
Óbudai Egyetem

Thesis booklet

Dynamic Execution of Scientific Workflows
by

Eszter Kail

Supervisors:
Miklós Kozlovszky, Péter Kacsuk

Doctoral School of Applied Informatics
Budapest, 2016

1 Background of the Research

The increase of the computational capacity and also the widespread usage of computation
as a service enabled complex scientific experiments conducted in laboratories to be
transformed to in silico experiments executed on local and remote resources. In general
these in silico experiments aim to test a hypothesis, to derive a summary, to search for
patterns or simply to analyze the mutual effects of the various conditions. Scientific
workflows are widely accepted tools in almost every research field (physics, astronomy,
biology, earthquake science, etc.) to describe and to simplify the abstraction and to
orchestrate the execution of these complex scientific experiments.

A scientific workflow is composed of computational steps that are executed in sequential
order or parallel wise determined by some kind of dependency factors. We call these
computational steps tasks or jobs, which can be data intensive and complex computations.
A task may have input and output ports where the input ports consume data and the
output ports produce data. Data produced by an output port is forwarded through
outgoing edges to the input ports of subsequent tasks. Mostly we differentiate data
flow or control flow oriented scientific workflows. While in the former one the data
dependency determines the real execution path of the individual computational steps and
data movement path, in the latter one there is an explicit task or job precedence defined.

Scientific workflows are in general data and compute intensive thus they usually require
parallel and distributed High Performance Computing Infrastructures (HPC), such as
clusters, grids, supercomputers and clouds to be executed. These infrastructures consist
of numerous and heterogeneous resources. To hide the complexity of the underlying
low-level, heterogeneous architecture Scientific Workfow Managements Systems (SWfMS)
have emerged in the past two decades. SWfMs tend to manage the execution-specific
hardware types, technologies and protocols whilst providing user-friendly, convenient
interfaces to the various user types with different knowledge about the technical details.
However, this user-friendly management system hides a complex and thus a continuously
changing and an error prone environment for workflow execution.

As a consequence, an environment that is able to change or adapt dynamically should
be provided. It means that the Scientific Workflow Management System should provide
means to adapt to the new environmental conditions, to recover from failures, to provide
alternative executions and to guarantee successful termination of the workflow instances
with a probability of p and lastly, but not finally to enable optimization support according
to various needs such as optimal time and energy usage.

We differentiated three different aspects of dynamism: Fault tolerance, which is the

1

ability to continue the execution of the workflow in the presence of failures; Optimization,
which enables optimized executions according to given parameters (i.e.: cost, time,
resource usage, power,...); And intervention and adaptive execution, which enables the
user, the scientist or the administrator to interfere with workflow execution during
runtime and even that the system adaptively reacts to the unexpected situations.

The present dissertation deals with two of the above mentioned research areas: the
fault tolerance and the adaptive and user-steered execution.

1.1 Workflow Structure Analysis

Information obtained from the workflow structure is often involved in research areas
connecting to the various phases of of the workflow life cycle (WFLC) (Bahsi 2008) (Gil
et al. 2007) (Deelman and Gil 2006) (Ludäscher et al. 2009). One of the most frequently
used aspect of workflow structure analysis is makespan estimation. It is a widely accepted
method that the tasks constituting the workflow are divided into levels based on the data
dependencies between them so that tasks assigned to the same level are independent
from each other. Then, for each level, its execution time (which is equal to the time
required for the execution of the tasks in the level) can be calculated considering the
overall runtime of the tasks of that level (Pietri et al. 2014).

Another important aspect of workflow structure investigation is workflow similarity
research. It is a very urgent and relevant topic, because workflow reusability and sharing
among the scientists’ community has been widely adopted and workflow repositories
increase in size dramatically. Apart from workflow sharing and retrieval, the design of
new workflows is a critical problem to users of workflow systems (Krinke 2001). It is
both time-consuming and error-prone, as there is a great diversity of choices regarding
services, parameters, and their interconnections. It requires the researcher to have specific
knowledge in both his research area and in the use of the workflow system.

The authors in (Starlinger, Cohen-Boulakia, et al. 2014) divided the whole workflow
comparison process into two distinct levels: the level of single modules and the level of the
whole workflow. First they carry out a comparison between the task-pairs and thereafter
a topological comparison is applied. The existing solutions can be classified as either a
structure agnostic, i.e., based only on the sets of modules present in two workflows, or a
structure based approach (Starlinger, Brancotte, et al. 2014). The latter group makes
similarity research on substructures of workflows, such as maximum common subgraphs
(Krinke 2001), or using the full structure of the compared workflows (Xiang and Madey
2007).

