

length. Furthermore, the dependence on the dimensionality of the problem is still only
linear (as opposed to that of the FHMs, which has an exponential spatial complexity).

Although the time complexity of the method is higher than that of the FHMs (N data

133

access is needed instead of just one), the structure itself is typically only a fraction of the

size of FHMs. Experiments have shown that the SFIT method is still faster than many

contemporary classifiers, at the cost of a slightly worse (by ~1-3%) classification accuracy.

On the other hand, SFITs have been proven to be more robust against noise for variable

length data than other examined methods (LSTM RNN and NARX ANNs).

The new classifier has also been used in a practical application of a dietary assistant
system, where the goal is to help the user optimize their diet by changing the least nutritious

items to more nutritious ones one step at a time. The c-SFIT is used to store food data

in a way so it can be quickly searched based on nutrition values, while v-SFIT is used to

implement a fast dictionary that is used to identify the food items themselves.

7.4.1 Thesis Group VI.

I have developed a new form of Lookup Table classifier for multi-dimensional
classification problems, called Sequential Fuzzy Indexing Tables that uses a sequence
of one 1D and N 2D fuzzy lookup tables in to achieve a more memory-efficient
classification than FHMs on problems with a constant number of attributes. It has a

layered structure, where each layer contains a lookup table that combines the value of an

attribute belonging to that layer to the combination gained in the previous layers. Thus in

each layer, the proposed method reduces the size of the problem space in which the class of

the input pattern is. This significantly reduces the arrays that are needed to be stored in the

memory, compared to FHMs.

7.4.1.1 Thesis Statement VI.1.

I have expanded upon the idea of Fuzzy Hypermatrices and developed a new classifier
named Sequential Fuzzy Indexing Tables for real-time classification of complex
problems with a constant number of dimensions (c-SFIT). The problem space is stored

in a sequence of 1D and 2D arrays, each adding one more attribute value to the combination

and thus restricting the problem space. Tests have confirmed that the method is generally

faster than most other state of the art pattern recognition approaches, while the classification

is only slightly less precise.

Related publications: [P. 27], [P. 28], [P. 10]

134

7.4.1.2 Thesis Statement VI.2.

I have extended the Sequential Fuzzy Indexing Tables classifier to work on variable
length data (v-SFIT). This is done at the cost of doubling the structure, in order to hold the

class values in different arrays. The proposed methods have also been successfully applied

in an iSpace-based dietary assistant application that uses a c-SFIT for storing food items

based on their nutrition data and a v-SFIT for storing the names of food items.

Related publications: [P. 11], [P. 29], [P. 30]

Number of independent citations as of May 2021, according to Google Scholar: 3

135

Chapter 8

Conclusions

With the advancements made in machine intelligence in the last two decades, the feasibility

of smart environments have also increased to the point where implementing smart areas,

may it be an open space (like a park) or a closed area (a room or a whole building), is not

only possible but also getting more and more affordable. The Intelligent Space (iSpace) is

one such smart environment where the emphasis is helping people in their every day life,

extending the sensory capabilities of robots, etc.

In this thesis work, I have presented my research regarding methods and applications that

aim to enhance the capabilities of iSpace.

First, I have proposed the concept and described the implementation of a hand
posture and gesture modeling and recognition system that can be a foundation of a

complex, natural command recognition system for the iSpace: an interface that allows

human users to control Intelligent Space by hand gestures. The presented system has been

shown to be able to classify 6 different simple hand postures and any hand gestures that

consist of any combination of the predefined hand postures.

However, the training of the CFNNs used in the hand recognition system has proved to

be slow even with the lowered complexity compared to basic neural networks. To solve this,

I have developed a novel training method for feed-forward neural network models used
in classification problems. The algorithm applies a time-reduced preclustering procedure.

The idea behind the preclustering is that the quantity of the input data should be reduced to

keep the complexity of the procedure in a handleable rate in such a way in which the training

ability is preserved as much as possible. The usability of the proposed technique is illustrated

in classification problems of different toughness. This method has also been useful for the

determination of the structure (number of hidden neurons and parameters) of Radial Basis

Function Neural Networks. In case of RBFNNs, the main role of the presented clustering

step is not to reduce the required training time, since one of the advantages of using RBFNNs

136

is the fast training by default. By applying the quantity and cluster centers of the resulting

clusters, the quasi-optimum number of hidden layer neurons can be determined and their

center parameters can be set, respectively. After that, I have presented an iSpace control
system framework that is capable of interpreting and executing detected commands
given by a human user, if the commands are given in a specific form. The system is able

to learn repetitive commands that are given under similar conditions with the application of

heuristics and execute them when the conditions are fulfilled without requiring the user to

give these commands again. During the simulations with the virtual implementation of the

system, it has been able to learn all the instructions and prohibition commands given by the

virtual inhabitant of the virtual room. The knowledge of the system is designed to be quasi

independent of natural languages, given that the knowledge representation uses concepts as

nodes which are identified by dictionaries, so the represented knowledge does not depend

on natural languages. The number of languages in which the system can receive commands

can by increased by simply adding more dictionaries and text preprocessing units to it. The

proposed framework has a modular architecture and is managed apart from the sensors and

executive agents. The advantage of using this flexibly designable knowledge base-based

control procedure is that sensors, detectors, and executive agents can be added and removed

anytime without reconfiguring the system; only a new entry or modification in the knowledge

base is needed.

Furthermore, I have proposed a new proximity-based classification method, the
so-called Fuzzy Filter Network that can be used for color-based skin region detection in

vision-based iSpace applications. The approach is based on the classic RBFNN

architecture, with some modifications in the output layer that change the behavior of the

neural network into a fuzzy rule-based inference network. The resulting system can

efficiently be used to filter numeric data into categories. The training of the network is

solved by a clustering step; the operational rules of the network are derived from the

resulting clusters. The improved filter network is theoretically capable of the classification

for any number of classes. Two new clustering algorithms, designed specifically for the
filter network, are also presented. The two methods approach the problem in different

manners, the first processes the problems as the iterative cases, while the other follows a

bottom-up attitude. In both cases the trained network is shown to be able to achieve high

classification accuracy (~80-97%) on balanced datasets. The performance of the system is

illustrated through image processing problems. Moreover, I have developed and
implementation a parallel version of the FFN. The speed of both the training and

evaluation phase are significantly increased compared to the sequential implementation, as

the complexity is reduced from O(N × P 2) to O(N × P) during the training (with P

137

training data and N attributes), and from O(P × ω) to O(P) (considering ω clusters) during

the evaluation phase.

However, even with the acceleration the FFN classifier is too slow for real-time color

filtering. In order to solve this problem, I have proposed a new classifier technique called

Fuzzy Hypermatrices. The idea is based on the principle of the lookup table method, which

achieves a fast run-time operation by doing most of the computation during the offline

training phase and storing the results in arrays so that they become readily available during

the online evaluation phase. However, in contrast to the classical look up table methods of

classification that use probabilities to calculate and store likelihood values, the presented

method applies fuzzy logic to handle uncertainty. The fuzzy approach also adds a certain

degree of generalization ability to the system. The precalculated fuzzy membership

function values are stored in multi-dimensional arrays (so called hypermatrices), implicitly

modeling the problem domain. It works best considering problems with integer values and

low attribute quantity, like color filtering tasks in image processing problems. A simple

training algorithm is also proposed and its performance is shown through experiments. The

main advantages, and thus the importance of the new classification technique are its

simplicity, easy implementation, and high speed compared to other classifiers. Latter is

probably the most significant, as other (non-lookup table based) classifiers generally use

multiple steps in order to calculate the output, while for FHMs the amount of necessary

steps is bounded by only the number of classes in the problem. This is very important for

time-sensitive problems where the classifier is operated in a loop, like real-time image

processing. Similarly to the FFNs, I have also proposed a parallel version of FHMs that

enhanced the operational speed from ~1.9 frames per second to ~142.8 frames per second

on 1080p images. Through the conducted experiments it is shown that the parallel Fuzzy

Hypermatrices provide real-time color filtering with an accuracy (rate of successfully

distinguishing important color tones from background tones) of ~98% and precision of

~82% (rate of correctly identifying the class of the detected important color ton), which is

enough to make it possible to find the sought objects based on the density of the marked

pixels.

The disadvantage of FHMs, however, lies in the memory usage. Problems with many

(N>4) dimensions can require a possibly unmanageable amount of memory space to work.

As a solution for this problem, I have proposed a new classification method called
Sequential Fuzzy Indexing Tables. SFITS are Lookup Table-based fuzzy data structures

that make the classification of constant and variable length data quick and reliable, at the

cost of memory usage. They use a sequence of 1D and 2D arrays (structured into layers) to

map the known areas of the problem space based on the training data. Although the

138

complexity of the method is higher than that of the FHMs (N data access is needed instead

of just one), the structure itself is typically only a fraction of the size of FHMs. Experiments

have shown that the SFIT method is still faster than many contemporary classifiers, at the

cost of a slightly worse (by ~1-3%) classification accuracy. On the other hand, SFITs have

been proven to be more robust against noise for variable length data than other examined

methods (LSTM RNN and NARX ANNs).

The applicability of the Theses have been confirmed by experiments and time complexity

analysis.

139

Chapter 9

Possible Targets of Future Research

There are numerous ways to extend or improve the presented methods. In this chapter, I

briefly summarize some of these directions.

In future work, I plan to extend the set of FHPMs from the examined six models with

more models so a vocabulary can be built, for example, for sign languages. With an adequate

sign language recognizer application, it would be possible for people with hearing or speech

difficulties to be able to communicate with the iSpace. Another practical example is binding

various hand gestures to commands, e.g. in a hospital setting, the nurse making the rounds

during the night shift can just gesture with her hand to have the system automatically turn off

the lights or open doors in her way, without the need to touch any surfaces, or make a classic

control gesture (e.g. clapping) that would be noisy and bother the patients. The hand-posture

identification method will be improved as well since the actual implementation of the system

does not take into account the position of the hand, only the shape of it. Furthermore, more

modern classification methods will be investigated, such as the application of SFITs. The

hand gesture detection part of the system will also be improved to take posture orientation

and relative position into account as well.

Another direction is investigating the feasibility of using varying fuzzy set sizes and

shapes: the current fuzzy sets are triangular and have a common width in each model.

However, using different set widths can potentially increase the classification robustness

(e.g. model mi). One easy way to achieve this is defining multiple variations (mi,0,mi,1

etc.) of the same model mi that differ only in small changes in some of their fuzzy sets, and

then make an average of their sets, incorporating them into a single ’general’ model m̂i.