In scheduling problems workflow structure investigations are also a popular form to

2

optimize resource mapping problems. Several papers introduce slack time (we use this
term as flexibility parameter in our work) and prove that this is an effective metric to
be used to adjust the robustness and it can be derived from the workflow structure
(Shi, Jeannot, and Dongarra 2006), (Sakellariou and Zhao 2004). Another DAG based
approach is presented in (Poola et al. 2014), where the workflow is decomposed into
smaller groups of tasks, into Partial Critical Paths (PCP), which consist of the nodes
that share high dependency between them, and for those the slack time is minimal. They
declared that PCPs of a workflow are mutually exclusive, thus a task can belong to only
one PCP.

Fault tolerance is most generally based on external conditions for example on failure
statistics about components of execution environments or network components and
provenance data from historical executions. However, the scientific workflow itself alone
involves valuable features that can be exploited not only in workflow scheduling, resource
allocation, but also in fault tolerance and optimization techniques.

The first thesis group deals with structure analysis of scientific workflows.

1.2 Provenance Based Checkpointing Method Based on Workflow
Structure Analysis

Concerning dynamic workflow execution fault tolerance is a long standing issue and
checkpointing is the most widely used method to achieve fault tolerant behavior.

The checkpoint scheme consists of saving intermediate states of the task in a reliable
storage and, upon detection of a fault, restoring the last consistent state. Hence,
checkpointing enables to reduce the time to recover from a fault, while minimizing loss
of the processing time.

Checkpointing techniques can be investigated from numerous perspectives. Based on
the storage where the states are stored we can differentiate lightweight and workflow
level checkpointing (Oliner et al. 2005).

According to the level, where the checkpointing occurs we differentiate: application
level checkpointing, library level checkpointing and system level checkpointing methods
(Garg and Singh 2011), (Jhawar, Piuri, and Santambrogio 2013).

Checkpointing schemes can also be categorized to be full or incremental ones (Agarwal
et al. 2004), (Palaniswamy and Wilsey 1993) or even to be coordinated and uncoordinated
methods (Meroufel and Belalem 2014).

The efficiency of the used checkpointing mechanism is strongly dependent on the length
of the checkpointing interval. Frequent checkpointing may increase the overhead, while
rarely made checkpoints may lead to loss of computation. Hence, the decision about

3

the size of the checkpointing interval and the checkpointing technique is a complicated
task and should be based upon knowledge specific to the application as well as the
system. Therefore, various types of checkpointing optimization have been considered by
the researchers.

Young in (Young 1974) has defined the formula for the optimum periodic checkpoint
interval concerning to the total execution time, which is based on the checkpointing
cost and the mean time between failures (MTBF) with the assumption that failure
intervals follow an exponential distribution. Di et al. in (Di et al. 2013) has also derived
a formula to compute the optimal number of checkpoints for jobs executed in the cloud.
His formula is generic in a sense that it does not use any assumption on the failure
probability distribution.

Static optimal checkpointing is often investigated with different conditions (Kwak and
Yang 2012), (Nakagawa, Fukumoto, and Ishii 2003).

The drawback of these static solutions lies in the fact that the checkpointing cost can
change during the execution if the memory footprint of the job changes, network issues
arise or when the failure distribution changes. Thus static intervals may not lead to
the optimal solution. By dynamically assigning checkpoint frequency we can eliminate
unnecessary checkpoints or where the danger of a failure is considered to be severe extra
state savings can be introduced.

To address this problem also adaptive checkpointing schemes have been developed in
several papers (Li and Chen n.d.), (Di et al. 2013), (Lidya et al. 2010).

In this work the determination of the checkpointing interval, besides some failure
statistics is primarily based on workflow characteristics which is a key difference from
existing solutions. To the best of our knowledge our work is unique in this aspect. We
demonstrate that we can still get good insight into the number of checkpoints during a
job execution in order to achieve a desired level of performance with minimum overhead
of the used fault tolerant technique.

Thus we were looking for the answer for the question: whether the results of the
workflow structure analysis can be integrated into a checkpointing method in order to
decrease the overall cost of the checkpointing.