Furthermore, a disadvantage of the rule-based classifier (the Fuzzy Inference Machine) used

to find the closest FHMP to the detected one is that each rule is its sequential operation. In

future work, I will explore the possibility of using pFNNs (introduced in Chapter 5) in order

to increase the speed of the FIM on the 14-dimension problem.

140

The clustering algorithm proposed in Chapter 3 will also be improved. One possible

direction is the development of a new algorithm for determining of the "optimal" clustering

distance for given problems. In optimistic cases (where the overlapping of classes is not

significant), the clustering distance can be e.g. the distance of the two samples that are

the farthest from each other among all the samples of the class. If the classes overlap than

further considerations are needed. An idea can be the application of multiple clustering

distances, using small distance where the overlapping occurs and larger where it does not. In

future work I will investigate the effectiveness of these ideas, as well as practical applications

for the clustering method in iSpace applications, such as passive space exploration through

activity monitoring (e.g. automatically discovering places with given functionalities in the

home environments, hospitals, public parks, etc., by simply observing that the users have

spent longer periods of time in such places). Traffic control is another important field in

which a good estimation about places with higher load, along with the rough measure of the

load can help alleviate the problems caused by high traffic.

There are numerous ways the presented iSpace framework can be extended. Some of

further possible improvement directions can be:

• More flexible command parsing. In the current implementation the command given

by the user needs to be in a predefined form, thus the user is limited in giving

commands. This limitation needs to be decreased with the application of more

intelligent parser algorithms.

• Causality. The system should realize the indirect desires of the human user. E.g., if the

user states that he or she is cold, then the system should realize that the correct course

of action is to close the windows if they are open, turn on the heating, etc. To achieve

this, the improvement of the Knowledge Base and Interpreter Module is necessary.

Interaction between the iSpace and the human user: if the system is unsure about

giving out a learned command (the justification value of the trigger of the hypothesis is

just at the threshold) or there are two very similar hypothesis triggered at the same time

(e.g. "make coffee!" and "make tea!"), the system should ask the human

user about what action should it take.

• Improved dictionaries and interpretation. Since one word or expression can have

multiple meanings, one entry in the dictionary can reference to multiple nodes, as well.

In such cases, the context of the word or expression can help in deciding the correct

meaning in the interpretation phase.

• Distinction between users. A more sophisticated system shall be able to

differentiate/recognize its users and apply their personalized knowledge bases with

141

their own built hypothesis storages or assign roles to them (like guest, administrator,

etc.), with certain privileges. This way the executable commands that the users can

give to the iSpace could be regulated. The current version of the system does not

differentiate among the human users, for the identification of each user more complex

detection methods have to be built in.

• Further scalability. The presented framework is meant for a single system, but it can

be easily extended with optional modules where different iSCS applications can

connect, e.g. in a smart hospital, every room and hallway can have its own

micro-iSCS, while the whole hospital can make up a large, robust system that is a

network of micro-iSCSs.

Another aspect of expanding the application of the iSCS framework is helping the work

of robotic agents in the iSpace, e.g. coordinating the routes that cleaning or transportation

robots take in a facility based on the layout of the rooms and the capabilities of each robot

(e.g. can traverse stairs, etc.).

For the three classifiers that I have proposed in Chapters 6, 5 and 7, the most promising

future development directions involve parallel computing, either parallelizing still

sequential parts of their algorithms or improving upon the already parallelized ones in order

to achieve a higher training and run-time speed and a better classification accuracy. The

parallel evaluation algorithm for FFNs can be further improved with newer parallelization

techniques, as the current implementation still has parts that are done in a sequential

manner, although the main obstacle in the way of mass parallelization lies in the limitation

of the GPU: the number of processes that can be used at once is finite, and for high number

of processes the maintenance of these processes causes a significant overhead.

The parallelized FHM has proven to be very fast run-time, but the training is still done

using the sequential algorithm. In future work, I plan to create a more efficient, parallel

training algorithm for it, as well as investigate the automatic tuning of parameters such as

the range (ρ) of the fuzzy sets. Furthermore, I plan to further develop it in order to create an

automatically adapting color-tone identifier for color-based object detection in the iSpace.

For SFITs, I plan to investigate the optimal setting of the arbitrary parameters of the

system, conduct more experiments in order to further examine the performance compared

to other classifiers, and attempt to improve the classifier to make it applicable for more

complex problems (with more attributes), as well as further optimization options will be

investigated regarding both the speed, accuracy and error estimation of the described

algorithms. Furthermore, since the current structure for higher dimensional problems is

generally too big for the graphics memory to handle, the structure itself will be improved

upon by compressing it (as in the current form it usually have a significant amount of

142

unused cells, so ideally the structure could be reduced to only the markers and their

immediate surroundings).

143

Chapter 10

New Results

10.1 Thesis Group I.

10.1.1 Thesis Statement I.1.

I have proposed a new fuzzy hand posture model that uses a fuzzy feature set consisting
of 14 features over 3 feature groups. I have also developed a new hand posture detection
method for the identification of hand postures. The input of the method is provided by an

image processing system that uses two cameras and a Fuzzy Matching Algorithm to calculate

the 3D coordinates of the shape of the hand. The 3D coordinates are processed by a set of

Circular Fuzzy Neural Networks that map the coordinates into a set of 14 triangular fuzzy

sets. The acquired fuzzy sets are processed by a fuzzy inference machine that provides the

output of the method: the label of the hand posture model that is the most similar to the

detected one. The performance of the method has been shown for 6 different hand postures.

10.1.1.1 Thesis Statement I.2.

I have developed a new neural network structure named Circular Fuzzy Neural
Network. The structure of the new network is derived from interval-based Fuzzy Neural

Networks by trimming the number of connections between the input and hidden layer

neurons in order to achieve a faster yet more localized processing (one hidden layer neuron

only processes the output of a given number of neighboring input layer neurons). The other

significant difference comes from the circular shape of the new network, as the first neuron

in each layer is regarded as a neighbor of the last neuron in the same layer. The new

classifier is used to convert a set of 3D coordinates into 14 fuzzy features. It has been

validated for 6 different hand postures.

144

10.1.2 Thesis Statement II.

In order to enhance the training speed of Artificial Neural Networks, I have introduced
a new supervised Neural Network training method including an input sample clustering
step. The proposed method generates clusters of similar input data samples and returns the

centers of the clusters. The training is done by using the corresponding cluster centers instead

of the input samples. The method has been shown to decrease training time significantly, at

the cost of a slight decrease in classification precision. The new method has been validated

on Artificial Neural Networks, Circular Fuzzy Neural Networks and Radial Basis Function

Networks.

10.1.3 Thesis Statement III.

I have developed a new iSpace Control System (iSCS) framework consisting of
intelligent detection modules, command processor modules, and autonomous action
planner modules, together constituting a smart environment system that can provide
services to users based on the available resources and agents. I have also designed and
implemented a new graph-based knowledge representation system to describe a priori
knowledge for control systems. The knowledge representation uses a graph-based

structure that provides a flexible and easy to use architecture. The new knowledge

representation system also enables automatic observation-based learning, in which

hypotheses are used to model the observed a posteriori knowledge (gained by analyzing the

details of commands issued by users), which are used for the automatized operation. The

iSCS satisfies the following requirements: modularity, scalability, ease of integration, can

be built from low cost components and easy to configure and maintain, mainly due to the

wide availability of cheap Single Board Computers and sensors that can be used to

implement the iSCS framework. The functionality of the system has been validated in a

simulated environment.

10.1.4 Thesis Group IV.

10.1.4.1 Thesis Statement IV.1.

I have proposed a new fuzzy rule-based classification method called Fuzzy Filter
Networks that is based on a topological modification of Radial Basis Function neural
networks. Its training is done through clustering, where the clusters that cover the problem

domain based on the training data are calculated. Said clusters are used as rules during the

operation of the classifier, during which each hidden layer neuron calculates a Gaussian

145

fuzzy membership function value based on each rule. The output of the classification is the

class label associated with the rule that is the closest to the input values. I have developed a
new clustering algorithm called Analytical Radial Representative clustering in order
to train the new fuzzy rule-based classifier, which is based on a bottom-up approach.
The classification performance of the filter network using the proposed clustering algorithm

as training has been evaluated through a color filtering experiment.

10.1.4.2 Thesis Statement IV.2.

I have designed a parallel realization of the new Fuzzy Filter Network classifier, which
reduces the complexity of both the training and the operation of the classifier. The

efficacy of the method is shown through a color filtering experiment.

10.2 Thesis Group V.

10.2.1 Thesis Statement V.1.

I have introduced Fuzzy Hypermatrices (FHMs), a new classification method that
extends lookup table classifiers in order to achieve a fast and robust classifier. I have
introduced generalization ability to the method by implementing Fuzzy logic
implicitly into the structure. The method is shown to perform at high speed and high

precision on low dimension problems, such as color filtering.

10.2.2 Thesis Statement V.2.

I have developed a parallel version of the FHM classifier that is able to process images
with a significantly lower time complexity than that of the sequential version, and
provide a more stable classification performance than pFFNs.

10.3 Thesis Group VI.

I have developed a new form of Lookup Table classifier for multi-dimensional
classification problems, called Sequential Fuzzy Indexing Tables that uses a sequence
of one 1D and N 2D fuzzy lookup tables in to achieve a more memory-efficient
classification than FHMs on problems with a constant number of attributes. It has a

layered structure, where each layer contains a lookup table that combines the value of an

attribute belonging to that layer to the combination gained in the previous layers. Thus in

146

each layer, the proposed method reduces the size of the problem space in which the class of

the input pattern is. This significantly reduces the arrays that are needed to be stored in the

memory, compared to FHMs.

10.3.1 Thesis Statement VI.1.

I have expanded upon the idea of Fuzzy Hypermatrices and developed a new classifier
named Sequential Fuzzy Indexing Tables for real-time classification of complex
problems with a constant number of dimensions (c-SFIT). The problem space is stored

in a sequence of 1D and 2D arrays, each adding one more attribute value to the combination

and thus restricting the problem space. Tests have confirmed that the method is generally

faster than most other state of the art pattern recognition approaches, while the classification

is only slightly less precise.

10.3.2 Thesis Statement VI.2.

I have extended the Sequential Fuzzy Indexing Tables classifier to work on variable
length data as well (v-SFIT). This is done at the cost of doubling the structure, in order to

hold the class values in different arrays. The proposed methods have also been successfully

applied in an iSpace-based dietary assistant application that uses a c-SFIT for storing food

items based on their nutrition data and a v-SFIT for storing the names of food items.