1.3 Provenance Based Runtime Manipulation

In the past decay a lot of Scientific Workflow Management Systems have been developed
that were designed to execute scientific workflows. SWfMSs are mostly bounded to one
or more scientific discipline, thus they have their own scientific community and they all
have their own language for workflow definition like AGWL (Fahringer, Qin, and Hainzer

4

2005), GWENDIA (Montagnat et al. 2009), gUSE (Peter Kacsuk 2011), SCUFL (Turi
et al. 2007) and Triana Taskgraph (Taylor et al. 2003).

Because of the different requirements that were addressed by the various scientific
communities, it is widely acknowledged that the creation of a single standard language
for all users of scientific workflow systems is a difficult undertaking that will probably
not succeed in being adopted by all communities given the heterogeneous nature of their
fields and problems to solve.

The SHIWA project (2010-2012) (Team 2011) was targeted to promote interoperability
between different workflow systems by applying both coarse- and fine-grained strategies
(Terstyanszky et al. 2014), (Plankensteiner, Prodan, et al. 2013). The fine-grained
approach deals with language interoperability by defining and Interoperable Workflow
Intermediate Representation (IWIR) language (Plankensteiner, Montagnat, and Prodan
2011) for translating workflows (ASKALON, P-Grade, MOTEUR and Triana) from one
DCI to another, thus creating a cross-compiler.

However, monitoring from the scientist’s perspective is also very important, moreover,
data analysis and dynamic intervention is also an emerging need concerning nowadays
scientific workflows (Ailamaki 2011). Due to their exploratory nature they need control
and intervention from the scientist to conserve energy and time.

There are several systems that support dynamic intervention such as stopping, or
re-executing jobs or even the whole workflow but there is an increasing need to have
more sophisticated manipulation possibilities. Vahi et al. (Vahi et al. 2012) introduced
Stampede, a monitoring infrastructure that was integrated in Pegasus and Triana and
which main target was to provide generic real-time monitoring across multiple SWfMSs.
The results proved that Stampede was able to monitor workflow executions across
heterogeneous SWfMSs but it required the scientists to follow the execution from a
workstation. This solution may be tiring concerning long-term executions. To tackle
this, it is possible to pre-program triggers, such as proposed by Missier et al. in (Missier
et al. 2010), to check for problems in the workflow and to alert the scientist. In an other
paper by Pintas et al. (Pintas et al. 2013) worked out sciLightning, a system that is
able to notify the scientist upon completion of certain, predefined events. In their work
(Dias et al. 2011) authors managed to implement dynamic parameter sweep workflow
execution where the user has the possibility to interfere with the execution and change
the parameter of some filtering criteria without stopping the workflow.

Also execution performance analysis during runtime is already integrated in several
solutions (Lee, Paton, et al. 2009), (Lee, Sakellariou, et al. 2007), (Oliveira et al. 2014).

Concerning the volume of provenance data generated at runtime another challenging

5

research area is provenance data analysis concerning runtime analysis.
However, most of the existing solutions for dynamism provide limited range of changes,

that have to be scheduled a-priori and they do not solve on-the-fly modification of
parameter sets, data sets or the model itself. On the other hand adapting the workflow
execution to runtime provenance data analyses still remained a challenge.

2 Motivation

The following subsections summarize the motivation of our research which was conducted
during the past few years.

2.1 Workflow structure and fault tolerance

The different scientists’ communities have developed their own SWfMSs, with divergent
representational capabilities, and different dynamic support. Although the workflow
description language differs from SWfMS to SWfMS according to their scientific research
and needs, it is widely acknowledged that Directed Acyclic Graphs (DAG) serve as a
top-level abstraction representation tool. Thus, a scientific workflow can be represented
by a graph G(V,

→
E), where the nodes represent the computational tasks and the directed

edges denote the data dependency between them. Concerning graphs a wide range of
scientific results have been achieved in order to provide to other scientific disciplines with
a simple but easily analyzable model. Also in the context of scientific workflows it is
widely accepted tool to analyze problems with the help of graphs in scheduling, workflow
similarity analysis and also in workflow estimation problems. However, dynamic execution
of scientific workflows is most generally based on external conditions for example on
failure statistics about components of execution environments or network elements and
provenance data from historical executions. Despite this fact, we think that the structure
of the graph representing the scientific workflow holds valuable information that can be
exploited also in fault tolerance issues.

The first two thesis groups addresses the following questions to answer:

How much information can be obtained from the structure of the scientific workflows to
adjust fault tolerance parameters and to estimate the consequences of a failure occurring
during one task concerning the total makespan of the workflow execution?
How can this information be built in a proactive fault tolerance method, in checkpointing?

6

2.2 Adaptive and user-steered execution

From the scientists’ perspective workflow execution is like black boxes. The user submits
the workflow and at the end he gets a notification about successful termination or
failed execution. Concerning long executions due to the complex nature of scientific
workflows it may not be sufficient. Moreover due to the exploratory nature of the scientific
workflows the scientist or the user may intend to interfere with the execution and based on
monitoring or debugging capabilities to carry out a modified execution on the workflow.

In the third thesis group we were looking for the answers for the questions:

How can scientists be supported to interfere with the workflow execution? How can
provenance based user-steering or adaptive execution be realized?

3 Objectives

Motivated by the problems outlined in the previous section the objectives of this thesis
can be split into two major parts. The first and second thesis groups deal with problems
connected to fault tolerance and the third thesis group concerns with adaptive and user
steered workflow execution.

3.1 Workflow structure and fault tolerance

My primary aim was to investigate the effects of individual failures concerning to the
actually used fault tolerance method, and then to determine the sensitivity index in
order to adjust fault tolerant parameters resulting in a more efficient fault tolerance
mechanism and thus in a more efficient execution. In the first thesis group I introduce
the flexibility zone (Ii) of a task Ti concerning a certain time delay d, and based on this
definition I formulate the sensitivity index (SI) of a scientific workflow model, which
gives information on the connectivity property of the workflow and the sensitivity of the
workflow structure concerning individual failures arising during the execution. I also
introduce the time sensitivity (TS) of a workflow model, which gives information about
how sensitive a workflow is concerning the makespan due to a failure. According to the
time sensitivity (TS) parameter I give an upper and lower limit for the sensitivity index,
and based on the sensitivity index I give a taxonomy of scientific workflows.

7

3.2 Adjusting the checkpointing interval

In the second thesis group I targeted to develop a new checkpointing algorithm based on
workflow structure analysis that minimizes the checkpointing overhead while still keeping
to the soft or hard deadline of the workflow. I have developed two algorithms, one that
enables workflow level dynamism, and one that can realize a task level dynamism. My
aim was also to show the connectivity between the sensitivity index of a workflow model
and the effectiveness of the newly introduced algorithm.

3.3 Adaptive and user-steered execution

In the third thesis group we introduce iPoints, special control Points with the primary
aim to help the scientist to interfere with the execution and according to provenance
analysis to alter the workflow execution or to change the abstract model of the workflow.
These iPoints are also capable to realize provenance based adaptive execution with the
help of a so called Rule Based Engine (RBE) that can be controlled or updated by the
scientist or with data mining support. In this thesis group I also give a specification of the
above mentioned iPoints in IWIR (Interoperable Workflow Intermediate Representation)
(Plankensteiner, Montagnat, and Prodan 2011) language, which was developed with the
aim to enable interoperability between four existing SWfMSs within the framework of
the SHIWA project. With this specification my aim was to support the user with the
design and insertion of these special control points already in the composition phase.

4 Materials and Methods of Investigation

4.1 Fault sensitivity analysis and workflow structured based checkpointing
algorithm

As a starting point of my research I thoroughly investigated the related work in the
theme of faults and failures of dynamic execution. According to the reviewed literature
I gave a taxonomy about most frequently arising failures during the workflow lifecycle
(Bahsi 2008) (Gil et al. 2007) and about the existing solutions that were aimed to provide
dynamic execution at a certain level.

The present dissertation employs two main methodologies to validate and evaluate the
introduced formulas, ideas and algorithms. The first is an analytical approach. Taking into
account that scientific workflows at the highest abstraction level are generally represented
with Directed Acyclic Graphs, our validation technique is based on investigating the
structure of the interconnected tasks.

8

As graphs can range in size from a few tasks to thousands of tasks, and values assigned
to the edges and tasks may diverse, I started with simplifying the workflows with a
transformation that eliminates the values assigned to the edges and homogenize the tasks.
As a next step I used simple graph models to demonstrate my hypothesis, and afterward
with use of algorithms and methods from the field of graph theory I demonstrated,
validated and proved my results.

The second approach was to validate my results with simulations in Matlab, in a
numerical computing environment by MathWorks. I have implemented algorithms for the
invented formulas and for the checkpointing algorithms as well, and conducted numerous
simulations based on special workflow patterns as well as on randomized workflows. For
the randomized workflow patterns I took into account a survey on real-life workflows
from the myExperiment.org website.