147

List of Figures

2.1 The architecture of a Distributed Intelligent Networking Device. 11

2.2 The setup of the preprocessing system (a) and the considered hand postures

(b)− (g). 12

2.3 The Coordinate Model of a Detected Hand Posture. 13

2.4 The fuzzy descriptors. 14

2.5 Block Diagram of the Hand Posture and Gesture Identification System. . . . 16

2.6 An example for the ModelBase with 6 manually defined models (left) and

the GestureBase with 2 manually defined models (right)) 17

2.7 The 9 types of considered fuzzy feature sets considering small, medium and

large labels for fuzzy set centers and widths. 18

2.8 The topology of Fuzzy Neural Networks. 19

2.9 The Topology of the Circular Fuzzy Neural Networks. 20

3.1 The architecture of Radial Basis Function Neural Networks. 28

3.2 The new supervised learning scheme extended with clustering. 30

3.3 The algorithm of the time reduced clustering step. 31

3.4 The original training data set (a) of the 1st ANN experiment, The

performance of the network trained with the original training data set on the

whole domain (b) and the centers of the resulted clusters along with the

classification results of the networks trained with the clustered training data

sets on the whole domain (c), (d), (e). Figures (f), (g), (h) right under them

present the responses of the networks trained by the corresponding

clustered data, over the training domain. 33

3.5 The original training data set (a) of the 2nd ANN experiment, and the centers

of the resulted clusters along with the classification results of the networks

trained with the clustered training data sets on the whole domain (b), (c), (d).

Figures (e), (f), (g) right under them present the responses of the networks

trained by the corresponding clustered data, over the training domain. . . . 36

148

3.6 The domain of the problem in the three experiments: (a) with no overlapping,

(b) with some overlapping and (c) significant overlapping of the class areas. 42

3.7 The relationship between the complexity and the classification accuracy of

the network for the three experiments. 42

4.1 The simplified architecture of the iSpace Control System framework. . . . 50

4.2 An illustrative example for the structure of the knowledge representation. . 53

4.3 Example for the structure of the knowledge representation: inheritance,

ability, heuristic and meta edges. 55

4.4 Fuzzy membership function for weekend (of the week). Input variable x is

given by Mday,CV , while Mday,SEN determines the width of the boundary

areas of the FMF. 56

4.5 The detailed architecture of the iSpace control system framework. 58

4.6 Structure of the (i) instruction and (ii) prohibition type commands. 60

4.7 Example for the command parsing. 61

4.8 A hypothesis made from the command "Turn off the lights". . . 63

4.9 The algorithm for the Hypothesis Trainer Module. 65

4.10 The virtual room in which the iSpace application framework has been

implemented and tested. 66

4.11 Hypotheses learned from the commands Make coffee (left), Set the

alarm to 7:00 (top right) and DO NOT set the alarm to

7:00 on Saturdays (bottom right). The latter was made from the

previous one (with the same command), by adding a new condition to stop

it from triggering on the 5th day of the week (i.e. Saturday). 67

5.1 The architecture of the Fuzzy Filter Network. 75

5.2 The algorithm for the Analytical Radial Representative Clustering approach. 79

5.3 Illustration for the Analytical Radial Representative clustering method for a

3-class problem: (a) distance calculations, (b) range setting and (c) range

increase. The color of each data point pi shows its class. 80

5.4 The algorithm for the reductions step. 81

5.5 The simplified algorithm for the parallel clustering method used to train the

parallel FFN. 82

5.6 The training image of the first experiment (top left), the classification result

for the training image (top right) and two subsequent images of the third

experiment: the system found skin areas in the highlighted areas (bottom

left and right). 85

149

5.7 Statistical performance measures for the two sequential FFNs and the pFFN:

(a) Balanced Accuracy, (b) precision and (c) recall. 85

5.8 Statistical performance measures for the two sequential FFNs and the pFFN:

(a) balanced accuracy, (b) precision and (c) recall. 86

5.9 A training image (top left), the training mask (top middle) and the testing

image (top right), the output of the sequential FFN for HSV (bottom left)

and RGB (bottom middle) color spaces, as well as that of the pFHM (bottom

right). 87

5.10 Statistical performance measures for the two sequential FFNs and the pFFN:

(a) balanced accuracy, (b) precision and (c) recall. 88

5.11 The operation time of the pFFN classifier in function of the number of rules

(ω). 89

6.1 An example for a 2D FHM classifier with 4 classes (considering class 0 as

default class, thus it does not have an M0 associated with it): (a) 2D array

of the classes; (b,c,d) fuzzy arrays of the fuzzy membership functions; (f)

depicts how the largest fuzzy values of each of the classes cover the problem

space, and (g) shows the resulting covering in terms of the class labels. . . 94

6.2 The training algorithm behind Fuzzy Hypermatrices. 95

6.3 (a) Triangular, (b) Gaussian and (c) Epanechnikov fuzzy membership

functions. 97

6.4 The evaluation algorithm behind Fuzzy Hypermatrices. 97

6.5 The architecture of the arrays in the pFHM model (for color filtering). In

practice, the most efficient way to implement it is as a 1D array, where each

2563 sized block belongs to a given class. 98

6.6 A training image for the first experiment (top left), classification accuracy

of the trained Fuzzy Hypermatrix (ρ = 5, top right) classifier, as well as the

trained 2D (bottom left) and 3D Lookup Table (bottom right) on the next

image of the sequence. 101

6.7 Training image for the second experiment (left) and result of the training for

this particular training image (right). 103

6.8 Classification accuracy of FHMρ = 5 (left) and FHMρ = 15 (right) for a test

image. 104

6.9 A training image (left) and the corresponding mask that marks the different

classes (right). 105

150

6.10 A testing image (top left) for a 3-class problem (color filtering) and the

results given by the sequential FHM classifier (top right), the pFFNHSV
ρ=15

filter (bottom left) and the pFHM filter (bottom right). The different color

classes are denoted as follows: chairs are marked with red, garbage bin

marked with magenta and human skin regions marked with yellow. 107

6.11 The performance of the pFFNHSV
ρ=15 (orange), pFHMRGB

ρ=10 (blue) pFHMHSV
ρ=10

(red) classifiers: (a) Precision-Recall curve, (b) balanced accuracy, (c) recall

(in function of θ) and (d) precision (in function of θ). 108

7.1 A road map illustration where the goal is to find the class κ that belongs to

a given sample x. The search is done using the attribute values (xi) to select

the next path at each junction. The path sequence taken by x is marked by

red, while the others are not continued (they are marked with three dots.) . . 115

7.2 The structure of the c-SFIT classifier for a 3-dimensional, 3 class problem.

The structure of the 3 layers is showcased: the index arrays (ΛLi), the fuzzy

arrays (MLi) and the statistical arrays GLi and υLi . The training samples

can be seen on the upper right corner, while the evaluation of a sample is

showcased in blue color. 117

7.3 The structure of the v-SFIT classifier, for an up to 3 dimensional problem

with 3 classes and variable length samples. 121

7.4 The training algorithm of the v-SFIT classifier. 122

7.5 The shapes used in the second problem, from the MPEG-7 data set. The

grouped images belong to the same class. 129

7.6 The SFIT classifier as an indexed data storage: c-SFIT to store nutrition

values (left) and v-SFIT to act as a dictionary (right). In the former, crisp data

is stored (no need for generalization) so there is no need for fuzzy matrices.

In the latter, fuzzy matrices are used but they have been emitted from this

figure for better visibility. Remark: IU stands for International Units. 132

151

List of Tables

1.1 The computer configurations used during my research. 7

2.1 Features for the Hand Posture of "Victory" 15

2.2 The results of training 6 different type of hands using preclustered training

data . 22

3.1 The Relative Speed Increase and Classification Accuracy of the ANN

Networks using Data Preclustered with Different Clustering Distances (δ)

in Experiment 3.3.1.1. 34

3.2 The Relative Speed Increase and Classification Accuracy of the ANN

Networks using Data Preclustered with Different Clustering Distances (δ)

in Experiment 3.3.1.2. 35

3.3 Time Required for Error Threshold Intervals (hours:minutes) and the

Relative Speed Increase Between the Unclustered and Clustered Cases (e.g.

Network A with Unclustered and Clustered Data). 38

3.4 The Required Training Times for each Feature Group Gi focusing on Error

Threshold Range 0.5-0.12 and the Relative Speed Increases (the Unclustered

Cases Being the Reference Times). 39

3.5 The Number of Clusters Resulted from Multiple Clustering Steps using

Different Clustering Distances. 39

3.6 Comparative Analysis on the Characteristics of the Differently Clustered

Datasets, Considering the Decrease in Training Time and Classification

Accuracy (ACC; Using the Unclustered Case as Reference). 40

3.7 Detailed Information About the Classification Accuracy of the Differently

Clustered Datasets (i.e. the Number of Correctly Identified Cases for each

Hand Posture). 40

3.8 The Number of Resulting RBF cluster centers Considering Different

Clustering Distances, and the Classification Accuracy of the Trained RBF

Networks Considering Different Clustering Distances (in percentages). . . . 44

152

6.1 The average speed of the classifiers in the first experiment. 102

6.2 The average balanced accuracy, recall and precision of the classifiers in the

second experiment, as well as the average training and evaluation times per

image. 103

6.3 The Steps of the Training Phase and the Time Requirements of the Sequential

and Parallel Implementations (P=307200, P ′=37218, ω=4124). 105

6.4 The Evaluation Speed [ms] of the Filters on Images with Different Resolutions107

7.1 Average Training and Testing Speed and Classification Accuracy for the

Wisconsin Breast Cancer Dataset . 124

7.2 Average Training and Testing Speed and Classification Accuracy for the

Seismic Bumps Dataset . 125

7.3 The Distribution of Training Data in the First Problem. 127

7.4 Comparison Between the Performance of v-SFIT and LSTM RNN

Classifiers in the First Problem . 128

7.5 Comparison Between the Performance of v-SFIT and Artificial Neural

Networks (ANNs) . 130

153

List of Symbols

General Symbols

P the cardinality of the input dataset

X the input data set

Xi a specific sample from the input data set X: the ith sample in the set

x a sample from the input data set X

xi the ith value of sample x

x̃ non-negative integer value of sample x

x̃i the ith value of sample x̃

y the output of a given classifier

N the dimension of a given problem, i.e. the number of data attributes

i a given attribute

d(u, v) the distance value between vectors u and v

κx a classes label of sample x

Qκ the number of classes

O(X) the Big O notation that describes how the space or time requirements of

an algorithm grow in function of the given argument

154

Thesis I. Specific Symbols

backproj(x, y) the back-projection function on an image

H() hue histogram

I(x, y) intensity value in a given image at coordinates x and y

µi fuzzy membership function

a, b, c, d the distance between the fingers (expressed in linguistic variables)