4.2 Provenance Based Runtime Manipulation

Studying the different scientific workflow management systems capabilities from the user
steering perspective and collecting the emerging requirements for interfering we defined
the set of tasks that should be supported when using intervention. After the detailed
specification of the so called iPoint (intervention points), we implemented it in IWIR
language.

9

5 New Scientific Results

Thesis group 1: Workflow structure analysis.
Thesis 1.1:

Thesis 1.1
I have defined the influenced zone of a task in a workflow repre-
sented with DAG, concerning to a certain time delay. Based on the
influenced zones of the tasks I have defined the workflow sensitivity
index which can help in fine-tuning the actually used fault tolerant
method.

Thesis 1.2:

Thesis 1.2
I have developed an algorithm to calculate the influenced zone of a
task and sensitivity index for complex graphs consisting of a high
number of tasks and data dependencies. The time requirement of
this algorithm is a polynomial function of the number of tasks and
edges.

Thesis 1.3:

Thesis 1.3
I gave a classification for the workflows based on their workflow
structure analysis.

Relevant own publications pertaining to this thesis group: [K-7; K-9; K-6; K-5; K-3;
K-1]

10

Thesis group 2: Workflow structure based checkpointing algorithm
Thesis 2.2:

Thesis 2.1
I have developed a workflow-level, periodic (Wsb) checkpointing al-
gorithms for DAG based scientific workflows, which can be used with
known, constant checkpointing costs and known failure rate. The
algorithms decreases the checkpointing overhead compared to the
checkpointing algorithm optimized for the execution time, without
affecting the total wallclock time of the workflow.

Thesis 2.2:

Thesis 2.2
I have developed the adaptive version of the proposed Wsb algo-
rithm, which may further decrease the checkpointing overhead in
the case when the real execution and data transmission time en-
counter some difference compared to the estimated ones. In this
case the algorithm may also decrease the execution time of the work-
flow compared to the static (Wsb) algorithm.

Relevant own publications pertaining to this thesis group: [K-5; K-7; K-9]

Thesis 3. Provenance Based Runtime Manipulation.

Thesis 3.1:

Thesis 3.1
I have defined special control points, (iPoints), with the help of
which and based on provenance analysis real-time adaptive execu-
tion of scientific workflows can be realized.

Thesis 3.2:

11

Thesis 3.2
I have defined special control points, (iPoints), with the help of
which real-time user-steered execution of scientific workflows can
be realized.

Thesis 3.3:

Thesis 3.3
I have specified the control points introduced in thesis 3.1 and 3.2
in an Interoperable Workflow Intermediate Representation (IWIR)
language.

Relevant own publications pertaining to this thesis group: [K-2; K-4; K-7; K-8]

12

6 Discussion and Practical Applicability of the Results

6.1 Workflow structure analysis and fault tolerance

The workflow structure analysis gives a detailed insight about the structure of complex
graphs with high number of vertices and edges from a fault tolerant perspective. This
analysis can be carried out in polynomial time of the number of vertices and edges.

As it was demonstrated in the second thesis group these results can be used to
adjust checkpointing interval, and of course it can also be used to customize other fault
tolerant methods, for example to determine the optimal number of replicas to be started
according to the flexibility parameter and the sensitivity parameter for the individual
tasks. The relationship between the results of the first and second thesis groups show us
the significance of the workflow structure analysis.

These results can also be used during enactment to notify the user about the expected
completion time according to the failures

6.2 Provenance based adaptive and user steered execution

As a result of the increasing need for user controlled and moreover the provenance based
adaptive execution we introduced special control points where the user has the possibility
to interfere with the workflow execution. With the help of the Rule Based Engine we
also enable adaptive execution. The overall results can be used to guide the design and
implementation of these special control points into the gUSE/WS-PGRADE system. For
other SWfMSs it can also provide a practical guidance to follow by adapting it to their
special definition language. The selected language for the specification would further
promote interoperability of the workflow management systems.

13

Bibliography

References

Agarwal, Saurabh et al. (2004). “Adaptive incremental checkpointing for massively
parallel systems”. In: Proceedings of the 18th annual international conference on
Supercomputing. ACM, pp. 277–286.

Ailamaki, Anastasia (2011). “Managing scientific data: lessons, challenges, and oppor-
tunities”. In: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. ACM, pp. 1045–1046.

Bahsi, Emir Mahmut (2008). “Dynamic Workflow Management For Large Scale Scientific
Applications”. PhD thesis. Citeseer.