A,B,C,D,E the distance between the fingers (expressed in linguistic variables)

α, β, γ, δ, ε the distance between the fingers (expressed in linguistic variables)

S linguistic variable for SMALL

M linguistic variable for MEDIUM

L linguistic variable for LARGE

SL linguistic variable used for setting the width of the triangular fuzzy sets

d identification value of an FHPM model

center the center of a given fuzzy set

width the width of a given fuzzy set

T 1D array, the numerical representation of an FHPM

dH the Hamming distance

n a fixed number of attributes

I number of neurons in the input layer of a neural network

J number of neurons in the hidden layer of a neural network

K number of neurons in the output layer of a neural network

% the number of epochs a neural network takes to learn

m the number of hand posture models

155

Thesis II. Specific Symbols

y the output of a given supervised learning model

d the desired output of a given supervised learning model

c criteria used to examine the difference between y and d

u the input of a supervised learning model

u′ the clustered centers created from u

k the number of clusters

Ai, Bi, Ci three neural networks trained with different clustering distances

δ clustering distance

SL linguistic variable used for setting the width of the triangular fuzzy sets

Gi feature group

C number of neurons

φ matrix used to store the calculated distances between each neuron and

input sample in the given RBF implementation

D the array of the desired outputs (targets)

g0 bias value

gi() Gaussian activation function of neuron i

ci the center parameter belonging to neuron i

σi the width parameter belonging to neuron i

wi weight parameter belonging to the output of neuron i

156

Thesis III. Specific Symbols

A,B,C given concepts

NA a node belonging to concept A

CV current value

mV minimum value

MV maximum value

SEN sensitivity value

VA,CV the current value of concept A

VA,mV the minimum value of concept A

VA,MV the maximum value of concept A

VA,SEN the sensitivity value of concept A

U a so-called environmental variable, a concept node that has current,

minimum, maximum and sensitivity values defined (in the form of VU,CV ,

etc. meta edges)

u the current value of environmental variable U

MA,B(x) fuzzy membership function value between concept A and B, at x value

µB fuzzy membership function associated to concept B

Nobj an object node

Nact an action node

Nexec an executive node

Ez
Z a z type edge (z ∈ ability, instance, association) connecting nodes Z

(Z ⊆ Nexec,Nact,Nobj)

157

Thesis IV. Specific Symbols

gi() Gaussian activation function of neuron i

ci the center parameter belonging to neuron i

σi the width parameter belonging to neuron i

wi weight parameter belonging to the output of neuron i

Ψj the status of cluster j: 0 - inactive, 1 - active

R a set of rules

rj the radius of cluster j

ρ range value

Λi the index of closest adversarial sample to sample i

ω the final number of rules (clusters used for classification))

θ an arbitrary threshold value to restrict the output of the classifier above the

given value

158

Thesis V. Specific Symbols

Ψ the problem space or domain of a given problem

ΨN∪{0} the non-negative valued problem space or domain of a given problem

ψu a given subspace of ΨN∪{0} around element u

κ a given class label

C a multidimensional class matrix marking the positions of classes

M a multidimensional fuzzy matrix assigning fuzzy membership function

values for each element of C

Mκ the fuzzy matrix associated with class κ

y the output of the classifier

λ the class with the largest

θ the threshold value of the classification

C̄ the aggregated class matrix for an illustration

M̄ the aggregated fuzzy matrix for an illustration

µ a fuzzy membership value

ρ the width of the fuzzy sets

ai the scaling coefficient of the linear mapping function

bi the offset coefficient of the linear mapping function

C̆ the temporary class array for pFHMs

M̆ the temporary fuzzy array for pFHMs

Ĉ the final class array for pFHMs

M̂ the final fuzzy array for pFHMs

Dj the size of the domain of attribute j

Qκ the number of classes

A(u) an address function that converts 1D array u into a single value

FHMρ=v an FHM classifier where the width of all fuzzy sets is v

P ′ the cardinality of the input dataset after redundancy and inconsistency

filtering

L the number of non-zero values in C and Ĉ

SM the size of the FHM structure (in bytes)

159

Thesis VI. Specific Symbols

Li a layer assigned to attribute i

ΛLi the index array belonging to layer Li, contains index values

ΛLi
u,v an element of index array ΛLi at column u and row v

MLi the fuzzy array belonging to layer Li, assigns fuzzy membership function

values for each element of ΛLi

MLi
u,v an element of fuzzy array MLi at column u and row v

GLi 2D statistical array belonging to layer Li, counts the class occurrences for

each row in the index array ΛLi

GLi
u,v an element of statistical array GLi at column u and row v

υLi 1D statistical array belonging to layer Li, indicates the most likely class

for each row in the index array ΛLi

υLiv an element of statistical array υLi at row v

κ a given class label

γi the number of index markers in ΛLi

ηi the index value acquired in layer Li

ρ the width of the fuzzy sets

αi the class marker belonging to class i

Di the domain size of attribute i

ai the scaling coefficient of the linear mapping function

bi the offset coefficient of the linear mapping function

Λ̂Li the class array belonging to layer Li, contains class labels in v-SFITs

Λ̂Li
u,v an element of class array Λ̂Li at column u and row v

M̂Li the fuzzy array belonging to layer Li, assigns fuzzy membership function

values for each element of Λ̂Li in v-SFITs

M̂Li
u,v an element of fuzzy array M̂Li at column u and row v

Nx the length of variable length sample x (i.e. the number of attributes in x)

y the output of the system

δ variable to set the magnitude of noise in the example

z a random value in [−δ, δ]

160

Sc-SFIT the size of the c-SFIT structure (in bytes)

Sv-SFIT the size of the v-SFIT structure (in bytes)

SΛ the size of a single element in Λ (in bytes)

SM the size of a single element in M (in bytes)

SG the size of a single element in G (in bytes)

161

Appendix A

Statistical Measures

In this chapter, a concise description of the statistical measures can be found that were used

in the thesis work.

• True positive (TP): an outcome where the classifier correctly predicts the positive

class.

• False positive (FP): an outcome where the classifier incorrectly predicts the positive

class.

• True negative (TN): an outcome where the classifier correctly predicts the negative

class.

• False negative (FN): an outcome where the classifier incorrectly predicts the negative

class.

• true positive rate (TPR, sensitivity, recall or hit rate): The proportion of correctly

identified positives:

TPR =
TP

TP + FN
(A.1)

• true negative rate (TNR, specificity, selectivity): The proportion of correctly

identified negatives:

TNR =
TN

TN + FP
(A.2)

• positive predictive value (PPV, precision): The proportion of actually correct

positive identifications:

PPV =
TP

TP + FP
(A.3)

A-1

• false negative rate (FNR, miss rate): . It measures type I error, which is the rejection

of a true null hypothesis:

FNR =
FN

FN + TP
(A.4)

the probability of falsely rejecting the null hypothesis for a particular test

• false positive rate (FPR, fall-out ratio): Measures the ratio of falsely rejected

positives:

FPR =
FP

FP + TN
(A.5)

• classification accuracy (ACC): It measures the performance of the system on a

balanced dataset:

ACC =
TP + TN

TP + TN + FP + FN
(A.6)

• balanced accuracy (BA): It measures the performance of the system on an imbalanced

dataset:

BA =
TPR + TNR

2
(A.7)

A-2

Appendix B

References

B.1 Publications Strictly Related to the Thesis Work

B.1.1 Journal Articles

[P. 1] A.R. Várkonyi-Kóczy, B. Tusor. Human-Computer Interaction for Smart

Environment Applications Using Fuzzy Hand Posture and Gesture Models, In IEEE Trans.

on Instrumentation and Measurement, 60(5):1505-1514, 2011. Impact factor: 2.10; Q2,
SJR:0.62

[P. 2] B. Tusor, A.R. Várkonyi-Kóczy, G. Klie, G. Kocsis. Human-Machine Cooperation in

an iSpace Robot Room. In International Journal of Advanced Computational Intelligence

and Intelligent Informatics (JACIII), 16(6):723-732, 2012. Q4, SJR:0.181

[P. 3] B. Tusor, A.R. Várkonyi-Kóczy. A Hybrid Fuzzy-RBFN Filter for Data Classification.

In Advanced Materials Research, 1117:261-264, 2015. Q3, SJR:0.115
DOI:10.4028/www.scientific.net/AMR.1117.261

[P. 4] B. Tusor, A.R. Várkonyi-Kóczy. Fuzzy Classifier Hyper-matrices for Rapid Data

Classification. In Japanese Journal of Applied Physics (JJAP), 4:011610-1-6, 2016. Impact
factor: 0.327, Q3, SJR:0.327 DOI:10.7567/JJAPCP.4.011610

B.1.2 Book Chapters

[P. 5] A.A. Tóth, B. Tusor, and A.R. Várkonyi-Kóczy. Fuzzy Hand Posture Models in

Man-Machine Communication. In I. Rudas, J. Fodor, J. Kacprzyk, (eds.), Computational

Intelligence in Engineering (Ser. Studies in Computational Intelligence), Springer Verlag,

Berlin, Heidelberg, pages 229-245, 2010. Q4

[P. 6] A.R. Várkonyi-Kóczy, B. Tusor. Improving the Model Convergence Properties of

A-3

Classifier Feedforward MLP Neural Networks. In L.A. Zadeh, A.M. Abbasov, R.R. Yager,

S.N. Shahbazova, M.Z. Reformat (eds.), Recent Developments and New Directions in Soft

Computing, Springer Verlag, Berlin, Heidelberg, pages 281-293, 2014.

[P. 7] A.R. Várkonyi-Kóczy, B. Tusor, I.J. Rudas. Knowledge representation in ISpace based

man-machine communication, In Jamshidi, M., Kreinovich, V., Kacprzyk, J. (eds), Advanced

Trends in Soft Computing (Ser. Studies in Fuzziness and Soft Computing, 312), Springer

Verlag, Berlin, Heidelberg, ISBN:978-3-319-03673-1, pages 241-251, 2014. Q3

[P. 8] A.R. Várkonyi-Kóczy, B. Tusor, Rudas, I.J. Data Classification based on Fuzzy-RBF

Networks. In Valentina Emilia Balas, Lakhmi C Jain, Branko Kovačević (eds.) Advances in

Intelligent Systems and Computing 357, Springer Verlag, Berlin, Heidelberg, pages 829-840,

2015. ISBN:978-3-319-18415-9

[P. 9] B. Tusor, A.R. Várkonyi-Kóczy, J. Bukor. A Parallel Fuzzy Filter Network for Pattern

Recognition. In Recent Advances in Technology Research and Education, Springer

International Publishing, pages 275-282, January 2019.