Deelman, Ewa and Yolanda Gil (2006). “Managing Large-Scale Scientific Workflows in
Distributed Environments: Experiences and Challenges.” In: e-Science, p. 144.

Di, Sheng et al. (2013). “Optimization of cloud task processing with checkpoint-restart
mechanism”. In: 2013 SC-International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). IEEE, pp. 1–12.

Dias, Jonas et al. (2011). “Supporting dynamic parameter sweep in adaptive and user-
steered workflow”. In: Proceedings of the 6th workshop on Workflows in support of
large-scale science. ACM, pp. 31–36.

Fahringer, Thomas, Jun Qin, and Stefan Hainzer (2005). “Specification of grid workflow
applications with AGWL: an Abstract Grid Workflow Language”. In: CCGrid 2005.
IEEE International Symposium on Cluster Computing and the Grid, 2005. Vol. 2.
IEEE, pp. 676–685.

Garg, Ritu and A Kumar Singh (2011). “Fault tolerance in grid computing: state of the
art and open issues”. In: International Journal of Computer Science & Engineering
Survey (IJCSES) 2.1, pp. 88–97.

Gil, Yolanda et al. (2007). “Examining the challenges of scientific workflows”. In: Ieee
computer 40.12, pp. 26–34.

Jhawar, Ravi, Vincenzo Piuri, and Marco Santambrogio (2013). “Fault tolerance manage-
ment in cloud computing: A system-level perspective”. In: IEEE Systems Journal
7.2, pp. 288–297.

Kacsuk, Peter (2011). “P-GRADE portal family for grid infrastructures”. In: Concurrency
and Computation: Practice and Experience 23.3, pp. 235–245.

Krinke, Jens (2001). “Identifying similar code with program dependence graphs”. In: Re-
verse Engineering, 2001. Proceedings. Eighth Working Conference on. IEEE, pp. 301–
309.

14

Kwak, Seong Woo and Jung-Min Yang (2012). “Optimal checkpoint placement on real-
time tasks with harmonic periods”. In: Journal of Computer Science and Technology
27.1, pp. 105–112.

Lee, Kevin, Norman W Paton, et al. (2009). “Adaptive workflow processing and execution
in pegasus”. In: Concurrency and Computation: Practice and Experience 21.16,
pp. 1965–1981.

Lee, Kevin, Rizos Sakellariou, et al. (2007). “Workflow adaptation as an autonomic
computing problem”. In: Proceedings of the 2nd workshop on Workflows in support
of large-scale science. ACM, pp. 29–34.

Li, Zhongwen and Hong Chen. “Adaptive Checkpointing Schemes for Fault Tolerance in
Real-Time Systems with Task Duplication”. In:

Lidya, A et al. (2010). “Dynamic adaptation of checkpoints and rescheduling in grid
computing”. In: International Journal of Computer Applications (0975–8887) 2.3.

Ludäscher, Bertram et al. (2009). “Scientific process automation and workflow man-
agement”. In: Scientific Data Management: Challenges, Existing Technology, and
Deployment, Computational Science Series 230, pp. 476–508.

Meroufel, Bakhta and Ghalem Belalem (2014). “Adaptive time-based coordinated check-
pointing for cloud computing workfl ows”. In: Scalable Computing: Practice and
Experience 15.2, pp. 153–168.

Missier, Paolo et al. (2010). “Taverna, reloaded”. In: International conference on scientific
and statistical database management. Springer, pp. 471–481.

Montagnat, Johan et al. (2009). “A data-driven workflow language for grids based on
array programming principles”. In: Proceedings of the 4th Workshop on Workflows in
Support of Large-Scale Science. ACM, p. 7.

Nakagawa, Sayori, Satoshi Fukumoto, and Naohiro Ishii (2003). “Optimal checkpointing
intervals of three error detection schemes by a double modular redundancy”. In:
Mathematical and computer modelling 38.11, pp. 1357–1363.

Oliner, Adam J et al. (2005). “Performance implications of periodic checkpointing on
large-scale cluster systems”. In: 19th IEEE International Parallel and Distributed
Processing Symposium. IEEE, 8–pp.

Oliveira, Daniel de et al. (2014). “Debugging Scientific Workflows with Provenance:
Achievements and Lessons Learned”. In: 29th SBBD–SBBD Proceedings, Curitiba,
PR, Brazil.

Palaniswamy, Avinash C and Philip A Wilsey (1993). “An analytical comparison of
periodic checkpointing and incremental state saving”. In: ACM SIGSIM Simulation
Digest. Vol. 23. 1. ACM, pp. 127–134.