DOI:10.1007/978-3-319-99834-3_36

[P. 10] A.R. Várkonyi-Kóczy, B. Tusor, J.T. Tóth: A Multi-Attribute Classification Method

to Solve the Problem of Dimensionality. In book: Advances in Intelligent Systems and

Computing; (519), Berlin; Heidelberg: Springer Verlag, pages 403-410, January 2017.

ISBN: 978-3-319-46490-9

[P. 11] B. Tusor, A.R. Várkonyi-Kóczy and Tóth, J. T.: A Fuzzy Data Structure for Variable

Length Data and Missing Value Classification. In D. Luca, L. Sirghi, C. Costin (eds.)

Recent Advances in Technology Research and Education, ser. Advances in Intelligent

Systems and Computing (660), Berlin; Heidelberg: Springer, pages 297-304, January 2017.

ISBN: 978-3-319-67458-2

B.1.3 Conference Papers

[P. 12] A.A. Tóth, B. Tusor, and A.R. Várkonyi-Kóczy. New Possibilities in

Human-Machine Interaction. In Proc. of the 10th International Symposium of Hungarian

Researchers on Computational Intelligence and Informatics, CINTI’2009, Budapest,

Hungary, pages 327-338, 2009.

[P. 13] A.R. Várkonyi-Kóczy, B. Tusor. Man-Machine Communication via CFNN Based

Hand Sign Models. In Proc. of the 8th Slovakian-Hungarian Joint Symposium on Applied

Machine Intelligence, SAMI2010, Herlany, Slovakia, pages 329-334, 2010.

[P. 14] B. Tusor, A.R. Várkonyi-Kóczy. Circular Fuzzy Neural Network Based Hand Gesture

A-4

and Posture Modeling. In CD-ROM Proc. of the 2010 IEEE Int. Instrumentation and

Measurement Technology Conference, I2MTC’2010, Austin, USA, pages 815-820, 2010.

[P. 15] A.R. Várkonyi-Kóczy, B. Tusor. Improved Back-Propagation Algorithm for Neural

Network Training. In CD-ROM Proc. of the 7th IEEE Int. Symposium on Intelligent Signal

Processing, WISP’2011, Floriana, Malta, pages 66-73, 2011.

[P. 16] B. Tusor, A.R. Várkonyi-Kóczy, I.J. Rudas, G. Klie, G. Kocsis. An Input Data Set

Compression Method for Improving the Training Ability of Neural Networks. In CD-ROM

Proc. of the 2012 IEEE Int. Instrumentation and Measurement Technology Conference,

I2MTC’2012, Graz, Austria, pages 1775-1783, 2012.

[P. 17] A.R. Várkonyi-Kóczy, B. Tusor, A. Dineva. Determination of the Complexity Fitted

Model Structure of Radial Basis Function Neural Networks. In Proc. of the 17th IEEE

Int. Conference on Intelligent Engineering Systems, INES’2013, Costa Rica, pages 237-242,

2013.

[P. 18] B. Tusor, A.R. Várkonyi-Kóczy. Intelligent Hotel Room Assistant, In Proc. of the

8th Int. Conference on Informatics in Control, Automation, and Robotics, ICINCO’2011,

Noordwijkerhout, The Netherlands, pages 182-187, 2011.

[P. 19] B. Tusor, A.R. Várkonyi-Kóczy. ISpace Robot Room for Improved Life Comfort.

In CD-ROM Proc. of the 12nd Int. Symp. of Hungarian Researchers on Computational

Intelligence and Informatics, CINTI’2011, Budapest, Hungary, pages 199-205, 2011.

[P. 20] B. Tusor, A.R. Várkonyi-Kóczy. Virtual Eto-Environment in iSpace. In Proc. of the

International Workshop on Advanced Computational Intelligence and Intelligent

Informatics, IWACIII’2011, Suzhou, China, pages G2-5.1-8, 2011.

[P. 21] A.R. Várkonyi-Kóczy, B. Tusor. Efficient Knowledge Representation in Intelligent

Human-Robot Co-operation. In Proc. of the 16th IEEE Int. Conference on Intelligent

Engineering Systems INES’2012, Lisbon, Portugal, pages 25-30, 2012.

[P. 22] B. Tusor, A.R. Várkonyi-Kóczy. A Rule-based Filter Network for Multiclass Data

Classification. In Proc. of the 2015 IEEE International Instrumentation and Measurement

Technology Conference, I2MTC’2015, Pisa, Italy, pages 1102-1107, 2015.

[P. 23] A.R. Várkonyi-Kóczy, B. Tusor, and J.T. Tóth: A Fuzzy Hypermatrix-based Skin

Color Filtering Method. In Proc. of the 2015 IEEE 19th International Conference on

Intelligent Engineering Systems, INES’2015, Bratislava, Slovakia, pages 173-178, 2015.

[P. 24] Várkonyi-Kóczy A.R., B. Tusor: Classification with Fuzzy Hypermatrices. In Proc.

of the 2016 IEEE International Instrumentation and Measurement Technology Conference,

I2MTC’2016, ISBN: 978-1-4673-9220-4, Taipei, Taiwan, pages 990-995, 2016.

A-5

[P. 25] B. Tusor, A.R. Várkonyi-Kóczy, J.T. Tóth. Fuzzy Hypermátrix Alapú Osztályozó

Gépészeti Osztályozási Problémákhoz. In XXIV. Nemzetközi Gépészeti Találkozó.

OGET’2016, Déva, Romania, ISSN: 2068-1267, pages 463-466, 2016.

[P. 26] B. Tusor, Bukor, J., A.R. Várkonyi-Kóczy: Parallelized Fuzzy RBF and FHM based

Color Filtering for Real-Time Image Processing. In Proc. of the 2019 IEEE International

Instrumentation and Measurement Technology Conference, I2MTC’2019, Auckland, New

Zealand, pages 1-6, 2019.

[P. 27] B. Tusor, A.R. Várkonyi-Kóczy, J.T. Tóth. Active Problem Workspace Reduction

with a Fast Fuzzy Classifier for Real-Time Applications. In Proc. of the IEEE International

Conference on Systems, Man, and Cybernetics, SMC’2016, Budapest, Hungary, pages

4423-4428, 2016. ISBN: 978-1-5090-1819-2

[P. 28] A.R. Várkonyi-Kóczy, B. Tusor, J.T. Tóth. Robust Variable Length Data

Classification with Extended Sequential Fuzzy Indexing Tables. In CD-ROM Proc. of the

2017 IEEE International Instrumentation and Measurement Technology Conference

(I2MTC’2017), Torino, Italy, pages 1881-1886, 2017.

[P. 29] B. Tusor, Simon-Nagy, G., A.R. Várkonyi-Kóczy, and J.T. Tóth. Personalized Dietary

Assistant - An Intelligent Space Application. In Proc. of the 21st IEEE Int. Conf. on

Intelligent Engineering Systems (INES’2017), Larnaca, Cyprus, pages 27-32, 2017.

[P. 30] B. Tusor, A.R. Várkonyi-Kóczy, J. Bukor. An ISpace-based Dietary Advisor. In Proc.

of the 7th IEEE Int. Symposium on Intelligent Signal Processing, WISP’2011, Rome, Italy,

pages 1-6, 2018.

B.2 Further Publications of the Author

[P. 31] B. Tusor, Várkonyi-Kóczy A.R. Fast Regular and Interval-based Classification, using

parSITs. ACTA POLYTECHNICA HUNGARICA, 18(6):107-126, 2021.

Impact factor: 1.510, Q2

[P. 32] B. Tusor, J.T. Tóth, Várkonyi-Kóczy A.R. Parallelized Sequential Indexing Tables

for Fast High-Volume Data Processing. In 2020 IEEE International Instrumentation and

Measurement Technology Conference (I2MTC), pages 1-6, 2020.

[P. 33] B. Tusor, A.R. Várkonyi-Kóczy. Memory Efficient Exact and Approximate

Functional Dependency Extraction with ParSIT. In Szakál, Anikó (szerk.) 2020 IEEE 24th

International Conference on Intelligent Engineering Systems (INES), pages 133-138, 2020.

[P. 34] B. Tusor, J.T. Tóth, A.R. Várkonyi-Kóczy. An Indexed Rule-Based Fuzzy Color

Filtering Method. In L. Kovács, T. Haidegger, A. Szakál. (eds.) Recent Advances in

A-6

Intelligent Engineering. Topics in Intelligent Engineering and Informatics, 14:307-312,

2020.

[P. 35] B. Tusor, O. Takac, A. Molnár, S. Gubo, A.R. Várkonyi-Kóczy. Shape Recognition

in Drone Images Using Simplified Fuzzy Indexing Tables. In Szakál, Anikó (eds.) IEEE 18th

World Symposium on Applied Machine Intelligence and Informatics (SAMI 2020), Kosice,

Slovakia, pages 1-6, 2020.

[P. 36] B. Tusor, Š. Gubo, T. Kmet’, J. T. Tóth. Augmented Smart Refrigerator - An

Intelligent Space Application. In Varkonyi-Koczy, Annamaria R. (eds.) Engineering for

Sustainable Future: Selected papers of the 18th International Conference on Global

Research and Education, Inter-Academia2019, Springer, pages 171-178, 2020.

[P. 37] B. Tusor, J. Bukor, L. Végh, O. Takáč. Domain Reduction Techniques for Sequential

Fuzzy Indexing Tables – A Case Study. In A.R. Várkonyi-Kóczy(eds.): Engineering for

Sustainable Future: Selected papers of the 18th International Conference on Global

Research and Education, Inter-Academia2019, Cham, Springer, pages 179-190, 2020.

[P. 38] B. Tusor, J.T. Tóth, Várkonyi-Kóczy A.R. Approximate Functional Dependency

Mining with Sequential Indexing Tables. In Szakál, Anikó (szerk.) IEEE Joint 19th

International Symposium on Computational Intelligence and Informatics and 7th IEEE

International Conference on Recent Achievements in Mechatronics, Automation, Computer

Sciences and Robotics: CINTI-MACRo 2019, Szeged, Hungary, pages 119-124, 2019.

[P. 39] B. Tusor, J.T. Tóth, A.R. Várkonyi-Kóczy. SIT-based Functional Dependency

Extraction. ACTA POLYTECHNICA HUNGARICA, 16(10):65-81, 2019.

Impact factor: 1.510, Q2

[P. 40] B. Tusor, J.T. Tóth, A.R. Várkonyi-Kóczy. Functional Dependency Detection with

Sequential Indexing Tables. In Szakál, Anikó (szerk.) IEEE 23nd Int. Conf. on Intelligent

Engineering Systems (INES 2019), Budapest, Hungary, pages 1-6, 2019.

[P. 41] A. Dineva, B. Tusor, I. Vajda. Interval Type-2 Fuzzy System in Personalized Driving

Cycle Forecasting. AIP CONFERENCE PROCEEDINGS, 1982(1):020027, 2018.

[P. 42] Dineva, A., B. Tusor, P. Csiba, A.R. Várkonyi-Kóczy. Robot Control in ISpace by

Applying Weighted Likelihood Functions. In D. Luca, L. Sirghi, C. Costin: Recent Adv. in

Tech. Research and Education, Springer Berlin Heidelberg, pages 243-248, 2018.

[P. 43] Várkonyi-Kóczy, A., B. Tusor, J.T. Tóth. A Fuzzy Shape Extraction Method. Studies

in Fuzziness and Soft Computing, pages 383-395, 2018.

[P. 44] B. Tusor, A.R. Várkonyi-Kóczy, M. Takács, J.T. Tóth. A Fast Fuzzy Decision Tree

for Color Filtering. In IEEE International Symposium on Intelligent Signal Processing,

WISP2015, pages 46-51, 2015.

A-7

Bibliography

[1] J-H. Lee and H. Hashimoto. Intelligent space. In Proc. Int. Conf. on Intelligent Robots

and Systems, IROS 2000, volume 2, pages 1358–1363, 2000.

[2] J-H. Lee, K. Morioka, N. Ando, and H. Hashimoto. Cooperation of distributed

intelligent sensors in intelligent environment. IEEE/ASME Trans. on Mechatronics,

9(3):535–543, 2004.

[3] M. Weiser. The computer for the twentyfirst century. Scientific American,

265(3):94–104, 1991.

[4] K. Morioka, J.-H. Lee, and H. Hashimoto. Human centered robotics in intelligent

space. In Proceedings 2002 IEEE International Conference on Robotics and

Automation, Washington, DC, USA, pages 2010–2015, 2002.

[5] D. Brscic and H. Hashimoto. Mobile robot as physical agent of intelligent space.

Journal of computing and information technology, 17(1):81–94, 2009.

[6] T.-S. Jin, J.-M-Lee, and H. Hashimoto. Position control of mobile robot for

human-following in intelligent space with distributed sensors. International Journal

of Control, Automation, and Systems, 4(2):204–216, 2006.

[7] C.-L. Hwang and L.-J. Chang. Trajectory tracking and obstacle avoidance of car-like

mobile robots in an intelligent space using mixed h2/h? decentralized control.

IEEE/ASME Trans. on Mechanics, 12(3):345–352, 2007.

[8] P. Galambos and P. Baranyi. Virca as virtual intelligent space for rt-middleware. In

Proc. of the 2011 IEEE/ASME Int. Conference on Advanced Intelligent Mechatronics

(AIM2011), pages 140–145, 2011.

[9] R. Vanijjirattikhan, M-Y. Chow, P. Szemes, and H. Hashimoto. Mobile agent gain

scheduler control in inter-continental intelligent space. In Proceedings of the 2005

IEEE International Conference on Robotics and Automation, ICRA 2005, pages

1115–1120, 2005.

A-8

[10] L.A. Jeni, Z. Istenes, P. Korondi, and H. Hashimoto. Mobile agent control in

intelligent space using reinforcement learning. In International Symposium of

Hungarian Researchers on Computational Intelligence (HUCI), 2006.

[11] L.A. Jeni, Z. Istenes, P. Korondi, and H. Hashimoto. Hierarchical reinforcement

learning for mobile robot navigation using the ispace concept. In 11th IEEE Int.

Conference on Intelligent Engineering Systems (INES), 2007.

[12] L.A. Jeni, P. Korondi, Z. Istenes, and H. Hashimoto. Safe mobile robot control in the

ispace environment. In 9th IFAC Symposium on Robot Control (SYROCO), 2009.

[13] P. Zanaty, P. Korondi, G. Sziebig, and L.A. Jeni. Image based automatic object

localisation in ispace environment. In In 10th International Symposium of Hungarian

Researchers on Computational Intelligence and Informatics (CINTI), pages 501–512,

2009.

[14] L.A. Jeni, H. Hashimoto, and T. Kubota. Robust facial expression recognition

using near infrared cameras. Journal of Advanced Computational Intelligence and

Intelligent Informatics, Fujipress, 16(2):1–8, 2012.

[15] K. Yokoi, M. Niitsuma, and H. Hashimoto. Localization of human hand by using

inertial sensors. In 2008 SICE Annual Conference, Tokyo, pages 1818–1822, 2008.

[16] M. Niitsuma, H. Hashimoto, and H. Hashimoto. Spatial memory: an aid system

for human activity in intelligent space. In Proceedings 2006 IEEE International

Conference on Robotics and Automation, ICRA 2006, Orlando, FL, pages 4258–4263,

2006.

[17] M. Niitsuma, K. Kawaji, K. Yokoi, and H. Hashimoto. Extraction of human

- object relations in intelligent space. In RO-MAN 2008 - The 17th IEEE

International Symposium on Robot and Human Interactive Communication, Munich,

pages 520–525, 2008.

[18] M. Niitsuma, Takeshi Sasaki, and H. Hashimoto. Enhancement of spatial memory

using human-object relations. In 2008 SICE Annual Conference, Tokyo, pages

3509–3513, 2008.

[19] M. Niitsuma and H. Hashimoto. Comparison of visual and vibration displays for

finding spatial memory in intelligent space. In RO-MAN 2009 - The 18th IEEE

International Symposium on Robot and Human Interactive Communication, Toyama,

pages 587–592, 2009.

A-9

[20] T. Ichikawa, M. Yuki, P. Korondi, H. Hashimoto, M. Gácsi, and M. Niitsuma.

Impression evaluation for different behavioral characteristics in ethologically inspired

human-robot communication. In IEEE RO-MAN: The 21st IEEE International

Symposium on Robot and Human Interactive Communication, Paris, 2012, pages

55–60, 2012.

[21] Y. Takahashi and M. Niitsuma. Enhancement of attachment behavior model for social

robot to adapt in daily living environments. In IECON 2015 - 41st Annual Conference

of the IEEE Industrial Electronics Society, Yokohama, pages 005142–005147, 2015.

[22] T. Ichikawa, M. Yuki, P. Korondi, H. Hashimoto, M. Gácsi, and M. Niitsuma.

Nonverbal human-robot communication for ambient assisted living applications based

on ethologically inspired social behavior model. In IECON 2018 - 44th Annual

Conference of the IEEE Industrial Electronics Society, 21-23 Oct. 2018, Washington,

DC, USA, pages 6045–6050, 2018.

[23] L. Palafox and H. Hashimoto. A human movement profile classifier using self

organized maps in the 4w1h architecture. In Japanese Robotic Society Conference,

2009.

[24] T. Kohonen. Self-organized formation of topologically correct feature maps.

Biological Cybernetics, 43(1):59–69, 1982.

[25] L. Palafox, L. A. Jeni, and Hideki Hashimoto. 5w1h as a human activity recognition

paradigm in the ispace. In In 8th Asian Control Conference (ASCC), 2011.

[26] L. Palafox and H. Hashimoto. 4w1h and particle swarm optimization for human

activity recognition. Journal of Advanced Computational Intelligence and Intelligent

Informatics, 15(7):793–799, 2011.

[27] F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6):386–408, 1958.

[28] H. Tanaka H. Ishibushi. Fuzzy neural networks with fuzzy weights and fuzzy biases.

In Proc. IEEE Neural Network Conf, San Francisco, volume 3, pages 1650–1655,

1993.

[29] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[30] D.H. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive

networks. Complex Systems, 2:321–355, 1988.

A-10

[31] E. Robson (eds.) M. Campbell-Kelly, M. Croarken. The History of Mathematical

Tables From Sumer to Spreadsheets. NY, USA, 2003.

[32] B.D. Zarit, B.J. Super, and F.K.H. Quek. Comparison of five color models in skin

pixel classification. In Proc. of the International Workshop on Recognition, Analysis,

and Tracking of Faces and Gestures in Real-Time Systems, Corfu, Greece, Sep. 26-27,

pages 58–63, 1999.

[33] P. Luukka and O. Kurama. Similarity classifier with ordered weighted averaging

operators. Expert Systems With Applications, 40:995–1002, 2013.

[34] B. Cetisli and A. Barkana. Speeding up the scaled conjugate gradient algorithm and its

application in neuro-fuzzy classifier training. Soft Computing, 14(4):365–378, 2010.

[35] A.A. Tóth and A.R. Várkonyi-Kóczy. A new man-machine interface for ispace

applications. Journal of Automation, Mobile Robotics and Intelligent Systems, pages

187–190, 2009.

[36] Qing Chen, Marius Cordea, Emil Petriu, Annamaria Varkonyi-Koczy, and Thomas

Whalen. Human - computer interaction for smart environment applications using

hand gestures and facial expressions. IJAMC, 3:95–109, 01 2009.

[37] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of

simple features. volume 1, pages I–511, 02 2001.

[38] Benjamin Bedregal, Antônio Carlos Rocha Costa, and Graçaliz Dimuro. Fuzzy

rule-based hand gesture recognition. volume 217, pages 285–294, 08 2006.

[39] Nguyen Dang Binh, Shuichi Enokida, and Toshiaki Ejima. A new approach dedicated

to real-time hand gesture recognition. volume 2, pages 481–488, 01 2006.

[40] A.R. Várkonyi-Kóczy and A.A. Tóth. Ispace? a tool for improving the quality of

life, journal of automation. Journal of Automation, Mobile Robotics and Intelligent

Systems, 3(4):41–45, 2009.

[41] A. Zisserman R. Hartley. Multiple View Geometry in Computer Vision. Cambridge

University Press, 2003.

[42] Gary Bradski. Computer vision face tracking for use in a perceptual user interface.

pages 1–15, 1998.

A-11

[43] G. Appenzeller, Joo-Ho Lee, and H. Hashimoto. Building topological maps by

looking at people: an example of cooperation between intelligent spaces and robots.

In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot

and Systems. Innovative Robotics for Real-World Applications. IROS ’97, volume 3,

pages 1326–1333, 1997.

[44] Shahzad Malik Malik. Real-time hand tracking and finger tracking for interaction csc

2503 f project report. pages 1–21, 2003.

[45] A.R. Várkonyi-Kóczy. Autonomous 3d model reconstruction and its intelligent

application in vehicle system dynamics. In 5th International Symposium on Intelligent

Systems and Informatics (SISY 2007), Subotica, Serbia, pages 13–18, 2007.