15

Pietri, Ilia et al. (2014). “A performance model to estimate execution time of scientific
workflows on the cloud”. In: Workflows in Support of Large-Scale Science (WORKS),
2014 9th Workshop on. IEEE, pp. 11–19.

Pintas, Julliano Trindade et al. (2013). “SciLightning: a cloud provenance-based event
notification for parallel workflows”. In: International Conference on Service-Oriented
Computing. Springer, pp. 352–365.

Plankensteiner, Kassian, Johan Montagnat, and Radu Prodan (2011). “IWIR: a language
enabling portability across grid workflow systems”. In: Proceedings of the 6th workshop
on Workflows in support of large-scale science. ACM, pp. 97–106.

Plankensteiner, Kassian, Radu Prodan, et al. (2013). “Fine-grain interoperability of
scientific workflows in distributed computing infrastructures”. In: Journal of grid
computing 11.3, pp. 429–455.

Poola, Deepak et al. (2014). “Robust scheduling of scientific workflows with deadline
and budget constraints in clouds”. In: 2014 IEEE 28th International Conference on
Advanced Information Networking and Applications. IEEE, pp. 858–865.

Sakellariou, Rizos and Henan Zhao (2004). “A low-cost rescheduling policy for efficient
mapping of workflows on grid systems”. In: Scientific Programming 12.4, pp. 253–262.

Shi, Zhiao, Emmanuel Jeannot, and Jack J Dongarra (2006). “Robust task scheduling in
non-deterministic heterogeneous computing systems”. In: 2006 IEEE International
Conference on Cluster Computing. IEEE, pp. 1–10.

Starlinger, Johannes, Bryan Brancotte, et al. (2014). “Similarity search for scientific
workflows”. In: Proceedings of the VLDB Endowment 7.12, pp. 1143–1154.

Starlinger, Johannes, Sarah Cohen-Boulakia, et al. (2014). “Layer decomposition: An
effective structure-based approach for scientific workflow similarity”. In: e-Science
(e-Science), 2014 IEEE 10th International Conference on. Vol. 1. IEEE, pp. 169–176.

Taylor, Ian et al. (2003). “Triana applications within grid computing and peer to peer
environments”. In: Journal of Grid Computing 1.2, pp. 199–217.

Team, SHIWA et al. (2011). SHIWA: SHaring Interoperable Workflows for Large-Scale
Scientific Simulation on Available DCIs.

Terstyanszky, Gabor et al. (2014). “Enabling scientific workflow sharing through coarse-
grained interoperability”. In: Future Generation Computer Systems 37, pp. 46–59.

Turi, Daniele et al. (2007). “Taverna workflows: Syntax and semantics”. In: e-Science
and Grid Computing, IEEE International Conference on. IEEE, pp. 441–448.

Vahi, Karan et al. (2012). “A general approach to real-time workflow monitoring”. In:
High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC
Companion: IEEE, pp. 108–118.

16

Xiang, Xiaorong and Gregory Madey (2007). “Improving the Reuse of ScientificWorkflows
and Their By-products”. In: IEEE International Conference on Web Services (ICWS
2007). IEEE, pp. 792–799.

Young, John W (1974). “A first order approximation to the optimum checkpoint interval”.
In: Communications of the ACM 17.9, pp. 530–531.

Own Publications Pertaining to Theses

K-1 Bánáti, Anna et al. (2015). “Usability of Scientific Workflow in Dynamically
Changing Environment”. In: Technological Innovation for Cloud-Based Engineer-
ing Systems: 6th IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing,
Electrical and Industrial Systems, DoCEIS 2015, Costa de Caparica, Portugal,
April 13-15, 2015, Proceedings. Ed. by M. Luis Camarinha-Matos et al. Springer
International Publishing, pp. 129–136. isbn: 9783319167664. doi: 10.1007/978-3-

319-16766-4_14. url: http://dx.doi.org/10.1007/978-3-319-16766-4_14.
K-2 Kail, E, A Bánáti, et al. “Provenance based adaptive and dynamic workflows”. In:

15th IEEE International Symposium on Computational Intelligence and Informat-
ics, pp. 215–219.

K-3 Kail, Eszter, Anna Bánáti, et al. (2014). “Dynamic workflow support in gUSE”.
In: Information and Communication Technology, Electronics and Microelectronics
(MIPRO), 2014 37th International Convention on. IEEE, pp. 354–359.