[46] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by

back-propagating errors. Nature, 323:533?536, 01 1986.

[47] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan Books, 1961.

[48] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE Trans. Inf.

Theory, 8:179–187, 1962.

[49] Jennifer Schlenzig, Edward Hunter, and Ramesh C. Jain. Vision based hand

gesture interpretation using recursive estimation. Proceedings of 1994 28th Asilomar

Conference on Signals, Systems and Computers, 2:1267–1271 vol.2, 1994.

[50] Simon Conseil, Salah Bourennane, and Lionel Martin. Comparison of fourier

descriptors and hu moments for hand posture recognition. European Signal

Processing Conference, 09 2007.

[51] David Broomhead and David Lowe. Radial basis functions, multi-variable

functional interpolation and adaptive networks. ROYAL SIGNALS AND RADAR

ESTABLISHMENT MALVERN (UNITED KINGDOM), RE-MEMO-4148, 03 1988.

[52] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of

euclidean sum-of-squares clustering. Machine Learning, 75:245–248, 05 2009.

[53] Shreeram S. Abhyankar. Hilbert’s thirteenth problem. In Algére non commutative,

groupes quantiques et invariants (Reims, 1995), Séin. Congr., 2, Soc. Math. France,

Paris, pages 1–11, 1997.

A-12

[54] D. Hilbert. Mathematical problems. Bulletin of the American Mathematical Society,

8(10):437–479, 1902.

[55] A.N. Kolmogorov. On the representation of continuous functions of many variables

by superpositions of continuous functions of one variable and addition. Doklady

Akademii Nauk SSSR, 114:953–956, 1957.

[56] V.I. Arnold. On the functions of three variables. Doklady Akademii Nauk SSSR,

114(4):679–681, 1957.

[57] V.I. Arnold. On the representation of continuous functions of three variables by the

superpositions of continuous functions of two variables. Matem. Sbornik, 48(1):3–74,

1959.

[58] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural Networks, 2:359–366, 1989.

[59] Erich Peter Klement, Laszlo Koczy, and Bernhard Moser. Are fuzzy systems universal

approximators? International Journal Of General System, 28:259–282, 08 1999.

[60] J. Park and I. W. Sandberg. Universal approximation using radial-basis-function

networks. Neural Computation, 3(2):246–257, 1991.

[61] Wiens. Radial Basis Function Network, 2014 (Retrieved June 1, 2020). MATLAB

Central File Exchange, https://www.mathworks.com/matlabcentral/

fileexchange/22173-radial-basis-function-network.

[62] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven Shafer.

Easyliving: Technologies for intelligent environments. pages 12–29, 09 2000.

[63] B. Johanson, A. Fox, and T. Winograd. The interactive workspaces project:

Experiences with ubiquitous computing rooms. IEEE Pervasive Comput., 1:67–74,

2002.

[64] Franco Cicirelli, Giancarlo Fortino, Andrea Giordano, Antonio Guerrieri,

Giandomenico Spezzano, and Andrea Vinci. On the design of smart homes: A

framework for activity recognition in home environment. Journal of Medical Systems,

40, 09 2016.

[65] J.F. Sowa. Conceptual graphs for a data base interface. IBM J. of Research and

Development, 20(4):336–357, 1976.

A-13

https://www.mathworks.com/matlabcentral/fileexchange/22173-radial-basis-function-network
https://www.mathworks.com/matlabcentral/fileexchange/22173-radial-basis-function-network

[66] P. Zhang, J. Peng, and J. Xi. A concept graph based knowledge model for software

architecture. In WRI World Congress on Software Engineering 3, pages 125–128,

2009.

[67] M.P. Palacio, D. Sol, and J. Gonzalez. Graph-based knowledge representation for gis

data. In 4th Mexican International Conference on Computer Science, pages 117–124,

2003.

[68] Q. Qu, J. Qiu, Ch. Sun, and Y. Wang. Graph-based knowledge representation

model and pattern retrieval. In 5th International Conference on Fuzzy Systems and

Knowledge Discovery 5, pages 541–545, 2008.

[69] A. Zenonos, A. Khan, G. Kalogridis, S. Vatsikas, T. Lewis, and M. Sooriyabandara.

Healthyoffice: Mood recognition at work using smartphones and wearable sensors.

In 2016 IEEE International Conference on Pervasive Computing and Communication

Workshops (PerCom Workshops), pages 1–6, 2016.

[70] R. A. Brooks. The intelligent room project. In Proceedings Second International

Conference on Cognitive Technology Humanizing the Information Age, pages

271–278, 1997.

[71] Paulraj M P, C.R. Hema, Pranesh Krishnan, and Siti Radzi. Color recognition

algorithm using a neural network model in determining the ripeness of a banana. 10

2009.

[72] R.Vigneshwar and Ms.V.Prema. Colour recognition in images using neural networks.

volume 4, pages 2455–2460, 2 2016.

[73] Lidwine Gross, Sylvie Thiria, and Robert Frouin. Applying artificial neural network

methodology to ocean color remote sensing. Ecological Modelling, 120(2):237 – 246,

1999.

[74] R. Yasir, M. A. Rahman, and N. Ahmed. Dermatological disease detection using

image processing and artificial neural network. In 8th International Conference on

Electrical and Computer Engineering, pages 687–690, 2014.

[75] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46(3):175–185, 1992.

[76] K. Adi, S. Pujiyanto, O. D. Nurhayati, and A. Pamungkas. Beef quality identification

using color analysis and k-nearest neighbor classification. In 2015 4th International

A-14

Conference on Instrumentation, Communications, Information Technology, and

Biomedical Engineering (ICICI-BME), pages 180–184, 2015.

[77] N. Krithika and A. G. Selvarani. An individual grape leaf disease identification using

leaf skeletons and knn classification. In 2017 International Conference on Innovations

in Information, Embedded and Communication Systems (ICIIECS), pages 1–5, 2017.

[78] O. R. Indriani, E. J. Kusuma, C. A. Sari, E. H. Rachmawanto, and D. R. I. M.

Setiadi. Tomatoes classification using k-nn based on glcm and hsv color space. In

2017 International Conference on Innovative and Creative Information Technology

(ICITech), pages 1–6, 2017.

[79] Saman Sarraf. Hair color classification in face recognition using machine learning

algorithms. American Scientific Research Journal for Engineering, Technology, and

Sciences, 26:317–334, 12 2016.

[80] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,

20(3):273–297, Sep 1995.

[81] H. Lin, S. Yen, J. Yeh, and M. Lin. Face detection based on skin color segmentation

and svm classification. In 2008 Second International Conference on Secure System

Integration and Reliability Improvement, pages 230–231, 2008.

[82] M.A. Ebrahimi, M.H. Khoshtaghaza, S. Minaei, and B. Jamshidi. Vision-based

pest detection based on svm classification method. Computers and Electronics in

Agriculture, 137:52 – 58, 2017.

[83] Nakhoon Baek, Sun-Mi Park, Ku-Jin Kim, and Seong-Bae Park. Vehicle color

classification based on the support vector machine method. In De-Shuang Huang,

Laurent Heutte, and Marco Loog, editors, Advanced Intelligent Computing Theories

and Applications. With Aspects of Contemporary Intelligent Computing Techniques,

pages 1133–1139, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[84] Esraa Elhariri, Nashwa El-Bendary, Mohamed Mostafa M. Fouad, Jan Platoš,

Aboul Ella Hassanien, and Ahmed M. M. Hussein. Multi-class svm based

classification approach for tomato ripeness. In Ajith Abraham, Pavel Krömer, and

Václav Snášel, editors, Innovations in Bio-inspired Computing and Applications,

pages 175–186, Cham, 2014. Springer International Publishing.

A-15

[85] Muhammad Zubair Asghar, Aurangzeb Khan, Shakeel Ahmad, Maria Qasim, and

Imran Ali Khan. Lexicon-enhanced sentiment analysis framework using rule-based

classification scheme. PLOS ONE, 12(2):1–22, 02 2017.

[86] Srishti Vashishtha and Seba Susan. Fuzzy rule based unsupervised sentiment analysis

from social media posts. Expert Systems with Applications, 138:112834, 2019.

[87] E. Soares, P. Angelov, B. Costa, and M. Castro. Actively semi-supervised deep

rule-based classifier applied to adverse driving scenarios. In 2019 International Joint

Conference on Neural Networks (IJCNN), pages 1–8, 2019.

[88] Francis Bbosa, Ronald Wesonga, and Peter Jehopio. Clinical malaria diagnosis:

rule-based classification statistical prototype. SpringerPlus, 5, 2016.

[89] Thien Le, Frederic Stahl, Mohamed Medhat Gaber, João Bártolo Gomes, and

Giuseppe Di Fatta. On expressiveness and uncertainty awareness in rule-based

classification for data streams. Neurocomputing, 265:127 – 141, 2017. New Trends

for Pattern Recognition: Theory and Applications.

[90] Allah Bux Sargana, Xiaowei Gu, Plamen Angelov, and Zulfiqar Habib. Human action

recognition using deep rule-based classifier. Multimedia Tools and Applications, 08

2020.

[91] T. Celik, H. Ozkaramanli, and H. Demirel. Fire pixel classification using fuzzy logic

and statistical color model. In 2007 IEEE International Conference on Acoustics,

Speech and Signal Processing - ICASSP ’07, volume 1, pages I–1205–I–1208, 2007.

[92] Spiros Fotopoulos, Antony Fotinos, and Socrates Makrogiannis. Fuzzy Rule-Based

Color Filtering Using Statistical Indices, pages 72–97. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2003.

[93] Ismat Beg and Samina Ashraf. Similarity measures for fuzzy sets. Applied and

Computational Mathematics, 8:192–202, 03 2009.

[94] D. Ramyachitra and P. Manikandan. Imbalanced dataset classification and solutions :

A review. volume 5, pages 1–29, 7 2014.

[95] R. Chandra. Parallel Programming in OpenMP. Morgan Kaufmann, 2001.

[96] Alaa Tharwat. Classification assessment methods. Applied Computing and

Informatics, 2018.

A-16

[97] M. Buckland and F. Gey. The relationship between recall and precision. J. Am. Soc.

Inf. Sci., 45:12–19, 1994.

[98] Mohammad Akhbarizadeh and Mehrdad Nourani. Hardware-based ip routing using

partitioned lookup table. Networking, IEEE/ACM Transactions on, 13:769 – 781, 09

2005.

[99] Ronan O’Dowd. Automated pxi-based screening and characterisation of tunable

lasers. pages 84 – 89, 11 2004.

[100] Kiran George and Henry Chen. Configurable and expandable fft processor for

wideband communication. pages 1 – 6, 06 2007.

[101] H.F.-W Sadrozinski and J. Wu. Applications of Field-Programmable Gate Arrays in

Scientific Research. 04 2016.

[102] E.F. Krause. Taxicab Geometry. Dover Publications, 1987.

[103] You-Dong Liang and B. A. Barsky. A new concept and method for line clipping. ACM

Trans. Graph., 3(1):1–22, January 1984.

[104] Vasileios Drakopoulos and Dimitrios Matthes. A simple and fast line-clipping method

as a scratch extension for computer graphics education. 07:40–47, 06 2019.

[105] Carl Looney. A fuzzy classifier network with ellipsoidal epanechnikovs. pages 1–20,

Oct. 2002.

[106] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative

than the roc plot when evaluating binary classifiers on imbalanced datasets. PloS one,

10:e0118432, 03 2015.

[107] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber.

A novel connectionist system for unconstrained handwriting recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31(5):855–868, 2009.

[108] A. I. Moustapha and R. R. Selmic. Wireless sensor network modeling using modified

recurrent neural networks: Application to fault detection. IEEE Transactions on

Instrumentation and Measurement, 57(5):981–988, 2008.

[109] A. Malhi, R. Yan, and R. X. Gao. Prognosis of defect propagation based on

recurrent neural networks. IEEE Transactions on Instrumentation and Measurement,

60(3):703–711, 2011.

A-17

[110] I. Kamwa, R. Grondin, V. K. Sood, C. Gagnon, Van Thich Nguyen, and J. Mereb.

Recurrent neural networks for phasor detection and adaptive identification in

power system control and protection. IEEE Transactions on Instrumentation and

Measurement, 45(2):657–664, 1996.

[111] Michael C. Mozer. A Focused Backpropagation Algorithm for Temporal Pattern

Recognition, page 137–169. L. Erlbaum Associates Inc., USA, 1995.

[112] Y. Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks / a publication of

the IEEE Neural Networks Council, 5:157–66, 02 1994.

[113] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9:1735–80, 12 1997.

[114] Annamaria Varkonyi-Koczy. Model Based Anytime Soft Computing Approaches in

Engineering Applications, volume 196, pages 63–92. 03 2009.

[115] J. M. Keller, M. R. Gray, and J. A. Givens. A fuzzy k-nearest neighbor algorithm.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(4):580–585, 1985.

[116] E. Akbas. Fuzzy k-NN, 2007 (Retrieved June 1, 2020). MATLAB

Central File Exchange, https://www.mathworks.com/matlabcentral/

fileexchange/13358-fuzzy-k-nn.

[117] P. Luukka. Similarity classifier with OWA operators, 2012 (Retrieved

June 1, 2020). MATLAB Central File Exchange, https:

//www.mathworks.com/matlabcentral/fileexchange/

38871-similarity-classifier-with-owa-operators.

[118] Pasi Luukka, Kalle Saastamoinen, and V. Kononen. A classifier based on the maximal

fuzzy similarity in the generalized lukasiewicz-structure. pages 195 – 198, 02 2001.

[119] Bayram Cetisli. Neuro-fuzzy classifier, 2010 (Retrieved June 1, 2020). MATLAB

Central File Exchange, https://www.mathworks.com/matlabcentral/

fileexchange/29043-neuro-fuzzy-classifier.

[120] Chuen-Tsai Sun and Jyh-Shing Roger Jang. A neuro-fuzzy classifier and its

applications. [Proceedings 1993] Second IEEE International Conference on Fuzzy

Systems, pages 94–98 vol.1, 1993.

A-18

https://www.mathworks.com/matlabcentral/fileexchange/13358-fuzzy-k-nn
https://www.mathworks.com/matlabcentral/fileexchange/13358-fuzzy-k-nn
https://www.mathworks.com/matlabcentral/fileexchange/38871-similarity-classifier-with-owa-operators
https://www.mathworks.com/matlabcentral/fileexchange/38871-similarity-classifier-with-owa-operators
https://www.mathworks.com/matlabcentral/fileexchange/38871-similarity-classifier-with-owa-operators
https://www.mathworks.com/matlabcentral/fileexchange/29043-neuro-fuzzy-classifier
https://www.mathworks.com/matlabcentral/fileexchange/29043-neuro-fuzzy-classifier

[121] Martin Møller. Moller, m.f.: A scaled conjugate gradient algorithm for fast supervised

learning. Neural Networks, 6:525–533, 12 1993.

[122] J. Steinier, Y Termonia, and J. M. Deltour. Smoothing and differentiation of data by

simplified least square procedure. Analytical chemistry, 44(11):1906–1909, 1972.

[123] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming.

SIAM News, 23(5):1–18, 1990.

[124] Marek Sikora and Ł Wróbel. Application of rule induction algorithms for analysis

of data collected by seismic hazard monitoring systems in coal mines. Archives of

Mining Sciences, 55:91–114, 01 2010.

[125] Qi Lyu and Jun Zhu. Revisit long short-term memory : An optimization perspective.

2014.

[126] R. Lakamper L. J. Latecki and T. Eckhardt. Shape descriptors for nonrigid shapes

with a single closed contour. pages 424–429, 2000.

[127] Stephen Billings. Nonlinear system identification: Narmax methods in the time,

frequency, and spatio-temporal domains. Nonlinear System Identification: NARMAX

Methods in the Time, Frequency, and Spatio-Temporal Domains, page 574, Oct. 2013.

[128] Hamed Nikdel, Yahya Forghani, and S. Moattar. Increasing the speed of fuzzy

k-nearest neighbours algorithm. Expert Systems, 35(4):e12254, Oct. 2017.

[129] Nutrient Data Laboratory US Department of Agriculture, Agricultural

Research Service. Usda national nutrient database for standard reference [electronic

resource], 2016.

A-19

	Introduction
	Research Aims and Their Relevance in the Context of the State of the Art
	Organization of the Thesis and Main Directions
	Research Methodology

	Hand Posture Modeling for Intelligent Space Applications
	The Intelligent Space
	Hand Detection and Data Preprocessing
	Fuzzy Hand Posture Models
	Fuzzy Hand Posture Recognition
	Fuzzy Reasoning-based Classification
	The Training Session
	FHPM-based Hand Recognition

	Experimental Results
	Evaluation and Applicability
	Summary of New Results
	Thesis Group I.
	Thesis Statement I.1.
	Thesis Statement I.2.

	A New Clustering Method for the Acceleration of the Training of Artificial Neural Networks
	The Issue of Structural Complexity in Neural Networks
	Feed-forward Artificial Neural Networks
	Radial Basis Function Neural Networks
	The Problem of Structural Complexity

	The Clustering Algorithm
	Experimental Results
	Experiments Regarding ANNs
	A Simple Problem: Easily Separable Classes
	A More Complex Problem: Slight Overlapping

	Experiments Regarding CFNNs
	General Time Reduction (Incremental Training)
	General Time Reduction (Non-Interrupted Training)
	The Effect of Clustering Distance

	Experiments Regarding RBFs
	No Overlapping Classes
	Some Overlapping in Classes
	Significant Overlapping in Classes

	Evaluation and Applicability
	Summary of New Results
	Thesis Statement II.

	An Intelligent Space Control System Framework
	Knowledge Representation
	Knowledge Structure
	Dictionaries
	Relationships between Concepts and Instances
	Descriptive edges
	Quantifier edges
	Specification edges

	Observation-based Learning

	The General Architecture of the Proposed iSpace Control System Framework
	Intelligent Detection
	Command Interpretation and Command Processing
	Command Types
	Command Parsing
	Command Interpretation
	Instruction and Output Manager

	Knowledge Representation in the iSCS
	Hypothesis Storage

	Autonomous Action Planner
	Hypothesis Training
	Hypothesis Trigger Checking

	Simulation
	Evaluation
	Summary of New Results
	Thesis Statement III.

	Adaptive Fuzzy Rule-based Classification with Fuzzy Filter Networks
	The Fuzzy Filter Network
	The Architecture of the Classifier
	The Training of the Classifier - Radial Representative Clustering
	Analytical Radial Representative Clustering
	Reduction

	Parallel Fuzzy Filter Network
	Parallel Training
	Parallel Evaluation

	Experimental Results
	Experiment 1: Sequential Color Filtering
	Experiment 2: Parallel Color Filtering

	Evaluation and Applicability
	Summary of New Results
	Thesis Group IV.
	Thesis Statement IV.1.
	Thesis Statement IV.2.

	Real-time Classification with Fuzzy Hypermatrices
	Fuzzy Hypermatrices
	The General Architecture
	Training
	Evaluation

	Parallel FHM Color Filtering
	Parallel Training
	Parallel Evaluation

	Experimental Results
	Sequential Experiments
	Comparison with Classic Lookup Tables
	Investigating the Effect of the Range Parameter

	Parallel FHM Experiments
	Training Speed

	Evaluation Speed and Performance

	Applicability
	Spatial Complexity
	Time Complexity

	Summary of New Results
	Thesis Group V.
	Thesis Statement V.1.
	Thesis Statement V.2

	Real-time Classification with Sequential Fuzzy Indexing Tables
	Sequential Fuzzy Lookup Tables
	Constant Length SFITs
	The Architecture of Constant Length SFITs
	The Training Procedure of c-SFITs
	The Evaluation Procedure of c-SFITs

	Variable Length SFITs
	The Architecture of v-SFITs
	The Training of v-SFITs
	The Evaluation of v-SFITs

	Experimental Results
	Constant Length SFIT Experimental Results
	The Wisconsin Breast Cancer Dataset
	The Seismic Bumps Dataset

	Variable Length SFIT Experimental Results
	Classification of English words
	Classification of Shape Descriptors

	Applicability of the SFIT classifier
	Time Complexity of the SFIT classifier
	Spatial Complexity of the SFIT classifier
	A Practical Application

	Summary of New Results
	Thesis Group VI.
	Thesis Statement VI.1.
	Thesis Statement VI.2.

	Conclusions
	Possible Targets of Future Research
	New Results
	Thesis Group I.
	Thesis Statement I.1.
	Thesis Statement I.2.

	Thesis Statement II.
	Thesis Statement III.
	Thesis Group IV.
	Thesis Statement IV.1.
	Thesis Statement IV.2.

	Thesis Group V.
	Thesis Statement V.1.
	Thesis Statement V.2.

	Thesis Group VI.
	Thesis Statement VI.1.
	Thesis Statement VI.2.

	List of Symbols
	Statistical Measures
	References
	Publications Strictly Related to the Thesis Work
	Journal Articles
	Book Chapters
	Conference Papers

	Further Publications of the Author