K-4 Kail, Eszter, Péter Kacsuk, and Miklós Kozlovszky (2015a). “A novel approach to
user-steering in scientific workflows”. In: Applied Computational Intelligence and
Informatics (SACI), 2015 IEEE 10th Jubilee International Symposium on. IEEE,
pp. 233–236.

K-5 — (2015b). “Achieving dynamic workflow management system by applying
provenance based checkpointing method”. In: Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2015 38th International
Convention on. IEEE, pp. 250–253.

K-6 — (2015c). “New aspect of investigating fault sensitivity of scientific work-
flows”. In: Intelligent Engineering Systems (INES), 2015 IEEE 19th International
Conference on. IEEE, pp. 185–188.

K-7 — (2016a). “A Novel Adaptive Checkpointing Method Based on Information
Obtained from Workflow Structure”. In: Transaction on Automating Control and
Computer Science 3.to be appear.

K-8 Kail, Eszter, Péter Kacsuk, and Miklós Kozlovszky (2016b). “Specification of user
and provenance based adaptive control points at workflow composition level”. In:

17

http://dx.doi.org/10.1007/978-3-319-16766-4_14
http://dx.doi.org/10.1007/978-3-319-16766-4_14
http://dx.doi.org/10.1007/978-3-319-16766-4_14

International Symposium on Intelligent Sytems and Informatics (SISY), 2015
IEEE 14th. IEEE.

K-9 Kail, Eszter, Krisztián Karóczkai, et al. (2016). “Provenance Based Checkpointing
Method for Dynamic Health Care Smart System”. In: Scalable Computing: Practice
and Experience 17.2, pp. 143–153.

Own Publications Not Pertaining to Theses

Kx-1 Kail, E, S Khoor, K Fugedi, et al. (2005). “Expert system for phonocardiographic
monitoring of heart failure patients based onwavelet analysis”. In: Computers in
Cardiology, 2005. IEEE, pp. 833–836.

Kx-2 Kail, E, S Khoor, B Kail, et al. (2004). “Internet digital phonocardiography in
clinical settings and in population screening”. In: Computers in Cardiology, 2004.
IEEE, pp. 501–504.

Kx-3 Kail, E, S Khoor, and J Nieberl (2005). “Ambulatory wireless Internet elec-
trocardiography: new concepts & maths”. In: 2nd International Conference on
Broadband Networks, 2005. IEEE, pp. 1001–1006.

Kx-4 Kail, Eszter, Gábor Németh, and Zoltán Richárd Turányi (2001a). “The effect of
the transmission range on the capacity of ideal ad hoc networks”. In: rN 2, p. 3.

Kx-5 — (2001b). “Throughput of ideally routed wireless ad hoc networks”. In:
Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking
& computing. ACM, pp. 271–274.

Kx-6 Khoor, S et al. (2001). “Telemedicine ECG-telemetry with Bluetooth technology”.
In: Computers in Cardiology 2001. IEEE, pp. 585–588.

Kx-7 Khoór, S et al. (2003). “Internet-based, GPRS, long-term ECG monitoring and
non-linear heart-rate analysis for cardiovascular telemedicine management”. In:
Computers in Cardiology, 2003. IEEE, pp. 209–212.

Kx-8 Rónai, Miklós Aurél and Eszter Kail (2003). “A simple neighbour discovery proce-
dure for Bluetooth ad hoc networks”. In: Global Telecommunications Conference,
2003. GLOBECOM’03. IEEE. Vol. 2. IEEE, pp. 1028–1032.

Kx-9 Turányi, Zoltán R et al. (2000). “Global internet roaming with ROAMIP”. In:
ACM SIGMOBILE Mobile Computing and Communications Review 4.3, pp. 58–
68.

18

	Background of the Research
	Workflow Structure Analysis
	Provenance Based Checkpointing Method Based on Workflow Structure Analysis
	Provenance Based Runtime Manipulation

	Motivation
	Workflow structure and fault tolerance
	Adaptive and user-steered execution

	Objectives
	Workflow structure and fault tolerance
	Adjusting the checkpointing interval
	Adaptive and user-steered execution

	Materials and Methods of Investigation
	Fault sensitivity analysis and workflow structured based checkpointing algorithm
	Provenance Based Runtime Manipulation

	New Scientific Results
	Discussion and Practical Applicability of the Results
	Workflow structure analysis and fault tolerance
	Provenance based adaptive and user steered execution

